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Cohomological and numerical dynamical degrees
on abelian varieties

Fei Hu

We show that for a self-morphism of an abelian variety defined over an algebraically closed field of
arbitrary characteristic, the second cohomological dynamical degree coincides with the first numerical
dynamical degree.

A list of symbols can be found on page 1957.

1. Introduction

Let X be a smooth projective variety defined over an algebraically closed field k, and f a surjective
morphism of X to itself. Inspired by Esnault and Srinivas [2013] and Truong [2016], we associate to
this map two dynamical degrees as follows. Let ` be a prime different from the characteristic of k. As
a consequence of Deligne [1974] and Katz and Messing [1974], the characteristic polynomial of f on
the `-adic étale cohomology group H i

ét(X,Q`) is independent of `, and has integer coefficients, and
algebraic integer roots (see [Esnault and Srinivas 2013, Proposition 2.3]; see also [Kleiman 1968]). The
i -th cohomological dynamical degree χi ( f ) of f is then defined as the spectral radius of the pullback
action f ∗ on H i

ét(X,Q`), i.e.,

χi ( f )= ρ( f ∗|H i
ét(X,Q`)

).

Alternatively, one can also define dynamical degrees using algebraic cycles. Indeed, let N k(X) denote the
group of algebraic cycles of codimension k modulo numerical equivalence. Note that N k(X) is a finitely
generated free abelian group [Kleiman 1968, Theorem 3.5], and hence the characteristic polynomial of f
on N k(X) has integer coefficients and algebraic integer roots. We define the k-th numerical dynamical
degree λk( f ) of f as the spectral radius of the pullback action f ∗ on N k(X)R := N k(X)⊗Z R, i.e.,

λk( f )= ρ( f ∗|N k(X)R).

When k ⊆ C, we may associate to (X, f ) a projective (and hence compact Kähler) manifold XC and a
surjective holomorphic map fC. Then by the comparison theorem and Hodge theory, it is not hard to show
that χ2k( f )= λk( f ); both of them also agree with the usual dynamical degree defined by the Dolbeault
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cohomology group H k,k(XC,C) in the context of complex dynamics (see e.g., [Dinh and Sibony 2017,
Section 4]).

For an arbitrary algebraically closed field k (in particular, of positive characteristic), Esnault and
Srinivas [2013] proved that for an automorphism of a smooth projective surface, the second cohomological
dynamical degree coincides with the first numerical dynamical degree. Their proof relies on the Enriques–
Bombieri–Mumford classification of surfaces in arbitrary characteristic. In general, Truong [2016] raised
the following question (among many others):

Question 1.1 (cf. [Truong 2016, Question 2]). Let X be a smooth projective variety defined over an
algebraically closed field k, and f a surjective morphism of X to itself. Then is χ2k( f )= λk( f ) for any
1≤ k ≤ dim X?

The above question turns out to be related to Weil’s Riemann hypothesis (proved by Deligne in the
early 1970s). More precisely, when X0 is a smooth projective variety defined over a finite field Fq , we
let X denote the base change of X0 to the algebraic closure Fq of Fq and let F denote the Frobenius
endomorphism of X (with respect to Fq ). Then Deligne’s celebrated theorem asserts that all eigenvalues
of F∗|H i

ét(X,Q`)
are algebraic integers of modulus q i/2 [Deligne 1974, Théorème 1.6]. In particular, we

have χi (F)= q i/2. On the other hand, the k-th numerical dynamical degree λk(F) of F is equal to qk .
See [Truong 2016, Section 4] for more details.

Truong [2016] proved a slightly weaker statement that

hét( f ) :=max
i

logχi ( f )=max
k

log λk( f )=: halg( f ),

which is enough to conclude that the (étale) entropy hét( f ) coincides with the algebraic entropy halg( f )
in the sense of [Esnault and Srinivas 2013, Section 6.3]. As a consequence, the spectral radius of the
action f ∗ on the even degree étale cohomology H 2•

ét (X,Q`) is the same as the spectral radius of f ∗ on the
total cohomology H •

ét(X,Q`).1 Note that when k ⊆ C, by the fundamental work of Gromov [2003] and
Yomdin [1987], the algebraic entropy is also equal to the topological entropy htop( fC) of the topological
dynamical system (XC, fC); see [Dinh and Sibony 2017, Section 4] for more details.

In this article, we give an affirmative answer to Question 1.1 in the case that X is an abelian variety
and k = 1.

Theorem 1.2. Let X be an abelian variety defined over an algebraically closed field k, and f a surjective
self-morphism of X. Then χ2( f )= λ1( f ).

Remark 1.3. (1) When f is an automorphism of an abelian surface X , the theorem was already known
by Esnault and Srinivas [2013, Section 4]. Even in this two-dimensional case, their proof is quite involved.
Actually, after a standard specialization argument, they applied the celebrated Tate theorem [1966]
(see also [Mumford 1970, Appendix I, Theorem 3]), which asserts that the minimal polynomial of the
geometric Frobenius endomorphism is a product of distinct monic irreducible polynomials. Then they

1Recently, this was reproved by Shuddhodan [2019] using a number-theoretic method, where the author introduced a zeta
function Z(X, f, t) for a dynamical system (X, f ) defined over a finite field.
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had four cases to analyze according to its irreducibility and degree. Our proof is more explicit in the
sense that we will eventually determine all eigenvalues of f ∗|N 1(X)R .

(2) Because of the lack of an explicit characterization of higher-codimensional cycles (up to numerical
equivalence) like the Néron–Severi group NS(X) sitting inside the endomorphism algebra End0(X), it
would be very interesting to consider the case k ≥ 2 next.

2. Preliminaries on abelian varieties

We refer to [Mumford 1970; Milne 1986] for standard notation and terminologies on abelian varieties
and to page 1957 for a list of symbols.

For the convenience of the reader, we include several important structure theorems on the étale
cohomology groups, the endomorphism algebras and the Néron–Severi groups of abelian varieties. We
refer to [Mumford 1970, Sections 19–21] for more details.

First, the étale cohomology groups of abelian varieties are simple to describe.

Theorem 2.1 [Milne 1986, Theorem 15.1]. Let X be an abelian variety of dimension g defined over k,
and let ` be a prime different from char k. Let T`X := lim

←−−n X`n (k) be the Tate module of X , which is a
free Z`-module of rank 2g.

(a) There is a canonical isomorphism

H 1
ét(X,Z`)' HomZ`(T`X,Z`).

(b) The cup-product pairing induces isomorphisms∧i
H 1

ét(X,Z`)' H i
ét(X,Z`),

for all i . In particular, H i
ét(X,Z`) is a free Z`-module of rank

(2g
i

)
.

Furthermore, the functor T` induces an `-adic representation of the endomorphism algebra. In general,
we have:

Theorem 2.2 [Mumford 1970, Section 19, Theorem 3]. For any two abelian varieties X and Y , the group
Hom(X, Y ) of homomorphisms of X into Y is a finitely generated free abelian group, and the natural
homomorphism of Z`-modules

Hom(X, Y )⊗Z Z`→ HomZ`(T`X, T`Y )

induced by T` : Hom(X, Y )→ HomZ`(T`X, T`Y ) is injective.

For a homomorphism f : X→Y of abelian varieties, its degree deg f is defined to be the order of the ker-
nel ker f , if it is finite, and 0 otherwise. In particular, the degree of an isogeny is always a positive integer.

Theorem 2.3 [Mumford 1970, Section 19, Theorem 4]. For any α ∈ End(X), there is a unique monic
polynomial Pα(t) ∈ Z[t] of degree 2g such that Pα(n)= deg(nX −α) for all integers n. Moreover, Pα(t)
is the characteristic polynomial of α acting on T`X , i.e., Pα(t) = det(t − T`α), and Pα(α) = 0 as an
endomorphism of X.
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We call Pα(t) as in Theorem 2.3 the characteristic polynomial of α. On the other hand, we can assign
to each α the characteristic polynomial χα(t) of α as an element of the semisimple Q-algebra End0(X).
Namely, we define χα(t) to be the characteristic polynomial of the left multiplication αL : β 7→ αβ for
β ∈ End0(X) which is a Q-linear transformation on End0(X). Note that the above definition of χα(t)
makes no use of the fact that End0(X) is semisimple. Actually, for semisimple Q-algebras, it is much
more useful to consider the so-called reduced characteristic polynomials.

We recall some basic definitions on semisimple algebras (see [Reiner 2003, Section 9] for more details).

Definition 2.4. Let R be a finite-dimensional semisimple algebra over a field F with char F = 0, and
write

R =
k⊕

i=1

Ri ,

where each Ri is a simple F-algebra. For any element r ∈ R, as above, we denote by χr (t) the characteristic
polynomial of r . Namely, χr (t) is the characteristic polynomial of the left multiplication rL : r ′ 7→ rr ′ for
r ′ ∈ R. Let Ki be the center of Ri . Then there exists a finite field extension Ei/Ki splitting Ri [Reiner
2003, Section 7b], i.e., we have

hi : Ri ⊗Ki Ei −→
∼ Mdi (Ei ), where [Ri : Ki ] = d2

i .

Write r = r1+· · ·+ rk with each ri ∈ Ri . We first define the reduced characteristic polynomial χ red
ri
(t) of

ri as follows [Reiner 2003, Definition 9.13]:

χ red
ri
(t) := NKi/F (det(t Idi − hi (ri ⊗Ki 1Ei ))) ∈ F[t].

It turns out that det(t Idi − hi (ri ⊗Ki 1Ei )) lies in Ki [t], and is independent of the choice of the splitting
field Ei of Ri [Reiner 2003, Theorem 9.3]. The reduced norm of ri is defined by

Nred
Ri/F (ri ) := NKi/F (det(hi (ri ⊗Ki 1Ei ))) ∈ F.

Finally, as one expects, the reduced characteristic polynomial χ red
r (t) and the reduced norm Nred

R/F (r) of r
are defined by the products

χ red
r (t) :=

k∏
i=1

χ red
ri
(t) and Nred

R/F (r) :=
k∏

i=1

Nred
Ri/F (ri ).

Remark 2.5. (1) It follows from [Reiner 2003, Theorem 9.14] that

χr (t)=
k∏

i=1

χri (t)=
k∏

i=1

χ red
ri
(t)di . (2-1)

(2) Note that reduced characteristic polynomials and norms are not affected by change of ground field
[Reiner 2003, Theorem 9.27].
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We now apply the above algebraic setting to R = End0(X). For any α ∈ End(X), let χ red
α (t) denote

the reduced characteristic polynomial of α as an element of the semisimple Q-algebra End0(X). For
simplicity, let us first consider the case when X = A is a simple abelian variety and hence D := End0(A)
is a division ring. Let K denote the center of D which is a field, and K0 the maximal totally real subfield
of K . Set

d2
= [D : K ], e = [K :Q] and e0 = [K0 :Q].

Then the equality (2-1) reads as

χα(t)= χ red
α (t)d .

The lemma below shows that the two polynomials Pα(t) and χα(t) are closely related. Its proof relies on
a characterization of normal forms of D over Q.

For convenience, we include the following definition. Let R be a finite-dimensional associative algebra
over an infinite field F . A norm form on R over F is a nonzero polynomial function

NR/F : R→ F

(i.e., in terms of a basis of R over F , NR/F (r) can be written as a polynomial over F in the components
of r ) such that NR/F (rr ′)= NR/F (r)NR/F (r ′) for all r, r ′ ∈ R.

Lemma 2.6. Using notation as above, for any α ∈ End(A), we have

Pα(t)= χ red
α (t)m,

where m = 2g/(ed) is a positive integer. In particular, the two polynomials Pα(t) and χα(t) have the
same complex roots (apart from multiplicities).2

Proof. By the lemma in [Mumford 1970, Section 19] (located between Corollary 3 and Theorem 4,
page 179), any norm form of D over Q is of the following type

(NK/Q ◦Nred
D/K )

k
: D→Q

for a suitable nonnegative integer k, where Nred
D/K is the reduced norm (aka canonical norm form in the

sense of Mumford) of D over K . Now for each n ∈ Z, we have

χ red
α (n)= NK/Q ◦Nred

D/K (n A−α).

On the other hand, the action of D on V`A := T`A⊗Z` Q` defines the determinant map

det : D→Q`,

which actually takes on values in Q and is a norm form of degree 2g. Indeed, let V`α denote the induced
map of α on V`A, then Pα(n) = deg(n A − α) = det(n A − α) = det(n − V`α) for all integers n (see

2I would like to thank Yuri Zarhin for showing me an argument using the canonical norm form to prove this Lemma 2.6.
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Theorem 2.3). Applying the aforementioned lemma in [Mumford 1970, Section 19] to this det, we obtain
that for a suitable m,

det(ψ)= (NK/Q ◦Nred
D/K (ψ))

m

for allψ ∈D. It is easy to see that m is 2g/(ed). Then by takingψ=n A−α, we have that Pα(n)=χ red
α (n)m

for all integers n. This yields that Pα(t)= χ red
α (t)m . �

It is straightforward to generalize Lemma 2.6 to the case that X is the n-th power An of a simple
abelian variety A since End0(An)=Mn(End0(A)) is still a simple Q-algebra.

Lemma 2.7. Let A be a simple abelian variety and X = An . Let χ red
α (t) denote the reduced characteristic

polynomial of α as an element of the simple Q-algebra End0(X)=Mn(D) with D = End0(A). Then

χα(t)= χ red
α (t)dn and Pα(t)= χ red

α (t)m,

where m = 2g/(edn) is a positive integer. In particular, these two polynomials Pα(t) and χα(t) have the
same complex roots (apart from multiplicities).

We recall the following useful structure theorems on NS0(X) which play a crucial role in the proof of
our main theorem.

Theorem 2.8 [Mumford 1970, Section 21, Application III]. Fix a polarization φ : X → X̂ that is an
isogeny from X to its dual X̂ induced from some ample line bundle L0 (we suppress this L0 since it does
not make an appearance here henceforth). Then the natural map

NS0(X)→ End0(X) via L 7→ φ−1
◦φL

is injective and its image is precisely the subspace {ψ ∈ End0(X) | ψ†
= ψ} of symmetric elements of

End0(X) under the Rosati involution † which maps ψ to ψ†
:= φ−1

◦ ψ̂ ◦φ.

Theorem 2.9 [Mumford 1970, Section 21, Theorems 2 and 6]. The endomorphism R-algebra End(X)R :=
End0(X)⊗Q R is isomorphic to a product of copies of Mr (R), Mr (C) and Mr (H). Moreover, one can fix
an isomorphism so that it carries the Rosati involution into the standard involution A 7→ AT. In particular,
NS(X)R := NS0(X)⊗Q R is isomorphic to a product of Jordan algebras of the following types:

Hr (R)= r × r symmetric real matrices,

Hr (C)= r × r Hermitian complex matrices,

Hr (H)= r × r Hermitian quaternionic matrices.

3. Proof of Theorem 1.2

3.1. Some results on dynamical degrees. We first prepare some results used later to prove our main
theorem. Recall that in complex dynamics, the dynamical degrees are bimeromorphic invariants of the
dynamics system (see e.g., [Dinh and Sibony 2017, Theorem 4.2]). We have also shown the birational
invariance of numerical dynamical degrees in arbitrary characteristic [Hu 2019, Lemma 2.8]. Below is a
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similar consideration which should be of interest in its own right. Note, however, that we have not shown
the birational invariance of cohomological dynamical degrees, which is actually one of the questions
raised by Truong [2016, Question 5].

Lemma 3.1. Let π : X→ Y be a surjective morphism of smooth projective varieties defined over k. Let f
and g be surjective self-morphisms of X and Y , respectively, such that π ◦ f = g ◦π . Then χi ( f )≥ χi (g)
for any 0≤ i ≤ 2 dim Y and λk( f )≥ λk(g) for any 0≤ k ≤ dim Y .

Proof. We have the following commutative diagram of Q`-vector spaces:

H i
ét(Y,Q`) H i

ét(X,Q`)

H i
ét(Y,Q`) H i

ét(X,Q`).

π∗

g∗ f ∗

π∗

The first part follows readily from [Kleiman 1968, Proposition 1.2.4] which asserts that the pullback
map π∗ on `-adic étale cohomology is injective and hence π∗H i

ét(Y,Q`) is an f ∗-invariant subspace of
H i

ét(X,Q`). The second part is similar; see also [Hu 2019, Lemma 2.8] for a stronger version. �

The following useful inequality was already noticed by Truong [2016]. We provide a proof for the
sake of completeness.

Lemma 3.2. Let X be a smooth projective varieties defined over k, and f a surjective self-morphism
of X. Then we have λk( f )≤ χ2k( f ) for any 0≤ k ≤ dim X.

Proof. Note that the `-adic étale cohomology H •

ét(X,Q`) is a Weil cohomology after the noncanonical
choice of an isomorphism Z`(1)' Z` [Kleiman 1968, Example 1.2.5]. So we have the following cycle
map

γ k
X : CHk(X)→ H 2k

ét (X,Q`),

where the k-th Chow group CHk(X) of X denotes the group of algebraic cycles of codimension k
modulo linear equivalence, i.e., CHk(X) := Z k(X)/∼. Recall that a cycle Z ∈ Z k(X) is homologically
equivalent to zero if γ k

X (Z)= 0. Also, it is well-known that homological equivalence ∼hom is finer than
numerical equivalence ≡ [Kleiman 1968, Proposition 1.2.3]. Hence we have the following diagram of
finite-dimensional Q`-vector spaces (respecting the natural pullback action f ∗ by the functoriality of the
cycle map):

(CHk(X)/∼hom)⊗Z Q` H 2k
ét (X,Q`)

(CHk(X)/≡)⊗Z Q` = N k(X)⊗Z Q`.

(3-1)

Thus Lemma 3.2 follows. �

Remark 3.3. When k = 1, by a theorem of Matsusaka [1957], homological equivalence coincides with
numerical equivalence (in general, Grothendieck’s standard conjecture D predicts that they are equal for
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all k). Furthermore, after tensoring with Q, both of them are also equivalent to algebraic equivalence ≈.
Namely, we have

NS(X)Q = (CH1(X)/≈)⊗Z Q' (CH1(X)/∼hom)⊗Z Q' N 1(X)⊗Z Q.

In particular, the cycle map γ 1
X induces an injection

N 1(X)⊗Z Q` ↪→ H 2
ét(X,Q`).

3.2. Extension of the pullback action to endomorphism algebras. For an endomorphism α of an abelian
variety X , the following easy lemma sheds the light on the connection between the first numerical
dynamical degree λ1(α) of α and the induced action α∗ on the endomorphism Q-algebra End0(X), while
the latter is closely related to the matrix representation of α in End(X)R or End(X)C (see e.g., Lemma 3.5).

Lemma 3.4. Fix a polarization φ : X → X̂ as in Theorem 2.8. For any endomorphism α of X , we can
extend the pullback action α∗ on NS0(X) to End0(X) as follows:

α∗ : End0(X)→ End0(X) via ψ 7→ α∗ψ := α†
◦ψ ◦α.3

Proof. We shall identify NS0(X) 3 L with the subspace of symmetric elements φ−1
◦ φL of the

endomorphism Q-algebra End0(X) in virtue of Theorem 2.8. Then the natural pullback action α∗ on
NS0(X) could be reinterpreted in the following way:

α∗ : NS0(X)→ NS0(X)

φ−1
◦φL 7→ φ−1

◦φα∗L .

Note that φ−1
◦φα∗L =φ

−1
◦ α̂◦φL ◦α=α

†
◦φ−1

◦φL ◦α, where α̂ is the induced dual endomorphism of
X̂ and α†

= φ−1
◦ α̂ ◦φ is the Rosati involution of α; for the first equality, see [Mumford 1970, Section 15,

Theorem 1]. This gives rise to an action of α on the whole endomorphism algebra End0(X) by sending
ψ ∈ End0(X) to α†

◦ψ ◦α. It is easy to see that the restriction of α∗|End0(X) to NS0(X) is just the natural
pullback action α∗ on NS0(X). �

The lemma below plays a crucial role in the proof of our main theorem by giving a characterization of
the above induced action α∗ on certain endomorphism algebras of abelian varieties. Here we consider a
more general version from the aspect of linear algebra.

Lemma 3.5. (1) If A ∈Mn(R), then the linear transformation

f A : Mn(R)→Mn(R) via B 7→ ATB A

of n2-dimensional R-vector space Mn(R) could be represented by A⊗ A, the Kronecker product of
A and itself.

3Here by abuse of notation, we still denote this action by α∗. We would always write α∗|End0(X) to emphasize the acting
space in practice.
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(2) If A ∈Mn(C), then the following linear transformation

f A : Mn(C)→Mn(C) via B 7→ ATB A

of n2-dimensional C-vector space Mn(C) could be represented by A⊗ A, the Kronecker product of
A and its complex conjugate A.

(3) If A ∈Mn(C), then the following linear transformation

f A : Mn(C)→Mn(C) via B 7→ ATB A

of 2n2-dimensional R-vector space Mn(C) could be represented by the block diagonal matrix
(A⊗ A)⊕ (A⊗ A).

Proof. We first prove the assertion (2) since the proof of the first one is essentially the same. Choose
the standard C-basis {ei j } of Mn(C), where ei j denotes the n× n complex matrix whose (i, j)-entry is 1,
and 0 elsewhere. We also adopt the standard vectorization

vec : Mn(C)−→
∼ Cn2

of Mn(C), which converts n× n matrices into column vectors so that

{vec(e11), vec(e21), . . . , vec(en1), vec(e12), . . . , vec(en2), . . . , vec(e1n), . . . , vec(enn)} (3-2)

forms the standard C-basis of Cn2
. Write A= (ai j )n×n with ai j ∈ C. Then we have

AT
· ei j = ai1e1 j + ai2e2 j + · · ·+ ainenj .

Hence under the basis (3-2), it is easy to verify that the left multiplication by AT on the C-vector space
Mn(C)' Cn2

is represented by the block diagonal matrix A⊕ A⊕ · · ·⊕ A= In ⊗ A. Similarly, since
ei j · A= a j1ei1+ a j2ei2+ · · ·+ a jnein , one can check that under the basis (3-2), the right multiplication
by A is represented by A⊗ In . Therefore, our linear map f A is represented by the matrix product
(In ⊗ A) · (A⊗ In)= A⊗ A. Thus the assertion (2) follows.

For the last assertion, we just need to combine the assertion (2) with the following general fact: if
M ∈Mn(C), then the associated 2n× 2n real matrix(

Re M − Im M
Im M Re M

)
is similar to the block diagonal matrix M ⊕M. Indeed, one can easily verify that(

In −i In

−i In In

)−1

·

(
Re M − Im M
Im M Re M

)
·

(
In −i In

−i In In

)
=

(
M 0
0 M

)
.

Applying the above fact to the complex matrix A⊗ A coming from the assertion (2), one gets the assertion
(3) and hence Lemma 3.5 follows. �
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3.3. Several standard reductions towards the proof. Before proving our main Theorem 1.2, we start
with some standard reductions. The lemma below reduces the general case to the splitting product case.

Lemma 3.6. In order to prove Theorem 1.2, it suffices to consider the following case:

• the abelian variety X = An1
1 × · · · × Ans

s , where the A j are mutually nonisogenous simple abelian
varieties, and

• the surjective self-morphism f of X is a surjective endomorphism α which can be written as
α1× · · ·×αs with α j ∈ End(An j

j ).

Proof. We claim that it suffices to consider the case when f = α is a surjective endomorphism. Indeed,
any morphism (i.e., regular map) of abelian varieties is a composite of a homomorphism with a translation
[Milne 1986, Corollary 2.2]. Hence we can write f as tx ◦α for a surjective endomorphism α ∈ End(X)
and x ∈ X (k). Note however that tx ∈ Aut0(X) ' X acts as identity on H 1

ét(X,Q`) and hence on
H i

ét(X,Q`) for all i . It follows from the functoriality of the pullback map on `-adic étale cohomology
that χi ( f )= χi (α). Similarly, we also get λk( f )= λk(α) for all k. So the claim follows, and from now
on our f = α is an isogeny.

We then make another claim as follows.

Claim 3.7. Towards the proof of Theorem 1.2, we are free to replace our pair (X, α) by any of the
following pairs:

(1) (X, αm), for any positive integer m.

(2) (X,mα), for any positive integer m.

(3) (X ′, α′ := g ◦ α ◦ h), where g : X → X ′ and h : X ′→ X are isogenies such that h ◦ g = m X and
g ◦ h = m X ′ with m = deg g.

Proof of Claim 3.7. The first part follows from the functoriality of the pullback map. For the second one,
we note that mα = m X ◦α = α ◦m X , where m X is the multiplication by m map. Using the isomorphism
H 1

ét(X,Z`)'HomZ`(T`X,Z`), one can easily see that the induced pullback map m∗X on H 1
ét(X,Q`) is also

the multiplication by m map, and hence m∗X |H i
ét(X,Q`)

is represented by the diagonal matrix mi
· idH i

ét(X,Q`)
;

see e.g., Theorem 2.1. It follows from the diagram (3-1) in the proof of Lemma 3.2 that the pullback map
m∗X on each N k(X)R is also represented by the diagonal matrix m2k

· idN k(X)R . In particular, we have
χi (mα)= miχi (α) and λk(mα)= m2kλk(α), which yields the part (2).

For the last part, it is easy to verify that α′◦g= g◦(mα) and h◦α′= (mα)◦h. By applying Lemma 3.1
to the isogenies g and h, we have χi (α

′) = χi (mα) and λk(α
′) = λk(mα). Then combining with the

second part, the third one follows. So we have proved Claim 3.7. �

Let us go back to the proof of Lemma 3.6. By Poincaré’s complete reducibility theorem [Mumford
1970, Section 19, Theorem 1], we know that X is isogenous to the product An1

1 ×· · ·× Ans
s , where the A j
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are mutually nonisogenous simple abelian varieties. Then

End0(X)'
s⊕

j=1

End0(An j
j ),

so that we can write α as α1×· · ·×αs with α j ∈End0(An j
j ). Using the reductions (2) and (3) in Claim 3.7,

we only need to consider the case when X itself is the product variety and each α j belongs to End(An j
j ),

as stated in the lemma. �

Remark 3.8. We are keen to further reduce the situation of Lemma 3.6 to the case when X = An is a
power of some simple abelian variety A, as Esnault and Srinivas did [2013, proof of Proposition 6.2].
However, to the best of our knowledge, it does not seem to be straightforward. More precisely, let X
and α be as in Lemma 3.6. Suppose that Theorem 1.2 holds for every An j

j and surjective endomorphism
α j ∈ End(An j

j ), i.e., λ1(α j )= χ2(α j ) for all j . We wish to show that Theorem 1.2 also holds for X and α.
Note that

NS(X)'
s⊕

j=1

NS(An j
j ).

4

It follows that

λ1(α)=max
j
{λ1(α j )} =max

j
{χ2(α j )}. (3-3)

On the other hand, by the Künneth formula, we have

H 1
ét(X,Q`)'

⊕
j

H 1
ét(A

n j
j ,Q`), and

H 2
ét(X,Q`)'

⊕
j

H 2
ét(A

n j
j ,Q`)⊕

⊕
j<k

(H 1
ét(A

n j
j ,Q`)⊗ H 1

ét(A
nk
k ,Q`)).

However, we are not able to deduce that χ2(α) = max j {χ2(α j )} due to the appearance of the tensor
product of the H 1

ét.
For the sake of completeness, let us explain this obstruction in a more precise way. We denote by

Pα j (t)∈Z[t] the characteristic polynomial of α j (or equivalently T`α j , by Theorem 2.3). Set g j =dim An j
j .

Denote all complex roots of Pα j (t) by ω j,1, . . . , ω j,2g j . Without loss of generality, we may assume that

|ω j,1| ≥ · · · ≥ |ω j,2g j | for all 1≤ j ≤ s, and |ω1,1| ≥ · · · ≥ |ωs,1|. (3-4)

It follows from Theorem 2.1 that χ2(α j )= |ω j,1| · |ω j,2| for all j . Suppose that

max
j
{χ2(α j )} = χ2(α j0)= |ω j0,1| · |ω j0,2| for some j0. (3-5)

4In general, one has NS(X×k Y )'NS(X)⊕NS(Y )⊕Homk(Alb(X),Pic0(Y )); see e.g., [Tate 1966, the proof of Theorem 3].
See also [Bost and Charles 2016, Section 3.2] and references therein for more details about the divisorial correspondences.
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Note that j0 may not be 1. If |ω2,1| ≤ |ω1,2| (in particular, j0 is 1), then

χ2(α)= |ω1,1| · |ω1,2| = χ2(α1)=max
j
{χ2(α j )} = λ1(α).

So we are done in this case. However, if |ω2,1|> |ω1,2|, then

χ2(α)= |ω1,1| · |ω2,1| ≥ |ω j0,1| · |ω j0,2| = χ2(α j0)=max
j
{χ2(α j )} = λ1(α).

There is no obvious reason to exclude the worst case j0 = 1 which yields that

χ2(α)= |ω1,1| · |ω2,1|> |ω1,1| · |ω1,2| = χ2(α1)=max
j
{χ2(α j )} = λ1(α).

To proceed, we observe that over complex number field C, the above pathology does not happen
because each eigenvalue ω j,2 turns out to be the complex conjugate of ω j,1. This fact follows from the
Hodge decomposition H 1(X,C)= H 1,0(X)⊕H 1,0(X), which does not seem to exist in étale cohomology
as far as we know. But we still believe that ω j,2 = ω j,1 for all j . (As a consequence of our main theorem,
we will see that this is actually true; see Remark 3.10.) The following lemma makes use of this observation
to reduce the splitting product case as in Lemma 3.6 to the case when X = An for some simple abelian
variety A.

Lemma 3.9. In order to prove Theorem 1.2, it suffices to show that if An is a power of a simple abelian
variety A and α ∈ End(An) is a surjective endomorphism of An , then λ1(α)= |ω1|

2, where ω1 is one of
the complex roots of the characteristic polynomial Pα(t) of α with the maximal absolute value.

Proof. Thanks to Lemma 3.6, let us consider the case when the abelian variety X = An1
1 × · · · × Ans

s ,
where the A j are mutually nonisogenous simple abelian varieties, and α = α1× · · ·×αs is a surjective
endomorphism of X with α j ∈ End(An j

j ). We assume that the reader has been familiar with the notation
introduced in Remark 3.8, in particular, (3-3)–(3-5). Applying the hypothesis of Lemma 3.9 to each An j

j

and α j , we have λ1(α j )= |ω j,1|
2. It follows from Lemma 3.2 and Theorem 2.1 that λ1(α j )≤ χ2(α j )=

|ω j,1| · |ω j,2|. Hence λ1(α j )= χ2(α j ) and |ω j,1| = |ω j,2| for all j which tells us j0 = 1. This yields that

χ2(α)= |ω1,1| · |ω1,2| = χ2(α1)=max
j
{χ2(α j )} =max

j
{λ1(α j )} = λ1(α).

The first and second equalities follow again from Theorem 2.1, the third one holds because j0 = 1, (3-3)
gives the last one. �

3.4. Proof of Theorem 1.2. We are now ready to prove the main theorem.

Proof of Theorem 1.2. By Lemma 3.9, we can assume that X = An for some simple abelian variety A and
α ∈ End(X) is a surjective endomorphism of X . Let Pα(t) ∈ Z[t] be the characteristic polynomial of α
(see Theorem 2.3). Set g = dim X . Denote all complex roots of Pα(t) by ω1, . . . , ω2g. Without loss of
generality, we may assume that

|ω1| ≥ · · · ≥ |ω2g|.
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We shall prove that

λ1(α)= |ω1|
2, (3-6)

which will conclude the proof of the theorem by Lemma 3.9.
Under the above assumption, the endomorphism algebra End0(X) is the simple Q-algebra Mn(D) of

all n× n matrices with entries in the division ring D := End0(A). Let K denote the center of D, and K0

the maximal totally real subfield of K . As usual, we set

d2
= [D : K ], e = [K :Q] and e0 = [K0 :Q].

Note that by Lemma 3.4, the natural pullback action α∗ on NS0 can be extended to an action α∗ on the
whole endomorphism Q-algebra End0(X) as follows:

α∗ : End0(X)→ End0(X) via ψ 7→ α†
◦ψ ◦α.

On the other hand, by tensoring with R, we know that

End(X)R = End0(X)⊗Q R'Mn(D)⊗Q R'Mn(D⊗Q R)

is either a product of Mr (R), Mr (C) or Mr (H) with NS(X)R being a product of Hr (R), Hr (C) or Hr (H),
the corresponding subspace of symmetric/Hermitian matrices (see Theorem 2.9). When there is no risk
of confusion, for simplicity, we still denote the induced action α∗⊗Q 1R by α∗. In particular, we would
write α∗|End(X)R and α∗|NS(X)R to emphasize the acting spaces.

According to Albert’s classification of the endomorphism Q-algebra D of a simple abelian variety A
[Mumford 1970, Section 21, Theorem 2], we have the following four cases.

Case 1. D is of Type I(e): d = 1, e = e0 and D = K = K0 is a totally real algebraic number field and
the involution (on D) is the identity. In this case,

End(X)R '
e0⊕

i=1

Mn(R) and NS(X)R '
e0⊕

i=1

Hn(R).

For our α ∈ End(X), let us denote its image α⊗Z 1R in End(X)R by the block diagonal matrix Aα =
Aα,1⊕ · · ·⊕ Aα,e0 with each Aα,i ∈Mn(R). Then the Rosati involution α† of α could be represented by
the transpose AT

α = AT
α,1⊕ · · ·⊕ AT

α,e0
(see Theorem 2.9). Hence we can rewrite the induced action α∗

on End(X)R in the following matrix form:

B = B1⊕ · · ·⊕ Be0 7→ AT
α B Aα = AT

α,1 B1 Aα,1⊕ · · ·⊕ AT
α,e0

Be0 Aα,e0 .

Thanks to Lemma 3.5(1), for each i , the linear transformation defined by the mapping

Bi ∈Mn(R) 7→ AT
α,i Bi Aα,i ∈Mn(R),
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can be represented by the Kronecker product Aα,i⊗Aα,i . Hence the above linear transformation α∗|End(X)R

on the e0n2-dimensional R-vector space End(X)R is represented by the block diagonal matrix

(Aα,1⊗ Aα,1)⊕ · · ·⊕ (Aα,e0 ⊗ Aα,e0).

For each 1≤ i ≤ e0, denote all eigenvalues of Aα,i by πi,1, . . . , πi,n . It thus follows from the above
discussion that all eigenvalues of the linear transformation α∗|End(X)R are exactly πi, jπi,k with 1≤ j, k ≤ n
and 1≤ i ≤ e0. In particular, if vi, j and vi,k denote eigenvectors of Aα,i corresponding to πi, j and πi,k ,
respectively, then

vi, j ⊗ vi,k = vec(vT
i, j ⊗ vi,k)= vec(vi,k ⊗ vT

i, j )= vec(vi,k · v
T
i, j )

is the eigenvector of Aα,i ⊗ Aα,i corresponding to πi, jπi,k .5 Now, according to Remark 2.5, the reduced
characteristic polynomial χ red

α (t) of α is independent of the change of the ground field, and hence equal to
the reduced characteristic polynomial χ red

α⊗Z1R
(t) of α⊗Z 1R ∈ End(X)R, while the latter by Definition 2.4

is just the characteristic polynomial det(t Ie0n − Aα) of Aα. Hence, without loss of generality, we may
assume that ω1 = π1,1 by Lemma 2.7.

We now have two subcases to consider. If π1,1 ∈R so that v1,1 is also a real eigenvector, then v1,1⊗v1,1

is a real eigenvector of α∗|End(X)R corresponding to the eigenvalue π2
1,1. This eigenvector is the associated

column vector of the real symmetric matrix v1,1⊗vT
1,1 = vT

1,1⊗v1,1. Next, let us assume that π1,1 ∈C\R.
Then π1,1 is another eigenvalue of Aα,1 with the corresponding eigenvector v1,1, since Aα,1 is defined
over R. It follows that v1,1⊗ v1,1+ v1,1⊗ v1,1 is a real eigenvector of α∗|End(X)R corresponding to the
eigenvalue π1,1π1,1 = |π1,1|

2; moreover, it is the associated column vector of the real symmetric matrix

vT
1,1⊗ v1,1+ vT

1,1⊗ v1,1 = v1,1⊗ vT
1,1+ vT

1,1⊗ v1,1.

In either case, we have shown that the spectral radii of α∗|End(X)R and α∗|NS(X)R coincide, both equal to
|π1,1|

2. In summary, we have

|ω1|
2
= |π1,1|

2
= ρ(α∗|End(X)R)= ρ(α

∗
|NS(X)R)= λ1(α).

For the last equality, see Remark 3.3. So we conclude the proof of the equality (3-6) in this case.

Case 2. D is of Type II(e): d = 2, e = e0, K = K0 is a totally real algebraic number field and D is an
indefinite quaternion division algebra over K . Hence

End(X)R '
e0⊕

i=1

M2n(R) and NS(X)R '
e0⊕

i=1

H2n(R).

The rest is exactly the same as Case 1.

5Note that due to multiplicities of eigenvalues, Aα,i does not necessarily have n distinct eigenvalues. Thus, vi, j and vi,k
may be the same for different j and k. Also, not all eigenvectors of Aα,i ⊗ Aα,i have to arise in this way, namely, being
the tensor products vi, j ⊗ vi,k . For instance, one could consider a Jordan block Jλ,2 ∈ M2(R) with the eigenvalue λ, but
Jλ,2⊗ Jλ,2 ∼ Jλ2,1⊕ Jλ2,3.
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Case 3. D is of Type III(e): d = 2, e = e0, K = K0 is a totally real algebraic number field and D is a
definite quaternion division algebra over K . In this case,

End(X)R '
e0⊕

i=1

Mn(H) and NS(X)R '
e0⊕

i=1

Hn(H),

where H =
(
−1,−1

R

)
is the standard quaternion algebra over R. Clearly, H can be embedded, in a standard

way (see e.g., [Reiner 2003, Example 9.4]), into M2(C)' H ⊗R C. This induces a natural embedding of
Mn(H) into M2n(C)'Mn(H)⊗R C as follows [Lee 1949, Section 4]:

ι : Mn(H) ↪→M2n(C) via A= A1+ A2 j 7→ ι(A) :=
(

A1 A2

−A2 A1

)
.

In particular, a quaternionic matrix A is Hermitian if and only if its image ι(A) is a Hermitian complex
matrix.

For brevity, we only consider the case e0= 1 (to deal with the general case, the only cost is to introduce
an index i as we have done in Case 1 since the matrices involved are block diagonal matrices). Denote
the image α⊗Z 1R of α in Mn(H) by Aα = A1+ A2 j with A1, A2 ∈Mn(C). Then the Rosati involution
α† of α could be represented by the quaternionic conjugate transpose A∗α = AT

α (see Theorem 2.9), whose
image under ι is just the complex conjugate transpose ι(Aα)∗ (aka Hermitian transpose) of ι(Aα). Similar
as in Lemma 3.4, the action α∗ on End(X)R 'Mn(H) can be extended to

End(X)C := End(X)R⊗R C'M2n(C).

By abuse of notation, we still denote this induced action by α∗ : M2n(C)→M2n(C), which maps B to
ι(Aα)∗ · B · ι(Aα). It follows from Lemma 3.5(2) that α∗|M2n(C) could be represented by the Kronecker
product ι(Aα)⊗ ι(Aα).

Note that our End(X)C'M2n(C) is a central simple C-algebra. Then by Definition 2.4 and Remark 2.5,
the reduced characteristic polynomial χ red

α (t) of α is equal to the characteristic polynomial det(t I2n−ι(Aα))
of the complex matrix ι(Aα). Thanks to [Lee 1949, Theorem 5], the 2n eigenvalues of ι(Aα) fall into
n pairs, each pair consisting of two conjugate complex numbers; denote them by π1, . . . , πn, πn+1 =

π1, . . . , π2n = πn . In fact, it is easy to verify that if πi ∈ C is an eigenvalue of ι(Aα) so that

ι(Aα)
(

ui

vi

)
= πi

(
ui

vi

)
, then ι(Aα)

(
−vi

ui

)
= π i

(
−vi

ui

)
,

i.e., π i is also an eigenvalue of ι(Aα) corresponding to the eigenvector (−vT
i , uT

i )
T. Therefore, without

loss of generality, we may assume that ω1 = π1 by Lemma 2.7.
Let (uT

1 , v
T
1 )

T denote an eigenvector of ι(Aα) corresponding to the eigenvalue π1. Then (−vT
1 , uT

1 )
T

is an eigenvector of ι(Aα) corresponding to the eigenvalue π1. Since the linear transformation α∗|End(X)C

can be represented by ι(Aα)⊗ ι(Aα) (see Lemma 3.5(2)), we see that both (uT
1 , v

T
1 )

T
⊗ (uT

1 , v
T
1 )

T and
(−vT

1 , uT
1 )

T
⊗ (−vT

1 , uT
1 )

T are eigenvectors of α∗|End(X)C , corresponding to the same eigenvalue π1π1.
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Recall that these two eigenvectors are the associated column vectors of the Hermitian complex matrices(
u1

v1

)
⊗ (uT

1 , v
T
1 )=

(
u1

v1

)
· (uT

1 , v
T
1 ) and

(
−v1

u1

)
⊗ (−vT

1 , uT
1 )=

(
−v1

u1

)
· (−vT

1 , uT
1 ),

respectively. It is then easy to verify that(
u1

v1

)
· (uT

1 , v
T
1 )+

(
−v1

u1

)
· (−vT

1 , uT
1 )=

(
u1uT

1 + v1v
T
1 u1v

T
1 − v1uT

1
v1uT

1 − u1v
T
1 v1v

T
1 + u1uT

1

)
is a Hermitian complex matrix lying in the image of ι. In other words, this sum belongs to NS(X)C.
Hence, similar as in Case 1, the spectral radii of α∗|NS(X)C and α∗|End(X)C coincide, both equal to |π1|

2.
Overall, we have

|ω1|
2
= |π1|

2
= ρ(α∗|End(X)C)= ρ(α

∗
|NS(X)C)= ρ(α

∗
|NS(X)R)= λ1(α).

We thus conclude the proof of the equality (3-6) in this case.

Case 4. D is of Type IV(e0, d): e = 2e0 and D is a division algebra over the CM-field K ) K0 (i.e., K
is a totally imaginary quadratic extension of a totally real algebraic number field K0). Then

End(X)R '
e0⊕

i=1

Mdn(C) and NS(X)R '
e0⊕

i=1

Hdn(C).

For simplicity, we just deal with the case e0 = 1. Denote the image of α in End(X)R by the matrix
Aα ∈ Mdn(C). Again, the Rosati involution α† of α could be represented by the complex conjugate
transpose A∗α = AT

α (see Theorem 2.9). It follows from Lemma 3.5(2) that the induced linear map
α∗|Mdn(C) on the d2n2-dimensional C-vector space Mdn(C) is represented by the Kronecker product
Aα⊗ Aα; however, the induced linear map α∗|End(X)R on the 2d2n2-dimensional R-vector space End(X)R
is represented by the block diagonal matrix (Aα⊗ Aα)⊕ (Aα⊗ Aα) by Lemma 3.5(3), though we do not
need this fact later.

Note that the center of our R-algebra End(X)R'Mdn(C) is C. Then by Definition 2.4 and Remark 2.5,
the reduced characteristic polynomial χ red

α (t) of α is equal to the product of the characteristic poly-
nomial det(t Idn − Aα) of Aα and its complex conjugate. We denote all of its complex roots by
π1, . . . , πdn, π1, . . . , πdn . Without loss of generality, we may assume that ω1 = π1 by Lemma 2.7.
Let v1 be a complex eigenvector of Aα corresponding to the eigenvalue π1. Then v1⊗v1 is an eigenvector
of Aα ⊗ Aα corresponding to the eigenvalue π1π1 = |π1|

2. Note that v1⊗ v1 is the associated column
vector of the Hermitian complex matrix v1⊗vT

1 = vT
1 ⊗v1 ∈NS(X)R. Hence, in this last case, we also have

|ω1|
2
= |π1|

2
= ρ(α∗|Mdn(C))= ρ(α

∗
|NS(X)R)= λ1(α).

We thus finally complete the proof of Theorem 1.2. �



Cohomological and numerical dynamical degrees on abelian varieties 1957

Remark 3.10. (1) It follows from our proof, in particular from the key equality (3-6), as well as Birkhoff’s
generalization of the Perron–Frobenius theorem, that either ω2 = ω1 ∈ R or ω2 = ω1 6= ω1. This is true
for any complex torus X because by the Hodge decomposition we have H 1(X,C)= H 1,0(X)⊕H 1,0(X),
where H 1,0(X) = H 0(X, �1

X ). A natural question is whether it is true for all ωi in general, i.e., either
ω2i = ω2i−1 ∈ R or ω2i = ω2i−1 6= ω2i−1 for any 2≤ i ≤ g = dim X .
(2) If our self-morphism f is not surjective or α is not an isogeny, one can also proceed by replacing X
by the image α(X), which is still an abelian variety of dimension less than dim X .

List of symbols

k an algebraically closed field of arbitrary characteristic
` a prime different from char k
X an abelian variety of dimension g defined over k
X̂ the dual abelian variety Pic0(X) of X
α,ψ endomorphisms of X

α̂, ψ̂ the induced dual endomorphisms of X̂
End(X) the endomorphism ring of X
End0(X) End(X)⊗Z Q, the endomorphism Q-algebra of X
End(X)R End(X)⊗Z R= End0(X)⊗Q R, the endomorphism R-algebra of X
Mn(R) the ring of all n× n matrices with entries in a ring R
φL the induced homomorphism of a line bundle L on X :

φL : X→ X̂ , x 7→ t∗x L ⊗L −1

φ = φL0 a fixed polarization of X induced from some ample line bundle L0
† the Rosati involution on End0(X) defined in the following way:

ψ 7→ ψ†
:= φ−1

◦ ψ̂ ◦φ, for any ψ ∈ End0(X)
NS(X) Pic(X)/Pic0(X), the Néron–Severi group of X
NS0(X) NS(X)⊗Z Q= N 1(X)Q = NS(X)Q (see Remark 3.3)
NS(X)R NS(X)⊗Z R= NS0(X)⊗Q R= N 1(X)R
N k(X)R N k(X)⊗Z R, the R-vector space of numerical equivalent classes of

codimension-k cycles (with 0≤ k ≤ g = dim X )
H i

ét(X,Q`) H i
ét(X,Z`)⊗Z` Q`, the `-adic étale cohomology group of degree i

T`X the Tate module lim
←−−n X`n (k) of X , a free Z`-module of rank 2g

T`α the induced endomorphism on T`X
A a simple abelian variety defined over k
D End0(A), the endomorphism Q-algebra of A
K the center of the division ring D = End0(A)
K0 the maximal totally real subfield of K
H the standard quaternion algebra over R
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