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A comparison between pro-p Iwahori–Hecke modules
and mod p representations

Noriyuki Abe

We give an equivalence of categories between certain subcategories of modules of pro-p Iwahori–Hecke
algebras and modulo p representations.

1. Introduction

Let G be a connected reductive p-adic group and K a compact open subgroup of G. Then one can attach
the Hecke algebra H to this pair (G, K ) and we have a functor π 7→ πK

= {v ∈ π | π(k)v = v (k ∈ K )}
from the category of smooth representations of G to the category of H-modules. These algebras and
functors are powerful tools to study the representation theory of G. In a classical case, namely for
smooth representations over the field of complex numbers, this functor gives a bijection between the
set of isomorphism classes of irreducible smooth representations of G such that πK

6= 0 and the set of
isomorphism classes of simple H-modules. Moreover, the famous theorem of Borel [1976] says that the
functor gives an equivalence of categories between the category of smooth representations π of G which
is generated by πK and the category of H-modules when K is an Iwahori subgroup.

In this paper, we study modulo p representation theory of G. In this case, it is natural to consider
a pro-p Iwahori subgroup I (1) which is the pro-p radical of an Iwahori subgroup since any nonzero
modulo p representation has a nonzero vector fixed by the pro-p Iwahori subgroup. The corresponding
Hecke algebra is called a pro-p Iwahori–Hecke algebra. The aim of this paper is to give a relation between
H-modules and modulo p representations.

Such a relation was first discovered by Vignéras [2007] when G =GL2(Qp). Based on a classification
result due to Barthel and Livné [1995; 1994] and Breuil [2003], she proved that the functor π 7→ π I (1)

gives a bijection between simple objects. This was enhanced to the level of categories by Ollivier
[2009]. Namely she proved that the category of H-modules is equivalent to the category of modulo p
representations of G which are generated by π I (1). The quasiinverse of this equivalence is given by
M 7→ M⊗H c-IndG

I (1) 1 where c-IndG
I (1) 1 is the compact induction from the trivial representation of I (1).

However, Ollivier also showed that we cannot expect such correspondence in general. When G =
GL2(F) where F is a p-adic field such that the number of the residue field is greater than p, for a
supersingular simple module M (we do not recall the definition of supersingular modules since we do not
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use it in this paper), Ollivier showed that (M ⊗H c-IndG
I (1) 1)I (1) is not finite-dimensional. Since simple

modules of H are finite-dimensional, it says that we have no equivalence of categories in this case.
Still we can expect that there is such a correspondence if we avoid supersingular representations/modules.

It was proved by Ollivier and Schneider [2018, Theorem 3.33] that this expectation is true when G =
SL2(F) when p 6= 2 or F 6=Q2. The aim of this paper is to extend this for any G. We remark that our
result is not a generalization of their result since we assume that modules have finite-length which they
do not assume.

Let G be a (general) connected reductive p-adic group. In this case, as a consequence of classification
theorems [Abe et al. 2017; Abe 2019a] and the calculation of the invariant part of irreducible representations
[Abe et al. 2018a], the functor π 7→ π I (1) gives a bijection between irreducible modulo p representations
of G and simple H-modules which are far from supersingular representations/modules. The aim of
this paper is to generalize this correspondence to the level of categories. More precisely, we prove the
equivalence of the following two categories:

• The category of H-modules M such that dim(M) <∞ and a certain element of the center of H is
invertible on M (see Definition 3.1).

• The category of modulo p representations π of G such that:

– π is generated by π I (1).
– π has a finite length.
– Any irreducible subquotient of π is isomorphic to a subquotient of IndG

B σ where B is a minimal
parabolic subgroup and σ is an irreducible representation of the Levi quotient of B.

Note that an H-module M is supersingular if and only if certain elements in the center of H act by
zero and a modulo p irreducible admissible representation π of G is supersingular if and only if it is
supercuspidal, namely it does not appear as a subquotient of a parabolically induced representation from
an irreducible admissible representation of a proper Levi subgroup. Therefore some conditions as above
says that M (resp. π ) is far from supersingular modules (resp. representations).

We give an outline of the proof. Since the correspondence is true for irreducible representations, by
induction on the length, it is sufficient to prove the following (Theorem 3.5): Let M be an H-module
which we are considering. Then M→ M ⊗H IndG

I (1) 1 is injective. This theorem is proved in Section 3.
In fact, we prove the injectivity for any M ∈ C where the category C is introduced in Section 3. Here are
some reductions:

• Let A be the Bernstein subalgebra introduced in [Vignéras 2016]. Since we have an embedding
M ↪→ HomA(H,M), it is sufficient to prove the theorem for HomA(H,M). Note that we have
HomA(H,M) ∈ C if M ∈ C.

• We have a decomposition of M |A along the support (Definition 3.8). We may assume that the support
of M |A is contained in a Weyl chamber.
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• Using a result in [Abe 2019a], parabolic inductions and a result of Ollivier and Vignéras [2018], we
may assume that the support is the dominant Weyl chamber.

• We prove there exists an A-module M ′ such that HomA(H,M)' M ′⊗A H. Hence it is sufficient
to prove that M ′⊗A H→ M ′⊗A c-IndG

I (1) 1 is injective.

By a result in [Abe 2017], both M ⊗A H and M ⊗A c-IndG
I (1) 1 relate to c-IndG

K V where K is a special
parahoric subgroup and V a certain representation of K . The structure of this representations is studied
in [Abe et al. 2017] and using such result we prove the injectivity.

It is almost immediate to prove our main theorem from the above injectivity. This is done in Section 4.

2. Notation and preliminaries

Let F be a nonarchimedean local field of residue characteristic p and G a connected reductive group
over F . Let C be an algebraically closed field of characteristic p. This is the coefficient field of
representations in this paper. All representations in this paper are smooth representations over C.

In general, for any algebraic group H over F , we denote the group of valued points H(F) by the
same letter H . Fix a maximal split torus S of G and minimal parabolic subgroup B containing S. The
centralizer Z of S in G is a Levi subgroup of B. We denote the unipotent radical of B by U and the
opposite of B containing Z by B. The unipotent radical of B is denoted by U .

Consider the reduced apartment corresponding to S and take an alcove A0 and a special point x0

from the closure of A0. Let K be the special parahoric subgroup corresponding to x0 and I the Iwahori
subgroup determined by A0. Let I (1) be the pro-p Iwahori subgroup attached to A0, namely the pro-p
radical of I . The space of C-valued compactly supported I (1)-biinvariant functions H has a structure
of a C-algebra via the convolution product. The algebra H is called pro-p Iwahori–Hecke algebra. The
structure of this algebra is studied by Vignéras [2016].

Let NG(S) be the normalizer of S in G and put W0 = NG(S)/Z , W = NG(S)/(Z ∩ K ) and W (1)=
NG(S)/(Z ∩ I (1)). Let G ′ be the subgroup of G generated by U and U . Note that this is not a group of
the valued points of an algebraic group in general. Let Waff be the image of G ′∩NG(S) in W . The action
of Waff on the apartment is faithful and therefore it is a subgroup of the group of affine transformations
of the apartment. Let Saff be the set of reflections along the walls of A0. Then (Waff, Saff) is a Coxeter
system. Denote its length function by `. Let NW (A0) be the stabilizer of A0 in W . Then the group W is
the semidirect product of Waff and NW (A0). The function ` is extended to W , trivially on NW (A0). We
also inflate ` to W (1) via W (1)→W . We have the Bruhat order on (Waff, Saff) and we extend it to W
by w1ω1 < w2ω2 if and only if w1 < w2 and ω1 = ω2 where w1, w2 ∈ Waff and ω1, ω2 ∈ NW (A0). For
w1, w2 ∈W (1), we say w1 <w2 if w1 <w2 where wi is the image of wi in W (i = 1, 2). As usual we
say w1 ≤ w2 if and only if w1 <w2 or w1 = w2.

We give some of structure theorems of H. For w ∈ W (1), let Tw be the characteristic function on
I (1)w̃ I (1) where w̃ ∈ NG(S) is a lift of w. Then Tw does not depend on the choice of a lift and, since
we have the bijection I (1)\G/I (1) ' W (1), {Tw | w ∈ W (1)} is a basis of H. This basis is called
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Iwahori–Matsumoto basis. This basis satisfies the following braid relations:

Tw1 Tw2 = Tw1w2 if `(w1w2)= `(w1)+ `(w2)

wherew1, w2 ∈W (1). Let Zκ = (Z∩K )/(Z∩ I (1)). Then this is a subgroup of W (1). Since any elements
in Zκ has the length 0 (since it is in the kernel of W (1)→W ), from the braid relations, we have Tt1 Tt2=Tt1t2

for t1, t2 ∈ Zκ . In other words, the embedding C[Zκ ] ↪→ H defined by
∑

t∈Zκ ct t 7→
∑

t∈Zκ ct Tt is an
algebra homomorphism where C[Zκ ] is the group ring of Zκ . Using this embedding, we regard C[Zκ ] as
a subalgebra of H.

Let Saff(1) be the inverse image of Saff in W (1). Then for s ∈ Saff(1), we have

T 2
s = cs Ts

for some cs ∈ C[Zκ ]. An element cs is given in [Vignéras 2016, 4.2].
Define T ∗w as in [loc. cit., 4.3] for w ∈ W (1). This is also a basis of H and it satisfies the following:

T ∗w ∈ Tw +
∑

v<w CTv and T ∗w1
T ∗w2
= T ∗w1w2

if `(w1w2)= `(w1)+ `(w2).
Let o be a spherical orientation [loc. cit., 5.2]. Note that the set of spherical orientations are canonically

bijective with the set of Weyl chambers. For each o, we have another basis {Eo(w) |w ∈W (1)} defined in
[loc. cit., 5.3]. The orientations correspond to the Weyl chambers. Let o− be the orientation corresponding
to the antidominant Weyl chamber and set E(w)= Eo−(w).

Set 3(1) = Z/(Z ∩ I (1)). This is a subgroup of W (1). For λ1, λ2 ∈ 3(1), the multiplication
E(λ1)E(λ2) is simple. Before giving it, we introduce some notation. The pair (G, S) gives a root datum
(X∗(S),6, X∗(S),6∨) and since we have fixed a Borel subgroup we also have a positive system 6+⊂6

and the set of simple roots 1 ⊂ 6+. An element v ∈ X∗(S)⊗Z R is called dominant if and only if
〈v, α〉 ≥ 0 for any α ∈6+. A W0-orbit of the set of dominant elements is called a closed Weyl chamber.
We also say that v ∈ X∗(S)⊗Z R is regular if 〈v, α〉 6= 0 for any α ∈ 6. We have a homomorphism
ν : Z→ X∗(S)⊗Z R=HomZ(X∗(S),R) characterized by ν(z)(χ)=− val(χ(z)) where z ∈ S, χ ∈ X∗(S)
and val : F×→ Z is the normalized valuation. This homomorphism factors through Z→3(1) and the
induced homomorphism 3(1)→ X∗(S)⊗Z R is denoted by the same letter ν. We let 3+(1) the set
of λ ∈ 3(1) such that ν(λ) is dominant. For w ∈ W0, let w(3+(1)) be the set of λ ∈ 3(1) such that
w−1(ν(λ)) is dominant.

The multiplication E(λ1)E(λ2) is E(λ1λ2) if ν(λ1) and ν(λ2) are in the same closed Weyl chamber
(in other words, λ1, λ2 ∈ w(3

+(1)) for some w ∈ W0) and otherwise it is zero. In particular, A =⊕
λ∈3(1) C E(λ) is a subalgebra of H. If we fix a closed Weyl chamber C, then

⊕
ν(λ)∈C C E(λ) is a

subalgebra of A and the linear map ⊕
ν(λ)∈C

C E(λ)→ C[3(1)]

defined by E(λ) 7→ τλ is an algebra embedding. Here C[3(1)] is the group ring of 3(1) and we denote
the element in C[3(1)] corresponding to λ ∈3(1) by τλ, namely C[3(1)] =

⊕
λ∈3(1) Cτλ.
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Remark 2.1. (1) If 〈ν(λ), α〉 = 0 for any α ∈ 6, then ν(λ) and ν(λ−1) are in the same closed Weyl
chamber. (In fact, ν(λ) and ν(λ−1) are in any closed Weyl chamber.) Hence E(λ)E(λ−1)= 1. In
particular, E(λ) is invertible.

(2) If λ ∈ 3(1) is in the center of 3(1), then E(λ) is also in the center of A. This follows from the
above description of the multiplication.

Let J be a subset of 1 and denote the corresponding standard parabolic subgroup by PJ . Let L J be
the Levi part of PJ containing Z . Then K ∩ L J is a special parahoric subgroup and I (1)J = I (1)∩ L J

a pro-p Iwahori subgroup. Attached to these, we have many objects. For such objects we add a suffix
J , for example, the pro-p Iwahori–Hecke algebra attached to (L J , I (1)J ) is denoted by HJ . There
are two exceptions: base Tw and E(w) for HJ is denoted by T J

w and E J (w), respectively. For each
J ⊂1, we have two subalgebras H+J , H−J of HJ and four algebra homomorphisms j+J , j+∗J : H

+

J →H
and j−J , j−∗J : H

−

J →H. See [Abe 2019b, 2.8] for the definitions. (Here H+J is denoted by H+PJ
in [Abe

2019b].)

3. The category C and a proof of the injectivity

3A. The category C. The modules in this paper are right modules unless otherwise stated. In this paper,
we focus on the full subcategory C of the category of H-modules defined using the center Z of H. The
center Z is described using the basis {E(w)}. Since 3(1) is normal in W (1), the group W (1) acts
on 3(1) by the conjugate action. For λ ∈ 3(1) denote the orbit through λ by Oλ. For λ ∈ 3(1), put
zλ =

∑
λ′∈Oλ

E(λ′). Then {zλ | z ∈3(1)/W (1)} gives a basis of Z [Vignéras 2014, Theorem 1.2]. Fix a
uniformizer $ of F and let 3S(1) be the image of {ξ($) | ξ ∈ X∗(S)}.

Definition 3.1. An H-module M is in C if and only if zλ is invertible on M for any λ ∈3S(1).

Lemma 3.2. Let λ ∈3S(1). Then we have the following:

(1) For w ∈W (1), w stabilizes λ if and only if the image of w in W0 stabilizes ν(λ).

(2) Let {w1, . . . , wr } ⊂ W (1) be a subset of W (1) such that the image in W0 gives a set of complete
representatives of W0/StabW0(ν(λ)). Then we have zλ =

∑r
i=1 E(wiλw

−1
i ). (Note that wiλw

−1
i

depends only on the image of wi in W0/StabW0(λ) by (1).)

Proof. Take ξ ∈ X∗(S) such that λ= ξ($)−1. We have ν(λ)= ξ . Let w ∈W (1) and denote the image
of w in W0 by w0. Then we have wλw−1

= (w0ξ)($)
−1. Hence if w0 stabilizes ξ = ν(λ), then w

stabilizes λ. Obviously if w stabilizes λ then w0 stabilizes ν(λ).
By (1), StabW (1)(λ) is the inverse image of StabW0(λ). Therefore we have W (1)/StabW (1)(λ) '

W0/StabW0(λ). By the definition, we have zλ =
∑

w∈W (1)/StabW (1)(λ)
E(wλw−1). Hence we get (2). �

Lemma 3.3. Let λ,µ ∈3S(1) and assume that ν(λ) and ν(µ) are in the same closed Weyl chamber. We
also assume that ν(λ) is regular. Then we have zλzµ = zλµ.
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Proof. Take w1, . . . , wr ∈W (1) such that the images of them in W0 gives a set of complete representatives
of W0/StabW0(ν(µ)). Then we have zµ =

∑
i E(wiµw

−1
i ) by the above lemma. Let v1, . . . , vs be a set

of complete representatives of W0 =W (1)/3(1). Then we have zλ =
∑

j E(viλv
−1
i ). (Note that ν(λ) is

assumed to be regular.) Since ν(λ) is regular, for each i , there exists only one ji = 1, . . . , r such that
vi (ν(λ)) and w ji (ν(µ)) is in the same closed Weyl chamber. Hence we get

E(viλv
−1
i )E(w jµw

−1
j )=

{
0 j 6= ji ,
E(viλv

−1
i w jµw

−1
j ) j = ji .

Moreover, ν(λ) and v−1
i w ji (ν(µ)) is in the same closed Weyl chamber. Since ν(λ) and ν(µ) are in

the same closed Weyl chamber by the assumption, we get v−1
i w ji (ν(µ)) = ν(µ). Therefore v−1

i w ji

stabilizes ν(µ). As in the previous lemma, v−1
i w ji also stabilizes µ. Hence w jiµw

−1
ji = viµv

−1
i . We get

E(viλv
−1
i )E(w jµw

−1
j )=

{
0 j 6= ji ,
E(viλµv

−1
i ) j = ji .

Now we get

zλzµ =
∑

i

∑
j

E(viλv
−1
i )E(w jµw

−1
j )=

∑
i

E(viλµv
−1
i ).

By the assumption, ν(λµ) is regular and λµ ∈3S(1). Hence the last term is zλµ by the above lemma. �

Lemma 3.4. An H-module M is in C if and only if for some λ ∈ 3S(1) such that ν(λ) is regular, the
element zλ is invertible on M.

Proof. Assume that there exists λ0 ∈ 3S(1) such that ν(λ0) is regular and zλ0 is invertible on M . Let
λ∈3S(1) and we prove that λ is also invertible on M . Replacing λ with an element in the orbit through λ,
we may assume that ν(λ) and ν(λ0) are in the same closed Weyl chamber. Take a sufficiently large
n ∈ Z>0 such that ν(λn

0λ
−1) is also in the same closed Weyl chamber as ν(λ0). Set µ= λn

0λ
−1. Then by

the above lemma, we have zµzλ = zλn
0
= zn

λ0
. By the assumption, zn

λ0
is invertible on M . Hence zλ is

invertible, namely we have M ∈ C. �

3B. Theorem. In the rest of this section, we prove the following:

Theorem 3.5. If M ∈ C, then M→ M ⊗H c-IndG
I (1) 1 is injective.

3C. Reductions. Define a subalgebra A of H by A =
⊕

λ∈3(1) C E(λ). Let M ∈ C and set M ′ =
HomA(H,M).

Remark 3.6. The element zλ is in the center of H and zλ ∈ A. Therefore the action of zλ on M ′ =
HomA(H,M) is induced by that on M . Since M ∈ C, zλ is invertible on M for any λ ∈3S(1). Hence
the action of zλ on M ′ is also invertible. Namely M ′ ∈ C.

Defining the action of X ∈H on M ′ by (ϕX)(Y )= ϕ(XY ) for ϕ ∈ HomA(H,M) and Y ∈H, M ′ is a
right H-module. The map m 7→ (X 7→ m X) gives an H-module embedding M ↪→ M ′ and we have the
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following commutative diagram:

M M ⊗H c-IndG
I (1) 1

M ′ M ′⊗H c-IndG
I (1) 1

Therefore, to prove Theorem 3.5, it is sufficient to prove that the map M ′→M ′⊗H c-IndG
I (1) 1 is injective.

Lemma 3.7. Any module M ∈ C has a functorial decomposition M =
⊕

w∈W0
Mw as an A-module such

that E(µ) acts on Mw by:

• Zero if w−1ν(µ) is not dominant.

• Invertible if w−1ν(µ) is dominant.

Proof. Fix λ0 ∈3S(1) such that ν(λ0) is regular dominant. Put λw = nwλ0n−1
w and set Mw = ME(λw).

Since λw ∈3S(1) is central, E(λw) is also central in A. Hence Mw is an A-submodule.
We prove that λw is invertible on Mw. Since ν(λ0) is regular, ν(λv) and ν(λw) are not in the same

closed Weyl chamber if v 6=w. Therefore E(λv)E(λw)= 0. Hence MwE(λv)= 0 if v 6=w. Therefore for
m ∈Mw, we have mzλ0 =

∑
v∈W0

m E(λv)=m E(λw). Hence if m E(λw)= 0 then mzλ0 = 0, hence m = 0
since zλ0 is invertible. Therefore E(λw) is injective on Mw. We also have that mz2

λ0
= m E(λw)zλ0 =

mzλ0 E(λw)= m E(λw)2 since zλ0 commutes with E(λw). (Recall that zλ0 is in the center of H.) Hence
m = m0 E(λw) where m0 = mz−2

λ0
E(λw) ∈ Mw. Therefore E(λw) is surjective on Mw.

For µ ∈ 3(1) such that w−1(ν(µ)) is not dominant, ν(µ) and ν(λw) are not in the same closed
Weyl chamber. Hence E(µ)E(λw) = 0. Therefore E(µ) = 0 on Mw. On the other hand, assume that
w−1(ν(µ)) is dominant. Then ν(µ) and ν(λw) are in the same closed Weyl chamber. Take sufficiently
large n ∈ Z≥0 such that ν(λn

wµ
−1) is also in the same closed Weyl chamber as ν(µ). Then we have

E(λw)n = E(λn
w)= E(λn

wµ
−1)E(µ). Since E(λw) is invertible on Mw, E(µ) is also invertible on Mw.

We prove M =
⊕

w∈W0
Mw. Since zλ0 is invertible, any element in M can be written mzλ0 for some

m ∈ M . We have mzλ0 =
∑

w∈W0
m E(λw) ∈

∑
w∈W0

Mw. Hence M =
∑

w∈W0
Mw. Let mw ∈ Mw and

assume that
∑

w∈W0
mw = 0. Then for each v ∈W0 we have

∑
w∈W0

mwE(λv)= 0. Since mwE(λv)= 0
for v 6= w, we have mvE(λv)= 0. Since the action of E(λv) on Mv is invertible, mv = 0. �

Since HomA(H,M) =
⊕

w∈W0
HomA(H,Mw), to prove M ′→ M ′ ⊗H c-IndG

I (1) 1 is injective, it is
sufficient to prove that the homomorphism HomA(H,Mw)→ HomA(H,Mw)⊗H c-IndG

I (1) 1 is injective.

Definition 3.8. Let M be an A-module. We say that supp M = w(3+(1)) if and only if E(λ) is:

• Zero if w−1(ν(µ)) is not dominant.

• Invertible if w−1(ν(µ)) is dominant.

for any λ ∈3(1). (Note that we do not define supp M itself.)

From the above discussions, to prove Theorem 3.5, it is sufficient to prove the following lemma.
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Lemma 3.9. Let M be an A-module such that supp M=w(3+(1))wherew∈W0. Then HomA(H,M)→
HomA(H,M)⊗H c-IndG

I (1) 1 is injective.

We take a lift nw of each w ∈ W0 in W (1) such that nw1w2 = nw1nw2 if `(w1w2) = `(w1)+ `(w2).
Let M be an A-module and w ∈ W0. We define a new A-module nwM as follows. As a vector space,
nwM = M and the action of E(λ) ∈ A on nwM is the action of E(n−1

w λnw) on M . This defines an
auto-equivalence of the category of A-modules. If supp M = v(3+(1)), then supp nwM = wv(3+(1)).
With this notation, Lemma 3.9 is equivalent to the following.

Lemma 3.10. Let M be an A-module such that supp M = 3+(1). Then the map HomA(H, nwM)→
HomA(H, nwM)⊗H c-IndG

I (1) 1 is injective.

3D. Reduction to w = wJ for some J ⊂1. For a subset J ⊂1, let wJ be the longest element in W0,J .
We prove that we may assume w = wJ for some J in Lemma 3.10.

We relate our M with modules studied in [Abe 2019a]. Consider the homomorphism A→ C[3(1)]
defined by

E(λ) 7→
{
τλ λ ∈3+(1),
0 otherwise.

(3-1)

We regard C[3(1)] as a right A-module via this homomorphism. For w ∈W0, we also have the A-module
nwC[3(1)]. Then we consider the module

nwC[3(1)]⊗A H.

This is a (C[3(1)],H)-bimodule.
Let M be an A-module such that supp M = 3+(1). Then we define a structure of a right C[3(1)]-

module on M by

mτλ1λ
−1
2
= m E(λ1)E(λ2)

−1

where λ1, λ2 ∈3
+(1) and m ∈ M . (Since supp M =3+(1), E(λ2) is invertible on M .) It is easy to see

that this definition is well-defined and define a structure of C[3(1)]-module. Then we have

M ⊗C[3(1)] nwC[3(1)] ' nwM.

The isomorphisms are given by m⊗ f 7→m f from the left-hand side to the right-hand side and m 7→m⊗1
in the opposite direction. Therefore we have

nwM ⊗A H' M ⊗C[3(1)]⊗nwC[3(1)]⊗A H.

For each w ∈W0, set 1w = {α ∈1 | w(α) > 0}. Then by [Abe 2019a, Theorem 3.13], if 1w1 =1w2 ,
we have

nw1C[3(1)]⊗A H' nw2C[3(1)]⊗A H.

Therefore we get (1) of the next lemma.
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Lemma 3.11. Let M be as in Lemma 3.10. If w1, w2 ∈W0 satisfies 1w1 =1w2 , then we have:

(1) nw1 M ⊗A H' nw2 M ⊗A H.

(2) HomA(H, nw1 M)' HomA(H, nw2 M).

Proof. We have proved (1). We prove (2).
Let ι be an automorphism of H defined in [Vignéras 2016, Proposition 4.23] and ζ : H → H an

antiautomorphism defined by ζ(Tw)= Tw−1 . (The linear map ζ is an antihomomorphism by [Abe 2019a,
4.1].) Set f = ι◦ ζ . Since ζ(E(λ))= Eo+(λ

−1) [Abe 2019a, Lemma 4.3] and ι(Eo+(λ))= (−1)`(λ)E(λ)
[Vignéras 2016, Lemma 5.31], we have f (E(λ))= (−1)`(λ)E(λ−1). In particular, f preserves A. It is
easy to see f 2(Tw)= Tw for any w ∈W (1). Hence f 2 is identity.

For a left H-module N , we define a right H-module N f by N f
= N as a vector space and the

action of X ∈H on N f is the action of f (X) on N . Then m⊗ X 7→ f (X)⊗m gives an isomorphism
(N f
⊗A H) f

'H⊗A N .
For a right H-module or A-module L , set L∗ = HomC(L ,C). Then this is a left H-module or

A-module, respectively. Let M be as in the lemma. Since f (E(λ)) = (−1)`(λ)E(λ−1), we have
supp(nw1 M∗) f

=w1(3
+(1)−1)=w1w1(3

+(1)). Hence (nw1 M∗) f
= nw1w1M ′ for some A-module M ′

such that supp M ′ = 3+(1). Since 1w1w1 = 1 \ (−w1(1w1)), we also have 1w1w1 = 1w2w1 . Hence
by (1), we get nw1w1M ′⊗AH' nw2w1M ′⊗AH. Therefore we get (nw1 M∗) f

⊗AH' (nw2 M∗) f
⊗AH.

Applying (·) f to the both sides and using (N f
⊗AH) f

'H⊗A N , we get H⊗A nw1 M∗ 'H⊗A nw2 M∗.
Hence we have (H⊗A nw1 M∗)∗ ' (H⊗A nw2 M∗)∗.

Now we have

(H⊗A nw1 M∗)∗ = HomC(H⊗A nw1 M∗,C)' HomA(H, nw1 M∗∗).

Hence we have HomA(H, nw1 M∗∗)'HomA(H, nw2 M∗∗). We have an embedding M ↪→ M∗∗. Let L be
the cokernel. Then supp L =3+(1) and we have an embedding L ↪→ L∗∗. Therefore we have an exact
sequence 0→ M→ M∗∗→ L∗∗ and it gives 0→ nwi M→ nwi M∗∗→ nwi L∗∗ for i = 1, 2. Hence we
get the following commutative diagram with exact rows:

0 0

HomA(H, nw1 M) HomA(H, nw2 M)

HomA(H, nw1 M∗∗) HomA(H, nw2 M∗∗)

HomA(H, nw1 L∗∗) HomA(H, nw2 L∗∗).

∼

∼

We have HomA(H, nw1 M)' HomA(H, nw2 M). �
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For given w ∈W , set J =1\1w. Then we have 1wJ =1\ J =1w. Therefore, to prove Lemma 3.10,
we may assume that w = wJ for some J ⊂1.

3E. Reduction to w = w1. Set

Aw =
⊕

λ∈w(3+(1))

C E(λ)⊂A. (3-2)

Lemma 3.12. Let M be an A-module such that supp M = w(3+(1)). Then we have HomA(H,M)−→∼

HomAw
(H,M).

Proof. Let ϕ : H→ M be an Aw-module homomorphism and we prove that ϕ is A-equivariant. Fix
λ0 ∈3(1) such that w−1(ν(λ0)) is dominant and regular. Since supp M =w(3+(1)), E(λ0) is invertible
on M . For µ ∈3(1) such that w−1(ν(µ)) is not dominant, we have E(µ)E(λ0)= 0. Hence for X ∈H,
we have ϕ(X E(µ))= E(λ0)

−1ϕ(X E(µ)E(λ0))= 0. Since E(µ)= 0 on nwM , E(µ)ϕ(X)= 0. Hence
we get ϕ(X E(µ))= 0= E(µ)ϕ(X). Therefore ϕ is A-equivariant. �

For later use, we also prove the following.

Lemma 3.13. Let M be an A-module such that supp M = w(3+(1)). Then M ⊗Aw
H−→∼ M ⊗A H.

Proof. Let m ∈ M and X ∈H. We prove m E(λ)⊗ X =m⊗ E(λ)X in M ⊗Aw
H for any λ ∈3(1). This

is true if w−1(ν(λ)) is dominant.
Assume that w−1(ν(λ)) is not dominant and take λ0 ∈ 3(1) such that w−1(ν(λ0)) is dominant and

ν(λ), ν(λ0) are not in the same chamber. Then we have E(λ0)E(λ)= 0. Note that E(λ0) is invertible on
M since supp M = w(3+(1)). Hence m⊗ E(λ)X = m E(λ0)

−1
⊗ E(λ0)E(λ)X = 0. On the other hand,

E(λ)= 0 on M , again by supp M = w(3+(1)). Hence m E(λ)⊗ X = 0. We get the lemma. �

An element E(λ) belongs to:

• Aw if 〈ν(λ),w(α)〉 ≥ 0 for any α ∈6+.

• j−∗J (H−J ∩AJ ) if 〈ν(λ), α〉 ≥ 0 for any α ∈6+ \6+J .

(The second one follows from the following fact: a basis of H−J ∩AJ is given by {E J (λ)} where λ runs
through as above [Abe 2019a, Lemma 4.2] and j−∗J (E J (λ))= E(λ) for such λ [Abe 2019b, Lemma 2.6].)
Since wJ (6

+)=6−J ∪ (6
+
\6+J )⊃6

+
\6+J , we have AwJ ⊂ j−∗J (H−J ∩AJ ).

Let M be an A-module. From the above argument, we have

HomAwJ
(H, nwJ M)'HomAwJ

(H⊗ j−∗J (H−J )
j−∗J (H−J ), nwJ M)'Hom(H−J , j−∗J )(H,HomAwJ

(H−J , nwJ M)).

Since j−∗J (H−J ∩AJ ) contains AwJ , we have AwJ ↪→H−J ∩AJ ↪→AJ . More precisely, AwJ ↪→AJ,wJ

via E(λ) 7→ E J (λ). (If E(λ) ∈ AwJ , then w−1
J (ν(λ)) is dominant with respect to 1, hence it is also

dominant with respect to J . Therefore E J (λ) ∈AJ,wJ .)

Lemma 3.14. We regard AwJ as a subalgebra of AJ via the above embedding. Let M be an A-module
such that supp M = 3+(1). Then nwJ M is uniquely extended to AJ , namely there exists a unique
AJ -module MJ such that supp MJ =3

+(1)J and nwJ MJ |AwJ
= nwJ M |AwJ

.
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Proof. First we prove that nwJ M is uniquely extended to AJ,wJ . Take λ0 ∈3S(1) such that:

• 〈ν(λ0), α〉 = 0 for all α ∈6+J .

• 〈ν(λ0), α〉> 0 for all α ∈6+ \6+J .

Note that wJ (6
+

J ) = 6
−

J and wJ (6
+
\6+J ) = 6

+
\6+J . Hence we have λ0 ∈ wJ (3

+(1)), E J (λ0) is
central in AJ,wJ (since λ0 ∈ 3S(1) is central in 3(1)) and E J (λ0) is invertible by the first condition
and Remark 2.1. The embedding AwJ ↪→ AJ,wJ induces AwJ [E(λ0)

−1
] ↪→ AJ,wJ . We prove that this

is surjective. Let E J (µ) ∈ AJ,wJ . Then we have 〈wJ (ν(µ)), α〉 ≥ 0 for any α ∈ 6+J . Therefore, for
sufficiently large n ∈ Z>0, we have λn

0µ ∈ wJ (3
+(1)). The elements ν(λ0) and ν(µ) are in the same

closed Weyl chamber wJν(3
+(1)J ) with respect to J . Hence E J (λn

0)E
J (µ)= E J (λn

0µ) which is in the
image of AwJ ↪→AJ,wJ . Therefore AwJ [E(λ0)

−1
] ↪→AJ,wJ is surjective. Now we get the lemma since

E(λ0) is invertible on nwJ M . (Recall that supp nwJ M = wJ (3
+(1)) and λ0 ∈ wJ (3

+(1)).)
So we have the extension NJ of nwJ M to AJ,wJ . Define the action of E J (λ) on NJ by zero for

λ ∈3(1) \wJ (3
+(1)J ). Then NJ is an AJ -module such that supp NJ = wJ (3

+(1)J ) which is desired.
From the definition of the support, this is the only way to extend the module NJ to AJ . We get the
lemma. �

Take MJ as in the lemma. We have

HomAwJ
(H,nwJ M)'Hom(H−J , j−∗J )(H,HomAwJ

(H−J ,nwJ M))'Hom(H−J , j−∗J )(H,HomAwJ
(H−J ,nwJ MJ )).

Lemma 3.15. The homomorphisms

HomAJ (HJ , nwJ MJ )→ HomAwJ
(HJ , nwJ MJ )→ HomAwJ

(H−J , nwJ MJ )

are both isomorphisms.

Proof. The first is an isomorphism by an argument similar to the proof of Lemma 3.12.
Take λ0 ∈3(1) such that:

• λ0 ∈ Z(WJ (1)).

• 〈ν(λ0), α〉> 0 for any α ∈6+ \6+J .

Then HJ = H−J [E
J (λ0)

−1
] [Abe 2019b, Proposition 2.5]. Since E J (λ0) is invertible in AJ , it is also

invertible on nwJ MJ . (Note that nwJ MJ is an AJ -module.) Hence the second homomorphism is an
isomorphism. �

Therefore we get

HomA(H, nwJ M)' Hom(H−J , j−∗J )(H,HomAJ (HJ , nwJ MJ )).

Lemma 3.16. Let X be an HJ -module and assume that X → X ⊗HJ c-IndL J
I (1)J

1 is injective. Then
Y → Y ⊗H c-IndG

I (1) 1 is also injective for Y = Hom(H−J , j−∗J )(H, X).
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Therefore for the proof of Lemma 3.10, it is sufficient to prove that

HomAJ (HJ , nwJ MJ )→ HomAJ (HJ , nwJ MJ )⊗HJ c-IndL J
I (1)J

1

is injective, namely we may assume that w = w1.

Proof. Set J ′ = −w1(J ) and put n = nw1nwJ . Then l 7→ nln−1 gives an isomorphism L J → L J ′ and
sends I (1)J to I (1)J ′ . Therefore it induces an isomorphism HJ → HJ ′ . Define an HJ ′-module X ′

as the pull-back of X by this isomorphism (see [Abe 2019a]). Then X → X ⊗HJ c-IndL J
I (1)J

1 induces
X ′→ X ′⊗HJ ′

c-IndL J ′

I (1)J ′
1 and the latter map is also injective. By [Abe 2019a, Proposition 4.15], we have

Y ' X ′⊗(HJ ′ , j+J ′ )
H. By [Vignéras 2015, Proposition 4.1], the functor (·)⊗(H+J ′ , j+J ′ )

H is exact. Hence,
using the assumption in the lemma, the map

Y ' X ′⊗(H+J ′ , j+J ′ )
H→ (X ′⊗HJ ′

c-IndL J ′

I (1)J ′
1)I (1)J ′ ⊗(H+J ′ , j+J ′ )

H

is injective. By [Ollivier and Vignéras 2018, Proposition 4.4]

(X ′⊗HJ ′
c-IndL J ′

I (1)J ′
1)I (1)J ′ ⊗(H+J ′ , j+J ′ )

H' (IndPJ ′
(X ′⊗HJ ′

c-IndL J ′

I (1)J ′
1))I (1).

In particular,

(X ′⊗HJ ′
c-IndL J ′

I (1)J ′
1)I (1)J ′ ⊗(H+J ′ , j+J ′ )

H→ IndPJ ′
(X ′⊗HJ ′

c-IndL J ′

I (1)J ′
1)

is injective. Finally, by [Ollivier and Vignéras 2018, Corollary 4.7],

IndPJ ′
(X ′⊗HJ ′

c-IndL J ′

I (1)J ′
1)' Y ⊗H c-IndG

I (1) 1.

Combining all of these, we conclude the lemma. �

3F. Some more reductions. By the definition of H+∅, H−∅ and [Abe 2019b, Lemma 2.6], we have:

j+∅ (H
+

∅)=Aw1 and j−∗∅ (H−∅)=A1.

See the argument in Section 3E. By these identities, we regard A1 and Aw1 as a subalgebra of H∅ =A∅.
Let M be an A-module such that supp M =3+(1). By Lemma 3.12, we have HomA(H, nw1M) '

HomAw1
(H, nw1M). By Lemma 3.14, there exists an A∅-module M∅ such that M |A1 ' M∅|A1 . It is

easy to see that nw1M |Aw1
' nw1M∅|Aw1

. We have

HomA(H, nw1M)' Hom(H+∅, j+∅)
(H, nw1M∅)

' Hom(H−∅, j−∅)
(H,M∅) [Abe 2019b, Proposition 4.13]

' M∅⊗(H−∅, j−∗∅ )H [Abe 2019b, Corollary 4.19]

= M ⊗A1 H. ( j−∗∅ (H−∅)=A1)

By Lemma 3.13, we have M ⊗A1 H' M ⊗A H. Hence we get the following lemma:

Lemma 3.17. We have HomA(H, nw1M)' M ⊗A H for any A-module M such that supp M =3+(1)
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Therefore, to prove Lemma 3.10, hence Theorem 3.5, it is sufficient to prove the following.

Lemma 3.18. Let M be an A-module such that supp M =3+(1). Then M ⊗AH→ M ⊗A c-IndG
I (1) 1 is

injective.

The group algebra C[Zκ ] is a subalgebra of A via the map t 7→ Tt = E(t) for t ∈ Zκ . Let Ẑκ denote
the set of characters of Zκ . Since the order of Zκ is prime to p, M is semisimple as a C[Zκ ]-module. Let
ψ ∈ Zκ and set Mψ ={m ∈M |mTt =ψ(t)m (t ∈ Zκ)}. Since Zκ is normal in3(1), the conjugate action of
3(1) on Zκ induces the action on Ẑκ . The formula E(λ)Tt = Tλtλ−1 E(λ) implies that MψE(λ)⊂Mλ−1(ψ).
For an orbit ω of this action in Ẑκ , we put Mω =

⊕
ψ∈ω Mψ . Then Mω is stable under the A-action and

we have M =
⊕

ω Mω. Therefore we may assume that M = Mω for some ω to prove Lemma 3.18.
Let α ∈1 and consider the image of Z∩L ′

{α} in3(1). We denote this subgroup by3′α(1). Consider the
following condition: ψ is trivial on Zκ ∩3′α(1). Since Zκ ∩3′α(1) is normal in 3(1), for t ∈ Zκ ∩3′α(1)
and λ ∈3(1), we have (λψ)(t)= ψ(λ−1tλ)= 1 if ψ satisfies this condition. Hence this condition only
depends on 3(1)-orbit.

We start to prove Lemma 3.19 by induction on dim(G). Assume that ω is a 3(1)-orbit in Ẑκ . First
we assume that there exists α ∈1 such that ψ is not trivial on Zκ ∩3′α(1) for some (equivalently any)
ψ ∈ ω. Then by [Abe 2019a, Theorem 3.13], we have M ⊗A H' nsα M ⊗A H.

We prove that in this case the lemma follows from that for a Levi subgroup. The argument is similar to
that in Section 3E. Set J =1 \ {α}. Then we have nsα M ⊗A H ' nw1wJ M ⊗A H by Lemma 3.11. By
Lemma 3.13, we have nw1wJ M ⊗A H ' nw1wJ M ⊗Aw1wJ

H. As in the argument in Section 3E using
[Abe 2019b, Lemma 2.6], we have j+J (H

+

J )⊃Aw1wJ . Therefore we have

nw1wJ M ⊗Aw1wJ
H' (nw1wJ M ⊗Aw1wJ

H+J )⊗(H+J , j+J )
H.

By the same argument of the proof of Lemma 3.14, there exists an AJ -module MJ such that

nw1wJ MJ |Aw1wJ
= nw1wJ M |Aw1wJ

and supp MJ =3
+(1)J .

By a similar argument of the proof of Lemma 3.15, the homomorphisms

nw1wJ MJ ⊗Aw1wJ
H+J → nw1wJ MJ ⊗Aw1wJ

HJ → nw1wJ MJ ⊗AJ HJ

are isomorphisms. Now by inductive hypothesis, the homomorphism

nw1wJ MJ ⊗AJ HJ → (nw1wJ MJ ⊗AJ HJ )⊗HJ c-IndL J
I (1)J

1

is injective. By the argument in the proof of Lemma 3.16, this implies that for Y = (nw1wJ MJ ⊗AJ

HJ )⊗(H+J , j+J )
H' nw1wJ M ⊗Aw1wJ

H, the homomorphism

Y → Y ⊗H c-IndG
I (1) 1

is injective. Hence we get the lemma for M .
Therefore we may assume that there is no such α. Hence it is sufficient to prove the following to prove

Lemma 3.18.
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Lemma 3.19. Let M be an A-module such that supp(M)=3+(1) and Zκ ∩3′α(1) acts trivially on M
for all α ∈1. Then M ⊗A H→ M ⊗A c-IndG

I (1) 1 is injective.

We prove this lemma in Section 3J.

3G. Hecke modules. As discussed in 3D, we have the following

M ⊗A H' M ⊗C[3(1)] (C[3(1)]⊗A H),

We decompose this module along the action of Zκ .
Set C[3(1)]ψ = { f ∈ C[3(1)] | τt f = ψ(t) f (t ∈ Zκ)} and for a 3(1)-stable subset ω ⊂ Ẑκ we put

C[3(1)]ω =
⊕

ψ∈ω C[3(1)]ψ . From the definition, it is obvious that C[3(1)]ω is invariant under the
right action of C[3(1)].

Lemma 3.20. We have C[3(1)]ω =
⊕

ψ∈ω{ f ∈ C[3(1)] | f τt = ψ(t) f (t ∈ Zκ)}.

Proof. Let ψ ∈ ω, f ∈ C[3(1)]ψ and we write f =
∑

λ∈3(1) cλτλ where cλ ∈ C . Set

e = #Z−1
κ

∑
t∈Zκ

ψ(t)−1τt ∈ C[Zκ ].

Then e f = f and eτt = ψ(t)e for each t ∈ Zκ . We have eτλτt = eτλtλ−1τλ = (λ
−1ψ)(t)eτλ. Since

λ−1ψ ∈ ω, we get the lemma. �

Therefore C[3(1)]ω is a two-sided ideal of C[3(1)]. Using Zκ -action, some objects appearing here
are decomposed. Here is a list:

• C[3(1)] = C[3(1)]ω×C[3(1)]Ẑκ\ω as C-algebras.

• A=Aω×AẐκ\ω
as C-algebras with the obvious notation.

• The homomorphism (3-1) induces Aω→ C[3(1)]ω and AẐκ\ω
→ C[3(1)]Ẑκ\ω.

Let M be an A-module such that supp M =3+(1) and M = Mω (see Section 3F). Then as in Section 3D,
M is a C[3(1)]-module and this action factors through C[3(1)] → C[3(1)]ω. Hence we have

M ⊗A H' M ⊗C[3(1)]ω (C[3(1)]ω⊗A H) (3-3)

In [Abe 2019a, Section 3], it is proved that, for any w ∈W0, 1⊗1 7→ 1⊗T ∗n
w1w

−1
gives a (C[3(1)],H)-

bimodule homomorphism

nwC[3(1)]⊗A H→ nw1C[3(1)]⊗A H

which is injective [loc. cit., Proposition 3.12]. The homomorphism is compatible with the decomposition
nwC[3(1)]⊗AH'nwC[3(1)]ω⊗AH⊕nwC[3(1)]Ẑκ\ω⊗AH. Hence we get the (C[3(1)],H)-bimodule
homomorphism

nwC[3(1)]ω⊗A H→ nw1C[3(1)]ω⊗A H (3-4)
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which is again injective. By [loc. cit., Theorem 3.13], the image of this homomorphism only depends
on 1w. Let X J be the image of this homomorphism where J =1w. This is a (C[3(1)]ω,A)-module.
We have M ⊗A H' M ⊗C[3(1)]ω X1 by (3-3).

Lemma 3.21. If J ′ ⊃ J , then X J ′ ⊂ X J .

Proof. Note that1w1wJ = J . Hence, by definition, X J is a (C[3(1)],H)-submodule in nw1C[3(1)]⊗AH
generated by 1⊗ T ∗nw1wJw1

. If J ′ ⊃ J , then

`(w1wJwJ ′w1)= `(wJwJ ′)= `(wJ ′)− `(wJ )= `(w1wJ ′w1)− `(w1wJw1).

Hence T ∗nw1wJ ′w1
= T ∗nw1wJw1

T ∗nw1wJwJ ′w1
. Therefore 1 ⊗ T ∗nw1wJ ′w1

∈ X J . Since X J ′ is generated by
1⊗ T ∗nw1wJ ′w1

, we have X J ′ ⊂ X J . �

Lemma 3.22. X J ∈ C.

Proof. Take λ ∈ 3S(1) such that ν(λ) is regular dominant. Then we have zλ =
∑

v∈W0
E(nvλn−1

v )

by Lemma 3.2. Let f ⊗ X ∈ X J . Then, since zλ is in the center, we have ( f ⊗ X)zλ = f ⊗ zλX =
f ⊗

∑
v∈W0

E(nvλn−1
v )X = f τλ⊗X in nw1C[3(1)]ω⊗AH. Since f 7→ f τλ is invertible, zλ is invertible

on Xw. �

Note that nw1C[3(1)]ω ⊗A H ' nw1C[3(1)]ω ⊗Aw1
H [Abe 2019a, Proposition 3.12]. Hence

X∅ = nw1C[3(1)]ω⊗(H+∅, j+∅)
H. This is a parabolically induced module [Vignéras 2015]. By [loc. cit.,

Example 3.2, Lemma 3.6], we have nw1C[3(1)]ω ⊗A H =
⊕

w∈W0
nw1C[3(1)]ω ⊗ Tnw . Since T ∗nw ∈

Tnw +
∑

v<w C[Zκ ]Tnv , we have nw1C[3(1)]ω⊗A H=
⊕

w∈W0
nw1C[3(1)]ω⊗ T ∗nw .

Set Yw = nw1C[3(1)]ω⊗ T ∗nw ⊂ X∅. Then the subspace Yw is the image of nwC[3(1)]ω⊗ 1 by the
injective homomorphism (3-4). In particular, Yw is A-stable and isomorphic to nwC[3(1)]ω. We have
X∅ =

⊕
w∈W0

Yw. This is the decomposition in Lemma 3.7. By the functoriality of the decomposition,
we have X J =

⊕
w∈W0

(X J ∩ Yw).

3H. Representations of G. Let ω be a3(1)-orbit in Ẑκ such that for any α∈1, ψ is trivial on Zκ∩3′α(1)
for some (equivalently any) ψ ∈ ω. Recall that we have fixed a special parahoric subgroup K . Irreducible
representations V of K are parametrized by a pair (ψ, J ) where ψ is a character of Zκ and J a certain
subset of 1. Here for V , ψ and J are given by the following: ψ ' V I (1) and W0,J = StabW0(V

I (1)). Note
that by the assumption on ω, (ψ, J ) gives a parameter for any ψ ∈ ω and J ⊂1 [Abe et al. 2017, III.8].
Let Vψ,J be the irreducible representation of K which corresponds to (ψ, J ) and put VJ =

⊕
ψ∈ω Vψ−1,J .

In the rest of this paper, we fix a basis of V I (1)
ψ−1,J for each ψ and J .

Lemma 3.23. (1) The Hecke algebra EndZ (c-IndZ
Z∩K V I (1)

J ) is isomorphic to C[3(1)]ω.

(2) We have the Satake homomorphism

EndG(c-IndG
K VJ ) ↪→ EndZ (c-IndZ

Z∩K V I (1)
J )' C[3(1)]ω

and its image is C[3+(1)]ω.
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Proof. Let H(ψ−1
1 , ψ−1

2 ) is the space of functions ϕ : Z→ C such that suppϕ is compact and ϕ(t1zt2)=
ψ−1

1 (t1)ϕ(z)ψ−1
2 (t2) for any z ∈ Z and t1, t2 ∈ Z ∩ K . Since V I (1)

J '
⊕

ψ∈ω ψ
−1, a standard argument

for Hecke algebras implies

EndZ (IndZ
Z∩K V I (1)

J )'
⊕

ψ1,ψ2∈ω

HomZ (c-IndZ
Z∩K ψ

−1
1 , c-IndZ

Z∩K ψ
−1
2 )'

⊕
ψ1,ψ2∈ω

H(ψ−1
1 , ψ−1

2 ).

This space is a subalgebra of HZ where HZ is the functions ϕ on Z which is invariant under the left
(and equivalently right) multiplication by Z ∩ I (1) and whose support is compact. The homomorphism
ϕ 7→

∑
z∈Z/(Z∩K ) ϕ(z)τz gives an isomorphism HZ ' C[3(1)]. As a subspace of both sides, it is easy to

see that we get the desired isomorphism.
The Satake transform

HomG(c-IndG
K Vψ1,J , c-IndG

K Vψ2,J )→ HomZ (c-IndZ
Z∩K ψ

−1
1 , c-IndZ

Z∩K ψ
−1
2 )

is defined in [Henniart and Vignéras 2012, 2] and the image is described in [Abe et al. 2018b, Theorem 1.1].
�

Remark 3.24. In the identification (1) in the lemma, we need to fix an isomorphism V I (1)
J '

⊕
ψ∈ω ψ

−1.
We use our fixed basis of V I (1)

ψ−1,J for this isomorphism.

By the lemma, C[3+(1)]ω acts on c-IndG
K VJ . Define a representation πJ of G by

πJ = C[3(1)]ω⊗C[3+(1)]ω c-IndG
K VJ .

We prove π I (1)
J ' X J .

Recall that the H-module (c-IndG
K VJ )

I (1) is described as follows. Let Hf be the Hecke algebra attached
to the pair (K , I (1)). Then V I (1)

J is naturally a right Hf-module and the algebra Hf is a subalgebra of
H with a basis {Tw | w ∈W0(1)} where W0(1) is the inverse image of W0 ⊂W in W (1). Then we have
(c-IndG

K VJ )
I (1)
' V I (1)

J ⊗Hf H [Vignéras 2017, Proposition 7.2].

Remark 3.25. In the argument below, we will use results in [Abe 2017]. In [loc. cit.], we study an
Hf-module denoted by ηJ

=
⊕

ψ∈Ẑκ
V I (1)
ψ,J . Using a similar argument in [loc. cit.] (or taking a direct

summand of results), results are also true for an Hf-module V I (1)
J .

We have an action of C[3+(1)]ω on V I (1)
J ⊗Hf H [loc. cit., Proposition 3.4] and the above isomorphism

(c-IndG
K VJ )

I (1)
' V I (1)

J ⊗Hf H is C[3+(1)]ω-equivariant. (This can be proved by the same argument in
the proof of [loc. cit., Proposition 5.1].)

Lemma 3.26. Let A be a ring and S ⊂ A be a multiplicative subset of the center of A. Then for a smooth
A[G]-module π , we have (S−1π)I (1)

' S−1π I (1).

Proof. Both sides can be regarded as a subspace of S−1π . Any element in S−1π I (1) is I (1)-invariant, hence
S−1π I (1)

⊂ (S−1π)I (1). Let v/s ∈ (S−1π)I (1) where v ∈ π and s ∈ S. Let g1, . . . , gn be a representatives
of I (1)/StabI (1)(v). Since v/s is gi -invariant, there exists si ∈ S such that si (giv− v) = 0. Therefore
s1 · · · sn(giv − v) = 0. Set v′ = s1 · · · snv. Then for any g ∈ I (1) there exists i and g′ ∈ StabI (1)(v)
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such that g = gi g′. Hence gv′ = s1 · · · sn(gi g′v) = s1 · · · snv = v′. Therefore v′ ∈ π I (1). Hence
v/s = v′/(ss1 · · · sn) ∈ S−1π I (1). �

Therefore we have

π
I (1)
J ' C[3(1)]ω⊗C[3+(1)]ω V I (1)

J ⊗Hf H.

By [Abe 2017, Proposition 3.9], we have

V I (1)
J ⊗Hf H' Im(nw1wJ C[3+(1)]ω⊗A H→ nw1wJ C[3(1)]ω⊗A H).

Hence we have an isomorphism C[3(1)]ω⊗C[3+(1)]ω V I (1)
J ⊗Hf H' X J . Therefore π I (1)

J ' X J .
We get an embedding X J 'π

I (1)
J ↪→πJ . Hence there exists a homomorphism X J⊗Hc-IndG

I (1) 1→πJ .
Let J =1 and applying M⊗C[3(1)] to

X1→ X1⊗H c-IndG
I (1) 1→ π1

and using M ⊗C[3(1)] X1 ' M ⊗A H (3-3), we get

M ⊗C[3(1)] X1 ' M ⊗A H→ M ⊗A c-IndG
I (1) 1→ M ⊗C[3(1)] π1.

Hence for Lemma 3.19, it is sufficient to prove that M ⊗C[3(1)] X1→ M ⊗C[3(1)] π1 is injective.
We have an isomorphism π∅ ' IndG

B
(c-IndZ

Z∩K V I (1)
J ) [Henniart and Vignéras 2012, Theorem 1.2].

(To be precisely, the direct sum of a result in [loc. cit., Theorem 1.2].) An injective embedding
πJ → IndG

B
(c-IndZ

Z∩K V I (1)
J )' π∅ was given in [loc. cit., Definition 2.1]. Hence we have a diagram of

(C[3(1)],H)-bimodules
X J X∅

πJ π∅.

When J =∅, X J → X∅ and πJ → π∅ are both identities. Hence this diagram is commutative.

Lemma 3.27. This diagram is commutative for any J .

Proof. Fix ψ−1
∈ ω. It is sufficient to prove that the following diagram is commutative:

V I (1)
ψ,J ⊗Hf H nw1C[3(1)]ψ ⊗A H

(c-IndG
K Vψ,J )I (1) IndG

B
(c-IndZ

Z∩K V I (1)
ψ,∅ )

I (1).

(3-5)

Note that this diagram is commutative when J =∅.
Let v0 ∈ V I (1)

ψ,J be our fixed basis. Define ϕJ ∈ (c-IndG
K Vψ,J )I (1) by suppϕJ = K and ϕJ (1) = v0.

Then the H-module map V I (1)
ψ,J ⊗H f H → c-IndG

K (Vψ,J ) is given by v0 ⊗ 1 7→ ϕJ . Define f0 ∈

IndG
B
(c-IndZ

Z∩K V I (1)
ψ,∅ )

I (1) by supp f0 = Bnw1 I (1), supp f0(n−1
w1
) = Z ∩ K and f0(n−1

w1
)(1) = v0. Then
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the function corresponding to ϕ∅ under c-IndG
K V∅→ IndG

B
(c-IndZ

Z∩K V I (1)
∅ ) is f0Tnw1 [Abe et al. 2017,

IV.9 Proposition].
Setw=w1wJ . Then X J =nwC[3(1)]ω⊗AH. The homomorphism V I (1)

ψ,J ⊗HfH→nwC[3(1)]ψ⊗AH
is given by v0⊗ 1 7→ 1⊗ Tnw [Abe 2017, Lemmas 3.8 and 3.10].

Consider the case of J =∅. Then the image of v0⊗ 1 ∈ V I (1)
ψ,∅ ⊗Hf H under

V I (1)
ψ,∅ ⊗Hf H→ (c-IndG

K Vψ,∅)I (1)
→ IndG

B
(c-IndZ

Z∩K V I (1)
ψ,∅ )

I (1)

is

v0⊗ 1 7→ ϕ∅ 7→ f0Tnw1 .

On the other hand, the image of v0⊗ 1 ∈ V I (1)
ψ,∅ ⊗Hf H in nw1C[3(1)]ψ ⊗A H is 1⊗ Tnw1 . As remarked

before the lemma, (3-5) is commutative when J =∅. Hence the homomorphism nw1C[3(1)]ψ ⊗AH→
IndG

B
(c-IndZ

Z∩K V I (1)
ψ,∅ )

I (1) sends 1⊗Tnw1 to f0Tnw1 . Take λ from the center of3(1) such that 〈α, ν(λ)〉<0
for any α ∈ 6+. Then by [Abe 2019b, Lemma 2.17], `(nw1λ) = `(λ)− `(nw1). Hence by [Vignéras
2016, Theorem 5.25, Example 5.32], Tnw1 E(n−1

w1
λ)= E(λ). Therefore 1⊗ Tnw1 E(n−1

w1
λ)= 1⊗ E(λ)=

τn−1
w1
λnw1
⊗1. On the other hand, f0Tnw1 E(n−1

w1
λ)= f0 E(λ)=τn−1

w1
λnw1

f0 by [Abe et al. 2017, IV.10 Propo-
sition]. Hence the homomorphism nw1C[3(1)]ψ ⊗A H→ IndG

B
(c-IndZ

Z∩K V I (1)
ψ,∅ )

I (1) sends τn−1
w1
λnw1
⊗ 1

to τn−1
w1
λnw1

f0. Therefore 1⊗ 1 sends to f0.
Let a = v0⊗ 1 ∈ V I (1)

ψ,J ⊗Hf H and we consider the image of a in IndG
B
(c-IndZ

Z∩K V I (1)
ψ,∅ )

I (1) in the two
ways. The image of a in nw1C[3(1)]ψ ⊗A H is 1⊗ T ∗n

w1w
−1

Tnw by [Abe 2017, Proposition 3.11] and

the definition of X J → X∅. Therefore the image of a under V I (1)
ψ,J ⊗Hf H→ nw1C[3(1)]ψ ⊗A H→

IndG
B
(c-IndZ

Z∩K V I (1)
ψ,∅ ) is f0T ∗n

w1w
−1

Tnw .
By [Abe et al. 2017, IV.9 Proposition] (for J = 1), we have f0T ∗n

w1w
−1
=
∑

v≤w1w−1 f0Tnv . Since
w1w

−1
= w1wJw1, {v ∈W0 | v ≤ w1w

−1
} = w1W0,Jw1. Hence

f0T ∗n
w1w

−1
Tnw =

∑
v∈WJ,0

f0Tnw1vw1 Tnw1wJ
.

We have

`(w1vw1 ·w1wJ )= `(w1vwJ )= `(w1)−`(vwJ )= `(w1)−`(wJ )+`(v)= `(w1wJ )+`(w1vw1).

Hence Tnw1vw1 Tnw1wJ
=Tnw1vwJ

. Therefore, replacing v with vwJ , we get f0T ∗n
w1w

−1
Tnw=

∑
v∈WJ,0

f0Tnw1v .

This is the image of ϕJ in IndG
B
(c-IndZ

Z∩K V I (1)
ψ,∅ ) by [Abe et al. 2017, IV.7 Corollary]. Hence the diagram

(3-5) is commutative if we start with a. Since the element a generates V I (1)
ψ,J ⊗Hf H as an H-module, the

diagram (3-5) is commutative. �

Therefore we may regard πJ and X J as a subspace of π∅. We have π∅ ' IndG
B
(c-IndZ

Z∩K V I (1)
J ). By

the same argument in the proof of Lemma 3.23, we have c-IndZ
Z∩K V I (1)

J 'C[3(1)]ω. Here again we use
our fixed basis. Hence we have π∅ ' IndG

B
C[3(1)]ω. We identify πJ with the image in IndG

B
C[3(1)]ω.
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Remark 3.28. By [Abe et al. 2017, IV.7 Proposition] and the decomposition G =
⋃
w∈W0

Bnw I (1)
implies that (IndG

B
C[3(1)]ω)I (1)

=
⊕

w∈W0
C[3(1)]ω f0Tnw . Since X∅ =

⊕
w∈W0

C[3(1)]ω⊗ Tnw (see
after the proof of Lemma 3.22) and X∅→ π∅ sends 1⊗ 1 to f0 (see the proof of the previous lemma),
we have X∅ ' π

I (1)
∅ . Note that supp f0Tnw = Bnw1w I (1) [Abe et al. 2017, IV.7 Proposition].

3I. Filtrations. As in the previous subsection, letω be a3(1)-orbit in Ẑκ such that, for some (equivalently
any) ψ ∈ ω, ψ is trivial on Zκ ∩3′α(1) for any α ∈1. In this subsection, we use the following notation:
for A ⊂W0, B AB =

⋃
v∈A BnvB.

For a subset A ⊂W0 which is open (namely, if v1 ∈W0, v2 ∈ A and v1 ≥ v2 then v1 ∈ A), we put

π∅,A = { f ∈ IndG
B

C[3(1)]ψ | supp f ⊂ B AB}.

We also put
X∅,A =

⊕
v∈A

nw1C[3(1)]⊗ Tnw1v .

Lemma 3.29. Let h ∈ X∅. Then h ∈ X∅,A if and only if its image in π∅ is in π∅,A. Namely we have
X∅,A = X∅ ∩π∅,A.

Proof. Let H ∈ π∅ be the image of h. By the description of X∅→ π∅ (see Remark 3.28), h ∈ X∅,A if
and only if supp H ⊂ B AI (1). For each v ∈ A, we have

Bv I (1)= Bv(I (1)∩ v−1 Bv)(I (1)∩ v−1 Bv)= Bv(I (1)∩ v−1 Bv)⊂ B Bv ⊂
⋃
v′≥v

Bv′B ⊂ B AB.

Here we use [Abe 2012, Lemma 2.4]. Hence if h ∈ X∅,A then H ∈ π∅,A.
Assume that H ∈ π∅,A and supp(H)∩ Bv I (1) 6=∅ for v ∈W0. Since H is I (1)-invariant, we have

H(v) 6= 0. Therefore v ∈ A. Hence supp(H)⊂
⋃
v∈A Bv I (1). We get h ∈ X∅,A. �

Set X J,A = X J ∩ X∅,A and πJ,A = πJ ∩π∅,A. Let w ∈ A be a minimal element and put A′ = A \ {w}.
Then we have an embedding

X1,A/X1,A′ ↪→ π1,A/π1,A′ .

For each α ∈1, take a lift aα ∈3′α(1) of a generator of3′α(1)/(Zκ∩3
′
α(1)) such that 〈ν(aα), α〉> 0 [Abe

et al. 2017, III.4].
The element #Z−1

κ

∑
ψ∈ω

∑
t∈Zκ ψ(t)

−1τaα t is in C[3(1)]ω and does not depend on a choice of a lift
(recall that ψ is trivial on Zκ ∩3′α(1)). We denote it by τα . Set cw =

∏
w−1(α)>0(1−τα). Then as in [Abe

et al. 2017, V.8 Proposition], we have

π1,A/π1,A′ = cw(π∅,A/π∅,A′). (3-6)

The space π∅,A/π∅,A′ can be identified with the space of compactly supported functions on B\BwB
with values in C[3(1)]ω, which is isomorphic to C∞c (B\BwB)⊗C C[3(1)]ω where C∞c (B\BwB) is
the space of locally constant compact support functions on B\BwB with values in C . Hence it is free as
C[3(1)]ω-module. By the following lemma and (3-6), π1,A/π1,A′ is also free.
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Lemma 3.30. The element cw ∈ C[3(1)]ω is not a zero divisor.

Proof. The same proof in [Abe 2019a, Lemma 3.10] can apply. �

Lemma 3.31. We have X1,A/X1,A′ = cw(X∅,A/X∅,A′).

Proof. Since X1,A = π1,A ∩ X∅,A, we have

X1,A/X1,A′ = π1,A/π1,A′ ∩ X∅,A/X∅,A′

and the right-hand side is
cw(π∅,A/π∅,A′)∩ X∅,A/X∅,A′ .

Let H be in this set. Since π∅,A/π∅,A′ is a free C[3(1)]ω-module, the exact sequence 0→ π∅,A′ →

π∅,A → π∅,A/π∅,A′ → 0 splits. Hence π∅ ' π∅,A′ ⊕ (π∅,A/π∅,A′). Therefore cwπ∅,A ' cwπ∅,A′ ⊕
cw(π∅,A/π∅,A′). Hence cw(π∅,A/π∅,A′)' (cwπ∅,A)/(cwπ∅,A′). Hence there exists H ′ ∈ π∅,A such that
H is the image of cwH ′. Since H ∈ X1,A/X1,A′ , there exists h ∈ X1,A such that cwH ′− h is zero in
X1,A/X1,A′ . In particular it is zero in cw(π∅,A/π∅,A′) = (cwπ∅,A)/(cwπ∅,A′). Therefore there exists
H ′′∈π∅,A′ such that cwH ′−h=cwH ′′. Replacing H ′ with H ′−H ′′, we may assume cwH ′∈ X∅,A. Recall
that H ′ is a function with values in C[3(1)]ω. Since the element cw is not a zero divisor in C[3(1)]ω,
cwH ′ ∈ π∅,A implies H ′ ∈ π∅,A. Since cwH ′ ∈ X∅, cwH ′ is I (1)-invariant. Hence H ′ is also I (1)-
invariant, again since cw is not a zero divisor. Therefore H ′ ∈π I (1)

∅ = X∅. Hence H ′ ∈ X∅∩π∅,A= X∅,A.
Therefore H ∈cw(X∅,A/X∅,A′). The reverse inclusion cw(π∅,A/π∅,A′)∩X∅,A/X∅,A′⊃cw(X∅,A/X∅,A′)

is obvious. We get the lemma. �

3J. Proof of Lemma 3.19. Let A, A′, w be as in the previous subsection.

Lemma 3.32. The exact sequences of C[3(1)]ω-modules

0→ π1,A′→ π1,A→ π1,A/π1,A′→ 0 and 0→ X1,A′→ X1,A→ X1,A/X1,A′→ 0

split.

Proof. By (3-6) and from the fact that π∅,A/π∅,A′ is free, π1,A/π1,A′ is also free. Hence the first exact
sequence splits. Using Lemma 3.31, the same argument can apply for the second sequence. �

Lemma 3.33. The inclusion X1,A/X1,A′ ↪→ π1,A/π1,A′ has a section as C[3(1)]ω-modules.

Proof. First we construct a section of X∅,A/X∅,A′→ π∅,A/π∅,A′ . Recall that X∅,A = π
I (1)
∅,A . Note that

X∅,A/X∅,A′ ' C[3(1)]ω and the section is given by f 7→ f (w). For H ∈ π∅,A, consider H ′ ∈ π∅,A
which is I (1)-invariant, supp(H ′) = Bv I (1) and H ′(v) = H(v). Then H 7→ H ′ gives a section of
X∅,A/X∅,A′ → π∅,A/π∅,A′ . Multiplying cw and using (3-6), Lemma 3.31, we get a section of the
C[3(1)]ω-module homomorphism X1,A/X1,A′→ π1,A/π1,A′ . �

Proof of Lemma 3.19. Set πM
A = M ⊗C[3(1)]ω π1,A and X M

A = M ⊗C[3(1)]ω X1,A. Then by Lemma 3.32,
πM

A′ and X M
A′ are a subspaces of πM

A and X M
A , respectively. By Lemma 3.33, X M

A /X M
A′ → πM

A /π
M
A′ is

injective.
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We prove that X M
A → πM

A is injective by induction on #A. We have the following diagram

0 X M
A′ X M

A X M
A /X M

A′ 0

0 πM
A′ πM

A πM
A /π

M
A′ 0.

The homomorphism X M
A′→ πM

A′ is injective by inductive hypothesis and X M
A /X M

A′→ πM
A /π

M
A′ is injective

as we have seen. Hence X M
A → πM

A is injective. Setting A =W0, we get the lemma. �

4. Theorem

Let Cf be the full subcategory of C consisting of finite-dimensional modules. Note that this category is
closed under submodules, quotients and extensions.

Theorem 4.1. Let M ∈ Cf. Then (M ⊗H c-IndG
I (1) 1)I (1)

' M.

Proof. The theorem is true for simple M by [Abe 2019a, main theorem; Abe et al. 2018a, Theorem 4.17
and Theorem 5.11]. We prove the theorem by induction on dim(M).

Assume that M is not simple and let M ′ be a proper nonzero submodule of M . Let

π = Ker(M ′⊗H c-IndG
I (1) 1→ M ⊗H c-IndG

I (1) 1).

By Theorem 3.5, M→ (M ⊗H c-IndG
I (1) 1)I (1) is injective. Then we have

0 π I (1) (M ′⊗H c-IndG
I (1) 1)I (1) (M ⊗H c-IndG

I (1) 1)I (1)

M ′ M.

o

Hence π I (1)
= 0. Since I (1) is a pro-p group, π = 0. Hence M ′⊗H c-IndG

I (1) 1→ M ⊗H c-IndG
I (1) 1 is

injective. Set M ′′ = M/M ′. Then we have a commutative diagram

0 0

(M ′⊗H c-IndG
I (1) 1)I (1) M ′

(M ⊗H c-IndG
I (1) 1)I (1) M

(M ′′⊗H c-IndG
I (1) 1)I (1) M ′′

0

∼

∼

with exact columns. Therefore M→ (M ⊗H c-IndG
I (1) 1)I (1) is isomorphic. �
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Corollary 4.2. Let CG,f be the category of representations of G consisting of the following objects:

• Has a finite length.

• Any irreducible subquotient is a subquotient of IndG
B σ for a irreducible representation σ of Z.

• Is generated by I (1)-invariants.

Then Cf ' CG,f. The equivalence is given by π→ π I (1) and M 7→ M ⊗H c-IndG
I (1) M.

Proof. By the classification theorem in [Abe et al. 2017] and [Abe et al. 2018a, Theorem 5.11], if π ∈ CG,f

is irreducible, then π I (1)
∈ Cf. Hence, by induction on the length, if π ∈ CG,f then π I (1)

∈ Cf.
Let π ∈ CG,f and we prove that π I (1)

⊗H c-IndG
I (1) 1→ π is an isomorphism. The homomorphism is

surjective since π is generated by π I (1). Let π ′ be the kernel. Then we have an exact sequence

0→ (π ′)I (1)
→ (π I (1)

⊗H c-IndG
I (1) 1)I (1)

→ π I (1)

and the last map is isomorphism by the theorem. Hence (π ′)I (1)
= 0 and it implies π ′ = 0. Therefore

the homomorphism is also injective. Combining with the previous theorem, we have proved the desired
equivalence of categories. �
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