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Manin’s b-constant in families
Akash Kumar Sengupta

We show that the b-constant (appearing in Manin’s conjecture) is constant on very general fibers of a
family of algebraic varieties. If the fibers of the family are uniruled, then we show that the b-constant is
constant on general fibers.

1. Introduction

Let X be a smooth projective variety over a field of k of characteristic 0 and L a big Q-Cartier Q-divisor on
X . Let 3eff(X)⊂ NS(X)R be the cone of pseudoeffective divisors. The Fujita invariant or the a-constant
is defined as

a(X, L)=min{t ∈ R | [K X ] + t[L] ∈3eff(X)}.

The invariant κε(X, L)=−a(X, L) was introduced and studied by Fujita [1987; 1992] under the name
Kodaira energy. The a-constant was introduced in the context of Manin’s conjecture in [Franke et al. 1989].

The b-constant is defined as follows [Franke et al. 1989; Batyrev and Manin 1990]:

b(X, L)= codim of minimal supported face of 3eff(X)containing the class of K X + a(X, L)L .

For a singular variety X , the a- and b-constants of L are defined to be the a- and b-constants of π∗L on a
resolution π : X̃→ X .

Let f : X→ T be a family of projective varieties and L an f -big and f -nef Q-Cartier Q-divisor. By
semicontinuity the a-constant of the fibers a(X t , L|X t ) is constant on very general fiber (see [Lehmann
and Tanimoto 2017, Theorem 4.3]). It follows from invariance of log plurigenera that if the fibers are
uniruled then the a-constant is constant on general fibers.

In this paper we investigate the behavior of the b-constant in families and answer the questions posed
in [Lehmann and Tanimoto 2017]. We prove the following:

Theorem 1.1. Let f : X → T be a projective morphism of irreducible varieties over an algebraically
closed field k of characteristic 0, such that the generic fiber is geometrically integral. Let L be an f -big
Q-Cartier Q-divisor. Then there exists a countable union of proper closed subvarieties Z =

⋃
i Zi ( T ,

such that
b(X t , L|X t )= b(Xη, L|Xη)
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for all t ∈ T \ Z , where η ∈ T is the generic point. In particular, the b-constant is constant on very general
fibers.

If the fibers of the family are uniruled, then we have the following:

Theorem 1.2. Let f : X → T be a projective morphism of irreducible varieties over an algebraically
closed field k of characteristic 0, such that the generic fiber is geometrically integral. Let L be an f -big
and f -nef Q-Cartier Q-divisor. Suppose a general fiber X t is uniruled. Then there exists a proper closed
subscheme W ( T such that

b(X t , L|X t )= b(Xη, L|Xη)

for t ∈ T \W and η ∈ T is the generic point. In particular, the b-constant is constant on general fibers in
a family of uniruled varieties.

One can not replace the very general condition in Theorem 1.1 by just general. For example, in a
family of K3-surfaces the b-constant of a fiber is the same as the Picard rank and there exist families
where the Picard rank jumps on infinitely many subvarieties. Invariance of the b-constant in general fiber
of a family of uniruled varieties was proved in [Lehmann and Tanimoto 2017] under the assumption
κ(K X̃ t

+ a(X t , L|X t )β
∗(L|X t )) = 0 for some resolution of singularities β : X̃ t → X t . Theorem 1.2

generalizes their result to get rid of this condition on fibers.
One of the motivations for studying the behavior of a- and b-constants is Manin’s conjecture about

asymptotic growth of rational points on Fano varieties proposed in [Franke et al. 1989; Batyrev and
Manin 1990]. The following version was suggested by Peyre [2003] and later stated in [Le Rudulier 2013;
Browning and Loughran 2017].

Manin’s conjecture. Let X be a Fano variety defined over a number field F and L= (L , ‖·‖) a big and
nef adelically metrized line bundle on X with associated height function HL. Then there exists a thin set
Z ⊂ X (F) such that one has

#{x ∈ X (F) \ Z | HL(x)≤ B} ∼ c(F, X (F) \ Z ,L)Ba(X,L) log Bb(X,L)−1

as B→∞.

For the geometric consistency of Manin’s conjecture, a necessary condition is that the a- and b-constants
achieve a maximum as we vary over subvarieties of X . The behavior of the a- and b-constants in families
was used in [Lehmann and Tanimoto 2017] to show this necessary condition. The a- and b-constants also
play a role in determining and counting the dominant components of the space Mor(P1, X) of morphisms
from P1 to a smooth Fano variety X (see [Lehmann and Tanimoto 2019] for details).

The ideas in proving our results are as follows. To prove Theorem 1.1, we analyze the behavior of the
b-constant under specialization and combine this with the constancy of the Picard rank and the a-constant
in very general fibers to obtain the desired conclusion. The key step for Theorem 1.2 is to prove constancy
on closed points when k = C. We run a (K X + aL)-MMP over the base T , to obtain a relative minimal
model X 99K X ′ where a = a(X t , L|X t ). We pass to a relative canonical model φ : X 99K Z over T and
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base change to t ∈ T , to obtain φt : X t 99K Z t as the canonical model for (X t , aL X t ). Using a version
of the global invariant cycles theorem (see Lemma 2.11), we observe that b(X t , L t) is same as the rank
of the monodromy invariant subspace of N 1(Y ′z)R, where Y ′z is a general fiber of X ′t → Z t . Then using
topological local triviality of algebraic morphisms we conclude that the monodromy invariant subspace
has constant rank.

The outline of the paper is as follows. In Section 2 we discuss the preliminaries. In Section 3 and 4 we
prove Theorems 1.1 and 1.2 respectively.

2. Preliminaries

In this paper we always work in characteristic 0.

Néron–Severi group. Let X be a smooth proper variety over a field k. The Néron–Severi group NS(X)
is defined as the quotient of the group of Weil divisors, Cl(X), modulo algebraic equivalence. We denote
N 1(X)= Div(X)/≡, the quotient of Cartier divisors by numerical equivalence. We denote NS(X)R =
NS(X)⊗R and similarly N 1(X)R. By [Néron 1952], NS(X)R is a finite-dimensional vector space and
its rank ρ(X) is called the Picard rank. If X is a smooth projective variety, then NS(X)R ∼= N 1(X)R.

Remark 2.1. Let X be a smooth variety over an algebraically closed field k. If k ⊂ k ′ is an extension of
algebraically closed fields, then the natural homomorphism NS(X)→ NS(Xk′) is an isomorphism. So
the Picard rank is unchanged under base extension of algebraically closed fields.

Let X→ T be a smooth proper morphism of irreducible varieties. Suppose s, t ∈ T such that s is a
specialization of t , i.e., s is in the closure of {t}. Let X t denote the base change to the algebraic closure
of the residue field k(t).

Proposition 2.2 [Maulik and Poonen 2012, Proposition 3.6]. In the situation above, it is possible to
choose a specialization homomorphism

spt,s : NS(X t)→ NS(Xs)

such that:

(a) spt,s is injective. In particular ρ(Xs)≥ ρ(X t).

(b) If spt,s maps a class [L] to an ample class, then L is ample.

If ρ(Xs)= ρ(X t), then the homomorphism NS(X t)R→ NS(Xs)R is an isomorphism.
Let X→ T be a smooth projective morphism of irreducible varieties over C. In Section 12 of [Kollár

and Mori 1992], the local system GN 1(X/T ) was introduced. This is a sheaf in the analytic topology
defined as

GN 1(X/T )(U )= {sections of N 1(X/T ) over U with open support}

for analytic open U ⊂ T , and the functor N 1(X/T ) is defined as N 1(X ×T T ′) for any T ′ → T . It
was shown in [Kollár and Mori 1992, 12.2] that GN 1(X/T ) is a local system with finite monodromy
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and GN 1(X/T )|t = N 1(X t) for very general t ∈ T . We can base change to a finite étale cover of
T ′→ T so that GN 1(X ′/T ′) has trivial monodromy. Then we have a natural identification of the fibers of
GN 1(X ′/T ′) and N 1(X ′/T ′). Therefore, for t ′ ∈ T ′ very general, the natural map N 1(X ′/T ′)→ N 1(X ′t ′)
is an isomorphism. One can prove the same results over any algebraically closed field of characteristic 0,
by using the Lefschetz principle.

Geometric invariants. The pseudoeffective cone 3eff(X) is the closure of the cone of effective divisor
classes in NS(X)R. The interior of 3eff(X) is the cone of big divisors Big1(X)R.

Definition 2.3. Let L be a big Q-Cartier Q divisor on X . The a-constant is

a(X, L)=min{t ∈ R | K X + t L ∈3eff(X)}.

For a singular projective variety we define a(X, L) := a(X̃ , π∗L) where π : X̃ → X is a resolution
of X . It is invariant under pull-back by a birational morphism of smooth varieties and hence independent
of the choice of the resolution. By [Boucksom et al. 2013] we know that a(X, L) > 0 if and only if X is
uniruled. We note that, by flat base change, the a-constant is independent of base change to another field.

It was shown in [Birkar et al. 2010] that, if X is uniruled with klt singularities and L is ample, then
a(X, L) is a rational number. If L is big and not ample, then a(X, L) can be irrational (see [Hassett
et al. 2015, Example 6]). For a smooth projective variety X , the function a(X, _) : Big1(X)R→ R is a
continuous function (see [Lehmann et al. 2018, Lemma 3.2]).

Definition 2.4. A morphism f : X → T of irreducible varieties is called a family of varieties if the
generic fiber is geometrically integral. A family of projective varieties is a projective morphism which is
a family of varieties.

We recall the following result about the a-constant in families:

Theorem 2.5 [Lehmann and Tanimoto 2017; Hacon et al. 2013]. Let f : X→ T be a smooth family of
uniruled projective varieties over an algebraically closed field. Let L be an f -big and f -nef Q-Cartier
divisor on X. Then there exists a nonempty subset U ⊂ T such that a(X t , L|X t ) is constant for t ∈U and
the Iitaka dimension κ(K X t + a(X t , L|X t )L|X t ) is constant for t ∈U.

Definition 2.6. Let X be a smooth projective variety over k and L a big Q-Cartier Q-divisor. The
b-constant is defined as

b(k, X, L)= codim of minimal supported face of 3eff(X) containing the class of K X + a(X, L)L .

It is invariant under pullback by a birational morphism of smooth varieties [Hassett et al. 2015]. For a
singular variety X we define b(k, X, L) := b(k, X̃ , π∗L), by pulling back to a resolution. By Remark 2.1,
if we have an extension k ⊂ k ′ of algebraically closed fields, the pull back map NS(X)→ NS(Xk′) is an
isomorphism and the pseudoeffective cones are isomorphic by flat base change. Also, K X + a(X, L)L
maps to K Xk′

+ a(Xk′, Lk′)Lk′ under this isomorphism. Therefore the b-constant is unchanged, i.e.,
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b(k ′, Xk′, Lk′)= b(k, X, L). From now on, when our base field is algebraically closed we write b(X, L)
instead of b(k, X, L).

Minimal and canonical models. Let (X,1) be a klt pair, with 1 a R-divisor and K X +1 is R-Cartier.
Let f : X→ T be a projective morphism. A pair (X ′,1′) sitting in a diagram

X X ′

T

φ

f f ′

is called a Q-factorial minimal model of (X,1) over T if:

(1) X ′ is Q-factorial.

(2) f ′ is projective.

(3) φ is a birational contraction.

(4) 1′ = φ∗1.

(5) K X ′ +1
′ is f ′-nef.

(6) a(E, X,1) < a(E, X ′,1′) for all φ-exceptional divisors E ⊂ X . Equivalently, if for a common
resolution p :W → X and q :W → X ′, we may write

p∗(K X +1)= q∗(K X ′ +1
′)+ E

where E ≥ 0 is q-exceptional and the support of E contains the strict transform of the φ-exceptional
divisors.

A canonical model over T is defined to be a projective morphism g : Z→ T with a surjective morphism
π : X ′→ Z with connected geometric fibers from a minimal model such that K X ′ +1

′
= π∗H for an

R-Cartier divisor H on Z which is ample over T .
Suppose K X +1 is f -pseudoeffective and 1 is f -big, then by [Birkar et al. 2010], we may run a

(K X +1)-MMP with scaling to obtain a Q-factorial minimal model (X ′,1′) over T . It follows that
(X ′,1′) is also klt. Then the basepoint freeness theorem implies that (K X ′+1

′) is f ′-semiample. Hence
there exists a relative canonical model g : Z→ T . In particular, if 1 is a Q-divisor, the OT -algebra

R(X ′,1′)=
⊕

m

f ′
∗
OX ′(bm(K X ′ +1

′)c)

is finitely generated. Let X ′→ Z→ ProjT (R(X
′,1′)) be the Stein factorization of the natural morphism.

Then Z is the relative canonical model over T .
The following result relates the relative MMP over a base to the MMP of the fibers (see [de Fernex

and Hacon 2011, Theorem 4.1; Kollár and Mori 1992, 12.3] for related statements).
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Lemma 2.7. Let f : X → T be a flat projective morphism of normal varieties. Suppose X is Q-
factorial and D be an effective R-divisor such that (X, D) is klt. Let ψ : X → Z be the contraction
of a K X + D-negative extremal ray of NE(X/T ). Suppose for t ∈ T very general, the restriction map
N 1(X/T )→ N 1(X t) is surjective and X t is Q-factorial.

Let t ∈ T be very general. If ψt : X t → Z t is not an isomorphism, then it is a contraction of a
K X t + Dt -negative extremal ray, and:

(a) If ψ is of fiber type, so is ψt .

(b) If ψ is a divisorial contraction of a divisor G, then ψt is a divisorial contraction of G t and
N 1(Z/T )→ N 1(Z t) is surjective.

(c) If ψ is a flipping contraction and ψ+ : X+→ Z is the flip, then ψt is a flipping contraction and X+t
is the flip of ψt : X t → Z t . Also, N 1(X+/T )→ N 1(X+t ) is surjective.

Proof. Since the natural restriction map N 1(X/T )→ N 1(X t) is surjective for very general t ∈ T , any
curve in X t that spans a K X + D-negative extremal ray R of NE(X/T ), also spans a K X t + Dt negative
extremal ray Rt of NE(X t). For t ∈ T general, the base change Z t is normal and the morphism X t → Z t

has connected fibers, hence ψt∗OX t =OZ t . Hence ψt is the contraction of the ray Rt for very general t ∈ T .
If ψ is of fiber type, then so is ψt for general t ∈ T . Let us assume that ψ is birational.
Suppose ψ is a divisorial contraction of a divisor G. Then all components of G t are contracted. By

the injectivity of N1(X t)→ N1(X/T ), we see that ψt is an extremal divisorial contraction of G t (and
G t is irreducible). Since X t is Q-factorial, we have the surjectivity of N 1(Z/T )→ N 1(Z t).

Suppose ψ is a flipping contraction and φ : X 99K X+ is the flip. For very general t ∈ T , X t → Z t is a
small birational contraction of the ray Rt . Also, X+t → Z t is also small birational and K X+t +(φ∗D)t is ψ+-
ample for t ∈ T general. Therefore φt : X t 99K X+t is the flip. The surjectivity of N 1(X+/T )→ N 1(X+t )
follows from ψt being an isomorphism in codimension one. �

The next proposition allows us to compare minimal and canonical models over a base to those of a
general fiber.

Proposition 2.8. Let f : X → T be a smooth morphism. Suppose X is smooth and 1 is an f -big and
f -nef R-divisor such that (X,1) is klt. Suppose the local system GN 1(X/T ) has trivial monodromy. Let
φ : X 99K X ′ be the relative minimal model obtained by running a (K X+1)-MMP over T and π : X ′→ Z
be the morphism to the canonical model over T . Then for a general t ∈ T :

(1) The base change φt : X t 99K X ′t is a Q-factorial minimal model of (X t ,1t).

(2) Also, πt : X ′t → Z t is the canonical model of (X t ,1t).

Proof. (1) Since GN 1(X/T ) has trivial monodromy, the natural restriction morphism N 1(X/T ) −→∼

N 1(X t) is an isomorphism for t ∈ T very general. Then Lemma 2.7 implies that, for very general t ∈ T ,
the base change φt : X t 99K X ′t is a composition of steps of the (K X t +1t)-MMP. In particular, X ′t is
Q-factorial for a very general t ∈ T . The fibers X ′t have terminal singularities, by [Lehmann et al. 2018,
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Lemma 2.4]. Hence [Kollár and Mori 1992, 12.1.10] implies that there is a nonempty open U ⊂ T such
that X ′t is Q-factorial for t ∈U . For a general t ∈ T , the conditions (2)–(6) in the definition of a minimal
model follows easily. Therefore, (X ′t ,1

′
t) is a Q-factorial minimal model of (X t ,1t) for general t ∈ T .

(2) Let g : Z→ T be the relative canonical model. Now Z is normal. Therefore, for a general t ∈ T , the
base change Z t is normal and X ′t → Z t has geometrically connected fibers. Also, K X ′ +1= g∗H where
H is a π-ample R-Cartier divisor on Z . By adjunction, K X ′t +1

′
t is pull-back of an ample R-Cartier

divisor on Z t . Hence, X ′t → Z t is the canonical model for general t ∈ T . �

Let X be a smooth uniruled projective variety over an algebraically closed field and L a big and nef
Q-divisor on X . The following result (contained in [Lehmann et al. 2018]) gives a geometric interpretation
of the b-constant.

Proposition 2.9. Let φ : X 99K X ′ be a K X + a(X, L)L-minimal model. Then:

(1) b(X, L)= b(X ′, φ∗L).

(2) If κ(K X + a(X, L)L)= 0 then b(X, L)= rk N 1(X ′)R.

(3) If κ(K X+a(X, L)L)> 0 and π : X ′→ Z is the morphism to the canonical model and Y ′ is a general
fiber of π . Then

b(X, L)= rk N 1(X ′)R− rk N 1
π (X

′)R = rk(im(N 1(X ′)R→ N 1(Y ′)R))

where N 1
π (X

′)R is the span of the π-vertical divisors and N 1(X ′)R → N 1(Y ′)R is the restriction
map.

Proof. Part (1) is the statement of Lemma 3.5 in [Lehmann et al. 2018]. Part (2) follows from part (1). By
abundance, K X+a(X, L)φ∗L is semiample. Then κ(K X+a(X, L)L)=0 implies that K X+a(X, L)φ∗L≡
0. Hence, b(X, L) = b(X ′, φ∗L) = rk N 1(X ′)R. Part (3) follows from the proof of Theorem 4.5 in
[Lehmann et al. 2018]. �

In the case when the fibers are adjoint-rigid, constancy of the b-constant was proved in [Lehmann and
Tanimoto 2017].

Proposition 2.10 [Lehmann and Tanimoto 2017, Proposition 4.4]. Let f : X→ T be a smooth family of
projective varieties. Suppose L is an f -big and f -nef Cartier divisor on X. Assume that for a general
member X t , we have κ(K X t + a(X t , L t)L t)= 0. Then b(X t , L t) is constant for general t ∈ T .

Global invariant cycles. Let π : X→ Z be a morphism of complex algebraic varieties. Then, by Verdier’s
generalization of Ehresmann’s theorem [Verdier 1976, Corolaire 5.1], there exists a Zariski open U ⊂ Z
such that π−1(U )→U is a topologically locally trivial fibration (in the analytic topology), i.e., every
point z ∈ U has a neighborhood N ⊂ U in the analytic topology, such that there is a fiber preserving
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homeomorphism

π−1(N ) N × F

N

∼

where F = π−1(z). Consequently we have a monodromy action of π1(U, z) on the cohomology of the
fiber H i (Xz,R).

Let π : X→ Z be a morphism of normal projective varieties. Note that by generic smoothness and the
discussion above, given any resolution of singularities µ : X̃→ X , we may choose a Zariski open U ⊂ Z
such that π ◦µ is smooth over U and (π ◦µ)−1(U )→ U and π−1(U )→ U are topologically locally
trivial fibrations.

The following result is an adaptation of Deligne’s global invariant cycles theorem [1971] to the case of
singular varieties, which helps us to compute the b-constant.

Lemma 2.11. Let π : X→ Z be a morphism of normal projective varieties over C where X is Q-factorial.
Let µ : X̃ → X be a resolution of singularities. Let U ⊂ Z be a Zariski open subset such that π ◦µ is
smooth over U and (π ◦µ)−1(U )→U and π−1(U )→U are topologically locally trivial fibrations (in
the analytic topology). Suppose for general z ∈U , the fiber Xz := π

−1(z) is rationally connected with
rational singularities. Then

im(N 1(X)R→ N 1(Xz)R)' H 2(Xz,R)π1(U,z)

for general z ∈U , where H 2(Xz,R)π1(U,z) is the monodromy invariant subspace.

Proof. Let X̃z be the fiber of π ◦µ over z. For z ∈U general, µz : X̃z→ Xz is a resolution of singularities.
Since Xz is rationally connected, Q-linear equivalence and numerical equivalence of Q-Cartier divisors
coincide, i.e., Pic(Xz)Q ' N 1(Xz)Q. We know h1(X̃z,OX̃z

) = h2(X̃z,OX̃z
) = 0 since X̃z is smooth

rationally connected. We also have h1(Xz,OXz )= h2(Xz,OXz )= 0, because Xz has rational singularities.
Therefore H 2(X̃z,Q)' N 1(X̃z)Q and H 2(Xz,Q)' N 1(Xz)Q.

Consider the natural restriction map on cohomology groups H 2(X̃ ,Q)→ H 2(X̃z,Q). By Deligne’s
global invariant cycles theorem [1971] (or [Voisin 2003, 4.3.3]) we know that for z ∈U ,

im(H 2(X̃ ,Q)→ (H 2(X̃z,Q))= H 2(X̃z,Q)π1(U,z).

and if α ∈ H 2(X̃z,Q)π1(U,z) is a Hodge class then there is a Hodge class α̃ ∈ H 2(X̃ ,Q) such that α̃
restricts to α. Since H 2(X̃z,Q)' N 1(X̃z)Q, we see that

im(H 2(X̃ ,Q)→ H 2(X̃z,Q))' im(N 1(X̃)Q→ N 1(X̃z)Q)

for z ∈U . In particular
im(N 1(X̃)R→ N 1(X̃z)R)' H 2(X̃z,R)π1(U,z)

for z ∈U .
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Now the following diagram of pull-back morphisms commutes

N 1(X)R N 1(Xz)R

N 1(X̃)R N 1(X̃z)R

i∗

µ∗ µ∗z

ĩ∗

Since µ : X̃ → X and µz : X̃z → Xz are resolutions of singularities for general z ∈ U , the vertical
morphisms are injective. Therefore

im(i∗)' im(µ∗z ◦ i∗)= im(ĩ∗ ◦µ∗)

Since X is Q-factorial, we have N 1(X̃)R ' µ∗N 1(X)R⊕
⊕

j RE j where E j are the µ-exceptional
divisors. For z ∈ U general, the restriction of a µ-exceptional divisor E j to X̃z is µz-exceptional. In
N 1(X̃z)R, we have im(µ∗z )∩⊕ j RE z

j = 0 where E z
j are µz-exceptional. Therefore

im(ĩ∗ ◦µ∗)= im(ĩ∗)∩ im(µ∗z ).

Recall that we have the isomorphisms given by first Chern class N 1(X̃z)R ' H 2(X̃z,R) and N 1(Xz)R '

H 2(Xz,R). We know that im(ĩ∗) ' H 2(X̃z,R)π1(U,z) and the monodromy actions on H 2(Xz,R) and
H 2(X̃z,R) commute with the pullback map µ∗z . Hence

im(ĩ∗)∩ im(µ∗z )' H 2(Xz,R)π1(U,z).

Therefore
im(N 1(X)R→ N 1(Xz)R)= im(ĩ∗)∩ im(µ∗z )' H 2(Xz,R)π1(U,z)

for general z ∈U . �

3. Constancy on very general fibers

Let f : X→ T be a projective morphism and L is an f -big Q-Cartier divisor. We denote L t := L|X t , the
restriction to the geometric fiber of t .

Lemma 3.1. Let X → T be a smooth projective family of varieties and s, t ∈ T such that s is a
specialization of t :

(a) 3eff(X t) maps into 3eff(Xs) under the specialization morphism spt,s : NSR(X t)→ NSR(Xs).

(b) Suppose a(X t , L t)= a(Xs, Ls) and ρ(X t)= ρ(Xs). Then b(X t , L t)≥ b(Xs, Ls).

Proof. (a) Let D be an effective divisor in NS(X t)R. We may pick a discrete valuation ring R with a
morphism φ : Spec R = {s ′, t ′} → T where s ′ and t ′ map to s and t respectively and t ′ is the generic
point. By Remark 2.1 we have isomorphisms NS(X t)−→

∼ NS(X t ′) and NS(Xs)−→
∼ NS(Xs′). Therefore

we may assume T is the spectrum of a discrete valuation ring R and t is the generic point t ′. Now D is
defined over a finite extension L of k(t ′). We can replace R by a discrete valuation ring RL with quotient
field L . Then the image of D under Pic(X t ′) −→

∼ Pic(φ∗X)→ Pic(Xs′) is effective by semicontinuity.
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After passing to the algebraic closure and taking quotient by algebraic equivalence we conclude that, spt,s

maps D to an effective divisor class.

(b) Since ρ(X t)=ρ(Xs), we have an isomorphism NS(X t)R→NS(Xs)R. Let a :=a(Xs, Ls)=a(X t , L t).
Note that spt,s maps K X t+aL t to K Xs+aLs . Let F be a supporting hyperplane of3eff(Xs) corresponding
to the minimal supporting face containing K Xs + aLs . Since 3eff(X t) ⊂ 3eff(Xs), we see that F is a
supporting hyperplane of 3eff(X t) containing K X t + aL t . Therefore,

b(Xs, Ls)= codim(F ∩3eff(Xs))≤ codim(F ∩3eff(X t))≤ b(X t , L t). �

Lemma 3.2. Let X → T a smooth projective family. Let η ∈ T be the generic point. We denote
a = a(Xη, Lη), n = ρ(Xη) and b = b(Xη, Lη). For m ∈ N, define

Tm :=
{
t ∈ T | a(X t , L t)≤ a− 1

m

}
, T0 := {t ∈ T | ρ(X t) > n}

and

T∞ := {t ∈ T | a(X t , L t)= a, ρ(X t)= n, b(X t , L t) < b}.

We let ZT :=
⋃

m Tm ∪ T∞ ∪ T0. Then:

(a) ZT is closed under specialization.

(b) If we base change by a morphism of schemes g : T ′→ T , then ZT ′ = g−1(ZT ).

Proof. (a) Let t ∈ ZT and s a specialization of t in T . If t ∈ Tm for some m ∈ N, then Lemma 3.1(a)
implies that K Xs + a(X t , L t)Ls ∈ 3eff(Xs). Therefore, a(Xs, Ls) ≤ a(X t , L t) and hence s ∈ Tm . If
t ∈ T0, then by Proposition 2.2(a), ρ(Xs) ≥ ρ(X t) and s ∈ T0. If t /∈ T0 ∪

⋃
m Tm , then ρ(X t) = n and

a(X t , L t) = a. Then Lemma 3.1(b) implies b(Xs, Ls) ≤ b(X t , L t) < b. Therefore s ∈ T∞ and ZT is
closed under specialization.

(b) This follows from the fact that the Picard number and a- and b-constants are invariant under alge-
braically closed base extension. �

Proof of Theorem 1.1. By passing to a resolution of singularities and using generic smoothness, we may
exclude a closed subset of T to assume the family f : X→ T is smooth and T is affine. Since our base
field k is algebraically closed, we may find a subfield k ′ ⊂ k which is the algebraic closure of a field
finitely generated over Q, and there exists a finitely generated k ′-algebra A such that our family X→ T
and L are a base change of a family X A→ Spec A and a line bundle L A on X A. Now B = Spec A is
countable and hence Z B =

⋃
b∈B {b} is a countable union of closed subsets by Lemma 3.2(a). Now

Lemma 3.2(b) implies that ZT is a countable union of closed subsets. �

4. Family of uniruled varieties

In this section we prove Theorem 1.2 Let f : X→ T be a projective family of uniruled varieties over an
algebraically closed field k of characteristic 0 and L an f -nef and f -big Q-Cartier Q-divisor.
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By a standard argument using the Lefschetz principle, it is enough to prove the statement for k = C.
We will henceforth assume that k = C.

We can reduce to the statement for closed points only, as follows. Let us assume that there is an open
U ⊂ T such that b(X t , L t)= b is constant for all closed points t ∈U . Let s ∈U and Z = {s} ∩U . By
applying Theorem 1.1 to the family over Z , we may find F =

⋃
i Fi ⊂ Z a countable union of closed

subvarieties such that b(X t , L t) is constant on Z \ F . Since C is uncountable, there exists a closed point
t ∈ Z \ F . Now s ∈ Z \ F , since s is the generic point of Z . Therefore, b(Xs, Ls)= b(X t , L t)= b. Since
s ∈ U was arbitrary, we conclude that b(X t , L t) = b for all t ∈ U . Therefore it is enough to prove the
statement for closed points.

Proof of Theorem 1.2 for closed points when k = C. We may replace X by a resolution, and by generic
smoothness, we may exclude a closed subset of the base to assume that f : X→ T is a smooth family.
By Theorem 2.5, we can shrink T such that a(X t , L t)= a for all t ∈ T and κ(K X t +aL t) is independent
of t . We may assume that T is affine. Since L is f -big and f -nef, we can replace L by a Q-linearly
equivalent divisor to assume that (X, aL) is klt.

Since the local system GN 1(X/T ) has finite monodromy, we can base change to a finite étale cover of
T to assume that GN 1(X/T ) has trivial monodromy.

If κ(K X t+aL t)=0 then we can conclude by Proposition 2.10. Let us assume that κ(K X t+aL t)= k>0
for all t ∈ T .

Since K X + aL is f -pseudoeffective and aL is f -big, we may run a (K X + aL)-MMP over T to
obtain a relative minimal model φ : X 99K X ′. Let π : X ′→ Z be the morphism to the relative canonical
model over T . By Proposition 2.8, we may replace T by an open subset to assume that the base change
φt : X t 99K X ′t is a Q-factorial minimal model and πt : X ′t → Z t is the canonical model for (X t , aL t) for
all t ∈ T .

For z ∈ Z , we denote the image of z in T by t and let X ′z denote the fiber of π : X ′→ Z over z.

X ′z X ′t X ′

Spec k(z) Z t Z

Spec k(t) T

πt π

gt g

Let µ : X̃→ X ′ be a resolution of singularities. We may replace T by an open subset to assume that
X̃→ T is smooth. Let X̃z be the fiber of π̃ : X̃→ Z over z ∈ Z . By [Verdier 1976, Corrolaire 5.1] we
can find a Zariski open UZ ⊂ Z such that π̃ is smooth over UZ and π̃−1(UZ )→UZ and π−1(UZ )→UZ

both are topologically locally trivial fibrations (in the analytic topology). Again we may replace T by a
Zariski open V ⊂ T to assume that UZ → T is a topologically locally trivial fibration (in the analytic
topology). Let Ut ⊂ Z t denote the fiber of UZ over t ∈ T .
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For all z ∈UZ , there is a monodromy action of π1(Ut , z) on H 2(X ′z,Z) acting by an integral matrix Mz

on the free part. Now for any two points z and z′ in UZ , the fundamental groups π1(Ut , z) and π1(Ut ′, z′)
are isomorphic, since UZ → T is a locally trivial fibration. Also, the cohomology groups H 2(X ′z,Z) and
H 2(X ′z′,Z) are isomorphic, because π−1(UZ )→UZ is a locally trivial fibration. Since the monodromy
actions depend continuously on z ∈UZ , we see that Mz is constant. Therefore the monodromy invariant
subspaces have constant rank, i.e., rk H 2(X ′z,R)π1(Ut ,z) is constant for all z ∈UZ .

By [Hacon and McKernan 2007] we know that a general fiber X ′z is rationally connected and has
terminal singularities. Since X ′t is Q-factorial, Lemma 2.11 implies that

rk(im(N 1(X ′t)R→ N 1(X ′z)R)= rk H 2(X ′z,R)π1(Ut ,z).

for general z ∈Ut . Now using Proposition 2.9(3) we have

b(X t , L t)= rk H 2(X ′z,R)π1(Ut ,z)

for general z ∈UZ . Since rk H 2(X ′z,R)π1(Ut ,z) is constant for z ∈UZ , we may conclude that b(X t , L t) is
constant for general t ∈ T .
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