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We extend Urban’s construction of eigenvarieties for reductive groups G such that G(R) has discrete series
to include characteristic p points at the boundary of weight space. In order to perform this construction,
we define a notion of “locally analytic” functions and distributions on a locally Qp-analytic manifold
taking values in a complete Tate Zp-algebra in which p is not necessarily invertible. Our definition agrees
with the definition of locally analytic distributions on p-adic Lie groups given by Johansson and Newton.
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1. Introduction

1.1. Statement of results. The study of p-adic families of automorphic forms began with the work of
Hida [1986; 1988; 1994]. Coleman and Mazur [1998] (see also Coleman [1996; 1997]) introduced
the eigencurve, which parametrizes overconvergent p-adic modular forms of finite slope. Coleman and
Mazur used a geometric definition of p-adic modular forms, based on the original definition of Katz
[1973]. It is also possible to define p-adic automorphic forms using a cohomological approach. Several
constructions of eigenvarieties are based on overconvergent cohomology, introduced by Stevens [1994]
and later generalized by Ash and Stevens [2008]. These include the constructions of Urban [2011]
and Hansen [2017]. Emerton [2006b] has also constructed eigenvarieties using a somewhat different
cohomological approach.

The eigenvarieties mentioned above are all rigid analytic spaces, so they parametrize forms that have
coefficients in Qp-algebras. Recently, there has been interest in studying forms with coefficients in
characteristic p. Liu, Wan, and Xiao [Liu et al. 2017] constructed Zp[[Z

×
p ]]-modules of automorphic forms
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for definite quaternion algebras. By taking quotients of this module, one can obtain both traditional p-adic
automorphic forms and forms with coefficients in Fp[[Z

×
p ]] whose existence had been conjectured by

Coleman. Using these modules, Liu, Wan, and Xiao proved certain cases of a conjecture of Coleman and
Mazur and Buzzard and Kilford [2005] concerning the eigenvalues of the Up operator near the boundary
of the weight space. Andreatta, Iovita, and Pilloni [Andreatta et al. 2018] constructed an eigencurve that
included characteristic p points by extending Katz’s definition of p-adic modular forms.

In this paper, we will show how Urban’s eigenvarieties can be extended to include the characteristic p
points at the boundary of weight space.

In order to explain our results in more detail, we will first describe the basic idea of overconvergent
cohomology. Let G be a connected reductive algebraic group over Q such that GQp is quasisplit. Let A

be the adeles over Q, let A
p
f be the finite adeles away from p, let G+

∞
be the identity component of G(R),

and let ZG be the center of G. Let T0 be a maximal compact torus of G(Qp), and let N−0 be an open
compact subgroup of a maximal unipotent subgroup of G(Qp). We may consider the space

X := G(A)/K pG+
∞

as a locally Qp-analytic manifold. Let F be a finite extension of Qp, and let λ : T0→ F× be a continuous
homomorphism. Let Dc,λ be the space of compactly supported F-valued locally analytic distributions
on X , modulo the relations that right translation by N−0 acts as the identity, right translation by T0

acts by λ, and translation by ZG(Q) acts by the identity. One may think of the cohomology groups
H i (G(Q)/ZG(Q),Dc,λ) as spaces of p-adic automorphic forms. One can also study families of p-adic
automorphic forms by replacing F with an affinoid Qp-algebra A.

We are interested in extending overconvergent cohomology to the case where A is a Zp-algebra. The
main challenge is to show that there is a suitable notion of locally analytic A-valued functions and
distributions on X . We will define these notions when A is a complete Tate Zp-algebra.

To see what the definition should be, we recall a fact from p-adic functional analysis: a function
f : Zp→ Qp is locally analytic if and only if it is of the form f (z) =

∑
∞

n=0 an
(z

n

)
, where an ∈ A and

|an|p go to zero exponentially as n → ∞. We will therefore define the space A(Zp, A) of “locally
analytic” functions Zp→ A to be the set of functions of the form

∑
∞

n=0 an
(z

n

)
, where an ∈ A and an to

zero exponentially (i.e., α−nan goes to zero for some topologically nilpotent unit α) as n→∞. If p
is invertible in A, then this definition is known to coincide with the usual one. We will make a similar
definition for locally analytic functions Zk

p→ A, and then extend the definition to locally Qp-analytic
manifolds by gluing.

If X is a locally Qp-analytic manifold, then we will define modules A(X, A), D(X, A), Ac(X, A),
Dc(X, A) of locally analytic functions, distributions, compactly supported functions, and compactly
supported distributions, respectively.

Theorem 1.1.1 (Theorem 3.4.2). The modules A(X, A), D(X, A), Ac(X, A), and Dc(X, A) satisfy the
following properties:
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(1) A(X, A) is ring.

(2) If g : X→ Y is a locally analytic map, then composition with g induces homomorphisms A(Y, A)→
A(X, A) and D(X, A)→ D(Y, A).

(3) The functors U 7→A(U, A) and U 7→ Dc(U, A) are sheaves on X.

(4) If X has the structure of a finitely generated Zp-module, then any continuous group homomorphism
X→ A× is in A(X, A).

Remark 1.1.2. Of course, modules of continuous functions and distributions also satisfy the above proper-
ties. What makes A(X, A) and D(X, A) more like modules of locally analytic functions and distributions
is that a map that multiplies all coordinates by p is “completely continuous”; see Proposition 3.3.5 and
Lemma 3.3.7 for the precise statement.

Urban [2011] constructed eigenvarieties for reductive groups G such that G(R) has discrete series.
We will show how to use the locally analytic distribution modules mentioned above to extend Urban’s
construction to include characteristic p points.

Theorem 1.1.3 (Theorem 7.4.2). The reduced eigenvariety (constructed in [Urban 2011]) extends to an
adic space E over the weight space W = Spa(Zp[[T ′]],Zp[[T ′]])an, where T ′ is a quotient of a compact
subgroup of a maximal torus in G(Qp). Furthermore, E is equidimensional and the projection from E to
the spectral variety Z is finite and surjective.

The spectral variety Z is flat over W , so the existence of characteristic p points of Z implies the
existence of nearby characteristic zero points. It seems to be a difficult problem to prove the existence
of boundary points in general; however, in many cases, one can check explicitly that they exist (see for
example [Liu et al. 2017; Birkbeck 2019; Johansson and Newton 2018; Ye 2019]).

As this work was being prepared, I became aware that Christian Johansson and James Newton were
independently pursuing similar work. In [Johansson and Newton 2019], they adapt Hansen’s construction
of eigenvarieties to include the boundary of weight space. Their definition of locally analytic distributions
on Zk

p is essentially the same as ours. To construct distributions on p-adic Lie groups, they use a particular
choice of coordinate charts previously studied by Schneider and Teitelbaum. Our definition of locally
analytic distributions therefore generalizes theirs.

1.2. Summary of Urban’s construction and outline of the paper. Urban’s construction of eigenvarieties
is based on the framework of overconvergent cohomology developed by Stevens and Ash and Stevens. In
this framework, one first defines a weight space W , as mentioned above. Over any affinoid subspace U of
the weight space W , one defines a complex C • of projective OW(U)-modules. The cohomology groups
of this complex are the groups H i (G(Q)/ZG(Q),Dc,λ) mentioned above, where λ is the composition of
the quotient T0→ T ′ with the tautological character T ′→OW(U)×.

We consider a weight space that is larger than the one considered by Ash and Stevens and Urban. In
particular, our weight space contains opens U such that the prime p is not invertible on OW(U). The
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main challenge in defining overconvergent cohomology over the larger weight space is to find a suitable
notion of “locally analytic” OW(U)-valued distributions. After recalling the necessary background in
Section 2, we define modules of locally analytic functions and distributions and prove some properties of
these modules in Section 3. We use these modules to define overconvergent cohomology in Section 4.

Ash and Stevens proposed constructing an eigenvariety whose points correspond to systems of Hecke
eigenvalues appearing in the cohomology of the complexes C •; Hansen’s construction uses this approach.
Urban took a more K -theoretic approach. Assume that G(R) has discrete series; then cuspidal automorphic
forms of regular weight contribute to a single degree q0 of the cohomology of C •. So the associated systems
of Hecke eigenvalues appear a net positive number of times in the formal sum

∑
i (−1)i−q0C i . Urban

showed that after removing the contributions from Eisenstein series, each system of Hecke eigenvalues
appears a net nonnegative number of times in the formal sum. The points in Urban’s eigenvariety
correspond to those systems of eigenvalues appearing a net positive number of times in the formal sum.

Unfortunately, Urban’s analysis of Eisenstein series contained an error. In order to argue that certain
character distributions are uniquely defined, Urban assumed that the region of convergence of an Eisenstein
series is (up to translation) a union of Weyl chambers. However, this assumption is not true. In Section 5,
we correct this error by giving a new argument for uniqueness.

Urban’s construction of eigenvarieties makes use of the theory of pseudocharacters. We will instead
use Chenevier’s theory of determinants [2014], which is equivalent to the theory of pseudocharacters in
characteristic zero but better behaved in our setting where the prime p may not be invertible. Section 6
recalls some basic facts about determinants and proves some criteria for establishing that a ratio of two
determinants is again a determinant.

Finally, in Section 7, we construct the eigenvariety. We adapt Urban’s construction from the setting of
rigid analytic spaces to the setting of adic spaces.

2. Modules over complete Tate rings

2.1. Definitions. We begin by recalling the framework necessary for defining modules of locally analytic
functions and distributions and for defining eigenvarieties. We will repeat the basic setup of [Buzzard
2007, Section 2; Andreatta et al. 2018, Appendice B]. First, we recall the definition of a Tate ring [Huber
1993, Section 1].

Definition 2.1.1. A Huber ring is a topological ring A such that there exists an open subring A0 ⊂ A
and a finitely generated ideal I ⊂ A0 such that A0 has the I -adic topology. We say that A0 is a ring of
definition of A and I is an ideal of definition of A0.

A Tate ring is a Huber ring A such that some (equivalently, any) ring of definition A0 has an ideal of
definition that is generated by a topologically nilpotent unit of A.

In Section 7, we will use the framework of adic spaces to construct the eigenvariety. Every analytic
adic space can be covered by open subsets of the form Spa(A, A+) with A complete Tate, so it is natural
to consider this class of rings.



Equidimensional adic eigenvarieties for groups with discrete series 1911

Throughout this section, A will denote a complete Tate ring.

Definition 2.1.2. Let X be a quasicompact topological space, and let M be a topological abelian group.
We define C(X,M) to be the space of continuous functions X → M , with the topology of uniform
convergence.

Definition 2.1.3. Let S be a set, and let M be a topological abelian group. We define c(S,M) to be
the space of functions f : S → M such that for any open neighborhood U of the identity in M , the
complement of f −1(U ) is finite. We give c(S,M) the topology of uniform convergence.

Definition 2.1.4. Let M be a topological A-module. We say that M is orthonormalizable if it is isomorphic
to c(S, A) for some set S. We say that M is projective if it is a direct summand of an orthonormalizable
A-module.

Definition 2.1.5. Let M be a topological A-module. We say that a set B ⊂ M is bounded if for all open
neighborhoods U of the identity in M , there exists α ∈ A× so that αB ⊆U .

Definition 2.1.6. Let M and N be topological A-modules. We define Lb(M, N ) to be the set of continuous
A-module homomorphisms M→ N , with the topology of convergence on bounded subsets.

Definition 2.1.7. Let M and N be topological A-modules. We say that an A-module homomorphism
M→ N has finite rank if its image is a finitely presented A-module. We say that an element of Lb(M, N )
is completely continuous if it is in the closure of the subspace of finite rank elements.

2.2. Spectral theory.

Definition 2.2.1. We define A{{X}} to be the set of power series P(X)=
∑
∞

n=0 an Xn , an ∈ A, such that
for any α ∈ A×, α−nan→ 0 as n→∞.

We say that P(X) ∈ A{{X}} is a Fredholm series if it has leading coefficient 1.

In Section 7, we will consider the adic space Spa(A, A+) for certain complete Tate Zp-algebras A. If
the adic space Spa(A, A+)×A1 exists, then A{{X}} is its ring of global sections.

Assume A is Noetherian. If M is a projective A-module and u : M→ M is completely continuous,
then we define the Fredholm series det(1− Xu) ∈ A{{X}} as in [Buzzard 2007, Section 2; Andreatta et al.
2018, Section B.2.4]. To define the series, we express M as a direct summand of an orthonormalizable
A-module c(S, A) and extend u to a map c(S, A)→ c(S, A) by having it act as zero on the orthogonal
complement of M . The module c(S, A) has a basis consisting of functions sending a single element of S
to 1 and the rest to 0. We consider the matrix of u in this basis. The series det(1− Xu) is defined to be
limit of the characteristic polynomials of finite dimensional submatrices of this matrix. The series does
not depend on the choice of embedding.

As in [Urban 2011], we will need to work with complexes. Let M • be a bounded complex of projective
A-modules. We will say that u• : M •

→ M • is completely continuous if each ui is completely continuous.
If u• is completely continuous, then we define

det(1− Xu•) :=
∏

i

det(1− Xui )(−1)i .
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Lemma 2.2.2. Let M • be a bounded complex of projective A-modules, and let u•, v• : M •
→ M • be

completely continuous maps that are homotopy equivalent. Then det(1− Xu•)= det(1− Xv•).

Proof. For each nonnegative integer k, define the complex SSymk M • so that (SSymk M)i is generated
by formal products of k homogeneous elements of M • of total degree i , subject to the relation a pair of
homogeneous elements anticommutes if both have odd degree and commutes otherwise. The differential
d : (SSymk M)i → (SSymk M)i+1 is defined by

d(m1m2 · · ·mk)= (dm1)m2 · · ·mk + (−1)deg m1m1(dm2) · · ·mk + · · ·+ (−1)i−deg mk m1m2 · · · (dmk).

The maps u•, v• induce endomorphisms SSymk u•, SSymk v• on SSymk M •, and these are completely
continuous and homotopy equivalent. We claim that the coefficient of X k in det(1−Xu•)−1 is tr SSymk u•.
Indeed, there is a decomposition

∞∑
k=0

X k tr SSymk u• =
∏

i≡0(2)

( ∞∑
k=0

X k tr Symk ui
) ∏

i≡1(2)

( ∞∑
k=0

(−X)k tr∧kui
)

=

∏
i≡0(2)

det(1− Xui )−1
∏

i≡1(2)

det(1− Xui ).

Therefore it suffices to show that for each k, SSymk u• and SSymk v• have the same trace. Then we
may use the argument of [Urban 2011, Lemma 2.2.8]. �

2.3. Norms. It is often convenient to work with norms on A and on A-modules.

Definition 2.3.1. Let α be a topologically nilpotent unit of A. We define an α-Banach norm on A to be a
continuous map |·| : A→ R≥0 satisfying the following conditions:

• |a+ b| ≤max(|a|, |b|) ∀a, b ∈ A.

• |ab| ≤ |a||b| ∀a, b ∈ A.

• |0| = 0, |1| = 1, |α||α−1
| = 1.

• The norm |·| induces the topology of A.

Definition 2.3.2. Let α be a topologically nilpotent unit of A, let |·| be an α-Banach norm on A, and let M
be a topological A-module. We define a |·|-compatible norm on M to be a continuous map ‖·‖ : M→R≥0

satisfying the following conditions:

• |m+ n| ≤max(|m|, ‖n‖) ∀m, n ∈ M .

• ‖am‖ ≤ |a|‖m‖ ∀a ∈ A,m ∈ M .

• ‖0‖ = 0.

If, in addition, ‖·‖ induces the topology of M , we say that ‖·‖ is a Banach norm.
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For any topologically nilpotent unit α ∈ A× and ring of definition A0 of A containing α, the function
|·| : A→ R≥0 defined by

|a| = inf
n∈Z|αna∈A0

pn

is an α-Banach norm.
Furthermore, if M is a topological A-module and M0 is an open neighborhood of zero in M that is an

A0-module, then the function ‖·‖ : M→ R≥0 defined by

‖m‖ = inf
n∈Z|αnm∈M0

pn

is a norm compatible with |·|. If the sets of the form αn M0 are a basis of open neighborhoods of zero,
then this norm is Banach.

3. Locally analytic functions and distributions

Now let A be a complete Tate Zp-algebra, and let X be a locally Qp-analytic manifold. In this section,
we will define modules A(X, A) and D(X, A) of “locally analytic” A-valued functions and distributions
on X .

The space X can be covered by coordinate patches isomorphic to Zk
p for some k. We will first define

locally analytic functions on these patches and then show that the construction can be glued.
Naively, one might try to define a function Zk

p → A to be locally analytic if it has a power series
expansion in a neighborhood of any point. However, this definition turns out not to be suitable for
applications to overconvergent cohomology. In Section 4.3, it will be important that any continuous
homomorphism Zk

p→ A× is in A(Zk
p, A). The homomorphism Zp→ Fp((T ))× that sends z 7→ (1+T )z

does not have a power series expansion on any open subset of Zp. Our criterion for local analyticity will
instead be based on Mahler expansions.

3.1. Preliminaries. We will recall some basic facts from p-adic functional analysis.
We will make use of the completed group ring Zp[[Z

k
p]] = lim

←−−n Zp[Z
k
p/pnZk

p].
For z ∈ Zk

p, let [z] denote the corresponding group-like element of Zp[[Z
k
p]], and let 1z = [z] − [0].

Let I1 denote the augmentation ideal of Zp[[Z
k
p]]; this is the ideal generated by the 1z . The ring Zp[[Z

k
p]]

is local with maximal ideal (p)+ I1.
We let Zk

p act on C(Zk
p,M) by translation: for g ∈ C(Zk

p,M), (zg)(y)= g(y+ z). This action extends
to an action of Zp[[Z

k
p]].

We adopt the convention that N is the set of nonnegative integers. To simplify notation, if z =
(z1, . . . , zk) ∈ Zk

p, and n = (n1, . . . , nk) ∈ Nk , we will write
(z

n

)
for

∏k
i=1

(zi
ni

)
, and we will write

∑
n

for
∑k

i=1 ni .

Lemma 3.1.1 (Mahler’s theorem, [Lazard 1965, Théorème II.1.2.4]). Let M be a complete topological
Zp-module. Suppose that M has a basis of open neighborhoods of zero that are subgroups of M. There is
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an isomorphism c(Nk,M)−→∼ C(Zk
p,M) that sends f ∈ c(Nk,M) to a function g ∈ C(Zk

p,M) defined by

g(z)=
∑
n∈Nk

f (n)
( z

n

)
.

We say that the right-hand side of the above equation is the Mahler expansion of g.

Lemma 3.1.2 (Amice’s theorem). Let F be a closed subfield of Cp, and let L Ah(Z
k
p, F) be the space of

functions Zk
p→ F that extend to an analytic function Zk

p + phOk
Cp
→ Cp. For f ∈ L Ah(Z

k
p, F), define

| f | := sup
z∈Zk

p+phOk
Cp

| f (z)|p.

Then the functions
⌊ n1

ph

⌋
! · · ·

⌊ nk
ph

⌋
!
(z

n

)
form an orthonormal basis for the Banach space L Ah(Z

k
p, F). In

other words, every f ∈ L Ah(Z
k
p, F) can be expressed uniquely in the form

f (z)=
∑
n∈Nk

an

⌊
n1

ph

⌋
! · · ·

⌊
nk

ph

⌋
!

( z
n

)
,

and | f | = supn∈Nk |an|p.

Proof. This follows from [Amice 1964, Chapitre 3] (see also [Colmez 2010, Théorème I.4.7]). �

The following formulas concerning the p-adic valuations of n!, where n is a nonnegative integer, are
well known:

vp(n!)=
∞∑

k=1

⌊
n
pk

⌋
and

n
p− 1

− logp(n+ 1)≤ vp(n!)≤
n

p− 1
.

Consequently, if F is a closed subfield of Cp, and f : Zk
p→ F is a continuous function with the Mahler ex-

pansion f (z)=
∑

n∈Nk an
(z

n

)
, then f is locally analytic if and only if |an|p go to zero exponentially in

∑
n.

3.2. Definitions. The above facts suggest that we should define a function Zk
p→ A to be “locally analytic”

if the coefficients of its Mahler expansion decrease to zero exponentially.
We choose a topologically nilpotent α ∈ A×.

Definition 3.2.1. Let r ∈ R+. We define A(α,r)(Zk
p, A) to be the space of functions f ∈ C(Zk

p, A) such
that for any open neighborhood U of zero in A, there exists N ∈ N so that for all integers n > N and all
δ ∈ I n

1, αb−rncδ f ∈ C(Zk
p,U ).

For any open neighborhood U of zero in A, we define Ur ⊂ A(α,r)(Zk
p, A) to be the set of all

f ∈A(α,r)(Zk
p, A) such that αb−rncδ f ∈ C(Zk

p,U ) for all n ∈ N and all δ ∈ I n
1. We define a topology on

A(α,r)(Zk
p, A) by making sets of the form Ur a basis of open neighborhoods of zero.

We define A(Zk
p, A) := lim

−−→r A
(α,r)(Zk

p, A).

We will not choose a topology on A(Zk
p, A).

The connection between this definition and Mahler expansions will be explained by Lemma 3.2.3.
The definition of A(α,r)(Zk

p, A) is invariant under affine changes of coordinates.
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For any topologically nilpotent unit α′ ∈ A× and sufficiently small r ′ ∈ R+, A(α′,r ′)(Zk
p, A) injects into

A(α,r)(Zk
p, A). So the directed systems (A(α,r)(Zk

p, A))r∈R+ and (A(α′,r)(Zk
p, A))r∈R+ are cofinal, and

A(Zk
p, A) does not depend on the choice of α. If F is a closed subfield of Cp, then by Lemma 3.1.2,

there are continuous injections with dense image

A(p,1/(p−1)ph)(Zk
p, F) ↪→ L Ah(Z

k
p, F) ↪→A(p,r)(Zk

p, F)

for any r < 1/((p− 1)ph), so the directed systems (A(p,r)(Zk
p, F))r∈R+ and (L Ah(Z

k
p, F))h∈N are also

cofinal.
The module A(α,r)(Zk

p, A) can also be defined (albeit less symmetrically) using α-Banach norms.
Choose a ring of definition A0 of A containing α, and define an α-Banach norm |·| : A→ R≥0 as in
Section 2.3. Define ‖·‖0 : C(Zk

p, A)→ R≥0 by

‖ f ‖0 = sup
z∈Zk

p

| f (z)|.

The sets { f ∈ A | ‖ f ‖0 ≤ s}, s ∈ R≥0, form a basis of open neighborhoods of the identity in A. Hence in
Definition 3.2.1, we can restrict our attention to neighborhoods of this form. Therefore

A(α,r)(Zk
p, A)= { f ∈ C(Zk

p, A) | lim sup
n→∞

sup
δ∈I n

1

‖αb−rncδ f ‖0 = 0},

and the topology on A(α,r)(Zk
p, A) is induced by the norm ‖·‖r : A(α,r)(Zk

p, A)→ R≥0 defined by

‖ f ‖r = sup
n∈N

sup
δ∈I n

1

‖αb−rncδ f ‖0.

The functions ‖·‖0 and ‖·‖r are Banach norms compatible with |·|.
Presumably, it would be reasonable to define A(α,r)(Zk

p,M) and A(Zk
p,M) for any topological A-

module M that is locally convex in the sense that for some (equivalently, any) ring of definition A0 of A,
M has a basis of open neighborhoods of the identity that are A0-modules. (We would just replace A with
M in the above definition.) However, we will not need this additional generality.

Definition 3.2.2. Let r ∈R+. We define D(α,r)(Zk
p, A) to be the closure of the image of Lb(C(Zk

p, A), A)
in Lb(A(α,r)(Zk

p, A), A).
We define D(Zk

p, A)= lim
←−−r D

(α,r)(Zk
p, A).

The definition of D(Zk
p, A) does not depend on the choice of α.

We chose the definitions of A(α,r)(Zk
p, A) and D(α,r)(Zk

p, A) so that these modules would be orthonor-
malizable, as we will now show.

Lemma 3.2.3. There is an isomorphism Ser : c(Nk, A) −→∼ A(α,r)(Zk
p, A) that sends f ∈ c(Nk, A) to a

function g ∈A(α,r)(Zk
p, A) defined by

g(z)=
∑
n∈Nk

αdr
∑ne f (n)

( z
n

)
. (3.2.4)
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Moreover, if c(Nk, A) is given the supremum norm and A(α,r)(Zk
p, A) is given the norm ‖·‖r , then Ser is

an isometry.
There is an isomorphism Ev : D(α,r)(Zk

p, A) −→∼ c(Nk, A) that sends φ ∈ D(α,r)(Zk
p, A) to a function

h ∈ c(Nk, A) defined by

h(n)= αdr
∑neφ

(( z
n

))
. (3.2.5)

Hence A(α,r)(Zk
p, A) and D(α,r)(Zk

p, A) are orthonormalizable.

Proof. Let f ∈ c(Nk, A), and let g be defined by (3.2.4). By Mahler’s theorem, g ∈ C(Zk
p, A). We observe

that for any h ∈ C(Zk
p, A) and δ ∈Zp[[Z

k
p]], ‖δh‖0≤‖h‖0. Furthermore, if δ ∈ I m

1 , then δ
(z

n

)
= 0 whenever∑

n < m. So

‖αb−rmcδg‖0 ≤ sup∑
n≥m
|αb−rmc+dr∑ne f (n)| ≤ sup∑

n≥m
| f (n)|.

It follows that g ∈A(α,r)(Zk
p, A), and Ser is has operator norm ≤ 1.

By Mahler’s theorem, we can recover f from g:

f (n)= αb−r∑nc(1n1
e1
· · ·1nk

ek
g)(0), (3.2.6)

where e1, . . . , ek are the standard basis for Zk
p. Since

| f (n)| ≤ sup
δ∈(I1)

∑
n
‖αb−r∑ncδg‖0,

the relation (3.2.6) determines a map Coeff : A(α,r)(Zk
p, A)→ c(Zk

p, A) that is a left-inverse of Ser, and
Coeff has operator norm ≤ 1. To see that Coeff is also a right-inverse of Ser, observe that (Ser ◦Coeff)(g)
and g agree on Nk , which is dense in Zk

p. Since Ser and Coeff both have operator norm ≤ 1, they must
be isometries.

The map Ser induces an isomorphism Ser∗ : Lb(A(α,r)(Zk
p, A), A)−→∼ Lb(c(Nk, A), A). The pairing

c(Nk, A)× c(Nk, A)→ A defined by ( f, h) 7→
∑

n∈Nk f (n)h(n) identifies c(Nk, A) isometrically with a
closed submodule of Lb(c(Nk, A), A). For any φ ∈Lb(C(Zk

p, A), A), the function n 7→φ
((z

n

))
is bounded,

so in particular αdr
∑neφ

((z
n

))
→ 0 as

∑
n →∞. Hence the image of Ser∗ is contained in c(Nk, A).

Furthermore, the image contains all elements of c(Nk, A) that are supported on a finite subset of Nk , and
these elements are dense in c(Nk, A). �

Lemma 3.2.3 makes it clear that for r ′ < r , there are natural injections

D(α,r
′)(Zk

p, A) ↪→ Lb(A(α,r
′)(Zk

p, A), A) ↪→ D(α,r)(Zk
p, A)

A(α,r)(Zk
p, A) ↪→ Lb(D(α,r)(Zk

p, A), A) ↪→A(α,r
′)(Zk

p, A).

3.3. Properties of locally analytic functions and distributions. In this section, we check that A(α,r)(Zk
p,A)

has some properties that one would expect of locally analytic functions.

Lemma 3.3.1. Multiplication induces a continuous map A(α,r)(Zk
p, A)×A(α,r)(Zk

p, A)→A(α,r)(Zk
p, A).
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Proof. This follows Lemma 3.2.3 and the fact that for m, n ∈N,
(z

n

)( z
m

)
is of the form

∑m+n
i=0 ai

(z
i

)
with

ai ∈ Z. �

Lemma 3.3.2. Let
f : C(Zk

p,Zp)→ C(Z j
p,Zp)

be a Zp-module homomorphism. For any r, s ∈ R+, there is at most one continuous A-linear homomor-
phism f̃ making the following diagram commute:

C(Zk
p,Zp) C(Zk

p, A) A(α,r)(Zk
p, A)

C(Z j
p,Zp) C(Z j

p, A) A(α,s)(Z j
p, A)

f f̃

and there is at most one continuous A-linear homomorphism f̃ ∗ making the following diagram commute:

HomZp(C(Z
j
p,Zp),Zp) Lb(C(Z

j
p, A), A) D(α,s)(Z j

p, A)

HomZp(C(Zk
p,Zp),Zp) Lb(C(Zk

p, A), A) D(α,r)(Zk
p, A)

f ∗ f̃ ∗

If either homomorphism exists, we say that it is induced by f .

Proof. If the maps f̃ and f̃ ∗ exist, then their matrices in the basis of Lemma 3.2.3 can be deduced from
the matrix of f in the basis of Mahler’s theorem. More specifically, if we write

f
(( z

n

))
=

∑
m∈N j

fnm

( z
m

)
with fnm ∈ Zp, then the matrix coefficients of f̃ must be

f̃nm = α
dr∑ne−ds∑me fnm,

and the matrix coefficients of f̃ ∗ must be

f̃ ∗nm = f̃mn = α
dr∑me−ds∑ne fmn. �

Lemma 3.3.3. There exists t0 ∈R+ so that for any r, s ∈R+, j, k ∈N, and any Zp-module homomorphism
f : C(Zk

p,Zp)→ C(Z j
p,Zp) that induces a continuous homomorphism

A(p,r)(Zk
p,Qp)→A(p,s)(Z j

p,Qp),

f also induces continuous homomorphisms

f̃ : A(α,r t)(Zk
p, A)→A(α,st)(Z j

p, A) and f̃ ∗ : D(α,st)(Z j
p, A)→ D(α,r t)(Zk

p, A)

for all t ∈ (0, t0).
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Proof. If the map f̃ : A(α,r t)(Zk
p, A)→A(α,st)(Z

j
p, A) exists, then in the notation of the previous lemma,

its matrix coefficients must be given by

f̃nm = α
dr t∑ne−dst∑me fnm .

Conversely, if there is a continuous map with these matrix coefficients, then it is the desired map f̃ .
The f̃nm are the matrix coefficients of a continuous map if and only if the following two conditions are

satisfied:

(1) f̃nm are bounded.

(2) For any fixed n, f̃nm→ 0 as
∑

m→∞.

The terms with r
∑

n − s
∑

m ≥ 0 are certainly bounded, so we only need to worry about terms
with r

∑
n − s

∑
m < 0. There exists a positive integer ` so that p`/α is power bounded. If the

pdr t`∑ne−dst`∑ne fnm (considered as elements of Qp) are bounded (resp. go to zero as
∑

m→∞), then
the same will be true of the αdr t∑ne−dst∑me fnm (considered as elements of A). So we may take t0 = `−1.

Similarly, if the map f̃ ∗ : D(α,st)(Z
j
p, A)→ D(α,r t)(Zk

p, A) exists, then its matrix coefficients satisfy
f̃ ∗mn = f̃nm . The f̃ ∗mn are the coefficients of a continuous map if and only if condition (1) above and the
following condition are satisfied:

(2′) For any fixed m, f̃nm→ 0 as
∑

n→∞.

Since fnm ∈ Zp and αdr t
∑

ne
→ 0 as

∑
n→∞, condition (2′) will always be satisfied. �

Proposition 3.3.4. Let g : Z
j
p→ Zk

p be a (globally) analytic function. For some r0 ∈ R+ depending on α
but not on g, j , k, composition with g induces continuous A-linear homomorphisms

A(α,r)(Zk
p, A)→A(α,s)(Z j

p, A) and D(α,s)(Z j
p, A)→ D(α,r)(Zk

p, A)

for all s < r < r0.

Proof. There are continuous maps

A(p,1/(p−1))(Zk
p,Qp)→ L A0(Z

k
p,Qp)

g∗
−→ L A0(Z

j
p,Qp)→A(p,1/(p−1)−ε)(Z j

p,Qp)

for any ε ∈ (0, 1/(p− 1)). Applying Lemma 3.3.3 then yields the desired result. �

If j = 1, then the maps exist even if r = s. We do not know if the same is true for j > 1. When j = 1,
one can prove existence by considering the norm on L A0 defined in Lemma 3.1.2 and using the fact that
vp(n!)−

∑k
i=1 vp(mi !)≥ b(n−

∑
m)/pc. (The same idea will be used in the proof of Proposition 3.3.5.)

However, for j > 1,
∑ j

i=1 vp(ni !)−
∑k

i=1 vp(mi !) can be zero for arbitrarily large values of
∑

n−
∑

m.

Proposition 3.3.5. Let S be a set of coset representatives of Zk
p/pZk

p. The homeomorphism Zk
p×S−→∼ Zk

p

defined by (z, s) 7→ pz+ s determines an isomorphism

C(Zk
p, A)∼= C(Zk

p, A)⊕pk
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which induces isomorphisms

A(α,r)(Zk
p, A)∼=A(α,pr)(Zk

p, A)⊕pk
and D(α,r)(Zk

p, A)∼= D(α,pr)(Zk
p, A)⊕pk

for all sufficiently small r ∈ R+.

Proof. First, consider the case k = 1. Applying Lemma 3.3.3 along with translation invariance, we see
that it is then enough to check that composition with the function

g(z)= pz

defines a continuous homomorphism

A(p,1/2p2)(Zp,Qp)→A(p,1/2p)(Zp,Qp)

and that composition with the function

h(z)=
{

z/p z ∈ pZp,

0 z ∈ Z×p ,

defines a continuous homomorphism

A(p,1/2p)(Zp,Qp)→A(p,1/2p2)(Zp,Qp).

Define gnm, hnm by

g
(( z

n

))
=

∞∑
m=0

gnm

( z
m

)
, h

(( z
n

))
=

∞∑
m=0

hnm

( z
m

)
.

By the same reasoning as in Lemma 3.3.3, we just need to verify that:

(1) vp(gnm)−
m
2p +

n
2p2 is bounded below for pm ≥ n.

(2) For any n, vp(gnm)−
m
2p +

n
2p2 →∞ as m→∞.

(3) vp(hnm)−
m

2p2 +
n

2p is bounded below for m ≥ pn.

(4) For any n, vp(hnm)−
m

2p2 +
n

2p →∞ as m→∞.

Applying Lemma 3.1.2 gives
vp(gnm)− vp(m!)≥−vp(bn/pc!).

For n ≥ pm this implies

vp(gnm)≥

∞∑
i=1

(bm/pi
c− bn/pi+1

c)≥ bm/p− n/p2
c.

Similarly, Lemma 3.1.2 implies

vp(hnm)≥

∞∑
i=1

(bm/pi+1
c− bn/pi

c)≥ bm/p2
− n/pc.

This proves the case k = 1.
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We reduce the general case to the case k = 1 as follows. Since the above modules are all preserved by
translation, if the proposition is true for one choice of S, it is true for any choice of S. In particular, we
may assume S is a product of k sets of coset representatives of Z/pZ. Then, since multiplication by p
does not mix coordinates, the argument is essentially the same as in the k = 1 case. �

Lemma 3.3.6. Any continuous homomorphism λ : Zk
p→ A× is in A(Zk

p, A).

Proof. Lemma 3.3.1 allows us to reduce to the one-dimensional case, and Proposition 3.3.5 allows us to
replace Zk

p with an open sublattice. So it suffices to consider the case where k = 1 and (λ(1)− 1)/α is
topologically nilpotent. In that case, since

λ(z)=
∞∑

n=0

( z
n

)
(λ(1)− 1)n,

λ ∈A(α,1)(Zp, A). �

Lemma 3.3.7. For any 0< s < r , the inclusions

A(α,r)(Zk
p, A) ↪→A(α,s)(Zk

p, A) and D(α,s) ↪→ D(α,r)(Zk
p, A)

are completely continuous.

Proof. In the orthonormal bases of Lemma 3.2.3, these inclusions are represented by diagonal matrices
with diagonal entries of the form αbr

∑nc−bs∑nc. As
∑

n→∞, the entries go to zero. �

3.4. Gluing. Propositions 3.3.4 and 3.3.5 show that it makes sense to define locally analytic functions
and distributions on arbitrary locally Qp-analytic manifolds by gluing.

Definition 3.4.1. Let k be a nonnegative integer, and let X be a locally Qp-analytic manifold of dimen-
sion k. Choose a decomposition X =

⊔
i∈I X i for some index set I , and choose an identification of each

X i with Zk
p. We define

A(X, A)=
∏
i∈I

A(X i , A)

Ac(X, A)=
⊕
i∈I

A(X i , A)

D(X, A)=
⊕
i∈I

D(X i , A)

Dc(X, A)=
∏
i∈I

D(X i , A).

By Propositions 3.3.4 and 3.3.5, the above definitions do not depend on the choice of decomposition.

Theorem 3.4.2. The modules A(X, A), D(X, A), Ac(X, A), and Dc(X, A) satisfy the following proper-
ties:



Equidimensional adic eigenvarieties for groups with discrete series 1921

(1) A(X, A) is ring.

(2) If g : X→ Y is a locally analytic map, then composition with g induces homomorphisms A(Y, A)→
A(X, A) and D(X, A)→ D(Y, A).

(3) The functors U 7→A(U, A) and U 7→ Dc(U, A) are sheaves on X.

(4) If X has the structure of a finitely generated Zp-module, then any continuous group homomorphism
X→ A× is in A(X, A).

Proof. The claims all follow immediately from the results of Section 3.3. �

3.5. Geometric interpretation of distributions. The modules of locally analytic distributions have an
alternative interpretation as rings of sections of adic spaces. This interpretation will not be used elsewhere
in the paper, but it gives further evidence that our definition of distributions is reasonable. For background
on adic spaces, see [Huber 1993; Huber 1994; Huber 1996] or [Scholze and Weinstein 2019, Sections 2–5].

Let D = Spa(Zp[[Z
k
p]],Zp[[Z

k
p]]). Suppose that the Tate algebra A〈T1, . . . , Tn〉 is sheafy for each

nonnegative integer n. Let A+ be an open and integrally closed subring of A. Let Y = D×Spa(Zp,Zp)

Spa(A, A+). We can construct Y as follows. There is an isomorphism Zp[[T1, . . . , Tk]] ∼= Zp[[Z
k
p]] that

sends Ti 7→1ei , where the ei form a basis of Zk
p; this isomorphism is known as the multivariable Amice

transform. For any positive rational r = m/n, let Br = A〈T1, . . . , Tk, T n
1 /α

m, . . . , T n
k /α

m
〉, and let B+r

be the normal closure of A+〈T1, . . . , Tn, T n
1 /α

m, . . . , T n
n /α

m
〉 in Br . Then Y is formed by gluing the

affinoids Yr := Spa(Br , B+r ).
There are canonical isomorphisms

HomZp(C(Z
k
p,Zp),Zp)∼=OD(D),

D(Zk
p, A)∼=OY (Y ),

D(α,r)(Zk
p, A)∼=OY (Yr ) ∀r ∈Q+.

4. Overconvergent cohomology

Now we use the modules constructed in Section 3 to define overconvergent cohomology. We mostly repeat
the setup of [Urban 2011, Sections 3–4]; see also [Ash and Stevens 2008; Hansen 2017, Sections 2–3].

4.1. Locally symmetric spaces. Let A (resp. A f , A
p
f ) be the ring of adeles (resp. finite adeles, finite

adeles away from p) of Q.
Let G be a connected reductive algebraic group over Q. We will assume that G(Qp) is quasisplit. Let

B, T, N , N− be compatible choices of a Borel subgroup, maximal torus, maximal unipotent subgroup,
and opposite unipotent subgroup, respectively, of G(Qp).

We will need some results from [Bruhat and Tits 1972]. Note that GQp admits a valued root datum
(“donnée radicielle valuée”) by [Bruhat and Tits 1984, 4.2.3 Théorème].

Let I be an Iwahori subgroup of G(Qp) compatible with B (see for example [Bruhat and Tits 1972,
Section 6.5]; note that this reference denotes the Iwahori by B). Then I admits a factorization I =N0T0 N−0 ,
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where N−0 = N− ∩ I , T0 = T ∩ I , N0 = N ∩ I . Let K p be an open compact subgroup of A
p
f , and let

K = K p I . We assume that K is neat; see Definition 4.1.1 below. Let G+
∞

be the identity component of
G(R), and let K∞ be a maximal compact modulo center subgroup of G+

∞
. Let ZG be the center of G.

The space

X := G(A)/K pG+
∞

may be considered as a locally Qp-analytic manifold. Let A be a complete Noetherian Tate Zp-algebra.
In Section 3, we defined the module Dc(X , A) of “locally analytic” compactly supported A-valued
distributions on X .

Let λ : T0→ A× be a continuous homomorphism. By Lemma 3.3.6, λ ∈A(T0, A). We will assume
that ker λ contains (ZG(Q)K pG+

∞
∩ T0). We define Dc,λ(X , A) to be the quotient of Dc(X , A) obtained

by constraining right-translation by N−0 to act by the identity, right-translation by T0 to act by λ, and
translation by ZG(Q) to act by the identity.

The group G(Q)/ZG(Q) acts on Dc,λ(X , A) by left-translation. Moreover, Dc,λ(X , A) is a direct sum
of modules induced from much smaller subgroups of G(Q)/ZG(Q). We can write G(A) as a finite union

G(A)=
⊔

i

G(Q)gi G+∞K .

Let 0i be the image of gi G+∞K g−1
i ∩G(Q) in G(Q)/ZG(Q). Then

Dc,λ(X , A)∼=
⊕

i

IndG(Q)/ZG(Q)
0i

Dλ(gi I, A)

where Dλ(gi I, A) is the quotient of D(gi I, A) obtained by constraining right-translation by N−0 to act as
the identity and right-translation by T0 to act as λ. Here 0i acts on Dλ(gi I, A) by left-translation.

The existence of the Iwahori factorization implies that the map N0→ gi I given by n 7→ gi n induces
an isomorphism of A-modules

D(N0, A)−→∼ Dλ(gi I, A).

This identification induces a 0i -action on D(N0, A), which can be described as follows. Any x ∈ I has
an Iwahori factorization x = n(x)t(x)n−(x) with n(x) ∈ N0, t(x) ∈ T0, n−(x) ∈ N−0 , and the functions
n, t , and n− are analytic. The action of 0i on D(N0, A) is given by

γ · [x] = λ(t(g−1
i γ gi x))[n(g−1

i γ gi x)]

for γ ∈ 0i , x ∈ N0. Here [x] denotes the Dirac delta distribution supported at x .
Now consider the locally symmetric space

SG(K ) := G(Q)\G(A)/K∞K .

Then SG(K )∼=
⊔

i Yi where

Yi := 0i\G+∞/K∞.
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Definition 4.1.1. We say that K is neat if all of the 0i are torsion-free.

As mentioned above, we assume that K p has been chosen so that K is neat. Then each Yi is a manifold
with fundamental group 0i .

The manifold SG(K ) has a Borel–Serre compactification SG(K ), which is homotopy equivalent to
SG(K ). Any finite triangulation of SG(K ) determines a resolution

0→ Cd(0i )→ · · · → C1(0i )→ C0(0i )→ Z→ 0

where the C j (0i ) are free Z[0i ]-modules of finite rank and d is the dimension of SG(K ). We define a
complex C •λ by

C j
λ :=

⊕
i

Hom0i (C j (0i ),Dλ(gi I, A)). (4.1.2)

Then
R0•(G(Q)/ZG(Q),Dc,λ(X , A))∼=

⊕
i

R0•(0i ,Dλ(gi I, A))∼= C •λ

in the derived category of A-modules.

4.2. Hecke action. We choose a projective resolution

· · · → C1(G(Q)/ZG(Q))→ C0(G(Q)/ZG(Q))→ Z→ 0

of Z as a G(Q)/ZG(Q)-module as well as maps of complexes of 0i -modules

C•(0i )→ C•(G(Q)/ZG(Q)) and C•(G(Q)/ZG(Q))→ C•(0i )

that are homotopy inverses of each other. Then any f ∈ EndG(Q)/ZG(Q)(Dc,λ(X , A)) defines an operator
[ f ] ∈ End(C •λ) by

C j
λ→

⊕
i

Hom0i (C j (G(Q)/ZG(Q)),Dλ(gi I, A))

−→∼ HomG(Q)/ZG(Q)(C j (G(Q)/ZG(Q)),Dc,λ(X , A))
f
−→HomG(Q)/ZG(Q)(C j (G(Q)/ZG(Q)),Dc,λ(X , A))

−→∼
⊕

i

Hom0i (C j (G(Q)/ZG(Q)),Dλ(gi I, A))

→ C j
λ .

For any f, g, [ f ][g] is homotopy equivalent to [ f g].
For any g ∈ G(Ap

f ), the double coset operator K pgK p acts on Dc,λ and determines a Hecke operator
[K pgK p

] on C •λ.
Let

T− := {t ∈ T | t−1 N−0 t ⊆ N−0 }.

For t ∈ T−, the double coset operator N−0 t N−0 acts on Dc,λ and determines an operator [N−0 t N−0 ] on C •λ.
We will sometimes denote this operator by ut .
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Remark 4.2.1. Our definition of the Hecke operators at p differs slightly from that of previous references
on overconvergent cohomology, which made use of a choice of “right ∗-action”. Our definition is instead
meant to be analogous to the one used in Emerton’s theory of completed cohomology [2006a; 2006b]. The
two approaches will yield the same eigenvariety. The only essential difference between the approaches is
that, to define a “right ∗-action”, one chooses a splitting of 0→ T0→ T → T/T0→ 0, and then uses
this splitting to twist the Hecke operators so that T0 acts trivially.

Let S be the set of finite places at which K p is not maximal hyperspecial. Let A
p,S
f be the adeles away

from p and S, and let K p,S be the image of K p in A
p,S
f . We define the Hecke algebra

HG := C∞c (K
p,S
\G(Ap,S

f )/K p,S
× N−0 \N

−

0 T−N−0 /N−0 ,Zp).

4.3. Topological properties of Hecke operators. In order to apply the spectral theory introduced in
Section 2.2, we will need to choose a particular description of C •λ as a limit of complexes of projective
modules. The logarithm induces a bijection between N0 and a finite free Zp-module; we use this bijection
to define a coordinate chart on N0. This chart allows us to define the projective modules D(α,r)(N0, A)
for some arbitrarily chosen topologically nilpotent unit α ∈ A. Define

C i
λ,α,r :=

⊕
j

Hom0 j (Ci (0 j ),D(α,r)(N0, A)).

Lemma 4.3.1. For all sufficiently small r and all ε > 0, the differential d : C i+1
λ → C i

λ extends to a map
C i+1
λ,α,r → C i

λ,α,r+ε .

Proof. It is enough to check that for sufficiently small r and all ε > 0, left translation by any γ ∈ 0i maps
D(α,r)(N0, A) into D(α,r+ε)(N0, A). This follows from the description of the action in Section 4.1 along
with Lemmas 3.3.1 and 3.3.6 and Proposition 3.3.4. �

If r = (r0, . . . , rd) is chosen such that the differentials C i+1
λ,α,ri+1

→ C i
λ,α,ri

are defined, then we denote
the corresponding complex by C •λ,α,r .

Choose some t ∈ T− such that t−1 N0t ⊂ N p
0 . Let H′G be the ideal of HG generated by ut .

Lemma 4.3.2. There exists r0 ∈ R+ so that for all r ∈ (0, r0), ε ∈ R+, and f ∈H′G , f determines a con-
tinuous map C i

λ,α,r → C i
λ,α,r/p+ε , and hence f determines a completely continuous map C i

λ,α,r → C i
λ,α,r .

Proof. We can show that Hecke operators away from p map C i
λ,α,r into C i

λ,α,r+ε using essentially the
same argument as in Lemma 4.3.1. It remains to show that ut maps C i

λ,α,r into C i
λ,α,r/p+ε . The action of

ut can be built from functions of the form

[x] 7→ λ(t(ι(x)))[n(ι(x))]

where ι(x) takes the form

ι(x)= ht−1n(n−x)t(n−x)t
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for some n− ∈ N−0 , h ∈ I . (See for example [Emerton 2006a, Lemma 4.2.19].) In particular, n(ι(x))
belongs to a single right coset of t−1 N0t ⊂ N p

0 . The argument proceeds as before, except that we also
need to use Proposition 3.3.5 and Lemma 3.3.7. �

4.4. Characteristic power series. For any f ∈H′G , we define the power series

det(1− X f | C •λ) := det(1− X f | C •λ,α,r )

for any α, r for which the complex C •λ,α,r is defined and the ut operator is completely continuous.
Choosing a different α and r conjugates the matrix of f by a diagonal matrix, so the power series does
not depend on them.

Similarly, we define det(1− X f | C i
λ) := det(1− X f | C i

λ,α,r ). Consider the Fredholm series

P+(X) :=
d∏

i=0

det(1− Xut | C i
λ).

Suppose that P+(X) factors as Q+(X)S+(X), with Q+(X) ∈ A[X ], S+(X) ∈ A{{X}}, that Q+(X)
and S+(X) are relatively prime, and that the leading coefficient of Q+(X) is invertible. Let Q∗

+
(X)=

Xdeg Q+Q+(X−1). By [Andreatta et al. 2018, Théorème B.2], there is a decomposition C •λ,α,r =N •α,r⊕F •α,r ,
where Q∗

+
(ut) annihilates N •α,r and acts invertibly on F •α,r , and the N i

α,r are finitely generated and
projective.

Lemma 4.4.1. For any α, α′ and r , r ′ such that N •α,r and N •α′,r ′ are defined, they are canonically isomor-
phic.

Proof. Choose r ′′ so that C •λ,α,r ′′ injects into C •λ,α,r and C •λ,α′,r ′ . The operator 1− Q∗
+
(ut)/Q∗

+
(0) acts as

the identity on N •α,r , and for sufficiently large n, (1− Q∗
+
(ut)/Q∗

+
(0))n factors through N •α,r ′′ . So we get

a canonical isomorphism N •α,r ∼= N •α,r ′′ , and similarly there is a canonical isomorphism N •α′,r ′ ∼= N •α,r ′′ . �

Corollary 4.4.2. There is a decomposition C •λ=N •⊕F •, where Q∗
+
(ut) annihilates N • and acts invertibly

on F •, and the N i are finitely generated and projective.

5. Eisenstein and cuspidal contributions to characteristic power series

5.1. Preliminaries. In this section, we will write C •G,K p,λ for C •λ to make it clear which group we are
considering. We will also assume that G(R) has discrete series (i.e., G(R) admits representations with
essentially square integrable matrix coefficients, or equivalently G(R) has a maximal torus that is compact
modulo ZG(R)), since otherwise Urban’s eigenvariety will be empty.

In order to construct Urban’s eigenvariety, we need the characteristic power series of the Hecke
operators to be Fredholm series. However, the power series det(1− X f | C •G,K p,λ) includes contributions
from both cusp forms and Eisenstein series, and the Eisenstein contribution is generally only a ratio
of Fredholm series. We will now define a complex C •G,K p,λ,cusp whose characteristic power series only
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includes contributions from cusp forms. (This complex will only be useful for defining characteristic
power series; we make no attempt to remove the Eisenstein series from the cohomology.)

We will mostly follow [Urban 2011, Section 4.6]. However, there is an error in the handling of the
Eisenstein series in [loc. cit.] that we will need to correct. The region of convergence of an Eisenstein series
is generally not a union of Weyl chambers. (For example, Sp(6) has two conjugacy classes of parabolic
subgroups whose Levis are isomorphic to GL(2)×GL(1). The region of convergence of Eisenstein series
coming from these parabolics contains one or two full Weyl chambers and fractions of three others.)
Consequently, the set WM

Eis defined in [loc. cit.] should depend on the weight of the Eisenstein series. A
more careful argument is therefore needed to show that character distribution I cl

G,0( f, µ) has a unique
p-adic interpolation. In fact, it appears that the character distribution of Eisenstein series coming from a
single parabolic subgroup will generally not have a unique interpolation. We will show, however, that
the sum of distributions coming from parabolic subgroups that have a common Levi will have a unique
interpolation.

Let WG denote the Weyl group of G. Let 8G , 8∨G denote the set of roots and coroots, respectively,
of the pair (GQp , T ), where T is the torus chosen in Section 4. Let 8+G and 8−G denote the subset of
roots that are positive and negative, respectively, with respect to B, and we make a similar definition for
coroots. Let ρ denote half the sum of the roots in 8+G .

Let F be a finite extension of Qp. We say that µ : T0→ F× is an algebraic weight if it can be extended
to a homomorphism of algebraic groups TF → (Gm)F . We say that an algebraic weight µ is dominant
(resp. regular dominant) if 〈α∨, µ〉 ≥ 0 (resp. > 0) for all α∨ ∈8∨+G .

Suppose that µ is dominant. Then Dµ(gi I, F) has a (nonzero) quotient that is a finite-dimensional
F-vector space. We will write LG

µ for the corresponding local system on either SG(K ) or SG(K ).

Lemma 5.1.1. Let f = ut ⊗ f p
∈H′G , and let µ : T0→ F× be an algebraic dominant weight. Then

det(1− X f | C •G,K p,µ)≡ det(1− X f | H •(SG(K ), LG
µ )) (mod OF [[N (µ, t)X ]])

where

N (µ, t) := inf
w∈WG\{id}

|t (w−1)(µ+ρ)
|p.

Proof. For the degree 1 term, this is [Urban 2011, Lemma 4.5.2]. The argument used there also works for
higher degree terms. �

In Section 7, we will consider a family of weights having the property that for any n∈N, the set of points
corresponding to regular dominant weights µ satisfying pn

| N (µ, t) is Zariski dense. The characteristic
power series for the whole family can then be determined from the det(1− X f | H •(SG(K ), LG

µ )).
If µ is regular dominant, then the cuspidal subspace of H i (SG(K ), LG

µ ) is the interior cohomology
H i
!
(SG(K ), LG

µ ) [Li and Schwermer 2004, Section 5.3], and furthermore (since we assume G(R) has
discrete series) the interior cohomology is nonzero only in the middle degree [Borel and Wallach 1980,
Theorem III.5.1]. Hence either det(1− X f | H •

!
(SG(K ), LG

µ )) or its reciprocal is a polynomial.
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Our goal is to prove a version of Lemma 5.1.1 in which C •G,K p,µ is replaced by a complex C •G,K p,µ,cusp

that we will define, and H •(SG(K ), LG
µ ) is replaced by H •

!
(SG(K ), LG

µ ).

5.2. Cohomology of the Borel–Serre boundary. Eisenstein series arise from the Borel–Serre boundary
∂SG(K ) := SG(K ) \ SG(K ) of SG(K ). The boundary has a stratification by locally symmetric spaces of
parabolic subgroups of G.

We warn the reader that the Borel–Serre compactification SG(K ) is slightly strange. When constructing
a locally symmetric space, one usually takes a quotient by the identity component of either ZG(R) or
AG(R), where AG is the Q-split part of ZG . In order to construct Urban’s eigenvariety, we need to
choose the former option, but the Borel–Serre compactification behaves better with respect to the latter.
Consequently, if M is a Levi subgroup of G, then the locally symmetric space for M should be constructed
by taking a quotient by the identity component of ZG(R)AM(R) rather than that of Z M(R). However, it
will turn out that we only need to consider Levi subgroups for which the two quotients are the same; see
Section 5.4 for more details.

Let P be a parabolic subgroup of G, let N be the maximal unipotent subgroup of P , and let M = P/N
be its Levi quotient. Let K p

P = K p
∩ P(Ap

f ), K P,p = I ∩ P(Qp), K P = K p
P K P,p. We can define a locally

symmetric space SP(K P), and there is a locally closed immersion

ι : SP(K P)→ SG(K ).

If P ′ is another parabolic subgroup of G, then SP(K P) and SP ′(K P ′) will have the same image in SG(K )
if and only if P(A f ) and P ′(A f ) are conjugate by an element of K p I .

Let K p
M , IM be the images of K p

P , K P,p in M(Ap
f ), M(Qp), respectively. The group IM is an Iwahori

subgroup of M . Let KM = IM K p
M . The locally symmetric space SP(K P) is a nilmanifold bundle over

SM(KM). Let

π : SP(K P)→ SM(KM)

denote the projection.
We can relate Rπ∗ι∗LG

µ to local systems on SM(KM) using the Kostant decomposition [Borel and
Wallach 1980, Theorem III.3.1]. To define the local systems on SM(KM), we first need to choose a
quasisplit torus TM of M . The parabolic subgroup PQp contains a conjugate of B. There is a decomposition
G(Qp) = I NG(S)(Qp)B(Qp), where NG(S) is the normalizer of the maximal split subtorus S of T ;
this follows from [Bruhat and Tits 1972, Section 4.2.5, Théorème 5.1.3] as well as from [loc. cit.,
Proposition 7.3.1]. So iwBw−1i−1

⊆ PQp for some i ∈ I , w ∈ NG(S)(Qp). We choose i and w to
minimize the length of the image of w in the Weyl group WG . Let TM be the image of iwTw−1i−1 in
MQp . The obvious isomorphism T −→∼ TM determines a length-preserving injection of Weyl groups
WM ↪→WG . Let W M denote a set of minimal length coset representatives of WM\WG .

We have the following isomorphism in the derived category of constructible sheaves on SM(KM).

Rπ∗ι∗LG
µ
∼=

⊕
w′∈W M

L M
w−1(w′(µ+ρ)−ρ)

[l(w′)− dim N ] (5.2.1)
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Here l(w′) denotes the length of w′. To see that the splitting exists in the derived category and not just at
the level of cohomology, we observe that the L M

w−1(w′(µ+ρ)−ρ)
have distinct central characters.

5.3. Hecke action. We will now define an action of HG on the cohomology of SM(KM) by constructing
a homomorphism HG→HM . The map Rπ∗ι∗ will be equivariant for this action.

As explained in [Urban 2011, Corollary 4.6.3], for any summand of (5.2.1) with w 6= w′, the Hecke
eigenvalues of ut ∈H′G acting on the cohomology of this summand will be divisible by N (µ, t). Since our
goal is to prove a cuspidal analogue of Lemma 5.1.1, we may ignore these summands and just consider
the one with w = w′. We are therefore only interested in the local system

L M
w−1(w(µ+ρ)−ρ)

= L M
µ+(1−w−1)ρ

.

Our definition of the homomorphism HG→HM will be the same as that of [Urban 2011, 4.1.8], except
that our convention for the Hecke operators makes some normalization factors disappear. The Hecke
algebra HG is generated by operators of the form ut for t ∈ T− and [KvgKv] for v /∈ S, g ∈ G(Qv). Let
ut ∈HG act as t (1−w

−1)ρut ∈HM . The double coset KvgKv decomposes as a finite union
⊔

j Kv p j Kv

with p j ∈ P(Qv). Let [KvgKv] act as
∑

j [KM,vm j KM,v], where m j is the image of p j in M(Qv).

Lemma 5.3.1. The homomorphism HG→HM defined above makes the map

Rπ∗ι∗ : H •(SG(K ), LG
µ )→ H •(SM(KM), L M

µ+(1−w−1)ρ
)[l(w)− dim N ]

HG-equivariant.

Proof. The argument is essentially the same as that of [Urban 2011, 4.1.8, 4.6.1–3]. �

5.4. Image of the map Rπ∗ι
∗. To simplify some of the analysis that follows, we will observe that

some Levis have H •(SM(KM), L M
µ )= 0 for a Zariski dense subset of weights µ, and hence they cannot

contribute to the characteristic power series. The Levi M can have a nonzero contribution only if the
following conditions hold (see [Urban 2011, Theorem 4.7.3(ii)′]):

(1) M(R) has discrete series.

(2) The center Z M of M is generated by its maximal split subgroup, its maximal compact subgroup,
and ZG .

Now assume that M satisfies the above two conditions. We will define an involution

θ : X∗(TM/ZG)→ X∗(TM/ZG).

To do this, we first decompose X∗(TM/ZG)⊗Q into several pieces. We have

X∗(TM/ZG)⊗Q∼= (X∗(Z M/ZG)⊕ X∗(TM ∩Mder))⊗Q.

There is an action of Gal(Q/Q) on X∗(Z M/ZG). This representation has open kernel, so it becomes
semisimple after tensoring with Q. We define θ to be the operator that acts as 1 on the isotypic component
of the trivial representation and as −1 on its orthogonal complement and on X∗(TM ∩Mder). Although it
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is not immediately obvious that θ preserves the lattice X∗(TM/ZG)⊂ X∗(TM/ZG)⊗Q, the following
alternative description of θ will show that it does.

Let T ′M be a maximal torus of MR that is compact modulo (Z M)R. Such a torus exists by assumption (1).
If C is an algebraically closed field equipped with inclusions R ↪→ C and Qp ↪→ C , then the tori (TM)C

and (T ′M)C are conjugate in MC . Each way of expressing (T ′M)C as a conjugate of (TM)C determines
an isomorphism X∗(TM/ZG) ' X∗(T ′M/ZG). We claim that under any such isomorphism, the action
of complex conjugation on X∗(T ′M/ZG) induces the involution θ on X∗(TM/ZG). Indeed, since T ′M
is compact modulo center, complex conjugation acts as −1 on X∗(T ′M ∩ Mder), and assumption (2)
guarantees that any element of X∗(Z M/ZG) that is fixed by complex conjugation is fixed by Gal(Q/Q).

By [Li and Schwermer 2004, Section 3.2], the image of

Rπ∗ι∗ : H •(SG(K ), LG
µ )→ H •(SM(KM), L M

µ+(1−w−1)ρ
)[l(w)− dim N ]

can have nonzero intersection with the cuspidal part

H •

!
(SM(KM), L M

µ+(1−w−1)ρ
)[l(w)− dim N ]

only if

〈α∨, w(1+ θ)(µ+ ρ))〉< 0 ∀α∨ ∈8∨+G \8
∨+

M . (5.4.1)

If the above equation holds and no Eisenstein series arising from M has a pole at −w(µ+ ρ), then the
image contains the cuspidal part. In particular, the image contains the cuspidal part if (5.4.1) is satisfied
and

|〈α∨, (1+ θ)µ〉| ≥ 4|〈α∨, ρ〉| ∀α∨ ∈8∨G \8
∨

M . (5.4.2)

The constraint (5.4.1) is archimedean in nature, and therefore appears to provide an obstacle to
interpolating Eisenstein series p-adically. To get around this issue, we will combine contributions from
parabolic subgroups having common Levis.

We will call a Levi subgroup “relevant” if it satisfies the two conditions listed at the beginning of this
section, and we will call a parabolic subgroup relevant if its Levi is relevant. Let P0 be the set of relevant
parabolic subgroups of G, modulo the relation that P1 and P2 are considered equivalent if P1(A f ) and
P2(A f ) are conjugate by an element of K p I . Let P be the set of relevant parabolic subgroups of G,
modulo the relation that P1 and P2 are considered equivalent if P1(Qp) and P2(Qp) are conjugate by an
element of I . Let M be the set of relevant Levi subgroups of G, modulo the relation that M1 and M2 are
considered equivalent if M1(Qp) and M2(Qp) are conjugate by an element of I . There are surjections
P0→ P→M.

Choose representatives of each element of P0 and M. If P is the representative of an element of P0

and M is the representative of its image in M, choose a g ∈ G(Q) so that M ⊂ g Pg−1 and the image of
g in G(Qp) is in I . This choice determines an identification of M with the Levi quotient of P . We will
sometimes identify elements of P0 and M with the chosen representatives.
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Let M ∈M. Assume µ is chosen so that (5.4.2) is satisfied. Then there is exactly one parabolic
subgroup Pµ containing M for which (5.4.1) will be satisfied: it is the parabolic determined by the set of
coroots α∨ satisfying

〈α∨, (1+ θ)µ〉< 0.

So µ determines a section M→ P of the projection P→M. Let Pµ be the image of this section, and
let P0,µ be the preimage of Pµ in P0. At the end of Section 5.2, we associated each parabolic subgroup
of G with an element of WG ; this association determines a map w : P→WG .

Lemma 5.4.3. We have

l(w(Pµ))= 1
2 |(8

−

G \8
−

M)∩ θ(8
+

G \8
+

M)|, (1− θ)(1−w(Pµ)−1)ρ =
∑

α∈(8−G\8
−

M )∩θ(8
+

G\8
+

M )

α.

In particular, l(w(Pµ)) and (1− θ)(1−w(Pµ)−1)ρ do not depend on µ.

Proof. By definition,

l(w(Pµ))= |{α ∈8G \8M | 〈α
∨, (1+ θ)µ〉> 0, 〈α∨, µ〉< 0}|

Observe that if 〈α∨, µ〉< 0< 〈α∨, θµ〉, then exactly one of the inequalities

〈α∨, µ〉< 0< 〈α∨, (1+ θ)µ〉, 〈(−α∨θ), µ〉< 0< 〈(−α∨θ), (1+ θ)µ〉

will be satisfied, and otherwise neither will be satisfied. So

|{α ∈8G \8M | 〈α
∨, µ〉< 0< 〈α∨, θµ〉}| = 2l(w(Pµ)).

This proves the first item. The same observation also proves the second item. �

We will write l(M) for l(w(Pµ)) and ρ(M, µ) for (1−w(Pµ)−1)ρ.
Now we are almost ready to write down an analogue of Lemma 5.1.1 for cusp forms. The boundary

components of SG(K ) whose Eisenstein series contribute to the characteristic power series det(1− X f |
H •(SG(K ), LG

µ )) mod OF [[N (µ, t)X ]] are in bijection with elements of P0,µ. Given M ∈M, a choice
of a preimage P of M in P0,µ determines an open compact subgroup K p

M of M(Ap
f ), as described in

Section 5.2. Let Kp
M be the collection of all such subgroups.

The analysis of the last few sections gives us the following identity.
Lemma 5.4.4. For any dominant algebraic weight µ : T → F× satisfying (5.4.2),

det(1− X f | H •(SG(K ), LG
µ ))

det(1− X f | H •

!
(SG(K ), LG

µ ))

≡

∏
M∈M

∏
KM∈K

p
M,µ

det(1− X f | H •

!
(SM(KM), L M

µ+ρ(M,µ)))
(−1)dim N−l(M)

(mod OF [[N (µ, t)X ]]).

In order to interpolate the local systems p-adically, we need to replace Kp
M,µ and ρ(M, µ) with

something independent of µ.
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Proposition 5.4.5. For any dominant algebraic weights µ : T → F× and µ0 : T → F×0 satisfying (5.4.2),

det(1− X f | H •(SG(K ), LG
µ ))

det(1− X f | H •

!
(SG(K ), LG

µ ))

≡

∏
M∈M

∏
KM∈KM,µ0

det(1− X f | H •

!
(SM(KM), L M

µ+ρ(M,µ0)
))(−1)dim N−l(M)

(mod OF [[N (µ, t)X ]]).

Proof. We claim that local systems L M
µ+ρ(M,µ), L M

µ+ρ(M,µ0)
are isomorphic. The isomorphism class of

each local system depends only the restriction of the weight to Mder. The operator (1− θ)/2 acts as
the identity on the character lattice of Mder, so the claim follows from Lemma 5.4.3. Furthermore, the
isomorphism of local systems induces an HG-equivariant isomorphism on cohomology. (The isomorphism
on cohomology is not HM -equivariant — the actions of ut differ by a factor of tρ(M,µ)−ρ(M,µ0). However,
the two homomorphisms HG→HM also differ by the same factor, and so the differences cancel each
other.)

It remains to explain why can replace KM,µ with KM,µ0 . Essentially, we need to show that if π =
π∞⊗πp⊗π

p
f is an automorphic representation of M , then∑

K p
M∈K

p
M,µ

tr(1K p
M
| π

p
f )= tr(1K p | Ind

G(A p
f )

Pµ(A
p
f )
π

p
f )

is independent of µ. By [Bernstein and Zelevinsky 1977, 2.9–2.10], for any place v, the composition
series of the local factor of IndG(A f )

Pµ(A f )
π

p
f at v is independent of µ. It follows that the trace of 1K p does

not depend on µ. �

5.5. The complex C•

G,K p,λ,cusp. Now we fix an algebraic dominant weight µ0 and let λ : T → A× be
any weight. We define C •G,K p,λ,cusp inductively, assuming that analogous complexes have already been
defined for M ∈M:

C •G,K p,λ,cusp := C •G,K p,λ⊕

⊕
M∈M

⊕
K p

M∈K
p
M,µ0

C •M,K p
M ,λ+ρ(M,µ0),cusp[l(M)− dim N − 1].

Proposition 5.5.1. Let F be a finite extension of Qp, let µ : T → F× be an algebraic dominant weight,
and let f = ut ⊗ f p

∈H′G . If µ is sufficiently general, then

det(1− X f | C •G,K p,µ,cusp)≡ det(1− X f | H •

!
(SG(K ), LG

µ )) (mod OF [[N (µ, t)X ]]).

Proof. By induction, we may assume that the proposition holds for all Levi subgroups of G.

det(1− X f | C •G,K p,µ,cusp)

≡ det(1− X f | H •(SG(K ), LG
µ ))

∏
M,KM

det(1− X f | H •

!
(SM(KM), L M

µ+ρ(M,µ0)
))(−1)l(M)−dim N+1

≡ det(1− X f | H •

!
(SG(K ), LG

µ )) (mod OF [[N (µ, t)X ]])
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where we used the induction hypothesis and Lemma 5.1.1 in the second line and Proposition 5.4.5 in
the third line. We also use the fact that ρ(M, µ0) is M-dominant, and so OF [[N (µ+ ρ(M, µ0), t)X ]] ⊆
OF [[N (µ, t)X ]]. �

The analysis of Section 4.4 applies equally well to C •G,K p,λ,cusp. For any f ∈H′G , we may define a
characteristic power series det(1− X f | C •G,K p,λ,cusp). If the Fredholm series P+(X)=

∏
i det(1− X f |

C i
G,K p,λ,cusp) has a factorization P+ = Q+S+ with Q+ a polynomial with invertible leading coefficient,

then this factorization induces a decomposition C •G,K p,λ,cusp = N •⊕ F •.

Remark 5.5.2. One can use Proposition 7.1.2 to show that for f ∈H′G , det(1− X f | C •G,K p,λ,cusp) is a
Fredholm series. We will not need to prove this fact for arbitrary A and λ, so we leave the details of the
argument as an exercise for the reader.

6. Theory of determinants

Urban’s eigenvariety construction makes use of pseudocharacters. Chenevier’s theory of determinants
[2014] is equivalent to the theory of pseudocharacters when the rings involved are Q-algebras [Chenevier
2014, Proposition 1.27], but is better behaved in general. Since we work with rings in which p is not
invertible, we will use determinants. (However, it is probably not strictly necessary to use determinants,
as we work with rings that are p-torsion-free. See Corollary 7.2.2 and the proof of Lemma 7.4.1.)

We will recall some basic definitions from [Chenevier 2014] and prove a lemma concerning the ratio
of two determinants.

Definition 6.1 [Chenevier 2014, Sections 1.1–1.5]. Let A be commutative ring, and let R be an A-module.
An A-valued polynomial law on R is a rule that assigns to any commutative A-algebra B a map of sets
DB : R⊗A B→ B that is functorial in the sense that for any A-algebra homomorphism f : B→ B ′,

DB ′ ◦ (idR ⊗ f )= f ◦ DB .

Let d be a nonnegative integer. We say that a polynomial law D is homogeneous of degree d if

DB(br)= bd DB(r) ∀B, b ∈ B, r ∈ R⊗A B.

Now assume that R is an A-algebra. We say that a polynomial law D is multiplicative if

DB(1)= 1, DB(rr ′)= DB(r)DB(r ′) ∀B, r, r ′ ∈ R⊗A B.

We say that a polynomial law D is a determinant of dimension d if it is homogeneous of degree d and
multiplicative.

Example 6.2. Let M be an R-module that is projective of rank d as an A-module. Then the rule that
sends r ∈ R⊗A B to det(r | M ⊗A B) is a determinant of dimension d .

Lemma 6.3 [Roby 1963, Proposition I.1]. Let A be a commutative ring, and let R be an A-module. Let
D be an A-valued polynomial law on R that is homogeneous of degree d , let n be a positive integer, and
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let r1, . . . , rn ∈ R. Then DA[X1,...,Xn](X1r1 + · · · + Xnrn) is a homogeneous polynomial of degree d in
X1, . . . , Xn .

Lemma 6.4. Let A be a commutative ring, let R be an A-algebra, and let D+, D− be A-valued deter-
minants on R of dimension d+, d−, respectively, with d+ ≥ d−. Let d = d+− d−. There is at most one
determinant D of dimension d satisfying D+B (r)= D−B (r)DB(r) for all A-algebras B and all r ∈ R⊗A B.

The following are equivalent:

(1) There exists a determinant D satisfying the above condition.

(2) For any commutative A-algebra B and r ∈ R⊗A B, the quotient

D+B[X ](1+ Xr)/D−B[X ](1+ Xr)

exists in B[X ] and has degree at most d.

(3) For any positive integer n and r1, . . . , rn ∈ R, the quotient

D+A[X1,...,Xn]
(1+ X1r1+ · · ·+ Xnrn)/D−A[X1,...,Xn]

(1+ X1r1+ · · ·+ Xnrn)

exists in A[X1, . . . , Xn] and has total degree at most d.

Proof. Let B be a commutative A-algebra, and let r ∈ R⊗A B. If D−B (r) is not a zero divisor and the
quotient D+B (r)/D−B (r) exists, then we will denote this quotient by FB(r). Note that D−B[X ](1+ Xr)
has constant term 1 by functoriality with respect to X 7→ 0, so it is not a zero divisor. Similarly,
D−A[X1,...,Xn]

(1+ X1r1+ · · ·+ Xnrn) has constant term 1 and is not a zero divisor.
First, we check that D is uniquely determined if it exists. Suppose D is a determinant satisfying the

conditions of the lemma. Let B be a commutative A-algebra, and let r ∈ R ⊗A B. We claim that the
following quantities are equal:

• DB(r).

• The coefficient of XdY 0 in DB[X,Y ](Y + Xr).

• The coefficient of Xd in DB[X ](1+ Xr).

To see that the first and second quantities are equal, apply functoriality with respect to X 7→ 1, Y 7→ 0,
using Lemma 6.3 to show that DB[X,Y ](Y + Xr) has no XnY 0 term for n 6= d. To see that the second
and third quantities are equal, apply functoriality with respect to Y 7→ 1, using Lemma 6.3 to show that
DB[X,Y ] has no XdY n term for n 6= 0. Finally, observe that FB[X ](1+ Xr) must exist and must equal
DB[X ](1+ Xr). So DB(r) must be equal to the coefficient of Xd in FB[X ](1+ Xr). Hence D is uniquely
determined if it exists.

Lemma 6.3 shows that (1)⇒ (3).
Now we prove (3)⇒ (2). Assume (3) holds. Choose a commutative A-algebra B and r ∈ B⊗A R.

Condition (3) implies that FA[X1,...,Xn](1+ X1r1+· · ·+ Xnrn) exists and has total degree at most d . Then
by functoriality with respect to X i 7→ Xbi , FB[X ](1+ Xr) exists and has degree at most d. This proves
(3)⇒ (2).
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Now we will show that (2)⇒ (1). Assume that condition (2) holds. Define DB(r) be the coefficient of
Xd in FB[X ](1+ Xr). We know that D+B[X ](1+ Xr) (resp. D−B[X ](1+ Xr), FB[X ](1+ Xr)) has degree at
most d+ (resp. d−, d), and we have already showed that the coefficient of Xd+ (resp. Xd− , Xd ) is D+B (r)
(resp. D−B (r), DB(r)). So D+B (r)= D−B (r)DB(r).

It remains to show that D is a determinant. Since D+ and D− are functorial, D is as well. To show
that D is homogeneous of degree d, observe that the map X 7→ bX multiplies the coefficient of Xd in
FB[X ](1+ Xr) by bd .

Finally, we check that D is multiplicative. We have FB[X ](1+ X)= (1+ X)d , so DB(1)= 1. Observe
that DB(r1)DB(r2) is the coefficient of (X1 X2)

d in FB[X1,X2](1+ X1r1+ X2r2+ X1 X2r1r2). This is the
same as the coefficient of X0

1 X0
2 Xd

3 in FB[X1,X2,X3](1+ X1r1 + X2r2 + X3r1r2), since Xd
3 is the only

monomial of total degree d in B[X1, X2, X3] that maps to (X1 X2)
d under X3 7→ X1 X2. Then applying

X1 7→ 0, X2 7→ 0, we find that DB(r1)DB(r2) is the coefficient of Xd
3 in FB[X3](1+ X3r1r2), which is

DB(r1r2). This concludes the proof that (2)⇒ (1). �

Corollary 6.5. Retain the notation of Lemma 6.4. Let A ↪→ A′ be an injective map of commutative rings.
Suppose that there exists an A′-valued determinant D′ on R ⊗A A′ satisfying D+B (r) = D−B (r)D

′

B(r)
for any A′-algebra B and r ∈ R ⊗A B. Then there exists an A-valued determinant D on R satisfying
D+B (r)= D−B (r)DB(r) for any A-algebra B and r ∈ R⊗A B.

Proof. Apply the equivalence (1)⇔ (3) of Lemma 6.4. Observe that FA[X1,...,Xn](1+ X1r1+· · ·+ Xnrn)

exists and has degree total degree ≤ d if and only if FA[[X1,...,Xn]](1+ X1r1+ · · ·+ Xnrn) is a polynomial
of total degree ≤ d. Since A ↪→ A′ is injective, if FA′[[X1,...,Xn]](1+ X1r1+ · · ·+ Xnrn) is a polynomial
of total degree ≤ d , then FA[[X1,...,Xn]](1+ X1r1+ · · ·+ Xnrn) is as well. �

Definition 6.6 [Chenevier 2014, Section 1.17, Lemma 1.19(i)]. Let D be an A-valued determinant on R.
We denote by ker(D) the set of r ∈ R such that for all B and all r ′ ∈ B⊗A R, DB(1+ r ′r)= 1.

Remark 6.7. Let M be projective A-module of rank d , let ρ : R→ End(M) be a homomorphism, and let
D be the determinant associated with ρ, as in Example 6.2. Then ker ρ ⊆ ker D. Conversely, if r ∈ ker D,
then DA[X ](X − r)= Xd , so rd

∈ ker ρ by the Cayley–Hamilton theorem.

Remark 6.8. Chenevier also defines the Cayley–Hamilton ideal CH(D). Assume D comes from a
homomorphism ρ : R→ End(M). Then CH(D)⊆ ker ρ. So we might think of ker D as an upper bound
for ker ρ and CH(D) as a lower bound. If A is Noetherian, then since ker ρ ⊆ ker D, R/ ker D is a finite
A-module. However, R/CH(D) need not be a finite A-module, making it more difficult to use CH(D) in
the construction of eigenvarieties.

For a concrete example, consider A = Q, M = Q2, R = Q[T1, T2, . . .], and let ρ be a map that
sends each Ti to a nilpotent upper triangular matrix. Then ker D = (T1, T2, . . .) (so R/ ker D ∼= Q),
ker CH(D)= (T1, T2, . . .)

2 (so R/CH(D) is not finite type over Q), and R/ ker ρ is isomorphic to either
Q or Q[ε]/(ε2).
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7. Construction of the eigenvariety

7.1. Weight space and Fredholm series. Now we are ready to define the eigenvariety following [Urban
2011, Section 5]. We will use Huber’s theory of adic spaces [1993; 1994; 1996]; see also [Scholze and
Weinstein 2019, Sections 2–5] for a modern introduction. Some aspects of our approach follow [Andreatta
et al. 2018, Appendice B].

We return to the setup of sections 4–5. We continue to assume that G(R) has discrete series. Let T ′ be
the quotient of T0 by the closure of ZG(Q)G+∞K p

∩ T0. We define the weight space

W := Spa(Zp[[T ′]],Zp[[T ′]])an.

Let U = Spa(A, A+) be an open affinoid subset of W with A a complete Tate Zp-algebra (which is
automatically Noetherian). Let λ : T0→ A× be the tautological character induced by the map T0→ T ′→
Zp[[T ′]].

For any f ∈H′G ⊗Zp A, let

P f (X) := det(1− X f | C •G,K p,λ,cusp)
(−1)d/2 .

Note that d = dim SG(K ) is even since G(R) has discrete series. If V is an open subspace of W , and
f ∈H′G ⊗Zp OW(V), then we define P f (X) by gluing.

Definition 7.1.1. Let V be an open subspace of W . A series f ∈OW(V)[[X ]] is called a Fredholm series
if it is the power series expansion of some global section of V ×A1 and its leading coefficient is 1.

This definition agrees with Definition 2.2.1 if V = Spa(A, A+) with A a complete Tate Zp-algebra.

Proposition 7.1.2. For f ∈H′G , the series P f (X) ∈OW(W)[[X ]] is a Fredholm series.

Proof. Observe that OW(W) = O+W(W) = Zp[[T ′]]. Let T ′tf be a maximal torsion-free subgroup of T ′.
The topology on Zp[[T ′tf]] is induced by any norm corresponding to a Gauss point of the wide open
polydisc Spa(Zp[[T ′tf]],Zp[[T ′tf]])×Spa(Zp,Zp) Spa(Qp,Zp). Similarly, the topology on Zp[[T ′]] is induced
by a supremum of a finite collection of norms corresponding to Gauss points of W×Spa(Zp,Zp)Spa(Qp,Zp).
So it suffices to check that the restrictions of P f (X) to Gauss points of W are Fredholm series. The Gauss
points are characteristic zero points, so we may apply the argument of [Urban 2011, Theorem 4.7.3(iii)]
along with Proposition 5.5.1. �

We will write P(X) for Put (X). We define the spectral variety Z ⊂W ×A1 to be the zero locus of
P(X), and we define w : Z→W to be the projection. We also define

P+(X) :=
∏

i

det(1− Xut | C i
G,K p,λ,cusp).

7.2. Weight space and its characteristic zero subspace. Before constructing the eigenvariety, we will
prove a result that will allow us to deduce information about the behavior of the eigenvariety at the
boundary from the characteristic zero part of the eigenvariety.
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Lemma 7.2.1. Let U = Spa(A, A+) by an affinoid adic space. Assume that A is finitely generated over a
Noetherian ring of definition. Let a ∈ A be an element that is not a zero divisor.

(1) For any open V ⊆ U , a is not a zero divisor in OU (V).

(2) Assume A is Tate. There exists rational subset V ⊆ U such that the restriction A→OU (V) is injective
and a ∈OU (V)×.

Proof. To prove the first item, it suffices to consider the case where V is a rational subset. Then
OU (U) is flat over A by [Huber 1993, Corollary 1.7(i)] and OU (V) is flat over OU (U) by [Huber 1996,
Proposition 1.6.7(i), Lemma 1.7.6]. Since the multiplication-by-a map is injective on A, it must be
injective on OU (V) as well.

To prove the second item, choose a Noetherian ring of definition A0 ⊂ A and a topologically nilpotent
α ∈ A× ∩ A0. After multiplying a by a power of α, we may assume a ∈ A0. By the Artin–Rees lemma,
there exists an integer k ≥ 1 so that αn A0 ∩ a A0 ⊆ α

n−ka A0 for all n ≥ k. Let V ⊂ U be the rational
subset defined by the inequality |a| ≥ |αk

|. We claim that A→OU (V) is injective.
The ring OU (V) is the α-adic completion of A0[1/a], and the completion of A0[α

k/a] is a ring of
definition. Let b ∈ A, and suppose the image of b in OU (V) is zero. Then for each n ∈N, b ∈ αn A0[α

k/a].
Then there exists m ∈N so that amb∈αn(a, αk)m A0. One can then show by induction on m that b∈αn A0.
Since A0 is α-adically separated, this implies b = 0. �

Corollary 7.2.2. Let U = Spa(A, A+) be an open affinoid subspace of W , with A complete Tate. Then p
is not a zero divisor of OW(U), and there exists a rational subset V ⊆ U such that A→OW(V) is injective
and p ∈OW(V)×.

7.3. Pieces of the eigenvariety. Now we construct the individual pieces of the eigenvariety. Let z ∈ Z.
By [Andreatta et al. 2018, Corollaire B.1], there exists an open affinoid neighborhood U = Spa(A, A+)
of w(z) and a factorization P+(X) = Q+(X)S+(X), with Q+(X) ∈ A[X ], S+(X) ∈ A{{X}}, such that
Q+(X) and S+(X) are relatively prime, Q+ vanishes at x , and the leading coefficient of Q+ is invertible.
The factorization of P+ induces a factorization P(X) = Q(X)S(X) satisfying similar properties. The
factorization also determines a subcomplex N • of C •G,K p,λ,cusp, as described in Sections 4.4 and 5.5.

Proposition 7.3.1. Let D+ be the determinant associated with the action of HG ⊗Zp A on
⊕

i≡d/2(2) N i ,
and let D− be the determinant associated with the action of HG ⊗Zp A on

⊕
i≡d/2+1(2) N i . Then there

exists a determinant D so that D+ = D−D.

Proof. Let R =HG ⊗Zp A. As in Lemma 6.4, if B is an A-algebra and r ∈ R⊗A B such that D−B (r) is
not a zero divisor and the ratio D+B (r)/D−B (r) exists in B, we write FB(r) for this ratio. Let d+ and d−
be the dimensions of D+ and D−, respectively, and let d = d+− d−.

By Corollary 7.2.2, we can find a rational subset V ⊂ U so that the restriction A→OW(V) is injective
and p is invertible on V . Since V is a reduced rigid space, the natural map OW(V)→

∏
x kx is injective,

where the product runs over rigid analytic points x ∈ V and kx is the residue field of x . For each x , write
D+|kx (resp. D−|kx ) for the base change of D+ (resp. D−) along A→ kx . By [Urban 2011, Lemma 4.1.12
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and Theorem 4.7.3iii], the difference of the pseudocharacters corresponding to D+|kx and D−|kx is again
a pseudocharacter. By the equivalence of pseudocharacters and determinants in characteristic zero
[Chenevier 2014, Proposition 1.27], there exists a determinant D|kx satisfying D+|kx = D−|kx D|kx . Then
by Corollary 6.5, there exists a determinant D satisfying D+ = D−D. �

Let

hU,Q+ := (HG ⊗Zp A)/ ker(D).

We will use the extension A→ hU,Q+ to construct an adic space EU,Q+ over U .

Lemma 7.3.2. The ring hU,Q+ is a finite A-module.

Proof. Since ker(D) contains any operator that annihilates N •, hU,Q+ can be identified with a subquotient
of
⊕

i End N i . In particular, hU,Q+ must be finitely generated as an A-module. �

We give hU,Q+ the “A-module topology” defined in [Huber 1994, Section 2].

Lemma 7.3.3. The ring hU,Q+ is Tate and has a Noetherian ring of definition.

Proof. Choose A-module generators a1, . . . , an of hU,Q+ . Choose mi jk ∈ hU,Q+ so that for each i, j ,
ai a j =

∑n
k=1 mi jkak . Let A0 be a ring of definition of A, and let α be a topologically nilpotent unit

of A contained in A0. There exists an integer ` so that α`mi jk ∈ A0 for all i, j, k. Let hU,Q+,0 be the
A0-submodule of hU,Q+ generated by 1, α`a1, . . . , α

`an; then hU,Q+,0 is an open subring of hU,Q+ . Then
hU,Q+,0 is Noetherian since A0 is Noetherian, and hU,Q+,0 inherits the α-adic topology from A0. So
hU,Q+ has a Noetherian ring of definition and is Tate. �

Let h+U,Q+ be the normal closure of A+ in hU,Q+ . Then (hU,Q+, h+U,Q+) is a Huber pair. We define
EU,Q+ := Spa(hU,Q+, h+U,Q+).

Since Q∗(X) is the characteristic polynomial of u acting on N •, it follows from [Chenevier 2014,
Lemma 1.12(iv)] that Q∗(u) is in ker(D), and so there is a canonical map EU,Q+→ Z .

7.4. Gluing. We will glue the EU,Q+ as in [Buzzard 2007, Section 5]. We need the following lemma to
verify that the pieces can be glued.

Lemma 7.4.1. If U ′ ⊂ U are affinoid subspaces of W , then there is a canonical isomorphism EU ′,Q+ ∼=
EU,Q+ ×U U ′.

Proof. By Corollary 7.2.2, p is not a zero divisor in OW(U) and OW(U ′). Hence OW(U) and OW(U ′) are
torsion-free Z-modules. The map OW(U)→OW(U ′) is flat by [Huber 1996, Lemma 1.7.6]. By the argu-
ment of [Rydh 2008, Proposition I.2.2.4], if A is a ring that is a torsion-free Z-module, then the kernel of an
A-valued determinant is the same as the kernel of the associated pseudocharacter. By [Rydh 2008, Propo-
sition I.2.2.8], the formation of the kernel of a pseudocharacter commutes with flat base change. So the for-
mation of the kernel of a determinant commutes with the base change OW(U)→OW(U ′). Then hU ′,Q+

∼=

hU,Q+ ⊗OW (U)OW(U ′). Since hU,Q+ is finite over OW(U ′), it follows that EU ′,Q+ ∼= EU,Q+ ×U U ′. �
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One can also show, using essentially the same proof as [Urban 2011, Proposition 5.3.5], that if Q+
and Q′

+
are relatively prime, then there is a canonical isomorphism EU,Q+Q′+

∼= EU,Q+ t EU,Q′+ .

Theorem 7.4.2. The EU,Q+ can be glued to form an adic space E . Furthermore, E is equidimensional in
the sense of [Huber 1996, Definition 1.8.1] and the morphism E→ Z is finite and surjective.

Proof. To show that the morphism E→ Z is finite, we observe that Z can be covered by open sets whose
preimage in E is contained in some EU,Q+ . The finiteness of the morphism E→ Z then follows from the
finiteness of the maps EU,Q+→ U .

Now we check that the morphism is surjective. Let z ∈ Z , and let k be the residue field of z. Observe
that SpecHG→ Spec Zp[ut ] is surjective, so HG ⊗Zp[ut ] k cannot be the zero ring. The image of ker(D)
in HG ⊗Zp[ut ] k is contained in the kernel of the base change of D to HG ⊗Zp[ut ] k. Therefore the image
of ker(D) cannot be the unit ideal, and so there must be a point of E lying above z.

Finally, we show that E is equidimensional. The weight space W has the same dimension as its charac-
teristic zero part. By [Urban 2011, Theorem 5.3.7(iii)], the characteristic zero part of E is equidimensional
of dimension dimW . By Lemma 7.2.1(2), any nonempty open U ⊆ E has nonempty characteristic zero
part, so it has dimension at least dimW . Conversely, since E is locally finite over W , E has dimension at
most dimW by [Huber 1996, Example 1.8.9(ii)]. �
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