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Proof of a conjecture of Colliot-Thélène
and a diophantine excision theorem

Jan Denef

We prove a conjecture of Colliot-Thélène that implies the Ax–Kochen Theorem on p-adic forms. We
obtain it as an easy consequence of a diophantine excision theorem whose proof forms the body of the
present paper.

1. Introduction

In this paper we prove the following conjecture from [Colliot-Thélène 2008].

1.1. Colliot-Thélène’s conjecture. Let f : X→ Y be a dominant morphism of smooth proper geometri-
cally integral varieties over a number field F , with geometrically integral generic fiber. Assume that for
any nontrivial discrete valuation on the function field K of Y , with valuation ring A ⊃ F , there exists an
integral regular A-scheme X, flat and proper over A, with generic fiber K -isomorphic to the generic fiber
of f , and special fiber having an irreducible component of multiplicity 1 which is geometrically integral.
Then the map X (Fp)→ Y (Fp), induced by f , is surjective for almost all (nonarchimedean) places p of F.

Here Fp denotes the p-adic completion of F , and with “almost all places of F” we mean “all but a
finite number of places of F”.

Actually we prove a stronger result, namely:

Main Theorem 1.2. Let f : X → Y be a dominant morphism of smooth proper geometrically integral
varieties over a number field F , with geometrically integral generic fiber. Assume for any modification
f ′ : X ′→ Y ′ of f , with the same generic fiber as f , and X ′, Y ′ smooth over F , and for any prime divisor
D′ on Y ′, the following: the divisor f ′∗(D′) on X ′ has an irreducible component C ′ with multiplicity 1
and geometrically integral generic fiber over D′ (i.e., the morphism C ′ → D′, induced by f ′, has
geometrically integral generic fiber). Then the map X (Fp)→ Y (Fp), induced by f , is surjective for
almost all (nonarchimedean) places p of F.

We say that f ′ is a modification of f if f ′ fits into a commutative square of morphisms of varieties,
with vertical arrows f and f ′, and horizontal arrows birational proper morphisms X ′→ X and Y ′→ Y ;
see Definition 2.1.
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The conjecture of Colliot-Thélène is a direct consequence of Main Theorem 1.2, because any D′ as in the
theorem induces a discrete valuation on the function field of Y ′, which equals the function field of Y . Such
a discrete valuation on the function field of Y is called a divisorial valuation. Moreover, if for this valuation
there exists an A-scheme X as in the conjecture, then the special fiber of any integral regular proper flat
A-scheme X′, with the same generic fiber as X, has an irreducible component of multiplicity 1 which is
geometrically integral. Indeed this is Proposition 3.9.(b) in Colliot-Thélène’s lecture notes [2011]. Thus
the hypotheses in the statement of the conjecture of Colliot-Thélène imply the hypotheses in the statement
of Main Theorem 1.2, even if we restrict the assumption in the conjecture to divisorial valuations.

Note that Main Theorem 1.2 is substantially stronger than the conjecture of Colliot-Thélène, because it
implies that the assumption in the conjecture is only required for divisorial discrete valuations on the
function field of Y .

Colliot-Thélène [2008] proved the following: if f : X → Y is the universal family of all projective
hypersurfaces of degree d in projective n-space over a number field F , with n ≥ d2, then f satisfies the
hypotheses of the conjecture and hence also the hypotheses of Main Theorem 1.2. (A similar result also
holds for complete intersections in projective space; see Theorem 2.2 of [Colliot-Thélène 2008]). Since
our proof of Main Theorem 1.2 is purely algebraic geometric, this yields a new proof of the theorem of
Ax and Kochen [1965] on p-adic forms, that does not rely on methods from mathematical logic. The
theorem of Ax and Kochen states that for each d ∈ N there exists N ∈ N such that for all primes p > N ,
each hypersurface of degree d in projective n-space over Qp, with n ≥ d2, has a Qp-rational point.

One of the motivations of Colliot-Thélène in formulating his conjecture was to obtain an algebraic
geometric proof of the Ax–Kochen theorem that, unlike all previous ones, does not rely on methods from
mathematical logic. At the same time, the author of the present paper also found another purely algebraic
geometric proof of the Ax–Kochen theorem; see [Denef 2016]. Both proofs are based on the tameness
theorem (see Section 4), which is proved in [Denef 2016] using the weak toroidalization theorem of
Abramovich and Karu [2000] (extended to nonclosed fields [Abramovich et al. 2013]).

We prove Main Theorem 1.2 in Section 6, as an easy consequence of what we call a diophantine
excision theorem. The proof of this Diophantine Excision Theorem 5.1 forms the body of the present
paper and is contained in Section 5. It depends on the Tameness Theorem 4.1, which is treated in
Section 4. Using mathematical logic one can give a simpler proof of Colliot-Thélène’s conjecture
(Section 1.1). However we don’t see how to extend this to prove the stronger Main Theorem 1.2 or the
Diophantine Excision Theorem 5.1. This alternative proof is given in Section 6.3. Preliminaries about
modifications of morphisms and multiplicative residues are given in Sections 2 and 3.

A previous version of the present paper was posted on the ArXiv in 2011. In that version the diophantine
excision theorem was called the diophantine purity theorem.

1.3. Terminology and notation. Throughout our paper, for ease of notation, we work with Q instead of
an arbitrary number field. But all our results remain true replacing Q by any number field F , and the
completions Qp of Q by the nonarchimedean completions of F .
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For any prime number p we denote the ring of p-adic integers by Zp, the field of p-adic numbers by
Qp, and the field with p elements by Fp. The p-adic valuation on Qp is denoted by ordp.

In the present paper, R will always denote a noetherian integral domain. A variety over R is an integral
separated scheme of finite type over R. With a morphism of varieties over R we mean an R-morphism
of schemes over R. A rational function x on a variety X over R is called regular at a point P ∈ X if it
belongs to the local ring OX,P of X at P , and it is called regular if it is regular at each point of X .

Uniformizing parameters over R on a variety X over R, are regular rational functions on X that induce
an étale morphism from X to an affine space over R.

A reduced strict normal crossings divisor over R on a smooth variety X over R is a closed subset D of
X such that for any P ∈ X there exist uniformizing parameters x1, . . . , xn over R on an open neighborhood
of P , such that for any irreducible component C of D, containing P , there is an i ∈ {1, . . . , n} which
generates the ideal of C in OX,P .

2. Modifications of morphisms

Definition 2.1. Let R be a noetherian integral domain, and X a variety over R. A modification of X is a
proper birational morphism X ′→ X of varieties over R.

Let f : X → Y be a dominant morphism of varieties over R. A modification of f is a morphism
f ′ : X ′→ Y ′ of varieties over R, which fits into a commutative diagram

X ′

f ′
��

α
// X

f
��

Y ′
β
// Y

with α a modification of X , and β a modification of Y . This implies that f ′ is dominant. Clearly, if f is
proper, then also f ′ is proper.

When f : X→ Y is a dominant morphism of varieties over R, and β : Y ′→ Y is a modification of Y ,
then there exists a unique irreducible component X ′ of the fiber product Y ′×Y X that dominates X . Let
f ′ and α be the restrictions to X ′ of the projections Y ′ ×Y X → Y ′, and Y ′ ×Y X → X . Then α is a
modification of X , and we call f ′ the strict transform of f with respect to β. Clearly f ′ is a modification
of f . Such a modification is called a strict modification of f . Note that any strict modification of f ′ is
also a strict modification of f .

2.2. Observations. (a) Let f : X→Y be a morphism of schemes of finite type over an excellent henselian
discrete valuation ring R, with Y ⊗R Frac(R) smooth, where Frac(R) denotes the fraction field of R. Let
S be a closed subscheme of Y , containing no irreducible component of Y . If Y (R) \ S(R)⊂ f (X (R)),
then Y (R)⊂ f (X (R)). Indeed this follows from Greenberg’s theorem [1966], because Y (R) \ S(R) is
dense in Y (R) with respect to the adic topology on Y (R), since Y ⊗R Frac(R) is smooth.
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(b) Let f : X → Y be a dominant morphism of varieties over Z, and let f ′ : X ′ → Y ′ be a strict
modification of f . Assume that Y ⊗Q and Y ′⊗Q are smooth, and let p be a prime number. Then, the
map X (Zp)→ Y (Zp), induced by f , is surjective, if and only if the map X ′(Zp)→ Y ′(Zp), induced
by f ′, is surjective. This remains true when f ′ is a modification of f which is not strict, if we assume that
also X ⊗Q is smooth. These claims follow directly from (a). Indeed, by (a) and the valuative criterion
for properness, any modification of a variety V over Z, with V ⊗Q smooth, induces a surjection on
Zp-rational points.

Remark. We will often use (without mentioning) the following well known facts. Any morphism f0 :

X0→Y0 of varieties over Q has a model f over Z. This means that f is a morphism f : X→Y of varieties
over Z whose base change to Q is isomorphic to f0. Combining this with Nagata’s compactification
theorem (see e.g., [Lütkebohmert 1993]), we see that we can choose f to be proper, when f0 is proper.
Two models of f0 over Z become isomorphic after base change to Z[1/N ], for some positive integer N .
Hence, if f0 is proper and f is a model of f0 over Z, then f ⊗Z[1/N ] is proper for some N ∈ N.

3. Multiplicative residues

Let R be a noetherian integral domain, and X a variety over R. Let A be any local R-algebra which is
an integral domain. We denote by mA its maximal ideal, by Frac(A) its field of fractions, and by ηA the
generic point of Spec(A). For any A-rational point a ∈ X (A) on X we denote by a mod mA the A/mA-
rational point on X induced by a. For any x ∈OX,a(ηA) the pullback a∗(x) of x to Frac(A) is denoted by
x(a)∈Frac(A). Moreover, for a, a′ ∈ X (A) we write a≡ a′ mod mA to say that a mod mA= a′ mod mA.

Definition 3.1. Let z, z′ ∈ Frac(A). The elements z, z′ have the same multiplicative residue if

z′ ∈ z(1+mA).

Let a, a′ ∈ X (A) and let x1, . . . , xr be rational functions on X . The points a, a′ have the same residues
with respect to x1, . . . , xr if a ≡ a′ mod mA and, for i = 1, . . . , r , the following two conditions hold:

(1) The rational function xi is regular at a(ηA) if and only if it is regular at a′(ηA).

(2) xi (a), xi (a′)∈ Frac(A) have the same multiplicative residue if xi is regular at both a(ηA) and a′(ηA).

The following lemma also appears in [Denef 2016].

Lemma 3.2. Let X be an affine variety over R, and let x1, . . . , xr be rational functions on X. Then there
exist regular rational functions x ′1, . . . , x ′r ′ on X such that for any local R-algebra A, which is an integral
domain, and any a, a′ ∈ X (A) we have the following. The points a and a′ have the same residues with
respect to x1, . . . , xr if they have the same residues with respect to x ′1, . . . , x ′r ′ .

Proof. This is clear, by taking for x ′1, . . . , x ′r ′ any finite list of regular rational functions on X which
satisfies the following condition. For each i ∈ {1, . . . , r} and each P ∈ X with xi regular at P , there are
elements x ′j and x ′k in this list with xi = x ′j/x ′k , and x ′k(P) 6= 0. Obviously, such a finite list exists if X is
affine. �
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Lemma 3.3. Let X be a variety over R, and let z, x1, . . . , xr be regular rational functions on X. Assume
that z can be written as a unit in 0(X,OX ) times a monomial in the xi . Then for any local R-algebra A,
which is an integral domain, and any a, a′ ∈ X (A) we have the following. The points a and a′ have the
same residues with respect to z if they have the same residues with respect to x1, . . . , xr .

Proof. Obvious, and left to the reader. �

Definition 3.4. Let X be a variety over Z, and x1, . . . , xr regular rational functions on X . Let p be a
prime and let z = (z1, . . . , zr ) ∈ Zr

p. We say that the multiplicative residue of z is realizable with respect
to x1, . . . , xr if there exists a ∈ X (Zp) such that xi (a) and zi have the same multiplicative residue for
each i = 1, . . . , r .

Definition 3.5. Let p be a prime. For any w ∈Qp, the angular component modulo p of w is defined as

acp(w) := wp− ordp(w) mod p ∈ Fp,

with the convention that acp(0) := 0.
Note that any w,w′ ∈Qp have the same multiplicative residue if and only if they have the same p-adic

valuation and the same angular component modulo p.

The following rather technical lemma will be used in the proof of the surjectivity criterion (Section 4.2).
It is a direct consequence of the theorem of Pas [1989] on uniform p-adic quantifier elimination. The
work of Pas is based on methods from mathematical logic. Below we give a purely algebraic geometric
proof of this lemma which is based on embedded resolution of singularities.

Lemma 3.6. Let X be a variety over Z, and x1, . . . , xr regular rational functions on X. There exists a
finite partition of Nr such that for almost all primes p we have the following: “Let z, z′ ∈ Zr

p. Assume
that the p-adic valuations of z and z′ are in a same stratum of the partition, and that acp(zi )= acp(z′i )
for each i . Then the multiplicative residue of z is realizable with respect to x1, . . . , xr , if and only if the
same holds for z′.”

Proof. Let D be the union of the zero loci of the regular rational functions x1, . . . , xr on X , considered
as a subset of X . Using embedded resolution of singularities of D⊗Q⊂ X ⊗Q, and induction on the
dimension of X⊗Q, modifying X and inverting a finite number of primes, we may assume the following.
The variety X is smooth over Z, and D is a reduced strict normal crossings divisor over Z (in the sense
of Section 1.3). This reduction is easily verified applying the valuative criterion of properness to the
resolution morphism and using the induction hypothesis to take care of the exceptional locus of the
resolution. More precisely, the induction hypothesis is applied to each component of the image in X of
the exceptional locus, with each xi replaced by its restriction to that component. Hence, by covering X
with finitely many suitable open subschemes, we can further assume that X is affine, and that each xi

can be written as a unit ui in 0(X,OX ) times a monomial in uniformizing parameters y1, . . . , yn over Z

on X . As recalled in Section 1.3, this means that y1, . . . , yn induce an étale morphism from X to affine
n-space over Z.
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Let E be the matrix over Z, with r rows and n columns, consisting of the exponents of these monomials,
and let 1 be the linear map Zn

→ Zr determined by the matrix E . For each subset S ⊂ {1, . . . , n}, set

0S := {(α1, . . . , αn) ∈ Nn
| ∀ j : α j = 0⇔ j ∈ S}.

Choose a finite partition of Nr such that each 1(0S) is a union of strata.
Let z, z′ ∈ Zr

p be as in the lemma and assume that the multiplicative residue of z is realizable with
respect to x1, . . . , xr by an element a ∈ X (Zp). We have to show that the multiplicative residue of
z′ is also realizable. Note that each zi is nonzero (because the p-adic valuation of z belongs to Nr ).
Hence the multiplicative residue of z is realized by any element of X (Zp) which is close enough
to a. Thus we may suppose that y j (a) 6= 0 for all j = 1, . . . , n. Let S ⊂ {1, . . . , n} be such that
(ordp y1(a), . . . , ordp yn(a)) ∈ 0S . Hence ordp z = (ordp x1(a), . . . , ordp xr (a)) ∈ 1(0S), since ui (a)
is a unit in Zp for each i . Because the p-adic valuations of z and z′ are in a same stratum of the partition,
also ordp z′ is an element of 1(0S). Hence there exists α′ = (α′1, . . . , α

′
n) ∈ 0S with 1(α′)= ordp(z′).

Note that α′j = 0 if and only if ordp(y j (a))= 0, because α′ ∈ 0S .
By Hensel’s lemma, applied to the étale morphism induced by the y1, . . . , yn , there exists a′ ∈ X (Zp)

with a′ mod p=a mod p and ordp(y j (a′))=α′j and acp(y j (a′))=acp(y j (a)), for j=1, . . . , n. Indeed
any element of Zn

p which is congruent mod p to the image of a under this étale morphism, can be lifted
to a point a′ ∈ X (Zp) congruent to a. Now we have that acp(xi (a′))= acp(xi (a))= acp(zi )= acp(z′i )
and ordp(xi (a′))= (1(α′))i = ordp(z′i ), because ui (a) and ui (a′) are units in Zp which are congruent
mop p. Hence xi (a′) and z′i have the same multiplicative residue for i = 1, . . . , r . Thus the multiplicative
residue of z′ with respect to x1, . . . , xr is realized by a′. This terminates the proof of the lemma. �

4. Tameness and the surjectivity criterion

The following result is a special case of the tameness theorem of [Denef 2016] (together with Remark 5.2
of that work).

Tameness Theorem 4.1. Let f : X → Y be a morphism of varieties over Z. Given rational functions
x1, . . . , xr on X , there exist rational functions y1, . . . , ys on Y , such that for almost all primes p we have
the following: “Any b ∈ Y (Zp) having the same residues with respect to y1, . . . , ys as an image f (a′),
with a′ ∈ X (Zp), is itself an image of an a ∈ X (Zp) with the same residues as a′ with respect to x1, . . . , xr .”
Moreover, if Y is affine, then we can choose y1, . . . , ys to be regular rational functions on Y .

This special case, and the more general result in [Denef 2016], can be proved easily by using Basarab’s
theorem [1991] on elimination of quantifiers. The special case itself is also an easy consequence of the
theorem of Pas [1989] on uniform p-adic quantifier elimination. The works of Pas and Basarab are based
on methods from mathematical logic. However in [Denef 2016] we gave a purely algebraic geometric
proof of the tameness theorem which is based on the weak toroidalization theorem of Abramovich and
Karu [2000] (extended to nonclosed fields [Abramovich et al. 2013]).
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We briefly sketch the geometric proof of the tameness theorem of [Denef 2016]. Using (weak)
toroidalization of the morphism f ⊗Q, and induction on the dimension of X ⊗Q (to take care of the
exceptional loci of the modifications used to obtain a toroidalization), one easily reduces to the following
case. The morphism f ⊗Q is toroidal, X ⊗Q and Y ⊗Q are smooth, and the zero loci and polar loci
of x1, . . . , xr , restricted to X ⊗Q, are contained in the support of the toroidal divisor on X ⊗Q. Then
f ⊗Q is log-smooth with respect to the toroidal divisors. In that case the tameness theorem follows
directly from a logarithmic version of Hensel’s lemma. We refer to [Denef 2016] for the details. Note
that the last sentence in the statement of the Tameness Theorem 4.1 is a direct formal consequence of
Lemma 3.2. The relation with logarithmic geometry is investigated in [Cao 2015].

The following surjectivity criterion is based on the Tameness Theorem 4.1 and is essential for the proof
of the Diophantine Excision Theorem 5.1.

4.2. Surjectivity criterion. Let f : X→ Y be a morphism of varieties over Z, with Y affine and Y ⊗Q

smooth. Suppose that, given any regular rational functions y1, . . . , ys on Y and M ∈ N, we have the
following for almost all primes p. For each b ∈ Y (Zp), with ordp(yi (b)) ≤ M for i = 1, . . . , s, there
exists a ∈ X (Zp) such that f (a) and b have the same residues with respect to y1, . . . , ys . If this condition
is satisfied, then the map X (Zp)→ Y (Zp), induced by f , is surjective for almost all primes p.

Proof. By the Tameness Theorem 4.1 applied to the morphism f and an empty list of rational functions
on X , there exist a natural number N1 and nonzero regular rational functions y1, . . . , ys on Y satisfying
the conclusion of the tameness theorem for all primes p > N1. By enlarging the list y1, . . . , ys we may
assume that it contains a set of affine coordinates for Y .

Next we apply Lemma 3.6 firstly to the regular rational functions y1, . . . , ys on Y , and secondly also
to the regular rational functions y1 ◦ f, . . . , ys ◦ f on X . This yields a natural number N2 and a common
partition P of Ns satisfying, for all primes p > N2, the conclusion of Lemma 3.6 both for the yi on Y
and for the yi ◦ f on X .

Choose a point in each stratum of this partition P , and choose M ∈N bigger than the p-adic valuations
of the coordinates of these points. Choose a natural number N3 such that the hypothesis of the surjectivity
criterion holds for the above y1, . . . , ys and M , for all primes p > N3.

From now on, let p be any prime bigger than N1, N2 and N3, and let b′ ∈ Y (Zp). In order to prove the
surjectivity criterion we will find an a′ ∈ X (Zp) with f (a′)= b′. Because of observation 2.2.(a), we may
assume that yi (b′) 6= 0 for i = 1, . . . , s. Set z′ := (y1(b′), . . . , ys(b′)).

By our first application of Lemma 3.6 and the choice of M , there exists a point b ∈ Y (Zp) such that
the p-adic valuations of z := (y1(b), . . . , ys(b)) and z′ are in the same stratum of the partition P , and
acp(yi (b))= acp(yi (b′)), and ordp(yi (b))≤ M for i = 1, . . . , s.

By the above mentioned instance of the hypothesis of the surjectivity criterion, there exists a ∈ X (Zp)

such that f (a) and b have the same residues with respect to y1, . . . , ys . Thus the p-adic valuations
of z′′ := (y1( f (a)), . . . , ys( f (a))) and z are equal and hence in the same stratum of P as these of z′.
Moreover acp(yi ( f (a)))= acp(yi (b))= acp(yi (b′)).
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Thus, by our second application of Lemma 3.6, the multiplicative residue of z′ is realizable with respect
to y1 ◦ f, . . . , ys ◦ f , because obviously the multiplicative residue of z′′ is realizable with respect to these
functions. This means that there exists an a′′ ∈ X (Zp) such that yi ( f (a′′)) and yi (b′) have the same
multiplicative residue for i = 1, . . . , s. Since the list y1, . . . , ys contains a set of affine coordinates for Y ,
this implies that f (a′′)≡ b′ mod p. Hence f (a′′) and b′ have the same residues with respect to y1, . . . , ys .

By our above mentioned application of the Tameness Theorem 4.1 we conclude that there exists an
a′ ∈ X (Zp) with f (a′)= b′. This terminates the proof of the surjectivity criterion. �

5. The Diophantine excision theorem

Diophantine Excision Theorem 5.1. Let f : X→ Y be a proper dominant morphism of varieties over Z,
with Y ⊗Q smooth. Assume that for each strict modification f ′ : X ′→ Y ′ of f , with Y ′⊗Q smooth, there
exists a closed subscheme S′ of Y ′, of codimension ≥ 2, such that for almost all primes p we have

{y ∈ Y ′(Zp) | y mod p 6∈ S′(Fp)} ⊂ f ′(X ′(Zp)).

Then the map X (Zp)→ Y (Zp), induced by f , is surjective for almost all primes p.

We prove the diophantine excision theorem at the end of the present section, after two lemma’s: Lemma 5.5
states that the hypothesis of the diophantine excision theorem, with Y affine, implies the hypothesis of the
surjectivity criterion (Section 4.2). This is proved by using embedded resolution of singularities and extra
blowups to reduce it to a special case implied by Lemma 5.3. This last mentioned lemma is proved by
noetherian induction on closed subschemes of Y , and blowing up these subschemes. But first we mention
some observations whose proofs are straightforward.

5.2. Observations. (a) Let f : X→ Y be a proper dominant morphism of varieties over Z, with Y ⊗Q

smooth, satisfying the assumption of the diophantine excision theorem. If U is a nonempty open
subscheme of Y , then also the morphism f −1(U )→ U , induced by f , satisfies the assumption of the
Diophantine Excision Theorem 5.1.

Proof. It suffices to show that any modification β0 : U ′ → U of U , with U ′ ⊗Q smooth, factors as
an open immersion j : U ′→ Y ′ composed with a modification β : Y ′→ Y of Y , with Y ′⊗Q smooth,
and j (U ′) = β−1(U ). To achieve this, let β1 : U ′ → Y be the composition of β0 with the inclusion
U ⊂ Y . Apply Nagata’s compactification theorem (see e.g., [Lütkebohmert 1993]) to factorize β1 as
an open immersion j2 :U ′ ↪→ Y ′′ composed with a proper morphism β2 : Y ′′→ Y of Z-varieties. This
implies that β2 is a modification of Y and that U ′′ := j2(U ′) = β−1

2 (U ). Indeed the composition of
the morphisms U ′ ↪→ β−1

2 (U )→ U , induced by j2 and β2, is proper since it equals β0; thus the open
immersion U ′ ↪→ β−1

2 (U ) is proper and hence surjective. There exists a resolution of Y ′′⊗Q which is a
composition of blowups with smooth centers C1, . . . ,Cr that lie above (Y ′′ \U ′′)⊗Q. Denote by C1

the closure of C1 in Y ′′. Denote by C2 the closure of C2 in the blowup of Y ′′ with center C1, and so on.
Let π : Y ′→ Y ′′ be the modification of Y ′′ obtained by composing the blowups with centers C1, . . . ,Cr .
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Then Y ′ ⊗Q is smooth. Moreover, π is an isomorphism above U ′′. This yields an open immersion
j1 :U ′′→ Y ′. Clearly j := j1 ◦ j2 and β := β2 ◦π satisfy the required properties. �

(b) Let f : X→ Y be a proper dominant morphism of varieties over Z, with Y ⊗Q smooth, satisfying
the assumption of the diophantine excision theorem. Let f1 : X1→ Y1 be a strict modification of f , with
Y1 ⊗Q smooth. Then f1 satisfies the assumption of the diophantine excision theorem. This follows
directly from the fact that any strict modification of f1 is also a strict modification of f .

Lemma 5.3. Let f : X→ Y be a proper dominant morphism of varieties over Z, with Y smooth over Z,
satisfying the assumption of the diophantine excision theorem. Let h : Y → A1

Z be a smooth morphism.
Then for almost all primes p we have the following: for each b ∈ Y (Zp) there exists an a ∈ X (Zp) such
that f (a)≡ b mod p and h( f (a))= h(b).

Proof. By noetherian induction, it suffices to show that for any integral closed subscheme W of Y , there
exists a nonempty open subscheme W0 of W , such that, for almost all p, the assertion of the lemma holds
for all b ∈ Y (Zp) satisfying b mod p ∈W0. If W = Y then we can directly apply the assumption of the
diophantine excision theorem, with f ′ = f , to find W0. Hence we can assume that W  Y . Moreover,
by cutting away the nonsmooth locus of W and using Observation 5.2(a), we may also assume that W
is smooth over Z. Thus locally the ideal sheaf of W on Y can be generated by part of a set of local
uniformizing parameters over Z, hence its blowup is smooth over Z with exceptional locus a projective
space bundle on W .

Let β : Y ′→ Y be the blowup of Y with center W , and let f ′ : X ′→ Y ′ be the strict transform of f
with respect to β. Because the assumption of the diophantine excision theorem is assumed, there exists a
closed subscheme S′ of Y ′, of codimension ≥ 2, such that for almost all primes p we have

{y ∈ Y ′(Zp) | y mod p 6∈ S′(Fp)} ⊂ f ′(X ′(Zp)). (1)

To start, we take W0 equal to W , but later on we will replace W0 by a smaller nonempty open subscheme
of W if necessary.

When the restriction of h to W is dominant, then making W0 smaller if necessary, we may suppose
that the restriction of h to W0 is smooth. Whence the restriction of h ◦β to β−1(W0) is smooth, because
the morphism from β−1(W0) to W0, induced by β, is smooth. This implies that h ◦β is smooth at each
point of β−1(W0), by the smoothness criterion for morphisms of smooth schemes (Théorème 17.11.1 in
[EGA IV4 1967]).

When the restriction of h to W is not dominant, then h(W ⊗Q) = {P}, with P a closed point of
A1

Q
. Let [P] be the prime divisor on A1

Q
consisting of this point P with multiplicity one. Because h is

smooth, the multiplicity of β−1(W )⊗Q, in the divisor ((h ◦β)⊗Q)∗([P]) on Y ′⊗Q, equals 1. Let C ′

be the intersection of β−1(W )⊗Q with the union of the other irreducible components of this divisor.
Clearly C ′ has codimension ≥ 2 in Y ′⊗Q, and (h ◦β)⊗Q is smooth at each point of β−1(W )⊗Q \C ′.
Enlarging S′ if necessary, we may suppose that C ′ ⊂ S′. Whence, the singular locus of h ◦β is disjoint
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from (β−1(W ) \ S′)⊗Q. Hence shrinking W0 if necessary, by inverting finitely many primes, we can
assume that the singular locus of h ◦β is disjoint from β−1(W0) \ S′.

Thus in either case, we can suppose that h ◦β is smooth at each point of β−1(W0) \ S′.
Since S′ ⊂ Y ′ has codimension ≥ 2 and β−1(W ) ⊂ Y ′ has codimension 1, the morphism from

β−1(W ) \ S′ to W , induced by β, is dominant. Hence, replacing W0 if necessary by a smaller open
subscheme of W , we may suppose that W0 ⊂ β(Y ′ \ S′).

Let p be a big enough prime, and consider any b ∈ Y (Zp) satisfying b := b mod p ∈W0. Because the
scheme-theoretic fiber of β over b is isomorphic to a projective space over Fp, and its intersection with S′

is contained in a hypersurface (of this fiber) with degree bounded independently of b, and because p is
big enough, there exists a Fp-rational point b′ on Y ′ \ S′ with β(b′)= b. Since h ◦β is smooth at b′ and
(h◦β)(b′)= h(b) mod p, this point lifts to a point b′ ∈Y ′(Zp) with b′ mod p=b′ and (h◦β)(b′)= h(b).
By (1) and because b′ mod p 6∈ S′, there exists a′ ∈ X ′(Zp) with f ′(a′) = b′. Let a ∈ X (Zp) be the
image of a′ under the natural morphism X ′ → X . Then f (a) = β( f ′(a′)) = β(b′) ≡ b mod p, and
h( f (a))= h(β(b′))= h(b). This terminates the proof of the lemma. �

Remark 5.4. The previous Lemma 5.3 also holds when there is no h involved, if we drop the requirement
that h( f (a))= h(b). This follows formally from this lemma, using the observation in Section 5.2(a), by
covering Y by finitely many small enough open subschemes on which there exists a smooth morphism
to A1

Z.

Lemma 5.5. Let f : X → Y be a proper dominant morphism of varieties over Z, with Y ⊗Q smooth,
satisfying the assumption of the diophantine excision theorem. Let y1, . . . , ys be regular rational functions
on Y , and M ∈ N. Then for almost all primes p we have the following. For each b ∈ Y (Zp), with
ordp(yi (b)) ≤ M for i = 1, . . . , s, there exists a ∈ X (Zp) such that f (a) and b have the same residues
with respect to y1, . . . , ys .

Proof. Let D be the union of the zero loci of the regular rational functions y1, . . . , ys on Y , considered
as a subset of Y . Using embedded resolution of singularities of D⊗Q⊂ Y ⊗Q, modifying Y , without
changing Y ⊗Q \ D⊗Q, replacing f by its strict transform with respect to the modification of Y , and
inverting a finite number of primes, we may assume the following. The variety Y is smooth over Z, and
D is a reduced strict normal crossings divisor over Z (in the sense of Section 1.3). This reduction is
easily verified applying the valuative criterion of properness to the resolution morphism and using the
observation in Section 5.2(b). Thus, by covering Y with finitely many suitable open subschemes, and using
the observation in Section 5.2(a), we can further assume that Y is affine, and that each yi can be written
as a unit in 0(Y,OY ) times a monomial in uniformizing parameters over Z on X (i.e., regular functions
on Y that induce an étale morphism to an affine space over Z; see Section 1.3). Hence, by Lemma 3.3,
we can moreover assume that y1, . . . , ys are part of a set of uniformizing parameters over Z on Y .

It remains now to prove the lemma in the special case that Y is smooth over Z, and affine, say
Y = Spec(A), and that y1, . . . , ys are part of a set of uniformizing parameters over Z on Y . We prove
this special case by induction on M . Let p be a prime, big enough with respect to M and all data, and
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let b ∈ Y (Zp) be any point with ordp(yi (b))≤ M for all i = 1, . . . , s. If M = 0, then, in order to prove
the lemma, it suffices to find a ∈ X (Zp) with f (a)≡ b mod p. The existence of such an a follows from
Remark 5.4. Thus we may suppose that M > 0 and that

I0 := {i ∈ N | ordp(yi (b)) > 0, 1≤ i ≤ s} 6=∅.

Choose i0 ∈ I0 such that ordp(yi0(b))=Mini∈I0 ordp(yi (b)).
Let π : Y ′→ Y be the blowup of the ideal sheaf on Y generated by all the yi with i ∈ I0. Consider

the chart U on Y ′, defined as follows:

U := Spec(A[(yi/yi0)i∈I0])
π
−→ Spec(A)= Y.

There exists a unique b′ ∈ U (Zp) with π(b′) = b. Set y′i = yi/yi0 for i ∈ I0 \ {i0}, and y′i = yi for the
other i ∈ {1, . . . , s}. One easily verifies that y′1, . . . , y′s are part of a set of uniformizing parameters over
Z on U . Clearly, either 0≤ ordp(y′i (b

′)) < M , for all i , or ordp(y′i (b
′))= 0, for all i 6= i0. We call these

respectively the first case and the second case.
Let f ′ : X ′→ Y ′ be the strict transform of f with respect to the blowup π : Y ′→ Y . In the first case,

we apply the induction hypothesis to the morphism f ′−1(U )→U induced by f ′, and the regular rational
functions y′1, . . . , y′s on U , to find a′ ∈ X ′(Zp), with f ′(a′)∈U (Zp), such that f ′(a′) and b′ have the same
residues with respect to these functions on U . In the second case, we apply Lemma 5.3 to the morphism
f ′−1(U )→ U induced by f ′, and the morphism U → A1

Z induced by yi0 , to find a′ ∈ X ′(Zp), with
f ′(a′) ∈U (Zp), such that f ′(a′)≡ b′ mod p and yi0( f ′(a′))= yi0(b

′). Hence, also in the second case,
f ′(a′) and b′ have the same residues with respect to y′1, . . . , y′s , because y′i (b

′) is a unit in Zp for all i 6= i0.
Denote by a the image of a′ under the natural map X ′(Zp)→ X (Zp). Then the points f (a)=π( f ′(a′))

and b = π(b′) have the same residues with respect to y1, . . . , ys . �

5.6. Proof of the Diophantine Excision Theorem 5.1. Using observation 5.2(a) we may assume that Y
is affine. Then the Diophantine Excision Theorem 5.1 is a direct consequence of the above Lemma 5.5
and the surjectivity criterion (Section 4.2). �

6. Proof of the Main Theorem 1.2

In this section we show that the Main Theorem 1.2 is an easy consequence of the Diophantine Excision
Theorem 5.1 and the following lemma, whose proof is rather straightforward.

Lemma 6.1. Let f : X→Y be a proper dominant morphism of smooth varieties over Z, with geometrically
integral generic fiber. Assume for each Z-flat prime divisor D on Y , that the divisor f ∗(D) on X has
an irreducible component C with multiplicity 1 and geometrically integral generic fiber over D (i.e., the
morphism C→ D, induced by f , has geometrically integral generic fiber). Then there exists a closed
subscheme S of Y , of codimension ≥ 2, such that for almost all primes p we have

{y ∈ Y (Zp) | y mod p 6∈ S(Fp)} ⊂ f (X (Zp)).
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Proof. By Théorème 9.7.7 of [EGA IV3 1966] , there exists a reduced closed subscheme E ⊂ Y , of
pure codimension 1, such that over the complement of E , the morphism f is smooth with geometrically
integral fibers. Hence, for almost all primes p, any y ∈ Y (Zp), with y mod p 6∈ E(Fp), belongs to
f (X (Zp)). Indeed this follows from Hensel’s lemma and the Lang–Weil bound [Lang and Weil 1954].

For each irreducible component D of E we reason as follows. If D is not flat over Spec(Z), then D(Fp) is
empty for almost all primes p. Suppose now that D is flat over Spec(Z). By assumption, the divisor f ∗(D)
on X has an irreducible component C with multiplicity 1 and geometrically integral generic fiber over D.
In particular, C dominates D. Hence there exists a reduced closed subscheme S of D, of codimension ≥ 1
in D, such that, over the complement of S, all fibers of C f

−→ D are geometrically integral and intersect
the smooth locus of f : X→ Y . Indeed, f is smooth at the generic point of C , because C has multiplicity
1 in the divisor f ∗(D). Again by hensel’s Lemma and the Lang–Weil bound [Lang and Weil 1954], we
conclude for almost all primes p that any y∈Y (Zp), with y mod p∈D(Fp)\S(Fp), belongs to f (X (Zp)).

Taking the union of the subschemes S, obtained as above for each Z-flat irreducible component D of E ,
we obtain a closed subscheme of Y , of codimension ≥ 2, that satisfies the conclusion of the lemma. �

6.2. Proof of Main Theorem 1.2. Let f : X→Y be a dominant morphism of smooth proper geometrically
integral varieties over Q, which satisfies the hypotheses of the main theorem. Choose a proper dominant
morphism f̃ : X̃→ Ỹ of smooth varieties over Z, whose base change to Q is isomorphic to f . Because
X and Y are proper, it suffices to prove that the map X (Zp)→ Y (Zp), induced by f̃ , is surjective for
almost all primes p. By the Diophantine Excision Theorem 5.1, it suffices to prove that the morphism f̃
satisfies the assumption in the diophantine excision theorem, with f replaced by f̃ .

Let f̃ ′ : X̃ ′→ Ỹ ′ be any strict modification of f̃ , with Ỹ ′⊗Q smooth. Note that the generic fiber of
f̃ ′ equals the one of f̃ and is contained in the smooth locus of X̃ ′, because the modification is strict and
X̃ is smooth. We have to prove that there exists a closed subscheme S of Ỹ ′, of codimension ≥ 2, such
that for almost all primes p we have

{y ∈ Ỹ ′(Zp) | y mod p 6∈ S(Fp)} ⊂ f̃ ′(X̃ ′(Zp)).

Composing f̃ ′ with a morphism whose base change to Q resolves the singularities of X̃ ′⊗Q without
changing the smooth locus of X̃ ′⊗Q, and inverting a finite number of primes, we see that to prove the
above, we may assume that the varieties X̃ ′ and Ỹ ′ are smooth over Z, and f̃ ′ is a modification of f̃ , with
the same generic fiber as f̃ . But now f̃ ′ is not necessarily a strict modification of f̃ anymore.

Because, by assumption, f satisfies the hypotheses of the main theorem, it is easy to verify that f̃ ′

satisfies the hypotheses of Lemma 6.1 (with f replaced by f̃ ′). Hence this lemma implies the existence
of a closed subscheme S of Ỹ ′ with the required properties. �

6.3. An alternative proof of Colliot-Thélène’s Conjecture. Using model theory (mathematical logic)
one can give a much simpler proof of Colliot-Thélène’s conjecture in Section 1.1. However we don’t
see how to extend this to prove the stronger Main Theorem 1.2 or the Diophantine Excision Theorem
5.1. Moreover one of the motivations of Colliot-Thélène was to obtain a new proof of the Ax–Kochen
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Theorem which does not rely on methods from mathematical logic. We briefly sketch this simpler proof
of Colliot-Thélène’s conjecture.

Assume the notation and hypotheses in the formulation of Colliot-Thélène’s conjecture. Using a
standard argument from model theory and the Ax–Kochen–Eršov transfer principle [Ax and Kochen
1965; Ershov 1965], we will first show that, in order to prove the conjecture, it suffices to show that the
map X (F[[t]])→ Y (F[[t]]), induced by f , is surjective for any pseudoalgebraically closed field F of
characteristic zero. This goes as follows. If Colliot-Thélène’s conjecture is false for f , then there exists
an infinite set S of primes p for which the map from X (Qp) to Y (Qp), induced by f , is not surjective.
Let K be the ultraproduct of all the fields Qp with respect to an ultrafilter, on the set P of all primes,
containing S and each subset of P with finite complement. Then the map from X (K ) to Y (K ), induced
by f , is not surjective. Notice that K is a henselian valued field with residue field a pseudoalgebraically
closed field F of characteristic zero (by [Lang and Weil 1954]), and value group elementary equivalent
to Z. Hence K is elementary equivalent to the field of fractions F((t)) of F[[t]], by the Ax–Kochen-Eršov
transfer principle which states that any two henselian valued fields are elementary equivalent if they have
elementary equivalent value groups and elementary equivalent residue fields of characteristic zero. Thus
the map from X (F((t))) to Y (F((t))), induced by f , is not surjective if Colliot-Thélène’s conjecture is
false for f . Since f is proper the same holds for F((t)) replaced by F[[t]]. We conclude that in order to
prove the conjecture, it suffices to show that the map X (F[[t]])→ Y (F[[t]]), induced by f , is surjective
for any pseudoalgebraically closed field F of characteristic zero.

Let y ∈ Y (F[[t]]). We have to show that y ∈ f (X (F[[t]])). Let s be the closed point of Spec(F[[t]]).
By slightly moving y and using Greenberg’s theorem [1966], we may assume that the homomorphism
OY,y(s)→ F[[t]] induced by y is injective. Composing this homomorphism with the standard valuation
on F[[t]], induces a discrete valuation ν on the function field K of Y , with valuation ring say A.

If ν is trivial, then y(s) is the generic point of Y . Hence f is smooth at each point in the fiber of
y(s), and this fiber is geometrically integral. This implies that y lifts to a F[[t]]-rational point x on X , by
Hensel’s lemma and the assumption that F is pseudoalgebraically closed.

Thus we may assume that the discrete valuation ν is not trivial. Hence there exists an integral regular
A-scheme X as in the formulation of Colliot-Thélène’s conjecture. Note that y induces a F[[t]]-rational
point ỹ on Spec(A), and a homomorphism K → F((t)). Using the hypothesis about the special fiber of
X, Hensel’s Lemma, and the assumption that F is pseudoalgebraically closed, one easily verifies that ỹ
lifts to a F[[t]]-rational point x̃ on X. Because the generic fiber of X is K -isomorphic to the generic fiber
of f , and because x̃ extends to a F((t))-rational point on X⊗ K , we find a F((t))-rational point on X ,
and hence, by the properness of X , also a F[[t]]-rational point x on X with f (x)= y. �
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