|  |                                 | gebra &<br>Number<br>Theory |
|--|---------------------------------|-----------------------------|
|  | anin's <i>b</i> -constant in fa | Volume 13<br>2019<br>No. 8  |
|  | Akash Kumar Sengupta            |                             |

- -

ALGEBRA AND NUMBER THEORY 13:8 (2019) dx.doi.org/10.2140/ant.2019.13.1893



## Manin's *b*-constant in families

Akash Kumar Sengupta

We show that the *b*-constant (appearing in Manin's conjecture) is constant on very general fibers of a family of algebraic varieties. If the fibers of the family are uniruled, then we show that the *b*-constant is constant on general fibers.

#### 1. Introduction

Let X be a smooth projective variety over a field of k of characteristic 0 and L a big Q-Cartier Q-divisor on X. Let  $\Lambda_{\text{eff}}(X) \subset \text{NS}(X)_{\mathbb{R}}$  be the cone of pseudoeffective divisors. The Fujita invariant or the *a*-constant is defined as

$$a(X, L) = \min\{t \in \mathbb{R} \mid [K_X] + t[L] \in \Lambda_{\text{eff}}(X)\}.$$

The invariant  $\kappa \epsilon(X, L) = -a(X, L)$  was introduced and studied by Fujita [1987; 1992] under the name Kodaira energy. The *a*-constant was introduced in the context of Manin's conjecture in [Franke et al. 1989].

The *b*-constant is defined as follows [Franke et al. 1989; Batyrev and Manin 1990]:

b(X, L) = codim of minimal supported face of  $\Lambda_{eff}(X)$  containing the class of  $K_X + a(X, L)L$ .

For a singular variety X, the *a*- and *b*-constants of L are defined to be the *a*- and *b*-constants of  $\pi^*L$  on a resolution  $\pi: \tilde{X} \to X$ .

Let  $f : X \to T$  be a family of projective varieties and *L* an *f*-big and *f*-nef Q-Cartier Q-divisor. By semicontinuity the *a*-constant of the fibers  $a(X_t, L|_{X_t})$  is constant on very general fiber (see [Lehmann and Tanimoto 2017, Theorem 4.3]). It follows from invariance of log plurigenera that if the fibers are uniruled then the *a*-constant is constant on general fibers.

In this paper we investigate the behavior of the *b*-constant in families and answer the questions posed in [Lehmann and Tanimoto 2017]. We prove the following:

**Theorem 1.1.** Let  $f : X \to T$  be a projective morphism of irreducible varieties over an algebraically closed field k of characteristic 0, such that the generic fiber is geometrically integral. Let L be an f-big  $\mathbb{Q}$ -Cartier  $\mathbb{Q}$ -divisor. Then there exists a countable union of proper closed subvarieties  $Z = \bigcup_i Z_i \subsetneq T$ , such that

$$b(X_{\bar{t}}, L|_{X_{\bar{t}}}) = b(X_{\bar{\eta}}, L|_{X_{\bar{\eta}}})$$

MSC2010: primary 14E30; secondary 14G05.

Keywords: Manin's conjecture, minimal model program, rational points, Néron-Severi group.

for all  $t \in T \setminus Z$ , where  $\eta \in T$  is the generic point. In particular, the b-constant is constant on very general fibers.

If the fibers of the family are uniruled, then we have the following:

**Theorem 1.2.** Let  $f : X \to T$  be a projective morphism of irreducible varieties over an algebraically closed field k of characteristic 0, such that the generic fiber is geometrically integral. Let L be an f-big and f-nef Q-Cartier Q-divisor. Suppose a general fiber  $X_t$  is uniruled. Then there exists a proper closed subscheme  $W \subsetneq T$  such that

$$b(X_{\bar{t}}, L|_{X_{\bar{t}}}) = b(X_{\bar{\eta}}, L|_{X_{\bar{\eta}}})$$

for  $t \in T \setminus W$  and  $\eta \in T$  is the generic point. In particular, the *b*-constant is constant on general fibers in a family of uniruled varieties.

One can not replace the very general condition in Theorem 1.1 by just general. For example, in a family of K3-surfaces the *b*-constant of a fiber is the same as the Picard rank and there exist families where the Picard rank jumps on infinitely many subvarieties. Invariance of the *b*-constant in general fiber of a family of uniruled varieties was proved in [Lehmann and Tanimoto 2017] under the assumption  $\kappa(K_{\tilde{X}_t} + a(X_t, L|_{X_t})\beta^*(L|_{X_t})) = 0$  for some resolution of singularities  $\beta : \tilde{X}_t \to X_t$ . Theorem 1.2 generalizes their result to get rid of this condition on fibers.

One of the motivations for studying the behavior of *a*- and *b*-constants is Manin's conjecture about asymptotic growth of rational points on Fano varieties proposed in [Franke et al. 1989; Batyrev and Manin 1990]. The following version was suggested by Peyre [2003] and later stated in [Le Rudulier 2013; Browning and Loughran 2017].

**Manin's conjecture.** Let *X* be a Fano variety defined over a number field *F* and  $\mathcal{L} = (L, \|\cdot\|)$  a big and nef adelically metrized line bundle on *X* with associated height function  $H_{\mathcal{L}}$ . Then there exists a thin set  $Z \subset X(F)$  such that one has

$$#\{x \in X(F) \setminus Z \mid H_{\mathcal{L}}(x) \le B\} \sim c(F, X(F) \setminus Z, \mathcal{L})B^{a(X,L)} \log B^{b(X,L)-1}$$

as  $B \to \infty$ .

For the geometric consistency of Manin's conjecture, a necessary condition is that the *a*- and *b*-constants achieve a maximum as we vary over subvarieties of *X*. The behavior of the *a*- and *b*-constants in families was used in [Lehmann and Tanimoto 2017] to show this necessary condition. The *a*- and *b*-constants also play a role in determining and counting the dominant components of the space  $Mor(\mathbb{P}^1, X)$  of morphisms from  $\mathbb{P}^1$  to a smooth Fano variety *X* (see [Lehmann and Tanimoto 2019] for details).

The ideas in proving our results are as follows. To prove Theorem 1.1, we analyze the behavior of the *b*-constant under specialization and combine this with the constancy of the Picard rank and the *a*-constant in very general fibers to obtain the desired conclusion. The key step for Theorem 1.2 is to prove constancy on closed points when  $k = \mathbb{C}$ . We run a  $(K_X + aL)$ -MMP over the base *T*, to obtain a relative minimal model  $X \rightarrow X'$  where  $a = a(X_t, L|_{X_t})$ . We pass to a relative canonical model  $\phi : X \rightarrow Z$  over *T* and

base change to  $t \in T$ , to obtain  $\phi_t : X_t \dashrightarrow Z_t$  as the canonical model for  $(X_t, aL_{X_t})$ . Using a version of the global invariant cycles theorem (see Lemma 2.11), we observe that  $b(X_t, L_t)$  is same as the rank of the monodromy invariant subspace of  $N^1(Y'_z)_{\mathbb{R}}$ , where  $Y'_z$  is a general fiber of  $X'_t \to Z_t$ . Then using topological local triviality of algebraic morphisms we conclude that the monodromy invariant subspace has constant rank.

The outline of the paper is as follows. In Section 2 we discuss the preliminaries. In Section 3 and 4 we prove Theorems 1.1 and 1.2 respectively.

#### 2. Preliminaries

In this paper we always work in characteristic 0.

*Néron–Severi group.* Let X be a smooth proper variety over a field k. The Néron–Severi group NS(X) is defined as the quotient of the group of Weil divisors, Cl(X), modulo algebraic equivalence. We denote  $N^1(X) = Div(X) / \equiv$ , the quotient of Cartier divisors by numerical equivalence. We denote  $NS(X)_{\mathbb{R}} = NS(X) \otimes \mathbb{R}$  and similarly  $N^1(X)_{\mathbb{R}}$ . By [Néron 1952],  $NS(X)_{\mathbb{R}}$  is a finite-dimensional vector space and its rank  $\rho(X)$  is called the Picard rank. If X is a smooth projective variety, then  $NS(X)_{\mathbb{R}} \cong N^1(X)_{\mathbb{R}}$ .

**Remark 2.1.** Let *X* be a smooth variety over an algebraically closed field *k*. If  $k \subset k'$  is an extension of algebraically closed fields, then the natural homomorphism  $NS(X) \rightarrow NS(X_{k'})$  is an isomorphism. So the Picard rank is unchanged under base extension of algebraically closed fields.

Let  $X \to T$  be a smooth proper morphism of irreducible varieties. Suppose  $s, t \in T$  such that s is a specialization of t, i.e., s is in the closure of  $\{t\}$ . Let  $X_i$  denote the base change to the algebraic closure of the residue field k(t).

**Proposition 2.2** [Maulik and Poonen 2012, Proposition 3.6]. *In the situation above, it is possible to choose a specialization homomorphism* 

$$\operatorname{sp}_{\tilde{t},\tilde{s}}:\operatorname{NS}(X_{\tilde{t}})\to\operatorname{NS}(X_{\tilde{s}})$$

such that:

(a)  $\operatorname{sp}_{t,\overline{s}}$  is injective. In particular  $\rho(X_{\overline{s}}) \ge \rho(X_{\overline{t}})$ .

(b) If  $sp_{\bar{t},\bar{s}}$  maps a class [L] to an ample class, then L is ample.

If  $\rho(X_{\bar{s}}) = \rho(X_{\bar{t}})$ , then the homomorphism  $NS(X_{\bar{t}})_{\mathbb{R}} \to NS(X_{\bar{s}})_{\mathbb{R}}$  is an isomorphism.

Let  $X \to T$  be a smooth projective morphism of irreducible varieties over  $\mathbb{C}$ . In Section 12 of [Kollár and Mori 1992], the local system  $\mathcal{GN}^1(X/T)$  was introduced. This is a sheaf in the analytic topology defined as

 $\mathcal{GN}^1(X/T)(U) = \{\text{sections of } \mathcal{N}^1(X/T) \text{ over } U \text{ with open support}\}$ 

for analytic open  $U \subset T$ , and the functor  $\mathcal{N}^1(X/T)$  is defined as  $N^1(X \times_T T')$  for any  $T' \to T$ . It was shown in [Kollár and Mori 1992, 12.2] that  $\mathcal{GN}^1(X/T)$  is a local system with finite monodromy

and  $\mathcal{GN}^1(X/T)|_t = N^1(X_t)$  for very general  $t \in T$ . We can base change to a finite étale cover of  $T' \to T$  so that  $\mathcal{GN}^1(X'/T')$  has trivial monodromy. Then we have a natural identification of the fibers of  $\mathcal{GN}^1(X'/T')$  and  $N^1(X'/T')$ . Therefore, for  $t' \in T'$  very general, the natural map  $N^1(X'/T') \to N^1(X'_{t'})$  is an isomorphism. One can prove the same results over any algebraically closed field of characteristic 0, by using the Lefschetz principle.

*Geometric invariants.* The pseudoeffective cone  $\Lambda_{\text{eff}}(X)$  is the closure of the cone of effective divisor classes in NS(X)<sub>R</sub>. The interior of  $\Lambda_{\text{eff}}(X)$  is the cone of big divisors Big<sup>1</sup>(X)<sub>R</sub>.

**Definition 2.3.** Let *L* be a big  $\mathbb{Q}$ -Cartier  $\mathbb{Q}$  divisor on *X*. The *a*-constant is

$$a(X, L) = \min\{t \in \mathbb{R} \mid K_X + tL \in \Lambda_{\text{eff}}(X)\}.$$

For a singular projective variety we define  $a(X, L) := a(\tilde{X}, \pi^*L)$  where  $\pi : \tilde{X} \to X$  is a resolution of X. It is invariant under pull-back by a birational morphism of smooth varieties and hence independent of the choice of the resolution. By [Boucksom et al. 2013] we know that a(X, L) > 0 if and only if X is uniruled. We note that, by flat base change, the *a*-constant is independent of base change to another field.

It was shown in [Birkar et al. 2010] that, if *X* is uniruled with klt singularities and *L* is ample, then a(X, L) is a rational number. If *L* is big and not ample, then a(X, L) can be irrational (see [Hassett et al. 2015, Example 6]). For a smooth projective variety *X*, the function  $a(X, \_)$  : Big<sup>1</sup>(*X*)<sub> $\mathbb{R}$ </sub>  $\rightarrow \mathbb{R}$  is a continuous function (see [Lehmann et al. 2018, Lemma 3.2]).

**Definition 2.4.** A morphism  $f : X \to T$  of irreducible varieties is called a family of varieties if the generic fiber is geometrically integral. A family of projective varieties is a projective morphism which is a family of varieties.

We recall the following result about the *a*-constant in families:

**Theorem 2.5** [Lehmann and Tanimoto 2017; Hacon et al. 2013]. Let  $f : X \to T$  be a smooth family of uniruled projective varieties over an algebraically closed field. Let L be an f-big and f-nef  $\mathbb{Q}$ -Cartier divisor on X. Then there exists a nonempty subset  $U \subset T$  such that  $a(X_t, L|_{X_t})$  is constant for  $t \in U$  and the Iitaka dimension  $\kappa (K_{X_t} + a(X_t, L|_{X_t})L|_{X_t})$  is constant for  $t \in U$ .

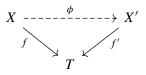
**Definition 2.6.** Let X be a smooth projective variety over k and L a big  $\mathbb{Q}$ -Cartier  $\mathbb{Q}$ -divisor. The *b*-constant is defined as

b(k, X, L) = codim of minimal supported face of  $\Lambda_{\text{eff}}(X)$  containing the class of  $K_X + a(X, L)L$ .

It is invariant under pullback by a birational morphism of smooth varieties [Hassett et al. 2015]. For a singular variety X we define  $b(k, X, L) := b(k, \tilde{X}, \pi^*L)$ , by pulling back to a resolution. By Remark 2.1, if we have an extension  $k \subset k'$  of algebraically closed fields, the pull back map  $NS(X) \rightarrow NS(X_{k'})$  is an isomorphism and the pseudoeffective cones are isomorphic by flat base change. Also,  $K_X + a(X, L)L$  maps to  $K_{X_{k'}} + a(X_{k'}, L_{k'})L_{k'}$  under this isomorphism. Therefore the *b*-constant is unchanged, i.e.,

 $b(k', X_{k'}, L_{k'}) = b(k, X, L)$ . From now on, when our base field is algebraically closed we write b(X, L) instead of b(k, X, L).

*Minimal and canonical models.* Let  $(X, \Delta)$  be a klt pair, with  $\Delta$  a  $\mathbb{R}$ -divisor and  $K_X + \Delta$  is  $\mathbb{R}$ -Cartier. Let  $f: X \to T$  be a projective morphism. A pair  $(X', \Delta')$  sitting in a diagram



is called a Q-factorial minimal model of  $(X, \Delta)$  over T if:

- (1) X' is Q-factorial.
- (2) f' is projective.
- (3)  $\phi$  is a birational contraction.
- (4)  $\Delta' = \phi_* \Delta$ .
- (5)  $K_{X'} + \Delta'$  is f'-nef.
- (6)  $a(E, X, \Delta) < a(E, X', \Delta')$  for all  $\phi$ -exceptional divisors  $E \subset X$ . Equivalently, if for a common resolution  $p: W \to X$  and  $q: W \to X'$ , we may write

$$p^*(K_X + \Delta) = q^*(K_{X'} + \Delta') + E$$

where  $E \ge 0$  is q-exceptional and the support of E contains the strict transform of the  $\phi$ -exceptional divisors.

A canonical model over *T* is defined to be a projective morphism  $g: Z \to T$  with a surjective morphism  $\pi: X' \to Z$  with connected geometric fibers from a minimal model such that  $K_{X'} + \Delta' = \pi^* H$  for an  $\mathbb{R}$ -Cartier divisor *H* on *Z* which is ample over *T*.

Suppose  $K_X + \Delta$  is *f*-pseudoeffective and  $\Delta$  is *f*-big, then by [Birkar et al. 2010], we may run a  $(K_X + \Delta)$ -MMP with scaling to obtain a Q-factorial minimal model  $(X', \Delta')$  over *T*. It follows that  $(X', \Delta')$  is also klt. Then the basepoint freeness theorem implies that  $(K_{X'} + \Delta')$  is *f'*-semiample. Hence there exists a relative canonical model  $g : Z \to T$ . In particular, if  $\Delta$  is a Q-divisor, the  $\mathcal{O}_T$ -algebra

$$\mathfrak{R}(X',\Delta') = \bigoplus_{m} f'_* \mathcal{O}_{X'}(\lfloor m(K_{X'} + \Delta') \rfloor)$$

is finitely generated. Let  $X' \to Z \to \operatorname{Proj}_T(\mathfrak{R}(X', \Delta'))$  be the Stein factorization of the natural morphism. Then *Z* is the relative canonical model over *T*.

The following result relates the relative MMP over a base to the MMP of the fibers (see [de Fernex and Hacon 2011, Theorem 4.1; Kollár and Mori 1992, 12.3] for related statements).

**Lemma 2.7.** Let  $f : X \to T$  be a flat projective morphism of normal varieties. Suppose X is  $\mathbb{Q}$ -factorial and D be an effective  $\mathbb{R}$ -divisor such that (X, D) is klt. Let  $\psi : X \to Z$  be the contraction of a  $K_X + D$ -negative extremal ray of  $\overline{NE}(X/T)$ . Suppose for  $t \in T$  very general, the restriction map  $N^1(X/T) \to N^1(X_t)$  is surjective and  $X_t$  is  $\mathbb{Q}$ -factorial.

Let  $t \in T$  be very general. If  $\psi_t : X_t \to Z_t$  is not an isomorphism, then it is a contraction of a  $K_{X_t} + D_t$ -negative extremal ray, and:

- (a) If  $\psi$  is of fiber type, so is  $\psi_t$ .
- (b) If  $\psi$  is a divisorial contraction of a divisor G, then  $\psi_t$  is a divisorial contraction of  $G_t$  and  $N^1(Z/T) \rightarrow N^1(Z_t)$  is surjective.
- (c) If  $\psi$  is a flipping contraction and  $\psi^+ : X^+ \to Z$  is the flip, then  $\psi_t$  is a flipping contraction and  $X_t^+$  is the flip of  $\psi_t : X_t \to Z_t$ . Also,  $N^1(X^+/T) \to N^1(X_t^+)$  is surjective.

*Proof.* Since the natural restriction map  $N^1(X/T) \to N^1(X_t)$  is surjective for very general  $t \in T$ , any curve in  $X_t$  that spans a  $K_X + D$ -negative extremal ray R of  $\overline{NE}(X/T)$ , also spans a  $K_{X_t} + D_t$  negative extremal ray  $R_t$  of  $\overline{NE}(X_t)$ . For  $t \in T$  general, the base change  $Z_t$  is normal and the morphism  $X_t \to Z_t$  has connected fibers, hence  $\psi_{t*}\mathcal{O}_{X_t} = \mathcal{O}_{Z_t}$ . Hence  $\psi_t$  is the contraction of the ray  $R_t$  for very general  $t \in T$ .

If  $\psi$  is of fiber type, then so is  $\psi_t$  for general  $t \in T$ . Let us assume that  $\psi$  is birational.

Suppose  $\psi$  is a divisorial contraction of a divisor *G*. Then all components of  $G_t$  are contracted. By the injectivity of  $N_1(X_t) \rightarrow N_1(X/T)$ , we see that  $\psi_t$  is an extremal divisorial contraction of  $G_t$  (and  $G_t$  is irreducible). Since  $X_t$  is Q-factorial, we have the surjectivity of  $N^1(Z/T) \rightarrow N^1(Z_t)$ .

Suppose  $\psi$  is a flipping contraction and  $\phi: X \to X^+$  is the flip. For very general  $t \in T$ ,  $X_t \to Z_t$  is a small birational contraction of the ray  $R_t$ . Also,  $X_t^+ \to Z_t$  is also small birational and  $K_{X_t^+} + (\phi_* D)_t$  is  $\psi^+$ -ample for  $t \in T$  general. Therefore  $\phi_t: X_t \to X_t^+$  is the flip. The surjectivity of  $N^1(X^+/T) \to N^1(X_t^+)$  follows from  $\psi_t$  being an isomorphism in codimension one.

The next proposition allows us to compare minimal and canonical models over a base to those of a general fiber.

**Proposition 2.8.** Let  $f : X \to T$  be a smooth morphism. Suppose X is smooth and  $\Delta$  is an f-big and f-nef  $\mathbb{R}$ -divisor such that  $(X, \Delta)$  is klt. Suppose the local system  $\mathcal{GN}^1(X/T)$  has trivial monodromy. Let  $\phi : X \dashrightarrow X'$  be the relative minimal model obtained by running a  $(K_X + \Delta)$ -MMP over T and  $\pi : X' \to Z$  be the morphism to the canonical model over T. Then for a general  $t \in T$ :

- (1) The base change  $\phi_t : X_t \dashrightarrow X'_t$  is a Q-factorial minimal model of  $(X_t, \Delta_t)$ .
- (2) Also,  $\pi_t : X'_t \to Z_t$  is the canonical model of  $(X_t, \Delta_t)$ .

*Proof.* (1) Since  $\mathcal{GN}^1(X/T)$  has trivial monodromy, the natural restriction morphism  $N^1(X/T) \xrightarrow{\sim} N^1(X_t)$  is an isomorphism for  $t \in T$  very general. Then Lemma 2.7 implies that, for very general  $t \in T$ , the base change  $\phi_t : X_t \dashrightarrow X'_t$  is a composition of steps of the  $(K_{X_t} + \Delta_t)$ -MMP. In particular,  $X'_t$  is  $\mathbb{Q}$ -factorial for a very general  $t \in T$ . The fibers  $X'_t$  have terminal singularities, by [Lehmann et al. 2018,

Lemma 2.4]. Hence [Kollár and Mori 1992, 12.1.10] implies that there is a nonempty open  $U \subset T$  such that  $X'_t$  is Q-factorial for  $t \in U$ . For a general  $t \in T$ , the conditions (2)–(6) in the definition of a minimal model follows easily. Therefore,  $(X'_t, \Delta'_t)$  is a Q-factorial minimal model of  $(X_t, \Delta_t)$  for general  $t \in T$ .

(2) Let  $g: Z \to T$  be the relative canonical model. Now Z is normal. Therefore, for a general  $t \in T$ , the base change  $Z_t$  is normal and  $X'_t \to Z_t$  has geometrically connected fibers. Also,  $K_{X'} + \Delta = g^* H$  where H is a  $\pi$ -ample  $\mathbb{R}$ -Cartier divisor on Z. By adjunction,  $K_{X'_t} + \Delta'_t$  is pull-back of an ample  $\mathbb{R}$ -Cartier divisor on  $Z_t$ . Hence,  $X'_t \to Z_t$  is the canonical model for general  $t \in T$ .

Let *X* be a smooth uniruled projective variety over an algebraically closed field and *L* a big and nef  $\mathbb{Q}$ -divisor on *X*. The following result (contained in [Lehmann et al. 2018]) gives a geometric interpretation of the *b*-constant.

**Proposition 2.9.** Let  $\phi : X \dashrightarrow X'$  be a  $K_X + a(X, L)L$ -minimal model. Then:

- (1)  $b(X, L) = b(X', \phi_*L).$
- (2) If  $\kappa(K_X + a(X, L)L) = 0$  then  $b(X, L) = \operatorname{rk} N^1(X')_{\mathbb{R}}$ .
- (3) If  $\kappa(K_X + a(X, L)L) > 0$  and  $\pi: X' \to Z$  is the morphism to the canonical model and Y' is a general fiber of  $\pi$ . Then

$$b(X, L) = \operatorname{rk} N^1(X')_{\mathbb{R}} - \operatorname{rk} N^1_{\pi}(X')_{\mathbb{R}} = \operatorname{rk}(\operatorname{im}(N^1(X')_{\mathbb{R}} \to N^1(Y')_{\mathbb{R}}))$$

where  $N^1_{\pi}(X')_{\mathbb{R}}$  is the span of the  $\pi$ -vertical divisors and  $N^1(X')_{\mathbb{R}} \to N^1(Y')_{\mathbb{R}}$  is the restriction map.

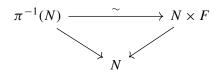
*Proof.* Part (1) is the statement of Lemma 3.5 in [Lehmann et al. 2018]. Part (2) follows from part (1). By abundance,  $K_X + a(X, L)\phi_*L$  is semiample. Then  $\kappa(K_X + a(X, L)L) = 0$  implies that  $K_X + a(X, L)\phi_*L \equiv 0$ . Hence,  $b(X, L) = b(X', \phi_*L) = \operatorname{rk} N^1(X')_{\mathbb{R}}$ . Part (3) follows from the proof of Theorem 4.5 in [Lehmann et al. 2018].

In the case when the fibers are adjoint-rigid, constancy of the *b*-constant was proved in [Lehmann and Tanimoto 2017].

**Proposition 2.10** [Lehmann and Tanimoto 2017, Proposition 4.4]. Let  $f : X \to T$  be a smooth family of projective varieties. Suppose L is an f-big and f-nef Cartier divisor on X. Assume that for a general member  $X_t$ , we have  $\kappa(K_{X_t} + a(X_t, L_t)L_t) = 0$ . Then  $b(X_t, L_t)$  is constant for general  $t \in T$ .

*Global invariant cycles.* Let  $\pi : X \to Z$  be a morphism of complex algebraic varieties. Then, by Verdier's generalization of Ehresmann's theorem [Verdier 1976, Corolaire 5.1], there exists a Zariski open  $U \subset Z$  such that  $\pi^{-1}(U) \to U$  is a topologically locally trivial fibration (in the analytic topology), i.e., every point  $z \in U$  has a neighborhood  $N \subset U$  in the analytic topology, such that there is a fiber preserving

homeomorphism



where  $F = \pi^{-1}(z)$ . Consequently we have a monodromy action of  $\pi_1(U, z)$  on the cohomology of the fiber  $H^i(X_z, \mathbb{R})$ .

Let  $\pi : X \to Z$  be a morphism of normal projective varieties. Note that by generic smoothness and the discussion above, given any resolution of singularities  $\mu : \tilde{X} \to X$ , we may choose a Zariski open  $U \subset Z$  such that  $\pi \circ \mu$  is smooth over U and  $(\pi \circ \mu)^{-1}(U) \to U$  and  $\pi^{-1}(U) \to U$  are topologically locally trivial fibrations.

The following result is an adaptation of Deligne's global invariant cycles theorem [1971] to the case of singular varieties, which helps us to compute the *b*-constant.

**Lemma 2.11.** Let  $\pi : X \to Z$  be a morphism of normal projective varieties over  $\mathbb{C}$  where X is  $\mathbb{Q}$ -factorial. Let  $\mu : \tilde{X} \to X$  be a resolution of singularities. Let  $U \subset Z$  be a Zariski open subset such that  $\pi \circ \mu$  is smooth over U and  $(\pi \circ \mu)^{-1}(U) \to U$  and  $\pi^{-1}(U) \to U$  are topologically locally trivial fibrations (in the analytic topology). Suppose for general  $z \in U$ , the fiber  $X_z := \pi^{-1}(z)$  is rationally connected with rational singularities. Then

$$\operatorname{im}(N^1(X)_{\mathbb{R}} \to N^1(X_z)_{\mathbb{R}}) \simeq H^2(X_z, \mathbb{R})^{\pi_1(U,z)}$$

for general  $z \in U$ , where  $H^2(X_z, \mathbb{R})^{\pi_1(U,z)}$  is the monodromy invariant subspace.

*Proof.* Let  $\tilde{X}_z$  be the fiber of  $\pi \circ \mu$  over z. For  $z \in U$  general,  $\mu_z : \tilde{X}_z \to X_z$  is a resolution of singularities. Since  $X_z$  is rationally connected,  $\mathbb{Q}$ -linear equivalence and numerical equivalence of  $\mathbb{Q}$ -Cartier divisors coincide, i.e.,  $\operatorname{Pic}(X_z)_{\mathbb{Q}} \simeq N^1(X_z)_{\mathbb{Q}}$ . We know  $h^1(\tilde{X}_z, \mathcal{O}_{\tilde{X}_z}) = h^2(\tilde{X}_z, \mathcal{O}_{\tilde{X}_z}) = 0$  since  $\tilde{X}_z$  is smooth rationally connected. We also have  $h^1(X_z, \mathcal{O}_{X_z}) = h^2(X_z, \mathcal{O}_{X_z}) = 0$ , because  $X_z$  has rational singularities. Therefore  $H^2(\tilde{X}_z, \mathbb{Q}) \simeq N^1(\tilde{X}_z)_{\mathbb{Q}}$  and  $H^2(X_z, \mathbb{Q}) \simeq N^1(X_z)_{\mathbb{Q}}$ .

Consider the natural restriction map on cohomology groups  $H^2(\tilde{X}, \mathbb{Q}) \to H^2(\tilde{X}_z, \mathbb{Q})$ . By Deligne's global invariant cycles theorem [1971] (or [Voisin 2003, 4.3.3]) we know that for  $z \in U$ ,

$$\operatorname{im}(H^2(\tilde{X}, \mathbb{Q}) \to (H^2(\tilde{X}_z, \mathbb{Q})) = H^2(\tilde{X}_z, \mathbb{Q})^{\pi_1(U, z)})$$

and if  $\alpha \in H^2(\tilde{X}_z, \mathbb{Q})^{\pi_1(U,z)}$  is a Hodge class then there is a Hodge class  $\tilde{\alpha} \in H^2(\tilde{X}, \mathbb{Q})$  such that  $\tilde{\alpha}$  restricts to  $\alpha$ . Since  $H^2(\tilde{X}_z, \mathbb{Q}) \simeq N^1(\tilde{X}_z)_{\mathbb{Q}}$ , we see that

$$\operatorname{im}(H^2(\tilde{X},\mathbb{Q})\to H^2(\tilde{X}_z,\mathbb{Q}))\simeq \operatorname{im}(N^1(\tilde{X})_{\mathbb{Q}}\to N^1(\tilde{X}_z)_{\mathbb{Q}})$$

for  $z \in U$ . In particular

$$\operatorname{im}(N^1(\tilde{X})_{\mathbb{R}} \to N^1(\tilde{X}_z)_{\mathbb{R}}) \simeq H^2(\tilde{X}_z, \mathbb{R})^{\pi_1(U,z)}$$

for  $z \in U$ .

Now the following diagram of pull-back morphisms commutes

Since  $\mu : \tilde{X} \to X$  and  $\mu_z : \tilde{X}_z \to X_z$  are resolutions of singularities for general  $z \in U$ , the vertical morphisms are injective. Therefore

$$\operatorname{im}(i^*) \simeq \operatorname{im}(\mu_z^* \circ i^*) = \operatorname{im}(\tilde{i}^* \circ \mu^*)$$

Since X is Q-factorial, we have  $N^1(\tilde{X})_{\mathbb{R}} \simeq \mu^* N^1(X)_{\mathbb{R}} \oplus \bigoplus_j \mathbb{R}E_j$  where  $E_j$  are the  $\mu$ -exceptional divisors. For  $z \in U$  general, the restriction of a  $\mu$ -exceptional divisor  $E_j$  to  $\tilde{X}_z$  is  $\mu_z$ -exceptional. In  $N^1(\tilde{X}_z)_{\mathbb{R}}$ , we have  $\operatorname{im}(\mu_z^*) \cap \bigoplus_j \mathbb{R}E_j^z = 0$  where  $E_j^z$  are  $\mu_z$ -exceptional. Therefore

$$\operatorname{im}(\tilde{i}^* \circ \mu^*) = \operatorname{im}(\tilde{i}^*) \cap \operatorname{im}(\mu_7^*).$$

Recall that we have the isomorphisms given by first Chern class  $N^1(\tilde{X}_z)_{\mathbb{R}} \simeq H^2(\tilde{X}_z, \mathbb{R})$  and  $N^1(X_z)_{\mathbb{R}} \simeq H^2(X_z, \mathbb{R})$ . We know that  $\operatorname{im}(\tilde{i}^*) \simeq H^2(\tilde{X}_z, \mathbb{R})^{\pi_1(U,z)}$  and the monodromy actions on  $H^2(X_z, \mathbb{R})$  and  $H^2(\tilde{X}_z, \mathbb{R})$  commute with the pullback map  $\mu_z^*$ . Hence

$$\operatorname{im}(\tilde{i}^*) \cap \operatorname{im}(\mu_z^*) \simeq H^2(X_z, \mathbb{R})^{\pi_1(U,z)}.$$

Therefore

$$\operatorname{im}(N^1(X)_{\mathbb{R}} \to N^1(X_z)_{\mathbb{R}}) = \operatorname{im}(\tilde{i}^*) \cap \operatorname{im}(\mu_z^*) \simeq H^2(X_z, \mathbb{R})^{\pi_1(U,z)}$$

for general  $z \in U$ .

#### 3. Constancy on very general fibers

Let  $f: X \to T$  be a projective morphism and *L* is an *f*-big Q-Cartier divisor. We denote  $L_i := L|_{X_i}$ , the restriction to the geometric fiber of *t*.

**Lemma 3.1.** Let  $X \to T$  be a smooth projective family of varieties and  $s, t \in T$  such that s is a specialization of t:

- (a)  $\Lambda_{\text{eff}}(X_{\tilde{i}})$  maps into  $\Lambda_{\text{eff}}(X_{\tilde{s}})$  under the specialization morphism  $\operatorname{sp}_{\tilde{i},\tilde{s}} : \operatorname{NS}_{\mathbb{R}}(X_{\tilde{i}}) \to \operatorname{NS}_{\mathbb{R}}(X_{\tilde{s}})$ .
- (b) Suppose  $a(X_{\tilde{t}}, L_{\tilde{t}}) = a(X_{\tilde{s}}, L_{\tilde{s}})$  and  $\rho(X_{\tilde{t}}) = \rho(X_{\tilde{s}})$ . Then  $b(X_{\tilde{t}}, L_{\tilde{t}}) \ge b(X_{\tilde{s}}, L_{\tilde{s}})$ .

*Proof.* (a) Let *D* be an effective divisor in  $NS(X_i)_{\mathbb{R}}$ . We may pick a discrete valuation ring *R* with a morphism  $\phi : \operatorname{Spec} R = \{s', t'\} \to T$  where s' and t' map to s and t respectively and t' is the generic point. By Remark 2.1 we have isomorphisms  $NS(X_i) \xrightarrow{\sim} NS(X_{t'})$  and  $NS(X_s) \xrightarrow{\sim} NS(X_{s'})$ . Therefore we may assume *T* is the spectrum of a discrete valuation ring *R* and *t* is the generic point t'. Now *D* is defined over a finite extension *L* of k(t'). We can replace *R* by a discrete valuation ring  $R_L$  with quotient field *L*. Then the image of *D* under  $\operatorname{Pic}(X_{t'}) \xrightarrow{\sim} \operatorname{Pic}(\phi^*X) \to \operatorname{Pic}(X_{s'})$  is effective by semicontinuity.

After passing to the algebraic closure and taking quotient by algebraic equivalence we conclude that,  $sp_{\tilde{t},\tilde{s}}$  maps *D* to an effective divisor class.

(b) Since  $\rho(X_{\tilde{i}}) = \rho(X_{\tilde{s}})$ , we have an isomorphism  $NS(X_{\tilde{i}})_{\mathbb{R}} \to NS(X_{\tilde{s}})_{\mathbb{R}}$ . Let  $a := a(X_{\tilde{s}}, L_{\tilde{s}}) = a(X_{\tilde{i}}, L_{\tilde{i}})$ . Note that  $sp_{\tilde{i},\tilde{s}}$  maps  $K_{X_{\tilde{i}}} + aL_{\tilde{i}}$  to  $K_{X_{\tilde{s}}} + aL_{\tilde{s}}$ . Let F be a supporting hyperplane of  $\Lambda_{eff}(X_{\tilde{s}})$  corresponding to the minimal supporting face containing  $K_{X_{\tilde{s}}} + aL_{\tilde{s}}$ . Since  $\Lambda_{eff}(X_{\tilde{i}}) \subset \Lambda_{eff}(X_{\tilde{s}})$ , we see that F is a supporting hyperplane of  $\Lambda_{eff}(X_{\tilde{i}})$  containing  $K_{X_{\tilde{i}}} + aL_{\tilde{i}}$ . Therefore,

$$b(X_{\bar{s}}, L_{\bar{s}}) = \operatorname{codim}(F \cap \Lambda_{\operatorname{eff}}(X_{\bar{s}})) \leq \operatorname{codim}(F \cap \Lambda_{\operatorname{eff}}(X_{\bar{t}})) \leq b(X_{\bar{t}}, L_{\bar{t}}).$$

**Lemma 3.2.** Let  $X \to T$  a smooth projective family. Let  $\eta \in T$  be the generic point. We denote  $a = a(X_{\bar{\eta}}, L_{\bar{\eta}}), n = \rho(X_{\bar{\eta}})$  and  $b = b(X_{\bar{\eta}}, L_{\bar{\eta}})$ . For  $m \in \mathbb{N}$ , define

$$T_m := \left\{ t \in T \mid a(X_i, L_i) \le a - \frac{1}{m} \right\}, \quad T_0 := \{ t \in T \mid \rho(X_i) > n \}$$

and

$$T_{\infty} := \{ t \in T \mid a(X_{\tilde{t}}, L_{\tilde{t}}) = a, \, \rho(X_{\tilde{t}}) = n, \, b(X_{\tilde{t}}, L_{\tilde{t}}) < b \}.$$

We let  $Z_T := \bigcup_m T_m \cup T_\infty \cup T_0$ . Then:

(a)  $Z_T$  is closed under specialization.

(b) If we base change by a morphism of schemes  $g: T' \to T$ , then  $Z_{T'} = g^{-1}(Z_T)$ .

*Proof.* (a) Let  $t \in Z_T$  and s a specialization of t in T. If  $t \in T_m$  for some  $m \in \mathbb{N}$ , then Lemma 3.1(a) implies that  $K_{X_{\bar{s}}} + a(X_{\bar{t}}, L_{\bar{t}})L_{\bar{s}} \in \Lambda_{\text{eff}}(X_{\bar{s}})$ . Therefore,  $a(X_{\bar{s}}, L_{\bar{s}}) \leq a(X_{\bar{t}}, L_{\bar{t}})$  and hence  $s \in T_m$ . If  $t \in T_0$ , then by Proposition 2.2(a),  $\rho(X_{\bar{s}}) \geq \rho(X_{\bar{t}})$  and  $s \in T_0$ . If  $t \notin T_0 \cup \bigcup_m T_m$ , then  $\rho(X_{\bar{t}}) = n$  and  $a(X_{\bar{t}}, L_{\bar{t}}) = a$ . Then Lemma 3.1(b) implies  $b(X_{\bar{s}}, L_{\bar{s}}) \leq b(X_{\bar{t}}, L_{\bar{t}}) < b$ . Therefore  $s \in T_{\infty}$  and  $Z_T$  is closed under specialization.

(b) This follows from the fact that the Picard number and a- and b-constants are invariant under algebraically closed base extension.

*Proof of Theorem 1.1.* By passing to a resolution of singularities and using generic smoothness, we may exclude a closed subset of *T* to assume the family  $f : X \to T$  is smooth and *T* is affine. Since our base field *k* is algebraically closed, we may find a subfield  $k' \subset k$  which is the algebraic closure of a field finitely generated over  $\mathbb{Q}$ , and there exists a finitely generated k'-algebra *A* such that our family  $X \to T$  and *L* are a base change of a family  $X_A \to \text{Spec } A$  and a line bundle  $L_A$  on  $X_A$ . Now B = Spec A is countable and hence  $Z_B = \bigcup_{b \in B} \{\overline{b}\}$  is a countable union of closed subsets by Lemma 3.2(a). Now Lemma 3.2(b) implies that  $Z_T$  is a countable union of closed subsets.

#### 4. Family of uniruled varieties

In this section we prove Theorem 1.2 Let  $f : X \to T$  be a projective family of uniruled varieties over an algebraically closed field *k* of characteristic 0 and *L* an *f*-nef and *f*-big Q-Cartier Q-divisor.

By a standard argument using the Lefschetz principle, it is enough to prove the statement for  $k = \mathbb{C}$ . We will henceforth assume that  $k = \mathbb{C}$ .

We can reduce to the statement for closed points only, as follows. Let us assume that there is an open  $U \subset T$  such that  $b(X_t, L_t) = b$  is constant for all closed points  $t \in U$ . Let  $s \in U$  and  $Z = \{\overline{s}\} \cap U$ . By applying Theorem 1.1 to the family over Z, we may find  $F = \bigcup_i F_i \subset Z$  a countable union of closed subvarieties such that  $b(X_i, L_i)$  is constant on  $Z \setminus F$ . Since  $\mathbb{C}$  is uncountable, there exists a closed point  $t \in Z \setminus F$ . Now  $s \in Z \setminus F$ , since s is the generic point of Z. Therefore,  $b(X_{\overline{s}}, L_{\overline{s}}) = b(X_t, L_t) = b$ . Since  $s \in U$  was arbitrary, we conclude that  $b(X_i, L_i) = b$  for all  $t \in U$ . Therefore it is enough to prove the statement for closed points.

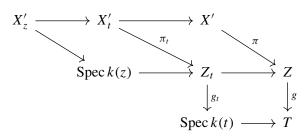
**Proof of Theorem 1.2 for closed points when**  $k = \mathbb{C}$ . We may replace X by a resolution, and by generic smoothness, we may exclude a closed subset of the base to assume that  $f : X \to T$  is a smooth family. By Theorem 2.5, we can shrink T such that  $a(X_t, L_t) = a$  for all  $t \in T$  and  $\kappa(K_{X_t} + aL_t)$  is independent of t. We may assume that T is affine. Since L is f-big and f-nef, we can replace L by a Q-linearly equivalent divisor to assume that (X, aL) is klt.

Since the local system  $\mathcal{GN}^1(X/T)$  has finite monodromy, we can base change to a finite étale cover of T to assume that  $\mathcal{GN}^1(X/T)$  has trivial monodromy.

If  $\kappa(K_{X_t} + aL_t) = 0$  then we can conclude by Proposition 2.10. Let us assume that  $\kappa(K_{X_t} + aL_t) = k > 0$  for all  $t \in T$ .

Since  $K_X + aL$  is *f*-pseudoeffective and aL is *f*-big, we may run a  $(K_X + aL)$ -MMP over *T* to obtain a relative minimal model  $\phi : X \dashrightarrow X'$ . Let  $\pi : X' \to Z$  be the morphism to the relative canonical model over *T*. By Proposition 2.8, we may replace *T* by an open subset to assume that the base change  $\phi_t : X_t \dashrightarrow X'_t$  is a Q-factorial minimal model and  $\pi_t : X'_t \to Z_t$  is the canonical model for  $(X_t, aL_t)$  for all  $t \in T$ .

For  $z \in Z$ , we denote the image of z in T by t and let  $X'_z$  denote the fiber of  $\pi : X' \to Z$  over z.



Let  $\mu : \tilde{X} \to X'$  be a resolution of singularities. We may replace T by an open subset to assume that  $\tilde{X} \to T$  is smooth. Let  $\tilde{X}_z$  be the fiber of  $\tilde{\pi} : \tilde{X} \to Z$  over  $z \in Z$ . By [Verdier 1976, Corrolaire 5.1] we can find a Zariski open  $U_Z \subset Z$  such that  $\tilde{\pi}$  is smooth over  $U_Z$  and  $\tilde{\pi}^{-1}(U_Z) \to U_Z$  and  $\pi^{-1}(U_Z) \to U_Z$  both are topologically locally trivial fibrations (in the analytic topology). Again we may replace T by a Zariski open  $V \subset T$  to assume that  $U_Z \to T$  is a topologically locally trivial fibration (in the analytic topology). Let  $U_t \subset Z_t$  denote the fiber of  $U_Z$  over  $t \in T$ .

Akash Kumar Sengupta

For all  $z \in U_Z$ , there is a monodromy action of  $\pi_1(U_t, z)$  on  $H^2(X'_z, \mathbb{Z})$  acting by an integral matrix  $M_z$ on the free part. Now for any two points z and z' in  $U_Z$ , the fundamental groups  $\pi_1(U_t, z)$  and  $\pi_1(U_{t'}, z')$ are isomorphic, since  $U_Z \to T$  is a locally trivial fibration. Also, the cohomology groups  $H^2(X'_z, \mathbb{Z})$  and  $H^2(X'_{z'}, \mathbb{Z})$  are isomorphic, because  $\pi^{-1}(U_Z) \to U_Z$  is a locally trivial fibration. Since the monodromy actions depend continuously on  $z \in U_Z$ , we see that  $M_z$  is constant. Therefore the monodromy invariant subspaces have constant rank, i.e., rk  $H^2(X'_z, \mathbb{R})^{\pi_1(U_t, z)}$  is constant for all  $z \in U_Z$ .

By [Hacon and McKernan 2007] we know that a general fiber  $X'_z$  is rationally connected and has terminal singularities. Since  $X'_t$  is Q-factorial, Lemma 2.11 implies that

$$\operatorname{rk}(\operatorname{im}(N^1(X'_t)_{\mathbb{R}} \to N^1(X'_z)_{\mathbb{R}}) = \operatorname{rk} H^2(X'_z, \mathbb{R})^{\pi_1(U_t, z)}.$$

for general  $z \in U_t$ . Now using Proposition 2.9(3) we have

$$b(X_t, L_t) = \operatorname{rk} H^2(X'_z, \mathbb{R})^{\pi_1(U_t, z)}$$

for general  $z \in U_Z$ . Since rk  $H^2(X'_z, \mathbb{R})^{\pi_1(U_t, z)}$  is constant for  $z \in U_Z$ , we may conclude that  $b(X_t, L_t)$  is constant for general  $t \in T$ .

#### Acknowledgements

I am very grateful to my advisor Professor János Kollár for fruitful discussions and his constant support and encouragement. I am very thankful to Professor Brian Lehmann and Professor Sho Tanimoto for useful comments on a preliminary version of the paper. I would like to thank Sebastián Olano and Ziquan Zhuang for interesting conversations. I would like to thank the referee for a careful reading of the paper and for useful comments. Partial financial support was provided by the NSF under grant number DMS-1502236.

#### References

- [Batyrev and Manin 1990] V. V. Batyrev and Y. I. Manin, "Sur le nombre des points rationnels de hauteur borné [sic] des variétés algébriques", *Math. Ann.* **286**:1-3 (1990), 27–43. MR Zbl
- [Birkar et al. 2010] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, "Existence of minimal models for varieties of log general type", *J. Amer. Math. Soc.* 23:2 (2010), 405–468. MR Zbl
- [Boucksom et al. 2013] S. Boucksom, J.-P. Demailly, M. Păun, and T. Peternell, "The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension", *J. Algebraic Geom.* **22**:2 (2013), 201–248. MR Zbl
- [Browning and Loughran 2017] T. D. Browning and D. Loughran, "Varieties with too many rational points", *Math. Z.* 285:3-4 (2017), 1249–1267. MR Zbl
- [Deligne 1971] P. Deligne, "Théorie de Hodge, II", Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5-57. MR Zbl
- [de Fernex and Hacon 2011] T. de Fernex and C. D. Hacon, "Deformations of canonical pairs and Fano varieties", *J. Reine Angew. Math.* **651** (2011), 97–126. MR Zbl
- [Franke et al. 1989] J. Franke, Y. I. Manin, and Y. Tschinkel, "Rational points of bounded height on Fano varieties", *Invent. Math.* **95**:2 (1989), 421–435. MR Zbl
- [Fujita 1987] T. Fujita, "On polarized manifolds whose adjoint bundles are not semipositive", pp. 167–178 in *Algebraic geometry* (Sendai, Japan, 1985), edited by T. Oda, Adv. Stud. Pure Math. **10**, North-Holland, Amsterdam, 1987. MR Zbl

- [Fujita 1992] T. Fujita, "On Kodaira energy and adjoint reduction of polarized manifolds", *Manuscripta Math.* **76**:1 (1992), 59–84. MR Zbl
- [Hacon and McKernan 2007] C. D. Hacon and J. McKernan, "On Shokurov's rational connectedness conjecture", *Duke Math. J.* **138**:1 (2007), 119–136. MR Zbl
- [Hacon et al. 2013] C. D. Hacon, J. McKernan, and C. Xu, "On the birational automorphisms of varieties of general type", *Ann. of Math.* (2) **177**:3 (2013), 1077–1111. MR Zbl
- [Hassett et al. 2015] B. Hassett, S. Tanimoto, and Y. Tschinkel, "Balanced line bundles and equivariant compactifications of homogeneous spaces", *Int. Math. Res. Not.* 2015:15 (2015), 6375–6410. MR Zbl
- [Kollár and Mori 1992] J. Kollár and S. Mori, "Classification of three-dimensional flips", J. Amer. Math. Soc. 5:3 (1992), 533–703. MR Zbl
- [Le Rudulier 2013] C. Le Rudulier, "Points algébriques de hauteur bornée sur une surface", preprint, 2013, Available at http:// cecile.lerudulier.fr/Articles/surfaces.pdf.
- [Lehmann and Tanimoto 2017] B. Lehmann and S. Tanimoto, "On the geometry of thin exceptional sets in Manin's conjecture", *Duke Math. J.* **166**:15 (2017), 2815–2869. MR Zbl
- [Lehmann and Tanimoto 2019] B. Lehmann and S. Tanimoto, "Geometric Manin's conjecture and rational curves", *Compos. Math.* **155**:5 (2019), 833–862. MR Zbl
- [Lehmann et al. 2018] B. Lehmann, S. Tanimoto, and Y. Tschinkel, "Balanced line bundles on Fano varieties", J. Reine Angew. Math. 743 (2018), 91–131. MR Zbl
- [Maulik and Poonen 2012] D. Maulik and B. Poonen, "Néron–Severi groups under specialization", *Duke Math. J.* 161:11 (2012), 2167–2206. MR Zbl
- [Néron 1952] A. Néron, "Problèmes arithmétiques et géométriques rattachés à la notion de rang d'une courbe algébrique dans un corps", *Bull. Soc. Math. France* **80** (1952), 101–166. MR Zbl
- [Peyre 2003] E. Peyre, "Points de hauteur bornée, topologie adélique et mesures de Tamagawa", *J. Théor. Nombres Bordeaux* **15**:1 (2003), 319–349. MR Zbl
- [Verdier 1976] J.-L. Verdier, "Stratifications de Whitney et théorème de Bertini–Sard", *Invent. Math.* **36** (1976), 295–312. MR Zbl
- [Voisin 2003] C. Voisin, *Hodge theory and complex algebraic geometry, II*, Cambridge Stud. Adv. Math. **77**, Cambridge Univ. Press, 2003. MR Zbl

Communicated by Shigefumi Mori Received 2018-08-21 Revised 2019-01-20 Accepted 2019-03-10

akashs@math.princeton.edu

Princeton University, Princeton, NJ, United States

### Algebra & Number Theory

msp.org/ant

#### EDITORS

MANAGING EDITOR

Bjorn Poonen Massachusetts Institute of Technology Cambridge, USA EDITORIAL BOARD CHAIR David Eisenbud University of California Berkeley, USA

#### BOARD OF EDITORS

| Richard E. Borcherds  | University of California, Berkeley, USA   | Martin Olsson         | University of California, Berkeley, USA |
|-----------------------|-------------------------------------------|-----------------------|-----------------------------------------|
| Antoine Chambert-Loir | Université Paris-Diderot, France          | Raman Parimala        | Emory University, USA                   |
| J-L. Colliot-Thélène  | CNRS, Université Paris-Sud, France        | Jonathan Pila         | University of Oxford, UK                |
| Brian D. Conrad       | Stanford University, USA                  | Anand Pillay          | University of Notre Dame, USA           |
| Samit Dasgupta        | University of California, Santa Cruz, USA | Michael Rapoport      | Universität Bonn, Germany               |
| Hélène Esnault        | Freie Universität Berlin, Germany         | Victor Reiner         | University of Minnesota, USA            |
| Gavril Farkas         | Humboldt Universität zu Berlin, Germany   | Peter Sarnak          | Princeton University, USA               |
| Hubert Flenner        | Ruhr-Universität, Germany                 | Joseph H. Silverman   | Brown University, USA                   |
| Sergey Fomin          | University of Michigan, USA               | Michael Singer        | North Carolina State University, USA    |
| Edward Frenkel        | University of California, Berkeley, USA   | Christopher Skinner   | Princeton University, USA               |
| Wee Teck Gan          | National University of Singapore          | Vasudevan Srinivas    | Tata Inst. of Fund. Research, India     |
| Andrew Granville      | Université de Montréal, Canada            | J. Toby Stafford      | University of Michigan, USA             |
| Ben J. Green          | University of Oxford, UK                  | Pham Huu Tiep         | University of Arizona, USA              |
| Joseph Gubeladze      | San Francisco State University, USA       | Ravi Vakil            | Stanford University, USA                |
| Roger Heath-Brown     | Oxford University, UK                     | Michel van den Bergh  | Hasselt University, Belgium             |
| Craig Huneke          | University of Virginia, USA               | Akshay Venkatesh      | Institute for Advanced Study, USA       |
| Kiran S. Kedlaya      | Univ. of California, San Diego, USA       | Marie-France Vignéras | Université Paris VII, France            |
| János Kollár          | Princeton University, USA                 | Kei-Ichi Watanabe     | Nihon University, Japan                 |
| Philippe Michel       | École Polytechnique Fédérale de Lausanne  | Melanie Matchett Wood | University of Wisconsin, Madison, USA   |
| Susan Montgomery      | University of Southern California, USA    | Shou-Wu Zhang         | Princeton University, USA               |
| Shigefumi Mori        | RIMS, Kyoto University, Japan             |                       |                                         |

#### PRODUCTION

production@msp.org Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2019 is US \$385/year for the electronic version, and \$590/year (+\$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/ © 2019 Mathematical Sciences Publishers

# Algebra & Number Theory

Volume 13 No. 8 2019

| Moduli of stable maps in genus one and logarithmic geometry, II<br>DHRUV RANGANATHAN, KELI SANTOS-PARKER and JONATHAN WISE | 1765 |
|----------------------------------------------------------------------------------------------------------------------------|------|
| Multiplicity one for wildly ramified representations<br>DANIEL LE                                                          | 1807 |
| Theta operators on unitary Shimura varieties<br>EHUD DE SHALIT and EYAL Z. GOREN                                           | 1829 |
| Infinitely generated symbolic Rees algebras over finite fields<br>AKIYOSHI SANNAI and HIROMU TANAKA                        | 1879 |
| Manin's <i>b</i> -constant in families<br>AKASH KUMAR SENGUPTA                                                             | 1893 |
| Equidimensional adic eigenvarieties for groups with discrete series<br>DANIEL R. GULOTTA                                   | 1907 |
| Cohomological and numerical dynamical degrees on abelian varieties<br>FEI HU                                               | 1941 |
| A comparison between pro- <i>p</i> Iwahori–Hecke modules and mod <i>p</i> representations<br>NORIYUKI ABE                  | 1959 |

