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On the p -typical de Rham–Witt complex over W(k)
Christopher Davis

Hesselholt and Madsen (2004) define and study the (absolute, p-typical) de Rham–Witt complex in mixed
characteristic, where p is an odd prime. They give as an example an elementary algebraic description
of the de Rham–Witt complex over Z(p), W·�•Z(p) . The main goal of this paper is to construct, for k
a perfect ring of characteristic p > 2, a Witt complex over A = W (k) with an algebraic description
which is completely analogous to Hesselholt and Madsen’s description for Z(p). Our Witt complex is
not isomorphic to the de Rham–Witt complex; instead we prove that, in each level, the de Rham–Witt
complex over W (k) surjects onto our Witt complex, and that the kernel consists of all elements which are
divisible by arbitrarily high powers of p. We deduce an explicit description of Wn�

•

A for each n ≥ 1. We
also deduce results concerning the de Rham–Witt complex over certain p-torsion-free perfectoid rings.

Introduction

Fix an odd prime p and a Z(p)-algebra R. Hesselholt and Madsen [2004] define the (absolute, p-typical)
de Rham–Witt complex over R to be the initial object in the category of Witt complexes over R. Their
definition generalizes the de Rham–Witt complex of Bloch, Deligne and Illusie, which was defined for
Fp-algebras. The goal of this paper is to define a Witt complex E •

·
over A =W (k), where k is a perfect

ring of characteristic p, and to use this Witt complex to describe the de Rham–Witt complex over W (k)
and also to study the de Rham–Witt complex over certain perfectoid rings B.

Among many other conditions, the de Rham–Witt complex W·�•R is a prosystem of differential graded
rings. There is an isomorphism Wn(R)→Wn�

0
R , so the degree zero piece of the de Rham–Witt complex

is well-understood. For each positive integer n and for every degree d , there is a surjective morphism of
differential graded rings

�d
Wn(R) � Wn�

d
R,

and so it is easy to write down elements of Wn�
d
R . On the other hand, especially in the degree one case

d = 1, it is often difficult to determine which of these elements in Wn�
1
A are nonzero. The author is not

aware of a complete algebraic description of the (absolute, p-typical) de Rham–Witt complex in mixed
characteristic for any examples other than Z(p) and polynomial algebras over this ring. One of the goals of
the current paper is to give a complete algebraic description of the de Rham–Witt complex over A=W (k),
where k is a perfect ring of odd characteristic p. For example, we prove that in the de Rham–Witt complex
over W (k), the element dV n(1) is a nontrivial pn-torsion element for every integer n ≥ 1. It is easy to
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see, using the relation pdV = V d , that this element is indeed pn-torsion, but showing that this element is
nonzero takes much more work.

To better analyze relations within the de Rham–Witt complex, we first define in Section 3 a Witt
complex E •

·
over A =W (k) which has a simple algebraic description as a W (k)-module. The proof that

E •
·

is indeed a Witt complex over W (k) is one of the major parts of this paper. It is not isomorphic to
the de Rham–Witt complex over W (k); see Remark 3.11. Instead, in each level n and in each positive
degree d ≥ 1, our Witt complex E •

·
is the quotient of the de Rham–Witt complex by the W (k)-submodule

consisting of all elements which are divisible by arbitrarily large powers of p. In the language of
[Hesselholt 2015, Remark 4.8], our Witt complex E •

·
is the p-typical de Rham–Witt complex over W (k)

relative to the p-typical λ-ring (W (k), sϕ), where sϕ is the ring homomorphism W (k)→ W (W (k))
recalled in Proposition 2.1 below.

Our description of E •
·
, which we define for each W (k) with k a perfect ring of odd characteristic p, is

completely modeled after Hesselholt and Madsen’s description of Wn�
1
Z(p)

[2004, Example 1.2.4]. They
show that for all n ≥ 1, there is an isomorphism of Z(p)-modules

Wn�
1
Z(p)
∼=

n−1∏
i=0

Z/pi Z · dV i (1). (0.1)

This shows that Wn�
1
Z(p)

is nonzero if n ≥ 2. The proof in [Hesselholt and Madsen 2004] involves the
topological Hochschild spectrum T (Z(p)). The results below provide an alternative (and elementary)
proof that Wn�

1
Z(p)

is nonzero if n ≥ 2.
Of course an elementary algebraic proof of the isomorphism in (0.1) could be given by directly verifying

that the stated groups satisfy all the necessary relations to form a Witt complex. It is this approach we
follow in the current paper for the case A = W (k), where k is a perfect ring of odd characteristic p.
Moreover, we prove that, for such A and for every n ≥ 1, there is a surjective map

Wn�
1
A �

n−1∏
i=0

A/pi A · dV i (1)=: E1
n, (0.2)

and we prove that the kernel of this map consists of all elements of Wn�
1
A which are divisible by arbitrarily

large powers of p.
The groups E •n in a Witt complex over A are in particular Wn(A)-modules, and the Wn(A)-module

structure we define is also analogous to the description for Z(p). In the de Rham–Witt complex over Z(p),
and in fact in any Witt complex, for integers i, j ≥ 1, one has

V j (1) dV i (1)= p j dV i (1). (0.3)

This alone does not completely determine the Wn(A)-module structure, but for our specific case A=W (k),
there is a ring homomorphism sϕ : A→ W (A), and we require that for all a ∈ A and x ∈ E1

n , we have
sϕ(a)x = a · x . Here the product sϕ(a)x on the left side refers to the Wn(A)-module structure we wish to
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define, and the product a · x on the right side refers to the A-module structure on E1
n that is apparent from

the description in (0.2). This requirement completely determines our Wn(A)-module structure.
With these prerequisites in mind, the verification that our complex is a Witt complex is largely

straightforward. The most difficult step is proving that our complex satisfies

Fd[a] = [a]p−1 d[a] ∈ E1
n

for every a ∈ A and for every integer n ≥ 1. The difficulty, which arises repeatedly in what follows, lies
in the fact that the multiplicative Teichmüller lift [·] : A→W (A) is not related in a simple way to our
ring homomorphism lift sϕ : A→W (A).

Once we know that our complex E •
·

is a Witt complex over A, we attain relatively easily a complete
algebraic description of the de Rham–Witt complex W·�•A. See Section 4 for the proofs of the following
results, as well as for a more complete (but longer) description of Wn�

1
A (Corollary 4.10).

Theorem A. Let k denote a perfect ring of odd characteristic p and let A =W (k).

(1) Fix an integer n ≥ 1. Let Sn ⊆Wn�
1
A denote

⋂
∞

j=1 p j Wn�
1
A, the Wn(A)-submodule of all elements

which are infinitely p-divisible. Then we have an isomorphism of abelian groups

Wn�
1
A/Sn ∼=

n−1∏
i=0

A/pi A.

(2) Fix integers n ≥ 1 and d ≥ 2. Then we have an isomorphism of abelian groups

Wn�
d
A
∼=

n−1∏
i=0

�d
A.

In Section 5, we turn to describing the de Rham–Witt complex over the quotient ring A/x A, for an
element x ∈ A; this is done with the purpose of applying it in the case that A/x A is a perfectoid ring B,
and A =W (B[) is the ring of Witt vectors of the tilt of B. Our complete algebraic description of Wn�

1
A

makes extensive use of the ring homomorphisms sϕ : A→Wn(A), and in general we have no such ring
homomorphisms B→Wn(B), so our algebraic description of Wn�

1
B is less complete. However, for a

certain class of perfectoid rings, we are able to completely describe the kernel of the restriction map
Wn+1�

1
B→Wn�

1
B . We phrase the following theorem in slightly more generality, to include also the case

W (k) which is proved earlier.

Theorem B. Let p denote an odd prime. Let S denote either W (k) for k a perfect ring of characteristic p,
or else let S denote a p-torsion-free perfectoid ring for which there exists some nonzero p-power torsion
element ω ∈�1

S . In either of these cases, the following is a short exact sequence of Wn+1(S)-modules:

0→ S (−d,pn)
−−−−→�1

S ⊕ S V n
+dV n

−−−−→Wn+1�
1
S

R
−→Wn�

1
S→ 0.
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See Propositions 4.7 and 6.12 for the proofs, and also for a description of the module structures. The
existence of an element ω as described in the statement is guaranteed, for example, whenever ζp ∈ S and
dζp 6= 0.

One motivation for studying the de Rham–Witt complexes we consider in this paper is our hope to adapt
results from [Hesselholt 2006]. That paper concerns the de Rham–Witt complex over the ring of integers
in an algebraic closure of a mixed characteristic local field, and we hope to perform a similar analysis in
the context of perfectoid rings. Our proofs for perfectoid rings will be modeled after Hesselholt’s proof
for OQp

, and our proofs will use an induction argument that requires a precise description of the kernel of
restriction Wn+1�

1
B→Wn�

1
B . We will pursue this direction in joint work with Irakli Patchkoria.

A second, but indirect, motivation for the current paper is the recent remarkable work of Bhatt, Morrow
and Scholze [2016], which makes use of the de Rham–Witt complex in mixed characteristic. Currently
this is only a philosophical motivation, however, because they study the relative de Rham–Witt complex
of Langer and Zink [2004], whereas we study the absolute de Rham–Witt complex of [Hesselholt and
Madsen 2003; 2004; Hesselholt 2005]. Our work is not directly relevant to the work of Bhatt, Morrow and
Scholze, but it could potentially be relevant to generalizations of their work which involved the absolute
de Rham–Witt complex.

0.1. Notation. Throughout this paper, p> 2 denotes an odd prime, k is a perfect ring of characteristic p,
W denotes p-typical Witt vectors, and A =W (k). To distinguish between the Witt vector Frobenius on
A=W (k) and on W (A), we write ϕ for the Witt vector Frobenius on A and we write F for the Witt vector
Frobenius on W (A) and on W·�•A. Rings in this paper are assumed to be commutative and to have unity,
and ring homomorphisms are assumed to map unity to unity. We write �1

R for the R-module of absolute
Kähler differentials, i.e., �1

R =�R/Z in the notation of [Matsumura 1989, Section 25]. The de Rham–Witt
complex we consider is the absolute, p-typical de Rham–Witt complex defined in [Hesselholt and Madsen
2004, Introduction].

1. Background on Witt complexes and the de Rham–Witt complex

Fix k, a perfect ring of odd characteristic p and let A=W (k). The main goal of this paper is to construct
a certain Witt complex over A, and to use this Witt complex to deduce properties of the de Rham–Witt
complex over A. Similar properties are proven in the work of Hesselholt [2005; 2006] and Hesselholt and
Madsen [2003; 2004]; the main difference between our results and these earlier results is that our proofs
use only algebra. The only aspect of the current paper which is not elementary is our proof that �1

W (k)

has no nontrivial p-torsion (Proposition 2.7), which uses the cotangent complex. The current paper does
not use any notions from algebraic topology, such as the spectrum T R·

•
.

The current paper does, however, use many standard facts about (p-typical) Witt vectors W (R) and
the (p-typical, absolute) de Rham–Witt complex W·�•R , and it is written with the assumption that the
reader is familiar with their basic properties, including the case R is not characteristic p. For background
on Witt vectors, we refer to [Illusie 1979] or to the brief introduction given in Section 1 of [Hesselholt
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and Madsen 2004]. A thorough treatment of Witt vectors is given in Section 1 of [Hesselholt 2015], but
those results are framed in the context of big Witt vectors instead of p-typical Witt vectors.

We work in this section over an arbitrary Z(p)-algebra R, where p is an odd prime. We now recall the
basic properties of Witt complexes and the de Rham–Witt complex which we will use. Our reference is
[Hesselholt and Madsen 2004].

The de Rham–Witt complex over R (or, more generally, any Witt complex over R) is a prosystem
of differential graded rings. The index indicating the position in the prosystem is a positive integer
n = 1, 2, . . . which we refer to as the level. The index indicating the degree in the differential graded
ring is a nonnegative integer d = 0, 1, . . . which we refer to as the degree. We write Ed

n for the level n,
degree d component of a Witt complex E •

·
.

Definition 1.1 [Hesselholt and Madsen 2004, Introduction]. Fix an odd prime p and a Z(p)-algebra R. A
Witt complex over R is the following:

(1) A prodifferential graded ring E •
·

and a strict map of prorings

λ :W·(R)→ E •
·
.

(2) A strict map of prograded rings

F : E •
·
→ E •

·−1

such that Fλ= λF and for all r ∈ R, we have

Fdλ([r ])= λ([r ]p−1)dλ([r ]).

(3) A strict map of graded E •
·
-modules

V : F∗E •·−1→ E •
·
.

(In other words,

V (F(ω)η)= ωV (η) for all ω ∈ E •
·
, η ∈ E •

·−1,

and similarly for multiplication on the right.) The map V must further satisfy Vλ= λV and

FdV = d, FV = p.

Remark 1.2. In this paper we never consider the prime p= 2. See [Hesselholt 2015, Definition 4.1] for a
definition of Witt complex which can be used for all primes, or [Costeanu 2008] for a careful treatment of
the 2-typical de Rham–Witt complex. One subtlety is that for p = 2, the differential does not necessarily
satisfy d ◦ d = 0.

The following theorem defines the de Rham–Witt complex over R as the initial object in the category
of Witt complexes over R. Its existence is proved in [Hesselholt and Madsen 2004].
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Theorem 1.3 [Hesselholt and Madsen 2004, Theorem A]. Let R denote a Z(p)-algebra, where p is an
odd prime. There is an initial object W·�•R in the category of Witt complexes over R. We call this complex
the de Rham–Witt complex over R. Moreover, for every d ≥ 0 and n ≥ 1, the canonical map

�d
Wn(R)→Wn�

d
R

is surjective.

The following result, like our last result, is proved in [Hesselholt and Madsen 2004]. It describes the
degree 0 piece and the level 1 piece of the de Rham–Witt complex, respectively.

Theorem 1.4. Let R denote a Z(p)-algebra, where p is an odd prime.

(1) [loc. cit., Remark 1.2.2] The canonical map λ :Wn(R)→Wn�
0
R is an isomorphism for all n ≥ 1.

(2) [loc. cit., Theorem D and the first sentence of the proof of Proposition 5.1.1] The canonical map
�•R→W1�

•

R is an isomorphism.

Two of the main results of this paper are Propositions 4.7 and 6.12. The main content of these
propositions describes, for suitable rings R, the intersection

V n(�1
R)∩ dV n(R)⊆Wn+1�

1
R.

Our next proposition, which is true for every Z(p)-algebra R, identifies

V n(�1
R)+ dV n(R)⊆Wn+1�

1
R

as the kernel of restriction.

Proposition 1.5. Let R denote a Z(p)-algebra, where p is an odd prime. Fix integers d ≥ 1 and n ≥ 1.
Then ω is in the kernel of restriction

Wn+1�
d
R→Wn�

d
R

if and only if there exist α ∈�d
R and β ∈�d−1

R such that

ω = V n(α)+ dV n(β).

The difficult part is the only if direction. See [Hesselholt and Madsen 2003, Lemma 3.2.4] for a proof
in terms of the log de Rham–Witt complex. We recall the idea of that proof. (See also the proof of
Proposition 5.7 below for similar arguments.) For every n, d , define

′Wn�
d
R :=Wn+1�

d
R/(V

n(�d
R)+ dV n(�d−1

R )).

One then shows that ′W·�•R is an initial object in the category of Witt complexes over R, and hence in
particular that the natural map

′Wn�
d
R→Wn�

d
R (1.6)

is an isomorphism. That natural map is induced by restriction Wn+1�
d
R → Wn�

d
R , so our proposition

follows from the injectivity of the map in (1.6).
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The following results we recall from [Hesselholt and Madsen 2004] have significantly easier proofs
than the previous results we have cited; the proofs of the relations in Proposition 1.7 below are just a few
lines of computation.

Proposition 1.7 [Hesselholt and Madsen 2004, Lemma 1.2.1]. Again let R denote a Z(p)-algebra, where
p is an odd prime. The following equalities hold in every Witt complex over R:

d F = pFd, V d = pdV, V (x0dx1 · · · dxm)= V (x0)dV (x1) · · · dV (xm).

2. Results on W(A) and �1
A when A = W(k)

Let k denote a perfect ring of odd characteristic p and let A = W (k). In this paper, we study the
de Rham–Witt complex over A. In this section, we prove several preliminary results about the degree zero
case, W (A), and the level one case, �1

A. Special thanks are due to Bhargav Bhatt and Lars Hesselholt for
their assistance with the �1

A proofs.
The following result allows us to view the ring W (A) as an A-algebra. This is a key fact. This is

also a similarity between the case A =W (k) and the case A = Z(p), after which our results are modeled:
the ring W (A) is an A-algebra and the ring W (Z(p)) is a Z(p)-algebra. This is also the main reason our
methods don’t easily translate to more general rings such as ramified extensions of Zp.

Recall that, to avoid confusion, we write the Witt vector Frobenius differently on A =W (k) from how
we write it on W (A) = W (W (k)): we write ϕ : A→ A and F : W (A)→ W (A) for these Witt vector
Frobenius maps. The map ϕ is a ring isomorphism, but the map F is not an isomorphism.

Proposition 2.1 [Illusie 1979, (0.1.3.16)]. Let k denote a perfect ring of characteristic p, let A =W (k),
and let ϕ : A→ A denote the Witt vector Frobenius. Then there is a unique ring homomorphism

sϕ : A→W (A)

satisfying F◦sϕ= sϕ◦ϕ and such that for all a∈ A, the ghost components of sϕ(a) are (a, ϕ(a), ϕ2(a), . . .).

Proof. The ring A is p-torsion free, so this result follows from [Illusie 1979, (0.1.3.16)], provided we
know that the ring homomorphism ϕ : A→ A satisfies ϕ(a) ≡ a p mod p A for all a ∈ A. This last
congruence is in fact true more generally for any ring W (R) of p-typical Witt vectors. We recall the short
proof from [Illusie 1979, Section 0.1.4]. For arbitrary a ∈W (R), write a = [r0] + V (a+), where r0 ∈ R
and a+ ∈W (R). We then have

ϕ(a)= [r0]
p
+ pa+ ≡ [r0]

p mod pW (R)≡ ([r0] + V (a+))p mod pW (R),

where the last congruence uses that V (x)V (y)= pV (xy) ∈ pW (R) for Witt vectors x, y ∈W (R). �

Lemma 2.2. For every x ∈W (A), there exist unique elements a0, a1, . . . ∈ A for which

x =
∞∑

i=0

sϕ(ai )V i (1) ∈W (A). (2.3)
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Proof. We have
∞∑

i=0

sϕ(ai )V i (1)=
∞∑

i=0

V i (F i (sϕ(ai )))=

∞∑
i=0

V i (sϕ(ϕi (ai ))),

so the result now follows from the fact that ϕ : A→ A is an isomorphism and that the first component of
sϕ(a) ∈W (A) is a. �

Lemma 2.4. If x ∈W (A) is given as in (2.3), then

V (x)=
∞∑

i=1

sϕ(ϕ−1(ai−1))V i (1) ∈W (A).

Proof. This follows from the formula V (F(x)y) = xV (y), for x, y ∈ W (A) and from the fact that
F(sϕ(ai ))= sϕ(ϕ(ai )). �

The following result gives explicit formulas for the elements ai ∈ A appearing in (2.3) in the specific
case that x is a Teichmüller lift of some element a ∈ A. The main technical difficulty of this paper involves
studying congruences involving these coefficients.

Lemma 2.5. In the specific case x = [a] ∈ W (A) is the Teichmüller lift of an element a ∈ A, then the
terms ai from (2.3) are given by the formulas a0 = a and ai = ϕ

−i ((a pi
− (ϕ(a))pi−1

)/pi ) for i ≥ 1.

Proof. This follows using induction on i , by comparing the ghost components of the two sides of (2.3).
(Notice that the ghost map is injective because A is p-torsion free.) To simplify the proof, notice that a
finite sum

sϕ(a0)+ sϕ(a1)V (1)+ · · ·+ sϕ(an)V n(1),

has ghost components which stabilize in the following pattern

(w0, . . . , wn−1, wn, ϕ(wn), ϕ
2(wn), . . .). �

When we define our Witt complex E •
·

in Section 3, we will express E1
n in terms of quotients A/pi A.

The groups E1
n in a Witt complex over A always possess a Wn(A)-module structure, and the following

lemma describes the Wn(A)-module structure we put on A/pi A; notice that this module structure is not
the one induced by the obvious projection map Wn(A)→ A.

Lemma 2.6. Let n, i ≥ 1 be integers and consider the map Wn(A)→ A/pi A given by

n−1∑
j=0

sϕ(a j )V j (1) 7→
n−1∑
j=0

a j p j .

This is a surjective ring homomorphism with kernel the ideal in Wn(A) generated by

{pi , V j (1)− p j
| 0≤ j ≤ n− 1}.
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Proof. If we view Wn(A) as an A-module via sϕ , then it’s clear that the map is a surjective A-module
homomorphism. To prove it’s a ring homomorphism, we use the formula V j (1)V i (1) = p j V i (1) for
j ≤ i .

We now prove the statement about the kernel. Clearly the proposed elements are in the kernel; we now
show an arbitrary element in the kernel is generated by the proposed elements. Assume

∑n−1
j=0 sϕ(a j )V j (1)

is in the kernel. This means that there exists a ∈ A such that

pi a =
n−1∑
j=0

a j p j
∈ A.

Applying sϕ to both sides, we find

pi sϕ(a)=
n−1∑
j=0

sϕ(a j )p j
∈Wn(A),

and thus

pi sϕ(a)+
n−1∑
j=0

sϕ(a j )(V j (1)− p j )=

n−1∑
j=0

sϕ(a j )V j (1),

which completes the proof. �

This concludes our collection of preliminary results on Witt vectors over A =W (k). We now turn our
attention to �1

W (k). We thank Bhargav Bhatt and Lars Hesselholt for their help with the remainder of this
section. Our first result, Proposition 2.7, is the most important. It says that multiplication by p is bijective
on �1

W (k); we will use this result repeatedly. By contrast, the results from Proposition 2.9 to the end of
this section are closer to “reality-checks”. For example, Corollary 2.10 below shows that �1

W (k) is not the
zero-module.

Proposition 2.7. Let k denote a perfect ring of characteristic p. Then multiplication by p: �1
W (k)→�1

W (k)

is a bijection.

Remark 2.8. The proof below is due to Bhargav Bhatt. The tools used in the proof (the cotangent
complex and, more generally, the language of derived categories) do not appear elsewhere in this paper,
so the reader (or author) who is not comfortable with them is advised to treat the proof of Proposition 2.7
as a black box. See also the proof of [Hesselholt and Madsen 2003, Lemma 2.2.4] for a proof of a related
result.

Before giving Bhatt’s proof, we point out an elementary argument for surjectivity. The Witt vector
Frobenius ϕ : W (k)→ W (k) is surjective on one hand, and on the other hand, ϕ(a)≡ a p mod pW (k)
for every a ∈ W (k). So for every a ∈ W (k), we can find a0, a1 ∈ W (k) such that a = a p

0 + pa1. Thus
every da ∈ �1

W (k) is divisible by p, and hence multiplication by p on �1
W (k) is surjective. We are not

aware of a similarly elementary proof of injectivity.
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Proof. Let LW (k)/Z denote the cotangent complex. Because Z→W (k) is flat, we have

LW (k)/Z⊗
L
Z Fp ∼= Lk/Fp

by [Stacks 2005–, Tag 08QQ]. The right-hand side is zero, because the Frobenius automorphism on k
induces a map on Lk/Fp which is simultaneously zero and an isomorphism. Thus the left-hand side is also 0.
This implies that multiplication by p on LW (k)/Z is a quasiisomorphism. In particular, multiplication by
p is an isomorphism on H 0(LW (k)/Z)∼=�

1
W (k), which completes the proof. �

Throughout this paper, k denotes a perfect ring of characteristic p. We prove Corollary 2.10 below for
W (k) by deducing it from Proposition 2.9, which concerns the case of W (k ′), where k ′ is a perfect field
of characteristic p.

Proposition 2.9. Let k ′ denote a perfect field of characteristic p. Let {xα}α∈A ⊆W (k ′) denote elements
such that {xα}α∈A is a transcendence basis for W (k ′)[1/p] over Q. Then {dxα}α∈A is a basis for �1

W (k′)

as a W (k ′)[1/p]-vector space.

Proof. By Proposition 2.7, we have

�1
W (k′)
∼=�

1
W (k′)⊗W (k′) W (k ′)[1/p] ∼=�1

W (k′)[1/p]
∼=�

1
W (k′)[1/p]/Q.

Thus it suffices to prove that if {xα}α∈A is a transcendence basis for a field K/Q, then {dxα}α∈A is a
K -basis for �1

K/Q. The result now follows by [Matsumura 1989, Theorem 26.5]. �

Corollary 2.10. Let k denote a perfect ring of characteristic p. Then the W (k)-module �1
W (k) is nonzero.

Proof. Let m⊆ k denote a maximal ideal. Then k→ k/m is a surjection from k onto a perfect field of
characteristic p; write k ′ = k/m. The induced map W (k)→W (k ′) is a surjective ring homomorphism, so
�1

W (k)→�1
W (k′) is a surjective W (k)-module homomorphism. Because W (k ′) is uncountable, the field

W (k ′)[1/p] is transcendental over Q, so our result follows from Proposition 2.9. �

Corollary 2.11. For every integer n ≥ 1, the Wn(W (k))-module Wn�
1
W (k) is nonzero.

Proof. Begin with any nonzero element α ∈�1
W (k). We then have pn−1α 6= 0 by Proposition 2.7, but on

the other hand, pn−1α = Fn−1V n−1(α), and so V n−1(α) ∈Wn�
1
W (k) is nonzero. �

3. A p-adically separated Witt complex over W(k)

Let k denote a perfect ring of odd characteristic p and let A = W (k). We are going to define a Witt
complex over A. Our definition is modeled after [Hesselholt and Madsen 2004, Example 1.2.4], which
gives a completely analogous description of the de Rham–Witt complex over Z(p).
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As an abelian group, we define

E0
n :=Wn(A) for all n ≥ 1,

E1
n :=

n−1∏
i=0

A/pi A · dV i (1) for all n ≥ 1,

Ed
n := 0 for all n ≥ 1, d ≥ 2;

here dV i (1) should be viewed as a formal basis symbol. The ring structure on E •n is obvious with the
exception of the multiplication E0

n × E1
n → E1

n , and for this we use the ring homomorphisms from
Lemma 2.6 to give A/pi A the structure of a Wn(A)-module. (We note again that the module structure
does not arise from the restriction map Wn(A)→W1(A)= A.) Define λ :Wn(A)→ E0

n to be the identity
map and equip E0

n with the usual ring structure and with the usual maps R, F, V .
Recalling Lemma 2.2, which guarantees that each element in Wn(A) corresponds to a unique expression∑n−1
i=0 sϕ(ai ) · V i (1), we define d : E0

n→ E1
n by the formula

d
( n−1∑

i=0

sϕ(ai )V i (1)
)
=

n−1∑
i=1

ai · dV i (1).

Define R : E1
n+1→ E1

n by the formula

R
( n∑

i=0

ai · dV i (1)
)
=

n−1∑
i=0

ai · dV i (1).

Define F : E1
n+1→ E1

n by the formula

F
( n∑

i=1

ai · dV i (1)
)
=

n−1∑
i=0

ϕ(ai+1) · dV i (1).

Define V : E1
n→ E1

n+1 by the formula

V
( n−1∑

i=1

ai · dV i (1)
)
=

n−1∑
i=1

pϕ−1(ai ) · dV i+1(1).

We emphasize that this last definition means in particular that V (dV i (1))= p · dV i+1(1).

Remark 3.1. We use the dot · in the notation A/pi A · dV i (1) to help distinguish between this A/pi A-
module structure and the Wn(A)-module structure, which we write without the dot. For example, if
we let πn,i : Wn(A)→ A/pi A denote the ring homomorphism from Lemma 2.6, then we would write
xdV i (1) = πn,i (x) · dV i (1). This distinction isn’t mathematically important, but we find it helps to
reinforce whether we are multiplying by elements in A/pi A or by elements in Wn(A) or W (A).
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Before proving that E •
·

is a Witt complex, we make a preliminary calculation that does not involve
Witt vectors. This calculation will be used to verify that

Fd([a])= [a]p−1d([a]) ∈ E1
n (3.2)

holds for all n ≥ 1, which is the most difficult step in our verification that E •
·

is a Witt complex.

Remark 3.3. In (3.2), we are being less careful with notation than Hesselholt and Madsen [2004]. In
their notation, this equation would be written

Fd([a]n+1)= ([a]n)p−1d([a]n) ∈ E1
n,

where the subscripts are indicating [a]n ∈Wn(A) and [a]n+1 ∈Wn+1(A).

Lemma 3.4. Continue to let A=W (k), where k is a perfect ring of odd characteristic p, and let ϕ : A→ A
denote the Witt vector Frobenius. Fix a ∈ A. Then for every i ≥ 1, we have

1
pi+1 (a

pi+1
−ϕ(a)pi

)≡ 1
pi (a

pi
−ϕ(a)pi−1

)a pi (p−1) mod pi A. (3.5)

Proof. The only fact we will use about ϕ : A→ A is that for every a ∈ A, there exists x ∈ A such that
ϕ(a)= a p

+ px . Multiplying both sides of (3.5) by pi+1 and applying the binomial theorem to the powers
of ϕ(a)= a p

+ px , we reduce immediately to proving that

pi∑
j=1

( pi

j

)
(a p)pi

− j (px) j
≡ pa pi (p−1)

pi−1∑
j=1

( pi−1

j

)
(a p)pi−1

− j (px) j mod p2i+1 A.

By distributing the a pi (p−1) term on the right side, this simplifies to proving that

pi∑
j=1

( pi

j

)
a pi+1

−pj (px) j
≡ p

pi−1∑
j=1

( pi−1

j

)
a pi+1

−pj (px) j mod p2i+1 A.

By comparing the coefficients of the am xn monomials, it suffices then to prove the following two claims:

• For every j in the range 1≤ j ≤ pi−1, we have

p j
( pi

j

)
≡ p j+1

( pi−1

j

)
mod p2i+1.

• For every j in the range pi−1
+ 1≤ j ≤ pi , we have

p j
( pi

j

)
≡ 0 mod p2i+1.

To prove the first claim, we rewrite it as

p j
(( pi

j

)
− p

( pi−1

j

))
≡ 0 mod p2i+1.
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The left side equals 0 if j = 1, so we may assume j ≥ 2 and simplify the expression as

p j pi

j ! ((p
i
− 1) · · · (pi

− j + 1)− (pi−1
− 1) · · · (pi−1

− j + 1))≡ 0 mod p2i+1.

The term inside the parentheses is the difference of two terms which are congruent modulo pi−1, hence
the term inside the parentheses is divisible by pi−1. Thus it suffices to show that for every j ≥ 2 we have

p j p2i−1

j ! ≡ 0 mod p2i+1.

Thus it suffices to show that for every j ≥ 2, we have j − vp( j !) ≥ 2, where vp denotes the p-adic
valuation. Because p ≥ 3, the inequality is true if j = 2. For the case j ≥ 3, again using p ≥ 3, we
compute

j − vp( j !)≥ j −
( j

p +
j

p2 + · · ·
)
= j − j 1

p(p−1) ≥ j − j
6 =

5 j
6 ≥

15
6 ≥ 2,

which completes the proof of the first claim.
To prove the second claim, we first treat the case j = pi . Then we need to show that pi

≥ 2i + 1,
which is true because p ≥ 3 and i ≥ 1. For the case pi−1

+ 1≤ j < pi , we know the binomial coefficient
in the expression has p-adic valuation at least one, so it suffices to prove that j + 1 ≥ 2i + 1. Thus it
suffices to prove that pi−1

+ 2≥ 2i + 1. Again this holds because p ≥ 3 and i ≥ 1. �

Remark 3.6. Lemma 3.4 is false in general if p = 2. For example, it is already false in the case A = Z2,
ϕ = id, a = 2, and i = 1.

We can now state our main theorem of this section; all the main results of this paper are dependent on
the following result.

Theorem 3.7. Let k be a perfect ring of characteristic p > 2, and let A =W (k). The complex E •
·

defined
above is a Witt complex over A.

Proof. Many of the required properties are obvious; the main difficulty is proving that for all a ∈ A and
all n ≥ 2, we have

Fd([a])= [a]p−1d([a]) ∈ E1
n−1. (3.8)

We postpone this verification to the end of the proof.
The following properties are clear:

• For each n, E •n is a ring.

• The maps R are ring homomorphisms.

• The map λ is a ring homomorphism that commutes with R.

• The maps F, V commute with λ.

• The maps d, F, V are additive.

• The maps d, F, V commute with R.

• The composition FV is equal to multiplication by p.
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Next we check that d verifies the Leibniz rule. Because d is additive and because dsϕ(a)= 0 for all a,
it suffices to prove that for all 1≤ j ≤ i , we have

d(V i (1)V j (1))= V i (1)dV j (1)+ V j (1)dV i (1).

Using the definition of our multiplication E0
n × E1

n→ E1
n and using V (x)V (y)= pV (xy), we see that

both sides are equal to (p j
+ pi A) · dV i (1).

Next we check that F is multiplicative. The only part which isn’t obvious is to show that if x ∈ E0
n

and y ∈ E1
n , then we have

F(xy)= F(x)F(y).

Because we already know F is additive, it suffices to check this in the special cases x = x1 := sϕ(a),
x = x2 := V i (1) with i ≥ 1, and y = (b+ p j A) · dV j (1), where j ≥ 1. We have F(x1) = sϕ(ϕ(a)),
F(x2)= pV i−1(1), and F(y)= (ϕ(b)+ p j−1 A)·dV j−1(1). On the other hand, x1 y= (ab+ p j A)·dV j (1)
and F(x1 y) = (ϕ(ab)+ p j−1 A) · dV j−1(1) = F(x1)F(y). We also have x2 y = (pi b+ p j A) · dV j (1)
and F(x2 y)= (piϕ(b)+ p j−1 A) · dV j−1(1)= F(x2)F(y).

We next check that for all x ∈ E •n+1 and y ∈ E •n , we have

V (F(x)y)= xV (y). (3.9)

This is obvious if x, y are both in degree zero or both in degree one, thus we only need to consider the
case that one of them is degree zero and the other is degree one. It suffices to consider the case that the
degree one term has the form dV j (1) and the degree zero term has the form sϕ(a)V i (1). If x = dV (1)
and y = sϕ(a)V i (1), then both sides of (3.9) are zero. If x = dV j (1) with j ≥ 2 and y = sϕ(a)V i (1), we
compute

V (F(x)y)= V (pi a · dV j−1(1))= pi+1ϕ−1(a) · dV j (1)= (sϕ(ϕ−1(a))V i+1(1))dV j (1)= xV (y).

If x = sϕ(a) and y = dV j (1), then we compute

V (F(x)y)= V (ϕ(a) · dV j (1))= psϕ(a)dV j+1(1)= xV (y).

If x = sϕ(a)V i (1) with i ≥ 1 and y = dV j (1), then we compute

V (F(x)y)= V (sϕ(ϕ(a))pV i−1(1)dV j (1))

= V (ϕ(a)pi
· dV j (1))

= api+1
· dV j+1(1)

= pxdV j+1(1)

= xV (y).
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To prove FdV = d, we begin with a term x = sϕ(a)V i (1) ∈ E0
n and compute

FdV (x)= Fd(sϕ(ϕ−1(a))V i+1(1))

= F(ϕ−1(a) · dV i+1(1))

= a · dV i (1)

= dx,

as required.
To complete the proof, it remains to prove (3.8). For fixed n ≥ 2, we compute

Fd[a] = Fd
( n−1∑

i=0

sϕ(ai )V i (1)
)
,

where the ai are given by the formulas in Lemma 2.5. We then compute further

=

n−1∑
i=1

F(ai · dV i (1))=
n−1∑
i=2

ϕ(ai ) · dV i−1(1)=
n−2∑
i=1

ϕ(ai+1) · dV i (1).

For the other side of (3.8), we have

[a]p−1d[a] =
( n−2∑

j=0

sϕ(a j )V j (1)
)p−1

d
( n−2∑

i=0

sϕ(ai )V i (1)
)
=

n−2∑
i=1

(
ai

( n−2∑
j=0

a j p j
)p−1)

· dV i (1).

We are finished if we can prove that, for every i in the range 1≤ i ≤ n− 2, we have

ϕ(ai+1)≡ ai

( n−2∑
j=0

a j p j
)p−1

mod pi A,

which is clearly equivalent to proving

ϕ(ai+1)≡ ai

( i∑
j=0

a j p j
)p−1

mod pi A.

Because ϕ is an isomorphism, it suffices to prove

ϕi+1(ai+1)≡ ϕ
i (ai )

( i∑
j=0

ϕi (a j )p j
)p−1

mod pi A.

Recall our definition of the a j terms:

[a] =
∞∑
j=0

sϕ(a j )V j (1) ∈W (A).
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Comparing the ghost components of the two sides, we have a pi
=
∑i

j=0 ϕ
i (a j )p j for every i ≥ 0. Thus

we are finished if we can prove

ϕi+1(ai+1)≡ ϕ
i (ai )a pi (p−1) mod pi A.

By Lemma 2.5, we have reduced to showing

a pi+1
− (ϕ(a))pi

pi+1 ≡
a pi
− (ϕ(a))pi−1

pi a pi (p−1) mod pi A,

which was proved in Lemma 3.4. This completes the proof of (3.8), and this also completes the proof
that E •

·
is a Witt complex over A. �

Corollary 3.10. For every integer n, the ring E •n is p-adically separated.

Proof. This follows immediately from our definition of E •n: in degree zero, E0
n = Wn(A), which is

p-adically separated because A is p-adically separated. In degree one, we have pn−1 E1
n = 0, and hence

E1
n is also p-adically separated. �

Remark 3.11. Our Witt complex E •
·

is not isomorphic to the de Rham–Witt complex W·�•A. For example,
E1

1 = 0, while on the other hand it was shown in Corollary 2.10 that W1�
1
A =�

1
A 6= 0. Nor is our Witt

complex isomorphic to the relative de Rham–Witt complex of Langer and Zink [2004]: in their Witt
complex, one always has dV (1)= 0. Following the language of [Hesselholt 2015, Remark 4.8], our Witt
complex E •

·
is the p-typical de Rham–Witt complex over A relative to the p-typical λ-ring (A, sϕ): this

follows from the fact that the elements sϕ(α) for α ∈�1
A are all zero in Ed

n , and that the differential map
E •
·
→ E •+1

·
is A-linear.

4. Applications to the de Rham–Witt complex over A = W(k)

Continue to assume A =W (k) where k is a perfect ring of odd characteristic p. In this section, we use
our p-adically separated Witt complex E •

·
from Section 3 to give an explicit description (as an A-module)

of the de Rham–Witt complex over A.

Remark 4.1. In this section we describe the de Rham–Witt complex over A = W (k) as an A-module.
The level n piece of the de Rham–Witt complex over A is always a Wn(A)-module. We warn that
the Wn(A)-module structure does not factor through restriction Wn(A)→ W1(A) ∼= A. For example,
multiplication by V (1) is nonzero.

As W·�•A is by definition the initial object in the category of Witt complexes over A, we get a natural
map W·�•A→ E •

·
. The following key result identifies the kernel of this map in degree one.

Proposition 4.2. Fix any integer n ≥ 1, and let Sn ⊆ Wn�
1
A be the Wn(A)-submodule

⋂
∞

j=1 p j Wn�
1
A.

The natural map η :Wn�
1
A→ E1

n induces an isomorphism Wn�
1
A/Sn ∼= E1

n .
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Proof. Because E1
n is p-adically separated, we see that Sn is contained in the kernel of the map Wn�

1
A→E1

n .
Consider the composition

�1
Wn(A)→Wn�

1
A→ E1

n .

From our explicit description of E1
n , we see that this composition is surjective. We will now show that

the kernel of this composition is generated as a Wn(A)-module by elements of the form

• dsϕ(a),

• (V j (1)− p j )dV i (1), and

• pi dV i (1).

It is clear that these groups of elements are all in the kernel.
Consider now an arbitrary element ω ∈ �1

Wn(A) which is in the kernel; we must show that ω can be
expressed as a Wn(A)-linear combination of the above elements. Viewing �1

Wn(A) as an A-module via sϕ ,
we have that an arbitrary element in �1

Wn(A) can be expressed as an A-linear combination of the elements
V i (1)dsϕ(a) and V j (1)dV i (1) with 0≤ j ≤ i ≤ n− 1. Thus we may write

ω =

n−1∑
i=0

sϕ(bi )V i (1)dsϕ(ai )+
∑

0≤ j≤i≤n−1

sϕ(a j,i )V j (1)dV i (1),

for some elements bi , ai , a j,i ∈ A. Because the above itemized elements are all also in the kernel, we
deduce that the element

ω′ :=
∑

0≤ j<i≤n−1

p j sϕ(a j,i )dV i (1)

must also be in the kernel. From the explicit description of E1
n , because ω′ is in the kernel of the

composition, we have that for each fixed i , we have
∑

j p j a j,i ∈ pi A. Thus, for each fixed i , we have
that

∑
j p j sϕ(a j,i )dV i (1) is a Wn(A)-multiple of pi dV i (1). This proves that ω′, and hence also ω, is in

the Wn(A)-submodule generated by the above elements.
We are finished, because �1

Wn(A)→Wn�
1
A is surjective, and because the images of the above elements

in Wn�
1
A are all in the submodule Sn . In fact, the images of the second and third groups of elements are

equal to 0 in Wn�
1
A: this follows from the identities pi dV i

= V i d and

V (1)dV i (1)= V (FdV i (1))= V (dV i−1(1))= pdV i (1),

which hold in every Witt complex. �

The following is modeled after [Hesselholt and Madsen 2003, Section 3.2].

Lemma 4.3. Continue to assume A =W (k) where k is a perfect ring of odd characteristic p. For every
j ≥ 1, the map

h j : A→�1
A⊕ A, a 7→ (−da, p j a),
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is an A-module homomorphism, where the left-hand side has its A-module structure induced by ϕ j and
where the right-hand side has component-wise addition and A-module multiplication defined by

x · (α, a)=
(
ϕ j (x)α− 1

p j adϕ j (x), ϕ j (x)a
)
.

Remark 4.4. For any element z ∈�1
A, the term 1

p j z makes sense in �1
A, because multiplication by p is a

bijection on �1
A.

Proof. We first check that the right-hand side is actually an A-module with respect to the structure we
described. It’s clear that (x1+ x2) · (α, a) = x1 · (α, a)+ x2 · (α, a) and that x · ((α1, a1)+ (α2, a2)) =

x · (α1, a1)+ x · (α2, a2). Next we compute

x1 · (x2 · (α, a))= x1 ·
(
ϕ j (x2)α−

1
p j adϕ j (x2), ϕ

j (x2)a
)

=
(
ϕ j (x1)

(
ϕ j (x2)α−

1
p j adϕ j (x2)

)
−

1
p j ϕ

j (x2)adϕ j (x1), ϕ
j (x1)ϕ

j (x2)a
)

=
(
ϕ j (x1x2)α−

1
p j aϕ j (x1)dϕ j (x2)−

1
p j aϕ j (x2)dϕ j (x1), ϕ

j (x1x2)a
)

= (x1x2) · (α, a).

Notice that so far the 1/p j factor has played no role.
Next we check that the proposed map is an A-module homomorphism; this is where the 1/p j factor

becomes important. The map is clearly additive. We then check that, on one hand,

ϕ j (x)a 7→ (−d(ϕ j (x)a), p jϕ j (x)a)= (−ϕ j (x)d(a)− ad(ϕ j (x)), p jϕ j (x)a),

and on the other hand,

x · (−da, p j a)=
(
−ϕ j (x)da− 1

p j p j ad(ϕ j (x)), ϕ j (x)p j a
)
. �

Let M j denote the cokernel of the A-module homomorphism h j from Lemma 4.3. (This module is the
analogue of what is denoted h Wnω

i
(R,M) in [Hesselholt and Madsen 2003, Section 3.2].) We are going to

describe the de Rham–Witt complex over A in terms of these modules M j . First we describe an A-module
homomorphism �1

A→Wn�
1
A.

Given any ring homomorphism R→ S, there is an induced R-module homomorphism �1
R→�1

S . In
what follows, we will often use the following special case. Let sϕ : A→W (A) be the ring homomorphism
described in Proposition 2.1. For every n ≥ 1, composing sϕ with the restriction map induces a ring
homomorphism sϕ : A→Wn(A) and hence an A-module homomorphism sϕ :�1

A→�1
Wn(A)→Wn�

1
A.

If we want to be explicit about the codomain, we write sϕ,n instead of sϕ .

Lemma 4.5. For every integer n ≥ 2, the two A-module homomorphisms sϕ,n−1 ◦ ϕ ◦
1
p and F ◦ sϕ,n

mapping �1
A→Wn−1�

1
A are equal.

Proof. It suffices to prove the images of a term a0da1 are equal, and this follows from the relationships
d F = pFd and sϕ ◦ϕ = F ◦ sϕ . �
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Lemma 4.6. Fix integers n ≥ j ≥ 1 and let M j be the cokernel of the A-module homomorphism h j from
Lemma 4.3. Consider Wn+1�

1
A as an A-module using the map sϕ : A→W (A). The map

M j →Wn+1�
1
A,

(α, a) 7→ V j (sϕ(α))+ dV j (sϕ(a))

is an A-module homomorphism.

Proof. The map is clearly well-defined, because of the relation p j dV j
= V j d . We have

x · (α, a)=
(
ϕ j (x)α− 1

p j adϕ j (x), ϕ j (x)a
)

7→ V j
◦ sϕ

(
ϕ j (x)α− 1

p j adϕ j (x)
)
+ dV j

◦ sϕ(ϕ j (x)a)

= V j (F j (sϕ(x))sϕ(α))− V j( 1
p j sϕ(a)d F j (sϕ(x))

)
+ dV j (F j (sϕ(x))sϕ(a))

= V j (F j (sϕ(x))sϕ(α))− V j (sϕ(a)F j dsϕ(x))+ d(sϕ(x)V j (sϕ(a)))

= sϕ(x)V j (sϕ(α))− V j (sϕ(a))dsϕ(x)+ V j (sϕ(a))dsϕ(x)+ sϕ(x)dV j (sϕ(a))

= sϕ(x)(V j (sϕ(α))+ dV j (sϕ(a))). �

Proposition 4.7. Continue to assume A = W (k) where k is a perfect ring of odd characteristic p. Fix
any integer n ≥ 1, and let Mn be the cokernel of the A-module homomorphism from Lemma 4.3. Consider
Wn�

1
A and Wn+1�

1
A as A-modules via the ring homomorphism sϕ : A→W (A). We have a short exact

sequence of A-modules

0→ Mn→Wn+1�
1
A

R
−→Wn�

1
A→ 0, (4.8)

where the first map is given by

(α, a) 7→ V n(sϕ(α))+ dV n(sϕ(a)).

Proof. Using Lemma 4.6, we see that these are maps of A-modules. Then using Proposition 1.5,
we reduce to proving that the map Mn → Wn+1�

1
A is injective. Assume α ∈ �1

A and a ∈ A satisfy
V n(sϕ(α))+ dV n(sϕ(a))= 0 ∈Wn+1�

1
A. Then, because α is divisible by arbitrarily large powers of p,

we have that dV n(sϕ(a)) is divisible by arbitrarily large powers of p. Write a′ = ϕ−n(a). We have

dV n(sϕ(a))= d(sϕ(a′)V n(1))= sϕ(a′)dV n(1)+ V n(1)dsϕ(a′).

The term dsϕ(a′) is divisible by arbitrarily large powers of p, so this implies sϕ(a′)dV n(1) is divisible by
arbitrarily large powers of p. Thus by Corollary 3.10, the image of sϕ(a′)dV n(1) is equal to 0 in E1

n+1,
but then by our definition of E1

n+1, we have that a′ is divisible by pn , and hence so is a = ϕn(a′).
Write a = pna0. We then have

0= V n(sϕ(α))+ dV n(sϕ(pna0))= V n(sϕ(α+ da0)).
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By Proposition 2.7, the map pn
:�1

A→�1
A is injective. Because pn

= FnV n , we have that V n is also
injective. This shows that α =−da0, as claimed. �

Remark 4.9. Proposition 4.7 is the main result of this section. The exactness claimed is mostly analogous
to [Hesselholt and Madsen 2003, Proposition 3.2.6]; the most interesting part of our result is the fact that
the map A→�1

A⊕ A surjects onto the kernel of the map �1
A⊕ A→Wn+1�

1
A. This result is difficult to

prove because in general it is difficult to prove that elements in the de Rham–Witt complex are nonzero.
See [Hesselholt 2005, Proposition 2.2.1] for a result proving this same exactness in the context of the log
de Rham–Witt complex over the ring of integers in an algebraic closure of a local field. See also [Illusie
1979, Théorème I.3.8] for a version of this result which is valid in characteristic p.

Using induction, we are able to give the following explicit description of Wn�
1
A. The key fact used

by the construction is that the maps �1
A⊕ A→W j�

1
A given by (α, a) 7→ V j−1(α)+ dV j−1(a) can be

extended to maps into Wn�
1
A using sϕ : A→W (A).

Corollary 4.10. Continue to assume A =W (k) where k is a perfect ring of odd characteristic p. View
Wn+1�

1
A as an A-module using the ring homomorphism sϕ : A→ W (A). Let M0 = �

1
A, and for every

j ≥ 1, let M j = (�
1
A⊕ A)/h j (A) be the cokernel of the A-module homomorphism h j : a 7→ (−da, p j a)

from Lemma 4.3. For every integer n ≥ 2, the map
n∏

j=0

M j →Wn+1�
1
A

induced by
M0→Wn+1�

1
A,

α0 7→ sϕ(α0)

and
M j →Wn+1�

1
A for j ≥ 1,

(α j , a j ) 7→ V j (sϕ(α j ))+ dV j (sϕ(a j ))

is an isomorphism of A-modules.

Proof. We know that the map is a homomorphism of A-modules by Lemma 4.6. For every integer n ≥ 1,
consider the complex

0 // Mn

��

//
∏n

j=0 M j

��

////
∏n−1

j=0 M j

��

// 0

0 // Mn // Wn+1�
1
A

// Wn�
1
A

// 0.

The top row is clearly exact. The bottom row is exact by (4.8). The right-hand vertical map is an
isomorphism by induction. Thus we are finished by the five lemma. �

Similar, but easier, arguments work also for degrees d ≥ 2. Our applications involve degree d = 1, so
we indicate the results more briefly.
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Proposition 4.11. For every d ≥ 2, n ≥ 1, we have an exact sequence of A-modules

0→�d
A

V n
−→Wn+1�

d
A→Wn�

d
A→ 0,

where the A-module structure on �d
A is given by a ·α := Fn(a)α, and where the A-module structure on

the other two pieces is induced by sϕ : A→W (A).

Proof. The map V n
: �d

A→ Wn+1�
d
A is injective because Fn

◦ V n
= pn is injective on �d

A. We must
also show that if ω ∈Wn+1�

d
A is in the kernel of R, then we can find α ∈�d

A such that ω = V n(α). We
know that there exist α ∈�d

A and β ∈�d−1
A such that

V n(α)+ dV n(β)= ω.

But now we are finished, because we can write β = pnβ0 for some β0 ∈ �
d−1
A . (This is where we use

that d ≥ 2.) �

We can deduce the following corollary in the same way as we deduced Corollary 4.10.

Corollary 4.12. For every d ≥ 2 and every n ≥ 1, we have an isomorphism of A-modules

n−1∏
i=0

�d
A
∼=Wn�

d
A,

where the A-module structure on the i-th piece is given by a ·αi := ϕ
i (a)αi .

Remark 4.13. Much of the author’s intuition for the de Rham–Witt complex comes from the cases
treated in [Illusie 1979], such as the description of the de Rham–Witt complex over Fp[t1, . . . , tr ] given
in [loc. cit., Section I.2]. In this case, the de Rham–Witt complex is 0 in degrees d > r . We remark that
the absolute, mixed characteristic de Rham–Witt complex we are studying is very different. Consider the
easiest case of our setup, A = Zp = W (Fp). Then �1

A is infinite-dimensional as a Qp-vector space by
Proposition 2.9. Thus �d

A :=
∧d

�1
A is nonzero for all degrees d. Thus in particular Wn�

d
A is nonzero

for all integers d ≥ 0 and n ≥ 1.

Remark 4.14. Corollaries 4.10 and 4.12 give an explicit description of the A-module structure of the
Witt complex W·�•A. (Notice that for a general ring B 6=W (k), we cannot expect a B-algebra structure
on W·�•B .) It seems worthwhile to describe the entire Witt complex structure, at least for degrees d = 0, 1,
in terms of the description from Corollary 4.10. Similar descriptions could be given for higher degrees.

• We already know the A-module structure, so to describe the Wn(A)-algebra structure on Wn�
1
A, it

suffices by Lemma 2.2 to describe the effect of multiplication by V j (1) on
∏

Mi . It sends all Mi

with i ≤ j into the M j component, via the formulas

V j (1) ·α = (ϕ j (α), 0) ∈ M j for α ∈ M0 =�
1
A, and

V j (1) · (αi , ai )= (piϕ j−i (αi )+ϕ
j−i (dai ), 0) ∈ M j , for (αi , ai ) ∈ Mi , where i ≤ j.

When i ≥ j , multiplication by V j (1) acts on the Mi component as multiplication by p j .
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• To describe the differential d :Wn(A)→
∏

Mi , it suffices by Lemma 2.2 to note that d : sϕ(a) 7→
da ∈ M0 =�

1
A and that d : sϕ(a j )V j (1) 7→ (0, ϕ j (a j )) ∈ M j for j ≥ 1.

• The restriction map R :
∏n

i=0 Mi →
∏n−1

i=0 Mi is the obvious projection map.

• To describe the map V :
∏n

i=0 Mi →
∏n+1

i=0 Mi , we note that

V : α 7→ (α, 0) ∈ M1, where α ∈ M0 =�
1
A, and

V : (αi , ai ) 7→ (αi , pai ) ∈ Mi+1, where (αi , ai ) ∈ Mi .

• To describe the map F :
∏n+1

i=0 Mi →
∏n

i=0 Mi , we note that

F : α 7→ ϕ(α) ∈ M0, for α ∈ M0 =�
1
A

F : (α1, a1) 7→ pα1+ da1 ∈ M0, for (α1, a1) ∈ M1, and

F : (αi , ai ) 7→ (pαi , ai ) ∈ Mi−1, for (αi , ai ) ∈ Mi .

Corollary 4.15. For every n≥ 1, the p-torsion submodule of Wn�
1
A is isomorphic to the free A/p-module

of rank n− 1 generated by p j−1dV j (1), for j = 1, . . . , n− 1.

Proof. Using the fact that multiplication by p is a bijection on �1
A, we see that the p-torsion module in

M j = (�
1
A⊕A)/h j (A) is a free A/p A-module of rank 1 generated by (0, p j−1). Then from Corollary 4.10,

we see that these elements together generate the p-torsion submodule of Wn�
1
A. In the factor M j ∼=

(�1
A⊕ A)/h j (A), a representative (α, a) has element a uniquely determined modulo p j A. This shows

that we have a relation ∑
dV j (p j−1ϕ j (a))= 0

only if each a ∈ p A. This shows that the proposed elements are free generators, which completes the
proof. �

5. The de Rham–Witt complex over A/x A

As usual, let p denote an odd prime, let k denote a perfect ring of characteristic p, and let A = W (k).
There are two natural ways to lift elements from A to W (A): the first is our ring homomorphism sϕ , and
the second is the multiplicative Teichmüller map. So far in this paper, we have made extensive use of the
ring homomorphism sϕ . In this section and the next, we make more frequent use of the Teichmüller map.
The reason is that we will be studying the kernel of the natural ring homomorphism W (A)→W (A/x A)
for x ∈ A, and [x] is in this kernel whereas sϕ(x) in general is not. For example, [p] is in the kernel of
W (Zp)→W (Zp/pZp), whereas sϕ(p)= p is not.

The exactness in (4.8) above is very useful for making induction arguments involving the de Rham–Witt
complex. For example, our proof of Corollary 4.10 was dependent on our Witt complex E •

·
only because

E •
·

was used to prove exactness in (4.8). The goal of the remainder of the paper is to prove exactness of
the corresponding sequence for the de Rham–Witt complex over a certain class of perfectoid rings. See
[Hesselholt 2006, Proposition 2.2.1; Hesselholt and Madsen 2003, Theorem 3.3.8] for related results. In
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future joint work with Irakli Patchkoria, we hope to use this exact sequence to provide algebraic proofs
of results similar to Hesselholt’s p-adic Tate module computation [2006, Proposition 2.3.2]. In this
section we prove general results concerning Wn�

1
(A/x A) that are valid for arbitrary x ∈ A. In Section 6,

we specialize to a certain class of perfectoid rings, in which case we can prove stronger results, including
the analogue of the exact sequence in (4.8).

Fix an element x ∈ A. For every integer n ≥ 1, we have a surjective A-module homomorphism
Wn�

1
A → Wn�

1
(A/x A), and Corollary 4.10 gives an explicit description of the domain. We will give

explicit A-module generators for the kernel. Unfortunately, this kernel is not generated as an A-module
by elements which are homogeneous with respect to the direct sum decomposition from Corollary 4.10.

First we consider the case of level n = 1, which will be used repeatedly.

Lemma 5.1. The kernel of the A-module homomorphism �1
A→�1

(A/x A) is generated by xα for α ∈�1
A

together with the element dx.

Proof. This follows immediately from the usual right exact sequence of (A/x A)-modules

x A/x2 A→�1
A⊗A (A/x A)→�1

(A/x A)→ 0 (5.2)

[Matsumura 1989, Theorem 25.2], where the left-most map is given by xa 7→ d(xa)⊗ 1. �

Next we identify the kernel in the degree zero case, W·�0
A→W·�0

(A/x A).

Lemma 5.3. Let K 0 denote the kernel of the ring homomorphism W (A)→ W (A/x A) induced by the
projection A→ A/x A. Then K 0 consists precisely of elements of the form

∞∑
k=0

sϕ(ak)V k([x]),

where ak ∈ A.

Proof. It’s clear that these elements are in the kernel. We now prove that an arbitrary element in the kernel
can be written in this way. Working one level at a time, it suffices to show that if V k(yk) is in the kernel,
then we can find ak ∈ A and yk+1 ∈W (A) such that

V k(yk)= sϕ(ak)V k([x])+ V k+1(yk+1).

(Note that this also implies that V k+1(yk+1) is in the kernel.) Because

sϕ(ak)V k([x])= V k(Fk(sϕ(ak))[x])= V k(sϕ(ϕk(ak))[x])

and ϕ : A→ A is surjective, we can find such elements ak and yk+1. �

We now do the same thing for the degree one case. In this case, the ring W (A) ∼= lim
←−−

Wn(A) from
Lemma 5.3 gets replaced by the W (A)-module, lim

←−−
Wn�

1
A. Corollary 4.10 leads to an explicit description

of this inverse limit as an A-module.
More concretely, we give generators for the kernels of the A-module homomorphisms Wn�

1
A →

Wn�
1
(A/x A), and we choose these generators so they are compatible under restriction maps for varying
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n ≥ 1. We view these generators as elements in lim
←−−

Wn�
1
A. The main work involves studying, for

particular choices of A and x , the A-submodule of lim
←−−

Wn�
1
A generated by these elements in the kernel.

Because these elements involve the Teichmüller lift [x], they do not have a simple description in terms of
our decomposition of Wn�

1
A given in Corollary 4.10.

Definition 5.4. Let M0 = �
1
A and for each integer j ≥ 1, let M j be the cokernel of the A-module

homomorphism in Lemma 4.3. Let M denote the A-module

M =
∞∏
j=0

M j .

Let K 1
⊆ M denote the A-submodule consisting of all elements of the form

∞∑
k=0

(V k([x]sϕ(αk))+ sϕ(ak)dV k([x])),

where αk ∈�
1
A and where ak ∈ A; here, to make sense of such an expression as an element in M , we use

the structures described in Remark 4.14.

Remark 5.5. (1) By Corollary 4.10, M is isomorphic as an A-module to lim
←−−

Wn�
1
A.

(2) The A-module K 1 depends on our choice of element x , but that element is fixed throughout this
section, so we write simply K 1 and not more suggestive notation such as K 1

x .

We will use K 1 from Definition 5.4 to describe the kernel of Wn�
1
A→Wn�

1
(A/x A); namely, we will

show that this kernel is the image of K 1 under the restriction map Rn : M→Wn�
1
A.

Lemma 5.6. For n ≥ 1, write Rn for the restriction map W (A)→ Wn(A) and also for the restriction
map M→Wn�

1
A. The A-submodule of Wn�

•

A generated by Rn(K 0) and Rn(K 1) and all higher degree
terms (Wn�

d
A for d ≥ 2) is an ideal in the ring Wn�

•

A.

Proof. We have to show that the A-module generated by these elements is closed under multiplication
by elements in Wn�

•

A. Consider an element V k([x])m, where m ∈ Wn�
1
A. This can be rewritten as

V k([x]m0), where m0 = Fk(m). The element m0 can be written (not uniquely) as

m0 = sϕ(α0)+

n−k−1∑
i=1

(V i (sϕ(αi ))+ dV i (sϕ(ai ))),

and so

[x]m0 = [x]sϕ(α0)+

n−k−1∑
i=1

([x]V i (sϕ(αi ))+ [x]dV i (sϕ(ai )))

= [x]sϕ(α0)+

n−k−1∑
i=1

(V i ([x]p
i
sϕ(αi ))+ dV i ([x]p

i
sϕ(ai ))− V i (sϕ(ai )[x]p

i
−1d[x])).
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(Here we used the formula Fd[x] = [x]p−1d[x].) And so

V k([x]m0) ∈ Rn(K 1).

Now we consider degree 1 terms in our A-module. We first consider a term V k([x]sϕ(α)) and then
below we consider dV k([x]). We can write an arbitrary element y ∈Wn(A) as

∑n−1
i=0 sϕ(yi )V i (1), thus it

suffices to show that

V k([x]sϕ(α))V i (1) ∈ Rn(K 1).

If i ≤ k, we have

V k([x]sϕ(α))V i (1)= V k([x]sϕ(piα)) ∈ Rn(K 1).

If i > k, we have

V k([x]sϕ(α))V i (1)= V i (F i−k([x]sϕ(α)))= V i ([x]p
i−k

sϕ
( 1

pi−k ϕ
i−k(α)

)
) ∈ Rn(K 1).

Similarly, we find

dV k([x])V i (1)= V i (dV k−i ([x])= pi dV k([x]) for i ≤ k

and

dV k([x])V i (1)= V i (F i−kd[x])= V i ([x]m) for i > k and m ∈Wn�
1
A.

It was shown in the degree zero portion of our proof that this latter element is in Rn(K 1). �

Proposition 5.7. Define G•
·

by

G0
n :=Wn(A)/Rn(K 0), G1

n :=Wn�
1
A/Rn(K 1), Gd

n := 0 for d ≥ 2.

Equipped with the structure maps inherited from W·�•A, this is a Witt complex over A/x A.

Proof. The main thing to verify is that all of the necessary maps are well-defined. All the various relations
required of a Witt complex will then hold automatically since they hold in Wn�

•

A.
The fact that G•n is a ring follows from Lemma 5.6. Define λ : Wn(A/x A)→ G0

n to be the unique
map such that the composition Wn(A)→ Wn(A/x A)→ G0

n is the projection map; this is possible by
Lemma 5.3. To define the differential d : G0

n→ G1
n , we check that d(sϕ(a)V k([x])) ∈ Rn(K 1), which

follows because

d(sϕ(a)V k([x]))= sϕ(a)dV k([x])+ V k([x]Fkdsϕ(a))= sϕ(a)dV k([x])+ V k([x]sϕ
( 1

pk dϕk(a)
)
),

where the last equality holds by Lemma 4.5. Because R ◦ Rn = Rn−1, it is clear that the restriction map
R is well-defined. The fact that V is well-defined follows from V dV k

= pdV k+1 and the fact that K 1 is
closed under multiplication by arbitrary elements in W (A).
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To check that F is well-defined on G1
n , we need to show that F(Rn(K 1))⊆ Rn−1(K 1), which means

that we need to evaluate F on elements
∞∑

k=0

(V k([x]sϕ(αk))+ sϕ(ak)dV k([x])).

The result is immediate from the de Rham–Witt relations, but we need to be careful to treat the k = 0
case separately from the k > 0 case. We have

F([x]sϕ(α0))= [x]psϕ
( 1

pϕ(α0)
)

and F(sϕ(a0)d[x])= sϕ(ϕ(a0))[x]p−1d[x],

and these elements are in Rn−1(K 1) by Lemma 5.6. For k ≥ 1, we have

F(V k([x]sϕ(αk))) and F(sϕ(ak)dV k([x])) ∈ Rn−1(K 1),

because FV = p and FdV = d. �

Proposition 5.8. We have an isomorphism of A-modules

Wn�
1
A/Rn(K 1)∼=Wn�

1
(A/x A).

Proof. Viewing Wn�
1
(A/x A) as a Witt complex over A, we have a map of Wn(A)-modules Wn�

1
A →

Wn�
1
(A/x A) which induces a map f : (Wn�

1
A)/Rn(K 1)→Wn�

1
(A/x A). Similarly, G•

·
is a Witt complex over

A/x A by Proposition 5.7, so we have a map of Wn(A/x A)-modules g :Wn�
1
(A/x A)→ (Wn�

1
A)/Rn(K 1).

We claim that the compositions g f and f g are both the identity map.
Because the maps f and g arise from maps of Witt complexes, the two triangles in the following

diagram commute.

Wn�
1
A/Rn(K 1)

f
,,

Wn�
1
(A/x A)

g
mm

�1
Wn(A/x A)

gggg 88 88

Then, because the diagonal maps are both surjective, a diagram chase shows that f g and g f are both the
identity map. �

We conclude this section with a technical result about K 1 that will be used in the following section. We
include it in this section because it is valid in a more general context than what we consider in Section 6.

Notation 5.9. For every integer n ≥ 1, let Pn denote the property

• Pn: If z ∈ K 1 and Rn(z)= 0, then we can write

z =
∞∑

k=n

(V k([x]sϕ(αk))+ sϕ(ak)dV k([x])).
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Proposition 5.10. Assume that x 6∈ p A. If property P1 holds, then for every integer n ≥ 1, the property
Pn also holds.

Proof. We prove this using induction on n. Thus assume we know that property Pn−1 holds for some
n ≥ 2, and assume we have z ∈ K 1 such that Rn(z)= 0. By our induction hypothesis, we can assume

z =
∞∑

k=n−1

(V k([x]sϕ(αk))+ sϕ(ak)dV k([x])).

The terms for k ≥ n do not affect the conclusion, so we can in fact assume

z = V n−1([x]sϕ(α))+ sϕ(a)dV n−1([x])

= V n−1([x]sϕ(α))+ dV n−1([x]Fn−1(sϕ(a)))− V n−1([x]Fn−1(dsϕ(a)))

= V n−1(
[x]sϕ

(
α− 1

pn−1 d(ϕn−1(a))
))
+ dV n−1([x]sϕ(ϕn−1(a))).

Using Proposition 4.7, because we are assuming Rn(z)= 0 and that x is not divisible by p, we have that
a must be divisible by pn−1, and we find

z = V n−1(
[x]sϕ

(
α− 1

pn−1 d(ϕn−1(a))
)
+ d([x]sϕ(ϕn−1(a/pn−1)))

)
.

The fact that Rn(z)= 0 implies that

[x]sϕ
(
α− 1

pn−1 d(ϕn−1(a))
)
+ d([x]sϕ(ϕn−1(a/pn−1)))

satisfies the assumption in property P1. Hence we have

z = V n−1
( ∞∑

k=1

(V k([x]sϕ(αk))+ sϕ(ak)dV k([x]))
)

=

∞∑
k=1

(V k+n−1([x]sϕ(αk))+ sϕ(ϕ1−n(ak))V n−1(dV k([x])))

=

∞∑
k=1

(V k+n−1([x]sϕ(αk))+ sϕ(ϕ1−n(pn−1ak))dV k+n−1([x])).

This completes the proof of property Pn . �

Lemma 5.11. An element z ∈ M can be written in the form

z =
∞∑

k=n

(V k([x]sϕ(αk))+ sϕ(ak)dV k([x]))

if and only if

z ∈ V n(K 1)+ dV n(K0).

In particular, property Pn is equivalent to the following:
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• If z ∈ K 1 and Rn(z)= 0, then we have

z ∈ V n(K 1)+ dV n(K0).

Proof. This follows from the same sorts of manipulations as in the above proofs. The most difficult of
these manipulations is showing that

sϕ(an)dV n([x]) ∈ V n(K 1)+ dV n(K0).

Using Lemma 4.5 and the Leibniz rule, one checks that

sϕ(an)dV n([x])= V n(
[x]sϕ

(
ϕn(−1

pn d(an)
)))
+ dV n(sϕ(ϕn(an))[x]) ∈ V n(K 1)+ dV n(K0). �

Similar manipulations show the following.

Lemma 5.12. For every integer n ≥ 1, we have that V n(K 1)+ dV n(K0)⊆ M is a W (A)-submodule.

Proof. It’s clear that the collection of elements of the form

z =
∞∑

k=n−1

(V k([x]sϕ(αk))+ sϕ(ak)dV k([x]))

forms an A-module, so we reduce to proving that V n(K 1)+ dV n(K0) is closed under multiplication by
V i (1), for i ≥ 1. Consider first the case i ≥ n. We have

V i (1)V n(K 1)= V i (pn F i−n(K 1))⊆ V n(K 1), V i (1)dV n(K 0)= V i (F i−nd(K 0))⊆ V n(K 1).

Next we consider the case i < n. We have

V i (1)V n(K 1)= V n(pi K 1)⊆ V n(K 1),

V i (1)dV n(K 0)= d(V i (1)V n(K 0))− V n(K 0)dV i (1)⊆ dV n(K 0). �

We cannot expect property P1 to hold in general, as the following example shows. In the next section
we will prove that property P1 (and hence property Pn for every n) holds when A/x A is a perfectoid ring
satisfying Assumption 6.2 below.

Example 5.13. Consider the ring A = Zp and the element x = p ∈ Zp. Clearly

d[p] ∈W2�
1
Zp

restricts to dp = 0 in �1
Zp

. On the other hand, because

[p] ≡ p+ V (p p−1
− 1) mod V 2(W (Zp)),

we have
d[p] = −dV (1) ∈W2�

1
Zp
.

The exactness of sequence (4.8) shows this element cannot be written as a Zp-linear combination of terms
in V (p�1

Zp
)= V (�1

Zp
) and dV (p)= V d1= 0.
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6. Applications to the de Rham–Witt complex over perfectoid rings

As usual, p in this section denotes an odd prime. The term perfectoid was originally used in the context
of algebras over a field, but we work with the more general notion of perfectoid ring which has since
been defined; see Definition 6.1 below. Examples of rings satisfying our definition of perfectoid include
the p-adic completion of Zp[ζp∞], the p-adic completion of Zp[p1/p∞

], and OCp .
Throughout this section, we let B denote a perfectoid ring satisfying Assumption 6.2 below, and we let

A =W (B[), where
B[ := lim

←−−
x 7→x p

(B/pB)

is the tilt of B. The ring B[ is a perfect ring of characteristic p. Let θ : A =W (B[)→ B denote the map
θ1 from [Bhatt et al. 2016, Section 3]. This is the “usual” θ map from p-adic Hodge theory. We will
not need the definition of θ ; we will only need that it is surjective and its kernel is a principal ideal (by
our definition of perfectoid). Throughout this section, x ∈ A denotes a fixed choice of generator for this
principal ideal.

We now explicitly state our definition of perfectoid.

Definition 6.1 [Bhatt et al. 2016, Definition 3.5]. A commutative ring B is called perfectoid if it is
π-adically complete and separated for some element π ∈ B such that π p divides p, the Frobenius map
B/pB→ B/pB is surjective, and the kernel of θ :W (B[)→ B is principal.

Assumption 6.2. We further assume that our perfectoid ring B is p-torsion free and that there exists a
p-power torsion element ω ∈ �1

B such that the annihilator of ω is contained in pn B for some integer
n ≥ 1.

Remark 6.3. (1) Assumption 6.2 is satisfied, for example, if the perfectoid ring B is contained in OCp

and contains ζp. We do not know an elementary argument for this. Fontaine [1981/82, Théorème 1′]
gives an elementary argument to show that dζp is nonzero in �1

R , where R = OQp
. Bhargav Bhatt

has shown us an argument involving the cotangent complex (which was used above in the proof of
Proposition 2.7) to deduce that dζp ∈�

1
OCp

is nonzero. Once one knows that dζp 6= 0, an elementary
argument shows that Assumption 6.2 is satisfied. We hope to consider the question, “How restrictive
is Assumption 6.2?”, in later applications.

(2) Our proofs in this section work for any quotient A/x A satisfying Assumption 6.2, but we do not
know any interesting examples where A/x A is not perfectoid. In particular, see the next point.

(3) We have been careful throughout this paper to work with W (k) where k is a perfect ring, instead
of restricting our attention to the case where k is a perfect field. That generality is essential for
Assumption 6.2 to be reasonable, because when k is a perfect field, the only p-torsion free quotient
of W (k) is the zero ring.

The entire goal of this section is to prove Proposition 6.12 below, which identifies the kernel of
restriction Wn+1�

1
B → Wn�

1
B in terms of B and �1

B . Using a spectral sequence argument, our result
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will follow easily from property Pn described in Notation 5.9. By Proposition 5.10, it will suffice to
prove property P1, which loosely says that if an element in Wn�

1
A is in both ker θ and in the kernel of

restriction R1 to �1
A, then the element can be written as V (α)+ dV (a), where both α and a are in ker θ .

We now begin the proof that property P1 holds.
We will apply the following lemma to our fixed x ∈ A which generates ker θ , but it also holds for

arbitrary x ∈ A.

Lemma 6.4. Choose y ∈W (A) such that [x] = sϕ(x)+ V (y). Then we have

[x]p = sϕ(ϕ(x))+ py

Proof. Apply F to both sides of [x] = sϕ(x)+ V (y). �

Property P1 concerns elements which are both in the kernel of Wn(θ) :Wn�
1
A→Wn�

1
(A/x A) and also

in the kernel of restriction R1 : Wn�
1
A→�1

A. The following lemma considers the case of a particular
element which is obviously in this intersection.

Lemma 6.5. We have [x]dsϕ(x)− sϕ(x)d[x] ∈ V (K 1)+ dV (K 0).

Proof. We use the notation from Lemma 6.4. We compute

[x]dsϕ(x)− sϕ(x)d[x] = (sϕ(x)+ V (y))dsϕ(x)− sϕ(x)d(sϕ(x)+ V (y))

= V (y)dsϕ(x)− sϕ(x)dV (y)

= V (yFdsϕ(x))− d(s(x)V (y))+ V (y)dsϕ(x)

= V (2yFdsϕ(x))− dV (yF(sϕ(x)))

= V (2yFdsϕ(x))− dV (y[x]p − py2).

Because the term dV (y[x]p) ∈ dV (K 0), we reduce to showing the following element is in V (K 1).

V (2yFdsϕ(x))+ dV (py2)= V (2yFdsϕ(x)+ 2ydy)

= V (2y(Fdsϕ(x)+ dy))

= V (2y(Fd([x] − V (y))+ dy))

= V (2y([x]p−1d[x] − dy+ dy)) ∈ V (K 1).

This completes the proof. �

Lemma 6.6. If xα1 = 0 ∈�1
A, then [x]sϕ(α1) ∈ V (K 1).

Proof. The key idea is that, because multiplication by p is a bijection on �1
A, we also have that xα1/pN

=

0 ∈�1
A for every integer N ≥ 1. Applying Frobenius to both sides, we have ϕ(x)ϕ(α1)/pN

= 0 ∈�1
A.

We will apply this observation in the case N = 2.
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Use the same notation as in Lemma 6.4. We have

[x]sϕ(α1)= sϕ(x)sϕ(α1)+ V (y)sϕ(α1)

= V (y)sϕ(α1)

= V (yF(sϕ(α1)))

= V
(

ysϕ

(
ϕ(α1)

p

))
= V

(
pysϕ

(
ϕ(α1)

p2

))
= V

(
([x]p − sϕ(ϕ(x)))sϕ

(
ϕ(α1)

p2

))
= V

(
[x]psϕ

(
ϕ(α1)

p2

))
∈ V (K 1). �

Using Assumption 6.2, we have a p-power torsion element ω ∈�1
B with annihilator contained in pn B

for some integer n ≥ 1. For every integer r ≥ 1, the following lemma enables us to produce a p-power
torsion element η ∈�1

B with annihilator contained in pn+r B.

Lemma 6.7. Assume ω ∈ �1
B is such that Annω ⊆ pn B, where n ≥ 1 is an integer. If η ∈ �1

B is an
element such that prη = ω for some integer r ≥ 1, then Ann η ⊆ pn+r B.

Proof. It suffices to prove this in the case r = 1, so let η ∈�1
B be such that pη = ω. Let b ∈ Ann η. Then

in particular b ∈ Annω, so we can write b = pnb0 for some b0 ∈ B. Then we know

0= bη = pnb0η = pn−1b0ω,

and hence pn−1b0 ∈ pn B. Assumption 6.2 requires that B is p-torsion free, so we deduce that b0 ∈ pB,
and hence b ∈ pn+1 B, as required. �

The following is the most important of the preliminary results in this section. If we could prove
Proposition 6.8 without using the element ω from Assumption 6.2, then the results of this section would
hold for all p-torsion free perfectoid rings.

Proposition 6.8. If adx ∈ x�1
A, then a ∈ x A.

Proof. Our hypothesis implies a dx
pN ∈ ker θ for every integer N ≥ 0, and we will show this implies

θ(a) ∈
⋂

pr B = 0.

Fix an integer N ≥ 1. Because θ : A→ B is surjective, we know the induced map �1
A → �1

B is
surjective. Let ωA ∈�

1
A map to the element ω ∈�1

B described in Assumption 6.2. Because ω is p-power
torsion, we know that pmωA ∈ x�1

A+ Adx for some integer m ≥ 1. Thus, for every integer N ≥ 1, we
can write (1/pN−m)ωA = xαN + aN

dx
pN for some αN ∈�

1
A and aN ∈ A.

Consider now the element adx ∈ x�1
A from the statement of this proposition. We deduce that

a dx
pN ∈ x�1

A for every integer N ≥ 1, so a dx
pN ∈ ker θ for every integer N ≥ 1. If we multiply by the
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element aN from the previous paragraph, we know that aaN
dx
pN is in ker θ for every integer N ≥ 1. If we

apply θ to aaN
dx
pN , we see that θ(a) ∈ B is in the annihilator of some element η satisfying pN−mη = ω.

Thus, by Lemma 6.7, we have that θ(a) ∈ B is divisible by arbitrarily large powers of p. Thus a ∈ x A, as
required. �

Remark 6.9. Proposition 6.8 implies that for our particular rings A and A/x A, the left-most map in the
exact sequence (5.2) is injective.

Proposition 6.10. If xα+ adx = 0 ∈�1
A, then [x]sϕ(α)+ sϕ(a)d[x] ∈ V (K 1)+ dV (K 0).

Proof. We have adx =−xα, so by Proposition 6.8, we know that a = xa1 for some a1 ∈ A, and thus our
assumption means x(α+ a1dx)= 0 ∈�1

A. By Lemma 6.6, we know that [x](sϕ(α)+ sϕ(a1)d(sϕ(x))) ∈
V (K 1). Thus it suffices to show that

[x]sϕ(a1)dsϕ(x)− sϕ(x)sϕ(a1)d[x] ∈ V (K 1)+ dV (K 0).

Thus, by Lemma 5.12, it suffices to show that

[x]dsϕ(x)− sϕ(x)d[x] ∈ V (K 1)+ dV (K 0).

So we are done by Lemma 6.5. �

Consider now an arbitrary element y ∈ K 1,

y =
∞∑

k=0

(V k([x]sϕ(αk))+ sϕ(ak)dV k([x])),

and assume it restricts to 0 in level one, i.e., assume R1(y)= 0 ∈�1
A. This means that

xα0+ a0dx = 0 ∈�1
A.

Then Proposition 6.10 shows that property P1 from Notation 5.9 holds. We immediately deduce the
following from Proposition 5.10.

Corollary 6.11. For every n ≥ 1, property Pn from Notation 5.9 holds.

The following result is the main result of this section. It is modeled after [Hesselholt and Madsen
2003, Proposition 3.2.6]. Compare also Proposition 4.7.

Proposition 6.12. Let B be a perfectoid ring satisfying Assumption 6.2. For every integer n ≥ 1, we have
a short exact sequence of Wn+1(B)-modules

0→ B→�1
B ⊕ B→Wn+1�

1
B

R
→Wn�

1
B→ 0, (6.13)

where the maps and Wn+1(B)-module structure are defined as follows. The map B → �1
B ⊕ B is

given by b 7→ (−db, pnb). The map �1
B ⊕ B→ Wn+1�

1
B is given by (β, b) 7→ V n(β)+ dV n(b). The

Wn+1(B)-module structure on B is given by Fn . The Wn+1(B)-module structure on �1
B ⊕ B is given by

y · (ω, b)= (Fn(y)ω− bFn(dy), Fn(y)b), where y ∈Wn+1(B).
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The Wn+1(B)-module structure on Wn�
1
B is induced by restriction.

Proof. Consider the following short exact sequence of chain complexes (the chain complexes are written
horizontally, and the short exact sequences are written vertically):

0 // 0 // 0 // 0 // 0 // 0

0 // B //

OO

�1
B ⊕ B //

OO

Wn+1�
1
B

//

OO

Wn�
1
B

//

OO

0

0 // A //

θ

OO

�1
A⊕ A //

θ

OO

Wn+1�
1
A

Wn+1(θ)

OO

// Wn�
1
A

Wn(θ)

OO

// 0

0 // x A //

OO

R1(K 1)⊕ R1(K 0) //

OO

Rn+1(K 1) //

OO

Rn(K 1) //

OO

0

0 // 0 //

OO

0 //

OO

0 //

OO

0 //

OO

0

For convenience, write these chain complexes as 0→ K• → A• → B• → 0, where we consider the
complexes concentrated in degrees 0 to 3. We must show that Hn(B•) ∼= 0 for all n. It’s trivial that
H0(B•)∼= 0 and H3(B•)∼= 0. Using Proposition 1.5, we have also that H1(B•)∼= 0. This leaves H2(B•).

Consider now the long exact sequence in homology [Weibel 1994, Theorem 1.3.1] associated to the
above short exact sequence of chain complexes. By Proposition 4.7, we have that Hn(A•)∼= 0 for all n. It
follows that H2(B•)∼= H1(K•). We will finish the proof by showing that H1(K•)∼= 0.

Consider an element in Rn+1(K 1) which restricts to 0 in Wn�
1
A. By Corollary 6.11, we know that

this element can be written as V n([x]sϕ(αn))+ sϕ(an)dV n([x]), for some αn ∈�
1
A and some an ∈ A. By

Lemma 5.11, such an element lies in V n(K 1)+ dV n(K 0), and hence is in the image of the map

R1(K 1)⊕ R1(K 0)
V n
+dV n

−−−−→ Rn+1(K 1).

This shows that H1(K•)∼= 0, and hence that H2(B•)∼= 0, as required. �

Example 6.14. As in Example 5.13, the analogue of exactness in (6.13) does not hold for arbitrary
quotients of a ring A =W (k). For example, exactness does not hold for B = Zp/pZp ∼= Z/pZ. In this
case, not even the left-most map B→�1

B ⊕ B is injective. More significantly, we know Wn+1�
1
(Z/pZ)

is zero for all n, so dV n(1)= 0 ∈Wn+1�
1
(Z/pZ) for all n ≥ 1. By contrast, Proposition 6.12 shows that

dV n(1) 6= 0 for all perfectoid rings B satisfying Assumption 6.2.

Remark 6.15. Assume B is a ring for which the sequence in Equation (6.13) is exact. Assume B0 ⊆ B
is a subring satisfying the following two properties:

(1) We have pn B ∩ B0 = pn B0.

(2) The B0-module homomorphism �1
B0
→�1

B is injective.
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It then follows that the analogue of (6.13) for B0 is also exact. In foreseeable applications, verifying the
first condition will be trivial, but in general it may be difficult to verify the second condition. For example,
if B is OCp and B0 is the valuation ring in an algebraic extension of Qp, it is not clear whether we should
expect the second condition to hold. For this reason, this remark might be more useful in the context of
[Hesselholt 2006, Proposition 2.2.1], which shows exactness of a log analogue of (6.13) when B = OQp

.

Remark 6.16. In this section and the previous section, we have been working with an explicit quotient
of the de Rham–Witt complex over A = W (k). Perhaps similar results could be attained by working
with an explicit quotient of the de Rham–Witt complex over the polynomial algebra A[t]. An explicit
description of the de Rham–Witt complex over A[t] is given, in terms of the de Rham–Witt complex over
A, in [Hesselholt and Madsen 2004, Theorem B].
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