Irreducible characters with bounded root Artin conductor

Algebra &

Number

Theory

Volume 13

2019

No. 9

Amalia Pizarro-Madariaga

Irreducible characters with bounded root Artin conductor

Amalia Pizarro-Madariaga

We prove that the best possible lower bound for the Artin conductor is exponential in the degree.

1. Introduction

Let K be an algebraic number field such that K/\mathbb{Q} is Galois and let χ be the character of a linear representation of Gal(K/\mathbb{Q}). We denote by f_{χ} the Artin conductor of χ . Odlyzko [1977] found lower bounds for f_{χ} by applying analytic methods to the Artin *L*-function. We have improved Odlyzko's lower bounds in [Pizarro-Madariaga 2011] by using explicit formulas for Artin *L*-functions. In particular, if χ is an irreducible character of Gal(K/\mathbb{Q}) by assuming that $\chi \bar{\chi}$ satisfies the Artin conjecture, we obtained

$$f_{\chi}^{1/\chi(1)} \ge 4.73(1.648)^{(a_{\chi}-b_{\chi})^2/\chi(1)^2} e^{-(13.34/\chi(1))^2}$$

where a_{χ} and b_{χ} are nonnegative integers giving the Γ -factors of the completed Artin *L*-function. Namely, $a_{\chi} + b_{\chi} = \chi(1)$ and $a_{\chi} - b_{\chi} = \chi(\sigma)$, with $\sigma \in \text{Gal}(K/\mathbb{Q})$ the complex conjugation. This bound is even better when we assume that $L(s, \chi \overline{\chi})$ satisfies the generalized Riemann hypothesis. We have to point out that, throughout this article, no additional hypothesis are needed.

A natural question now is how far from being optimal these bounds are. This problem has been studied for the discriminant of a number field. If $n_0 = r_1 + 2r_2$, let d_n be the minimal discriminant of the field *K* with degree *n* such that *n* is a multiple of n_0 and $r_1(K)$ and $r_2(K)$ are in the same ratio as r_1, r_2 . Let $\alpha(r_1, r_2) = \lim \inf_{n \to \infty} d_n^{1/n}$. Martinet [1978] considered number fields with infinite 2-class field towers and proved that

$$\alpha(0, 1) < 93$$
 and $\alpha(1, 0) < 1059$.

In this work, we follow this idea and consider a number field *K* with infinite *p*-class field tower for some prime *p*. Under some technical conditions on *K*, we find an upper bound (depending only on *K*) for the root Artin conductor of the irreducible characters of $\text{Gal}(K_n/\mathbb{Q})$ (given by $f_{\chi}^{1/\chi(1)}$), where K_n is the Hilbert *p*-class field of K_{n-1} with $K_0 = K$.

This work is organized as follow. In Section 2, we propose a technique obtained from Clifford's theory which is useful to classify the irreducible characters of $\text{Gal}(K_n/\mathbb{Q})$ in terms of a certain normal subgroup.

MSC2010: primary 11Y40; secondary 20G05.

Keywords: Artin character, Artin conductor, Hilbert class field tower.

This characterization is convenient in order to obtain upper bounds for root Artin conductors. In Section 3, we conclude that there exists an infinite sequence $\{\chi_n\}$ of irreducible Artin characters with $\chi_n(1) \to \infty$ and such that $f_{\chi_n}^{1/\chi_n(1)} \leq C$, where C > 0 is an effective computable constant. In Section 4, we apply the results obtained in Section 2 and 3 to the number field $K = \mathbb{Q}(\zeta_{11} + \zeta_{11}^{-1}, \sqrt{2}, \sqrt{-23})$. This field was found by Martinet [1978] and has infinite 2-class field tower and lowest known discriminant. In particular, we prove that for each $n \geq 1$ it is possible to find an irreducible character of $\operatorname{Gal}(K_n/\mathbb{Q})$ with large degree and

$$f_{\chi}^{1/\chi(1)} \le C$$
, where $C \le 11^4 \cdot 2^{15} \cdot 23$

2. Irreducible characters of large degree

In this section, we develop a technique to classify the irreducible characters of groups with a normal subgroup of prime index. Also, by using a result from [Isaacs 1976], we obtain conditions that ensure the existence of irreducible characters of large degree. We believe these results are of independent interest.

Let us consider a finite group G and a normal subgroup H of G. We denote the set of irreducible characters of G by Irr(G). If χ and θ are characters of G and H respectively, we denote the restriction of χ to H by $\operatorname{Res}_{H}^{G} \chi$ and the induced character of θ to G by $\operatorname{Ind}_{H}^{G} \theta$. If $\theta \in Irr(H)$, we define the conjugate character to θ in G by $\theta^{g} : H \to \mathbb{C}$, where $\theta^{g}(h) = \theta(ghg^{-1})$. The inertia group of θ in G is given by

$$I_G(\theta) = \{g \in G : \theta^g = \theta\}.$$

G acts on Irr(H) by conjugation and $I_G(\theta)$ is the stabilizer of θ under this action. The next result of Clifford will be the main argument allowing us to give a classification of the irreducible characters of *G*.

Theorem 1 (Clifford, [Huppert 1998, page 253]). Let *H* be a normal subgroup of *G* and $\theta \in Irr(H)$, $\chi \in Irr(G)$ such that θ is an irreducible constituent of $\operatorname{Res}_{H}^{G} \chi$, with $\langle \operatorname{Res}_{H}^{G} \chi, \theta \rangle = e > 0$. Suppose that $\theta = \theta^{g_1}, \theta^{g_2}, \ldots, \theta^{g_t}$ are the distinct conjugates of θ in *G*. Assume also that

$$G = \bigcup_{j=1}^{t} I_G(\theta) g_j, \quad \text{with } t = [G : I_G(\theta)].$$

Then:

- (a) $\operatorname{Res}_{H}^{G}\operatorname{Ind}_{H}^{G}\theta = |I_{G}(\theta)/H|\sum_{j=1}^{t}\theta^{g_{j}}.$
- (b) $\langle \operatorname{Ind}_{H}^{G} \theta, \operatorname{Ind}_{H}^{G} \theta \rangle = |I_{G}(\theta)/H|$. In particular, $\operatorname{Ind}_{H}^{G} \theta \in \operatorname{Irr}(G)$ if and only if $I_{G}(\theta) = H$.
- (c) $\operatorname{Res}_{H}^{G} \chi = e \sum_{j=1}^{t} \theta^{g_{j}}$. In particular,

 $\chi(1) = et\theta(1)$ and $\langle \operatorname{Res}_{H}^{G} \chi, \operatorname{Res}_{H}^{G} \chi \rangle = e^{2}t.$

Also,
$$e^2 \leq |I_G(\theta)/H|$$
 and $e^2t \leq |G/H|$.

In order to ensure the existence of a sequence of irreducible characters of growing degrees, let us consider the following corollary which is given as an exercise in [Isaacs 1976, page 98]. The proof is a consequence of Clifford's theorem.

Corollary 2. Let G be a group with a chain of normal subgroups

$$1 = H_0 \trianglelefteq H_1 \trianglelefteq H_2 \cdots \trianglelefteq H_n = G$$

such that H_i/H_{i-1} is nonabelian for i = 1, ..., n. Then, there exists an irreducible character ϕ of G, such that $\phi(1) \ge 2^n$.

Now we state the following result which is crucial for the proof of Theorem 14.

Proposition 3. Let *H* be a subgroup of a finite group *G*. Let $\theta \in Irr(H)$. Then there exists $\rho \in Irr(G)$ such that:

- (i) $\rho(1) \ge \theta(1)$.
- (ii) $\langle \operatorname{Ind}_{H}^{G} \theta, \rho \rangle = a \ge 1.$

Proof. It is enough take ρ to be any irreducible constituent of $\operatorname{Ind}_{H}^{G}(\theta)$.

We say that an irreducible character θ of *H* is extendible to *G* if there is an irreducible character χ of *G* such that $\operatorname{Res}_{H}^{G} \chi = \theta$. The following result gives us a criterion to decide when a character is extendible.

Theorem 4 [Gallagher 1962, page 225]. Let *G* be a finite group with a normal subgroup *H* of prime index *q* in *G*. If $\theta \in \text{Irr}(H)$ is invariant in *G* (i.e., $I_G(\theta) = G$), then θ is extendible to *G*.

Lemma 5. Suppose that G is a finite group with a normal subgroup H such that [G : H] = q, where q is a prime number. If $\theta \in Irr(H)$, then the inertia group of θ is either

(i) $I_G(\theta) = G$, or

(ii)
$$I_G(\theta) = H$$
.

Proof. See [Isaacs 1976, page 82].

Theorem 6. Under the conditions of Lemma 5, let χ be an irreducible character of G. Then, either

- (i) $\operatorname{Res}_{H}^{G} \chi = \theta$, for some $\theta \in \operatorname{Irr}(H)$ or
- (ii) $\chi = \operatorname{Ind}_{H}^{G} \theta$, for some $\theta \in \operatorname{Irr}(H)$.

Proof. Let $\chi \in Irr(G)$ and take $\theta \in Irr(H)$ an irreducible constituent of $\operatorname{Res}_{H}^{G} \chi$. The proof follows directly from Theorem 4, [Huppert 1998, Theorem 19.4] and Lemma 5.

3. Estimation for the root Artin conductor of irreducible characters of G_n

Let L/M be a Galois extension and χ be the character of a linear representation of Gal(L/M). The Artin conductor attached to χ is given by the ideal

$$f_{\chi} = \prod_{\mathfrak{p} \nmid \infty} \mathfrak{p}^{f_{\chi}(\mathfrak{p})},$$

where

$$f_{\chi}(\mathfrak{p}) = \frac{1}{|G_0|} \sum_{j \ge 0} (|G_j|\chi(1) - \chi(G_j))$$

and G_i is the *i*-th ramification group of the local extension $L_{\mathfrak{b}}/M_{\mathfrak{p}}$ with \mathfrak{b} a prime over \mathfrak{p} and $\chi(G_j) = \sum_{g \in G_i} \chi(g)$.

It is well-known that if *L* is an unramified extension of *M*, then f_{χ} is the trivial ideal. Then, in order to find a family of irreducible representations with bounded root Artin conductor, let us consider a number field *K* with infinite *p*-class field tower for some prime *p*. Let K_n be the Hilbert *p*-class field of K_{n-1} with $K_0 = K$ and $G_n = \text{Gal}(K_n/\mathbb{Q})$.

The main objective of this section is to prove that, under some conditions over K and applying the results of the previous section, there exists an upper bound for the root Artin conductor of the irreducible characters of G_n . This bound depends only on the base field K. In addition, we obtain that for each n > 1 it is possible to find an irreducible character of G_n with degree increasing with n.

Proposition 7. Let K be a Galois extension of \mathbb{Q} with infinite p-class field tower, for some prime p. Suppose that K has a subfield \tilde{k} satisfying the following conditions:

- (a) \tilde{k} is Galois over \mathbb{Q} .
- (b) $[\tilde{k} : \mathbb{Q}] = q$, with q a prime number.

Let $\chi \in Irr(G_n)$, where $G_n = Gal(K_n/\mathbb{Q})$. If $\tilde{H}_n = Gal(K_n/\tilde{k})$, then either

- (i) $\operatorname{Res}_{\tilde{H}_{n}}^{G_{n}} \chi = \theta$, for some $\theta \in \operatorname{Irr}(\tilde{H}_{n})$, or
- (ii) $\chi = \operatorname{Ind}_{\tilde{H}_n}^{G_n} \theta$, for some $\theta \in \operatorname{Irr}(\tilde{H}_n)$.

Proof. The proof follows directly from Theorem 6 with $G = G_n$ and $H = \tilde{H}_n$.

Proposition 8. Let K be a number field with infinite p-class field tower for some prime p. If $T_n = \text{Gal}(K_n/K)$, then for each $n \ge 1$ there exists $\phi \in \text{Irr}(T_n)$ such that

$$\phi(1) > 2^{(n-1)/2}$$
.

Proof. Let us consider the following chain of subgroups. If n is even, we take for $1 \le j \le \frac{n}{2}$:

 $H_{0} = \{1\},$ $H_{1} = \operatorname{Gal}(K_{n}/K_{n-2}), \qquad H_{1}/H_{0} \cong H_{1}$ $H_{2} = \operatorname{Gal}(K_{n}/K_{n-4}), \qquad H_{2}/H_{1} \cong \operatorname{Gal}(K_{n-2}/K_{n-4})$ \vdots $H_{j} = \operatorname{Gal}(K_{n}/K_{n-2j}), \qquad H_{j}/H_{j-1} \cong \operatorname{Gal}(K_{n-2(j-1)}/K_{n-2j})$ \vdots $H_{n/2} = T_{n} = \operatorname{Gal}(K_{n}/K), \qquad H_{n/2}/H_{n/2-1} \cong \operatorname{Gal}(K_{2}/K).$

If l < i - 1 then K_i/K_l is a nonabelian group, so by Corollary 2, there exists $\phi \in Irr(T_n)$ with $\phi(1) \ge 2^{n/2} > 2^{(n-1)/2}$.

If *n* is odd, for j < (n-1)/2 we take H_j and H_j/H_{j-1} as in the even case. For j = (n-1)/2 we take $H_{(n-1)/2}=T_n$ and $H_{(n-1)/2}/H_{(n-1)/2-1} \cong \text{Gal}(K_3/K)$. Hence, there exists $\phi \in \text{Irr}(G)$ such that $\phi(1) > 2^{(n-1)/2}$.

Corollary 9. Let G_n be as in Proposition 7. Then for each n > 1, there exists $\chi \in Irr(G_n)$ such that

$$\chi(1) > 2^{(n-1)/2}$$

Proof. Note that if $T_n = \text{Gal}(K_n/K)$ has an irreducible character θ with $\theta(1) > 2^{(n-1)/2}$, then there exists $\chi \in \text{Irr}(G)$ with $\chi(1) > 2^{(n-1)/2}$. In fact, let $\theta \in \text{Irr}(T_n)$ with $\theta(1) > 2^{(n-1)/2}$ and choose $\chi \in \text{Irr}(G_n)$ such that θ is an irreducible constituent of $\text{Res}_{T_n}^{G_n} \chi$. By Theorem 1, $\chi(1) = et\theta(1)$, where $e = \langle \text{Res}_{T_n}^{G_n} \chi, \theta \rangle$ and $t = [G_n : I_g(\theta)]$. As $e, t \ge 1$, then $\chi(1) \ge \theta(1) > 2^{(n-1)/2}$.

Now, we obtain upper bounds for the root Artin conductor of irreducible characters of G_n .

Theorem 10. Assume G_n as in Proposition 7 and $\chi \in Irr(G_n)$:

(i) If $\operatorname{Res}_{\tilde{H}_n}^{G_n} \chi = \theta$, for some $\theta \in \operatorname{Irr}(\tilde{H}_n)$ then $f_{\chi}^{1/\chi(1)} \leq |D_{\tilde{k}/\mathbb{Q}}| N_{\tilde{k}/\mathbb{Q}}(f_{\theta})^{1/\theta(1)}.$

(ii) If $\chi = \operatorname{Ind}_{\tilde{H}_n}^{G_n} \theta$, for some $\theta \in \operatorname{Irr}(\tilde{H}_n)$ then

$$f_{\chi}^{1/\chi(1)} = |D_{\tilde{k}/\mathbb{Q}}|^{1/q} N_{\tilde{k}/\mathbb{Q}}(f_{\theta})^{1/q\theta(1)}.$$

Proof. In the first case, we have $\chi(1) = \theta(1)$ and

$$\operatorname{Ind}_{\hat{H}_n}^{G_n} \theta = \sum_{i=1}^q \psi_i(1) \cdot \chi \psi_i,$$

where $\operatorname{Irr}(G_n/\tilde{H}_n) = \{\psi_1, \psi_2, \dots, \psi_q\}$ (see [Huppert 1998, Theorem 19.5]). Since G_n/\tilde{H}_n is isomorphic to the abelian group $\mathbb{Z}/q\mathbb{Z}$, it follows that $\operatorname{Ind}_{\tilde{H}_n}^{G_n} \theta = \sum_{i=1}^q \chi \psi_i$. The Artin conductor of this induced character is, on the one hand,

$$f_{\operatorname{Ind}_{\tilde{H}_{n}}^{G_{n}}\theta} = |D_{\tilde{k}/\mathbb{Q}}|^{\theta(1)} N_{\tilde{k}/\mathbb{Q}}(f_{\theta}),$$

where the ideal f_{θ} is the Artin conductor of θ . On the other hand, assuming that ψ_1 is the trivial character,

$$f_{\operatorname{Ind}_{\tilde{H}_n}^{G_n}\theta} = f_{\sum_{i=1}^q \chi \psi_i} = f_{\chi} \cdot \prod_{i=2}^q f_{\chi \psi_i}.$$

Now, combining these expressions we get

$$f_{\chi} = |D_{\tilde{k}/\mathbb{Q}}|^{\theta(1)} N_{\tilde{k}/\mathbb{Q}}(f_{\theta}) \cdot \left(\prod_{i=2}^{q} f_{\chi\psi_{i}}\right)^{-1},$$

$$f_{\chi}^{1/\chi(1)} \leq |D_{\tilde{k}/\mathbb{Q}}| N_{\tilde{k}/\mathbb{Q}}(f_{\theta})^{1/\theta(1)}$$

so

In the second case,

$$\chi(1) = [G_n : \tilde{H}_n]\theta(1) = q\theta(1)$$

and we can see that the root Artin conductor of χ is given by the expression

$$f_{\chi}^{1/\chi(1)} = |D_{\tilde{k}/\mathbb{Q}}|^{1/q} N_{\tilde{k}/\mathbb{Q}}(f_{\theta})^{1/q\theta(1)}.$$

In order to obtain a bound for the root Artin conductors, we need the following result.

Lemma 11. Assume K_n and K as in the Proposition 7. Let \mathfrak{p} be a prime in \tilde{k} , with \mathfrak{b} and \mathfrak{q} primes over \mathfrak{p} in K_n and K respectively. Let $G_i(K_{n,\mathfrak{b}}/\tilde{k}_{\mathfrak{p}})$ and $G_i(K_{\mathfrak{q}}/\tilde{k}_{\mathfrak{p}})$ be the *i*-th ramification groups of the local extensions $K_{n,\mathfrak{b}}/\tilde{k}_{\mathfrak{p}}$ and $K_{\mathfrak{q}}/\tilde{k}_{\mathfrak{p}}$. Then, for $i \geq 0$:

- (a) $G_i(K_{n,\mathfrak{b}}/K_\mathfrak{q}) = G_i(K_{n,\mathfrak{b}}/\tilde{k}_\mathfrak{p}) \cap G(K_{n,\mathfrak{b}}/K_\mathfrak{q}) = \{1\}.$
- (b) $|G_i(K_{n,\mathfrak{b}}/\tilde{k}_{\mathfrak{p}})| = |G_i(K_{\mathfrak{q}}/\tilde{k}_{\mathfrak{p}})|.$

The proof of this lemma follows directly from properties of higher ramification groups (see for example [Neukirch 1999, pages 177–180]) and by the fact that K_n/K is an unramified extension.

Corollary 12. There is an infinite sequence $\{\chi_n\}_{n\in\mathbb{N}}$ of irreducible Artin characters with $\chi_n(1) \to \infty$ and with

$$f_{\chi_n}^{1/\chi_n(1)} \le C,$$

where C > 0 is an effective computable constant.

Proof. By the Corollary 9 and Theorem 10, we know that for each *n* there is an irreducible character χ_n of G_n with $\chi_n(1) \to \infty$ and

$$f_{\chi_n}^{1/\chi_n(1)} \le |D_{\tilde{k}/\mathbb{Q}}| N_{\tilde{k}/\mathbb{Q}}(f_\theta)^{1/\theta(1)}.$$

for some $\theta \in \operatorname{Irr}(\tilde{H}_n)$. By the properties of the higher ramification groups stated in Lemma 11 and considering that the primes ramifying in *K* are the only ones that appears in $N_{\tilde{k}/\mathbb{Q}}(f_{\theta})$, it is possible to find a constant T > 0 depending only on the base field *K*, such that $N_{\tilde{k}/\mathbb{Q}}(f_{\theta}) \leq T^{\theta(1)}$. Hence,

$$f_{\chi_n}^{1/\chi_n(1)} \le |D_{\tilde{k}/\mathbb{Q}}|T := C.$$

Remark 13. As the referee pointed out, it is possible to avoid the hypothesis about the degree of \tilde{k}/\mathbb{Q} and obtain the same type of bounds for the asymptotic behavior of $f_{\chi}^{1/\chi(1)}$. This is accomplished in Theorem 14 below.

Theorem 14. Let *K* be a Galois extension of \mathbb{Q} with infinite *p*-class field tower. Let $m = [K : \mathbb{Q}]$. Then there exists an infinite sequence $\{\chi_n\}_{n \in \mathbb{N}}$ of irreducible Artin characters such that $\chi_n(1) \to \infty$ and

$$f_{\chi_n}^{1/\chi_n(1)} \leq |D_{K/\mathbb{Q}}|.$$

2002

Proof. Let $G_n = \text{Gal}(K_n/\mathbb{Q})$ and $T_n = \text{Gal}(K_n/K)$. We can choose $\theta_n \in \text{Irr}(T_n)$ as in Proposition 8. Then, by the Proposition 3, there exists $\chi_n \in \text{Irr}(G_n)$ such that $\langle \text{Ind}_{H_n}^{G_n} \theta_n, \chi_n \rangle = a \ge 1$ and with $\chi_n(1) \ge \theta_n(1)$, so

$$\chi_n(1) > 2^{(n-1)/2}$$

Hence, by the properties of the Artin conductor we get

$$f_{\chi_n}^a \leq f_{\operatorname{Ind}_{H_n}^{G_n}\theta_n} = |D_{K/\mathbb{Q}}|^{\theta_n(1)}$$

and therefore,

$$f_{\chi_n}^{1/\chi_n(1)} \leq f_{\chi_n}^{a/\chi_n(1)} \leq |D_{K/\mathbb{Q}}|.$$

4. Number fields with infinite 2-class field tower

Golod and Shafarevich [1964] proved that a number field K has an infinite p-class field tower if the p-rank of the class group of K is large enough. In this case,

$$\alpha(r_1, r_2) \le |D_K|^{1/[K:\mathbb{Q}]},$$

where D_K is the discriminant of K.

In addition, Martinet has constructed a number field with infinite Hilbert class field towers and lowest known root discriminant and proved that

$$\alpha(0, 1) < 93$$
 and $\alpha(1, 0) < 1059$.

In particular, he found that $K = \mathbb{Q}(\zeta_{11} + \zeta_{11}^{-1}, \sqrt{2}, \sqrt{-23})$ has infinite 2-class field tower. Since $\tilde{k} = \mathbb{Q}(\zeta_{11} + \zeta_{11}^{-1})$ is a subfield of *K* of degree 5 over \mathbb{Q} , *K* satisfies the conditions of the Theorem 10. The discriminant of \tilde{k} is

$$|D_{\tilde{k}/\mathbb{O}}| = 14641 = 11^4$$

and the only rational primes that ramify in K are 2, 11 and 23. Using PARI/GP [PARI 2014], we can estimates the sizes of the higher ramification groups. Thus, we get the upper bound

$$N_{\tilde{k}/\mathbb{Q}}(f_{\theta}) \le (2^{15}23)^{\theta(1)}$$

With this estimation, we get the following explicit result:

Corollary 15. For each $n \ge 1$, there exists a irreducible character χ_n such that $\chi_n(1) \rightarrow \infty$ and

$$f_{\chi_n}^{1/\chi_n(1)} \le C$$
, where $C \le 11^4 \cdot 2^{15} \cdot 23$.

An open problem now is to improve the constant C.

Acknowledgements

This research was partially supported by the "Red Iberoamericana de Teoría de Números", ECOS-CONICYT grant 170022 "Explicit Arithmetic Geometry" and IdEx-Université de Bordeaux (credits to Benjamin Matschke). The author would like to thank Eduardo Friedman for suggesting this problem and his helpful advice. The author also thanks Bill Allombert, Yuri Bilu, Mariela Carvacho, Milton Espinoza and Andrea Vera for useful discussions. Finally, the author thanks the referees for the comments and in particular for suggesting Proposition 3 and Theorem 14. While working on this project, the author visited the ICMAT Madrid and IMB Bordeaux.

References

[Gallagher 1962] P. X. Gallagher, "Group characters and normal Hall subgroups", *Nagoya Math. J.* **21** (1962), 223–230. MR Zbl

[Golod and Shafarevich 1964] E. S. Golod and I. R. Shafarevich, "On the class field tower", *Izv. Akad. Nauk SSSR Ser. Mat.* **28** (1964), 261–272. In Russian. MR Zbl

[Huppert 1998] B. Huppert, Character theory of finite groups, de Gruyter Expos. Math. 25, de Gruyter, Berlin, 1998. MR Zbl

[Isaacs 1976] I. M. Isaacs, Character theory of finite groups, Pure Appl. Math. 69, Academic Press, New York, 1976. MR Zbl

[Martinet 1978] J. Martinet, "Tours de corps de classes et estimations de discriminants", *Invent. Math.* 44:1 (1978), 65–73. MR Zbl

[Neukirch 1999] J. Neukirch, Algebraic number theory, Grundlehren der Math. Wissenschaften 322, Springer, 1999. MR Zbl

[Odlyzko 1977] A. M. Odlyzko, "On conductors and discriminants", pp. 377–407 in *Algebraic number fields: L-functions and Galois properties* (Durham, UK, 1975), edited by A. Fröhlich, Academic Press, London, 1977. MR Zbl

[PARI 2014] PARI Group, PARI/GP version 2.7.1, 2014, Available at http://pari.math.u-bordeaux.fr/.

[Pizarro-Madariaga 2011] A. Pizarro-Madariaga, "Lower bounds for the Artin conductor", *Math. Comp.* **80**:273 (2011), 539–561. MR Zbl

Communicated by Brian ConradReceived 2017-11-29Revised 2019-05-22Accepted 2019-06-25

amalia.pizarro@uv.cl

Instituto de Matemáticas, Universidad de Valparaíso, Chile

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen Massachusetts Institute of Technology Cambridge, USA EDITORIAL BOARD CHAIR David Eisenbud University of California Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds	University of California, Berkeley, USA	Martin Olsson	University of California, Berkeley, USA
Antoine Chambert-Loir	Université Paris-Diderot, France	Raman Parimala	Emory University, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Jonathan Pila	University of Oxford, UK
Brian D. Conrad	Stanford University, USA	Anand Pillay	University of Notre Dame, USA
Samit Dasgupta	University of California, Santa Cruz, USA	Michael Rapoport	Universität Bonn, Germany
Hélène Esnault	Freie Universität Berlin, Germany	Victor Reiner	University of Minnesota, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Peter Sarnak	Princeton University, USA
Hubert Flenner	Ruhr-Universität, Germany	Joseph H. Silverman	Brown University, USA
Sergey Fomin	University of Michigan, USA	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Christopher Skinner	Princeton University, USA
Wee Teck Gan	National University of Singapore	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Andrew Granville	Université de Montréal, Canada	J. Toby Stafford	University of Michigan, USA
Ben J. Green	University of Oxford, UK	Pham Huu Tiep	University of Arizona, USA
Joseph Gubeladze	San Francisco State University, USA	Ravi Vakil	Stanford University, USA
Roger Heath-Brown	Oxford University, UK	Michel van den Bergh	Hasselt University, Belgium
Craig Huneke	University of Virginia, USA	Akshay Venkatesh	Institute for Advanced Study, USA
Kiran S. Kedlaya	Univ. of California, San Diego, USA	Marie-France Vignéras	Université Paris VII, France
János Kollár	Princeton University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Philippe Michel	École Polytechnique Fédérale de Lausanne	Melanie Matchett Wood	University of Wisconsin, Madison, USA
Susan Montgomery	University of Southern California, USA	Shou-Wu Zhang	Princeton University, USA
Shigefumi Mori	RIMS, Kyoto University, Japan		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2019 is US \$385/year for the electronic version, and \$590/year (+\$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2019 Mathematical Sciences Publishers

Algebra & Number Theory

Volume 13 No. 9 2019

Proof of a conjecture of Colliot-Thélène and a diophantine excision theorem JAN DENEF	1983
Irreducible characters with bounded root Artin conductor AMALIA PIZARRO-MADARIAGA	1997
Frobenius–Perron theory of endofunctors JIANMIN CHEN, ZHIBIN GAO, ELIZABETH WICKS, JAMES J. ZHANG, XIAOHONG ZHANG and HONG ZHU	2005
Positivity of anticanonical divisors and <i>F</i> -purity of fibers SHO EJIRI	2057
A probabilistic approach to systems of parameters and Noether normalization JULIETTE BRUCE and DANIEL ERMAN	2081
The structure of correlations of multiplicative functions at almost all scales, with applications to the Chowla and Elliott conjectures TERENCE TAO and JONI TERÄVÄINEN	2103
VI-modules in nondescribing characteristic, part I ROHIT NAGPAL	2151
Degree of irrationality of very general abelian surfaces NATHAN CHEN	2191
Lower bounds for the least prime in Chebotarev ANDREW FIORI	2199
Brody hyperbolicity of base spaces of certain families of varieties MIHNEA POPA, BEHROUZ TAJI and LEI WU	2205