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Frank Calegari and Joel Specter

We prove that the determinant (pseudorepresentation) associated to the Hecke algebra of Katz modular
forms of weight one and level prime to p is unramified at p.

1. Introduction

Let p be prime and let N ≥ 5 be prime to p. Let O be the ring of integers in a finite extension K of
Qp with uniformizer $ . Let X1(N ) be the modular curve considered as a smooth proper curve over
Spec(O) and let ω be the pushforward of the relative dualizing sheaf along the universal elliptic curve.
The coherent cohomology group H 0(X1(N ), ω) may be identified with the space of modular forms of
weight one with coefficients in O. For general m, one knows that the map:

H 0(X1(N ), ω)→ H 0(X1(N ), ω/$m)

need not be surjective. This was first observed by Mestre for N = 1429 and p = 2 (see [Edixhoven 2006,
Appendix A]) and many examples for larger p have been subsequently computed by Buzzard [2014] and
Schaeffer [2015]. In particular, if T denotes the subring of

EndO lim
→

H 0(X1(N ), ω/$m)= EndO H 0(X1(N ), ω⊗ K/O),

generated by Hecke operators Tl and 〈l〉 for (l, N )= 1, then T may be bigger than the classical Hecke
algebra acting on the space H 0(X1(N ), ω⊗C) of classical modular forms of weight one. Let GQ be
the absolute Galois group of Q. Let GQ,N be the absolute Galois group of the maximal extension of Q

unramified outside N∞. Our main theorem is as follows:

Theorem 1.1. Let T ⊂ EndO H 0(X1(N ), ω⊗ K/O) denote the algebra generated by Hecke operators
Tl and 〈l〉 for all l prime to N. There is a degree d = 2 determinant:1

D : T [GQ] → T , P(D, σ )= X2
− T (σ )X + D(σ ),
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1A notion of pseudorepresentation which works in all characteristics, see Section 2.
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which is unramified outside N∞— equivalently, which factors through T [GQ,N ]— such that for all
primes l -N , including l = p, one has

T (Frobl)= Tl and D(Frobl)= 〈l〉.

The ring T is a finite O-algebra and is moreover a semilocal ring, and thus is a direct sum
⊕

Tm

of its completions at maximal ideals m. For each maximal ideal m of T , the residual determinant
P : O[GQ] → Tm/m= k arises from to a semisimple Galois representation ρ over k [Chenevier 2014,
Theorem A]. If this representation is irreducible, then P itself also arises from a genuine representation,
which, by a theorem of Carayol [1994], takes values in Tm. It follows from Theorem 1.1 that the
corresponding representation

ρ : GQ→ GL2(Tm)

is unramified at p. For p > 2, this is a consequence of Theorem 3.11 of [Calegari and Geraghty 2018].
Hence the main interest of this result is to residually reducible representations. However, the result is new
even for absolutely irreducible representations when p = 2 (although there are significant partial results
by Wiese [2014]). Although the proof of Theorem 1.1 is similar to that of Theorem 3.11 of [Calegari and
Geraghty 2018], it is more direct, and does not rely on any explicit analysis of the ordinary deformation
rings of Snowden [2018]. Hence this paper can also be seen as providing a simplification of the proof of
Theorem 3.11 of [Calegari and Geraghty 2018]. (See also Remark 3.3.)

The existence of the determinant without any condition at p is an easy consequence of the corresponding
result in higher weight: first consider the action of T on H 0(X1(N ), ω/$m) and then multiply by a
suitable power of the Hasse invariant which is Hecke equivariant. Hence the main content of this theorem
is that the determinant is unramified at p.

2. Determinants

In this paper, we will use the term “pseudorepresentation” as a catch-all to refer to various types of gener-
alized representations. The first pseudorepresentations were introduced by Wiles [1988] for 2-dimensional
representations; these were later generalized to any dimension by Taylor [1991]. Following Roquier
[1996], we will call Taylor-style pseudorepresentations “pseudocharacters,” because of their resemblance
to the trace of a representation. In this paper, we will mainly consider the pseudorepresentations of
Chenevier [2014] called “determinants.” These are more general and flexible than pseudocharacters, and
in particular allow us to treat the case where p = d = 2. We shall only be concerned with determinants of
degree d = 2.

We begin by recalling the notion of a determinant [Chenevier 2014, page 223]. Let G be a group
and A be a ring. Let d be a positive integer. If M is a free, rank-d A-module equipped with a linear
G action, then one may consider the family of characteristic polynomials associated to the elements
of A[G] acting on M . This family of polynomials is highly interdependent and is a robust invariant
of the representation M . Informally, a degree d determinant is a pseudorepresentation containing the
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information of a family of polynomials which satisfies the collection of common relations shared by all
families of degree d characteristic polynomials. If B is an A-algebra, one can extend the action of A[G]
on M to an action of B[G] on M ⊗A B, and also obtain corresponding characteristic polynomials over B
for elements in B[G]. Chenevier’s definition of a determinant follows from the following two insights.
First, the data of the characteristic polynomials for elements in B[G] as one ranges over all A-algebras
B is equivalent to that of the literal determinants of the elements of B[G] acting on M ⊗A B as one
ranges over all A-algebras B: the characteristic polynomial of an element m ∈ B[G] is, by definition,
the determinant of the endomorphism X −m acting on M ⊗A B[X ]. Second, relations in families of
characteristic polynomials arise via compatibilities of the determinant map. The literal determinants of the
elements of B[G] acting on M ⊗A B can be organized as a series of set theoretic maps det : B[G] → B,
one for each A-algebra B, which satisfy the following compatibilities:

(1) The maps det are natural in B.

(2) det(1)= 1 and the element det(xy)= det(x) det(y) for all x, y ∈ B[G].

(3) det(bx)= bd det(x), where b ∈ B and d is equal to the rank of M .

A determinant is simply a family of maps which are compatible in these three ways.

Definition 2.1. Let A be a ring,2 G be a topological group, and d be a positive integer. A degree
d determinant is a continuous A-valued polynomial law D : A[G] → A,3 which is multiplicative and
homogeneous of degree d . If B is an A-algebra and m ∈ B[G], we call P(D,m)(X) := D(X−m)∈ B[X ]
the characteristic polynomial of m.

Given a determinant D : A[G] → A and an A-algebra B, the restriction of D to the category of
B-algebras defines a determinant DB : B[G] → B on B. We call DB the base change of D to B.

Determinants of degree d = 2. Given a determinant D : A[G] → A of degree 2, the corresponding
characteristic polynomials P(D,m) ∈ B[X ] for m ∈ B[G] have degree 2 and can be written in the form

P(m)= P(D,m)= X2
− T (m)X + D(m),

for maps T, D : B[G]→ B. Note that the family of maps D : B[G]→ B as B ranges over all A-algebras
is precisely the data which defines the polynomial law D. In practice, our groups G will always be Galois
groups with the usual profinite topology, and our rings A will either be p-adically complete semilocal
W (k)-algebras with the p-adic topology or p-adic fields with the p-adic topology. We insist that all

2All rings considered in this note will carry a Hausdorff topology, and, with the exception of group rings, will be commutative.
Our terminology will suppress these topological and algebraic considerations. We use the terms module and algebra to denote a
Hausdorff topological module and a commutative, Hausdorff topological algebra, respectively.

3An A-valued polynomial law between two A-modules M and N is by definition a natural transformation N⊗A B→M⊗A B
on the category of commutative A-algebras B. A polynomial law is called multiplicative if D(1)= 1 and D(xy)= D(x)D(y) for
all x, y ∈ A[G]⊗ B, and is called homogeneous of degree d , if D(xb)= bd D(x) for all x ∈ A[G]⊗ B and b ∈ B. A polynomial
law is called continuous if its characteristic polynomial map on G given by g 7→ P(D, g) is continuous.
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Galois representations and all determinants considered in this paper are continuous with respect to the
topologies on G and A.

In residue characteristic different from 2 and degree 2, one can recover D from T via the identity

D(σ )=
T (σ )2− T (σ 2)

2
.

On the other hand, for any p, one can recover T from D by the formula

T (σ )= D(σ + 1)− D(σ )− 1.

We have the following characterization of determinants of degree 2.

Lemma 2.2 [Chenevier 2014, Lemma 7.7]. The set of determinants of G over A of degree 2 are in
bijection with maps (T, D) from G to A satisfying the following two conditions:

(1) D : G→ A× is a homomorphism.

(2) T : G→ A is a function with T (1)= 2 and such that, for all g, h ∈ G:

(a) T (gh)= T (hg).
(b) D(g)T (g−1h)− T (g)T (h)+ T (gh)= 0.

In light of this lemma, we shall (from now on) regard a determinant D of G over A of degree 2 as
precisely given by a pair of functions (T, D) satisfying the equations above. Given g ∈ G, we have a
corresponding characteristic polynomial P(g) = X2

− T (g)X + D(g). By abuse of notation, we shall
denote the pair (T, D) by P = (T, D). By [Chenevier 2014, Lemma 7.7], the functions T and D extend
to functions from A[G] to A. In the case of T , this extension is the linear extension, and in the case of
D, it can be constructed explicitly by using the equation for D(xt + ys) given below. Note that D as a
function of A[G] determines T and hence P and hence D, but D as a function of G (in general) does not.
Under this equivalence, the base change of a determinant P := (T, D) to an A-algebra B corresponds to
the determinant f ◦ P := ( f ◦ T, f ◦ D) obtained by post-composing the functions T and D with the
structure homomorphism f : A→ B.

If A is an algebraically closed field, then (T, D)may be realized as the trace and (classical) determinant
of an actual semisimple representation [Chenevier 2014, Theorem A].

There is a well-defined notion of the kernel of P (see [Chenevier 2014, Section 1.4]), which in our
case has the following simple description:

Lemma 2.3. The kernel of a determinant P = (T, D) of degree 2 consist of the elements x ∈ A[G]
satisfying the following two conditions:

(1) T (xy)= 0 for all y ∈ A[G].

(2) D(x)= 0.

Proof. For polynomial laws of degree 2, we have (see Example 7.6 of [Chenevier 2014])

D(xt + ys)= D(x)t2
+ (T (x)T (y)− T (xy))ts+ D(y)s2. (1)



Pseudorepresentations of weight one are unramified 1587

As follows from Section 1.4 of [Chenevier 2014], we may compute the x ∈ ker(P) by finding the x for
which this expression is independent of t . Taking y = 1 yields the equalities T (x) = 0 and D(x) = 0.
Returning to the case of general y, we then deduce that T (xy)= T (x)T (y)= 0. �

Suppose that H is a subgroup of G such that [h] − 1 ∈ ker(P) for all h ∈ H . In this case, by abuse of
notation, we say that ker(P) contains H . If ker(P) contains H , then [ghg−1

]−1 ∈ ker(P) for any g ∈G,
and (compare Lemma 7.14 of [Chenevier 2014]) the determinant P factors through A[G/N ], where N is
the normal closure of H . (That is, the functions T and D on A[G] depend only on their image in the
quotient A[G/N ].) In particular, to show that a determinant on O[GQ] is unramified at a prime l (for
example l = p), it suffices to show that the kernel contains some (any) choice of inertia subgroup Il at l,
or equivalently:

Lemma 2.4. Il = H ⊂ G = GQ lies in the kernel of P if and only if :

(1) T (hg)= T (g) for all h ∈ H = Il and g ∈ G = GQ.

(2) D(h− 1)= 0 for all h ∈ H = Il .

Ordinary determinants. Let O be the ring of integers of a finite extension [K : Qp] <∞, let $ be a
uniformizer of O, and suppose that O/$ = k. Let P = (T , D) : GQ→ k be a degree 2 determinant
which is unramified outside N p. In practice, it will always be taken to be modular of level 01(N ). Let us
fix, once and for all, an embedding of Q into Qp, and hence inclusions

Ip ⊂ Dp ⊂ GQ,

where Ip is the inertia group of Qp and Dp = Gal(Qp/Qp) is the decomposition group. Let us also fix a
Frobenius element φ ∈ Dp. There is a natural projection Dp→ Dp/Ip ' Ẑ whose image is topologically
generated by the image of φ. Let ε : GQ→ Z×p be the cyclotomic character; we may choose φ so that
ε(φ)= 1. Enlarging k if necessary, let α and β be the roots of the quadratic polynomial

X2
− T (φ)X + D(φ)= 0

over k. We do not assume that these are necessarily distinct.
There are a number of slightly different definitions of ordinary Galois representations in the literature.

Let us say that a 2-dimensional representation ρ : GQp → GL2(Qp) is ordinary if the underlying 2-
dimensional vector space V admits a two step filtration 0 ( V ′ ( V such that the action of GQp on
V ′′ = V/V ′ is unramified. (This coincides, for example, with the definition of ordinary in [Skinner and
Wiles 1997].) We furthermore say that ρ is ordinary of weight n if the action of GQp on V ′ is via an
unramified twist of εn−1. By abuse of notation, if ρ : GQ→ GL2(Qp) is a global Galois representation,
we say that it is ordinary if ρ|GQp

is ordinary (respectively, ordinary of weight n). When a representation is
ordinary, various relations are imposed on its associated determinant. We collect several of these relations
common to all ordinary 2-dimensional representations of weight n, and then define that a determinant
P = (T, D) : A[GQ] → A of degree 2 to be an “ordinary determinant of weight n” if and only if it
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satisfies these conditions. Our definition includes the auxiliary data of an “eigenvalue” α ∈ A× of the
Frobenius element φ. This “eigenvalue” satisfies some relations shared by every value which occurs as the
eigenvalue of φ on a choice of unramified quotient of ρ|GQp

in an 2-dimensional ordinary representation
of weight n. We will be interested in deformations of P to Artinian local rings (A,m) which are ordinary
of weight n.

Definition 2.5. Let (A,m) be a Noetherian local ring with residue field k. An ordinary determinant
P : A[GQ] → A of degree 2 and weight n with eigenvalue α ∈ A× consists of a pair (P, α) where
P = (T, D) : A[GQ] → A is a degree d = 2 determinant satisfying the following properties:

(1) P(h)= (X − 1)(X −ψ(h)) for all h ∈ Ip, where ψ = εn−1.

(2) α is a root of X2
− T (φ)X + D(φ).

(3) For all h ∈ Ip, (h−ψ(h))(φ−α) ∈ ker(P). Equivalently, for all g ∈ GQ and h ∈ Ip,

T (g(h−ψ(h))(φ−α))= T (ghφ)−ψ(h)T (gφ)− T (gh)α+ T (g)ψ(h)α = 0.

The first two conditions of this definition are self-explanatory. The last may be somewhat surprising
to the reader; note that it involves a condition on general elements g ∈ GQ rather than simply being
a condition on the decomposition group. This turns out to be necessary, because the determinant (or
pseudocharacter) associated to the decomposition group of a locally reducible representation does not
know which character comes from the quotient and which comes from the submodule. The idea behind
this definition, as we shall see shortly below, is to capture the notion that the product (h−ψ(h))(φ−α)
is identically zero, rather than just of the form

( 0
0
∗

0

)
. There is presumably a close relationship between

this definition and the definition of ordinary pseudocharacters given by Wake and Wang-Erickson [2017]
(see also Section 7.3 of [Wang-Erickson 2018]), although in our context it is important that we can work
in non-p distinguished situations by choosing an eigenvalue of Frobenius, which amounts to a partial
resolution of the corresponding deformation rings (presumably such modifications could also be adapted
to [Wang-Erickson 2018]). On the other hand, we do exploit the crucial idea due to Wang-Erickson that
the notion of ordinarity for pseudorepresentations should be a global rather than local condition. The
following lemma provides a justification for the final condition above, and the proof provides a motivation
for its definition.

Lemma 2.6. Suppose that f is a classical modular eigenform of level 00(p)∩01(N ) with nebentypus
character χ of weight n ≥ 2 with coefficients in O, and suppose that α is the Up-eigenvalue of f .
Assume that f is ordinary (equivalently, that α has trivial valuation). Then the associated determinant
P f :O[GQ] →O is ordinary with eigenvalue α, weight n, and is unramified outside N p.

Note that f in Lemma 2.6 need not be new at either the prime p or primes dividing N .

Proof. Since O has characteristic zero, there is a Galois representation (via [Deligne 1971])

ρ f : GQ,N p→ GL2(Qp)
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associated to f . The determinant P f = (T f , D f ) is (by definition) the determinant associated to the
representation ρ f . Since ρ f factors through GQ,N p, this determinant is unramified at primes outside N p.
Let λα : GQp →Q×p denote the unramified character which sends Frobp to α. We collect the following
facts concerning the Galois representation ρ f :

Fact 2.7. The representation ρ f has the following properties:4

(1) The representation ρ f is unramified outside N p. The trace and (classical) determinant of ρ f (Frobl)

are equal to al( f ) and ln−1χ(l) respectively. The (classical) determinant of ρ f is the character
χεn−1, where χ is unramified outside N.

(2) If f is old at level p, and the corresponding eigenform g of level 01(N ) has Tp eigenvalue ap, then
α is the unit root of X2

− ap X + pn−1χ(p), and

ρ f |Dp = ρg|Dp ∼

(
εn−1λ−1

α χ ∗

0 λα

)
.

(3) If f is new at level p, then n = 2,

ρ f |Dp ∼

(
ελα ∗

0 λα

)
,

and χ |Dp ' λ
2
α.

Using these properties, we see that the required conditions for P f to be ordinary with eigenvalue α
are easily met with the possible exception of the final condition. For this, note that from the explicit
descriptions above there exists a basis such that

ρ f |Ip =

(
ψ ∗

0 1

)
, ρ f (φ)=

(
χ(φ)α−1

∗

0 α

)
,

where det(ρ f )= ε
n−1χ . We find, with h ∈ Ip, that, in M2(O),

(ρ f (h)−ψ(h))(ρ f (φ)−α)=

(
0 0
0 0

)
.

It follows that

T f (s(h−ψ(h))(φ−α))= tr(ρ f (s)(ρ f (h)−ψ(h))(ρ f (φ)−α))= 0

for all s ∈ GQ. �

4 The fact that ρ f is unramified outside N p already follows from the original construction of Deligne [1971]. Since the
nebentypus character has conductor dividing N , the corresponding Galois representation χ is certainly unramified outside N . The
second claim follows immediately from [Wiles 1988, Theorem 2]. Consider the third claim, so we are assuming that f is new at p.
If one writes χ =χpχN where χp and χN are characters corresponding to the identification (Z/N pZ)×= (Z/pZ)×⊕(Z/NZ)×,
then (by assumption) χp is trivial. It follows (see Section 1 of [Atkin and Li 1978]) that f is an eigenform for operator Wp with
eigenvalue λp( f ) satisfying λ2

p( f ) = χ(p) [Atkin and Li 1978, Proposition 1.1]. On the other hand, by [Atkin and Li 1978,
Theorem 2.1], we deduce that α2

= λ2
p( f )pn−2

= χ(p)pn−2. Under our assumption that α is a p-adic unit, this can only occur
when the weight n = 2. When n = 2, however, we can appeal to [Darmon et al. 1997, Theorem 3.1(e)] which gives a detailed
description of the local properties of Galois representations associated to ordinary forms. Finally, the identification of χ |Dp with

λ2
α follows either by considering determinants or the identity α2

= χ(p) discussed above.
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We now fix our choice of P . Let P : k[GQ] → k be the determinant associated to a mod $ weight
one eigenform g of level 01(N ), i.e., the determinant associated to the Galois representation classically
attached to g [Gross 1990, Proposition 11.1]. Suppose that g has nebentypus character χ and Tp-eigenvalue
ap, and let α and β be the roots of X2

− ap X +χ(p), which we assume (enlarging O if necessary) are
k-rational.

Lemma 2.8. Let n≡ 1 mod (p−1) be an integer. The determinant P is ordinary of degree 2 and weight n
with eigenvalue α and is unramified outside N p. If n > 1, there is an eigenform f of level 01(N )∩00(p)
and weight n which is ordinary at p for which the Up-eigenvalue of f is congruent to α mod $ such that
P = P f .

By symmetry, the result holds with α replaced by β.

Proof. Since εn−1 is trivial mod $ for n ≡ 1 mod (p− 1), if P is ordinary with eigenvalue α for one
such n, it is ordinary for all such n. Suppose we can construct an eigenform h modulo $ of level 01(N )
of weight p and such that the Tp-eigenvalue of h is congruent to α mod $ , and such that Ph = P .
By multiplying by powers of the Hasse invariant, we deduce that there also exists such a form in any
weight n ≡ 1 mod (p− 1) such that n > 1. All mod $ modular forms in weights n > 1 and level 01(N )
lift to characteristic zero. (This follows as in [Katz 1973, Theorem 1.7.1], the running assumption that
N ≥ 5 guaranteeing that X1(N ) is a fine moduli space.) Moreover, using the Deligne–Serre lifting lemma
[Deligne and Serre 1974, Lemme 6.11], one can always choose a lift h which is an eigenform for all
the Hecke operators. The lifted form h of weight 01(N ) has weight n > 1 and Tp-eigenvalue α mod$ .
But now the ordinary stabilization f of h of level 01(N ) ∩ 00(p) has Up-eigenvalue α mod$ , and
P f = Ph = P , as required. Finally, we deduce from Lemma 2.6 applied to f that P is ordinary with
eigenvalue α (of weight n and unramified outside N p). Thus it remains to construct h from g.

If A is the Hasse invariant, then Ag is a modular form mod $ of level 01(N ) and weight p which is
an eigenform for all Hecke operators except for Tp, and moreover has the same eigenvalues as g. The
same is true of Tp(Ag) and also A(Tpg) (the latter is just ap Ag). On the level of q-expansions, there are
equalities Ag = g and ATp(g)− Tp(Ag)= Vg respectively. Hence h = g−βVg is a weight p modular
eigenform mod $ of level 01(N ) with P f = P and with Tp-eigenvalue α. To see that Tph = αh, note
(compare [Gross 1990, Section 4, especially (4.7)]) that Tp(Vg)= Ag and Tp Ag = ap Ag−χ(p)Vg, and
hence

Tph =Tp(Ag−βVg)

=ap Ag−χ(p)Vg−βAg

=(α+β)Ag−αβVg−βAg

=α(Ag−βVg)= αh. �

Let R= Runiv denote the universal deformation ring of P (compare [Chenevier 2014, Proposition 7.59])
unramified outside N p. It prorepresents the functor which, for Artinian local W (k)-algebras (A,m) with
residue field A/m= k, consists of determinants P = (T, D) valued in A whose mod m reduction is P .
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Let Puniv
= (T univ, Duniv) denote the corresponding universal determinant. We define a mild variant

on this ring by considering such determinants: P = (T, D) : A[GQ] → A together with a root α of
X2
− T (φ)X + D(φ). The result is an extension R̃ of R given by

R̃ = R[α]/(α2
− T univ(φ)α+ Duniv(φ)).

The ring R is a local W (k)-algebra, but the ring R̃ is a semilocal W (k)-algebra with either one or two
maximal ideals. It has 2 maximal ideals precisely when the polynomial α2

− T (φ)α+ D(φ) ∈ k[α] is
separable.

Definition 2.9. Let D̃†
n(A) denote the functor which, for Artinian local rings (A,m) with residue field

A/m = k, consists of ordinary determinants (P, α0) of weight n unramified outside N p, where P is a
deformation of P to A, and n ≡ 1 mod (p− 1) is a positive integer.

Note that elements in D̃†
n(k) are in bijection with choices of α ∈ k so that P is ordinary of weight n

with eigenvalue α. By Lemma 2.8, such a choice of eigenvalue exists. Furthermore since α is a root
X2
−T (φ)X+D(φ), the size of D̃†

n(k) is at most 2. For each root α ∈ k of X2
−T (φ)X+D(φ), consider

the subfunctor D̃†,α
n (A)⊆ D̃†

n(A) consisting of pairs with (P, α0) such that α0 ≡ α mod m. The functor
D̃†

n decomposes as the coproduct

D̃†
n(A)=

∐
(P,α)∈D̃†

n(k)

D̃†,α
n (A),

and each of the subfunctors D̃†,α
n are prorepresented by a (potentially trivial) Noetherian local W (k)-

algebra R̃†,α
n . By abuse of terminology, we will say D̃†

n is prorepresented by the semilocal ring

R̃†
n :=

⊕
(P,α)∈D̃†

n(k)

R̃†,α
n .

Explicitly, if P̃univ is the base change of Puniv to the R-algebra R̃, then R̃†
n is the quotient of R̃ by the ideal

generated by all the relations which obstruct Puniv from being ordinary of weight n with eigenvalue α.
The universal determinant P†,univ

n is base change of P̃univ to R̃†
n and the universal eigenvalue is α.

The determinant P†,univ itself is valued in the subring R†
n of R̃†

n , which is the image of R ⊂ R̃. However,
the element α will not, in general, lie in R†

n . The extra data of α records, implicitly, the “choice” of
realizing the corresponding determinant as ordinary. (The same determinant P can in principle be realized
as an ordinary determinant (P, α) for different values of α.)

The following result is the key proposition which allows us to prove that certain ordinary determinants
are unramified. The idea is that, given a representation which is ordinary, the more the representation
is ramified, the more the choice of ordinary eigenvalue α is pinned down by the Galois representation,
because the ramification structure gives a partial filtration on the representation which mirrors the ordinary
filtration. The extreme case, in which α cannot be distinguished from the other root α−1 D(φ) of the
characteristic polynomial of φ, should only occur when the representation is unramified. While these
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claims are obvious for Qp-valued representations, the key property of our definition is that one can prove
this for any quotient of R̃†

n .

Proposition 2.10. Let R̃†
n → S̃ be a surjective homomorphism of W (k)-algebras, and let S denote the

image of R†
n in S̃. Suppose that S̃/S is a free S-module of rank one, or equivalently, that the annihilator

of S̃/S as an S-module is trivial. Then the corresponding determinant P valued in S is unramified.

Proof. We first verify that D(h− 1)= 0 without any assumptions. From first condition of Definition 2.5
we see that D(h)=ψ(h) and T (h)= 1+ψ(h), and thus, from (1) in the proof of Lemma 2.3, we deduce
that

D(h− 1)= D(h)− (T (h)T (1)− T (h))+ D(1)= ψ(h)− (ψ(h)+ 1)+ 1= 0.

We now turn to the second condition of Lemma 2.4. The module S̃/S is a cyclic S-module generated
by α, so it is free if and only if the annihilator of α is trivial. We have by definition the identity (for
s ∈ GQ and h ∈ Ip and ψ = εn−1)

T (shφ)−ψ(h)T (sφ)− T (sh)α+ T (s)ψ(h)α = 0.

We may rearrange this to obtain the identity

α(T (sh)− T (s)ψ(h))= T (shφ)−ψ(h)T (sφ).

Note that the value T (s) for any s ∈ GQ lands in S, as does the image of any element of W (k), and hence
it follows that

α(T (sh)− T (s)ψ(h))= 0 ∈ S̃/S.

Take g to be the identity, so T (sh)= T (h)= 1+ψ(h) and T (s)= 2. Then we deduce that

α(1−ψ(h))= 0 ∈ S̃/S

for all h ∈ Ip. If S̃/S is free, then its annihilator of α is trivial, and thus ψ(h)= 1 for all h. But we then
deduce for the same reason that T (sh)− T (s)ψ(h)= T (sh)− T (s)= 0 for all s ∈ GQ and h ∈ Ip, from
which it follows by Lemma 2.4 (note that T (sh)= T (hs)) that Ip is contained in the kernel. �

3. Galois Deformations

By Lemma 2.8, our fixed determinant P = (T , D) : k[GQ] → k is associated to an ordinary mod $
eigenform of level 01(N )∩00(p) in each weight n ≥ 2 satisfying n ≡ 1 mod p− 1. Given our choice of
Frobenius element φ ∈ Dp ⊂ GQ, recall that α and β are the roots of the polynomial

P(φ)= X2
− T (φ)X + D(φ).

We start by considering determinants arising from forms of higher weight.
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Lemma 3.1. Let n ≥ 2 be an integer such that n ≡ 1 mod p − 1. Let T̃n denote the O-algebra of
endomorphisms of

Mn(00(p)∩01(N ),O)

generated by Hecke operators Tl and 〈l〉 for l prime to N p, together with Up. Let m denote the ideal of T̃n

generated by $ and by any lift in T̃n of the following elements of T̃n/$ : the operators Tl − T (Frobl) and
〈l〉ln−1

− D(Frobl) for (l, N p)= 1, and (Up −α)(Up −β). Assume that P is associated to an ordinary
mod $ eigenform of level 01(N )∩00(p) and weight n with Up-eigenvalue congruent to either α or β
modulo $ , so that m is a proper ideal. Then there exists a canonical surjection of semilocal rings

R̃†
n→ T̃n,m

sending α ∈ R̃†
n to Up.

Remark 3.2. If Tn ⊂ T̃n denotes the subring generated by the all the Hecke operators except Up, then
m∩Tn is maximal. However, m itself need not be maximal. Throughout the rest of the paper, we let T̃n,m

denote the completion T̃n,m := proj lim T̃n/m
r — it need not be a local ring. The Hecke algebra T̃n,m is

nonlocal precisely when α 6= β and when P is associated to an ordinary mod $ eigenform with Up-
eigenvalue congruent to α mod$ and is also associated to an eigenform with Up-eigenvalue congruent to
β mod$ . In that case, the ideals mα and mβ obtained by adjoining any lift of Up−α or Up−β respectively
from T̃n/$ to m are both maximal, and there is an isomorphism T̃n,m ∼= T̃n,mα ⊕ T̃n,mβ . Working with
semilocal rings allows us to treat the cases α= β and α 6= β simultaneously. If M is a module for T̃n , then,
when m is not maximal, there is also a corresponding identification Mm := proj lim M/mr

= Mmα ⊕Mmβ
.

Proof of Lemma 3.1. Consider an embedding K → L , where L is a field which contains the eigenvalues
of all elements of T̃n . The Hecke algebra T̃n acts faithfully on Mn(00(p) ∩ 01(N ), L). Recall that
Tn ⊂ T̃n denotes the subring generated by Hecke operators away from N p (i.e., without Up). For
each newform h which contributes to Mn(00(p) ∩ 01(N ), L), there is a corresponding vector space
V (h) ⊂ Mn(00(p) ∩ 01(N ), L) generated by h together with the old forms associated to h. (The
space V (h) can also be identified with the invariants π01(N )∩00(p), where π is the smooth admissible
GL2(A(∞))-representation over L generated by h.) There is a Tn-equivariant isomorphism

Mn(00(p)∩01(N ), L)'
⊕

g

V (h),

where Tn acts on V (h) through scalars corresponding to the homomorphism ηh : Tn→ L sending Tl to
al(h) and 〈l〉 to ln−1χ(l) where χ is the nebentypus character of h. Let us now consider the action of the
operator Up. For each map ηh : Tn→ L (which corresponds to a fixed Galois representation ρh) one of
the following two things happens:

(1) The newform h has level 00(p) at p, in which case Up acts on V (h) via a scalar.

(2) The newform h has level 00(1) at p, in which case Up acts on V (h) and satisfies the identity
U 2

p − apUp + pn−1χ(p)= 0.
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In particular, the algebra T̃n will always acts semisimply in the first case and act semi-simply in the
second case as long as the corresponding polynomial X2

− ap X + pn−1χ(p) has distinct roots. This
is known in general only under the assumption of the Tate conjecture (see [Coleman and Edixhoven
1998]), but it can certainly only fail to happen when a2

p = 4pn−1χ(p), which would force the (multiple)
eigenvalue of Up to have positive valuation (since n ≥ 2). In particular, such forms do not contribute to
Mn(00(p)∩01(N ),O)m⊗O L , because (since m contains the preimage of (Up−α)(Up−β) for nonzero
α and β) the element Up acts invertibly on this space. (Recall, following Remark 3.2, that when m is
contained in two primes, Mn(00(p)∩01(N ),O)m is simply the direct sum of Mn(00(p)∩01(N ),O)mα
and Mn(00(p)∩01(N ),O)mβ .) It follows that there is an injection

in : T̃n,m ↪→
⊕

f

L ,

where the sum ranges over all T̃n-eigenforms f ∈ Mn(00(p) ∩ 01(N ), L) such that P f = P and the
Up-eigenvalue is congruent either to α or β. We identify T̃n,m with its image under in . For each of the
forms f above, denote the Up-eigenvalue by α( f ). By Lemma 2.6, the determinants P f are ordinary with
eigenvalues α( f ), weight n, and unramified outside N p. Hence, for each form f there is a homomorphism

i f : R̃†
n→ L

such that i f ◦ P†,univ
= P f and which maps α to α( f ). Taking the direct sum of the maps i f , we obtain a

homomorphism
jn : R̃†

n→
⊕

f

L

under which α maps to Up, T (Frobl) maps to Tl , and D(Frobl) maps to 〈l〉. We conclude that jn factors
through a surjective homomorphism

R̃†
n→ T̃n,m

under which α maps to Up. �

We are now ready to prove the main theorem.

Proof of Theorem 1.1. Recall that T = T1 is the O-subalgebra of EndOH 0(X1(N ), ω⊗ K/O) generated
by Tl and 〈l〉 for (l, N )= 1. This ring contains Tp, but the element Tp in weight one is also generated by
the other Hecke operators (see, for example, Lemma 3.1 of [Calegari 2018]). For each positive integer m,
let T (m) denote the image T in EndO H 0(X1(N ), ω/$m). The ring T ∼= lim

←−−
T (m). Therefore, to prove

Theorem 1.1, it suffices to construct for each m > 0 a degree d = 2 determinant

Dm : T (m)[GQ] → T (m), P(Dm, σ )= X2
− Tm(σ )X + Dm(σ ),

which is unramified outside N∞, and such that for all primes l -N (including l = p) the characteristic
polynomial of Frobl satisfies

Tm(Frobl)= Tl and Dm(Frobl)= 〈l〉.
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In the remainder of the proof, we will assume that m > 0 is fixed, and will denote by an abuse of notation
T (m) by T .

There is a decomposition T =
⊕

Tm over the maximal ideals m of T . Hence, it suffices to construct
the desired determinant after completing at a maximal ideal m of T . Let P denote our fixed modular
residual determinant, which we have assumed is supported in weight one, and let m denote the maximal
ideal which is the kernel of the corresponding map T→ k. Let T̃n denote the Hecke algebra of Lemma 3.1
in weight n := 1+ pm−1(p− 1) which contains Up (and has coefficients in O). By abuse of notation, we
also let m denote the ideal of T̃n defined in Lemma 3.1. By Lemma 2.8, this ideal is proper.

By Lemma 3.16 of [Calegari and Geraghty 2018], there is a surjective map

R̃†
n � T̃n,m � S̃ := Tm[Up]/(U 2

p − TpUp +〈p〉) (2)

(which sends Tl and 〈l〉 to Tl and 〈l〉 respectively, and sends Up to Up, where Up in S̃ is viewed as a
formal variable satisfying the given quadratic relation). Although the running assumption in Section 3
of [Calegari and Geraghty 2018] is that p > 2, the proof of [loc. cit., Lemma 3.16] applies (as written
with no changes necessary) with p = 2. The image S of R†

n ⊂ R̃†
n is generated by the values of T and D

on Frobenius elements, which land inside the ring Tm (in fact, they generate the ring Tm). But S̃ is free
of rank two over Tm, and thus S̃/S has no annihilator. Consequently, the corresponding determinant in
Tm is unramified by Proposition 2.10. To show that T (Frobp)= Tp and D(Frobp)= 〈p〉, it suffices to
show that T (φ)= Tp and D(φ)= 〈p〉. The image of α in Tm[Up]/(U 2

p − TpUp +〈p〉) was Up, which
satisfies the equation X2

− Tp X + 〈p〉 = 0. Yet α also satisfies the equation X2
− T (φ)X + D(φ) = 0.

Since this algebra is free of rank two over Tm, these quadratics must be the same, and hence T (φ)= Tp

and D(φ)= 〈p〉. �

Remark 3.3. The proof above relies on [Calegari and Geraghty 2018, Lemma 3.16]. We also note,
however, that the content of this lemma is simply an alternate form of doubling which is a already implicit
in the work of Wiese [2014].

Remark 3.4. One should also be able to apply the methods of this paper in the case l 6= p when l exactly
divides N , where now one wants to capture in this context the notion of a determinant “admitting an
unramified quotient line” when restricted to the inertia group Il at l (compare Section 1.8 of [Wake and
Wang-Erickson 2018]).
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