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We establish Tannaka duality for noetherian algebraic stacks with affine stabilizer groups. Our main
application is the existence of Hom-stacks in great generality.

1. Introduction

Classically, Tannaka duality reconstructs a group from its category of finite-dimensional representations
[Tannaka 1939]. Various incarnations of Tannaka duality have been studied for decades. The focus of
this article is a recent formulation for algebraic stacks [Lurie 2004] which we now recall.

Let X be a noetherian algebraic stack. We denote its abelian category of coherent sheaves by Coh(X).
If f : T → X is a morphism of noetherian algebraic stacks, then there is an induced pullback functor

f ∗ : Coh(X)→ Coh(T ).

It is well-known that f ∗ has the following three properties:

(i) f ∗ sends OX to OT .

(ii) f ∗ preserves the tensor product of coherent sheaves.

(iii) f ∗ is a right exact functor of abelian categories.

Hence, there is a functor

Hom(T, X)→ Homr⊗,'(Coh(X),Coh(T )),

( f : T → X) 7→ ( f ∗ : Coh(X)→ Coh(T )),

where the right-hand side denotes the category with objects the functors F : Coh(X)→ Coh(T ) satisfying
conditions (i)–(iii) above and morphisms given by natural isomorphisms of functors.

If X has affine diagonal (e.g., X is the quotient of a variety by an affine algebraic group), then the
functor above is known [Lurie 2004] to be fully faithful with image consisting of tame functors. Even
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though tameness of a functor is a difficult condition to verify, Lurie was able to establish some striking
applications to algebraization problems.

Various stacks of singular curves [Alper and Kresch 2016, Section 4.1] and log stacks can fail to have
affine, quasiaffine, or even separated diagonals. In particular, for applications in moduli theory, the results
of [Lurie 2004] are insufficient. The main result of this article is the following theorem, which besides
removing Lurie’s hypothesis of affine diagonal, obviates tameness.

Theorem 1.1. Let X be a noetherian algebraic stack with affine stabilizers. If T is an algebraic stack
that is locally the spectrum of a G-ring (e.g., locally excellent), then the functor:

Hom(T, X)→ Homr⊗,'(Coh(X),Coh(T ))

is an equivalence.

That X has affine stabilizers means that Aut(x) is affine for every field k and point x : Spec k→ X ;
equivalently, the diagonal of X has affine fibers. Examples of algebraic stacks that are locally the spectrum
of a G-ring include those that are locally of finite type over a field, over Z, over a complete local noetherian
ring, or over an excellent ring (see Remark 7.2). We also wish to emphasize that we do not assume
that the diagonal of X is separated in Theorem 1.1. The restriction to stacks with affine stabilizers is a
necessary condition for the equivalence in Theorem 1.1 (see Theorem 10.1).

Theorem 1.1 is a consequence of Theorem 8.4, which also gives various refinements in the nonnoetherian
situation and when X has quasiaffine diagonal or is Deligne–Mumford.

Main applications. In work with J. Alper [2015], Theorem 1.1 is applied to resolve Alper’s conjecture
on the local quotient structure of algebraic stacks [Alper 2010]. A more immediate application of
Theorem 1.1 is the following algebraicity result for Hom-stacks, generalizing all previously known results
and answering [Abramovich et al. 2011, Question 1.4].

Theorem 1.2. Let Z→ S and X→ S be morphisms of algebraic stacks such that Z→ S is proper and
flat of finite presentation, and X → S is locally of finite presentation, quasiseparated, and has affine
stabilizers. Then

(i) the stack HomS(Z , X) : T 7→ HomS(Z ×S T, X), is algebraic;

(ii) the morphism HomS(Z , X)→ S is locally of finite presentation, quasiseparated, and has affine
stabilizers; and

(iii) if X→ S has affine (or quasiaffine or separated) diagonal, then so has HomS(Z , X)→ S.

Theorem 1.2 has already seen applications to log geometry [Wise 2016], an area which provides a
continual source of stacks that are neither Deligne–Mumford nor have separated diagonals. In general,
the condition that X has affine stabilizers is necessary (see Theorem 10.4). That the Hom-stacks above
are quasiseparated is nontrivial, and is established in Appendix B. The main result in Appendix B is a
substantial generalization of the strongest boundedness result in the existing literature [Olsson 2006b,
Proposition 5.10].
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There are analogous algebraicity results for Weil restrictions (that is, restrictions of scalars).

Theorem 1.3. Let f : Z → S and g : X → Z be morphisms of algebraic stacks such that f is proper
and flat of finite presentation and f ◦ g is locally of finite presentation, quasiseparated and has affine
stabilizers. Then

(i) the stack f∗X = RZ/S(X) : T 7→ HomZ (Z ×S T, X) is algebraic;

(ii) the morphism RZ/S(X)→ S is locally of finite presentation, quasiseparated and has affine stabilizers;
and

(iii) if g has affine (or quasiaffine or separated) diagonal, then so has f∗X→ S.

When Z has finite diagonal and X has quasifinite and separated diagonal, Theorems 1.2 and 1.3 were
proved in [Hall and Rydh 2014, Theorems 3 and 4]. In Corollary 9.2, we also excise the finite presentation
assumptions on X → S in Theorems 1.2 and 1.3, generalizing the results of [Hall and Rydh 2015b,
Theorem 2.3 and Corollary 2.4] for stacks with quasifinite diagonal.

Application to descent. If X has quasiaffine diagonal, then it is well-known that it is a stack for the
fpqc topology [Laumon and Moret-Bailly 2000, Corollaire 10.7]. In general, it is only known that
algebraic stacks satisfy effective descent for fppf coverings. Nonetheless, using that QCoh is a stack for
the fpqc-topology and Tannaka duality, we are able to establish the following result.

Corollary 1.4. Let X be a quasiseparated algebraic stack with affine stabilizers. Let π : T ′ → T be
an fpqc covering such that T is locally the spectrum of a G-ring and T ′ is locally noetherian. Then X
satisfies effective descent for π .

Application to completions. Another application concerns completions.

Corollary 1.5. Let A be a noetherian ring and let I ⊆ A be an ideal. Assume that A is complete with
respect to the I -adic topology. Let X be a noetherian algebraic stack and consider the natural morphism

X (A)→ lim
←−−

X (A/I n)

of groupoids. This morphism is an equivalence if either

(i) X has affine stabilizers and A is a G-ring (e.g., excellent); or

(ii) X has quasiaffine diagonal; or

(iii) X is Deligne–Mumford.

Using methods from derived algebraic geometry, Corollary 1.5(ii) was recently proved for nonnoetherian
complete rings A [Bhatt 2016; Bhatt and Halpern-Leistner 2017]. That X has affine stabilizers in
Corollary 1.5 is necessary (see Theorem 10.5).
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On the proof of Tannaka duality. We will discuss the proof of Theorem 8.4, the refinement of Theorem 1.1.
The reason for this is that it is much more convenient from a technical standpoint to consider the problem
in the setting of quasicoherent sheaves on potentially nonnoetherian algebraic stacks.

So let T and X be algebraic stacks and let QCoh(T ) and QCoh(X) denote their respective abelian
categories of quasicoherent sheaves. We will assume that X is quasicompact and quasiseparated. Our
principal concern is the properties of the functor

ωX (T ) : Hom(T, X)→ Homc⊗(QCoh(X),QCoh(T )),

( f : T → X) 7→ ( f ∗ : QCoh(X)→ QCoh(T )),

where the right-hand side denotes the additive functors F : QCoh(X)→ QCoh(T ) satisfying

(i) F(OX )=OT ,

(ii) F preserves the tensor product, and

(iii) F is right exact and preserves (small) direct sums.

We call such F cocontinuous tensor functors.
An algebraic stack X has the resolution property if every quasicoherent sheaf is a quotient of a direct

sum of vector bundles. In Theorem 4.11 we establish the equivalence of ωX (T ) when X has affine
diagonal and the resolution property. This result has appeared in various forms in the work of others
[Schäppi 2012, Theorem 1.3.2; Savin 2006; Brandenburg 2014, Corollary 5.7.12] and forms an essential
stepping stone in the proof of our main theorem (Theorem 8.4).

In general, there are stacks — even schemes — that do not have the resolution property. Indeed, if X
has the resolution property, then X has at least affine diagonal [Totaro 2004, Proposition 1.3]. Our proof
uses the following three ideas to overcome this problem:

(i) If U ⊆ X is a quasicompact open immersion and QCoh(X)→ QCoh(T ) is a tensor functor, then
there is an induced tensor functor QCoh(U )→ QCoh(V ) where V ⊆ T is the “inverse image of U”.
The proof of this is based on ideas of Brandenburg and Chirvasitu [2014]. (Section 5)

(ii) If X is an infinitesimal neighborhood of a stack with the resolution property, then ωX (T ) is an
equivalence for all T . (Section 6)

(iii) There is a constructible stratification of X into stacks with affine diagonal and the resolution property
(Proposition 8.2). We deduce the main theorem by induction on the number of strata using formal
gluings [Moret-Bailly 1996; Hall and Rydh 2016]. This step uses special cases of Corollaries 1.4
and 1.5. (Sections 7 and 8)

In the third step, we assume that our functors preserve sheaves of finite type.

Open questions. Concerning (ii), it should be noted that we do not know the answers to the following
two questions.
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Question 1.6. If X0 has the resolution property and X0 ↪→ X is a nilpotent closed immersion, then does
X have the resolution property?

The question has an affirmative answer if X0 is cohomologically affine, e.g., X0 = Bk G where G is
a linearly reductive group scheme over k. The question is open if X0 = Bk G where G is not linearly
reductive, even if X = Bk[ε]Gε where Gε is a deformation of G over the dual numbers [Conrad 2010].

Question 1.7. If X0 ↪→ X is a nilpotent closed immersion and ωX0(T ) is an equivalence, is then ωX (T )
an equivalence?

Step (ii) answers neither of these questions but uses a special case of the first question (Lemma 6.2)
and the conclusion (Main Lemma 6.1) is a special case of the second question.

The following technical question also arose in this research.

Question 1.8. Let X be an algebraic stack with quasicompact and quasiseparated diagonal and affine
stabilizers. Let k be a field. Is every morphism Spec k→ X affine?

If X étale-locally has quasiaffine diagonal, then Question 1.8 has an affirmative answer (Lemma 4.7).
This makes finding counterexamples extraordinarily difficult and thus very interesting. This question
arose because if Spec k→ X is nonaffine, then ωX (Spec k) is not fully faithful (Theorem 10.2). This
explains our restriction to natural isomorphisms in Theorem 1.1. Note that every morphism Spec k→ X
as in Question 1.8 is at least quasiaffine [Rydh 2011a, Theorem B.2]. We do not know the answer to the
question even if X has separated diagonal and is of finite type over a field.

On the applications. Let T be a noetherian algebraic stack that is locally the spectrum of a G-ring, and
let Z be a closed substack defined by a coherent ideal J ⊆OT . Let Z [n] be the closed substack defined
by J n+1. Assume that the natural functor Coh(T )→ lim

←−−n Coh(Z
[n]) is an equivalence of categories. Then

an immediate consequence of Tannaka duality (Theorem 1.1) is that

Hom(T, X)→ lim
←−−

Hom(Z [n], X)

is an equivalence of categories for every noetherian algebraic stack X with affine stabilizers. This applies
in particular if A is excellent and I -adically complete and T = Spec A and Z = Spec A/I ; this gives
Corollary 1.5. More generally, it also applies if T is proper over Spec A and Z = T ×Spec A Spec A/I
(Grothendieck’s existence theorem). This latter case is fed into Artin’s criterion to prove Theorem 1.2
(the remaining hypotheses have largely been verified elsewhere).

There are also nonproper stacks T satisfying Coh(T )→ lim
←−−n Coh(Z

[n]), such as global quotient stacks
with proper good moduli spaces (see [Geraschenko and Zureick-Brown 2015; Alexeev and Brion 2005]
for some special cases). This featured in the resolution of Alper’s conjecture [Alper et al. 2015].

Such statements, and their derived versions, were also recently considered by Halpern-Leistner and
Preygel [2014]. There, they considered variants of our Theorem 1.2. For their algebraicity results, their
assumption was similar to assuming that Coh(T )→ lim

←−−n Coh(Z
[n]) was an equivalence (though they also

considered other derived versions), and that X→ S was locally of finite presentation with affine diagonal.
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Relation to other work. As mentioned in the beginning of the introduction (Section 1), Lurie identifies
the image of ωX (T ) with the tame functors when X is quasicompact with affine diagonal [Lurie 2004].
Tameness means that faithful flatness of objects is preserved. This is a very strong assumption that makes
it possible to directly pull back a smooth presentation of X to a smooth covering of T and deduce the result
by descent. Note that every tensor functor preserves coherent flat objects — these are vector bundles and
hence dualizable — but this does not imply that flatness of quasicoherent objects are preserved. Lurie’s
methods also work for nonnoetherian T .

Brandenburg and Chirvasitu [2014], have shown that ωX (T ) is an equivalence for every quasicompact
and quasiseparated scheme X , also for nonnoetherian T . The key idea of their proof is the tensor
localization that we have adapted in Section 5. Using this technique, we give a slightly simplified proof
of their theorem in Theorem 5.10.

When X has quasiaffine diagonal, derived variants of Theorem 1.1 have recently been considered by
various authors [Fukuyama and Iwanari 2013; Bhatt 2016; Bhatt and Halpern-Leistner 2017]. Specifically,
they were concerned with symmetric monoidal ∞-functors G : D(X) → D(T ) between stable ∞-
categories of quasicoherent sheaves. These functors are assumed to preserve derived tensor products,
connective complexes (i.e., are right t-exact) and pseudocoherent complexes. Hence, such a functor
induces a right-exact tensor functor H 0(G) : QCoh(X)→ QCoh(T ) preserving sheaves of finite type.
When T is locally noetherian, our main result (Theorem 8.4) thus implies that of [Bhatt and Halpern-
Leistner 2017, Theorem 1.4]. When X has finite stabilizers, the right t-exactness is sometimes automatic
[Fukuyama and Iwanari 2013; Bhatt 2016; Ben-Zvi 2010].

Conversely, given a tensor functor F : QCoh(X)→ QCoh(T ), it is not obvious how to derive it to
a symmetric monoidal ∞-functor LF : D(X)→ D(T ) without additional assumptions. In particular,
without additional assumptions, our results cannot be deduced from the derived variants. If, however, we
assume

(i) there are enough flat quasicoherent sheaves on X ,

(ii) F takes exact sequences of flat quasicoherent sheaves to exact sequences,

(iii) D(X) and D(T ) are compactly generated,

(iv) X and T have affine diagonals or are noetherian and affine-pointed,

then LF exists. Indeed, the first two conditions permit us to derive F in the usual way to a symmetric
monoidal ∞-functor D(QCoh(X)) → D(QCoh(T )). The last two conditions, combined with [Hall
et al. 2018, Theorem 1.2], establish the equivalences D(X)' D(QCoh(X)) and D(T )' D(QCoh(T )).
Condition (i) is known to hold when X has the resolution property or is a scheme with affine diagonal.
Condition (ii) is part of the tameness assumption in [Lurie 2004]. Condition (iii) is known to hold if X
has quasifinite and separated diagonal or étale-locally has the resolution property in characteristic 0 [Hall
and Rydh 2017].
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We do not address the Tannaka recognition problem, i.e., which symmetric monoidal categories
arise as the category of quasicoherent sheaves on an algebraic stack. For gerbes, this has been done in
characteristic zero by Deligne [1990, Théorème 7.1]. For stacks with the resolution property, this has
been done by Schäppi [2018, Theorem 1.4; 2015, Theorems 1.2.2 and 5.3.10]. Similar results from the
derived perspective have been considered by Wallbridge [2012] and Iwanari [2018].

2. Symmetric monoidal categories

A symmetric monoidal category is the data of a category C, a tensor product ⊗C : C × C→ C, and a
unit OC that together satisfy various naturality, commutativity, and associativity properties [Mac Lane
1971, VII.7]. A symmetric monoidal category C is closed if for any M ∈ C the functor −⊗C M : C→ C
admits a right adjoint, which we denote as HomC(M,−).

Example 2.1. Let A be a commutative ring; then the category of A-modules, Mod(A), together with its
tensor product ⊗A, is a symmetric monoidal category with unit A. In fact, Mod(A) is even closed: the
right adjoint to −⊗A M is the A-module HomA(M,−). If A is noetherian, then the subcategory of finite
A-modules, Coh(A), is also a closed symmetric monoidal category.

A functor F : C→ D between symmetric monoidal categories is lax symmetric monoidal if for each
M and M ′ of C there are natural maps F(M)⊗D F(M ′)→ F(M ⊗C M ′) and OD→ F(OC) that are
compatible with the symmetric monoidal structure. If these maps are both isomorphisms, then F is
symmetric monoidal. Note that if F : C → D is a symmetric monoidal functor, then a right adjoint
G : D→ C to F is always lax symmetric monoidal.

Example 2.2. Let φ : A→ B be a ring homomorphism. The functor −⊗A B : Mod(A)→Mod(B) is
symmetric monoidal. It admits a right adjoint, Mod(B)→ Mod(A), which is given by the forgetful
functor. This forgetful functor is lax monoidal, but not monoidal.

If C is a symmetric monoidal category, then a commutative C-algebra consists of an object A of C
together with a multiplication m : A⊗C A→ A and a unit eA : OC → A with the expected properties
[Mac Lane 1971, VII.3]. Let CAlg(C) denote the category of commutative C-algebras. The category
CAlg(C) is naturally endowed with a symmetric monoidal structure that makes the forgetful functor
CAlg(C)→ C symmetric monoidal.

Example 2.3. If A is a ring, then CAlg(Mod(A)) is the category of commutative A-algebras.

The following observation will be used frequently: if F : C→ D is a lax symmetric monoidal functor
and A is a commutative C-algebra, then F(A) is a commutative D-algebra.

3. Abelian tensor categories

An abelian tensor category is a symmetric monoidal category that is abelian and the tensor product is
right exact and preserves finite direct sums in each variable (i.e., preserves all finite colimits in each
variable).
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Recall that an abelian category is Grothendieck if it is closed under small direct sums, filtered colimits
are exact, and it has a generator [Stacks Project, Tag 079A]. Also, recall that a functor F : C → D
between two Grothendieck abelian categories is cocontinuous if it is right-exact and preserves small direct
sums, equivalently, it preserves all small colimits.

A Grothendieck abelian tensor category is an abelian tensor category such that the underlying abelian
category is Grothendieck abelian and the tensor product is cocontinuous in each variable. By the special
adjoint functor theorem [Kashiwara and Schapira 2006, Proposition 8.3.27(iii)], if C is a Grothendieck
abelian tensor category, then it is also closed.

Example 3.1. Let A be a ring. Then Mod(A) is a Grothendieck abelian tensor category. If A is noetherian,
then Coh(A) is an abelian tensor category but not Grothendieck abelian — it is not closed under small
direct sums.

A tensor functor F : C → D is an additive symmetric monoidal functor between abelian tensor
categories. Let GTC be the 2-category of Grothendieck abelian tensor categories and cocontinuous tensor
functors. By the special adjoint functor theorem, if F : C→ D is a cocontinuous tensor functor, then F
admits a (lax symmetric monoidal) right adjoint.

Example 3.2. Let T be a ringed site. The category of OT -modules Mod(T ) is a Grothendieck abelian
tensor category with unit OT and the internal Hom is the functor HomOT (M,−) [Kashiwara and Schapira
2006, Sections 18.1–2].

Example 3.3. Let X be an algebraic stack. The category of quasicoherent sheaves QCoh(X) is a
Grothendieck abelian tensor category with unit OX [Stacks Project, Tag 0781]. The internal Hom is
QC(HomOX (M,−)), where QC denotes the quasicoherator (the right adjoint to the inclusion of the
category of quasicoherent sheaves in the category of lisse-étale OX -modules). If X is an algebraic stack,
then CAlg(QCoh(X)) is the symmetric monoidal category of quasicoherent OX -algebras.

If f : X→ Y is a morphism of algebraic stacks, then the resulting functor f ∗ : QCoh(Y )→ QCoh(X)
is a cocontinuous tensor functor. If f is flat, then f ∗ is exact. We always denote the right adjoint of
f ∗ by f∗ : QCoh(X)→ QCoh(Y ). If f is quasicompact and quasiseparated, then f∗ coincides with the
pushforward of lisse-étale OX -modules [Olsson 2007, Lemma 6.5(i)]. In particular, if f is quasicompact
and quasiseparated, then f∗ : QCoh(X)→ QCoh(Y ) preserves directed colimits (work smooth-locally on
Y and then apply [Stacks Project, Tag 0738]) and is lax symmetric monoidal.

Definition 3.4. Given abelian tensor categories C and D, we let Homc⊗(C, D) and Homr⊗(C, D) denote
the categories of cocontinuous and right exact tensor functors, respectively, and natural transformations.
The transformations are required to be natural with respect to both homomorphisms and the symmetric
monoidal structure. We let Homc⊗,'(C, D) and Homr⊗,'(C, D) denote the groupoids of cocontinuous
and right exact tensor functors, respectively, together with natural isomorphisms.

We conclude this section with some useful facts for the paper. We first consider modules over algebras,
which are addressed, for example, in Brandenburg’s thesis [2014, Section 5.3] in even greater generality.

http://stacks.math.columbia.edu/tag/079A
http://stacks.math.columbia.edu/tag/0781
http://stacks.math.columbia.edu/tag/0738
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3.1. Modules over an algebra in tensor categories. Let C be a Grothendieck abelian tensor category and
let A be a commutative C-algebra. Define ModC(A) to be the category of A-modules. Objects are pairs
(M, a), where M ∈ C and a : A⊗C M→ M is an action of A on M . Morphisms φ : (M, a)→ (M ′, a′)
in ModC(A) are those C-morphisms φ : M → M ′ that preserve the respective actions. We identify A
with (A,m) ∈ModC(A) where m : A⊗C A→ A is the multiplication. It is straightforward to show that
ModC(A) is a Grothendieck abelian tensor category, with tensor product⊗A and unit A, and the natural for-
getful functor ModC(A)→C preserves all limits and colimits [Kashiwara and Schapira 2006, Section 4.3].

If s : A→ B is a C-algebra homomorphism, then there is a natural cocontinuous tensor functor

s∗ : ModC(A)→ModC(B), (M, a) 7→ (B⊗A M, B⊗A a).

Suppose f ∗ : C→ D is a cocontinuous tensor functor with right adjoint f∗ : D→C . If A is a commutative
C-algebra, then there is a natural induced cocontinuous tensor functor

f ∗A : ModC(A)→ModD( f ∗A), (M, a) 7→ ( f ∗M, f ∗a).

Noting that ε : f ∗ f∗OD→OD is a D-algebra homomorphism, there is a natural induced cocontinuous
tensor functor

f ∗ : ModC( f∗OD)
f ∗f∗OD−−−→ModD( f ∗ f∗OD)

ε∗
−→ModD(OD)= D.

Moreover, if we let η : OC → f∗ f ∗OC = f∗OD denote the unit, then f ∗ = f ∗η∗. We have the following
striking characterization of module categories.

Proposition 3.5 [Brandenburg 2014, Proposition 5.3.1]. Let C be a Grothendieck abelian tensor category
and let A be a commutative algebra in C . Then for every Grothendieck abelian tensor category D, there
is an equivalence of categories

Homc⊗(ModC(A), D)' {(F, h) : F ∈ Homc⊗(C, D), h ∈ HomCAlg(D)(F(A),OD)},

where a morphism (F, h)→ (F ′, h′) is a natural transformation α : F→ F ′ such that h = h′ ◦α(A).

The following corollary is immediate (see [Brandenburg 2014, Corollary 5.3.7]).

Corollary 3.6. Let p : Y ′ → Y be an affine morphism of algebraic stacks. Let X be an algebraic
stack and let g∗ : QCoh(Y )→ QCoh(X) be a cocontinuous tensor functor. If X ′ is the affine X-scheme
SpecX (g

∗ p∗OY ′) with structure morphism p′ : X ′→ X , then there is a 2-cocartesian diagram in GTC:

QCoh(X ′) QCoh(Y ′)
g′∗
oo

QCoh(X)

p′∗
OO

QCoh(Y ).

p∗
OO

g∗
oo

Moreover, the natural transformation g∗ p∗⇒ p′
∗
g′∗ is an isomorphism.

Note that if g∗ comes from a morphism g : X→ Y , then X ′ ∼= X ×Y Y ′.
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3.2. Inverse limits of abelian tensor categories. We will now briefly discuss some inverse limits that
will be crucial when we apply Tannaka duality to establish the algebraicity of Hom-stacks in Theorem 1.2.
The following notation will be useful.

Notation 3.7. Let i : Z→ X be a closed immersion of algebraic stacks defined by a quasicoherent ideal I .
For each integer n ≥ 0, we let i [n] : Z [n]→ X denote the closed immersion defined by the quasicoherent
ideal I n+1, which we call the n-th infinitesimal neighborhood of Z.

Let X be a noetherian algebraic stack and i : Z→X be a closed immersion. Let Coh(X,Z) denote the cat-
egory lim

←−−nCoh(Z
[n]). The arguments of [Stacks Project, Tag 087X] easily extend to establish the following:

(i) Coh(X, Z) is an abelian tensor category with

(a) unit: {OZ [n]},
(b) tensor product: {Mn}n≥0⊗{Nn}n≥0 = {Mn ⊗OZ [n]

Nn}n≥0,
(c) addition: { fn : Mn→ Nn}n≥0+{gn : Mn→ Nn}n≥0 = { fn + gn}n≥0, and
(d) cokernels: coker({ fn : Mn→ Nn}n≥0)= {coker fn}n≥0.

(ii) If U is a noetherian algebraic stack and p : U→ X is a flat morphism, then the pullback Coh(X, Z)→
Coh(U,U ×X Z) is an exact tensor functor.

(iii) Exactness in Coh(X, Z) may be checked on a flat, noetherian covering of X .

Computing ker({ fn : Mn → Nn}n≥0) is more involved without additional flatness assumptions. The
problem is that in general the system of kernels {ker fn}n≥0 is not an adic system; that is, the morphism
(ker fn+1)⊗OZ [n+1]OZ [n]→ ker( fn) need not be an isomorphism. As shown in the proof of [Stacks Project,
Tag 087X], ker{ fn}n≥0 ends up being the stable value of the ker fn (in the sense of the Artin–Rees lemma).

The abelian category Coh(X, Z) is also the limit of Coh(Z [n]) as an abelian tensor category. This is
made precise by the following lemma.

Lemma 3.8. Coh(X, Z) is the limit of the inverse system of categories {Coh(Z [n])}n≥0 in the 2-category
of abelian tensor categories with right exact tensor functors and natural isomorphisms of tensor functors.

Proof. It remains to verify that for every abelian tensor category C, a functor F : C→ Coh(X, Z) is a
right exact tensor functor if and only if the induced functors qn ◦ F : C→ Coh(X, Z)→ Coh(Z [n]) are
right exact tensor functors. This follows from the description of the abelian tensor structure of Coh(X, Z)
in (a)–(d) above. �

4. Tensorial algebraic stacks

Let T and X be algebraic stacks. There is an induced functor

ωX (T ) : Hom(T, X)→ Homc⊗(QCoh(X),QCoh(T ))

that takes a morphism f to f ∗. We also let Homft
c⊗(QCoh(X),QCoh(T )) denote the full subcategory of

functors that preserve sheaves of finite type. Similarly, we let Homc⊗,'(QCoh(X),QCoh(T )) denote the

http://stacks.math.columbia.edu/tag/087X
http://stacks.math.columbia.edu/tag/087X
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subcategory with all objects but only natural isomorphisms of functors. Clearly, ωX (T ) factors through
all of these subcategories and we let ωX,'(T ), ωft

X (T ) and ωft
X,'(T ) denote the respective factorizations.

Note that when X and T are locally noetherian, the natural functor:

Homr⊗(Coh(X),Coh(T ))→ Homft
c⊗(QCoh(X),QCoh(T ))

is an equivalence of categories. Thus, Theorem 1.1 says that ωft
X,'(T ) is an equivalence.

Since QCoh(−) is a stack in the fpqc topology, the target categories of the functors ωX , ωX,', ωft
X and

ωft
X,' are stacks in the fpqc topology when varying T — for an elaborate proof of this, see [Liu and Tseng

2012, Theorem 1.1]. The source categories Hom(T, X) are groupoids and, when varying T , form a stack
for the fppf topology in general and for the fpqc topology when X has quasiaffine diagonal [Laumon and
Moret-Bailly 2000, Corollaire 10.7].

Definition 4.1. Let T and X be algebraic stacks. We say that a tensor functor f ∗ : QCoh(X)→QCoh(T )
is algebraic if it arises from a morphism of algebraic stacks f : T → X . If f, g : T → X are morphisms,
then a natural transformation τ : f ∗⇒ g∗ of tensor functors is realizable if it is induced by a 2-morphism
f ⇒ g. We say that X is tensorial if ωX (T ) is an equivalence for every algebraic stack T , or equivalently,
for every affine scheme T [Brandenburg 2014, Definition 3.4.4].

We begin with a descent lemma.

Lemma 4.2. Let X be an algebraic stack. Let p : T ′ → T be a morphism of algebraic stacks that is
covering for the fpqc topology. Let T ′′= T ′×T T ′ and T ′′′= T ′×T T ′×T T ′. Assume that p is a morphism
of effective descent for X (e.g., p is flat and locally of finite presentation).

(i) Let f1, f2 : T → X be morphisms and let τ, τ ′ : f1⇒ f2 be 2-morphisms. If p∗τ = p∗τ ′ : f1 ◦ p⇒
f2 ◦ p then τ = τ ′.

(ii) Let f1, f2 : T→ X be morphisms and let γ : f ∗1 ⇒ f ∗2 be a natural transformation. If p∗γ : p∗ f ∗1 ⇒
p∗ f ∗2 is realizable and ωX (T ′′) is faithful, then γ is realizable.

(iii) Let f ∗ : QCoh(X)→ QCoh(T ) be a cocontinuous tensor functor. If p∗ f ∗ is algebraic, ωX,'(T ′′) is
fully faithful and ωX (T ′′′) is faithful, then f ∗ is algebraic.

Proof. It is sufficient to observe that Hom(−, X) is a stack in groupoids for the covering p and
Homc⊗(QCoh(X),QCoh(−)) is an fpqc stack in categories, so the result boils down to a straightforward
and general result for a 1-morphism of such stacks. �

Lemma 4.3. Let C ⊂ AlgSt be a full 2-subcategory of algebraic stacks, such that if p : T ′ → T is
representable and smooth with T ∈ C, then T ′ ∈ C. For example, C could be the 2-category of locally
noetherian algebraic stacks or the 2-category of algebraic stacks that are locally the spectra of G-rings.
Let ω ∈ {ωX , ωX,', ω

ft
X , ω

ft
X,'}. If ω(T ) is faithful (or fully faithful or an equivalence) for every affine

scheme T in C , then ω(T ) is faithful (or fully faithful or an equivalence, respectively) for every algebraic
stack T in C .
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Proof. Note that ω is faithful if and only if ωX is faithful and that if ω is fully faithful, then so is ωX,'.
The conclusion of the lemma holds for disjoint unions of affine schemes in C since QCoh

(∐
i Ti
)
=∏

i QCoh(Ti ). We then deduce the conclusion for every stack T in C with affine diagonal. This follows
from Lemma 4.2 applied to a presentation T ′→ T where T ′ is a disjoint union of affine schemes since
T ′′ and T ′′′ then also are disjoint unions of affine schemes. We may then similarly deduce the conclusion
for every stack T in C with affine double diagonal since T ′′ and T ′′′ then have affine diagonals. Finally
we deduce the conclusion for every stack T in C since the triple diagonal of T is an isomorphism. �

We next recall two basic lemmas on tensorial stacks. The first is the combination of [Brandenburg
2014, Corollaries 5.3.4 and 5.6.4].

Lemma 4.4. Let q : X ′→ X be a quasiaffine morphism of algebraic stacks. If T is an algebraic stack
and ωX (T ) is faithful, fully faithful or an equivalence; then so is ωX ′(T ). In particular, if X is tensorial,
then so is X ′.

Proof. Since q is the composition of a quasicompact open immersion followed by an affine morphism,
it suffices to treat these two cases separately. When q is affine the result is an easy consequence
of Proposition 3.5. If q is a quasicompact open immersion, then the counit q∗q∗ → idQCoh(X ′) is an
isomorphism; the result now follows from [Brandenburg and Chirvasitu 2014, Proposition 2.3.6]. �

The second lemma is well-known (e.g., it is a very special case of [Brandenburg and Chirvasitu 2014,
Theorem 3.4.2]).

Lemma 4.5. Every quasiaffine scheme is tensorial.

Proof. By Lemma 4.4, it is sufficient to prove that X = Spec Z is tensorial, which is well-known. We
refer the interested reader to [Brandenburg and Chirvasitu 2014, Corollary 2.2.4] or [Brandenburg 2014,
Corollary 5.2.3]. �

Lacking an answer to Question 1.8 in general, we are forced to make the following definition to treat
natural transformations that are not isomorphisms.

Definition 4.6. An algebraic stack X is affine-pointed if every morphism Spec k→ X , where k is a field,
is affine.

Note that if X is affine-pointed, then it has affine stabilizers. The following lemma shows that many
algebraic stacks with affine stabilizers that are encountered in practice are affine-pointed.

Lemma 4.7. Let X be an algebraic stack.

(i) If X has quasiaffine diagonal, then X is affine-pointed.

(ii) Let g : V → X be a quasifinite and faithfully flat morphism of finite presentation (not necessarily
representable). If V is affine-pointed, then X is affine-pointed.



Coherent Tannaka duality and algebraicity of Hom-stacks 1645

Proof. Throughout, we fix a field k and a morphism x : Spec k→ X .
For (i), since k is a field, every extension in QCoh(Spec k) is split; thus x∗ is cohomologically affine

[Alper 2013, Definition 3.1]. Since X has quasiaffine diagonal, this property is preserved after pulling back
x along a smooth morphism p : U→ X , where U is an affine scheme [Alper 2013, Proposition 3.10(vii)].
By Serre’s criterion [EGA II 1961, 5.2.2], the morphism Spec k×X U→U is affine; and this case follows.

For (ii), the pullback of g along x gives a quasifinite and faithfully flat morphism g0 : V0→ Spec k.
Since V0 is discrete with finite stabilizers, there exists a finite surjective morphism W0→ V0 where W0 is
a finite disjoint union of spectra of fields. By assumption W0→ V0→ V is affine; hence so is V0→ V (by
Chevalley’s theorem [Rydh 2015, Theorem 8.1] applied smooth-locally on V ). By descent, Spec k→ X
is affine and the result follows. �

The following lemma highlights the benefits of affine-pointed stacks.

Lemma 4.8. Let f1, f2 : T → X be morphisms of algebraic stacks and let γ : f ∗1 ⇒ f ∗2 be a natural
transformation of cocontinuous tensor functors. If X is affine-pointed, then the induced maps of topological
spaces | f1|, | f2| : |T | → |X | coincide.

Proof. It suffices to prove that if T = Spec k, where k is a field, then γ is realizable. Since X is affine-
pointed, the morphisms f1 and f2 are affine. Also, the natural transformation γ induces, by adjunction, a
morphism of quasicoherent OX -algebras γ ∨(OT ) : ( f2)∗OT → ( f1)∗OT . In particular, γ ∨(OT ) induces
a morphism v : T → T over X . We are now free to replace X by T , f2 by idT , and f1 by v. Since T is
affine, the result now follows from Lemma 4.5. �

We can now prove the following proposition (generalizing Lurie’s corresponding result for an algebraic
stack with affine diagonal).

Proposition 4.9. Let X be an algebraic stack.

(i) If T is an algebraic stack and X has quasiaffine diagonal, then the functor ωX (T ) is fully faithful.

(ii) Let T be a quasiaffine scheme and let f1, f2 : T → X be quasiaffine morphisms.

(a) If α, β : f1⇒ f2 are 2-morphisms and α∗= β∗ as natural transformations f ∗1 ⇒ f ∗2 , then α= β.
(b) Let γ : f ∗1 ⇒ f ∗2 be a natural transformation of cocontinuous tensor functors. If γ is an

isomorphism or X is affine-pointed, then γ is realizable.

Proof. For (i), we may assume that T is an affine scheme (Lemma 4.3). Then every morphism T → X is
quasiaffine and the result follows by (ii) and Lemma 4.7(i).

For (ii), there are quasicompact open immersions ik : T ↪→ Vk over X , where Vk := SpecX (( fk)∗OT )

and k = 1, 2. Let vk : Vk→ X be the induced 1-morphism.
We first treat (a). The hypotheses imply that α∗ = β∗ as natural isomorphisms of functors from ( f2)∗

to ( f1)∗. In particular, α∗ and β∗ induce the same 1-morphism from V1 to V2 over X . Since i1 and i2 are
open immersions, they are monomorphisms; hence α = β.

We now treat (b). The natural transformation γ : f ∗1 ⇒ f ∗2 uniquely induces a natural transformation
of lax symmetric monoidal functors γ ∨ : ( f2)∗ ⇒ ( f1)∗. In particular, there is an induced morphism
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of quasicoherent OX -algebras γ ∨(OT ) : ( f2)∗OT → ( f1)∗OT ; hence a morphism of algebraic stacks
g : V1→ V2 over X . Note that γ ∨ uniquely induces a natural transformation of lax symmetric monoidal
functors (i2)∗⇒ g∗(i1)∗, and by adjunction we have a uniquely induced natural transformation of tensor
functors γ ′ : (g ◦ i1)

∗
⇒ i∗2 .

Replacing X by V2, f1 by g ◦ i1, f2 by i2, and γ by γ ′, we may assume that f2 is a quasicompact open
immersion such that OX → ( f2)∗OT is an isomorphism.

If γ is an isomorphism, then f1 is also a quasicompact open immersion. Let Z1 and Z2 denote closed
substacks of X whose complements are f1(T ) and f2(T ), respectively. Then f ∗2 OZ2

∼= 0; indeed, by
definition we have Z2∩ f2(T )=∅. In particular, the isomorphism γ (OZ ) implies that f ∗1 OZ2

∼= f ∗2 OZ2
∼=0;

hence, f1(T )⊆ f2(T ). Arguing similarly, we obtain the reverse inclusion and we see that f1(T )= f2(T ).
Since f1 and f2 are open immersions, we obtain the result when γ is assumed to be an isomorphism.

Otherwise, Lemma 4.8 implies that f1 factors through f2(T )⊆ X . We may now replace X by T and
γ with ( f2)∗(γ ) [Brandenburg and Chirvasitu 2014, Proposition 2.3.6]. Then X is quasiaffine and the
result follows from Lemma 4.5. �

From Proposition 4.9(b), we obtain an analogue of Lemma 4.8 for natural isomorphisms of functors
when X has affine stabilizers (as opposed to affine-pointed).

Corollary 4.10. Let f1, f2 : T → X be morphisms of algebraic stacks and let γ : f ∗1 ' f ∗2 be a natural
isomorphism of cocontinuous tensor functors. If X has affine stabilizers and quasicompact diagonal, then
the induced maps of topological spaces | f1|, | f2| : |T | → |X | coincide.

Proof. It suffices to prove the result when T = Spec k, where k is a field. Since X has affine stabilizers
and quasicompact diagonal the morphisms f1 and f2 are quasiaffine [Rydh 2011a, Theorem B.2]. The
result now follows from Proposition 4.9(b). �

The following result, in a slightly different context, was proved by Schäppi [2012, Theorem 1.3.2].
Using the Totaro–Gross theorem, we can simplify Schäppi’s arguments in the algebro-geometric setting.

Theorem 4.11. Let X be a quasicompact and quasiseparated algebraic stack with affine stabilizers. If X
has the resolution property, then it is tensorial.

Proof. By Totaro–Gross [Gross 2017], there is a quasiaffine morphism g : X→ BGLN ,Z. By Lemma 4.4,
it is enough to prove that X = BGLN ,Z is tensorial.

We must prove that ωX (T ) is an equivalence for every algebraic stack T . Since X is quasicompact
with affine diagonal, the functor ωX (T ) is fully faithful for every T (Proposition 4.9). Thus, it remains to
prove that for every algebraic stack T , every cocontinuous tensor functor f ∗ : QCoh(X)→ QCoh(T ) is
algebraic. To this end, we note the following. Let Y be an algebraic stack. Then

(i) the dualizable objects in QCoh(Y ) are the vector bundles [Brandenburg 2014, Proposition 4.7.5]; and

(ii) every tensor functor g∗ : QCoh(Y )→ QCoh(T ) preserves dualizable objects and exact sequences of
dualizable objects [Brandenburg 2014, Definition 4.7.1 and Lemma 4.7.10].
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Now let p : Spec Z→ BGLN ,Z be the universal GLN -bundle and let A= p∗Z be the regular represen-
tation. There is an exact sequence

0→OBGLN ,Z →A→Q→ 0

of flat quasicoherent sheaves. Write A as the directed colimit of its subsheaves Aλ of finite type containing
the unit and let Qλ =Aλ/OBGLN ,Z ⊆Q. Then Aλ and Qλ are vector bundles.

Thus, let f ∗ : QCoh(BGLN ,Z)→QCoh(T ) be a cocontinuous tensor functor. Then by (i) and (ii) above
there are exact sequences of vector bundles:

0→OT → f ∗Aλ→ f ∗Qλ→ 0.

Since f ∗ is cocontinuous, we also obtain an exact sequence

0→OT → f ∗A→ f ∗Q→ 0

of flat quasicoherent sheaves. In particular, f ∗A is a faithfully flat algebra.
Let V = SpecT ( f ∗A); then r : V → T is faithfully flat. By Corollary 3.6, we have a cocartesian

diagram

QCoh(V ) QCoh(Spec Z)
f ′∗

oo

QCoh(T )

r∗

OO

QCoh(X).

p∗
OO

f ∗
oo

Since Spec Z is tensorial (Lemma 4.5), the functor f ′∗ is algebraic. Thus, f ′∗ p∗ ' r∗ f ∗ is algebraic.
Descent along r : V → T (Lemma 4.2(iii)) implies that f ∗ is algebraic. �

5. Tensor localizations

The goal of this section is to prove the following theorem.

Theorem 5.1. Let X be a quasicompact and quasiseparated algebraic stack. Let i : Z→ X be a finitely
presented closed immersion defined by an ideal sheaf I . Let j : U → X be the open complement of Z.
Let T be an algebraic stack and let f ∗ : QCoh(X)→ QCoh(T ) be a cocontinuous tensor functor. Let
iT : ZT → T be the closed immersion defined by the ideal IT := Im( f ∗ I→OT ). Let jT : UT → T denote
the complement of ZT .

(i) There exists an essentially unique cocontinuous tensor functor

f ∗U : QCoh(U )→ QCoh(UT ),

such that there is an isomorphism of tensor functors j∗T f ∗ ' f ∗U j∗.

(ii) For each integer n ≥ 0,

f ∗Z [n] := (i
[n]
T )∗ f ∗(i [n])∗ : QCoh(Z [n])→ QCoh(Z [n]T )
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is a cocontinuous tensor functor and there is a canonical isomorphism of tensor functors (i [n]T )∗ f ∗ '
f ∗Z [n](i

[n])∗. Moreover, f ∗(i [n])∗ ' (i
[n]
T )∗ f ∗Z [n] .

In addition, if f ∗ preserves sheaves of finite type, then the same is true of f ∗U and f ∗Z [n] for all n ≥ 0.

Theorem 5.1 features in a key way in the proof of our main theorem (Theorem 8.4), which we prove
via stratifications and formal gluings. From this context, we hope that the long and technical statement of
Theorem 5.1 should appear to be quite natural. While Theorem 5.1(ii) follows easily from the results
of Section 3.1, Theorem 5.1(i) is more subtle. It turns out, however, that it is a consequence of a more
general result about Grothendieck abelian tensor categories (Theorem 5.8), which is what we will spend
most of this section proving.

Let C be a Grothendieck abelian category. A Serre subcategory is a full nonempty subcategory K ⊆ C
closed under subquotients and extensions. Serre subcategories are abelian and the inclusion functor is
exact. A Serre subcategory is localizing if it is also closed under small direct sums in C , equivalently, it
is closed under small colimits in C .

If K ⊆C is a Serre subcategory, then there is a quotient Q of C by K and an exact functor q∗ : C→ Q,
which is universal for exact functors out of C that vanish on K [Gabriel 1962, Chapitre III]. Note
that K is localizing if and only if the quotient q∗ : C→ Q is a localization, that is, q∗ admits a right
adjoint q∗ : Q→ C; it follows that Q is Grothendieck abelian, q∗ is cocontinuous, q∗ is fully faithful
and q∗q∗ ' id Q . This statement follows by combining the Gabriel–Popescu theorem (e.g., [Bucur and
Deleanu 1968, Theorem 6.25]) with [Bucur and Deleanu 1968, Proposition 6.21].

Let C be a Grothendieck abelian tensor category and let K ⊆ C be a Serre subcategory. We say that
K is a tensor ideal if K is closed under tensor products with objects in C. If K is also localizing, then
we say that K is a localizing tensor ideal.

If f ∗ : C→ D is an exact cocontinuous tensor functor between Grothendieck abelian tensor categories,
then ker( f ∗) is a localizing tensor ideal. Conversely, if K ⊆ C is a localizing tensor ideal, then the
quotient Q = C/K is a Grothendieck abelian tensor category, the localization q∗ : C→ Q is an exact
cocontinuous tensor functor and ker(q∗)= K ; in this situation, we will refer to q∗ as a tensor localization.

Example 5.2. Let f : X→ Y be a morphism of algebraic stacks. If f is flat, then f ∗ is exact. If f is a
quasicompact flat monomorphism (e.g., a quasicompact open immersion), then QCoh(X) is the quotient
of QCoh(Y ) by ker( f ∗). This follows from the fact that the counit f ∗ f∗→ id is an isomorphism so that
f∗ is a section of f ∗ [Gabriel 1962, Proposition III.2.5].

Definition 5.3. Let C be a Grothendieck abelian tensor category. For M ∈C let ϕM : OC→HomC(M,M)
denote the adjoint to the canonical isomorphism OC ⊗C M→ M . Let the annihilator AnnC(M) of M be
the kernel of ϕM , which we consider as an ideal of OC .

Example 5.4. Let X be an algebraic stack and F ∈QCoh(X). Then AnnQCoh(X)(F)=QC(AnnMod(X)(F)).
In particular, if F is of finite type, then AnnQCoh(X)(F)= AnnMod(X)(F).
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Recall that an object c ∈ C is finitely generated if the natural map

lim
−−→
λ

HomC(c, dλ)→ HomC(c, lim
−−→
λ

dλ)

is bijective for every direct system {dλ}λ in C with monomorphic bonding maps. A category C is locally
finitely generated if it is cocomplete (all small colimits exist) and has a set A of finitely generated objects
such that every object c of C is a directed colimit of objects from A.

Example 5.5. Let X be a quasicompact and quasiseparated algebraic stack. The finitely generated objects
in QCoh(X) are the quasicoherent sheaves of finite type. Thus QCoh(X) is locally finitely generated
[Rydh 2016].

We also require the following definition.

Definition 5.6. Let q∗ : C→ Q be a tensor localization. Then it is supported if q∗(OC/Ann(K ))∼= 0
for every finitely generated object K of C such that q∗(K )∼= 0.

The notion of a supported tensor localization is very natural.

Example 5.7. If f : X→ Y is a flat monomorphism of quasicompact and quasiseparated algebraic stacks,
then the tensor localization f ∗ : QCoh(Y )→QCoh(X) of Example 5.2 is supported. Indeed, if M is a quasi-
coherent OY -module of finite type in the kernel of f ∗, then f ∗AnnQCoh(Y )(M)=AnnQCoh(X)( f ∗M)=OX .

We now have our key result, which also generalizes [Brandenburg and Chirvasitu 2014, Lemma 3.3.6].

Theorem 5.8. Let C be a locally finitely generated Grothendieck abelian tensor category. Let q∗ :C→ Q
be a supported tensor localization. Let D be a Grothendieck abelian tensor category. If f ∗ : C→ D is
a cocontinuous tensor functor such that f ∗(K )∼= 0 for every finitely generated object K of C such that
q∗(K )∼= 0, then f ∗ factors essentially uniquely through a cocontinuous tensor functor g∗ : Q→ D. If
f ∗ preserves finitely generated objects, then so does g∗.

Note that Theorem 5.8 is trivial if f ∗ is exact. The challenge is to use the symmetric monoidal
structure to deduce this also when f ∗ is merely right-exact. The proof we give is a straightforward
generalization of [Brandenburg and Chirvasitu 2014, Lemma 3.3.6]. First, we will see how Theorem 5.8
implies Theorem 5.1.

Proof of Theorem 5.1. For (ii), note that (i [n])∗ identifies QCoh(Z [n]) with the category of modules over
the algebra An =OX/I n+1. The algebra f ∗An is OT /I n+1

T and ( fZ [n])
∗
= ( f An )

∗ in the terminology of
Section 3.1.

For (i), recall that QCoh(X) is locally finitely generated (Example 5.5) and that j∗ : QCoh(X)→
QCoh(U ) is a supported localization (Example 5.7). If K ∈ QCoh(X) is finitely generated and j∗K = 0,
then I m K = 0 for sufficiently large m. Thus, the natural map I m

⊗OX K → OX ⊗OX K ∼= K is zero.
Applying j∗T f ∗, the map becomes the identity since j∗T f ∗(I m)→ j∗T f ∗(OX )=OUT is an isomorphism.
It follows that j∗T f ∗K = 0. We may thus apply Theorem 5.8 and deduce that j∗T f ∗ factors via j∗ and a
tensor functor f ∗U : QCoh(U )→ QCoh(UT ). �
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To prove Theorem 5.8 we require the following lemma.

Lemma 5.9 [Brandenburg and Chirvasitu 2014, Lemma 3.3.2]. Let f ∗ : C→ D be a cocontinuous tensor
functor. If I ⊆OC is an OC -ideal such that f ∗(OC/I )∼= 0, then f ∗(I )→ f ∗(OC) is an isomorphism.

Proof. Since f ∗ is right-exact and f ∗(OC/I )= 0, it follows that f ∗(I )→ f ∗(OC)=OD is surjective.
Let J = f ∗(I ) and let ϕ : J →OD denote the surjection. The multiplication I ⊗C I → I factors through
I ⊗C OC and OC ⊗C I and gives rise to the commutative diagram:

J ⊗D J
idJ ⊗ϕ

// //

ϕ⊗idJ
����

J ⊗D OD

∼=

��

OD⊗D J
∼=

// J.

Let ηF denote the unit of the adjunction between − ⊗D F and Hom D(F,−). Then we obtain the
commutative diagram:

J
ηJ (J )

//

ϕ

����

Hom D(J, J ⊗ J )
Hom(−,idJ ⊗ϕ)

//

Hom(−,ϕ⊗idJ )

��

Hom D(J, J ⊗OD)

∼=

��

OD
ηJ (OD)

// Hom D(J,OD⊗ J )
∼=

// Hom D(J, J ).

But the top row also factors as

J
ηOD (J )
−−−→Hom D(OD, J ⊗OD)

Hom(ϕ,−)
−−−−−→Hom D(J, J ⊗OD)

which is injective since ηOD is an isomorphism and ϕ is surjective. It follows that J →Hom D(J, J ) is
injective, hence so is ϕ : J →OD. �

Proof of Theorem 5.8. If K ∈ C, since C is locally finitely generated, it may be written as a directed
colimit K = lim

−−→λ
Kλ, where Kλ ⊆ K and Kλ is finitely generated. If K ∈ ker(q∗), then q∗Kλ ⊆ q∗K ∼= 0.

In particular, K := ker(q∗)⊆ ker( f ∗).
Let 0→ K → M→ N → Q→ 0 be an exact sequence in C with K , Q ∈ K . We have to prove that

f ∗(M→ N ) is an isomorphism in D. Let N0 be the image of M in N . By right-exactness, we have an
exact sequence f ∗(K )→ f ∗(M)→ f ∗(N0)→ 0. Since f ∗(K ) = 0, we have that f ∗(M) = f ∗(N0).
We may thus replace M with N0 and assume that K = 0 and M→ N is injective.

Write N as the directed colimit of finitely generated subobjects N ◦λ ⊆ N . Let Nλ = M + N ◦λ ⊆ N
and Iλ = Ann(Nλ/M). By definition, we have that Iλ⊗ Nλ/M→ Nλ/M is zero; hence Iλ⊗ Nλ→ Nλ
factors through M .

Note that Nλ/M = N ◦λ/(N
◦

λ ∩ M) is a quotient of a finitely generated object and a subobject of Q,
so OC/Iλ ∈ K since q∗ is supported. We conclude that f ∗(Iλ)→ f ∗(OC) is an isomorphism using
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Lemma 5.9. Now consider the commutative diagrams:

Iλ⊗M //

��

M

��

Iλ⊗ Nλ //

;;

Nλ

and

f ∗(M)
∼=
//

��

f ∗(M)

��

f ∗(Nλ)
∼=
//

99

f ∗(Nλ),

where the right diagram is obtained by applying f ∗ to the left diagram. It follows that f ∗(M)→ f ∗(Nλ)
is an isomorphism. Since f ∗ is cocontinuous, it follows that f ∗(M)→ f ∗(N ) = lim

−−→
f ∗(Nλ) is an

isomorphism.
This proves that f ∗ = g∗q∗ where g∗ = f ∗q∗. It is readily verified that g∗ is cocontinuous (it preserves

small direct sums and is right-exact). If M ∈ Q is a finitely generated object, then we may find a finitely
generated object N ∈ C such that M = q∗N . Indeed, by assumption q∗M is a filtered colimit of finitely
generated objects. It follows that there is a finitely generated subobject N ⊆ q∗M such that q∗N → M is
an isomorphism. If f ∗ preserves finitely generated objects, then g∗M = f ∗N is finitely generated. �

To show how powerful tensor localization is, we can quickly prove that tensoriality is local for the
Zariski topology — even for stacks.

Theorem 5.10. Let X be a quasicompact and quasiseparated algebraic stack. Let X =
⋃n

k=1 Xk be an
open covering by quasicompact open substacks. If every Xk is tensorial, then so is X.

Proof. Let jk : Xk→ X denote the open immersion and let Ik be an ideal of finite type defining a closed
substack complementary to Xk [Rydh 2016, Proposition 8.2].

Let T be an algebraic stack. First we will show that ωX (T ) is fully faithful. Thus, let f, g : T → X be
two morphisms and suppose that we are given a natural transformation of cocontinuous tensor functors
γ : f ∗⇒ g∗. Then f ∗(OX/Ik)� g∗(OX/Ik) so there is an inclusion f −1(Xk) ⊆ g−1(Xk) for every k.
Let Tk = f −1(Xk), let jk,T : Tk→ T denote the corresponding open immersion and let fk, gk : Tk→ Xk

denote the restrictions of f and g. Since ( fk)
∗
= j∗k,T f ∗( jk)∗ and (gk)

∗
= j∗k,T g∗( jk)∗, we obtain a

natural transformation γk : f ∗k ⇒ g∗k , hence a unique 2-isomorphism fk ⇒ gk . Since T =
⋃N

k=1 Tk , it
follows by fppf-descent, that ωX (T ) is faithful (Lemma 4.2(i)). As this holds for all T , we also have that
ωX (Tk ∩ Tk′) is faithful and it follows by fppf-descent that ωX (T ) is full (Lemma 4.2(ii)).

For essential surjectivity, let f ∗ : QCoh(X)→QCoh(T ) be a cocontinuous tensor functor. The surjection
OT � f ∗(OX/Ik) defines a closed subscheme and we let jk,T : Tk→ T denote its open complement. By
Theorem 5.1(i), j∗k,T f ∗ factors via j∗k and a tensor functor f ∗k : QCoh(Xk)→ QCoh(Tk). The latter is
algebraic by assumption; hence, so is j∗k,T f ∗ = f ∗k j∗k .

Finally, since OX/I1 ⊗ · · · ⊗ OX/In = 0, it follows that f ∗(OX/I1) ⊗ · · · ⊗ f ∗(OX/In) = 0 so
T =

⋃n
k=1 Tk is an open covering. We conclude that f ∗ is algebraic by fppf descent (Lemma 4.2(iii)). �

Combining Theorem 5.10 with Lemma 4.5 we obtain a short proof of the main result of [Brandenburg
and Chirvasitu 2014].

Corollary 5.11 (Brandenburg–Chirvasitu). Every quasicompact and quasiseparated scheme is tensorial.
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6. The main lemma

The main result of this section is the following technical lemma, which proves that the tensorial property
extends over nilpotent thickenings of quasicompact algebraic stacks with affine stabilizers having the
resolution property.

Main Lemma 6.1. Let i : X0→ X be a closed immersion of algebraic stacks defined by a quasicoherent
ideal I such that I n

= 0 for some integer n > 0. Suppose that X0 is quasicompact and quasiseparated
with affine stabilizers. If X0 has the resolution property, then X is tensorial.

We have another lemma that will be crucial for proving Main Lemma 6.1.

Lemma 6.2. Consider a 2-cocartesian diagram of algebraic stacks:

U0

p0

��

� � i
// U

p
��

X0
� � j

// X,

such that the following conditions are satisfied.

(i) i is a nilpotent closed immersion;

(ii) U0 is an affine scheme; and

(iii) X0 is quasicompact and quasiseparated with affine stabilizers.

If X0 has the resolution property, then so has X.

Proof. Note that X0 has affine diagonal by the Totaro–Gross theorem; hence p0 is affine. By [Hall 2017,
Proposition A.2], the square is a geometric pushout. In particular, j is a nilpotent closed immersion,
p is affine, and the natural map OX → p∗OU ×p∗i∗OU0

j∗OX0 is an isomorphism. By the Totaro–Gross
theorem [Gross 2017, Corollary 5.9], there exists a vector bundle V0 on X0 such that the total space of the
frame bundle of V0 is quasiaffine. Let E0 = p∗0 V0; then, since U0 is affine, there exists a vector bundle E
on U equipped with an isomorphism α : i∗E→ E0. Let V be the quasicoherent OX -module p∗E×α j∗V0.
By [Ferrand 2003, Théorème 2.2(iv)], V is a vector bundle on X and there is an isomorphism j∗V ∼= V0.
By [Gross 2017, Proposition 5.7], it follows that X has the resolution property. �

Proof of Main Lemma 6.1. We prove the result by induction on n > 0. The case n = 1 is Theorem 4.11.
So we let n > 1 be an integer and we will assume that if W0 ↪→W is any closed immersion of algebraic
stacks defined by an ideal J such that J n−1

= 0 and W0 has the resolution property, then W is tensorial.
We now fix a closed immersion of algebraic stacks i : X0→ X defined by an ideal I such that I n

= 0 and
X0 has the resolution property. It remains to prove that X is tensorial.

We observe that the Totaro–Gross theorem [Gross 2017, Corollary 5.9] implies that X0 has affine
diagonal; thus, X has affine diagonal. We have seen that ωX (T ) is fully faithful (Proposition 4.9) so it
remains to prove that ωX (T ) is essentially surjective. By descent, it suffices to prove that if T is an affine
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scheme and f ∗ : QCoh(X)→ QCoh(T ) is a cocontinuous tensor functor, then there exists an étale and
surjective morphism c : T ′→ T such that c∗ f ∗ is algebraic (Lemma 4.2(iii)).

By Corollary 3.6, there is a 2-cocartesian diagram in GTC

QCoh(T0) QCoh(X0)
f ∗0
oo

QCoh(T )

k∗

OO

QCoh(X),

i∗

OO

f ∗
oo

where k : T0→ T is the closed immersion defined by the image K of f ∗ I in OT . In particular, K n
= 0.

Since X0 has the resolution property, f ∗0 is given by a morphism of algebraic stacks f0 : T0 → X0

(Theorem 4.11).
Let p : U → X be a smooth and surjective morphism, where U is an affine scheme; then, p is affine.

The pullback of p along the morphism i ◦ f0 : T0→ X results in a smooth and affine surjective morphism
of schemes q0 : V0 → T0. By [EGA IV4 1967, 17.16.3(ii)], there exists an affine étale and surjective
morphism c0 : T ′0→ T0 such that the pullback q ′0 : V ′0→ T ′0 of q0 to T ′0 admits a section. By [EGA IV4

1967, 18.1.2], there exists a unique affine étale morphism c : T ′→ T lifting c0 : T ′0→ T0. After replacing
T with T ′ and f ∗ with c∗ f ∗, we may thus assume that q0 admits a section (Lemma 4.2(iii)).

Let X ′ = SpecX ( f∗OT ). Let I ′ = I ( f∗OT ) be the OX ′-ideal generated by I and let X ′0 = V (I ′). Then
X ′ is a quasicompact stack with affine diagonal, X ′0→ X ′ is a closed immersion defined by an ideal
whose n-th power vanishes and X ′0 has the resolution property. Let f ′∗ = f ∗ : QCoh(X ′)→ QCoh(T ) be
the resulting tensor functor.

Since f ′∗ is right-exact, it follows that K = im( f ′∗ I ′→OT ). Also, I ′⊆ f ′
∗
K ⊆OX ′ . Thus V ( f ′

∗
K )⊆

X ′0, so has the resolution property. Note that f ′∗ I ′→ f ′∗ f ′
∗
K→ K is surjective. Since f ′

∗
is lax symmetric

monoidal, for each integer l ≥ 1 the morphism ( f ′
∗
K )⊗l

→ OX ′ factors through f ′
∗
(K⊗l)→ OX ′ . In

particular, ( f ′
∗
(K l))2 ⊆ f ′

∗
(K l+1) and ( f ′

∗
K )n = 0. We may thus replace X by X ′, X0 by V ( f ′

∗
K ), f ∗ by

f ′∗, I by f∗K and assume henceforth that

(i) OX → f∗OT is an isomorphism,

(ii) I = f∗K for some OT -ideal K with K n
= 0,

(iii) f∗(K l)2 ⊆ f∗(K l+1) for each integer l ≥ 1,

(iv) ( f∗K )l ⊆ f∗(K l) for l ≥ 1, and

(v) q0 : V0→ T0 admits a section.

For each integer l ≥ 0 let Il = f∗(K l+1), which is a quasicoherent sheaf of ideals on X . Let il : Xl→ X
be the closed immersion defined by Il and let kl : Tl → T be the closed immersion defined by K l+1.
Since f ∗ f∗(K l+1)→ f ∗OX = OT factors through K l+1, it follows that k∗l f ∗(il)∗(OXl )= OTl . Hence,
f ∗l = k∗l f ∗(il)∗ : QCoh(Xl)→ QCoh(Tl) is a tensor functor and k∗l f ∗ ' f ∗l (il)

∗ (Theorem 5.1(ii)).
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By condition (iv), we see that il : X0→ Xl is a closed immersion of algebraic stacks defined by an
ideal whose (l + 1)-th power is zero. In particular, if l < n − 1, then Xl is tensorial by the inductive
hypothesis. Thus, the tensor functor f ∗l is given by an affine morphism fl : Tl→ Xl .

We will now prove by induction on l ≥ 0 that Xl has the resolution property. Since Xn−1 = X , the
result will then follow from Theorem 4.11. Note that (iii) implies that the closed immersion Xl→ Xl+1

is a square zero extension of Xl by Il/Il+1. Let m = n− 2.

Claim 1. If M ∈ QCoh(Tm), then the natural map f∗(km)∗M→ p∗ p∗ f∗(km)∗M is split injective.

Proof of Claim 1. Form the cartesian diagram of algebraic stacks:

V0

q0

��

// Vm

qm

��

gm
// Um

pm

��

um
// U

p
��

T0 // Tm
fm
// Xm

im
// X.

Now observe that f∗(km)∗M ∼= (im)∗( fm)∗M . Since f ∗m is given by a morphism fm : Tm → Xm , there
are natural isomorphisms

p∗ p∗ f∗(km)∗M ∼= p∗ p∗(im)∗( fm)∗M
∼= p∗(um)∗ p∗m( fm)∗M
∼= p∗(um)∗(gm)∗q∗m M
∼= (im)∗( fm)∗(qm)∗q∗m M.

Hence, it remains to prove that the natural map M→ (qm)∗q∗m M is split injective. But qm is affine, so
(qm)∗q∗m M ∼= (qm)∗OVm⊗OTm

M . Thus, we are reduced to proving that OTm→ (qm)∗OVm is split injective.
By (v), q0 admits a section. Since qm is smooth and Tm is affine, the section that q0 admits lifts to a
section of qm . This implies that the morphism OTm → (qm)∗OVm is split injective. �

Claim 2. If 0≤ l < n− 1, then the natural maps Il/Il+1→ p∗ p∗(Il/Il+1) are split injective.

Proof of Claim 2. If N ∈ QCoh(Tm), then f∗(km)∗N = (im)∗( fm)∗N . Since fm is an affine morphism,
it follows that f∗(km)∗ : QCoh(Tm)→ QCoh(X) is exact. If P is one of the modules K l+1, K l+2, or
K l+1/K l+2, then K m+1 P= 0, so the natural map P→ (km)∗k∗m P is an isomorphism. In particular, f∗P∼=
f∗(km)∗k∗m P . Hence, Il/Il+1 ∼= f∗(km)∗k∗m(K

l+1/K l+2) and the claim now follows from Claim 1. �

So we let l ≥ 0 be an integer, which we assume to be< n−1. We will assume that Xl has the resolution
property and we will now prove that Xl+1 has the resolution property. Retaining the notation of Claim 1,
there is a 2-commutative diagram of algebraic stacks:

Ul

pl

��

// Ul+1

��

X̃l+1

��

Xl //

55

Xl+1,
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where both the inner and outer squares are 2-cartesian and the inner square is 2-cocartesian. Let
Ql = Il/Il+1. The morphism Xl→ X̃l+1 is a square zero extension of Xl by (pl)∗ p∗l Ql ∼= p∗ p∗Ql and
the morphism X̃l+1→ Xl+1 is the morphism of Xl-extensions given by the natural map Ql→ (pl)∗ p∗l Ql .
By Claim 2, the morphism Ql → (pl)∗ p∗l Ql is split injective and so there is an induced splitting
Xl+1→ X̃l+1 which is affine. By [Gross 2017, Proposition 4.3(i)], it remains to prove that X̃l+1 has the
resolution property, which is just Lemma 6.2. �

7. Formal gluings

Let T be an algebraic stack, let i : Z ↪→ T be a finitely presented closed immersion and let j : U → T
denote its complement. A flat Mayer–Vietoris square is a cartesian square of algebraic stacks

U ′
j ′
//

πU

��

T ′

π

��

U
j
// T

�

such that π is flat and the induced morphism πZ : T ′×T Z→ Z is an isomorphism [Moret-Bailly 1996;
Hall and Rydh 2016].

Given an affine noetherian scheme T = Spec A and a closed subscheme Z = V (I ) we obtain a flat
Mayer–Vietoris square as follows: let U = T \ Z , let T ′ = Spec Â, where Â is the I -adic completion of
A, and let U ′ = U ×T T ′. We call such squares formal gluings. While we will state our results more
generally, the flat Mayer–Vietoris squares of relevance to this article will always be formal gluings.

If F : AlgStop
→ Cat is a pseudofunctor, then there is a natural functor

8F : F(T )→ F(T ′)×F(U ′) F(U ).

Here AlgSt denotes the 2-category of algebraic stacks. For the purposes of this paper, it is enough to
consider pseudofunctors defined on affine schemes, that is, fibered categories over affine schemes.

In this article, we will only consider two examples of pseudofunctors F . Let X be an algebraic stack.

(i) We may view X as a pseudofunctor via the 2-Yoneda lemma: T 7→ Hom(T, X)' X (T ). Note that
the flat Mayer–Vietoris square is a pushout (i.e., cocartesian) if and only if 8X is an equivalence.

(ii) There is also the pseudofunctor X⊗(−)=Hom⊗(QCoh(X),QCoh(−)). Note that 8X⊗ is an equiva-
lence if and only if quasicoherent sheaves can be glued along the flat Mayer–Vietoris square.

The following theorem follows from the main results of [Hall and Rydh 2016] (and almost from
[Moret-Bailly 1996]).

Theorem 7.1. Consider a flat Mayer–Vietoris square as above. Then

(i) 8X⊗ is an equivalence of categories;

(ii) 8X is fully faithful; and is an equivalence if
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(a) 1X is quasiaffine; or
(b) X is Deligne–Mumford; or
(c) T is locally the spectrum of a G-ring (see Remark 7.2).

Proof. By [Hall and Rydh 2016, Theorem B(1)] (or one of [Moret-Bailly 1996, 0.3] and [Ferrand and
Raynaud 1970, Appendice] when π is affine), there is an equivalence

QCoh(T )→ QCoh(T ′)×QCoh(U ′) QCoh(U ).

Thus, we have (i). Claims (ii) and (a) are [Hall and Rydh 2016, Theorem B(3)] and claims (b) and (c) are
[Hall and Rydh 2016, Theorems E and A] respectively. Under some additional assumptions: π is affine,
1X is quasicompact and separated, and in (c) T ′ is locally noetherian; claims (a)–(c) also follow from
[Moret-Bailly 1996, 6.2 and 6.5.1]. �

Remark 7.2. Recall that a noetherian ring A is excellent [Matsumura 1989, page 260; 1980, Chapter 13;
EGA IV2 1965, 7.8.2], if:

(i) A is a G-ring, that is, Ap→ Âp has geometrically regular fibers for every prime ideal p⊂ A.

(ii) The regular locus Reg B ⊆ Spec B is open for every finitely generated A-algebra B.

(iii) A is universally catenary.

If (i) and (ii) hold, then we say that A is quasiexcellent. All G-ring assumptions in this paper originate
from [Moret-Bailly 1996; Hall and Rydh 2016] via Theorem 7.1. The assumptions are used to guarantee
that the formal fibers are geometrically regular so that Néron–Popescu desingularization applies. Note
that whereas being a G-ring and being quasiexcellent are local for the smooth topology [Matsumura 1989,
32.2], excellency does not descend even for finite étale coverings [EGA IV4 1967, 18.7.7].

Corollary 7.3. Let X be an algebraic stack. Let A be a ring and let I ⊂ A be a finitely generated ideal.
Let T = Spec A, Z = V (I ) and U = T \ Z. Let i : Z→ T and j : U → T be the resulting immersions.

(i) Let f1, f2 : T → X be morphisms of algebraic stacks.

(a) Assume that ker(OT → j∗OU )∩
⋂
∞

n=0 I n
= 0. Let α, β : f1⇒ f2 be 2-morphisms. If αU = βU

and αZ [n] = βZ [n] for all n, then α = β.
(b) Assume that T is noetherian and that ωX (T ) is faithful for all noetherian T . Let t : f ∗1 ⇒ f ∗2 be

a natural transformation of cocontinuous tensor functors. If j∗(t) and (i [n])∗(t) are realizable
for all n, then t is realizable.

(ii) Assume either (a) T is the spectrum of a G-ring, or (b) T is noetherian and X has quasiaffine
or unramified diagonal. Further, assume that ωX,'(T ) is fully faithful for all noetherian T . Let
f ∗ : QCoh(X)→ QCoh(T ) be a cocontinuous tensor functor that preserves sheaves of finite type. If
j∗ f ∗ and (i [n])∗ f ∗ are algebraic for all n, then f ∗ is algebraic.

The assumption in (a) says that the filtration {∅ ↪→ Z ↪→ T } is separating (Definition A.1). This is
automatic if T is noetherian (Lemma A.2).
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Proof of Corollary 7.3. First, we show (ii). By assumption, the induced functor (i [n])∗ f ∗ comes from a
morphism f [n] : Z [n]→ X . Pick an étale cover q : Z̃→ Z such that f [0]◦q : Z̃→ X has a lift g : Z̃→W ,
where p : W → X is a smooth morphism and W is affine. Descent (Lemma 4.2(iii)) implies that we are
free to replace T with an étale cover, so we may assume that f [0] also has a lift g : Z→W [EGA IV4

1967, 18.1.1].
Since p is smooth, we may choose compatible lifts g[n] : Z [n]→W of f [n] for all n. But W is affine,

so there is an induced morphism ĝ : T̂ →W , where T̂ = Spec Â and Â denotes the completion of A at
the ideal I . Let f̂ = p ◦ ĝ. Then (i [n])∗ f̂ ∗ = ( f [n])∗ = (i [n])∗ f ∗ for all n. Since Coh(T̂ )= lim

←−−n Coh(Zn)

(Lemma 3.8), it follows that f̂ ∗ ' π∗ f ∗ where π : T̂ → T is the completion morphism. Indeed, this
last equivalence may be verified after restricting both sides to quasicoherent OX -modules of finite type
(Example 5.5) and both sides send quasicoherent OX -modules of finite type to Coh(T̂ ).

Let ̂ : Û → T̂ be the pullback of j along π ; then we obtain a flat Mayer–Vietoris square:

Û
̂
//

πU

��

T̂

π

��

U
j
// T .

�

Since U and Û are noetherian, ωX,'(U ) and ωX,'(Û ) are fully faithful. Thus, there is an essentially
unique morphism of algebraic stacks h : U → X such that h∗ ' j∗ f ∗. But there are isomorphisms:

̂∗ f̂ ∗ ' ̂∗π∗ f ∗ ' π∗U j∗ f ∗ ' π∗U h∗,

so f̂ ◦ ̂ ' h ◦πU . That f ∗ is algebraic now follows from Theorem 7.1.
For (b), we proceed similarly. Consider the representable morphism E→ T given by the equalizer of

f1 and f2. Then 2-isomorphisms between f1 and f2 correspond to T -sections of E . By assumption, we
have compatible sections τU ∈ E(U ) and τ [n] ∈ E(Z [n]) for all n. Choose an étale presentation E ′→ E
by an affine scheme E ′. We may replace T with an étale cover (Lemma 4.2(ii)) and thus assume that
τ [0] lifts to E ′. In particular, there are compatible lifts of all the τ [n] to E ′. Since E ′ is affine, we get an
induced morphism T̂ → E ′; thus, a morphism T̂ → E . Equivalently, we get a 2-isomorphism between
f1 ◦π and f2 ◦π . The induced 2-isomorphism between π∗ f ∗1 and π∗ f ∗2 equals π∗t since it coincides on
the truncations. We may now apply Theorem 7.1 to deduce that t is realized by a 2-morphism τ : f1⇒ f2.

For (a), we consider the representable morphism r : R→ T given by the equalizer of α and β. It
suffices to prove that r is an isomorphism. Note that r is always a monomorphism and locally of finite
presentation. By assumption, there are compatible sections of r over U and Z [n] for all n, thus rU and
rZ [n] are isomorphisms for all n. By Proposition A.3, r is an isomorphism. �

Remark 7.4. We do not know if the condition that f ∗ preserves sheaves of finite type in (ii) is necessary.
We do know that for any sheaf F of finite type, the restrictions of f ∗F to U and Z [n] are coherent but
this does not imply that f ∗F is coherent. For example, if A = k[[x]], and I = (x), then the A-module
k((x))/k[[x]] is not finitely generated but becomes 0 after tensoring with A/(xn) or Ax .
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8. Tannaka duality

In this section, we prove our general Tannaka duality result (Theorem 8.4) and as a consequence also
establish Theorem 1.1. To accomplish this, we consider the following refinement of [Hall and Rydh
2015a, Definition 2.4].

Definition 8.1. Let X be a quasicompact algebraic stack. A finitely presented filtration of X is a sequence
of finitely presented closed immersions ∅= X0 ↪→ X1 ↪→ X2 ↪→ · · · ↪→ Xr ↪→ X such that |Xr | = |X |.
The strata of the filtration are the locally closed finitely presented substacks Yk := Xk \ Xk−1.

Stacks that have affine stabilizers can be stratified into stacks with the resolution property.

Proposition 8.2. Let X be an algebraic stack. The following are equivalent:

(i) X is quasicompact and quasiseparated with affine stabilizers.

(ii) X has a finitely presented filtration (Xk) with strata of the form Yk = [Uk/GLNk ] where Uk is
quasiaffine.

(iii) X has a finitely presented filtration (Xk) with strata Yk that are quasicompact with affine diagonal
and the resolution property.

Proof. That (i)=⇒(ii) is [Hall and Rydh 2015a, Proposition 2.6(i)]. That (ii)⇐⇒(iii) is the Totaro–Gross
theorem [Gross 2017]. That (iii)=⇒(i) is straightforward. �

When in addition X is noetherian or, more generally, X has finitely presented inertia, this result is due
to Kresch [1999, Proposition 3.5.9] and Drinfeld and Gaitsgory [2013, Proposition 2.3.4]. They construct
stratifications by quotient stacks of the form [Vk/GLNk ], where each Vk is quasiprojective and the action
is linear. This implies that the strata have the resolution property. When X has finitely presented inertia
the situation is simpler since X can be stratified into gerbes [Rydh 2016, Corollary 8.4], something which
is not possible in general.

Remark 8.3. Drinfeld and Gaitsgory [2013, Definition 1.1.7] introduced the notion of a QCA stack.
These are (derived) algebraic stacks that are quasicompact and quasiseparated with affine stabilizers and
finitely presented inertia. The condition on the inertia is presumably only used for [Drinfeld and Gaitsgory
2013, Proposition 2.3.4] and could be excised using Proposition 8.2.

We now state and prove the main result of the paper.

Theorem 8.4. Let T and X be algebraic stacks and consider the functor

ωX (T ) : Hom(T, X)→ Homc⊗(QCoh(X),QCoh(T ))

and its variants ωft
X (T ), ωX,'(T ) and ωft

X,'(T ) (see Section 4). Assume that X is quasicompact and
quasiseparated with affine stabilizers and that T is locally noetherian. Then

(i) ωX,'(T ) is fully faithful;

(ii) ωX (T ) is fully faithful if X is affine-pointed;
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(iii) ωft
X,'(T ) is an equivalence of groupoids if either

(a) T is locally the spectrum of a G-ring; (Remark 7.2)
(b) X has quasiaffine diagonal; or
(c) X is Deligne–Mumford.

In particular, ωft
X,'(T ) is an equivalence if T is locally excellent and X has affine stabilizers, and ωft

X (T )
is an equivalence if T is locally noetherian and X either has quasiaffine diagonal or is Deligne–Mumford.

When X has quasiaffine diagonal, we have already seen that ωX (T ) is fully faithful without any
noetherian assumptions on T (Proposition 4.9(i)). In some situations, we can also prove faithfulness for
nonnoetherian T , see Proposition 8.5 below.

Proof of Theorem 8.4. We will first prove that ωX (T ) is faithful, then prove that ωX,'(T ) and ωX (T ) are
fully faithful (the latter under the assumption that X is affine-pointed) and finally prove that ωft

X,'(T ) is
an equivalence under the assumptions in (iii). By Lemma 4.3, it is enough to prove these results when
T = Spec A is affine.

Stratification on X. Choose a filtration (Xk) as in Proposition 8.2. We will prove the theorem by induction
on the number of strata r . If r = 0, then X =∅ and there is nothing to prove. If r ≥ 1, then U := X \ X1

has a filtration of length r − 1; thus by induction the theorem holds over U .
Let I ⊆OX be the ideal defining Z := X1. Let i [n] : Z [n] ↪→ X be the closed substack defined by I n+1

and let j : U → X be its complement. The filtration was chosen such that Z has the resolution property.
Thus ωZ [n](T ) is an equivalence of categories for every n ≥ 0 by the Main Lemma 6.1. In particular, the
theorem holds over Z [n] for every n ≥ 0.

Setup. For faithfulness, pick two maps f1, f2 : T → X and two 2-isomorphisms τ1, τ2 : f1⇒ f2 and
assume that ωX (T )(τ1)= ωX (T )(τ2). We need to prove that τ1 = τ2.

For fullness of ωX,'(T ) (resp. ωX (T )), pick two maps f1, f2 : T → X and a natural isomorphism
(resp. transformation) γ : f ∗1 ⇒ f ∗2 of cocontinuous tensor functors. We need to prove that γ is realizable.

For essential surjectivity, pick a cocontinuous tensor functor f ∗ : QCoh(X)→ QCoh(T ) preserving
sheaves of finite type. We need to prove that f ∗ is algebraic.

Pulled-back stratification on T . For faithfulness and fullness, let IT = Im( f ∗2 I → f ∗2 OX =OT ), which
is a finitely generated ideal because f2 is a morphism. For essential surjectivity, let IT = Im( f ∗ I →
f ∗OX =OT ), which is a finitely generated ideal since f ∗ is assumed to preserve finite type objects. Let
i [n]T : Z [n]T ↪→ T be the finitely presented closed immersion defined by I n+1

T and let jT : UT ↪→ T be its
complement, a quasicompact open immersion.

Result holds on strata. For faithfulness and fullness, we have that UT = f −1
1 (U ) = f −1

2 (U ); for
faithfulness this is obvious and for fullness of ωX,'(T ) and ωX (T ) this follows from Corollary 4.10 and
Lemma 4.8 (when X affine-pointed), respectively. We also have that Z [n]T = f −1

2 (Z [n]) ↪→ f −1
1 (Z [n]).

Thus, by the inductive assumption and the case r = 1, after restricting to either UT or Z [n]T we have that
τ1 = τ2 (for faithfulness), and that γ is realizable (for fullness).



1660 Jack Hall and David Rydh

For essential surjectivity, Theorem 5.1 produces for every n ≥ 0 essentially unique cocontinuous tensor
functors f ∗U : QCoh(U )→ QCoh(UT ) and f ∗Z [n] : QCoh(Z

[n])→ QCoh(Z [n]T ) such that j∗T f ∗ ' f ∗U j∗ and
(i [n]T )∗ f ∗ ' ( fZ [n])

∗(i [n])∗. By the inductive assumption, f ∗U is algebraic and the case r = 1 implies that
f ∗Z [n] is algebraic for each n ≥ 0. In particular, j∗T f ∗ and (i [n]T )∗ f ∗ is algebraic for each n ≥ 0.

Formal gluing. The result now follows from Corollary 7.3 which uses the noetherian assumption on T . �

We also have some partial results in the nonnoetherian situation.

Proposition 8.5. Let f1, f2 : T → X be morphisms of algebraic stacks. Assume that X is quasicompact
and quasiseparated with affine stabilizers. Further assume that either

(i) T has no embedded associated points; or

(ii) f2 factors as T → S→ X where S is locally noetherian and π : T → S is flat.

Then ωX (T ) : Hom( f1, f2)→ Hom( f ∗1 , f ∗2 ) is injective. In particular, if T has no embedded associated
points, then ωX (T ) is faithful.

Proof. The proof is identical with the proof of faithfulness in Theorem 8.4. We only have to argue that
Corollary 7.3(a) applies. That is, we have to show that the filtration {∅ ↪→ ZT ↪→ T } is separating.

If T has no embedded associated points, then the stratification ∅⊂ ZT ⊂ T is separating by Lemma A.2.
If f2 factors as in (ii), then the stratification {∅ ↪→ ZT ↪→ T } is the pull-back along π of a stratification
{∅ ↪→ ZS ↪→ S}, hence separating by Lemma A.2. �

We conclude with the proof of Theorem 1.1.

Proof of Theorem 1.1. First, observe that if Y is a noetherian algebraic stack, then QCoh(Y ) may be
identified as the ind-category of Coh(Y ) [Lurie 2004, 3.9–10]. Essentially by definition, this induces an
equivalence of categories:

Homr⊗,'(Coh(X),Coh(T ))→ Homft
c⊗,'(QCoh(X),QCoh(T )).

It is thus enough to prove thatωft
X,'(T ) is an equivalence of groupoids, which follows from Theorem 8.4. �

9. Applications

In this section, we address the applications outlined in the introduction.

Proof of Corollary 1.4. Let T ′ → T be an fpqc covering where T is an algebraic stack, locally the
spectrum of a G-ring, and T ′ is a locally noetherian algebraic stack. Since X is an fppf-stack, we may
assume that T and T ′ are affine and that T ′→ T is faithfully flat. Let T ′′ = T ′ ×T T ′. Since X has
affine stabilizers, the functor ωX,'(T ) is an equivalence, the functor ωX,'(T ′) is fully faithful and the
functor ωX (T ′′) is faithful for morphisms T ′′ → T ′ → X (Theorem 8.4 and Proposition 8.5). Since
Homc⊗,'(QCoh(X),QCoh(−)) is an fpqc stack, it follows that T ′→ T is a morphism of effective descent
for X . �
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Proof of Corollary 1.5. As A is noetherian, Coh(A)= lim
←−−n Coh(A/I n). Thus, by Theorem 8.4,

X (A)∼= Homr⊗,'(Coh(X),Coh(A))
∼= Homr⊗,'(Coh(X), lim

←−−
Coh(A/I n))

∼= lim
←−−

Homr⊗,'(Coh(X),Coh(A/I n))

∼= lim
←−−

X (A/I n). �

Proof of Theorem 1.2. First, we prove (i); that is, the stack HomS(Z , X) is algebraic. We begin with the
following standard reductions: we can assume that S is affine; X → S is quasicompact, so is of finite
presentation; and S is of finite type over Spec Z.

Since S is now assumed to be excellent, we can prove the algebraicity of HomS(Z , X) using a variant
of Artin’s criterion for algebraicity due to the first author [Hall 2017, Theorem A]. Hence, it is sufficient
to prove that HomS(Z , X) is

[1] a stack for the étale topology;

[2] limit preserving, equivalently, locally of finite presentation;

[3] homogeneous, that is, satisfies a strong version of the Schlessinger–Rim criteria;

[4] effective, that is, formal deformations can be algebraized;

[5] the automorphisms, deformations, and obstruction functors are coherent.

The main result of this article provides a method to prove [4] in maximum generality, which we address first.
Thus, let T = Spec B→ S, where (B,m) is a complete local noetherian ring. Let Tn = Spec(B/mn+1).
Since Z→ S is proper, for every noetherian algebraic stack W with affine stabilizers there are equivalences

Hom(Z ×S T,W )∼= Homr⊗,'(Coh(W ),Coh(Z ×S T )) (Theorem 1.1)
∼= Homr⊗,'(Coh(W ), lim

←−−
Coh(Z ×S Tn)) [Olsson 2005, Theorem 1.4]

∼= lim
←−−

Homr⊗,'(Coh(W ),Coh(Z ×S Tn)) (Lemma 3.8)
∼= lim
←−−

Hom(Z ×S Tn,W ) (Theorem 1.1).

Since X and S have affine stabilizers, it follows that

HomS(Z ×S T, X)∼= lim
←−−

HomS(Z ×S Tn, X);

that is, the stack HomS(Z , X) is effective and so satisfies [4].
The remainder of Artin’s conditions are routine, so we will just sketch the arguments and provide

pointers to the literature where they are addressed in more detail. Condition [1] is just étale descent and
[2] is standard — see, for example, [Laumon and Moret-Bailly 2000, Proposition 4.18]. For conditions [3]
and [5], it will be convenient to view HomS(Z , X) as a substack of another moduli problem. This lets us
avoid having to directly discuss the deformation theory of nonrepresentable morphisms of algebraic stacks.
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If W → S is a morphism of algebraic stacks, let RepW/S denote the S-groupoid that assigns to each
S-scheme T the category of representable morphisms of algebraic stacks V →W ×S T such that the com-
position V →W ×S T → T is proper, flat and of finite presentation. There is a morphism of S-groupoids

0 : HomS(Z , X)→ RepZ×S X/S,

which is given by sending a T -morphism f : Z×S T→ X×S T to its graph0( f ) : Z×S T→ (Z×S X)×S T .
It is readily seen that 0 is formally étale since Z→ S is flat. Hence, it is sufficient to verify conditions
[3] and [5] for RepZ×S X/S [Hall 2017, Lemmas 1.5(9), 6.3 and 6.11]. That RepZ×S X/S is homogeneous
follows immediately from [Hall 2017, Lemma 9.3]. A description of the automorphism, deformation and
obstruction functors of RepZ×S X/S in terms of the cotangent complex are given on [Hall 2017, page 173],
which mostly follows from the results of [Olsson 2006a]. That these functors are coherent is [Hall 2014,
Theorem C]. This completes the proof of (i).

We now address (ii) and (iii), that is, the separation properties of the algebraic stack HomS(Z , X)
relative to S. Let T be an affine scheme. Let ZT and XT denote Z×S T and X×S T , respectively. Suppose
we are given two T -morphisms f1, f2 : ZT → XT and consider Q := IsomZT ( f1, f2) = X ×X×S X ZT .
Then Q→ ZT is representable and of finite presentation. If π : ZT → T denotes the structure morphism,
then π∗Q is an algebraic space which is locally of finite presentation, being the pull-back of the diagonal
of HomS(Z , X) along the morphism T → HomS(Z , X)×S HomS(Z , X) corresponding to ( f1, f2).

Let P be one of the properties: affine, quasiaffine, separated, quasiseparated. Assume that 1X has P;
then Q→ ZT has P . We claim that the induced morphism π∗Q→ T has P . For the properties affine and
quasiaffine, this is [Hall and Rydh 2015b, Theorem 2.3(i),(ii)]. For quasiseparated (resp. separated), this is
[Hall and Rydh 2015b, Theorem 2.3(ii),(iv)] applied to the quasiaffine morphism (resp. closed immersion)
Q→ Q×Z Q and the Weil restriction π∗Q→π∗Q×T π∗Q=π∗(Q×Z Q). In particular, we have proved
that HomS(Z , X) is algebraic and locally of finite presentation with quasiseparated diagonal over S.

Now by Theorem B.1, 1HomS(Z ,X)/S = HomS(Z ,1X/S) is of finite presentation, so HomS(Z , X) is
also quasiseparated. It remains to prove that it has affine stabilizers. To see this, we may assume that T is
the spectrum of an algebraically closed field. In this situation, either π∗Q is empty or f1' f2; it suffices to
treat the latter case. In the latter case, T → X ×S X factors through the diagonal 1X/S : X→ X ×S X , so
it is sufficient to prove that HomS(Z , IX/S), where IX/S : X ×X×S X X→ X is the inertia stack, has affine
fibers. But IX/S defines a group over X with affine fibers, and the result follows from Theorem B.1. �

Lemma 9.1. Let f : Z→ S be a proper and flat morphism of finite presentation between algebraic stacks.
For any morphism g : X→ Z of algebraic stacks, the forgetful morphism f∗X→HomS(Z , X) is an open
immersion.

Proof. It is sufficient to prove that if T is an affine S-scheme and h : Z ×S T → X ×S T is a T -morphism,
then the locus of points where gT ◦ h : Z ×S T → Z ×S T is an isomorphism is open on T .

First, consider the diagonal of gT ◦ h. This morphism is proper and representable and the locus on
T where this map is a closed immersion is open [Rydh 2011b, Lemma 1.8(iii)]. We may thus assume
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that gT ◦ h is representable. Repeating the argument on gT ◦ h, we may assume that gT ◦ h is a closed
immersion. That the locus in T where gT ◦ h is an isomorphism is open now follows easily by studying
the étale locus of gT ◦ h, see [Olsson 2006b, Lemma 5.2]. The result follows. �

Proof of Theorem 1.3. That f∗X→ S is algebraic, locally of finite presentation, with quasicompact and
quasiseparated diagonal and affine stabilizers follows from Theorem 1.2 and Lemma 9.1. The additional
separation properties of f∗X follows from [Hall and Rydh 2015b, Theorem 2.3(i),(ii) and (iv)] applied to
the diagonal and double diagonal of X→ Z . �

As claimed in the introduction, we now extend [Hall and Rydh 2015b, Theorem 2.3 and Corollary 2.4].
The statement of the following corollary uses the notion of a morphism of algebraic stacks that is locally
of approximation type [Hall and Rydh 2015b, Section 1]. A trivial example of a morphism locally of
approximation type is a quasiseparated morphism that is locally of finite presentation. It is hoped that
every quasiseparated morphism of algebraic stacks is locally of approximation type, but this is currently
unknown. It is known, however, that morphisms of algebraic stacks that have quasifinite and locally
separated diagonal are locally of approximation type [Rydh 2015]. In particular, all quasiseparated
morphisms of algebraic stacks that are relatively Deligne–Mumford are locally of approximation type.

Corollary 9.2. Let f : Z → S be a proper and flat morphism of finite presentation between algebraic
stacks.

(i) Let h : X→ S be a morphism of algebraic stacks with affine stabilizers that is quasiseparated and
locally of approximation type. Then HomS(Z , X) is algebraic, quasiseparated and locally of approxi-
mation type with affine stabilizers. If h is locally of finite presentation, then so is HomS(Z , X)→ S. If
the diagonal of h is affine (or quasiaffine, or separated), then so is the diagonal of HomS(Z , X)→ S.

(ii) Let g : X→ Z be a morphism of algebraic stacks such that f ◦g : X→ S has affine stabilizers and is
quasiseparated and locally of approximation type. Then the S-stack f∗X is algebraic, quasiseparated
and locally of approximation type with affine stabilizers. If g is locally of finite presentation, then so
is f∗X→ S. If the diagonal of g is affine (or quasiaffine, or separated), then so is the diagonal of
f∗X→ S.

Proof. For (i), we may immediately reduce to the situation where S is an affine scheme. Since f is
quasicompact, we may further assume that h is quasicompact. By [Hall and Rydh 2015b, Lemma 1.1],
there is an fppf covering {Si→ S} such that each Si is affine and X×S Si→ Si factors as X×S Si→ X0

i → Si ,
where X0

i → Si is of finite presentation and X ×S Si → X0
i is affine. Combining the results of [Hall and

Rydh 2015a, Theorem 2.8] with [Rydh 2015, Theorems D and 7.10], we can arrange so that each X0
i → S

has affine stabilizers (or has one of the other desired separation properties).
Thus, we may now replace S by Si and may assume that X→ S factors as X q

−→ X0→ S, where q is
affine and X0→ S is of finite presentation with the appropriate separation condition. By Theorem 1.2,
the stack HomS(Z , X0) is algebraic and locally of finite presentation with the appropriate separation
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condition. By [Hall and Rydh 2015b, Theorem 2.3(i)], the morphism HomS(Z , X)→ HomS(Z , X0) is
representable by affine morphisms; the result follows.

For (ii) we argue exactly as in the proof of Theorem 1.3. �

10. Counterexamples

In this section we give four counterexamples (Theorems 10.1, 10.2, 10.4, and 10.5):

• In Theorems 1.1 and 8.4, and Proposition 8.5 it is necessary that X has affine stabilizer groups.

• In Theorem 8.4(ii), it is necessary that X is affine-pointed.

• In Theorem 1.2, it is necessary that X has affine stabilizer groups.

• In Corollary 1.5, it is necessary that X has affine stabilizer groups.

For this section, the following definition will be important. Let k be a field and let G be an algebraic
group scheme over k; we say that G is antiaffine if 0(G,OG)= k [Brion 2009]. Abelian varieties are
always antiaffine, but there are many other antiaffine group schemes [Brion 2009, Section 2]. Antiaffine
group schemes are always smooth, connected, and commutative [Demazure and Gabriel 1970, Corol-
laire III.3.8.3]. In general, there is always a largest antiaffine k-subgroup scheme Gant contained in the
center of G such that the resulting quotient G/Gant is affine. In fact, Gant = ker(G→ Spec0(G,OG));
in particular, if G is not affine, then Gant is nontrivial [Demazure and Gabriel 1970, Théorème III.3.8.2].

Theorem 10.1. Let X be a quasiseparated algebraic stack. If k is an algebraically closed field and
x : Spec k → X is a point with nonaffine stabilizer, then Aut(x) → Aut⊗(x∗) is not injective. In
particular, ωX (Spec k) is not faithful and X is not tensorial.

Proof. By assumption, the stabilizer group scheme Gx of x is not affine. Let H = (Gx)ant be the
largest antiaffine subgroup of Gx ; then H is a nontrivial antiaffine group scheme over k and the quotient
group scheme Gx/H is affine [Demazure and Gabriel 1970, Section III.3.8]. The induced morphism
Bk H → Bk Gx → X is thus quasiaffine by [Rydh 2011a, Theorem B.2].

By [Brion 2009, Lemma 1.1], the morphism p : Spec k→ Bk H induces an equivalence of Grothendieck
abelian tensor categories p∗ : QCoh(Bk H)→QCoh(Spec k). Since Aut(p)= H(k) 6= {idp} =Aut⊗(p∗),
the functor ωBk H (Spec k) is not faithful. Hence ωX (Spec k) is not faithful by Lemma 4.4. �

We also have the following theorem.

Theorem 10.2. Let X be a quasicompact and quasiseparated algebraic stack with affine stabilizers. If
k is a field and x0 : Spec k→ X is a nonaffine morphism, then there exists a field extension K/k and
a point y : Spec K → X such that Isom(y, x)→ Hom⊗(y∗, x∗) is not surjective, where x denotes the
K -point corresponding to x0. In particular, ωX (Spec K ) is not full.

Proof. To simplify notation, we let x = x0. Since X has quasicompact diagonal, x is quasiaffine [Rydh
2011a, Theorem B.2]. By Lemma 4.4, we may replace X by SpecX (x∗k) and consequently assume that
x is a quasicompact open immersion and OX → x∗k is an isomorphism. In particular, x is a section to a
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morphism f : X→ Spec k. Since x is not affine, it follows that there exists a closed point y disjoint from
the image of x . In particular, there is a field extension K/k and a k-morphism y : Spec K → X whose
image is a closed point disjoint from x .

We now base change the entire situation by Spec K → Spec k. This results in two morphisms xK ,
yK : Spec K → X ⊗k K , where xK is a quasicompact open immersion such that OX⊗k K ∼= (xK )∗K and
yK has image a closed point disjoint from the image of xK . We replace X , k, x , and y by X ⊗k K , K ,
xK , and yK respectively.

Let Gy ⊆ X be the residual gerbe associated to y, which is a closed immersion. We define a natural
transformation γ ∨ : x∗⇒ y∗ at k to be the composition x∗k ∼= OX � OGy → y∗k and extend to all of
QCoh(Spec k) by taking colimits. By adjunction, there is an induced natural transformation γ : y∗→ x∗.
A simple calculation shows that γ is a natural transformation of cocontinuous tensor functors. Since its
adjoint γ ∨ is not an isomorphism, γ is not an isomorphism; thus γ is not realizable. The result follows. �

The following lemma is a variant of [Bhatt 2016, Example 4.12], which B. Bhatt communicated to the
authors.

Lemma 10.3. Let k be an algebraically closed field and let G/k be an antiaffine group scheme of finite
type. Let Z/k be a regular scheme with a closed subscheme C that is a nodal curve over k. Then there
is a compatible system of G-torsors En → C [n] such that there does not exist a G-torsor E → Z that
restricts to the En’s.

Proof. Recall that G is smooth, connected and commutative [Demazure and Gabriel 1970, Section III.3.8].
Furthermore, by Chevalley’s theorem, there is an extension 0→ H→G→ A→ 0, where A is an abelian
variety (of positive dimension) and H is affine. Let xA ∈ A(k) be an element of infinite order and let
x ∈ G(k) be any lift of xA.

Let C̃ be the normalization of C . Let F0→ C be the G-torsor obtained by gluing the trivial G-torsor
on C̃ along the node by translation by x . Note that the induced A-torsor F0/H→ C is not torsion as it is
obtained by gluing along the nontorsion element xA.

We may now lift F0→ C to G-torsors Fn→ C [n]. Indeed, the obstruction to lifting Fn−1 to Fn lies
in Ext1OC

(Lg∗0 L•BG/k, I n/I n+1), where g0 : C→ BG is the morphism corresponding to F0→ C and I is
the ideal defining C in Z . Since G is smooth, the cotangent complex L•BG/k is concentrated in degree 1
and since C is a curve, it has cohomological dimension 1. It follows that the obstruction group is zero.

Now given a G-torsor F→ Z , there is an induced A-torsor F/H → Z . Since Z is regular, the torsor
F/H → Z is torsion in H 1(Z , A) [Raynaud 1970, XIII 2.4 and 2.6]. Thus, F/H → Z cannot restrict to
F0/H → C and the result follows. �

We now have the following theorem, which is a counterexample to [Aoki 2006a, Theorem 1.1; 2006b,
Case I].

Theorem 10.4. Let X → S be a quasiseparated morphism of algebraic stacks. If k is an algebraically
closed field and x : Spec k→ X is a point with nonaffine stabilizer, then there exists a morphism A1

k → S
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and a proper and flat family of curves Z→ A1
k , where Z is regular, such that HomA1

k
(Z , X ×S A1

k) is not
algebraic.

Proof. Let Q be the stabilizer group scheme of x and let G be the largest antiaffine subgroup scheme of
Q; thus, G is a nontrivial antiaffine group scheme over k and the quotient group scheme Q/G is affine
[Demazure and Gabriel 1970, Section III.3.8].

Let Z be a proper family of curves over T = A1
k = Spec k[t] with regular total space and a nodal curve

C as the fiber over the origin; for example, take Z = ProjT (k[t][x, y, z]/(y2z− x2z− x3
− t z3)) over T .

Let Tn = V (tn+1), T̂ = Spec ÔT,0, Zn = Z ×T Tn , and Ẑ = Z ×T T̂ . We now apply Lemma 10.3 to C in
Ẑ and G. Since Zn = C [n], this produces an element in

lim
←−−

n
HomT (Z , BGT )(Tn)= lim

←−−
n

Hom(Zn, BG)

that does not lift to
HomT (Z , BGT )(T̂ )= Hom(Ẑ , BG).

This shows that HomT (Z , BGT ) is not algebraic.
By [Rydh 2011a, Theorem B.2], the morphism x factors as Spec k→ B Q→Q→ X , where Q is the

residual gerbe, Q→ X is quasiaffine and B Q→Q is affine. Since Q/G is affine, it follows that the induced
morphism BG → B Q→ X is quasiaffine. By [Hall and Rydh 2015b, Theorem 2.3(ii)], the induced
morphism HomT (Z , BGT )→ HomT (Z , X ×S T ) is quasiaffine. In particular, if HomT (Z , X ×S T ) is
algebraic, then HomT (Z , BGT ) is algebraic, which is a contradiction. The result follows. �

The following theorem extends [Bhatt 2016, Example 4.12].

Theorem 10.5. Let X be an algebraic stack with quasicompact diagonal. If X does not have affine
stabilizers, then there exists a noetherian two-dimensional regular ring A, complete with respect to an
ideal I , such that X (A)→ lim

←−−
X (A/I n) is not an equivalence of categories.

Proof. Let x ∈ |X | be a point with nonaffine stabilizer group. Arguing as in the proof of Theorem 10.4,
there exists an algebraically closed field k, an antiaffine group scheme G/k of finite type and a quasiaffine
morphism BG→ X . An easy calculation shows that it is enough to prove the theorem for X = BG.

Let A0= k[x, y] and let A be the completion of A0 along the ideal I = (y2
−x3
−x2). Then Z =Spec A

and C = Spec A/I satisfies the conditions of Lemma 10.3 and we obtain an element in lim
←−−n X (A/I n)

that does not lift to X (A). �

Appendix A: Monomorphisms and stratifications

In this appendix, we introduce some notions and results needed for the faithfulness part of Theorem 8.4
when T is not noetherian. This is essential for the proof of Corollary 1.4.

We recall Definition 8.1: let X be a quasicompact algebraic stack. A finitely presented filtration of X is
a sequence of finitely presented closed immersions ∅= X0 ↪→ X1 ↪→ X2 ↪→ · · · ↪→ Xr ↪→ X such that
|Xr | = |X |. The strata of the filtration are the locally closed finitely presented substacks Yk := Xk \ Xk−1.
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As in Notation 3.7, the n-th infinitesimal neighborhood of Xk is the finitely presented closed immersion
X [n]k ↪→ X which is given by the ideal I n+1

k where Xk ↪→ X is given by Ik . The n-th infinitesimal
neighborhood of the stratum Yk is the locally closed finitely presented substack Y [n]k := X [n]k \ Xk−1.

Definition A.1. A finitely presented filtration (Xk) of X is separating if the family { jn
k : Y [n]k → X}k,n is

separating [EGA IV3 1966, 11.9.1]; that is, if the intersection
⋂

k,n ker(OX → ( jn
k )∗OY [n]k

) is zero as a
lisse-étale sheaf.

Lemma A.2. Every finitely presented filtration (Xk) on X is separating if either

(i) X is noetherian; or

(ii) X has no embedded (weakly) associated point.

If X is noetherian with a filtration (Xk) and X ′→ X is flat, then (Xk ×X X ′) is a separating filtration
on X ′.

Proof. As the question is smooth-local, we can assume that X and X ′ are affine schemes. If X is
noetherian, then by primary decomposition there exists a separating family

∐m
i=1 Spec Ai → X where the

Ai are artinian. As every Spec Ai factors through some Y [n]k , it follows that (Xk) is separating. In general,
{SpecOX,x → X}x∈Ass(X) is separating [Lazard 1964, 1.2, 1.5, 1.6]. If x is a nonembedded associated
point, then SpecOX,x is a one-point scheme and factors through some Y [n]k and the first claim follows.

For the last claim, we note that a finite number of the infinitesimal neighborhoods of the strata suffices
in the noetherian case and that flat morphisms preserve kernels and finite intersections. �

Proposition A.3. Let X be an algebraic stack with a finitely presented filtration (Xk). Let f : Z → X
be a morphism locally of finite type. If f |Y [n]k

is an isomorphism for every k and n, then f is a surjective
closed immersion. If in addition (Xk) is separating, then f is an isomorphism.

Proof. First note that f is a surjective and quasicompact monomorphism.
We will prove that f is a closed immersion by induction on the number of strata r . If r = 0, then

X =∅ and there is nothing to prove. If r = 1, then X = X [n]1 = Y [n]1 for sufficiently large n and the result
follows. If r ≥ 2, then let U = X \ X1. By the induction hypothesis, f |U is a surjective closed immersion.
We may also assume that X1 6=∅ and |X1| 6= |X | since these cases are trivial.

Verifying that f is a closed immersion is local on X , so we may assume that X , and hence Z , are
schemes [Laumon and Moret-Bailly 2000, Théorème A.2]. Then f is a closed immersion if and only if
f is proper [EGA IV4 1967, 18.12.6]. By the valuative criterion for properness, we may thus assume that
X = Spec V is the spectrum of a henselian valuation ring. Note that f |U is now an isomorphism since X
is reduced.

By [EGA IV4 1967, 18.12.3], there is a decomposition Z = Z1 q Z2, where Z1 → X is a closed
immersion and Z2 ∩ f −1(m)=∅, where m is the maximal ideal of V . It remains to prove that Z2 =∅.

Since X1 is local, hence connected, and f |X1 is an isomorphism, it follows that Z2 ∩ f −1(X1)=∅.
Similarly, since U is integral, hence connected, and f |U is an isomorphism, it follows that either Z2 =∅
or Z2 =U . In the former case we are done. We will now show that the latter case is impossible.
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Since V is a valuation ring and X1 ⊆ Spec V is a finitely presented closed immersion, there is an a ∈ V
such that X1 = Spec V/(a) and U = D(a). Write Z1 = Spec V/J for some ideal J . Since the closed
immersion Z1 ↪→ X is an isomorphism over X [n]1 for all n ≥ 0, we have that J ⊆ (an) for all n ≥ 0. The
condition that Z1 ∩ D(a)=∅ is equivalent to an

∈ J for all n� 0. That is, J = (an) for all n� 0. This
implies that (an+1)= (an) is an equality for all n� 0, which is absurd since a is neither zero nor a unit.
Hence, Z2 =∅ and f is a surjective closed immersion.

For general X , if (Xk) is separating, then the schematic image of f contains all the Y [n]k , and hence
equals X by definition. This proves the last claim. �

The following example illustrates that a closed immersion f : Z→ X as in Proposition A.3 need not
be an isomorphism even if f is of finite presentation.

Example A.4. Let A = k[x, z1, z2, . . .]/(xz1, {zk − xzk+1}k≥1, {zi z j }i, j≥1) and B = A/(z1). Then
A/(xn)= k[x]/(xn)= B/(xn) and Ax = k[x]x = Bx but the surjection A→ B is not an isomorphism.

Appendix B: A relative boundedness result for Hom stacks

Here we prove the following relative boundedness result for Hom stacks.

Theorem B.1. Let f : Z→ S be a proper, flat and finitely presented morphism of algebraic stacks. Let
X and Y be algebraic stacks that are locally of finite presentation and quasiseparated over S and have
affine stabilizers over S. Let g : X→ Y be a finitely presented S-morphism. If g has affine fibers, then

HomS(Z , g) : HomS(Z , X)→ HomS(Z , Y )

is of finite presentation. If in addition g : X→ Y is a group, then HomS(Z , g) is a group with affine fibers.

Theorem B.1 is used in Theorems 1.2 and 1.3 to establish the quasicompactness of the diagonal of
Hom-stacks and Weil restrictions. Prior to Theorem B.1, the strongest boundedness result is due to Olsson
[2006b, Proposition 5.10]. There it is assumed that g is finite and f is representable.

Without using Theorem B.1, the proof of Theorem 1.2 give the algebraicity of the Hom-stacks and that
they have quasiseparated diagonals. In the setting of Theorem B.1, we may conclude that HomS(Z , g) is
a quasiseparated morphism of algebraic stacks that are locally of finite presentation over S. It remains to
prove that the morphism HomS(Z , g) is quasicompact.

Preliminary reductions. If W and T are algebraic stacks over S, let WT = W ×S T ; similarly for
morphisms between stacks over S. We will use this notation throughout this appendix.

As the question is local on S, we may assume that S is an affine scheme. We may also assume that X
and Y are of finite presentation over S since it is enough to prove the theorem after replacing Y with an
open quasicompact substack and X with its inverse. By standard approximation results, we may then
assume that S is of finite type over Spec Z. For the remainder of this article, all stacks will be of finite
presentation over S and hence excellent with finite normalization.
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By noetherian induction on S, to prove that HomS(Z , g) is quasicompact, we may assume that S is
integral and replace S with a suitable dense open subscheme. Moreover, we may also replace Z → S
with the pull-back along a dominant map S′→ S. Recall that there exists a field extension K ′/K (S) such
that (Z K ′)red is geometrically reduced and (Z K ′)norm is geometrically normal over K ′. After replacing S
with a dense open subset of the normalization in K ′, we may thus assume that

(i) Zred→ S is flat with geometrically reduced fibers; and

(ii) Znorm→ S is flat with geometrically normal fibers;

since these properties are constructible [EGA IV3 1966, 9.7.7(iii) and 9.9.4(iii)].
We now prove three reduction results. Throughout, we will assume the following:

• Z is proper and flat over S.

• X and Y are finitely presented algebraic stacks over S with affine stabilizers.

• g : X→ Y is a representable morphism over S.

Our first reduction result is similar to [Olsson 2006b, Lemma 5.11].

Lemma B.2. If HomS′(Z ′, gS′) is quasicompact for every scheme S′, morphism S′→ S and nilimmersion
Z ′→ ZS′ such that Z ′→ S′ is proper and flat with geometrically reduced fibers, then HomS(Z , g) is
quasicompact.

Proof. Assume that the condition holds. To prove that HomS(Z , g) is quasicompact, we may assume
that S is integral. We may also assume that Zred→ S has geometrically reduced fibers. Pick a sequence
of square-zero nilimmersions Zred = Z0 ↪→ Z1 ↪→ · · · ↪→ Zn = Z . After replacing S with a dense open
subset, we may assume that all the Zi→ S are flat. Thus, it suffices to show that if j : Z0→ Z is a square-
zero closed immersion where Z0 is flat over S and HomS(Z0, g) is quasicompact, then HomS(Z , g) is
quasicompact. Now argue as in [Olsson 2006b, Lemma 5.11], but this time using the deformation theory
of [Olsson 2006a, Theorem 1.5] and the semicontinuity theorem of [Hall 2014, Theorem A]. �

Before we proceed, we make the following observation: fix an S-scheme T and an S-morphism
y : ZT → Y . This corresponds to a map T →HomS(Z , Y ). The pullback of HomS(Z , g) along this map
is isomorphic to the Weil restriction RZT /T (X ×g,Y,y ZT ), which we will denote as HZ/S,g(y). Note that
our hypotheses guarantee that HZ/S,g(y) is locally of finite type and quasiseparated over T .

The second reduction is for a (partial) normalization.

Lemma B.3. If HomS′(Z ′, gS′) is quasicompact for every scheme S′, morphism S′→ S and finite mor-
phism Z ′→ ZS′ such that Z ′→ S′ is proper and flat with geometrically normal fibers, then HomS(Z , g)
is quasicompact.

Proof. By Lemma B.2, we may assume that Z → S is flat with geometrically reduced fibers. We will
use induction on the maximal fiber dimension d of Z → S. After modifying S, we may assume that
W := Znorm → S is flat with geometrically normal fibers. Let Z0 ↪→ Z and W0 ↪→ W be the closed
substacks given by the conductor ideal of W → Z .
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After replacing S with a dense open subset, we may assume that Z0→ S and W0→ S are flat and that
W → Z is an isomorphism over an open subset U ⊆ Z that is dense in every fiber. In particular, since
Z0 ∩U =∅, the dimensions of the fibers of Z0→ S are strictly smaller than d. Thus, by induction we
may assume that HomS(Z0, g) is quasicompact. But

W0
� � i

//

h0
��

W

h
��

Z0
� � j

// Z

�

is a bicartesian square and remains so after arbitrary base change over S since W0→ S is flat. Indeed,
that it is cartesian is [Hall 2017, Lemma A.3(i)]. That it is cocartesian and the commutes with arbitrary
base change over S follows from the arguments of [Hall 2017, Lemma A.4, A.8] and the existence of
pinchings of algebraic spaces [Kollár 2012, Theorem 38].

It remains to prove that HZ/S,g(y)→ T is quasicompact, where T is an integral scheme of finite type
over S and y : ZT → Y is a morphism. The bicartesian square above implies that

HZ/S,g(y)' HZ0/S,g(y j)×HW0/S,g(yhi) HW/S,g(yh).

The result follows, since HZ0/S,g(y j) and HW/S,g(yh) are quasicompact and HW0/S,g(yhi) is quasisepa-
rated. �

We have the following variant of h-descent [Rydh 2010, Theorem 7.4].

Lemma B.4. Let S be an algebraic stack, let T be an algebraic S-stack and let g : T ′ → T be a
universally subtrusive (e.g., proper and surjective) morphism of finite presentation such that g is flat over
an open substack U ⊆ T . If T is weakly normal in U (e.g., T normal and U open dense), then for every
representable morphism X→ S, the following sequence of sets is exact:

X (T ) // X (T ′) //
// X (T ′×T T ′)

where X (T )= HomS(T, X) etc.

Proof. It is enough to prove that given a morphism f : T ′→ X such that f ◦π1 = f ◦π2 : T ′×T T ′→ X ,
there exists a unique morphism h : T → X such that f = h ◦ g. By fppf-descent over U , there is a
unique h|U : U → X such that f |g−1(U ) = h|U ◦ g|g−1(U ). Consider the morphism g̃ : T̃ ′ = T ′qU → T .
The morphism f̃ = ( f, h|U ) : T̃ ′ → X satisfies f̃ ◦ π̃1 = f̃ ◦ π̃2 where π̃i denotes the projections of
T̃ ′ ×X T̃ ′→ T̃ ′. By assumption, g̃ is universally subtrusive and weakly normal. Thus, by h-descent
[Rydh 2010, Theorem 7.4], we have an exact sequence

X (T ) // X (T̃ ′) //
// X ((T̃ ′×T T̃ ′)red).

Indeed, by smooth descent we can assume that S, T and T̃ ′ are schemes so that [Rydh 2010, Theorem 7.4]
applies. We conclude that f̃ comes from a unique morphism h : T → X . �



Coherent Tannaka duality and algebraicity of Hom-stacks 1671

We now have our last general reduction result.

Proposition B.5. Let w : W → Z be a proper surjective morphism over S. Assume that Z → S has
geometrically normal fibers and W → S is flat. If HomS(W, g) is quasicompact, then so is HomS(Z , g).

Proof. We may assume that S is an integral scheme. After replacing S with an open subscheme, we may
also assume that W→ Z is flat over an open subset U ⊆ Z that is dense in every fiber over S and W×Z W
is flat over S. It remains to prove that HZ/S,g(y)→ T is quasicompact, where T is an integral scheme of
finite type over S and y : ZT → Y is a morphism. By assumption, HW/S,g(yw)→ T is quasicompact.
Now consider the sequence

HZ/S,g(y) // HW/S,g(yw)
//
// HW×Z W/S,g(yv),

where v : W ×Z W → Z is the natural map. There is a canonical morphism ϕ : HZ/S,g(y)→ E , where E
denotes the equalizer of the parallel arrows. Since HW/S,g(yw) is quasicompact (and HW×V W/S,g(yv) is
quasiseparated), the equalizer E is quasicompact. It is thus enough to show that ϕ is quasicompact. Thus,
pick a scheme T ′ and a morphism T ′→ E and let us show that HZ/S,g(y)×E T ′ is quasicompact.

By noetherian induction on T ′, we may assume that T ′ is normal. The morphism T ′ → E gives
an element of HomY (WT ′, X) such that the two images in HomY (WT ′ ×ZT ′

WT ′, X) coincide. Noting
that ZT ′ is normal, Lemma B.4 applies to WT ′→ ZT ′ and gives a unique element in HomY (ZT ′, X)=
HomT (T ′, HZ/S,g(y)). Thus, the morphism ϕT ′ : HZ/S,g(y)×E T ′→ T ′ has a section. Repeating the
argument with T ′ = Spec κ(t ′) for every point t ′ ∈ T ′, we see that ϕT ′ is injective, so the section is
surjective. It follows that HZ/S,g(y)×E T ′ is quasicompact. �

Proof of the main result.

Proof of Theorem B.1. As usual, we may assume that S is an affine integral scheme. By Lemma B.3, we
may in addition assume that Z→ S has geometrically normal fibers. Let W → Z be a proper surjective
morphism with W a projective S-scheme [Olsson 2005]. By replacing S with a dense open, we may assume
that W → S is flat. By Proposition B.5, we may replace Z with W and assume that Z is a (projective)
scheme. Repeating the first reduction, we may still assume that Z→ S has geometrically normal fibers.

As before, it remains to prove that HZ/S,g(y)→ T is quasicompact, where T is an integral S-scheme
of finite type and y : ZT → Y is an S-morphism. Hence, it suffices to prove the following claim.

Claim. Let S be integral. If Z → S is projective with geometrically normal fibers and q : Q→ Z is
representable with affine fibers, then RZ/S(Q)→ S is quasicompact.

Proof of Claim. Let Q = SpecZ (q∗OQ) and let Q→ Q→ Z be the induced factorization. Since Q→ Z
has affine fibers, Q→ Q is an isomorphism over an open dense subset U ⊆ Z . After replacing S with a
dense open subscheme, we may assume that U is dense in every fiber over S. Since RZ/S(Q)→ S is affine
[Hall and Rydh 2015b, Theorem 2.3(i)], it is enough to prove that RZ/S(Q)→ RZ/S(Q) is quasicompact.
We may thus replace Q, Z , U and S with Q×Q (Z ×S RZ/S(Q)), Z ×S RZ/S(Q), U ×S RZ/S(Q) and
RZ/S(Q). We may thus assume that Q→ Z is an isomorphism over U . �



1672 Jack Hall and David Rydh

Since Q is an algebraic space, there exists a finite surjective morphism Q̃→ Q such that Q̃ is a scheme.
In particular, there is a finite field extension L/K (U ) such that the normalization of Q in L is a scheme.
Take a splitting field L ′/L and let Z ′ be the normalization of Z in L ′. Then Q′ := (Q×Z Z ′)norm=Qnorm/L ′

is a scheme. By replacing S with a normalization in an extension of K (S) and shrinking, we may assume
that Z ′→ S and Q′→ S are flat with geometrically normal fibers. By Proposition B.5, it is enough to
prove that RZ ′/S(Q×Z Z ′) is quasicompact.

There is a natural morphism RZ ′/S(Q′)→ RZ ′/S(Q×Z Z ′), which we claim is surjective. To see this,
we may assume that S is the spectrum of an algebraically closed field. Then Z ′ and Q′ are normal and
any section Z ′→ Q×Z Z ′ lifts uniquely to a section Z ′→ Q′. Indeed, Z ′×Q×Z Z ′ Q′→ Z ′ is finite and
an isomorphism over U , hence has a canonical section. We can thus replace Q and Z with Q′ and Z ′

and assume that Q is a scheme.
Since Q is a scheme, it is locally separated; hence, there is a U -admissible blow-up Z ′→ Z such

that the strict transform Q′ → Z ′ of Q → Z is étale [Raynaud and Gruson 1971, Théorème 5.7.11].
After shrinking S, we may assume that Z ′→ S is flat. Then since U ⊆ Z ′ remains dense after arbitrary
pull-back over S, we have that

RZ ′/S(Q×Z Z ′)= RZ ′/S(Q′).

Replacing Q→ Z with Q′→ Z ′ (Proposition B.5), we may thus assume that Q→ Z in addition is étale.
Finally, we note that the étale morphism Q→ Z corresponds to a constructible sheaf on ZÉt and that

RZ/S(Q) is nothing but the étale sheaf fÉt,∗Q. By a special case of the proper base change theorem
[SGA 43 1973, XIV.1.1], fÉt,∗Q is constructible, so RZ/S(X)→ S is of finite presentation.

For the second part of the theorem on groups: let T be the spectrum of an algebraically closed field
and let y : ZT → Y be a morphism. By the first part HZ/S,g(y)' RZT /T (Q) is then a group scheme G of
finite type over T , where Q= X×Y ZT . Let K =Gant be the largest antiaffine subgroup of G; it is normal,
connected and smooth and the quotient G/K is affine [Demazure and Gabriel 1970, Section III.3.8].

The universal family G×T ZT → Q is a group homomorphism and induces a group homomorphism
K ×T ZT → Q. It is enough to show that this factors through the unit section of Q→ ZT , because this
forces K = 0. Note that for every stack W → T , the pull-back K ×T W →W is an antiaffine group in
the sense that the push-forward of OK×T W is OW (flat base change).

We will now use the results on finitely presented filtrations in Appendix A Since Q → ZT has
affine fibers, there is a finitely presented filtration (ZT,i ) of ZT with strata Vi = ZT,i \ ZT,i−1 such that
Q×ZT Vi → Vi are affine for every i . By Chevalley’s theorem, Q×ZT V [n]i → V [n]i is affine for every i
and n ≥ 0. Since K ×T V [n]i → V [n]i is antiaffine, it follows that K ×T V [n]i → Q×ZT V [n]i factors through
the unit section V [n]i → Q×ZT V [n]i for every i and n.

Let E be the equalizer of K ×T ZT → Q and the constant map K ×T ZT → Q to the unit. The above
discussion shows that the monomorphism E → K ×T ZT is an isomorphism over every infinitesimal
neighborhood V [n]i of every stratum Vi , hence an isomorphism (Proposition A.3, using that the filtration
is separating since ZT is noetherian). �
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