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We define a theta operator on p-adic vector-valued modular forms on unitary groups of arbitrary signature,
over a quadratic imaginary field in which p is inert. We study its effect on Fourier–Jacobi expansions and
prove that it extends holomorphically beyond the µ-ordinary locus, when applied to scalar-valued forms.
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Introduction

Let E be a quadratic imaginary field and p a prime which is inert in E . The purpose of this article is
to define a theta operator 2 for p-adic vector-valued modular forms on unitary Shimura varieties of
arbitrary signature associated with the extension E/Q, and prove some fundamental results concerning it.
Specifically, we prove a formula for the action of2 in terms of Fourier–Jacobi expansions (Theorem 3.2.5).
We also prove that 2 extends to a holomorphic operator outside the µ-ordinary locus, when acting on
scalar-valued modular forms in characteristic p (Theorems 4.2.3 and 4.3.2).

When the prime p is split in E , general points on the special fiber of the Shimura variety parametrize
ordinary abelian varieties. A theta operator, and a whole array of differential operators derived from it,
were defined in this context in Eischen’s thesis [2012]. Her construction was generalized in [Eischen et al.
2018] to unitary Shimura varieties associated with a general CM field, but still under the ordinariness
assumption. In their work, these authors circumvent the study of 2 on Fourier–Jacobi expansions by
expressing it in Serre–Tate coordinates at CM points.

“Ordinariness” is a strong assumption. Over the ordinary locus, it provides a unit-root splitting of the
Hodge filtration in the cohomology of the universal abelian variety. This allows one to extend Katz’s
approach to 2 [1977]. The unit-root splitting serves as a p-adic replacement for the Hodge decomposition
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over the complex numbers, which underlies the construction of similar C∞-differential operators of
Ramanujan and of Maass and Shimura [Shimura 2000, Section III].

In [de Shalit and Goren 2016], we defined a 2-operator on unitary modular forms of signature (2, 1)
and determined its effect on q-expansions, for p inert in the quadratic imaginary field E . The main
obstacle in this case was that the abelian variety parametrized by a general point of the special fiber of the
Shimura variety is not ordinary anymore, but so-called µ-ordinary, and its cohomology does not admit
a unit-root splitting. Our approach there, adopted also in the present paper, is to make systematic use
of Igusa varieties; we first define the theta operator on them, and show that it descends to the Shimura
variety.

Recently, we have learned of the work of Ellen Eischen and Elena Mantovan [2017] in which they
construct the same differential operators in the µ-ordinary (p inert) case. Their method is closer to the
original idea of Katz, but they replace the unit-root splitting by slope filtration splitting of F-crystals. Their
construction is more general than ours, as it applies to unitary Shimura varieties associated with a general
CM field. They apply their differential operators to the study of p-adic families of modular forms in the
spirit of Serre, Katz and Hida. Their work should have applications to questions of over-convergence,
construction of p-adic L-functions and Iwasawa theory. However, the issues addressed in the present
paper, the effect of 2 on Fourier–Jacobi expansions and its holomorphic extension beyond the µ-ordinary
locus, are not considered there.

We now provide some background and motivation for the study undertaken in this paper. The theta
operator for elliptic modular forms is related to an operator already defined by Ramanujan. On q-
expansions it is given by

f =
∑

n

anqn
7→2( f )=

∑
n

nanqn.

Over the complex numbers, this operator does not preserve the space of holomorphic modular forms.
However, viewed at the level of q-expansions for p-adic, or mod p, modular forms, it does, at least when
one has reasonable demands: in characteristic p one has to multiply 2( f ) by h, the Hasse invariant,
which is a modular form of weight p−1 vanishing outside the ordinary locus; p-adically one has to be
content with working merely over the ordinary locus.

These aspects were present from the very start in the work of Swinnerton-Dyer [1973] and Serre
[1973a; 1973b]. In fact, already in [Serre 1973a], motivated by relation to Galois representations, Serre
investigates the notion of filtration. The filtration of a q-expansion of a mod p modular form is the
minimal weight in which one may find a modular form with that q-expansion; one is interested in its
variation under applications of 2, which at the level of Galois representations corresponds to a cyclotomic
twist. Following closely on the heels of these developments, Katz [1977] gave a geometric construction
of 2 on (essentially) all modular curves with good reduction at p.

Not much later, Jochnowitz [1982] studied 2-cycles. The basic idea is simple. If g = 2( f ) has
filtration w0, the series of filtrations wi of 2i (g), i = 0, 1, . . . , p− 1, is a collection of weights that is
generally increasing, but not always, because wp−1 = w0. The question of the variation of the filtration
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along the cycles is interesting and has important applications. See [Gross 1990; Jochnowitz 1982]. Further
deep uses of the 2-operator to over-convergence and classicality of p-adic modular forms were given in
[Coleman 1996; Coleman et al. 1995].

Katz [1978, Section II] studied such an operator for Hilbert modular forms associated to a totally real
field L , and in fact enriched the theory by introducing g = [L :Q] basic theta operators. These operators
were instrumental in his construction of p-adic L-functions for CM fields via the Eisenstein measure. In
that work, as in the case of modular curves, strong use is made of the behavior of de Rham cohomology
and the unit root splitting over the ordinary locus. The study of these operators was further developed
by Andreatta and the second author [Andreatta and Goren 2005], who constructed mod p versions of
them by means of the Igusa variety, and provided some results on filtrations, 2-cycles and relations to
cyclotomic twists.

It seemed a natural idea at that point to extend the theory of the theta operator to other Shimura varieties
of PEL type. However, two obstacles arise:

(i) The abelian variety classified by a general point of the Shimura variety in positive characteristic may
not be ordinary anymore. In particular, its de Rham cohomology may not admit a unit root splitting.

(ii) The natural definition takes modular forms, even if scalar-valued, to vector-valued modular forms.

Bearing in mind the Kodaira–Spencer isomorphism, which is involved in the definition of2, the second
problem could be anticipated. In the Hilbert modular case, it is the abundance of endomorphisms that
allows one to return to scalar-valued modular forms. In spite of these difficulties, progress has been made
on other Shimura varieties: As Eischen had already remarked in her thesis, her construction generalizes
almost immediately to the symplectic case. Panchishkin and Courtieu discussed similar operators for
Siegel modular forms in [Courtieu and Panchishkin 2004, Sections 2 and 3; Panchishkin 2005]. For
different aspects in the symplectic case see the papers by Böcherer–Nagaoka [2007] and Ghitza and
McAndrew [2016], and additional references therein. For other cases, see the work of Johansson [2013].

Our construction of the theta operator via the Igusa tower was motivated by Gross’ construction [1990].
For an application of the Igusa tower to the study of vector-valued p-adic Siegel modular forms see
[Ichikawa 2014].

The contents of this paper are as follows. Let E be a quadratic imaginary field, p a rational prime that
is inert in E and κ =OE/(p) its residue field. Let n ≥m be positive integers. Fixing additional data, one
obtains a scheme S over OE,(p) that parametrizes abelian schemes with OE -action of signature (n,m),
endowed with a principal polarization and level structure. Its complex points are a union of Shimura
varieties associated to the unitary group GU(n,m). Let S→ Spec(κ) denote its special fiber, and let Ss

be the base change of S to Ws =Ws(κ).
In Section 1 we collect background material and definitions, and in particular define the type of

vector-valued p-adic modular forms that will be considered in this paper. Automorphic vector bundles
over S correspond to representations of the group GLm ×GLn , and there are two “basic” vector bundles,
Q and P , corresponding to the standard representations of the two blocks, from which all others are
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derived.1 Characteristic p holds its own idiosyncrasies and there are 3 vector bundles, denoted Q,P0

and Pµ, from which all p-adic automorphic vector bundles Eρ are derived by representation-theoretic
constructions; in particular, ρ refers here to a representation of GLm ×GLm ×GLn−m . We briefly explain
the origin of these vector bundles. The relative cotangent bundle of the universal abelian variety A→ S
decomposes according to signatures, providing us with vector bundles P,Q of ranks n,m, respectively.
Over the (µ-)ordinary locus Sord

s of Ss , P admits a filtration 0→ P0→ P→ Pµ→ 0. The vector bundle
Eρ lives over Sord

s and is obtained by “twisting” ρ by the triple (Q,Pµ,P0) (see page 1841 for details). A
mod-ps modular form of weight ρ is defined to be a section of Eρ over Sord

s .
In Section 2 we define the Igusa tower over Sord

s and study its properties. The key fact about the Igusa
tower is that the vector bundles P0,Pµ and Q (unlike P!) are all canonically trivialized over it. To be
precise, much as in [Katz 1975], the Igusa tower is a double limit of schemes {Tt,s | t, s ≥ 1}, where Tt,s

is a scheme over the truncated Witt vectors Ws of length s, and whenever t ≥ s a trivialization as above
is obtained. Consequently, we are able to propagate, by linear algebra constructions alone, the trivial
connection d :OT →�T/Ws for T = Tt,s, t ≥ s, to a connection

2̃ : Eρ→ Eρ ⊗�T/Ws
∼= Eρ ⊗P ⊗Q,

the last isomorphism stemming from the Kodaira–Spencer map. When we follow this map by the
projection Eρ⊗P⊗Q→ Eρ⊗Pµ⊗Q, and combine it with pull back of modular forms under T → Sord

s ,
we obtain an operator

2 : H 0(Sord
s , Eρ)→ H 0(Sord

s , Eρ ⊗Pµ⊗Q).

This operator can be iterated and combined with representation-theoretic operations as discussed in the
end of Section 2, to produce an array of differential operators Dκ ′

κ as in [Eischen et al. 2018; Eischen and
Mantovan 2017].

The initial parts of Section 3 are a review of the theory of toroidal compactifications for the case at
hand. We follow Faltings and Chai [1990], that relies on the seminal work of Mumford and his school,
Skinner and Urban [2014], and the definitive volume by Lan [2013]. In particular, the reader will find a
precise explanation of the meaning of the Fourier–Jacobi expansion of a vector-valued modular form

f =
∑

ȟ∈Ȟ+

a(ȟ), q ȟ .

See page 1857. In this notation our first main theorem states the following.

Theorem (Theorem 3.2.5). Let ξ be a rank-m cusp. Let f be a global section of Eρ and
∑

h∈Ȟ+ a(ȟ)q ȟ its
Fourier–Jacobi expansion at ξ . Then the section 2( f ) of Eρ ⊗Pµ⊗Q has the Fourier–Jacobi expansion

2( f )=
∑

ȟ∈Ȟ+

a(ȟ)⊗ ȟ · q ȟ .

1As the Levi factor of the appropriate parabolic in GU(n,m)C is Gm × GLm ×GLn we could, in principle, take also
representations that are nontrivial on the first factor. However, we will have no need for this greater generality in this paper and
so, here and in the sequel, we will consider automorphic vector bundles associated to representations of GLm ×GLn only.
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The analogous result for the Fourier–Jacobi expansion at a non maximally degenerate cusp (of rank<m)
should involve also theta operators on lower-rank Shimura varieties acting on the coefficients. For most
practical purposes, however, e.g., for a q-expansion principle, rank m cusps suffice.

In Section 4 we consider the extension of the operator2 to the complement of theµ-ordinary locus. This
we are able to do, so far, only for scalar-valued modular forms. The proof requires a partial compactification
of a particular Igusa variety as in [de Shalit and Goren 2016], and delicate computations with Dieudonné
modules in the spirit of our recent work [de Shalit and Goren 2018]. Let L= detQ and k ≥ 0.

Theorem (Theorems 4.2.3 and 4.3.2). Consider the operator

2 : H 0(Sord,Lk)→ H 0(Sord,Lk
⊗Q(p)

⊗Q).

Then 2 extends holomorphically to an operator

2 : H 0(S,Lk)→ H 0(S,Lk
⊗Q(p)

⊗Q).

Finally, in Section 5 we introduce the notion of 2-cycles and recall interesting phenomena observed in
[de Shalit and Goren 2016].

Our paper and the work of Eischen and Mantovan suggest several directions in which the theory can
be further developed. In addition to those mentioned in [Eischen and Mantovan 2017] we suggest the
following problems:

(i) Provide a formula for the Fourier–Jacobi expansion and the theta operator 2 at general cusps.

(ii) Study the extension of 2 to a holomorphic operator for general vector-valued unitary modular forms.

(iii) Develop a theory of mod p operators, such as U and V and characterize the kernel of 2 in terms
of V , see [Katz 1977].

(iv) Study 2-cycles in relation to mod p Galois representations.

1. Background

1.1. The Shimura variety.

Linear algebra. We review some background and set up standard notation. Let E be a quadratic imaginary
field, embedded in C, 0≤ m ≤ n and 3=On+m

E . Let

In,m =

 Im

In−m

Im

 (1.1.1)

where Il is the unit matrix of size l, and introduce the perfect hermitian pairing

(u, v)= t uIn,mv (1.1.2)

on 3. Let
G = GU(3, ( · , · ))
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be the group of unitary similitudes of 3, regarded as a group scheme over Z, and denote by ν : G→ Gm

the similitude character. For any commutative ring R

G(R)= {g ∈ GLn+m(OE ⊗ R) | ∀u, v ∈3⊗ R, (gu, gv)= ν(g)(u, v)}.

Then G(R)= GU(n,m) is the general unitary group of signature (n,m), and G(C)' GLn+m(C)×C×.
Let δE be the unique generator of the different dE of E with Im(δE) > 0. The polarization pairing

〈u, v〉 = TrE/Q(δ
−1
E (u, v)) (1.1.3)

is then a perfect alternating pairing 3×3→ Z satisfying 〈au, v〉 = 〈u, av〉 (a ∈ E).
Let p be an odd prime which is inert in E , and fix once and for all an embedding Q⊂Qp. Let E p be

the completion of E and Op its ring of integers. As −1 is a norm from E p to Qp, one easily checks that
G/Op is quasisplit. In fact, over Op the lattice 3p = Zp⊗3=On+m

p , equipped with the hermitian form
(1.1.2), is isomorphic to the same lattice equipped with the pairing t u Jn+mv, where by Jl we denote the
matrix with 1’s on the antidiagonal and 0’s elsewhere. This will be useful later.

If R is an OE,(p)-algebra then any R-module M endowed with a commuting OE - action decomposes
according to types,

M = M(6)⊕M(6),

where M(6) is the R-submodule on which OE acts via the canonical homomorphism

6 :OE ↪→OE,(p)→ R,

while M(6) is the part on which it acts via the conjugate homomorphism 6. Indeed, it is enough to
decompose OE ⊗ R = R(6)× R(6) as an OE -algebra. The same notation will be applied to coherent
sheaves with OE -action on schemes defined over OE,(p).

We denote by κ the field OE/pOE of p2 elements.

The Shimura variety and the moduli problem. Fix an integer N ≥ 3 relatively prime to p. Let A=R×A f

be the adéle ring of Q, where A f =Q · Ẑ are the finite adéles. Let K f ⊂ G(Ẑ) be an open subgroup of
the form K f = K p K p, where K p

⊂ G(Ap) is the principal congruence subgroup of level N , and

K p = G(Zp)⊂ G(Qp),

which is a hyperspecial maximal compact subgroup at p. Let K∞⊂ G(R) be the stabilizer of the negative
definite subspace spanned by {−ei + en+i : 1≤ i ≤ m} in 3R = Cn+m , where {ei } stands for the standard
basis. This K∞ is a maximal compact-modulo-center subgroup, isomorphic to G(U (m)×U (n)). By
G(U (m)×U (n)) we mean the pairs of matrices (g1, g2) ∈ GU(m)×GU(n) having the same similitude
factor. Let K = K∞K f ⊂ G(A) and X= G(R)/K∞.

To the Shimura datum (G,X) and the level subgroup K there is associated a Shimura variety ShK . It
is a quasiprojective nonsingular variety of dimension nm defined over E . If m = n the Shimura variety
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may even be defined over Q, but we still denote by ShK its base-change to E . The complex points of
ShK are identified, as a complex manifold, with

ShK (C)= G(Q)\G(A)/K .

Following Kottwitz [1992] we define a scheme S over OE,(p). This S is a fine moduli space whose
R-points, for every OE,(p)-algebra R, classify isomorphism types of tuples A = (A, ι, φ, η) where:

• A is an abelian scheme of dimension n+m over R.

• ι :OE ↪→ End(A) has signature (n,m) on the Lie algebra of A.

• φ : A−→∼ At is a principal polarization whose Rosati involution induces ι(a) 7→ ι(a) on the image of ι.

• η is an OE -linear full level-N structure on A compatible with (3, 〈 · , · 〉) and φ [Lan 2013, 1.3.6].

See [Lan 2013, Section 1.4] for the comparison of the various languages used to define the moduli
problem.

The generic fiber SE of S is, in general, a union of several Shimura varieties, one of which is ShK .
This is due to the failure of the Hasse principle for G, which can happen when m+ n is odd [Kottwitz
1992, Section 7]. We also remark that the assumption N ≥ 3 could be avoided if we were willing to use
the language of stacks. As this is not essential to the present paper, we keep the scope slightly limited for
the sake of clarity.

As shown by Kottwitz, S is smooth of relative dimension nm over OE,(p).

The universal abelian variety and its p-divisible group. By virtue of the moduli problem which it
represents, S carries a universal abelian scheme A/S equipped with a PEL structure as above. Let

S = S ×Spec(OE,(p)) Spec(κ)

be the special fiber of S. Recall that for any geometric point x : Spec(k)→ S the p-divisible group of
A =Ax carries a canonical filtration by p-divisible groups

Fil0 = A[p∞] ⊃ Fil1 = A[p∞]0 ⊃ Fil2 = A[p∞]µ ⊃ 0, (1.1.4)

where gr2
= A[p∞]µ is multiplicative, gr1

= A[p∞]0/A[p∞]µ is local-local and gr0
= A[p∞]/A[p∞]0

is étale. Over Spec(k) this filtration is even split, i.e., A[p∞] is uniquely expressible as a product of
multiplicative, local-local and étale p-divisible groups, but this fact is special for algebraically closed (or
perfect) fields, while a filtration like (1.1.4) often exists over more general bases.

The special fiber S contains an open dense subset called the µ-ordinary locus, [Wedhorn 1999; Moonen
2004, Theorem 3.2.7], which we denote Sord. It is characterized by the fact that for any geometric point x
of S, x lies in Sord if and only if the height of A[p∞]µ is 2m, which is as large as it can get. Equivalently,
the Newton polygon of A[p∞] has slopes 0, 1

2 and 1 with horizontal lengths 2m, 2(n − m) and 2m
respectively, which is as low as it can get. In fact, Wedhorn and Moonen show that the isomorphism type
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of A[p∞], as a polarized OE -group, is the same for all x ∈ Sord(k):

A[p∞] ' (d−1
E ⊗µp∞)

m
×Gn−m

k × (OE ⊗ (Qp/Zp))
m .

Here Gk is the p-divisible group denoted by G1/2,1/2 in the Dieudonné-Manin classification. It is the
unique height-2 one-dimensional connected p-divisible group over k. It is well-known that the ring Op

acts as endomorphisms of Gk . We normalize this action so that the induced action of Op on the Lie
algebra of Gk is via 6 : Op � κ ⊂ k, and this pins down Gk as an OE -group up to isomorphism. We
polarize it fixing an isomorphism of Gk with its Serre dual. The appearance of the inverse different in
the first factor is a matter of choice, and is meant to allow a more natural way to write the Weil pairing
between the first and last factors, namely

〈a⊗ x, b⊗ y〉 = TrE/Q(ab)〈x, y〉.

Over Sord, a filtration like (1.1.4) exists globally, but is far from being split now [de Shalit and Goren
2017, Proposition 2.10]. Nevertheless, its graded pieces are, locally in the proétale topology, isomorphic
to the constant p-divisible groups (d−1

E ⊗µp∞)
m , Gn−m

k and (OE ⊗ (Qp/Zp))
m , and the isomorphisms

can be taken to respect the endomorphisms and the polarization. This is well-known for gr0 and gr2.
For gr1 it follows from the rigidity of isoclinic Barsotti–Tate groups with endomorphisms, namely from
the fact that the universal deformation ring of (Gk, ι) where ι : Op ↪→ End(Gk), is W (k) ([Moonen
2004, Corollary 2.1.5], see [loc. cit., Section 3.3.1] for the polarization). This result implies that for
any geometric point x ∈ Sord(k), gr1 A[p∞] becomes isomorphic over ÔS,x to Gn−m

k , with its additional
structures of endomorphisms and polarization. By Artin’s approximation theorem [1969] they become
isomorphic already over the strict henselization Osh

S,x , which means that they are locally isomorphic in the
proétale topology.

The basic vector bundles on S. The Hodge bundle ω = ωA/S is the pull-back via the zero section
eA : S→A of the relative cotangent sheaf �A/S of the universal abelian scheme. It decomposes as

ω = ω(6)⊕ω(6)= P ⊕Q

according to types. Thus, rk(P)= n and rk(Q)= m.

Lemma 1.1.1. The line bundles det(P) and det(Q) are isomorphic over S.

Proof. The proof is similar to [de Shalit and Goren 2017, Proposition 1.3]. Automorphic vector bundles
over the generic fiber SE correspond functorially to representations of the group GLm ×GLn , as discussed
below on page 1842. The vector bundles det(Q) and det(P) correspond to the determinant of GLm and the
inverse of the determinant of GLn . Their ratio therefore corresponds to the determinant of GLm ×GLn .
If the level subgroup K is small enough, as we always assume, then the arithmetic group by which we
divide the symmetric space to get a complex uniformization of every connected component of SC is
contained in SU(n,m). This means that over C, the automorphic line bundle corresponding to det is
trivial, hence det(P)' det(Q). From this it is easy to get the claim even over the base OE,(p). We stress
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that we do not know a direct moduli-theoretic proof of the claim in the lemma, and we do not know if the
particular isomorphism supplied by the complex analytic uniformization is defined over Q. See however
Corollary 1.1.3 below. �

Over the special fiber S we have the Verschiebung homomorphism V : ω→ ω(p) induced by the
Verschiebung isogeny Ver :A(p)→A. As V commutes with the endomorphisms it maps P to Q(p) and
Q to P(p). We denote the restriction of V to P (resp. Q) by VP (resp. VQ). The homomorphism

H = V (p)
P ◦ VQ :Q→Q(p2)

is called the Hasse matrix. We let L= det(Q), a line bundle. Then

h = det(H) : L→ L(p
2)
' Lp2

(1.1.5)

is a global section of Lp2
−1 called theµ-ordinary Hasse invariant [Goldring and Nicole 2017, Appendix B].

Here we used the well-known fact that for a line bundle L over a scheme in characteristic p, there is a
canonical isomorphism between L(p) and Lp, sending the base-change s(p) = 1⊗ s of the section s under
the absolute Frobenius of S to s⊗ · · ·⊗ s. It is an important fact that h 6= 0 precisely on Sord. If n > m
the zero-divisor of h is even reduced, so equals Sno

= S \ Sord with its reduced subscheme structure. A
proof of this fact may be found in [Wooding 2016, Proposition 7.2.11] but can also be extracted from the
Dieudonné module computations in Theorem 4.1.3 below.

If n = m this is not true; h vanishes then on Sno to order p+ 1. There is a variant, though, that will be
useful for us in the study of the holomorphicity of the theta operator.

Lemma 1.1.2. Let n = m. Consider the maps of line bundles

hQ = det(VQ) : det(Q)→ det(P)(p) = det(P)p and hP = det(VP) : det(P)→ det(Q)(p) = det(Q)p.

Both hP and hQ vanish precisely on Sno with multiplicity 1 and the following relation holds:

h = h p
P ◦ hQ.

Proof. The claim concerning the vanishing of hP and hQ follows again from [Wooding 2016, Propo-
sition 7.2.11] or from the computations in Theorem 4.3.2 below. The relation h = h p

P ◦ hQ is a direct
consequence of the definition. �

Although the following corollary is weaker than Lemma 1.1.1, it is of interest because its proof is
entirely moduli-theoretic.

Corollary 1.1.3. Let S be of arbitrary signature (n,m). There is an isomorphism

det(P)p+1
' det(Q)p+1.

Proof. Consider first the case of equal signatures (m,m). By comparing divisors of global sections, we
obtain from the last lemma an isomorphism of line bundles det(P)p

⊗ det(Q)−1
' det(Q)p

⊗ det(P)−1,
implying the corollary in this case.
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For S of signature (n,m), and a geometric point x of S, we can embed S in a suitable Shimura variety
S of signature (n+m, n+m) by a morphism given on objects by A 7→ A× Bx , where Bx is the abelian
variety corresponding to x with the twisted OE structure. One easily checks that the pull-back of the
relation det(P)p+1

' det(Q)p+1 on S gives the same relation on S. �

Coming back to the case m = n we have the following lemma.

Lemma 1.1.4. Over an algebraic closure of κ , we may fix the isomorphism det(P)' det(Q)= L so that
hP = hQ, hence h = h p+1

Q .

Proof. Fix a smooth toroidal compactification S of S. As the abelian scheme A/S extends with the
OE -action to a semiabelian scheme over the toroidal compactification S [Lan 2013, Theorem 6.4.1.1] the
vector bundles P and Q, as well as the homomorphisms hP and hQ, extend to S as well. In Corollary 3.1.5
below we show that h does not vanish on any irreducible component of the boundary S \ S. The same
therefore must be true for hP and hQ. It follows that

div(hP)= div(hQ)

as divisors on the smooth, complete variety S. Fix any isomorphism as in Lemma 1.1.1. Having the
same divisors, the sections hP and hQ of Lp−1 are equal up to a multiplication by a nowhere vanishing
function on S, hence equal up to a scalar on each connected component of S. By extracting a p− 1 root
from this scalar, we can normalize the isomorphism det(P)' det(Q) so that hP = hQ. �

We remark that for more general Shimura varieties of PEL type the construction of the Hasse invariant
requires substantial work and is due to Goldring and Nicole [2017].

The vector bundles P0 and Pµ. The geometric fibers of the subsheaf

P0 = ker(VP)⊂ P

have constant rank n−m over an open subset S] containing the ordinary stratum

Sord
⊂ S] ⊂ S.

As the base is nonsingular, this implies that over S] this P0 is a vector-subbundle of P , hence so is the
quotient

Pµ = P/P0.

In fact, VP induces there an isomorphism

VP : Pµ 'Q(p), (1.1.6)

because as long as its kernel has rank n−m, VP must be surjective. The open subscheme S] is of much
interest, and was analyzed in [de Shalit and Goren 2018]. It is the union of Ekedahl–Oort strata [Oort
2001; Viehmann and Wedhorn 2013] that can be determined precisely. When m = 1, for example, its
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complement in S is zero-dimensional (the superspecial points). When m < n this S] contains a unique
Ekedahl–Oort stratum Sao of dimension mn− 1. This will be used later on in our work.

The vector bundles P0, Pµ and Q will turn out to be the building blocks of the mod-p automorphic
vector bundles over Sord. See page 1842 for a discussion why we need to substitute the two subquotients
P0 and Pµ in lieu of the classical automorphic vector bundle P .

It is a remarkable fact that P0 and Pµ can be defined on the ordinary stratum also modulo ps for any
s ≥ 1, although the Verschiebung isogeny is defined only in characteristic p. One way to see it is as
follows. Let R =OE,(p) and

Ws =Ws(κ)=W (κ)/ps W (κ)= R/ps R

(we identify the Witt vectors W = W (κ) with the completion Op of R). Denote by Sord
s the open

subscheme of Ss = S×Spec(R) Spec(R/ps R) whose underlying topological space is Sord. The filtration of
the p-divisible group of A by its connected and multiplicative parts extends uniquely from Sord to Sord

s .
This is well-known for the connected part, and by Cartier duality follows also for the multiplicative
part. It is crucial for us that the filtered pieces in (1.1.4) have constant height along Sord

s . Moreover,
by the same result of Moonen quoted above [2004, Corollary 2.1.5] the graded pieces of A[p∞] with
their additional structures of endomorphisms and polarization become isomorphic, locally in the proétale
topology on Sord

s , to the constant p-divisible groups (d−1
E ⊗µp∞)

m , Gn−m and (OE ⊗Qp/Zp)
m . (See

Section 2.1 below for the p-divisible group G over an arbitrary base.) In other words, not only modulo p
but modulo ps as well, we can trivialize gri A[pt

] with the additional structures after passing to a finite
étale covering. This remark will be instrumental in the construction of the big Igusa tower below.

Coming back to the definition of P0 and Pµ over Sord
s , if t ≥ s the exact sequence

0→A[pt
] →A pt

−→A→ 0 (1.1.7)

shows that Lie(A[pt
]/Ss)→ Lie(A/Ss) is an isomorphism.2 The filtration of A[pt

] induces (over Sord
s

only) a filtration of its Lie algebra by OSs -subbundles, hence a similar filtration of Lie(A/Ss). By duality
we get (again over Sord

s ) a filtration of ω by subbundles, which on its 6-part yields the exact sequence

0→ P0→ P→ Pµ→ 0. (1.1.8)

For future reference we record the fact that

P0 = ωA[p∞]0/A[p∞]µ, Pµ = ωA[p∞]µ(6), Q= ωA[p∞]µ(6).

We do not know how to extend (1.1.8) in any intelligible way to the s-th infinitesimal thickening of S],
as we did when s = 1 using Verschiebung.

2For any group scheme G over T we define Lie(G/T ) to be the kernel of the map “ mod ε” from G(T [ε]) to G(T ), where
ε2
= 0.
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1.2. p-adic automorphic vector bundles.

Representations of GLm . We review some well-known facts from the representation theory of GLm . Let
R be any ring, and RepR(GLm) the category of algebraic representations of GLm on projective R-modules
of finite rank. If ρ ∈RepR(GLm), we denote by ρ(R) the associated projective R-module, endowed with a
left GLm(R) action. Given an R-scheme S, the functoriality in R allows us to regard ρ(OS)=OS⊗Rρ(R)
as a vector bundle with a left GLm(OS) action on S. The category RepR(GLm) is a rigid tensor category,
and if R is a field, it is also abelian. Some special objects of the category are the standard representation
st, and the symmetric and exterior powers Symr st and ∧r st of st, defined as suitable quotients of ⊗r st.

If R is a field of characteristic 0, the category is even semisimple. It is well known that the simple
objects are then classified by dominant weights. If λ= (λ1 ≥ · · · ≥ λm) (λi ∈ Z) is a dominant weight of
GLm , the corresponding object is

ρλ = Symλ1−λ2(st)⊗Symλ2−λ3(∧2 st)⊗ · · ·⊗Symλm (∧m st). (1.2.1)

Note that ∧m st is of rank 1, so Symλm (∧m st) = ⊗λm (∧m st) makes sense even if λm is negative. In
Herman Weyl’s construction of ρλ we assume first that λm ≥ 0, view λ as a partition (Young tableau) of
size d =

∑m
i=1 λi , project⊗d st onto a subrepresentation using the Young symmetrizer cλ= aλbλ ∈Z[Sd ],

and then the resulting quotient is a model for ρλ, [Fulton and Harris 1991, Chapter 6]. When λ is not
necessarily positive, one reduces to the positive case by a twist by a power of the determinant ∧m st.

Recall, however, that over a field of characteristic p the ρλ, defined directly by (1.2.1), are in general
reducible (e.g., m = 2 and λ= (p ≥ 0)), and the category RepR(GLm) is not semisimple. As the Young
symmetrizers are only quasiidempotents (i.e., c2

λ = nλcλ for some integer nλ called the hook length of λ,
which might be divisible by p) using them to study the representations of GLm becomes tricky.

A more geometric construction of ρλ that works over any ground ring R, hence produces an element of
RepR(GLm) functorially in R, is via the Borel–Weil theorem — see [Fulton and Harris 1991, Claim 23.57]
over C. Jantzen [2003, II Section 5], gives this construction of ρλ over an arbitrary field, of any
characteristic, and not necessarily algebraically closed. It is however clear that the construction is valid
over any ring R, and is furthermore functorial in R. Let λ= (λm, . . . , λ1) be the antidominant weight
for the standard torus of GLm , which is the opposite of λ. Let G = GLm and let B be the standard
upper-triangular Borel subgroup. Let λ denote also the character of B obtained by first projecting modulo
the unipotent radical U to the torus and then applying λ. On the flag variety G/B define the line bundle
Lλ by

Lλ = G×B λ.

This is the quotient of G × A1 under the equivalence relation (gb, t) ∼ (g, λ(b)t) (b ∈ B). A global
section of Lλ is identified with a map σ : G→ A1 satisfying σ(gb)= λ(b)−1σ(g). In particular, letting
w be the element of maximal length in the Weyl group (the matrix with 1’s on the antidiagonal), we may
define such a section on the (open dense) big cell UwB ⊂ G by

σ0(uwb)= λ(b)−1. (1.2.2)
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The Borel–Weil theorem says that if λ is dominant, then (a) Lλ is ample and Vλ = H 0(G/B, Lλ) 6= 0,
(b) if we let G act on Vλ by left translation, i.e., (gσ)(g′)= σ(g−1g′), this becomes a model for ρλ, and
finally (c) the σ0 of (1.2.2) extends to a regular section on all of G/B, the group B ⊂ G acts on it via the
character λ, and up to a scalar, σ0 is the unique highest weight vector in ρλ.

This geometric formulation makes it evident that ρλ so defined is functorial in R. Moreover, the linear
functional

9λ : σ 7→ σ(w) ∈ A1 (1.2.3)

is easily seen to be in HomB(ρλ|B, λ) where B is the lower triangular Borel. What’s more, since
Lλ+µ = Lλ⊗ Lµ there is a canonical map (multiplication of global sections)

mλ,µ : ρλ⊗ ρµ→ ρλ+µ, (1.2.4)

which is compatible with the functionals 9λ,9µ and 9λ+µ. From now on, whenever we write ρλ or 9λ
we shall have this specific model in mind.

We finally remark that if R is an Fp-algebra, and φ : R→ R is the absolute Frobenius φ(x)= x p, then
every representation ρ ∈ RepR(GLm) admits a Frobenius twist ρ(p) = φ∗(ρ). In concrete terms, locally
on R we may write ρ in matrices, using a basis of the underlying projective module, and ρ(p) is the
representation obtained by raising all the entries of the matrices to power p.

Twisting a representation by a vector bundle. Let S be a scheme over R. For every vector bundle F of
rank m over S we let Isom(Om

S ,F) be the right GLm-torsor of isomorphisms between Om
S and F , the

group scheme GLm/S acting on the right by precomposition. If ρ ∈ RepR(GLm) we consider the vector
bundle

Fρ = Isom(Om
S ,F)×

GLm ρ(OS)

(contracted product). One should think of Fρ as “ρ twisted by F”. For example, for a dominant weight λ,

Fρλ = Symλ1−λ2(F)⊗Symλ2−λ3(∧2F)⊗ · · ·⊗Symλm (∧mF).

What we have constructed is a tensor functor ρ  Fρ from RepR(GLm) into the category VecS of
vector bundles over S. These functors are compatible with base-change of the underlying scheme S,
and with isomorphisms F1 ' F2 between rank m vector bundles. Thus if over S′→ S the pull-backs
of two vector bundles Fi become isomorphic via an isomorphism ε, this ε induces, over S′, functorial
isomorphisms ερ : F1,ρ ' F2,ρ for every ρ ∈ RepR(GLm).

Note that if R is an Fp-algebra, then Fρ(p) = F (p)
ρ , where for any sheaf F over S we denote by

F (p)
=8∗SF its pull-back by the absolute Frobenius of S. By F (p)

ρ we mean either (Fρ)(p) or (F (p))ρ ,
the two being canonically identified.
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The above generalizes to representations of a product of any number of linear groups, say M =∏r
i=1 GLmi . Given ρ ∈ RepR(M) and vector bundles Fi of ranks mi we let

Eρ =
r∏

i=1

Isom(Omi
S ,Fi )×

M ρ(OS). (1.2.5)

We call it the vector bundle obtained by twisting ρ by the vector bundles Fi .

p-adic automorphic vector bundles over Sord
s . Classically, automorphic vector bundles on SC are defined

in the following way. Every connected component S0
C

is of the form 0 \ G(R)/K∞ where K∞ is a
maximal compact-modulo-center subgroup, and 0 an arithmetic subgroup of G(R). By a standard
procedure due to Harish-Chandra one may embed the symmetric space X= G(R)/K∞ as an open subset
of its compact dual X̌. In our case the compact dual happens to be the Grassmannian GLn+m(C)/PC,
where PC is the standard maximal parabolic of type (m, n). (The change of variables involved in the
Harish-Chandra embedding for U (n,m) is called the Cayley transform, as it generalizes the well-known
embedding of the upper half-plane as the open unit disk in P1

C
when n = m = 1.) The Levi quotient

of PC is MC = GLm(C)× GLn(C), and the automorphic vector bundles we consider are attached to
representations ρ ∈ RepC(M).

Let such a representation ρ be given. Let PC act on ρ(C) via its quotient MC, consider the vector
bundle

GLn+m(C)×
PC ρ(C)

on X̌= GLn+m(C)/PC, and denote by Ẽρ its restriction to X. Since left multiplication by 0 commutes
with right multiplication by PC, this vector bundle descends to a vector bundle Eρ on S0

C
= 0 \X. Using

the complex analytic description of the universal abelian variety over 0 \X one checks that the standard
representations of the two blocks in M yield the vector bundles Q and P∨. Easy group theory shows
then that this complex analytic construction gives, for any ρ ∈ RepC(M), a vector bundle which may be
canonically identified with the Eρ obtained by twisting ρ by the pair of vector bundles Q and P∨, as in
the preceding paragraph.

This suggests to adopt the construction outlined on page 1841 as an algebraic construction of automor-
phic vector bundles that works equally well over the arithmetic scheme S, hence also over its special
fiber S.

For the purpose of studying p-adic vector-valued modular forms this is however not always sufficient.
In the classical complex setting, a great advantage of the construction is that Ẽρ becomes trivial on X,
hence may be described by matrix-valued factors of automorphy. In the mod-p or p-adic theory we
need an analogous covering of Sord (or Sord

s ), over which our basic building blocks, hence all the Eρ , will
be trivialized. This is crucial both for Katz’s theory of p-adic modular forms, and for the construction
of Maass–Shimura-like differential operators below. This analogue of X is the (big) Igusa tower, to be
described in Section 2.1.
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At this point the µ-ordinary case becomes fundamentally different from the ordinary one. If p is split
in E , or if p is inert but m = n, then both P and Q are trivialized over the Igusa tower and everything
works well with the usual automorphic vector bundles. However, if p is inert and m < n then P can not
be trivialized over the Igusa tower, nor on any other proétale cover. The best we can do is to trivialize its
subquotients P0 and Pµ separately. This explains why we need to start with three basic bundles Q,Pµ
and P0 over Sord

s , and why our ρ will be an element of RepR(M) with

M = GLm ×GLm ×GLn−m

rather than GLm ×GLn as over C.
After this long discussion, we can finally make the following definition.

Definition 1.2.1. Let ρ ∈ RepR(M) where M = GLm ×GLm ×GLn−m , and define Eρ on Sord
s by (1.2.5)

with (Q,Pµ,P0) replacing the Fi . We call Eρ the p-adic automorphic vector bundle of weight ρ (mod ps),
and lim←s H 0(Sord

s , Eρ) the space of p-adic (vector-valued) modular forms of weight ρ.

Remarks. (i) Note that by our convention the standard representations of the second and third factors of M
correspond to Pµ and P0, while the complex analytic standard representation of GLn corresponded to P∨.

(ii) A p-adic modular form need not come from a global section over S. It is a rigid analytic object,
defined over the affinoid which is the generic fiber of the formal completion of S along Sord. In fact, if
Pµ and P0 are “involved” in Eρ (in the precise sense that ρ does not come from a representation of the
first simple factor of M) then it does not even make sense to ask whether the modular form extends to
a global section over S, because the p-adic automorphic vector bundle does not extend there. In order
to compare classical and p-adic modular forms we make the following definition.

Definition 1.2.2. Let ρ ∈ RepR(M). We say that the p-adic automorphic vector bundle Eρ is of classical
type if ρ factors through the first factor of M .

A p-adic automorphic vector bundle of classical type is the restriction to Sord
s of a classical automorphic

vector bundle. Note however that P , an honest automorphic vector bundle on Ss , is not a p-adic
automorphic vector bundle on Sord

s (if m < n), as it can not be reconstructed from its graded pieces P0

and Pµ.

2. Differential operators on p-adic modular forms

2.1. The big Igusa tower.

The p-divisible group G. Following a long-standing tradition going back to Katz in the ordinary case, we
want to describe a certain tower of (big) Igusa varieties Tt,s , for all t, s ≥ 1. The variety Tt,s will be an
Igusa variety of level pt over OE,(p)/psOE,(p). By “tower” we mean that the reduction of Tt,s+1 modulo
ps will be identified with Tt,s , and that for a fixed s there will be compatible morphisms from level pt ′ to
level pt for all t ′ ≥ t . This “big Igusa tower” has been defined and studied, in much greater generality, in
Mantovan’s work [2005].
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To describe it, we shall have to choose a model G over W =W (κ)=Op of the p-divisible group that
becomes, over κ , the group Gκ introduced on page 1835. This choice results in freedom, which grows
with t and s, and prevents the Tt,s (unlike the small Igusa varieties, see below) from being canonically
defined. This problem will nevertheless disappear over W (κ), so the reader interested in the construction
over W (κ)/ps W (κ) only, can happily ignore the issue.

The easiest way to fix our model is to choose an elliptic curve C defined over W , with complex
multiplication by OE and CM type 6. The theory of complex multiplication guarantees that such an
elliptic curve exists, and has supersingular reduction. We then let G= C[p∞] be its p-divisible group.
Its special fiber Gκ is of local-local type, height 2 and dimension 1. The canonical polarization of the
elliptic curve supplies an isomorphism of G with its Serre dual, hence a compatible system of perfect
alternating Weil pairings (for t ≥ 1)

〈 · , · 〉 :G[pt
]×G[pt

] → µpt .

The completion Op of OE maps isomorphically onto End(G/W )⊂ End(G/κ). Furthermore, for any
W -algebra R

EndOE (G[p
t
]/R)=Op/ptOp.

We have 〈ι(a)u, v〉 = 〈u, ι(a)v〉 for every a ∈OE .

The Igusa moduli problem. If R is a Ws(κ)-algebra and A/R is fiber-by-fiber µ-ordinary, then its p-
divisible group admits a filtration like (1.1.4) whose graded pieces we label gri A[p∞]. We choose the
indices in such a way that locally in the proétale topology on Spec(R) there exist isomorphisms

ε0
: (OE ⊗Qp/Zp)

m
R ' gr0, ε1

:Gn−m
R ' gr1, ε2

: (d−1
E ⊗µp∞)

m
R ' gr2, (2.1.1)

respecting the action of OE and the pairings. Note that gr1 is self-dual, while ε0 and ε2 determine each
other. For future reference we want to make the pairings on these “model group schemes” explicit. If

α = (x1, . . . , xm, y1, . . . , yn−m, z1, . . . , zm) ∈ (OE ⊗Qp/Zp)
m
R ×Gn−m

R × (d−1
E ⊗µp∞)

m
R ,

and similarly α′ = (x ′1, . . . , x ′m, y′1, . . . , y′n−m, z′1, . . . , z′m), we define

〈α, α′〉 =

m∏
i=1

〈xi , z′m+1−i 〉

n−m∏
j=1

〈y j , y′n−m+1− j 〉

m∏
i=1

〈zi , x ′m+1−i 〉. (2.1.2)

In matrix form, writing µp∞ additively, we take, tα Jn+mα
′ where Jl is the antidiagonal matrix of size l,

and not tα In,mα
′ where In,m is the matrix (1.1.1). As remarked on page 1833, these two pairings produce

isomorphic polarized OE -groups. Thus, there is no real difference which pairing we take at this point, but
for later book-keeping purposes, we prefer the one with Jn+m .

We call ε= (ε0, ε1, ε2) a graded symplectic trivialization of the p-divisible group. A graded symplectic
trivialization of A[pt

] is a similar system of isomorphisms of the pt -torsion in the p-divisible groups,
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defined over R, which is locally étale liftable to a graded symplectic trivialization of the whole p-divisible
group.

Definition 2.1.1. The big Igusa moduli problem of level pt over Ws(κ), denoted Tt,s , classifies tuples

(A, ε)/R/Ws ,

where A ∈ Sord
s (R) and ε is a graded symplectic trivialization of A[pt

] as in (2.1.1), up to isomorphism.

The representability of this moduli problem by a scheme, denoted also Tt,s , is standard. One only
has to check that it is relatively representable over Sord

s [Katz and Mazur 1985, Chapter 4]. The maps
between the levels are self-evident. The morphism

τ : Tt,s→ Sord
s

is a Galois étale covering of Sord
s [Mantovan 2005, Proposition 4].

The small Igusa variety of the same level classifies tuples (A, ε2) of the same nature. There is an
obvious morphism from the big tower to the small one: “forget ε1”. Since ε0 is determined by ε2 we do
not have to forget anything more.

The Galois group. The Galois group1t of the covering τ :Tt,s→ Sord
s is isomorphic to GLm(OE/ptOE)×

Un−m(OE/ptOE) under

1t 3 γ 7→ [γ ] = (γ 2, γ 1) ∈ GLm(OE/ptOE)×Un−m(OE/ptOE),

where

γ (A, ε)= (A, ε ◦ [γ ]−1). (2.1.3)

Here by Un−m(OE/ptOE) we mean the quasisplit unitary group, consisting of matrices g of size n−m
satisfying the relation t g Jn−m g = Jn−m . As explained before, it is isomorphic to the group of matrices
satisfying t gg = I . By ε ◦ [γ ]−1 we mean that we compose ε1 with γ−1

1 and ε2 with γ−1
2 (the action on

ε0 being determined by the one on ε2). As usual, the group 1t acts simply transitively on the geometric
fibers of the morphism τ .

Trivializing the three basic vector bundles over the Igusa tower. For simplicity write T = Tt,s , 1=1t ,
and assume that t ≥ s. There is enough level structure then to “see” the relative Lie algebra of A/Ss on
A[pt
]/Ss , as explained in the paragraph following (1.1.7).

As the cotangent space at the origin of d−1
E ⊗ µpt/Ws is canonically identified with OE ⊗ Ws =

Ws(6)⊕Ws(6), the isomorphism ε2 induces canonical trivializations of OE -vector bundles over T

ε2
= ((ε2)−1)∗ :OE ⊗Om

T 'Q⊕Pµ

(we write Q for τ ∗Q etc. as τ ∗Q is “the” Q of A/T ), or

ε2(6) :Om
T 'Q, ε2(6) :Om

T ' Pµ.
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Similarly fix, once and for all, an isomorphism of the cotangent space at the origin of G[pt
]/Ws (as an

OE -module) with Ws(6). The isomorphism ε1 induces then also a canonical trivialization over T

ε1
:On−m

T ' P0.

The action (2.1.3) of γ ∈1 on T induces the following action on the trivializations

γ (εi )= εi
◦

tγ i . (2.1.4)

(i = 1, 2). Let us check the last formula, dropping the index i :

γ (ε)= (γ (ε)−1)∗ = (γ ◦ ε−1)∗ = (ε−1)∗ ◦ γ ∗ = ε ◦ tγ,

because the matrix representing [γ ]∗ on the cotangent space is the transpose of the matrix representing
[γ ]∗ on the Lie algebra, which is simply [γ ].

2.2. The theta operator.

Pretheta. Let ρ be a representation of GLm ×GLm ×GLn−m over Ws , and let Eρ be the automorphic
vector bundle on Sord

s defined above. We define a connection

2̃ : Eρ→ Eρ ⊗�Ss/Ws

over Sord
s .

Let t≥ s. Denote by Oρ=ρ(OT ) the vector bundle over T =Tt,s obtained by twisting the representation
ρ by the trivial vector bundles Om

T , Om
T and On−m

T as in Definition 1.2.1. The trivial connection on the
structure sheaf OT induces, by the usual rules, a connection

dρ :Oρ→Oρ ⊗�T/Ws .

For example, if ρ = ρλ where λ= (λ1, . . . , λm) is a dominant weight depending only on the first GLm

factor, so that Oρ is given by (1.2.1), then dρ is given by the usual rules of differentiation of symmetric
powers, exterior powers and duals.

On the other hand the trivializations ε1 and ε2 constructed above yield a trivialization

ερ :Oρ ' τ ∗Eρ

over T . To get the action of

γ = (γ2, γ1) ∈1= GLm(OE/ptOE)×Un−m(OE/ptOE)

on ερ we first map γ to GLm(Ws)×GLm(Ws)×GLn−m(Ws) via

γ 7→ ι(γ )= (γ 2, γ2, γ1)

(well defined because t ≥ s) and let t
[γ ]ρ = ρ(

t ι(γ )). Then from (2.1.4) we get

γ (ερ)= ερ ◦
t
[γ ]ρ . (2.2.1)
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Let U ⊂ Sord
s be Zariski open. For f ∈ H 0(U, Eρ) define

2̃( f )= (ερ ⊗ 1) ◦ dρ ◦ ε−1
ρ (τ ∗ f ) ∈ H 0(τ−1(U ), τ ∗Eρ ⊗OT �T/Ws ). (2.2.2)

Since τ is étale, �T/Ws =OT ⊗OSs
�Ss/Ws , so

2̃( f ) ∈ H 0(τ−1(U ), τ ∗Eρ ⊗OSs
�Ss/Ws ).

We have to show that 2̃( f ) ∈ H 0(U, Eρ ⊗OSs
�Ss/Ws ), and for that it would suffice to show that it is

invariant under 1. Let γ ∈1. Then by (2.2.1)

γ (2̃( f ))= (ερ ⊗ 1) ◦ t
[γ ]ρ ◦ dρ ◦ t

[γ ]−1
ρ ◦ ε

−1
ρ (τ ∗ f )= 2̃( f ).

Here we used that (a) τ ∗ f is Galois invariant, (b) dρ is Galois invariant since τ is étale, and (c) dρ
commutes with the scalar matrices t

[γ ]ρ . We summarize our construction in the following theorem.

Theorem 2.2.1. Let U ⊂ Sord
s be an open set and f ∈ H 0(U, Eρ). Then

2̃( f )= (ερ ⊗ 1) ◦ dρ ◦ ε−1
ρ (τ ∗ f ) ∈ H 0(U, Eρ ⊗OSs

�Ss/Ws )

yields a well-defined connection on Eρ . The connection defined on E ⊗F , E∨ etc. is the tensor product,
dual etc. of the connections defined on the individual sheaves. If s = 1 (i.e., we are in characteristic p),
then the connection defined on E (p) is trivial. Hence, if f and g are sections of E and F , respectively, then
on E (p)⊗F we have 2̃( f (p)⊗ g)= f (p)⊗ 2̃(g).

Proof. The functoriality with respect to linear-algebra operations (including Frobenius twist in charac-
teristic p) is clear. The last remark is a general fact about modules with connection. For any vector
bundle E over a base S in characteristic p there is a canonical connection ∇can on E (p), characterized by
∇

can( f (p))= 0 for any section f of E , and if ∇ is any connection on E , then its pull-back ∇(p) to E (p) is
canonically identified with ∇can. �

Theta. Using the inverse of the Kodaira–Spencer isomorphism

KS : P ⊗Q'�Ss/Ws

we may view 2̃ as a map from Eρ to Eρ⊗P⊗Q. We emphasize that this map is not a sheaf homomorphism,
as it is only κ-linear and not OSs -linear. It is better, however, to consider the operator

2= (1⊗ prµ⊗1) ◦ (1⊗KS−1) ◦ 2̃ : Eρ→ Eρ ⊗Pµ⊗Q. (2.2.3)

Here prµ : P→ P/P0 = Pµ is the canonical projection.
If s = 1, in characteristic p over S, we may replace Pµ by Q(p) and prµ by V . From the point of

view of connections, dividing �S/κ by ker(V ⊗ 1)= P0⊗Q means that we restrict the connection to the
foliation TS+ ⊂ TS which has been introduced and studied in [de Shalit and Goren 2018], i.e., use it to
differentiate sections of Eρ only in the direction of TS+. Although this voluntarily gives up information
encoded in 2̃, when restricted to characteristic p, the operator 2 has four advantages over its predecessor:
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(1) While 2̃ has poles along the complement of Sord in S, we shall see that 2 may be analytically
continued everywhere, at least when applied to scalar modular forms.

(2) The effect of 2 on Fourier–Jacobi expansions is particularly nice, while the formulae for 2̃ contain
unpleasant terms.

(3) Restricting the connection to the foliation TS+ should also result in a nice expansion of 2 at a
µ-ordinary point in terms of Moonen’s generalized Serre–Tate coordinates [2004]. This is the
approach taken in [Eischen and Mantovan 2017]. For the relation between TS+ and Moonen’s
generalized Serre–Tate coordinates, see [de Shalit and Goren 2018, Section 3.3, Theorem 13].

(4) Unlike 2̃, the operator 2 lands back in a sheaf which is obtained “by linear algebra operations” from
Q,Pµ and P0. This will allow us to iterate 2, something which we were prohibited from doing with
2̃ due to the presence of P .

2.3. Higher order differential operators Dκ ′

κ . For the sake of completeness we indicate how one gets, by
iterating 2, a whole array of differential operators Dκ ′

κ . We follow, with minor modifications, Eischen’s
thesis [2012]. If κ = (a, b, c) is a dominant weight of M = GLm ×GLm ×GLn−m we denote the vector
bundle Eρ associated with the representation ρ = ρκ by Eκ .

Let st be the standard representation of GLm over W , let a′ be a positive dominant weight a′1 ≥ · · · ≥
a′m ≥ 0 and e=6m

i=1a′i . Then in RepW (GLm) there exists a distinguished homomorphism, unique up to a
W×-multiple,

πa′ : st⊗e
→ ρa′ .

One simply has to normalize the homomorphism resulting from the Young symmetrizer ca′ so that it is
integral, but not divisible by p. Whether πa′ can be further normalized to eliminate the W×-ambiguity
depends on which model we take for ρa′ , as two such models are canonically isomorphic only up to
multiplication by a scalar. Since we agreed to take the models given by the Borel–Weil theorem over W ,
we do not know how to normalize πa′ any further or whether it is surjective before inverting p.

Let κ ′ = (a′, b′, 0) be a dominant weight with a′ and b′ positive, such that

e =
m∑

i=1

a′i =
m∑

i=1

b′i .

In [Eischen et al. 2018] such a κ ′ is called sum-symmetric.
We twist ρκ ′ = ρa′⊗ρb′⊗1 by the vector bundles Q and Pµ. Recall that Q is used to twist ρa′ and Pµ

is used for ρb′ , while twisting by P0 is not needed, as the representation associated with GLn−m is the
trivial one. We get

πκ ′ = πb′ ⊗πa′ : (Pµ⊗Q)⊗e
→ Eκ ′ .

Let κ = (a, b, c) be a dominant weight of M . Consider the e-th iteration of the derivation 2. It maps
the sheaf Eκ to Eκ ⊗ (Pµ⊗Q)⊗e. We may now use πκ ′ to map (Pµ⊗Q)⊗e to Eκ ′ and finally apply the



Theta operators on unitary Shimura varieties 1849

homomorphism mκ,κ ′ : Eκ ⊗ Eκ ′→ Eκ+κ ′ of (1.2.4) to get the differential operator

Dκ ′

κ = mκ,κ ′ ◦ (1⊗πκ ′) ◦2e
: Eκ→ Eκ+κ ′ . (2.3.1)

As mκ,κ ′ ◦(1⊗πκ ′) is a sheaf homomorphism this Dκ ′

κ is a differential operator of order e. It is well-defined
only up to a scalar from W×. The operators Dκ ′

κ allow us to increase the weight by any κ ′ as long as

κ ′ = (a′, b′, 0), a′1 ≥ · · · ≥ a′m ≥ 0, b′1 ≥ · · · ≥ b′m ≥ 0,
m∑

i=1

a′i =
m∑

i=1

b′i .

Example. Scalar-valued modular forms. If κ = (k, . . . , k; 0, . . . , 0; 0, . . . , 0) then

Eκ = det(Q)k = Lk .

In this case, global sections of Eκ are scalar-valued modular forms on G of weight k. If we take
κ ′ = (k ′, . . . , k ′; k ′, . . . , k ′; 0, . . . , 0) then Dκ ′

κ maps Lk to Lk+k′
⊗det(Pµ)k

′

. If s = 1, in characteristic p,
we may identify det(Pµ) with Lp (1.1.6), so Dκ ′

κ maps Lk to Lk+(p+1)k′ . In these cases Dκ ′

κ is obtained
by applying 2 iteratively mk times and projecting. If m = 1 then Dκ ′

κ is simply 2k′ .

3. Toroidal compactifications and Fourier–Jacobi expansions

3.1. Toroidal compactifications and logarithmic differentials.

Generalities. Our goal in this section is to show that the operator 2, defined so far on Sord
s , extends

to a partial compactification Sord
s , obtained by fixing a smooth toroidal compactification Ss of Ss , and

removing from it the closure of Sno
s = Ss \ Sord

s . Thus

Sord
s = Ss \ {Zariski closure of Sno

s }

is an open subset of Ss . Note that in general the closure of Sno
s may meet the boundary of Ss , although in

some special cases, e.g., whenever m=1, Sno
s is proper and does not reach the cusps. For a characterization

of Sord
s as the nonvanishing locus of the Hasse invariant see page 1859. Once we extend 2, we shall

calculate its effect on Fourier–Jacobi expansions and show that, as in the classical case of GL2, it is
morally given by “q · d/dq”.

The toroidal compactifications S of S considered below are smooth over OE,(p) and their boundary
∂S = S \ S is a divisor with normal crossing. However, they depend on auxiliary combinatorial data,
and are not unique. As such, one can not expect S to solve a moduli problem anymore. The universal
abelian scheme A nevertheless extends canonically to a semiabelian scheme G with OE -action over S.
We say that a geometric point x of ∂S is of rank 1≤ r ≤ m if the toric part of Gx has dimension 2r , i.e.,
OE -rank r . Skinner and Urban [2014] call such a point “a point of genus n+m− 2r”, referring to the
dimension of the abelian part of Gx instead.

Constructing the toroidal compactifications, even if all proofs are omitted, requires several pages of
definitions and notation. Lan’s book [2013] is an exhaustive, extremely careful and precise reference.
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Unfortunately, some notation introduced there is too long to fit in a single line. Following Faltings and
Chai [1990], Skinner and Urban [2014, Section 5.4] gave a very readable account of the compactification,
which we will follow closely. It is set for signature (n, n), but the modifications needed to treat an arbitrary
signature (n,m) are minor. Yet, this forces us to review everything from scratch, rather than use [Skinner
and Urban 2014] blindly.

We shall content ourselves with the arithmetical compactification of ShK/W (several copies of which
comprise S/W ). In Section 3.1 only we will write S for ShK/W or for its base-change to Ws (rather than
to κ =W1 as before). As smaller Shimura varieties will show up in the process, we shall write

S = SG = SG,K

whenever we need to emphasize the dependence on G or K .
Let {ei } denote the standard basis of V = En+m and consider, for 0≤ r ≤ m,

0⊂ Vr = SpanE {e1, . . . , er } ⊂ V⊥r = SpanE {e1, . . . , en, en+r+1, . . . , en+m} ⊂ V .

If we regard V =ResE
Q An+m as a Q-vector group, whose Q-rational points are En+m , this is a Q-rational

filtration. The quotient V (r)= V⊥r /Vr becomes a hermitian space of signature (n− r,m− r) at infinity,
and 3∩ V⊥r projects to a self-dual lattice 3(r)⊂ V (r), defining a smaller general unitary group Gr . If
n = m = r we understand by Gr the group Gm (accounting for the similitude factor, which is present
even if V (r)= 0).

The subgroup

Pr = StabG(Vr )

stabilizes also V⊥r , and is a maximal Q-rational parabolic subgroup of G. Its unipotent radical is

Ur = {g ∈ Pr | g acts trivially on Vr , V (r), and V/V⊥r }.

Its Levi quotient, Lr = Pr/Ur , is identified with ResE
Q GLr ×Gr under the map g 7→ (g|Vr , g|V (r)). The

center Zr = Z(Ur ) of Ur turns out to be

Zr = {g ∈Ur | (g− 1)(V⊥r )= 0, (g− 1)(V )⊂ Vr }.

In matrix block form

Pr =

g =

A C B
D C ′

ν t A−1

 ∈ G

 , (3.1.1)

where A is a square matrix of size r and D is a square matrix of size (n +m − 2r). The group Ur is
characterized by ν = 1, A = 1, D = 1, and Zr by the additional properties C = 0, C ′ = 0. When this
is the case, B =−t B. We regard Lr also as a subgroup of Pr , mapping (g, h) to the matrix which in a
diagonal block form is (g, h, ν(h)t g−1). Thus Pr = LrUr .

Every maximal Q-rational parabolic subgroup of G is conjugate to Pr for some r .
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Cusp labels, the minimal compactification and the toroidal compactifications. Let 1≤ r ≤ m. The set of
cusp labels of level K and rank r [Skinner and Urban 2014, Section 5.4.2] is the finite set

Cr = [GLr (E) · Gr (A f )] ·Ur (A f )\G(A f )/K .

As before, the rank r will be the OE -rank of the toric part of the universal semiabelian variety over
the corresponding cuspidal component. If g ∈ G(A f ) we denote by [g] = [g]r = [g]r,K ∈ Cr the
corresponding double coset. The minimal (Baily–Borel) compactification S∗ of S is discussed in [Lan
2013, Section 7.2.4] and, when n = m, in [Skinner and Urban 2014, Section 5.4.4]. It is a singular
compactification admitting a stratification by finitely many locally closed strata

S∗ =
m⊔

r=0

⊔
[g]r∈Cr

SGr ,Kr,g ,

where Kr,g = Gr (A f )∩gK g−1. Each SGr ,Kr,g is an (n−r)(m−r)-dimensional Shimura variety, so when
r attains its maximal value m, it is 0-dimensional. When r = 0 we get one stratum, which is the open
dense S. The closure of SGr ,Kr,g is the union of SGr ′ ,Kr ′,g′

for r ≤ r ′ and g′ such that the cusp label [g′]r ′
is a specialization of [g]r in an appropriate sense [Lan 2013, Definition 5.4.2.13]. We call each SGr ,Kr,g a
rank r cuspidal component of S∗.

Any toroidal compactification that we consider will be a smooth scheme S/W endowed with a proper
morphism

π : S→ S∗.

Moreover, it will come equipped with a stratification

S =
m⊔

r=0

⊔
[g]r∈Cr

⊔
σ∈6H++g,R

/0g

Z([g]r , σ )

by finitely many smooth, locally closed W -subschemes Z([g]r , σ ). The indexing set 6H++g,R
/0g will

become clear shortly. The morphism π will respect the stratifications.
Every Z([g]r ,σ ) is constructed in three steps, related to the structure of the semiabelian scheme G over

it, as follows:

• First, SGr ,Kr,g is the moduli space of the abelian part of G (with the associated PEL structure), which
is of signature (n−r,m−r), hence is a smooth Shimura variety of dimension (n−r)(m−r) over W .
Let Ar denote the universal abelian scheme over it. In contrast to the abelian part, the toric part of G
is fixed by the cusp label [g]r , and is given by

TX = HomOE (X, d
−1
E ⊗Gm)

where X = Xg is a rank-r projective OE -module determined by g. Thus dim(TX ) = 2r and
dim(Ar )=n+m−2r . For example, if g=1 (the “standard cusp of rank r”) then X =Hom(3∩Vr ,Z).
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• The second step in the construction of Z([g]r , σ ) is the construction of an abelian scheme C which
classifies the extensions of Ar by TX . Let X∗ = HomOE (X,OE) and

C = C([g]r ) := Ext1OE
(Ar , TX ).

This can be written also as

C = X∗⊗OE Ext1OE
(Ar , d

−1
E ⊗Gm)= X∗⊗OE At

r = HomOE (X,A
t
r ),

using the fact that TrE/Q⊗1 : d−1
E ⊗Gm→ Gm induces an isomorphism

Ext1OE
(Ar , d

−1
E ⊗Gm)' Ext1(Ar ,Gm)=At

r .

The relative dimension of C over SGr ,Kr,g is r(n+m− 2r), so its total dimension is

(n− r)(m− r)+ r(n+m− 2r)= nm− r2.

• In the last and final step one uses auxiliary combinatorial data and the theory of toroidal embeddings
[Fulton 1993] to construct the Z([g]r , σ ). Each of them is a torus torsor over C([g]r ). For details,
see the next subsection.

The stratification by disjoint locally closed strata does not shed any light on the way these strata are
glued together, even if the closure relations between them are given. However, each stratum Z = Z([g]r , σ )
is actually the underlying reduced scheme (the “support”) of a formal scheme Z= Z([g]r , σ ) whose
over-all dimension (counting the “formal parameters” too) is mn. The semiabelian scheme together
with the PEL structure extend from Z to Z “in the infinitesimal directions” to give a structure called
degeneration data. As described originally in [Mumford 1972] in the totally degenerate setting, and later
on in [Ash et al. 1975; Faltings and Chai 1990; Lan 2013], this allows one to use Mumford’s construction
to glue all the pieces together. We do not reproduce this construction, but remark that the key to it is the
presence of a polarization, which allows, at a crucial step, to use Grothendieck’s algebraization theorem.

The torsor 4. As our purpose is to establish just enough notation to be able to study 2 at the cusps,
and as this will be done only at the standard cusps, we shall explain now the third and final step in
the construction of Z([g]r , σ ) under the assumption that g = 1. The general case can be treated in a
similar manner, transporting all structures by g. While necessary for applications, it does not add much
conceptually.

Assume therefore that the cusp label is [g]r = [1]r and drop the g from the notation. Let

X = Hom(3∩ Vr ,Z), Y =3/(3∩ V⊥r ).

Let φX : Y ' X be the isomorphism given by φX (u)(v)= 〈u, v〉. It satisfies φX (au)= aφX (u). If c ∈C =
HomOE (X,At

r ) we denote by ct
∈ HomOE (Y,Ar ) the unique homomorphism satisfying φr ◦ ct

= c ◦φX ,



Theta operators on unitary Shimura varieties 1853

where φr :Ar 'At
r is the tautological principal polarization of the abelian scheme Ar over SGr ,Kr,g .

X c
// At

r

Y ct
//

φX

OO

Ar

φr

OO

We construct a torus TH and use it to define a TH -torsor 4 over C which will be basic for the
construction of the local charts below. Let

H = Zr (Q)∩ K

where Zr , as before, is the center of the unipotent radical of Pr , and K the level subgroup. Let Ȟ =
HomZ(H,Z) and

TH = H ⊗Gm/W = Spec(W [Ȟ ]),

the split torus over the Witt vectors with character group Ȟ and cocharacter group H .3 There is another
useful way to think of H , as a rank-r2 lattice of hermitian bilinear forms on Y (the lattice shrinking as
the level increases) [Skinner and Urban 2014, Section 5.4.1]. Simply attach to h ∈ H the hermitian form
bh : Y × Y → d−1

E defined by
bh(y, y′)= δ−1

E ((h− 1)y, y′). (3.1.2)

Here ( · , · ) is the pairing on Vr × (V/V⊥r ) induced from (1.1.2). Using the description of Zr in (3.1.1)
we may regard h 7→ bh as assigning to h ∈ H the matrix δ−1

E B.
We denote by 4 the TH -torsor over C = HomOE (X,At

r ) constructed in [Skinner and Urban 2014],
smooth of total dimension mn. Recall that given such a torsor, every character χ ∈ Ȟ of TH determines,
by push-out, a Gm-torsor 4χ over C , and the resulting map

χ 7→ [4χ ]

from Ȟ to the group of Gm-torsors over C is a homomorphism. Conversely, 4 is uniquely determined by
giving such a homomorphism. We proceed to describe 4 in this way.

If y, y′ ∈ Y let χ = [y⊗ y′] denote the element of Ȟ which sends

H 3 h 7→ TrE/Q bh(y, y′)= 〈(h− 1)y, y′〉 ∈ Z.

Then we require 4χ |c, the fiber at c ∈ C of 4χ , to be

P|×c(φX (y))×ct (y′),

where P is the Poincaré bundle over At
r ×Ar . The superscript × means “the associated Gm-bundle”,

obtained by removing the zero section. It can be checked that this extends to a homomorphism from Ȟ
to the group of Gm-torsors over C . For any χ ∈ Ȟ we let L(χ) be the line bundle on C whose associated

3Skinner and Urban [2014] denote Ȟ by S.
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Gm-bundle is 4χ . Over the complex numbers, sections of L(χ) are classical theta functions on the
abelian scheme C . We shall often denote elements of Ȟ also by ȟ. We have a canonical identification
L(ȟ1+ ȟ2)= L(ȟ1)⊗L(ȟ2).

Having constructed 4 we proceed to study its equivariance properties under the group

0 = GL(Vr )(Q)∩ K .

Using (3.1.1), this is the group of rational matrices A that also lie in K . Since the action of Pr on Zr by
conjugation factors through Pr/Ur = Lr , the group 0 ⊂ Lr acts on Zr . Using (3.1.1) again, A sends B
to AB t A. In particular 0 acts on H , hence it acts on TH by automorphisms of the torus.

We also have an action of 0 on C = HomOE (X,At
r ) induced from its action on X . Any γ ∈ 0 maps

L(ȟ)|c to L(γ (ȟ))|γ (c). If 0(ȟ) is the stabilizer of ȟ ∈ Ȟ then [Skinner and Urban 2014, Lemma 5.1]
0(ȟ) acts trivially on the global sections of L(ȟ) over C .

Finally, as the push-out of 4|γ (c) by [γ (y)⊗ γ (y′)] is identically the same as the push out of 4|c by
[y⊗ y′], or equivalently

4|γ (c) = (4×
TH ,γ TH )|c

the isomorphism 1× γ : 4 = 4×TH TH → 4×TH ,γ TH of torsors over C , yields an action of 0 on 4
which covers its action on C , and is compatible with the 0-action on TH . In short, all the constructions
so far are equivariant under 0.

The local charts. Now comes the choice of the auxiliary data involved in the toroidal compactification.
Let

H+R ⊂ HR

be the cone of positive semidefinite hermitian bilinear forms on YR whose radical is a subspace defined
over Q (i.e., the R-span of a subspace of YQ). Let 6= {σ } be a 0-admissible (infinite) rational polyhedral
cone decomposition of H+R [Lan 2013, Definition 6.1.1.10]. Admissibility means that the action of 0 on
HR permutes the σ ’s, and that modulo 0 there are only finitely many cones in 6. By convention, the
cones σ do not contain their proper faces, and every face of a cone in 6 also belongs to 6. In particular,
6 contains the origin as its unique 0-dimensional cone. When we treat all cusp labels, and not only
one at a time, an additional assumption has to be imposed about the compatibility of the polyhedral
cone decompositions associated with a cusp ξ and with a higher rank cusp to which ξ specializes. It
is a nontrivial fact that such polyhedral cone decompositions exist, see Chapter 2 of [Ash et al. 1975].
Moreover, every two 0-admissible rational polyhedral cone decompositions of H+R have a common
refinement of the same sort. One can even find such a polyhedral cone decomposition in which every σ is
spanned by a part of a basis of H . The TH,σ defined below will then be smooth over W , and from now
on we assume that this is the case. Lan [2013] calls such a 6 a 0-admissible smooth rational polyhedral
cone decomposition of H+R . If K is small enough so that 0 is neat, refinements exist such that, in addition,
the closures of σ and γ (σ ), for σ ∈6 and 1 6= γ ∈ 0, meet only at the origin.
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Each cone σ ∈6 defines a torus embedding

TH ↪→ TH,σ = Spec(W [Ȟ ∩ σ∨])

where σ∨ ⊂ ȞR is the dual cone and W =W (κ) as before. By definition

σ∨ = {v ∈ ȞR | v(u)≥ 0,∀u ∈ σ },

so, unlike σ , σ∨ contains its faces. Observe that TH naturally acts on TH,σ . Since σ does not contain a
line, σ∨ has a nonempty interior.

Let

σ⊥ = {v ∈ ȞR | v(u)= 0,∀u ∈ σ }.

When dσ =dim(σ )< r2, σ∨⊃σ⊥ 6= 0. Then Z H,σ =Spec(W [Ȟ∩σ⊥]) is a torus, dim Z H,σ = r2
−dσ . In

fact, Z H,σ is the unique minimal orbit of TH in its action on TH,σ , an orbit which lies in the closure of any
other orbit. There is an obvious surjection TH,σ � Z H,σ . This surjection admits a section Z H,σ ↪→ TH,σ ,
corresponding to W [Ȟ ∩ σ⊥] ' W [Ȟ ∩ σ∨]/Iσ , where Iσ is the ideal generated by Ȟ ∩ σ∨ \ Ȟ ∩ σ⊥.
Another way to think of Z H,σ is as

Z H,σ = TH,σ \
⋃
τ<σ

TH,τ

where τ runs over all the proper faces of σ .
The TH,σ glue to form a toric variety (locally of finite type, but not of finite type in general) TH,6 , in

which each TH,σ is open and dense:

TH,6 =
⋃
σ∈6

TH,σ .

This TH,6 is stratified by the disjoint union of the Z H,σ . The actions of 0 on H and 6 induce an action
of 0 on TH and a compatible action on TH,6 . By our assumption on 6, TH,6 is smooth over W .

We “spread” this construction over C =HomOE (X,At
r ), twisting it by the torsor4, namely we consider

46 =4×
TH TH,6. (3.1.3)

The group 0 acts on each of the three symbols on the right in a compatible way, so we get an action of 0
on 46 .

Let us bring back the reference to the cusp label [g]r , although in the above we tacitly assumed [g]r = 1
and dropped g from the notation. See [Skinner and Urban 2014, Section 5.4.1] for the precise definition
of Hg, 6g etc. Denote by H++g,R the set of positive-definite hermitian bilinear forms in H+g,R. For σ ∈6g

such that σ ⊂ H++g,R we let

Z([g]r , σ )=4×TH Z H,σ ,

and let

Z([g]r , σ )
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be the formal completion of 46 or, what amounts to be the same, of its open subset 4×TH TH,σ , along
Z([g]r , σ ). These are the local charts at the cuspidal component labeled by [g]r . There is a smooth
morphism

Z([g]r , σ )→ C([g]r )

whose fibers are isomorphic to the completion of TH,σ along Z H.σ . The Z([g]r , σ ) are nm-dimensional and
smooth over W . Each such local chart has nm− dσ “algebraic dimensions” and dσ “formal dimensions”.
Specializing the formal variables to 0, one gets the support Z([g]r , σ ) of Z([g]r , σ ), whose dimension is
nm− dσ . The action of γ ∈ 0 on 46 induces an isomorphism γ∗ between Z([g]r , σ ) and Z([g]r , γ (σ )).
For comparison, we remark that in [Lan 2013, Section 6.2.5] the Z([g]r , σ ) are denoted X8H,δH,σ and
Z([g]r , σ ) are denoted 48H,δH,σ . Also, under our assumptions the stabilizers denoted in [Lan 2013] by
08H,σ are trivial.

Once we have described the local charts, it remains to construct on each of them the degeneration
data which allows one to carry on the Mumford construction. This results in gluing the various charts
together, and at the same time constructing G with the accompanying PEL structure over the glued scheme.
Care has to be taken not only to glue pieces labeled by the same cusp label [g]r , but also to respect the
way cusp labels specialize. In the process of gluing, one has to divide by the action of 0 on the formal
completion of (3.1.3) along the complement of 4=4×TH TH . Note that it does not make sense to divide
46 by 0, just as it did not make sense to divide 4, or the abelian scheme C over which it lies, by the
action of 0. For the gluing of the local charts, that we do not review here, see [Lan 2013, Section 6.3].
The final result is [loc. cit., Theorem 6.4.1.1].

Logarithmic differentials. We construct certain formal differentials on the local chart Z([g]r , σ ), relative
to C([g]r ), with logarithmic poles along Z([g]r , σ ). We shall denote the module of these differentials

�Z/C [d log∞].

They will play an important role in our formulae for 2.
Notation as above, consider a cone σ ⊂ H++g,R and let h1, . . . , hdσ be positive semidefinite, part of a

basis of H = Hg, such that
σ = Cone(h1, . . . , hdσ ).

Complete the hi to a basis h1, . . . , hr2 of H , let {ȟi } be the dual basis of Ȟ = Hom(H,Z) and introduce
formal variables qi = q ȟi (to be able to write the group structure on Ȟ multiplicatively rather than
additively). Then

TH,σ = Spec(W [q1, . . . , qdσ , q±1
dσ+1, . . . , q±1

r2 ])

and
Z H,σ = Spec(W [q±1

dσ+1, . . . , q±1
r2 ]).

Locally on Z([g]r , σ ) we use as coordinates the pull-back of any system of nm− r2 local coordinates on
the base C = HomOE (X,At

r ), together with the “algebraic” coordinates qdσ+1, . . . , qr2 , and the “formal”
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coordinates q1, . . . , qdσ . We emphasize that because of the twist by the torsor 4 in the construction of
the local charts, the qi are not global coordinates. The correct way to think of them is as local sections of
the line bundles L(−ȟi ) on C . If the hi are positive definite, these line bundles will be antiample, and the
qi will not globalize.

If ȟ ∈ Ȟ is of the form ȟ =
∑

ni ȟi we write q ȟ
=
∏

qni
i and define

ω(ȟ)=
dq ȟ

q ȟ
=

r2∑
i=1

ni
dqi

qi
∈�Z/C [d log∞].

This ω(ȟ) is invariant under the action of TH , essentially since d log(q0q)= d log q . Hence, despite the
fact that the qi were only local coordinates, ω(ȟ) defines a relative differential on all of4×TH TH,σ , as well
as on its completion Z([g]r , σ ) along Z([g]r , σ )=4×TH Z H,σ , with logarithmic poles along Z([g]r , σ ).
The following proposition is an immediate by-product of the theory of toroidal compactifications.

Proposition 3.1.1. (i) The differentials ω(ȟ) are well-defined formal differentials on Z([g]r , σ ), relative
to C([g]r ), with logarithmic poles along Z([g]r , σ ). They are independent of the choice of bases and
depend only on ȟ.

(ii) ω(ȟ1+ ȟ2)= ω(ȟ1)+ω(ȟ2).

(iii) The differentials ω(ȟ) are compatible with gluing of the local charts. If γ ∈ 0 then the induced
isomorphism between the local charts Z([g]r , σ ) and Z([g]r , γ (σ )) carries ω(ȟ) to ω(γ (ȟ)).

(iv) The differentials ω(ȟ) are compatible with the maps between toroidal compactifications obtained
from refinements of the admissible smooth rational polyhedral cone decompositions [Lan 2013,
Section 6.4.2].

Fourier–Jacobi expansions. Let S be a fixed smooth toroidal compactification of S over Ws (1≤ s) as
a base ring. Let G be the universal semiabelian scheme over S and eG : S→ G its zero section. Then
ω = e∗G�

1
G/S

defines an extension of the Hodge bundle to a rank n+m vector bundle with OE -action
on S. We continue to denote by P and Q its subbundles of type 6 and 6, of ranks n and m respectively.

Let Sord denote the complement in S of the Zariski closure of S \ Sord. Over this open subset of S the
semiabelian variety G is µ-ordinary in the sense that the connected part of its p-divisible group at every
geometric point x : Spec(k)→ Sord satisfies

Gx [p∞]0 ' (d−1
E ⊗µp∞)

m
×Gn−m

k .

To see this, assume that x lies on a rank r cuspidal component, but that the abelian part Ax of Gx is not
µ-ordinary, i.e., the multiplicative part of Ax [p∞] has height strictly less than 2(m − r). Mumford’s
construction shows that we may deform G into an abelian variety Ay (y signifying a point on the base of
the deformation “near” x) so that the multiplicative part of Ay[p∞] has height strictly less than 2m. But
such a point y being not µ-ordinary, we conclude that x lies in the closure of S \ Sord, contrary to our
assumption.
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It follows that the filtration

0→ P0→ P→ Pµ→ 0

extends to a filtration by a subvector bundle over Sord. Thus the automorphic vector bundles Eρ defined
on page 1842 extend to Sord too. In the following discussion fix the representation ρ.

Let [g]r ∈ Cr be a cusp label of rank 0< r ≤ m and let Z = Z([g]r ) be the corresponding cuspidal
component of ∂S obtained by “gluing” the Z([g]r , σ ) for σ ∈ 6g, σ ⊂ H++g,R , and dividing by 0. Let
Z([g]r ) be the formal completion of S along Z([g]r ). Let ξ ∈ SGr ,Kr,g be a geometric point, and let Zξ be
the preimage of ξ in Z . Then Zξ is obtained by “gluing” the preimage Z([g]r , σ )ξ of ξ in Z([g]r , σ ) for
all σ as above, dividing by the action of 0. Observe that the toric part TX and the abelian part Ar,ξ of G
are constant over each Z([g]r , σ )ξ . Thus P0,Pµ and Q are trivialized over the preimage Z([g]r , σ )ξ of
ξ in the local chart Z([g]r , σ ), hence so is Eρ . In general, however, Eρ will not be trivial over Z([g]r )ξ .

Our ξ is a point of the minimal compactification S∗ (over Ws). The completed local ring ÔS∗,ξ is
described in [Skinner and Urban 2014, Theorem 5.3; Lan 2013, Proposition 7.2.3.16]. In the following,
let Ȟ+ be the set of elements of Ȟ which are nonnegative on H+R .

Proposition 3.1.2. There is a canonical isomorphism between ÔS∗,ξ and the ring FJ ξ of all formal
power series

f =
∑

ȟ∈Ȟ+

a(ȟ)q ȟ

which are invariant under 0. Here a(ȟ) ∈ H 0(Cξ ,L(ȟ)) where Cξ = HomOE (X,At
r,ξ ) is the abelian

variety which is the fiber of C over ξ .

Recall that π : S → S∗ was the map between the toroidal compactification and the minimal one.
There is a similar description of the completion of the stalk of π∗Eρ at ξ [Skinner and Urban 2014,
Proposition 5.5].

Proposition 3.1.3. The completion of (π∗Eρ)ξ is canonically isomorphic to the ÔS∗,ξ -module of formal
power series

f =
∑

ȟ∈Ȟ+

a(ȟ)q ȟ

which are invariant under 0. Here a(ȟ) ∈ H 0(Cξ ,L(ȟ)⊗ Eρ).

The action of 0 on a(ȟ) demands an explanation, and for that we must bring back the dependence on
[g]r ∈ Cr and even on g itself. Still assuming that we are at the standard cusp, i.e., [g]r = [1]r , we may
replace the representative g= 1 by g= γ ∈0=GL(Vr )∩K =GLr (E)∩K . The following changes then
take place. The lattice 3∩ Vr is replaced by γ (3∩ Vr )=3∩ Vr , so does not change. The subgroups X
and Y therefore remain the same, but γ acts on them nontrivially. This induces an action of γ on the
abelian variety Cξ =HomOE (X,At

r,ξ ) classifying the extensions G of Ar,ξ by TX , as well as an action on
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the torus TX . Thus γ induces an isomorphism

γ∗ : Gc ' Gγ (c)

(c ∈ Cξ ), which on the toric part is the given automorphism of TX , and on the abelian part induces the
identity. This induces isomorphisms γ∗= (γ ∗)−1 from the fibers of P0,Pµ and Q at c to the corresponding
fibers at γ (c). As P0 depends only on the abelian part, the action of γ∗ on it is trivial. Assume, for
simplicity, that Eρ = Pµ. Then a(ȟ) is a section (over Cξ ) of L(ȟ)⊗Pµ and γ (a(ȟ)) will be the section
of L(γ ȟ)⊗Pµ satisfying

γ (a(ȟ))|γ (c) = γ∗(a(ȟ)|c).

We also remark that in [Skinner and Urban 2014, Proposition 5.5] the automorphic vector bundle
is incorrectly assumed to be constant along Cξ . We thank one of the referees for pointing this out to
us. However, in one important case, that will be needed below, this is true. If ξ is a rank m cusp, the
three basic automorphic vector bundles Q,Pµ and P0 depend only on the toric part and the abelian part
of the universal semiabelian scheme separately, and (unlike P) do not depend on the extension class
parametrized by Cξ . This implies that they are constant along Cξ and so is every p-adic automorphic
vector bundle generated by them.

In the sequel we shall only need the case of the maximally degenerate cusps, i.e., r = m. Now the
Shimura variety SGm ,Km,g is 0-dimensional, and ξ is one of its (schematic) points. The abelian variety Cξ
is m(n−m)-dimensional. In this case Pµ is the 6-part of the cotangent space at the origin to

TX = HomOE (X, d
−1
E ⊗Gm)

(if r <m it also captures part of the cotangent space at the origin of Ar,ξ ). In other words, we may identify

Pµ 'OCξ ⊗6,OE X

and γ∗ : Pµ|c→ Pµ|γ (c) with γ∗⊗ γ∗. Similarly we may identify Q'OCξ ⊗6,OE
X . As the action of γ

on X is via the contragredient st∨ of the standard representation, it follows that to obtain the action of
γ ∈0 on ρ(W ) in general, we have first to embed γ as ι∨(γ ) := (tγ−1, tγ−1, 1) in GLm ×GLm ×GLn−m .
(Recall that these three factors correspond to Q,Pµ and P0 in this order, see Section 1.2.) The action of
γ on a(ȟ) ∈ H 0(Cξ ,L(ȟ))⊗W ρ(W ) will then be via γ∗⊗ ρ(ι∨(γ )).

We remark that when n = m the Fourier–Jacobi expansions are in fact Fourier expansions in the naive
sense, and the a(ȟ) are scalars.

The Fourier–Jacobi expansion of the Hasse invariant. Assume now that s = 1, i.e., we are again over
the special fiber in characteristic p, and the automorphic vector bundle is the line bundle Lp2

−1 where
L= det(Q). Let h ∈ H 0(S,Lp2

−1) be the Hasse invariant, previously denoted h (1.1.5).

Proposition 3.1.4. The Fourier–Jacobi expansion of h at a rank-m cusp is 1.

Proof. Let us check the claim at the standard cusp. Fix a local chart Z([1]m, σ ) as above. As we have
seen, Q, hence also L, are trivialized there. The trivialization is obtained from a similar trivialization
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of the p-divisible group of the toric part TX of the semiabelian variety G. As the isogeny Ver acts like
the identity on TX [p∞], the Hasse invariant maps a trivializing section ` of L over Z([1]m, σ ) to `(p

2). It
follows that in terms of the basis `p2

−1 of Lp2
−1, its Fourier–Jacobi expansion is simply 1. Note that a

choice of another κ-rational section ` will result in the same value for h. �

Corollary 3.1.5. The open set Sord
⊂ S is the nonvanishing locus of h.

Proof. By definition, Sord is the complement of the Zariski closure of Sno, which is the vanishing locus of
h in Sord. It is therefore clear that h vanishes on its complement, and to prove the corollary it is enough
to check that h does not vanish on any irreducible component of ∂S = S \ S. But by [Lan 2015] any such
irreducible component contains a rank m cusp, so the claim follows from the previous proposition. �

3.2. Analytic continuation of 2 to the boundary and its effect on Fourier–Jacobi expansions.

The partial toroidal compactification of the Igusa scheme. Fix s ≥ 1 and work over Ws as a base ring.
Since the semiabelian scheme G over Sord

s is µ-ordinary, the relative moduli problem defining the big
Igusa scheme of level pt makes sense over Sord

s . More precisely, for an R-valued point of Sord
s denote by

GR the pull-back of G to Spec(R). Then GR[p∞]0 is still isomorphic, locally in the proétale topology on
Spec(R), to an extension of Gn−m by (d−1

E ⊗µp∞)
m . The relative moduli problem T t,s classifies Igusa

structures (ε1, ε2) on GR as in (2.1.1). The compatibility with Weil pairings is imposed on ε1 only, as
there is no ε0 to pair with ε2. This makes sense even if GR is not an abelian scheme, while when it is, ε0

is determined by ε2. We call the resulting scheme T t,s . The following proposition is then obvious.

Proposition 3.2.1. (1) The partially compactified Igusa scheme T t,s is a finite étale Galois cover of Sord
s

with Galois group 1t .

(2) If t ≥ s then the basic vector bundles P0,Pµ and Q are canonically trivialized over T t,s .

We continue to denote by τ : T t,s→ Sord
s the covering map and by ε1, ε2 the resulting trivializations

over T t,s . The definition of 2̃ over Sord
s is then precisely the same as over the open ordinary stratum Sord

s ,
see (2.2.2).

The extended 2 operator. To extend the definition of 2 we need to recall how the Kodaira–Spencer
isomorphism extends to the toroidal compactification. The answer is given by [Lan 2013, Theorem 6.4.1.1,
part 4]. See also [Faltings and Chai 1990, Chapter III, Corollary 9.8]. In our case [Lan 2013, Defini-
tion 6.3.1] it translates into the following.

Proposition 3.2.2. The Kodaira Spencer isomorphism extends to an isomorphism

KS : P ⊗Q'�1
S/W [d log∞]

over S.

The inverse isomorphism KS−1 therefore maps �1
S/W

to sections of P ⊗ Q vanishing along the
boundary ∂S. We deduce the following.



Theta operators on unitary Shimura varieties 1861

Proposition 3.2.3. The formula

2= (1⊗ prµ⊗1) ◦ (1⊗KS−1) ◦ 2̃ : Eρ→ Eρ ⊗Pµ⊗Q

defines an extension of 2 over Sord. For any section f of Eρ , 2( f ) vanishes along ∂Sord.

The isomorphism between Pµ⊗Q and Ȟ ⊗OS when r = m. We now turn to determining the effect of
2 on Fourier–Jacobi expansions. This will be done at maximally degenerate cusps only. We therefore
take r = m and denote by ξ ∈ S∗ a cusp of rank m. Note that there are only finitely many such cusps.
Nevertheless, there are sufficiently many of them to lie in every irreducible component of S [Lan 2015].
This will allow us to apply the q-expansion principle with these cusps only, not having to worry about
expansions at lower rank cusps, where the formulae are not as nice.

Lemma 3.2.4. Let x ∈ S be any point lying above ξ . Let g be a representative of the cusp label [g]m to
which ξ belongs, H = Hg the rank-m2 lattice of hermitian bilinear forms on Y = Yg as on page 1854, and
Ȟ its Z-dual. Then there is a canonical identification of the completed stalk (Pµ⊗Q)∧x with Ȟ ⊗ ÔS,x ,

(Pµ⊗Q)∧x ' Ȟ ⊗ ÔS,x . (3.2.1)

This identification is compatible with the natural action of 0 on both sides.

Proof. Let R = ÔS,x . It is enough to deal with the standard cusp. When r = m the stalks of the vector
bundles Pµ and Q are the 6 and 6-parts of ωTX , the cotangent bundle of the toric part of G. Since
TX = HomOE (X, d

−1
E ⊗Gm), it follows that there are canonical identifications

P∧µ,x = X ⊗OE ,6 R, Q∧x = X ⊗OE ,6
R.

The map Y ⊗ Y → Ȟ described in the course of the construction of the torsor 4 on page 1854 yields an
isomorphism

(Y ⊗OE ,6 R)⊗R (Y ⊗OE ,6
R)' Ȟ ⊗ R = Hom(H, R).

Explicitly, (y⊗ 1)⊗ (y′⊗ 1) goes to the map sending h ∈ H to ((h− 1)y′, y). Using the isomorphism
φX : Y ' X we get the isomorphism (3.2.1).

Let us verify that the isomorphism given in the lemma is compatible with the natural actions of our
group 0 on Pµ⊗Q and Ȟ . On page 1857 we computed the action of γ ∈ 0 on (Pµ⊗Q)∧x to be through
tγ−1
×

tγ−1
∈ GLm ×GLm . On the other hand, γ acts on h ∈ H via h 7→ γ h tγ . As Ȟ is the Z-dual of

H , these actions match each other. �

The main theorem.

Theorem 3.2.5. Let ξ be a rank-m cusp. Let f be a section of Eρ and

f =
∑

ȟ∈Ȟ+

a(ȟ) · q ȟ
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its Fourier–Jacobi expansion at ξ , as in Proposition 3.1.3. Then the section 2( f ) of Eρ ⊗Pµ⊗Q has the
Fourier–Jacobi expansion

2( f )=
∑

ȟ∈Ȟ+

a(ȟ)⊗ ȟ · q ȟ,

using the identification from Lemma 3.2.4.

Proof. We may work over Ws as a base ring. Fix any t ≥ s and let T = T t,s . We assume that ξ is
the standard cusp of rank m (regarded as a k-valued point of S∗, where k is algebraically closed and
contains κ), and fix a geometric point x in the toroidal compactification lying above it. Fix a local chart
Z([g]m, σ ) containing x (where [g]m =[1]m by our assumptions) and let Z([g]m, σ )ξ be the preimage of ξ
in it. As the abelian and toric parts of G are constant over Z([g]m, σ )ξ we may fix admissible trivializations
ε1 and ε2 of the graded pieces gr1 and gr2 of G[pt

]
0, over the complete local ring at x . Indeed, the point

ξ on the 0-dimensional Shimura variety SGm ,Km,g corresponds to an n−m dimensional abelian variety
Am over the algebraically closed field k, with associated PEL structure of signature (n−m, 0). Fix a
symplectic trivialization

ε1
:G[pt

]
n−m
'Am[pt

] = gr1 .

Similarly, using the standard basis of 3∩Vm we get a standard basis on X , which gives us a trivialization

ε2
: (d−1

E ⊗µpt )m ' TX [pt
] = gr2 .

As usual, since t ≥ s, these trivializations induce trivializations of P0,Pµ and Q, hence of Eρ . They
also determine a choice of a point x in T above x . (If σ is replaced by a 0-equivalent cone γ (σ ) the
trivialization ε2 is twisted by the action of γ on X , and this results in a different x . The choice of ε1 was
also arbitrary, and effects the point x in a similar way.)

We use R= ÔT ,x ' ÔS,x as the ring in which we compute2. Recall that the Fourier–Jacobi coefficient
a(ȟ) is a section of the vector bundle L(ȟ)⊗Eρ over the abelian scheme C of relative dimension m(n−m)
and that Eρ has already been trivialized by our choices. Trivializing also the pull-back of the line bundles
L(ȟ) to Spec(R), we may write the ring R as

R =Ws(κ)[[u1, . . . , um(n−m), q1, . . . , qm2]],

where the ui are pull-backs of local coordinates on C at the image of x , and we may assume that the
a(ȟ) are (vector-valued) functions of the ui . We now have

d(τ ∗ f )=
∑

ȟ∈Ȟ+

da(ȟ) · q ȟ
+

∑
h∈Ȟ+

a(ȟ) ·
dq ȟ

q ȟ
· q ȟ .

Recall that the image of dq ȟ/q ȟ modulo �C/Ws is ω(ȟ) ∈�Z/C [d log∞]. To complete the proof of the
theorem we shall show the following two claims:

(1) For any η ∈�C/W , we have η ∈ KS(P0⊗Q).
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(2) The resulting isomorphism KS−1
:�Z/C [d log∞] ' Pµ⊗Q' Ȟ ⊗ R (see Lemma 3.2.4) carries

ω(ȟ) to ȟ⊗ 1.

Indeed, by (1), when we follow the definition of 2 and mod out by P0⊗Q, the first sum, containing the
da(ȟ)’s, disappears. The second sum provides the desired formula, by (2).

Proof of (1). This follows from the discussion of the Kodaira–Spencer map for semiabelian schemes
in [Lan 2013, Section 4.6.1]. Let C assume the role of the base-scheme denoted there by S, and G the
semiabelian scheme denoted there by G\. Then Lan constructs a Kodaira–Spencer map for semiabelian
schemes KSG/C , which in our case is an isomorphism

KSG/C : P0⊗Q'�C/Ws .

Note that Lan allows the abelian part to deform as well, but in our case A = Am is constant. This
implies that the Kodaira–Spencer map, which is a priori defined on ωA⊗ωG , factors through its quotient
ωA ⊗ ωT . In addition, because of the constraints imposed by the endomorphisms, we may restrict it
to ωA(6)⊗ωT (6)= P0⊗Q without losing any information. Finally, [Lan 2013, Remark 4.6.2.7 and
Theorem 4.6.3.16] imply that the diagram

P0⊗Q
KSG/C

// �C/Ws

∩ ∩

P ⊗Q KS
// �S/Ws

[d log∞]

is commutative, and this proves (1). �

Proof of (2). The second claim goes to the root of how KS is defined on S. See [Lan 2013, Section 4.6.2],
especially the discussion on page 269, preceding Definition 4.6.2.10. Fix a basis y1, . . . , ym of Y and
let χi = φX (yi ) be the corresponding basis of X . Then as a basis of Ȟ we may take the elements
ȟi j = [yi ⊗ y j ] (see the proof of Lemma 3.2.4). The corresponding element of the stalk of Pµ⊗Q at x is
χi ⊗χ j . The variable qi j = q ȟi j is then a generator of the invertible R-module denoted in [loc. cit.] by
I (yi , χ j ), and the extended Kodaira–Spencer homomorphism is defined in [loc. cit., Definition 4.6.2.12]
so that it takes χi ⊗χ j to d log(qi j )= ω(ȟi j ). The base schemes S and S1 in [loc. cit.] are in our case
Spec(R) and its generic point. �

Corollary 3.2.6. Let f ∈ H 0(Sord
s , Eρ) and let h be the Hasse invariant (1.1.5). Then 2(h f )= h2( f ).

Proof. Obvious. �

Corollary 3.2.7. (i) Let f ∈ H 0(Sord, Eρ). Then 2( f )= 0 if and only if the Fourier–Jacobi expansion
of f at every rank m cusp is constant.

(ii) f ∈ ker(2) if and only if its Fourier–Jacobi expansion at every rank m cusp is supported on ȟ ∈ pȞ+.

Proof. (i) This follows from our theorem and the FJ-expansion principle: a p-adic modular form vanishes
if and only if its Fourier–Jacobi expansion at every rank m cusp vanishes. This principle was proved in
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[Lan 2013, Proposition 7.1.2.14], under the assumption that every irreducible component of S contains
at least one rank m cuspidal stratum Z([g]m, σ ). This assumption was later verified, for our Shimura
variety among others, in Corollary A.2.3 of [Lan 2015].

(ii) Follows by the same argument, noticing that for a(ȟ)⊗ ȟ to vanish, it is necessary and sufficient that
either a(ȟ)= 0 or ȟ ∈ pȞ+. �

4. Analytic continuation of 2 to the nonordinary locus

4.1. The almost ordinary locus.

The stratum Sao. In this section we assume that n > m, as the question we are about to discuss requires
different considerations when n =m, which will be handled separately. Let S denote, as in the beginning,
the special fiber of the Shimura variety S. Thus S is nm-dimensional, smooth over κ = Fp2 , and is
stratified by the Ekedahl–Oort strata [Oort 2001; Moonen 2001; Viehmann and Wedhorn 2013]. The
(µ-)ordinary stratum Sord is open and dense, and the operator 2 acts on sections of the automorphic
vector bundle Eρ over it, sending them to sections of Eρ ⊗Pµ⊗Q' Eρ ⊗Q(p)

⊗Q,

2 : H 0(Sord, Eρ)→ H 0(Sord, Eρ ⊗Q(p)
⊗Q).

Here we have used the fact that in characteristic p the vector bundle homomorphism VP : P→Q(p) is
surjective with kernel P0, so induces an isomorphism Pµ = P/P0 'Q(p). Our goal in this section is to
study the analytic continuation of 2 to all of S. This is reminiscent of the fact that the theta operator
on GL2 (denoted by Aθ in [Katz 1977]) extends holomorphically across the supersingular points of the
modular curve.

Proposition 4.1.1. There exists a unique EO stratum Sao of dimension nm−1. The homomorphism VP is
still surjective in every geometric fiber over Sao, so P0 = P[VP ] extends to a rank n−m vector bundle
over Sord

∪ Sao. The same applies to Pµ and of course to Q, hence every p-adic automorphic vector
bundle Eρ extends canonically to the open set Sord

∪ Sao.

We call Sao the almost-ordinary locus. It is the divisor of the Hasse invariant h on Sord
∪ Sao, and, like

any other EO stratum, is nonsingular.

Proof. The uniqueness of the EO stratum in codimension 1 is proved in [Wooding 2016, Corollary 3.4.5],
where it is deduced from the classification of the EO strata by Weyl group elements and the calculation
of their dimensions in [Moonen 2001]. The assertion on VP being surjective in every geometric fiber
follows from the computation of the Dieudonné space at geometric points of Sno [Wooding 2016,
Proposition 3.5.6], reviewed below. Since the base scheme is a nonsingular variety, constancy of the fibral
rank of VP suffices to conclude that P0 and Pµ are locally free sheaves. Finally, Eρ is constructed by
twisting the representation ρ of GLm ×GLm ×GLn−m (with values in κ) by the vector bundles Q,Pµ
and P0 as on page 1841. �
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Dieudonné spaces. Let k be a perfect field of characteristic p. For the following see [Oda 1969; Bültel and
Wedhorn 2006; Wedhorn 2001, (5.3)]. A polarized Dieudonné space over k is a finite dimensional k-vector
space D equipped with a nondegenerate skew-symmetric pairing 〈 · , · 〉 and two linear maps F : D(p)

→ D
and V : D→ D(p) such that Im(F)= ker(V ) and Im(V )= ker(F), and such that 〈Fx, y〉 = 〈x, V y〉(p)

for every x ∈ D(p) and y ∈ D. It follows immediately from the definition that dim D = 2g and F and V
have rank g. If M is a principally polarized Dieudonné module over W (k) then D=M/pM is a polarized
Dieudonné space. If A is a principally polarized abelian variety over k then its de Rham cohomology
D= H 1

d R(A/k) is equipped with a canonical structure of a Dieudonné space, which may also be identified
with the (contravariant) Dieudonné module of A[p]. The Hodge filtration is then related to F via

ω = H 0(A, �1)= (D(p)
[F])(p

−1).

It is essential for this that we work over a perfect base.
A polarized OE -Dieudonné space is a polarized Dieudonné space admitting, in addition, endomorphisms

by OE , for which F and V are OE -linear and 〈ax, y〉 = 〈x, ay〉 (a ∈ OE ). Assume that k contains κ .
Then D(6) and D(6) are set in duality by the pairing, hence are each of dimension g, V maps D(6) to
D(6)(p) and D(6) to D(6)(p) and a similar statement, going backwards, holds for F . The type (n,m)
of ω (n = dimω(6), m = dimω(6)) is called the type, or signature, of D.

Over a nonperfect base Spec(R) (in characteristic p, say, as this is all that we need) one can still
associate to a principally polarized abelian scheme A/R, or to its p-divisible group, a Dieudonné
crystal as in [Grothendieck 1974], and when evaluated at (Spec(R) ⊂ Spec(R)) it yields a polarized
R-module D(A/R) with an F and a V as before, which may be identified with H 1

d R(A/R). If R is
an equicharacteristic PD-thickening of k then in fact D(A/R) = R⊗k D(Ak/k) with the polarization,
F and V extended R-linearly. The Hodge filtration can not be read from D(A/R) any more. In fact,
Grothendieck’s theorem asserts that giving (D(A/R), ω) is tantamount to giving the deformation of A
from Spec(k) to Spec(R). We shall apply these remarks later on when k is algebraically closed, x ∈ S(k)
is a geometric point, and R =OS,x/m

2
S,x is its first infinitesimal neighborhood.

Let k be an algebraically closed field containing κ . Consider the following polarized OE -Dieudonné
spaces. We use the convention that OE acts on the ei via 6 and on the fi via 6. Write G6 for the
p-divisible group Gk equipped with the OE -action inducing 6 on the tangent space, and likewise G6 .

(i) D(G6[p])= Spank{e1, f1}, 〈e1, f1〉 = 1, F f (p)1 = e1, Fe(p)1 = 0, V f1 = e(p)1 , V e1 = 0. Here ω= ke1

and the signature is (1, 0).

(i)’ D(G6[p]) = Spank{e2, f2}, 〈 f2, e2〉 = 1, Fe(p)2 = f2, F f (p)2 = 0, V e2 = f (p)2 , V f2 = 0. Note that
D(G6[p])= D(G6[p])(p), ω = k f2 and the signature is (0, 1).

(ii) AO(2, 1)= Spank{ei , fi | 1≤ i ≤ 3}, 〈e1, f3〉 = 〈 f2, e2〉 = 〈 f1, e3〉 = 1 (and 〈ei , f j 〉 = 0 if i+ j 6= 4);
F and V are given by the following table, where to ease notation the (p) is left out:
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e1 e2 e3 f1 f2 f3

F 0 f1 0 e1 0 e2

V 0 0 f2 0 e1 e3

This is the Dieudonné space denoted by B(3) in [Bültel and Wedhorn 2006]. Here ω=Spank{e1, e3, f2}

and P0 = ω(6)[V ] = ke1.

(iii) AO(3, 1)= Spank{ei , fi | 1≤ i ≤ 4}, 〈e1, f4〉 = 〈e2, f3〉 = 〈 f2, e3〉 = 〈 f1, e4〉 = 1 (and 〈ei , f j 〉 = 0
if i + j 6= 5); F and V are given by the following table, where to ease notation the (p) is left out:

e1 e2 e3 e4 f1 f2 f3 f4

F 0 f1 0 0 e1 e2 0 e3

V 0 0 0 f3 0 e1 e3 e4

This is the Dieudonné space denoted by B(4) in [Bültel and Wedhorn 2006]. Here ω is equal to
Spank{e1, e3, e4, f3} and P0 = ω(6)[V ] = Spank{e1, e3}.

Proposition 4.1.2 [Wooding 2016, Proposition 3.5.6]. Let x ∈ Sao(k) be an almost-ordinary geometric
point. Then Dx = D(Ax/k) is isomorphic to the following:

(i) n = m+ 1:

D = AO(2, 1)⊕
m−1⊕
i=1

Spank{e
µ
i , eet

i , f µi , f et
i }

where 〈eµi , f et
i 〉 = 〈 f

µ
i , eet

i 〉 = 1 (and 〈eµi , f µi 〉 = 〈e
et
i , f et

i 〉 = 0), and F and V are given by the
following table:

eµi eet
i f µi f et

i

F 0 f et
i 0 eet

i
V f µi 0 eµi 0

(ii) n ≥ m+ 2:

D = AO(3, 1)⊕
m−1⊕
i=1

Spank{e
µ
i , eet

i , f µi , f et
i }⊕ D(G6[p])n−m−2.

The Kodaira–Spencer isomorphism along the almost ordinary stratum. The following result is the key to
the analytic continuation of the theta operator, which will be proved in the next section.

Theorem 4.1.3. Let
ψ = (prµ⊗1) ◦KS−1

:�S/κ→ Pµ⊗Q

be the composition of the inverse of the Kodaira–Spencer isomorphism and the projection from P to
Pµ = P/P0 (well-defined over Sord

∪ Sao). Let u = 0 be a local equation of the divisor Sao in a Zariski
open set U ⊂ Sord

∪ Sao. Then ψ(du) vanishes along Sao
∩U.
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Remark. Compare with [de Shalit and Goren 2016, Proposition 3.11]. In terms of the foliation T S+

introduced in [de Shalit and Goren 2018] the theorem asserts that at any point x ∈ Sao this foliation is
tangential to Sao, i.e T S+|x ⊂ T Sao

|x . In [de Shalit and Goren 2018] we studied a certain open subset
S] ⊂ S which was a union of Ekedahl–Oort strata, including Sord, Sao and a unique minimal EO stratum
denoted there Sfol, of dimension m2. The subset S] and the foliation TS+ are related to the geometry
of auxiliary Shimura varieties of parahoric level structure at p, and seem to play an important role. In
[loc. cit., Theorem 25], it was proved that T S+ is tangential to Sfol. In view of these two results, claiming
tangentiality to Sao and Sfol, it is reasonable to expect that T S+ is tangential to every EO strata in S]. The
proofs of the known cases, whether in [loc. cit.] or here, invoke delicate computations with Dieudonné
modules, and at present we see no conceptual reason justifying our expectation, which could avoid such
computations.

Proof. Let k be an algebraically closed field containing κ , x ∈ Sao(k) a geometric point and Dx = D(Ax/k).
Let R=OS,x/m

2
S,x and d : R→�S/k |x =mS,x/m

2
S,x the canonical derivation d f = ( f − f (x)) mod m2

S,x .
Let D = H 1

d R(A/R). The Gauss–Manin connection on H 1
d R(A/S) induces a map

∇ : D→ Dx ⊗k �S/k |x

satisfying ∇(rα)= r(x)∇(α)+α⊗dr , which by abuse of language we call the Gauss–Manin connection
on D. It is easy to see that every α ∈ Dx has a unique extension to a horizontal section α ∈ D, i.e., a
section satisfying ∇(α)= 0. Thus, we may identify D with R⊗k Dx , the horizontal sections being Dx .
Since the Gauss–Manin connection commutes with isogenies, V : D→ D(p) and F : D(p)

→ D map
horizontal sections to horizontal sections. For the same reason, if x, y are horizontal sections of D, their
pairing 〈x, y〉 is horizontal for d , i.e., lies in k.

We now distinguish between two cases:

I. Assume that n = m+ 1. Then

Dx = Spank{e1, e2, e3, f1, f 2, f3, eµi , eet
i , f µi , f et

i }1≤i≤m−1

where the first six vectors span AO(2, 1), as in Proposition 4.1.2(i). For the convenience of the reader we
have underlined the vectors spanning ωx . The module D is spanned by the same vectors over R, and the
pairings and the tables giving F and V remain the same over R.

We now write the most general deformation of ωx to a projective submodule of D which is invariant
under the endomorphisms and isotropic. An easy check yields that it is given by

ω = SpanR{ẽ1, ẽ3, f̃2, ẽµi , f̃ µi }1≤i≤m−1,

where

• ẽ1 = e1+ ue2+
∑m−1

i=1 ui eet
i ,

• ẽ3 = e3+ ve2+
∑m−1

i=1 vi eet
i ,

• f̃2 = f2− v f1+ u f3+
∑m−1

i=1 wi f et
i ,



1868 Ehud de Shalit and Eyal Z. Goren

• ẽµi = eµi +wi e2+
∑m−1

j=1 wi j eet
j ,

• f̃ µi = f µi − vi f1+ ui f3+
∑m−1

j=1 w j i f et
j .

The mn parameters u, ui , v, vi , wi , wi j are, according to Grothendieck, the local parameters of R,
serving as a basis of mR over k. It follows that P0 is indeed of rank 1, as claimed before, spanned over R
by ẽ1, while Q is spanned over R by the m vectors f̃2, f̃ µi . Furthermore, computing the Hasse matrix
H = V (p)

P ◦ VQ in the bases ( f̃2, f̃ µi ) and ( f̃ (p
2)

2 , f̃ µ(p
2)

i ) of Q and Q(p2) we get

H =


u u1 u2 · · · um−1

0 1 0 0
0 0 1 0
...

. . .
...

0 · · · · · · 1

 ,

so the (trivialized) Hasse invariant h is simply u. Since we know that Sao is the zero divisor of h,
Sao
∩Spec(R) is given by the equation u = 0. Note, in passing, that this proves that the zero divisor of

the Hasse invariant is reduced and equal to the nonordinary locus.
To compute KS(P0 ⊗ Q) recall how it is defined. From the Gauss–Manin connection we get a

homomorphism of sheaves
∇ : ω→�S/κ ⊗ (H 1

d R(A/S)/ω)

which induces a homomorphism P→�S/κ ⊗Q∨. This induces the map

KS : P ⊗Q→�S/κ

which happens to be an isomorphism. We begin by computing the Gauss–Manin connection on P0:

∇(ẽ1)= e2⊗ du+
m−1∑
i=1

eet
i ⊗ dui .

Projecting Dx to Dx/ωx = H 1(Ax ,O) and noting that e2, eet
i modulo ωx are a basis for the dual Q∨ of

Q, equipped with the conjugate action of OE via 6, we find out that

KS(P0⊗Q)|x = Spank{du, dui }.

From the definition of ψ it follows that ψ(du)|x = 0. Now assume that u is a global generator of the
ideal of Sao in a Zariski open set U . Then we conclude that ψ(du)= 0 along Sao

∩U as claimed.

II. The proof of the theorem in the case n−m ≥ 2 is similar, using Proposition 4.1.2(ii). Here

Dx = Spank{e1, e2, e3, e4, f1, f2, f 3, f4, eµi , eet
i , f µi , f et

i , e]j , f ]j }1≤i≤m−1,1≤ j≤n−m−2

where the first eight vectors span AO(3, 1) and for every j the vectors e]j , f ]j span a copy of D(G6[p]).
For convenience we have again underlined the vectors spanning ωx . The most general deformation of ωx

in D = R⊗k Dx is spanned by the following vectors:
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• ẽ1 = e1− ue2+
∑m−1

i=1 ui eet
i .

• ẽ3 = e3+ ve2+
∑m−1

i=1 vi eet
i .

• ẽ4 = e4+we2+
∑m−1

i=1 wi eet
i .

• f̃3 = f3+w f1+ v f2+ u f4−
∑m−1

l=1 xl f et
l −

∑n−m−2
k=1 yk f ]k .

• ẽµi = eµi + xi e2+
∑m−1

l=1 xileet
l .

• f̃ µi = f µi −wi f1− vi f2+ ui f4+
∑m−1

l=1 xli f et
l +

∑n−m−2
k=1 yki f ]k .

• ẽ]j = e]j + y j e2+
∑m−1

l=1 y jleet
l .

The nm parameters u, v, w, ui , vi , wi , xi , xil, yk, yk j form a basis of mR over k. Calculating the Hasse
matrix H yields exactly the same m ×m matrix as above, hence u = 0 is again the local infinitesimal
equation of Sao. The submodule P0 is n−m dimensional, and is spanned by ẽ1, ẽ3 and the ẽ]j . Calculating
KS we find that

KS(P0⊗Q)|x = Spank{du, dui , dv, dvi , dy j , dy jl}

(1 ≤ i, l ≤ m − 1, 1 ≤ j ≤ n−m − 2) so as before ψ(du)|x = 0. We conclude the proof as in the first
case. �

4.2. Analytic continuation of 2 (m < n).

Compactification of a certain intermediate Igusa cover. Recall the Igusa tower Tt,s over Sord
s that has

been constructed in Section 2.1. Let

11
t = SLm(OE/ptOE)×Un−m(OE/ptOE)C1t

and denote by T 1
t,s the intermediate covering of Sord

s fixed by 11
t . It is a Galois étale cover of Sord

s with
Galois group (OE/ptOE)

×. In this section let T = T 1
1,1, and let τ : T → Sord be the covering map, whose

Galois group is identified with κ×.
Let L= det(Q) and recall that the Hasse invariant h ∈ H 0(S,Lp2

−1) (1.1.5).

Lemma 4.2.1. (i) The line bundle L is canonically trivialized over T , i.e., there is a canonical isomor-
phism ε :OT ' τ

∗L.

(ii) Denoting by a the global section of τ ∗L corresponding to the section “1” under the trivialization,
we have a p2

−1
= τ ∗h.

Proof. (i) The canonical trivialization ε2(6) : Om
T1,1
' τ ∗1,1Q over the big Igusa variety T1,1 induces a

canonical trivialization on the determinants ε : OT1,1 ' τ
∗

1,1L. The latter descends to T because it is
invariant under 11

1.

(ii) Since Ver is the identity on µp, the trivialization ε2 of gr2 A[p] satisfies

Ver ◦Ver(p) ◦(ε2)(p
2)
= ε2.
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Passing to cohomology (recall ε2
= ((ε2)−1)∗) yields the relation (ε2(6))(p

2)
= H ◦ ε2(6) where H ,

recall, is V (p)
P ◦ VQ. Taking determinants we get

ε(p
2)
= h ◦ ε

and evaluating at “1” gives the desired relation. �

The following Kummer-type result was proved in [de Shalit and Goren 2016, Section 2.4.2] for
signature (2,1) and the proof easily generalizes. See also [Goren 2001]. Let

S′ = Sord
∪ Sao.

Consider the fiber product

T ′ = L×Lp2−1 S′ (4.2.1)

where the two maps to Lp2
−1 are λ 7→ λp2

−1 and h. Note that the pull-back of L from S′ to T ′ admits
a tautological p2

− 1 root of h extending a, which we still call a. Then T ′→ S′ is finite flat of degree
p2
−1, is Galois étale with Galois group κ× over Sord, and totally (tamely) ramified along Sao. It satisfies

a universal property with respect to extracting a p2
− 1 root from the section h; see [loc. cit.]. From part

(ii) of the last proposition it follows that there is a canonical map

T → T ′.

Since both source and target are κ×-torsors over Sord and the map respects the κ× action, this map is
an isomorphism of T with the preimage of Sord in T ′. In this way we may identify T ′ with a (partial)
compactification of T . We then have the following.

Proposition 4.2.2. (i) The morphism τ ′ : T ′→ S′ is finite flat of degree p2
−1, Galois étale with Galois

group κ× over Sord, and totally (tamely) ramified along Sao.

(ii) T ′ is everywhere nonsingular.

(iii) Let x ∈ Sao(k) be a geometric point, and y ∈ T ′(k) the unique geometric point mapping to it. Then
there are formal parameters u, vi (1≤ i ≤ nm− 1) at x such that u = 0 is the infinitesimal equation
of Sao, and such that as formal parameters on T ′ at y we can take w, vi where w p2

−1
= u.

(iv) T ′ and T = T 1
1,1 are irreducible.

Proof. The proof is the same as in the case of signature (2, 1) [de Shalit and Goren 2016, Section 2.4.3,
Proposition 2.16]. �

The main theorem for scalar-valued modular forms. We can now prove the analytic continuation of 2 in
characteristic p, when applied to scalar-valued p-adic modular forms. Recall that L= det(Q).

Theorem 4.2.3. Assume that m < n. Consider the operator

2 : H 0(Sord,Lk)→ H 0(Sord,Lk
⊗Q(p)

⊗Q).
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Then 2 extends holomorphically to an operator

2 : H 0(S,Lk)→ H 0(S,Lk
⊗Q(p)

⊗Q).

Remark. The analytic continuation of 2 to global modular forms is a characteristic p phenomenon and
does not seem to extend to Ss (i.e., modulo ps) for s > 1. Had it extended for all s, we would have
obtained, for any algebraic modular form f of weight k, a well-defined rigid analytic “2( f )”, of weight
k+ p+ 1, on the whole rigid analytic space associated to S. By GAGA (and the Köcher principle) this
2( f ) would have been algebraic. However, the Maass–Shimura operators in characteristic 0 do not
preserve the space of classical modular forms.

Proof. Let f ∈ H 0(S,Lk). Then 2( f ) is a section of Lk
⊗Q(p)

⊗Q over Sord and we have to show that it
extends holomorphically to S. Since S is nonsingular, it is enough to show that it extends holomorphically
to S′ = Sord

∪ Sao, an open set whose complement is of codimension 2. Indeed, Zariski locally we may
trivialize the vector bundles, and then any coordinate of 2( f ) becomes a meromorphic function, whose
polar set, if nonempty, should have codimension 1.

Let τ ′ : T ′→ S′ be the intermediate Igusa variety constructed above. Over T (the preimage of Sord)
we can write the trivialization ε of L as f 7→ f/ak . This introduces a pole of order k, at most, along
T ao
= τ ′−1(Sao). Let y ∈ T ao be a geometric point and x = τ ′(y). Let u, vi be formal parameters at x

and w, vi formal parameters at y as in Proposition 4.2.2. Let

f/ak
=

∞∑
r=−k

gr (v)w
r

be the Taylor expansion of f/ak in ÔT ′,y , where the gr (v) are power series in the vi . Note that du =
d(w p2

−1)=−w p2
−2dw. Thus,

d( f/ak)=

∞∑
r=−k

wr dgr (v)+

∞∑
r=−k

rgr (v)w
r−1dw

=

∞∑
r=−k

wr dgr (v)−

∞∑
r=−k

rgr (v)w
r−(p2

−1)du

=

∞∑
r=−k

wr dgr (v)−

∞∑
r=−k

rgr (v)w
r u−1du.

When we compute

2̃( f )= ak
( ∞∑

r=−k

wr dgr (v)−

∞∑
r=−k

rgr (v)w
r u−1du

)
,

which we know descends to S′, we see that the first sum becomes holomorphic (a vanishes along T ao),
while the second sum retains a simple pole along Sao. However, to get 2( f ) we must still apply the
vector-bundle homomorphism ψ . Theorem 4.1.3 says that ψ(du) vanishes along Sao, hence the simple
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pole disappears and 2( f ) is holomorphic at x . This being true at every x ∈ Sao, we conclude that 2( f )
is everywhere holomorphic. �

4.3. Analytic continuation of 2 (m = n). We briefly indicate the modifications in the proof which are
necessary to deal with the case m = n. In this case rk(ker(VP)) changes when we move from Sord to Sao,
so P0 and Pµ do not extend, with the same definitions, to vector bundles over S′ = Sord

∪ Sao. As such,
we cannot extend 2 beyond Sord using prµ. Instead, we apply (VP ⊗ 1) ◦KS−1 to �S/κ , a map that gives
the same result as (prµ⊗1) ◦KS−1 over Sord in characteristic p, but does not make sense over Sord

s for
s > 1. Let L= det(Q) as before.

Preliminary results on the Igusa variety when m = n. Let T = T 1
1,1 as before. Let T ′ be defined by (4.2.1).

As before, it is a partial compactification of T . Since the divisor of the Hasse invariant is not reduced
when n = m (see page 1836 and Lemma 1.1.4), the proof of the irreducibility of T as in [de Shalit and
Goren 2016, Proposition 2.16] breaks down.

Proposition 4.3.1. (i) The morphism T ′→ S′ is finite flat of degree p2
− 1, with Galois group κ×.

(ii) T ′ is nonsingular.

(iii) T ′ and the Igusa variety T decompose into p+ 1 irreducible components T ′ζ (resp. Tζ ) labeled by ζ
such that ζ p+1

= 1. More canonically,

π0(T )= π0(T ′)' κ×/F×p .

(iv) The map T ′ζ → S′ is totally (tamely) ramified over Sao of degree p− 1.

Proof. The proof of (i) is the same as when n > m. Our T ′ is still obtained from S′ by extracting
a p2
− 1 root of h. However, this time h = h p+1

Q where hQ is in H 0(S′,Lp−1) so T ′ =
⊔

T ′ζ where
T ′ζ = S′[ p−1

√
ζhQ]. As the divisor of hQ is reduced and equal to Sao, the rest of the proof is similar to the

case n > m. �

The main theorem when m = n.

Theorem 4.3.2. Assume that m = n. The operator

2= (1⊗ VP ⊗ 1) ◦ (1⊗KS−1) ◦ 2̃ : H 0(Sord,Lk)→ H 0(Sord,Lk
⊗Q(p)

⊗Q)

extends holomorphically to an operator

2 : H 0(S,Lk)→ H 0(S,Lk
⊗Q(p)

⊗Q).

Proof. As before, let
ψ = (VP ⊗ 1) ◦KS−1

:�S/κ→Q(p)
⊗Q.

Let x ∈ Sao(k) be a geometric point. The Dieudonné module Dx is now given by

Dx = Spank{e
µ
i , f µi , eet

i , f et
i , e], f ], e[, f [}1≤i≤m−1
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where Spank{e
], f ]} is isomorphic to D(G6[p]) and Spank{e

[, f [} to D(G6[p]) [Wooding 2016, Propo-
sition 3.5.6]. The underlined vectors span ωx . As before, we let R =OS,x/m

2
S,x and D = R⊗k Dx . The

most general deformation of ωx to ω ⊂ D compatible with the endomorphisms and the polarization is
spanned by

• ẽµi = eµi +wi e[+
∑m−1

j=1 wi j eet
j ,

• ẽ] = e]+ ue[+
∑m−1

j=1 u j eet
j ,

• f̃ µi = f µi + ui f ]+
∑m−1

j=1 w j i f et
j ,

• f̃ [ = f [+ u f ]+
∑m−1

j=1 w j f et
j .

The m2 quantities wi , wi j , u, ui then form a system of local (infinitesimal) parameters at x . The matrix
of VQ in the bases { f̃ [, f̃ µi } of Q and {(ẽ])(p), (ẽµi )

(p)
} of P(p) is

u u1 · · · um−1

1
. . .

1

 .
The infinitesimal equation of Sao

∩ Spec(R) is u = 0. As before we compute the Kodaira–Spencer
homomorphism and find out that

KS(e])= du ∧ e[+
m−1∑
j=1

du j ∧ eet
j ,

which means that
KS(e]⊗Q|x)= Spank{du, du j } ⊂�S|x .

This implies that KS−1(du) ∈ e]⊗Q|x . However, VP is expressible in the same bases as above by the
matrix 

u w1 · · · wm−1

1
. . .

1

 ,
which means that ker(VP) is 1-dimensional at x , and spanned by e]. Thus if u = 0 is a local equation of
Sao, ψ(du) vanishes along Sao. This yields Theorem 4.1.3 when m = n.

Let f ∈ H 0(S,Lk). Then 2( f ) is a section of Lk
⊗Q(p)

⊗Q over Sord and we have to show that it
extends holomorphically to S. Since S is nonsingular, as in the case n > m, it is enough to show that it
extends holomorphically to S′ = Sord

∪ Sao.
Let τ ′ : T ′→ S′ be the intermediate Igusa variety constructed above. Let a be, as before, the tautological

p2
− 1 root of h over T ′; it vanishes to order 1 along T ao

= τ ′−1(Sao). Over T (the preimage of Sord),
where a does not vanish, we can write the trivialization ε of L as f 7→ f/ak . This introduces a pole of
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order k, at most, along T ao. Let y ∈ T ao be a geometric point and x = τ ′(y). Let ζ be the p+ 1 root of 1
such that y ∈ T ′ζ . Let u, vi be formal parameters at x and w, vi formal parameters at y so that u = 0 is a
local equation of Sao and

u = w p−1.

Let

f/ak
=

∞∑
r=−k

gr (v)w
r

be the Taylor expansion of f/ak in ÔT ′,y , where the gr (v) are power series in the vi . Note that du =
d(w p−1)=−w p−2dw. Thus, similarly to the case n > m

d( f/ak)=

∞∑
r=−k

wr dgr (v)+

∞∑
r=−k

rgr (v)w
r−1dw

=

∞∑
r=−k

wr dgr (v)−

∞∑
r=−k

rgr (v)w
r−(p−1)du

=

∞∑
r=−k

wr dgr (v)−

∞∑
r=−k

rgr (v)w
r u−1du.

We conclude the proof as in the case n > m. �

5. Theta cycles

For the group GL2, the application of the theta operator to mod p modular forms was linked to twisting
Galois representations by the cyclotomic character (see [Serre 1973a] over Q and [Andreatta and Goren
2005] over a totally real base field). The variation of the weight filtration upon iteration of 2 was of
much interest in this context. While the connection to Galois representations in the unitary case requires
further study, our goal here is to present a similar behavior on the level of q-expansions. We consider
only signature (n, 1), n > 1, as signature (1, 1) is essentially the case of modular curves.

In this section, let S be a connected component of the special fiber of a unitary Shimura variety of
signature (n, 1), so that Pµ⊗Q ' Q(p)

⊗Q ' Lp+1. The theta operator maps Lk to Lk+p+1 and may
be iterated. The index set Ȟ for the Fourier–Jacobi expansions at a given level and a given rank-1 cusp
may be identified with Z so that Ȟ+ is identified with the nonnegative integers. The effect of 2 on
Fourier–Jacobi expansions is

2

(∑
n≥0

a(n) · qn
)
=

∑
n≥0

a(n)n · qn. (5.0.1)

Given the q-expansion principle and the irreducibility of the Igusa variety T 1
1,1 (see Proposition 4.2.2),

the proofs of the following results are verbatim as for signature (2, 1), see [de Shalit and Goren 2016,
Sections 3.1–3.3].
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Lemma 5.0.1. Let ξ be a rank 1 cusp on S∗. Let ` be the nonzero section of L used to trivialize L at a
formal neighborhood of ξ as before. Consider the homomorphism

F Jξ :
∞⊕

k=0

H 0(S,Lk)→ FJ ξ ,

where FJ ξ is as in Proposition 3.1.2 and where we have identified formal sections of Lk near ξ with
elements of ÔS∗,ξ by dividing the sections by `k . Then the kernel of F Jξ is given by the ideal

ker(F Jξ )= (h− 1),

where h is the Hasse invariant.

Given an element f = f (q) ∈ FJ ξ of the form F Jξ (g), g ∈ H 0(S,Lk), we denote by ω( f ) the
minimal k ≥ 0 for which there exists such a g. We call ω( f ) the filtration of f . By the previous lemma,
if f arises from g of weight k then ω( f )≡ k mod (p2

− 1).

Proposition 5.0.2. Let f ∈ H 0(S,Lk) be in the image of 2, i.e., f =2(g).

(i) We have 2p−1( f )= f h where h is the Hasse invariant.

(ii) The sequence ω(2i ( f )) i = 0, 1, 2, . . . , p− 1 increases by p+ 1 at each step, except for a single
i = i0( f ) < p− 1 for which ω(2i+1( f ))= ω(2i ( f ))− p2

+ p+ 2.

The combinatorics of weights has some peculiarities not present in the case of elliptic modular forms,
see [de Shalit and Goren 2016].
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