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Let VI be the category of finite dimensional Fq -vector spaces whose morphisms are injective linear
maps and let k be a noetherian ring. We study the category of functors from VI to k-modules in the
case when q is invertible in k. Our results include a structure theorem, finiteness of regularity, and a
description of the Hilbert series. These results are crucial in the classification of smooth irreducible
GL∞(Fq)-representations in nondescribing characteristic which is contained in Part II of this paper
(VI-modules in nondescribing characteristic, part II, arxiv:1810.04592).
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1. Introduction

Fix a commutative noetherian ring k. Set F = Fq , and let GLn be the n-th general linear group over F.
Roughly speaking, the aim of this paper is to study the behavior of sequences, whose n-th member is
a k[GLn]-module, as n approaches infinity (the “generic case”). As n varies, every prime appears as a
divisor of the size of GLn . But surprisingly, it is possible to avoid most of the complications of modular
representation theory in the generic case after inverting just one prime, namely the characteristic of F. We
assume throughout that q is invertible in k, and we call this the “nondescribing characteristic” assumption.

We obtain these sequences in the form of VI-modules. A VI-module M is a functor

M : VI→Modk,

where VI is the category of finite dimensional F-vector spaces with injective linear maps. Clearly,
GLn = AutVI(F

n) acts on M(Fn). Thus M can be thought of as a sequence whose n-th member is a
k[GLn]-module. This sequence could be arbitrary if we do not impose any finiteness conditions on M .
But there is a natural notion of “finite generation” in the category of VI-modules. This paper analyzes
finitely generated VI-modules. Here is a sample theorem that we prove (it extends [Gan and Watterlond
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2018, Theorem 1.7] away from characteristic zero, and also improves some cases of [Sam and Snowden
2017a, Corollary 8.3.4]):

Theorem 1.1 (q-polynomiality of dimension). Assume that k is a field in which q is invertible. Let M
be a finitely generated VI-module. Then there exists a polynomial P such that dimk M(Fn)= P(qn) for
large enough n.

The result above is a consequence of our main structural result that we prove about finitely generated
VI-modules. Given a VI-module M and a vector space X , we can define a new VI-module 6X M by

6X M(Z)= M(X + Z).

We call this new VI-module the shift of M by X . Our main result roughly says that the shift of a finitely
generated module by a vector space of large enough dimension has a very simple description. To make it
precise, note that there is a natural restriction functor

ModVI→
∏
n≥0

Modk[GLn] .

This functor admits a left adjoint I. We call a VI-module induced if it is of the form I(W ) for some W .
A VI-module that admits a finite filtration whose graded pieces are induced is called semiinduced. We
now state our main theorem.

Theorem 1.2 (the shift theorem). Assume that q is invertible in k. Let M be a finitely generated VI-module.
Then 6X M is semiinduced if the dimension of X is large enough.

Idea behind the shift theorem. The shift theorem is proven by induction on the degree of generation. To
make the induction hypothesis work, we construct a “categorical derivation” in the monoidal category of
Joyal and Street [1995]. To make it precise, let VB be the category of finite dimensional F-vector spaces
with bijective linear maps. Joyal and Street considered a monoidal structure1

⊗VB on ModVB given by

(M ⊗VB N )(Y )=
⊕
X≤Y

M(Y/X)⊗k N (X).

We construct a categorical derivation 6 on (ModVB,⊗VB). In other words, 6 satisfies

6(M ⊗ N )= (6M ⊗ N )
⊕

(M ⊗6N ).

As pointed out to us by Steven Sam, there is an algebra object A in (ModVB,⊗VB) such that the category
of VI-module is equivalent to the category of A-modules. Under this equivalence, induced modules
are A-modules of the form A⊗VB W . Our categorical derivation shows that if we apply the cokernel
of id→ 6 to an induced module then we obtain another induced module of strictly smaller degree of
generation. This is what makes our inductive proof work. But there is a caveat. Everything said and done

1It is shown in [Joyal and Street 1995] that this category is actually a braided monoidal category if k is a field of characteristic
zero. But we don’t need the braiding, and so we don’t need the characteristic zero assumption
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in this paragraph so far is true without any restrictions on the characteristic. On the other hand, the shift
theorem is false if we drop the nondescribing characteristic assumption.

The category ModVI naturally contains a localizing subcategory Modtors
VI whose members are called

torsion VI-modules. Given a VI-module M , we denote the maximal torsion submodule of M by 0(M).
The functor 0 is left exact, and its right derived functor is denoted R0. A crucial technical ingredient in
our proof of the shift theorem is the following criterion for semiinduced modules.

Theorem 1.3. Assume that q is invertible in k. Let M be a finitely generated VI-module. Then M is
semiinduced if and only if R0(M)= 0.

That a semiinduced M satisfies R0(M)= 0 is easy to prove and doesn’t require any assumptions on
the characteristic. But the converse requires the nondescribing characteristic assumption in two crucial
and separate places: (1) 6 is exact and (2) 6 commutes with 0. (1) is immediate from our construction
of 6 but (2) requires an interesting combinatorial identity (which appears in the proof of Lemma 4.26).

The last ingredient of our proof is a recent theorem proved independently by Putman and Sam [2017]
and Sam and Snowden [2017a] which resolved a long-standing conjecture of Lannes and Schwartz.

Theorem 1.4 [Putman and Sam 2017; Sam and Snowden 2017a]. Suppose k is an arbitrary noetherian
ring (the nondescribing characteristic assumption is not needed). Then the category of VI-modules is
locally noetherian.

We also need the following immediate corollary of this theorem, which provides us control over the
torsion part of a module.

Corollary 1.5 [Putman and Sam 2017; Sam and Snowden 2017a]. Suppose k is an arbitrary noetherian
ring (the nondescribing characteristic assumption is not needed). Let M be a finitely generated VI-module.
Then 0(M)(X)= 0 if the dimension of X is large enough.

All these ingredients above allow us to show by induction on the degree of generation that 6n M is
semiinduced if n is large enough. The shift theorem then follows from it.

Some consequences of the shift theorem. To start with, Theorem 1.1 is a consequence of the shift
theorem simply because induced modules can be easily seen to satisfy q-polynomiality of dimension. If
we drop the nondescribing characteristic assumption, and assume that k = F, then M(X)= X defines a
finitely generated VI-module. This implies that q-polynomiality fails in equal characteristic, and so the
shift theorem must also fail. Below we list some more consequences.

Theorem 1.6 (finiteness of local cohomology). Assume that q is invertible in k. Let M be a finitely
generated VI-module. Then we have the following:

(a) For each i , the module Ri0(M) is finitely generated. In particular, Ri0(M)(X)= 0 if the dimension
of X is large enough.

(b) Ri0(M)= 0 for i large enough.
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The theorem above extends Corollary 1.5 to the higher derived functors of 0. We use this theorem,
and an argument similar to the one for FI-modules as in [Nagpal et al. 2018], to bound the regularity. In
particular, we provide a bound on the regularity in terms of the degrees of the local cohomology.

Theorem 1.7 (finiteness of regularity). Assume that q is invertible in k. Let M be a finitely generated
VI-module. Then M has finite Castelnuovo–Mumford regularity.

Gan and Watterlond [2018] have shown that, when k is an algebraically closed field of characteristic
zero, then any finitely generated VI-module exhibits “representation stability”, a phenomenon described
by Church and Farb [2013]. Representation stability for VI-modules also follows from a recent result of
Gadish [2017, Corollary 1.13]. We prove representation stability in a more systematic way. We believe
that our method can be used to write down a virtual specht stability statement away from characteristic
zero as done for FI-modules by Harman [2017]. In contrast to this, the methods in [Gan and Watterlond
2018] or [Gadish 2017] use characteristic zero assumption in an essential way. Below, we only state a
part of the result to avoid giving a full definition of representation stability here (for full definition, see
page 2182).

Theorem 1.8 [Gan and Watterlond 2018, Theorem 1.6]. Assume that k is an algebraically closed field
of characteristic zero. Let M be a finitely generated VI-module. Then the length of the k[GLn]-module
M(Fn) stabilizes in n.

We also obtain the following new theorem in characteristic zero.

Theorem 1.9 (finiteness of injective dimension). Assume that k is a field of characteristic zero. Then the
following holds in ModVI:

(a) Every projective is injective.

(b) Every torsion-free injective is projective.

(c) Every finitely generated module has finite injective dimension.

Along the way, we classify all indecomposable injectives in characteristic zero, and we also classify
indecomposable torsion injectives when k is an arbitrary noetherian ring.

Relations to other works. Recently, Kuhn [2015] has analyzed a similar but simpler (of lower Krull
dimension) category of VA-modules, where VA is the category of finite dimensional F vector spaces.

Theorem 1.10 [Kuhn 2015, Theorem 1.1]. In the nondescribing characteristic, ModVA is equivalent to
the product category

∏
n≥0 Modk[GLn]. In particular, if k is a field then ModVA is of Krull dimension zero.

A folklore result says that one recovers the representation theory of the symmetric groups from
the representation theory of the finite general linear group over Fq by setting q = 1. We observe a
similar phenomenon between FI-modules and VI-modules: all the results we have for VI-modules in the
nondescribing characteristic are true for FI-modules in all characteristic (FI-modules encode sequences
of representations of the symmetric groups; see [Church et al. 2015]). In other words, the proofs for the
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results on FI-modules are degenerate cases of the proofs for the corresponding results on VI-modules
in the nondescribing characteristic. But we point out that (1) many of our ideas are copied from the
corresponding ideas on FI-modules and (2) we know a lot more about FI-modules, for example, all the
questions that we pose below have been solved for FI-modules. We have tried to summarize throughout
the text where each crucial idea has been borrowed from, but here is a list of references that contain
analogs of our results — [Church 2016; Church and Ellenberg 2017; Church et al. 2014; 2015; Djament
2016; Djament and Vespa 2019; Li 2016; Li and Ramos 2018; Nagpal 2015; Nagpal et al. 2018; Ramos
2018; Sam and Snowden 2016].

A higher dimension category of similar representation theoretic nature whose structure is well under-
stood is the category of FId -modules; see [Sam and Snowden 2017b; 2019].

Further comments and questions. Theorem 1.8 implies that every finitely generated object in the category

Modgen
VI :=ModVI /Modtors

VI

of generic VI-modules is of finite length, that is, the Krull dimension of Modgen
VI is zero. In a subsequent

paper [Nagpal 2018], we shall prove that the same holds in the nondescribing characteristic (where k is
still assumed to be a field) by providing a complete set of irreducibles of the generic category. Determining
Krull dimension in equal characteristic (k= F) is related to an old open problem called the strong artinian
conjecture [Powell 1998; 2000].

Sam and Snowden have proven that the categories of torsion and the generic FI-modules are equivalent
in characteristic zero [Sam and Snowden 2016, Theorem 3.2.1], and such a phenomenon seem to appear
in some other categories as well (for example, see [Sam and Snowden 2015] and [Nagpal et al. 2016] for
the category of Sym(Sym2)-modules). We have the following question along the same lines:

Question 1.11. Assume that k is of characteristic zero. Is there an equivalence of categories Modtors
VI
∼=

Modgen
VI ?

Remark 1.12. After the release of the first draft of this paper, Gan, Li and Xi have positively answered the
question above; see [Gan et al. 2017]. We note that they used the shift theorem (Theorem 1.2) nontrivially;
see [Gan et al. 2017, Lemma 4.1].

Our result provides bounds on the Castelnuovo–Mumford regularity in terms of the local cohomology.
But we have not been able to bound local cohomology in terms of the degrees of generation and relation. An
analogous question for FI-modules has already been answered [Church and Ellenberg 2017, Theorem A];
also see [Church 2016; Li 2016; Li and Ramos 2018, Theorem E] for more results on this. We also note
that, in characteristic zero, Miller and Wilson have provided bounds on the higher syzygies for a similar
category called VIC-modules; see [Miller and Wilson 2018, Theorem 2.26].

Question 1.13. Let M be a VI-module generated in degrees ≤ t0 and whose syzygies are generated in
degrees ≤ t1. Is there a number n depending only on t0 and t1 such that 0(M)(X)= 0 for every vector
space X of dimension larger than n.
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Remark 1.14. After the release of the first draft of this paper, Gan and Li have positively answered
the question above; see [Gan and Li 2017]. We note that they used the shift theorem (Theorem 1.2)
nontrivially. Along the way, they also made all the bounds in the current paper explicit in terms of t0 and
t1; see [Gan and Li 2017, Theorem 1.1]. Bounds in the current paper are in terms of degrees of the local
cohomology groups.

The question below is a VI-module analog of [Li and Ramos 2018, Conjecture 1.3] which has been
resolved for FI-modules in [Nagpal et al. 2018].

Question 1.15. Is the Castelnuovo–Mumford regularity of a VI-module exactly maxi (deg Ri0(M)+ i)
where i varies over the finitely many values for which Ri0(M) is nonzero?

Outline of the paper. In Section 2, we provide an overview of VI-modules. In particular, we sketch an
equivalence between ModVI and the module category of an algebra object A in the monoidal category
of Joyal and Street, and we recall some formalism of local cohomology and saturation from [Sam and
Snowden 2019]. In Section 3, we prove some formal properties of induced and semiinduced modules that
we need. These properties are formal in the sense that they have nothing much to do with VI-modules
and are true (with appropriate definitions) in several other categories (for example, ModFI, ModFId or
ModVIC). We decided to include a short section and collect these formal results at one place. The meat
of the paper is contained in Section 4 where we prove the shift theorem. The last section (Section 5)
contains all the consequences of the shift theorem.

2. Overview of VI-modules

Notation. We work over a unital commutative ring k. For a nonnegatively graded k-module M , we define
deg M to be the least integer n ≥−1 such that Mk = 0 for k > n, and deg M =∞ if no such n exists.

We fix a finite field F of cardinality q , and assume that all vector spaces are over F. For a vector space
X , we denote the group of automorphisms of X by Aut(X) or GL(X). When the dimension of X is n,
we also denote these groups by GLn . We denote the trivial vector space by 0, and we shall simply write
X � Y whenever dimF X ≤ dimF Y .

The monoidal category of Joyal and Street. We denote, by VB, the category of finite dimensional vector
spaces with isomorphisms. A VB-module is a functor from VB to Modk. VB-modules form a category
ModVB which is naturally equivalent to the product category

∏
n≥0 Modk[GLn]. In particular, a VB-module

is naturally a nonnegatively graded k-module. We denote, by Vd , the VB-module satisfying

Vd(X)=
{

V (X) if dimF X = d,
0 if dimF X 6= d.

If V = Vd , we say that V is supported in degree d. Given VB-modules M, N we define an external
product ⊗VB by

(M ⊗VB N )(Y )=
⊕
X≤Y

M(Y/X)⊗k N (X).



VI-modules in nondescribing characteristic, part I 2157

Then ⊗VB turns ModVB into a monoidal category; see [Joyal and Street 1995, Section 2].

The algebra A. Let A be the VB-module such that An = k is the trivial representation of GLn for each n.
We have a map A⊗VB A→ A given by

a⊗ b ∈ A(Y/X)⊗k A(X) 7→ ab ∈ A(Y ).

This turns A into an algebra object in the monoidal category (ModVB,⊗VB). We denote the category
of A-modules by ModA. The VB-module k = A/A+ is naturally an A-module. As usual, the degree of
generation of an A-module M is defined to be deg k⊗A M . We shall denote deg TorA

i (k,M) by ti (M),
and so the degree of generation of M is t0(M). We say that an A-module is presented in finite degrees if
t0(M) and t1(M) are finite.

Definition of a VI-module. We denote, by VI, the category of finite dimensional vector spaces with
injective linear maps. A VI-module is a functor from VI to Modk. We denote the category of VI-modules
by ModVI. Let M be a VI-module. A VI morphism f : X → Y induces a map M(X)→ M(Y ) which
we denote by f?. The VI-module M restricts to a VB-module and admits a natural map A⊗VB M→ M
given by

a⊗ b ∈ A(Y/X)⊗k M(X) 7→ aι?(b) ∈ M(Y )

where ι : X → Y is the inclusion. Conversely, if M is an A-module and f : X → Y is a VI-morphism,
then we have a map f? : M(X)→ M(Y ) given by the composite

M(X)→ M( f (X)) 1⊗−
−−→ A(Y/ f (X))⊗k M( f (X))→ M(Y )

where the first map comes from VB-module structure on M and the last map comes from A-module
structure on M . It is easy to see that the above discussion describes an equivalence of categories.

Proposition 2.1. ModVI is equivalent to ModA.

We shall not distinguish between VI-modules and A-modules. In particular, notions like degree of
generation makes sense for VI-modules. We explain degree of generation from the VI perspective now.
Given a VB-module V , we can upgrade it to a VI-module by declaring that all VI-morphisms that are
not isomorphisms acts on V by 0. This defines a functor 9↑ : ModVB→ModVI. We define HVI

0 to be
the left adjoint to 9↑. Let M be a VI-module. Denote the smallest VI-submodule containing M(Y ) for
Y ≺ X by M≺X . Then HVI

0 (M) is given explicitly by

HVI
0 (M)(X)= (M/M≺X )(X).

The functor HVI
0 (called VI-homology) is same as the functor TorA

0 (k,−)= k⊗A− under the equivalence
above. We shall use the notation HVI

i (−) instead of TorA
i (k,−). Here are some basic results on VI-

homology.

Proposition 2.2. We have HVI
0 (M≺d) = HVI

0 (M)<d . In particular, if n < m then the natural map
HVI

0 (M≺n)→ HVI
0 (M≺m) is just the inclusion map HVI

0 (M)<n→ HVI
0 (M)<m .
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Proposition 2.3. Let M be a VI-module, and f : M→ N be a morphism of VI-modules. Then we have
the following:

(a) HVI
0 (M)= 0 if and only if M = 0.

(b) HVI
0 ( f ) is an epimorphism if and only if f is an epimorphism.

(c) Suppose t0(M)≤ d and N (X)= 0 for X ≺ Fd . Then HVI
0 ( f )= 0 if and only if f = 0.

Proof. Part (a) is just the Nakayama lemma and (b) follows from (a) and the right exactness of HVI
0 . For

part (c), suppose HVI
0 ( f )= 0. By part (a), it suffices to show that HVI

0 (im f )= 0. First suppose X is a
vector space of dimension at most d. Since N (Y ) = 0 for all Y ≺ X , the map f (X) : M(X)→ N (X)
factors through the projection M(X)→ HVI

0 (M)(X) and N (X) is naturally isomorphic to HVI
0 (N )(X).

This shows that
HVI

0 (im f )(X)= (im HVI
0 ( f ))(X)= 0.

Next suppose X is a vector space of dimension bigger than d . Since M→ im f is a surjection and HVI
0 is

right exact we see that t0(M)≤ d H⇒HVI
0 (im f )(X)= 0. Thus HVI

0 (im f )= 0, completing the proof. �

Local cohomology and saturation. Let M be a VI-module. We say that an element x ∈ M(X) is torsion
if there exists an injective linear map f : X → Y such that f?(x) = 0. A VI-module is torsion if
it consists entirely of torsion elements. We denote the maximal torsion submodule of M by 0(M),
the i-th right derived functor of 0 by Ri0, and the degree of Ri0(M) by hi (M). Let Modtors

VI be the
category of torsion VI-modules. It is easy to see that Modtors

VI ⊂ModVI is a localizing subcategory. Let
T : ModVI→ModVI /Modtors

VI be the corresponding localization functor and S be its right adjoint (the
section functor). We define saturation of M to be the composition S(M)= ST(M). We denote the i-th
right derived functor of S by Ri S.

We refer the readers to [Sam and Snowden 2019, Section 4] where the formalism of local cohomology
and saturation is discussed in quite generality. This formalism needed an assumption which in our case is
the following:

Injective objects of Modtors
VI remain injective in ModVI . (*)

We note here that both Modtors
VI and ModVI are Grothendieck abelian categories, and so both contain

enough injectives.

Lemma 2.4. The assumption (*), as above, holds. In particular, the injective hull (as VI-modules) of a
torsion module is torsion.

Proof. The first assertion follows immediately from Theorem 1.4 and [Sam and Snowden 2019, Proposi-
tion 4.18]. Now suppose that M is a torsion VI-module. Then we can embed M into an injective object
I in Modtors

VI . By (*), I is injective in ModVI, and so I contains the injective hull of M . The second
assertion is immediate from this. �

Lemma 2.5. If I is injective in ModVI, then 0(I ) is also injective in ModVI. In particular, if M is a
torsion VI-module, then Ri0(M)= 0 for i > 0.
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Proof. Since I is injective and contains 0(I ), it follows that I contains the injective hull of 0(I ). By the
previous lemma and the maximality of 0(I ), we conclude that 0(I ) is its own injective hull. This proves
the first assertion.

The first assertion implies that if M is a torsion module then it admits an injective resolution M→ I •

such that each I i is torsion. Since 0 is identity on torsion modules, we see that 0(I •)= I •. The second
assertion follows. �

Corollary 2.6. Let T be an object of the right derived category D+(ModVI) which can be represented by
a complex of torsion VI-modules. Then R0(T )∼= T , and RS(T )= 0.

We now state a result from [Sam and Snowden 2019] that we need.

Proposition 2.7 [Sam and Snowden 2019, Proposition 4.6]. Let M ∈D+(ModVI). Then we have an exact
triangle

R0(M)→ M→ RS(M)→

where the first two maps are the canonical ones.

We call a VI-module M derived saturated if M → RS(M) is an isomorphism in D+(ModVI), or
equivalently R0(M)= 0 (see the proposition above).

3. Induced and semiinduced VI-modules

The aim of this section is to prove some formal properties of induced and semiinduced modules. The
restriction map 9↓ : ModVI→ModVB admits a left adjoint ModVB→ModVI denoted I, which is exact.
By definition of I, we have the adjunction

HomModVI(I(V ),M)= HomModVB(V,M). (*)

We call VI-modules of the form I(V ) induced. If V is supported in degree d we say that I(V ) is induced
from degree d. Moreover, when Vd is a VB-module isomorphic to k[HomVB(F

d ,−)] then we denote
I(V ) by simply I(d). By Yoneda lemma, we have I(d) = k[HomVI(F

d ,−)]. We have the following
alternative descriptions for I(V ):

I(V )= A⊗VB V, and I(V )=
⊕
d≥0

I(d)⊗k[Aut(Fd )] V (F
d).

Proposition 3.1. The composite functor HVI
0 I is naturally isomorphic to the identity functor on VB-

modules. The counit I9↓→ id is an epimorphism on any VI-module.

Proof. The first assertion is clear because composing k⊗A− with A⊗VB− yields k⊗VB−, which is
naturally isomorphic to the identity functor. Alternatively, by adjointness of I and HVI

0 , we have

HomModVB(H
VI
0 I(M), N )= HomModVB(M, 9↓9

↑N )= HomModVB(M, N ),
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and so the result follows by the uniqueness of left adjoints. For the second assertion, it suffices to check
that 9↓ is faithful, which is trivial. �

A useful thing to note is that if M is a VI-module and f : V → M is a map of VB-modules then the
image of the corresponding map g : I(V )→ M is the smallest VI-submodule of M containing the image
of f . In particular, if V (X)→ M(X) is surjective then g(X) is surjective.

Proposition 3.2. I(V ) is a projective VI-module if and only if V is a projective VB-module. All projective
VI-modules are of the form I(V ).

Proof. Each of I and HVI
0 is left adjoint to an exact functor (9↓ and 9↑ respectively), so both of them

preserve projectives [Weibel 1994, Proposition 2.3.10]. Since HVI
0 I= id (Proposition 3.1), we conclude

that I(V ) is projective if and only if V is projective.
For the second assertion, let P be a projective VI-module. By Proposition 3.1, there is a natural

surjection φ : I9↓(P)→ P , and since P is projective it admits a section s. Let ψ : IHVI
0 (P)→ P be the

map given by ψ = φ ◦IHVI
0 (s). It suffices to show that ψ is an isomorphism. By Proposition 3.1, we have

HVI
0 (ψ)

∼= HVI
0 (φ ◦ s)= HVI

0 (id)= id .

Thus, by Proposition 2.3, ψ is surjective. Since P is projective we have a short exact sequence

0→ HVI
0 (kerψ)→ HVI

0 (IH
VI
0 (P))

HVI
0 (ψ)

∼=id
−−−−−→ HVI

0 (P)→ 0.

In particular, HVI
0 (kerψ) = 0. Thus, by Proposition 2.3, we conclude that ψ is an isomorphism. This

completes the proof. �

Corollary 3.3. ModVI has enough projectives.

Proof. Clearly, ModVB ∼=
∏

n≥0 Modk[GLn] has enough projectives. Now let M be a VI-module and let
P→9↓(M) be a surjection from a projective VB-module P . Then, the composite I(P)→ I9↓(M)→M
is a surjection (Proposition 3.1) and I(P) is projective (Proposition 3.2), completing the proof. �

Proposition 3.4. HVI
i (I(V ))=0 for i>0 and is isomorphic to V for i=0. In particular, t0(I(V ))=deg V ,

and I(V ) is presented in finite degrees if and only if deg(V ) <∞.

Proof. Let P•→ V be a projective resolution of V as a VB-module. Then I(P•) is a projective resolution
of I(V ) (Proposition 3.2). The assertion now follows by applying HVI

0 (−) and noting that HVI
0 I = id

(Proposition 3.1). �

Proposition 3.5. Let I(U ), I(V ) be VI-modules induced from d. Then HVI
0 induces an isomorphism

HomModVI(I(U ), I(V ))→ HomModVB(U, V ),

whose inverse is given by I.

Proof. By Proposition 3.1, HVI
0 I= id. Conversely, suppose f ∈ HomModVI(I(U ), I(V )). Then, again by

Proposition 3.1, HVI
0 ( f − IHVI

0 ( f ))= 0. Thus, by Proposition 2.3(3), we conclude that f − IHVI
0 ( f )= 0,

completing the proof. �
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Proposition 3.6. Kernel and cokernel of a map of VI-modules induced from d are induced from d. An
extension of VI-modules induced from d is induced from d.

Proof. Let f : I(U )→ I(V ) be a map of VI-modules. Then by the previous proposition, there is a
g : U → V such that f = I(g). Since I is exact, we have ker f = I(ker g) and coker f = I(coker g),
proving the first assertion. For the second assertion, let M be an extension of I(U ) and I(V ). Let P•→U
and Q•→ V be projective resolutions of U and V such that Pi and Qi are all supported in degree d.
By the horseshoe lemma and Proposition 3.2, I(P•+ Q•) is a projective resolution of M . By the first
assertion, M is induced from d. �

Proposition 3.7. Let I(W ) be a module induced from d. And let M be a submodule of I(W ) generated in
degrees ≤ d. Then M is isomorphic to I(Md). In particular, M is induced from d.

Proof. Since M is generated in degree d and Mk ⊂ I(W )k = 0 for k < d, we have HVI
0 (M) = Md .

It follows that the natural map f : I(Md)→ M is a surjection (Proposition 2.3). Composing it with
the inclusion M→ I(W ), we obtain a map g : I(Md)→ I(W ). By construction, HVI

0 (g) is the natural
inclusion Md →W . Thus by the Proposition 3.5, we have

ker(g)= ker(IHVI
0 (g))= I(ker(HVI

0 (g)))= I(0)= 0.

This implies that f is injective, completing the proof. �

Proposition 3.8. Let M be a VI-module. Then:

(a) M is generated in degrees ≤ d if and only if it admits a surjection I(V )→ M with deg V ≤ d.

(b) M is presented in finite degrees if and only if there is an exact sequence

I(W )→ I(V )→ M→ 0

such that deg V, deg W <∞.

Proof. (a) Suppose there is a surjection I(V )→ M . Since HVI
0 is right exact, we have a surjection

V → HVI
0 (M). This shows that deg V ≤ d H⇒ t0(M) ≤ d. Conversely, suppose t0 ≤ d. Let V be

the VB-module with deg V ≤ d satisfying V (X) = M(X) for dim X ≤ d. By construction, we have a
surjection V → HVI

0 (M). By Nakayama lemma, the natural map I(V )→ M is a surjection, completing
the proof.

(b) First suppose M is presented in finite degrees. Then by part (a), there is a surjection f : I(V )→ M
with deg V <∞. It suffices to show that the kernel of f is generated in finite degrees. But this follows
from the long exact sequence corresponding to HVI

0 . Conversely, if there is an exact sequence

I(W )→ I(V )→ M→ 0

such that deg V, deg W <∞. Then by part (a), M and the kernel of I(V )→ M are generated in finite
degrees. Again, the long exact sequence corresponding to HVI

0 finishes the proof (see Proposition 3.4). �
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Semiinduced modules. We call a module semiinduced if it admits a finite filtration whose graded pieces
(successive quotients) are induced modules that are generated in finite degrees.

Lemma 3.9. Suppose HVI
1 (Q) = 0 and assume that HVI

0 (Q) is concentrated in degree d. Then Q is
induced from d. In particular, Q is homology acyclic.

Proof. By the assumption, Qd = HVI
0 (Q). This implies that there is a natural surjection φ : M :=

I(HVI
0 (Q))→ Q which induces an isomorphism HVI

0 (M)→HVI
0 (Q). By the assumption that HVI

1 (Q)= 0
and Nakayama’s lemma, we see that the kernel of φ is trivial. This shows that Q is induced from d . The
statement that Q is homology acyclic follows from Proposition 3.4. �

The proof of the following proposition is motivated by a very similar theorem of Ramos for FI-modules
[2018, Theorem B].

Proposition 3.10. Let M be a module generated in finite degrees. Then M is homology acyclic if and
only if M is semiinduced. More generally, if HVI

1 (M)= 0 then the graded pieces (successive quotients
Qi := M�i/M≺i ) of the natural filtration

0⊂ M�0 ⊂ · · · ⊂ M�d = M

are induced (more precisely, Qi is induced from i).

Proof. By Proposition 3.4, if M is semiinduced then it satisfies HVI
i (M)= 0 for i > 0, and is thus acyclic.

The reverse inclusion follows from the second assertion which we now prove by induction on d := t0(M).
Note that HVI

0 (Q
i ) is concentrated in degree i , and HVI

0 (M≺d) injects into HVI
0 (M�d) (Proposition 2.2).

Thus applying HVI
0 (−) to the exact sequence

0→ M≺d → M→ Qd
→ 0

shows that HVI
1 (Q

d)= 0. By Lemma 3.9, Qd is induced from d , and hence acyclic. Thus HVI
1 (M≺d)= 0.

The rest follows by induction. �

Corollary 3.11. Suppose M is semiinduced module generated in degree ≤ d. Then the graded pieces
(successive quotients Qi := M�i/M≺i ) of the natural filtration

0⊂ M�0 ⊂ · · · ⊂ M�d = M

are induced (more precisely, Qi is induced from i).

4. The shift theorem

The aim of this section is to prove our main result — the shift theorem.
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The shift and the difference functors, I. The category of F-vector spaces (and in particular, VI) has a
symmetric monoidal structure + given by the direct sum of vector spaces. It allows us to define a shift
functor τ X on F-vector spaces (or on VI) by

τ X (Z)= X + Z .

Moreover, for any F-linear map ` : X → Y , we have a natural transformation τ ` : τ X
→ τY given by

τ `(Z)= `+ idZ .
We say that a morphism f : Fd

→ X + Z is of X-rank k if the dimension of (X + im f )/X is k
(clearly, X -rank of f is at most d). In other words, k is the least integer such that there are VI-morphisms
g : Fd

→ X + Fk and h : Fk
→ Z satisfying f = τ X (h)g. We call any decomposition of the form

f = τ X (h)g as above, an (X, k)-decomposition of f . The following lemma is immediate from basic
linear algebra.

Lemma 4.1. Let τ X (h1)g1 = τ
X (h2)g2 are two (X, k)-decompositions of f : Fd

→ X + Z. Then there is
a unique σ ∈ GLk such that g2 = τ

X (σ )g1 and h2 = h1σ
−1.

Let Dd
k (X, Z) be the free k-module on morphisms f : Fd

→ X + Z of X -rank k. Then Dd
k (X, Z) is a

VI-module in both of the arguments X and Z , and has a natural action of GLd on the right.

Lemma 4.2. We have the following:

(a) Dd
k (X, Fk) is a free k[GLk]-module.

(b) Dd
k (X, Z)= k[HomVI(F

k, Z)]⊗k[GLk ] Dd
k (X, Fk).

(c) Given a VI-morphism ` : X→ Y , the natural map

`? : Dd
k (X, Z)→ Dd

k (Y, Z)

given by f 7→ τ Z (`) f is a split injection of VI-modules in the variable Z.

Proof. The first two parts are immediate from the previous lemma. Since ` : X → Y is an injection, it
admits an F-linear section s : Y→ X (which may not be an injection). This defines a map ψ : Dd

k (Y, Z)→
Dd

k (X, Z) given by

f 7→
{
τ Z (s) f if τ Z (s) f is injective,
0 if τ Z (s) f is not injective.

This map is clearly functorial in Z and is a section to `?, finishing the proof. �

The functor τ X induces an exact functor 6X , which we again call the shift functor, on ModVI given by
(6X M)(Y )= M(τ X (Y ))= M(X +Y ). An element φ ∈Aut(Y ) acts on (6X M)(Y )= M(X +Y ) where
the action is induced by τ X (φ). Similarly, there is an action of Aut(X) on 6X M(Y ).

Proposition 4.3. We have the following:

(a) 6XI(d)=
⊕

0≤k≤d I(k)⊗k[GLk ] Dd
k (X, Fk).

(b) 6XI(W )=6XI(d)⊗k[GLd ]W =
⊕

0≤k≤d I(k)⊗k[GLk ] Dd
k (X, Fk)⊗k[GLd ]W .
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Where W is any k[GLd ]-module. In particular, shift of an induced module is induced, and shift of a
projective VI-module is projective.

Proof. Since every VI-morphism f : Fd
→ X + Z is of X -rank k at most d, we have an isomorphism

6XI(d)(Z) =
⊕

0≤k≤d Dd
k (X, Z). This isomorphism is clearly functorial in Z . The rest follows from

the previous lemma. �

Corollary 4.4. The shift of an induced (semiinduced) C-module is induced (respectively semiinduced).
The category of modules generated (presented) in finite degrees is stable under shift. In particular,
t0(6X M)≤ t0(M).

Proof. Exactness of the shift functor and the previous proposition yields the first assertion. The second
assertion follows from Proposition 3.8 and the previous proposition. �

Suppose ` ∈ HomVI(X, Y ), and τ ` : τ X
→ τY be the corresponding natural transformation. If M is a

VI-module, then τ ` naturally induces a map 6` : 6X M→6Y M which is functorial in M . We denote
the cokernel of this map by 1`M . When X = 0, we simply denote this cokernel by 1Y , or simply 1 if
we also have dimF Y = 1.

Proposition 4.5. Let W be a VB-module. Then 6` : 6XI(W )→6Y I(W ) is split injective and 1`I(W )

is an induced module.

Proof. If f : Fd
→ X + Z is of X -rank k then τ Z (`) f is clearly of Y -rank k. Thus `? takes the k-

th direct summand of 6XI(d)(Z) =
⊕

0≤k≤d Dd
k (X, Z) to the k-th direct summand of 6Y I(d)(Z) =⊕

0≤k≤d Dd
k (Y, Z), and is functorial in Z . Thus it suffices to show that the map `? : Dd

k (X, Z) →
Dd

k (Y, Z) is split and the cokernel is induced. That it is split is proven in Lemma 4.2(c), and that
the cokernel is induced follows from Lemma 4.2(b) and Proposition 3.6. This proves the result when
W = k[HomVB(F

d ,−)]. The general result follows by observing that tensoring preserves split injections.
�

The following basic result is easy to establish.

Proposition 4.6. Let ` ∈ HomVI(X, Y ) and M be a VI-module. Then:

(a) The shift commutes with 0. In particular, h0(6
X M)=max(h0(M)− dim X,−1).

(b) The kernel of 6` : 6X M → 6Y M is a torsion module of degree h0(6
X M). In particular,

6` : 6X M→6Y M is injective if dim X > h0(M).

The shift and the difference functors, II. We define another shift-like functor 6 which has better formal
properties than 6. We first set some notation. Let F be a flag on a vector space Z given by

0= Z0 ⊂ Z1 ⊂ · · · ⊂ Zn = Z .
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We call the stabilizer of F in GL(Z) the parabolic subgroup corresponding to F and denote it by P(F).
The unipotent radical of P(F) is the kernel of the natural map

P(F)→
n∏

i=1

GL(Zi/Zi−1)

and is denoted by U(F). Fix a maximal flag

0= X0 ⊂ X1 ⊂ · · · ⊂ Xn = X.

In particular, n is equal to the dimension of X . Set Z0 = 0 and Zi+1 = X i + Z for i ≥ 0. Denote the
unipotent radical corresponding to the flag

0= Z0 ⊂ Z1 ⊂ · · · ⊂ Zn+1 = X + Z

by UX (Z). Then UX given by Z 7→ UX (Z) ∼= Zdim X o UX (0) is clearly a VI-group, that is, UX is a
functor from VI to groups. This is in contrast with Z 7→ GL(Z), which does not define a VI-group. We
define 6X on ModVI (or ModVB) by 6X M = (6X M)UX , that is,

6X M(Z)= M(X + Z)UX (Z).

It is not hard to see that if M is a VI-module then 6X M is a VI-module. In fact, all we need to check is
that for every VI-morphism f : Z→ Z ′, a ∈ M(X + Z) and σ ∈ UX (Z) there exists a σ ′ ∈ UX (Z ′) such
that τ X ( f )?(σ?a−a)= σ ′?τ

X ( f )?a−τ X ( f )?a. But one can simply take σ ′ to be f?σ (the last expression
makes sense because UX is a VI-group) and check that the equation holds. Thus 6X

: ModVI→ModVI

is a functor. Here we have suppressed the choice of flag on X . We drop the superscript X from 6X (or
6X ) when X is of dimension 1.

Suppose we are given an ` ∈HomVI(X, Y ) and maximal flags of X and Y such that ` takes the flag on
X to an initial segment of the flag on Y . Any σ ∈ UY (Z) stabilizes `(X)+ Z and hence can be identified
with an element of UX (Z). This induces a surjection `? : UY → UX of VI-groups. If M is a VI-module
then we can make UY act on 6X M via `?. Moreover, the map 6` : 6X M→ 6Y M is UY -equivariant.
We define 6` =6`UY

and 1` =1`UY
. Clearly, we have (6X M)UY =6

X M . So 6` is a map from 6X M
to 6Y M . It is not hard to see that 6` is a map of VI-modules. When X = 0, there is a unique map
`∈HomVI(X, Y ), so in this case we drop the notation 6` and simply call the map M→6Y M the natural
map. We now note down some basic properties of 6 that we will use.

Lemma 4.7. In the nondescribing characteristic, if 6` is injective then so is 6`. In particular, 6` is
injective if dim X > h0(M).

Proof. This is clear because the size of the group UY (Z) is invertible in k for each Z , and 6` is UY -
equivariant. �

The lemma immediately implies the following proposition.
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Proposition 4.8. Let ` be the unique map from 0 to X. In the nondescribing characteristic, the kernel of
the map 6` : M→6X M is torsion. In particular, if M is torsion-free then 6` is injective.

Proposition 4.9. t0(6X M)≤ t0(6X M)≤ t0(M).

Proof. The first inequality follows from the surjection 6X M → 6X M . The second is proven in
Corollary 4.4. �

Remark 4.10. It is not true that 6X6Y
= 6Y6X . In general, we only have a surjection 6Y6X M →

6X6Y M . Since we have suppressed the data of the flag on X + Y from 6X+Y , we will be careful to
never interchange X and Y . We adopt the convention that an initial segment of the maximal flag on X+Y
forms an initial segment of a maximal flag on Y (and not X ).

Proposition 4.11. We have the following natural isomorphisms:

(a) 6X+Y
=6Y6X .

(b) 6X+Y
=6Y6X .

In particular, 6X is isomorphic to (dim X)-fold iterate of 6. The same holds for 6X .

Proof. Part (a) is trivial. Note that we have a short exact sequence of VI-groups

1→6Y UX → UX+Y → iX (UY )→ 1

where iX (Z) : GL(Y + Z)→ GL(X + Y + Z) is the natural map. Part (b) now follows from

6X+Y M = (6X+Y M)UX+Y = ((6
X+Y M)6Y UX )iX (UY ) = (6

Y6X M)iX (UY ) =6
Y6X M. �

The following proposition is the most crucial for our purpose.

Proposition 4.12. Let X be a vector space of dimension one. Then 6X is a categorical derivation, that is,
we have

6X (M ⊗ N )= (6X M ⊗ N )
⊕

(M ⊗6X N ).

In particular, 6I(V )= I(V )⊕ I(6V ) and 1I(V )= I(6V ).

Proof. Let V ≤ W + X . Then either V is contained in W and UX (W ) acts trivially on V , or there is
an element σ ∈ UX (W ) such that σV is of the form V ′+ X for some subspace V ′ of W . Moreover, if
τV = V ′′+ X for some V ′′ ≤W and τ ∈ UX (W ) then we must have V ′+ X = V ′′+ X . This shows that
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σ−1τ ∈ UX (V ′). Thus we have

6X (M⊗N )(W )

= (M⊗N )(W + X)UX (W )

=

( ⊕
V≤W+X

M((W + X)/V )⊗k N (V )
)

UX (W )

=

(⊕
V≤W

M((W + X)/V )⊗k N (V )
)

UX (W )

⊕( ⊕
V ′≤W

M((W + X)/(V ′+ X))⊗k N (V ′+ X)
)

UX (V ′)

=

(⊕
V≤W

M(W/V + X)UX (W/V )⊗k N (V )
)⊕( ⊕

V ′≤W

M(W/V ′)⊗k N (V ′+ X)UX (V ′)

)
= (6X M⊗N )(W )

⊕
(M⊗6X N )(W ).

This completes the proof of the first assertion. For the second assertion, just note that I(V )= A⊗ V and
apply the previous part. �

We have the following basic observations.

Lemma 4.13. Let A, B : C1→ C2 be two functors between Grothendieck categories. Suppose there is a
natural transformation 9 : A→ B such that 9(P) is an isomorphism for each projective object P ∈ C1.
If A, B are right exact then 9(M) is an isomorphism for each M ∈ C1.

Lemma 4.14. Let A, B,C be right exact functors between two Grothendieck categories C1,C2. Suppose
there are natural transformations

A 9
−→ B 8

−→ C

such that for each projective P ∈ C1, the composite A(P)→ B(P)→ C(P) vanishes. Then 8 factors
through coker(9).

Part (b) of the proposition below is motivated by the footnote in [Church 2016].

Proposition 4.15. Let X and Y be vector spaces of dimension one. We have the following equality of
functors:

(a) 6X1Y
=1Y6X .

(b) HVI
0 1=6HVI

0 .

Proof. (a) is identical to [Djament and Vespa 2019, Proposition 1.4(5)]. We provide a proof sketch here.
In the following natural commutative diagram the vertical arrows are isomorphisms and so the cokernel
of the horizontal maps are also isomorphic:

6Y 6Y6X

6Y 6X6Y
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This shows that

6Y1X
= coker(6Y

→6Y6X )= coker(6Y
→6X6Y )=1X6Y ,

completing the proof of (a).

(b) Composing the natural transformation id→ HVI
0 with 6 we obtain 6→6HVI

0 . Since HVI
0 6HVI

0 =

6HVI
0 , we obtain a transformation HVI

0 6→6HVI
0 . We shall now apply Lemma 4.14 to the composite

HVI
0 → HVI

0 6→6HVI
0 .

To check the hypothesis of the lemma, it is enough to assume that P = I(V ) where V is concentrated in
degree d (Proposition 3.2). Evaluating the composite above at P yields

V → V ⊕6V →6V .

From degree considerations, hypothesis of Lemma 4.14 is satisfied. Thus we conclude that there is a
natural transformation HVI

0 1→6HVI
0 . By Lemma 4.13 and Proposition 3.2, this transformation is an

isomorphism. This completes the proof. �

Remark 4.16. There does not seem to be an equivalence between 6X1Y and 1Y6X . This is in contrast
with the case of FI-modules.

We denote the kernel of the natural transformation id→6X by κ X .

Proposition 4.17. In the nondescribing characteristic, we have L11
X
= κ X , and Li1

X
= 0 for i > 1.

Proof. The proof is the same as that of [Church and Ellenberg 2017, Lemma 4.7], where 6X plays the
role of S. We provide a proof sketch here. Given a VI-module M , we can find a presentation

0→ K → F→ M→ 0,

where F is a projective VI-module, and K is torsion-free. The corresponding long exact sequence for the
right exact functor 1X implies that L11

X (M)= ker(1X K →1X F). Note that F→6X F is injective,
as F is torsion-free. By Lemma 4.7, we conclude that F→6X F is injective. Thus we have the following
commutative diagram:

K 6X K 1X K 0

0 F 6X F 1X F 0

Applying the snake lemma, we see that

ker(6X K →6X F)= 0→ L11
X (M)→ M→6X M→1X M→ 0.

This shows that L11
X (M)= κ X (M), finishing the proof of the first assertion. By dimension shifting, we

have L21
X (M)= L11

X (K )= κ X (K ). Since K is torsion-free, we see that L21
X (M)= 0. Since M is

arbitrary it follows that Li1
X
= 0 for i > 1. �
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The following lemma is proven in a similar way as [Djament and Vespa 2019, Proposition 1.4(7)].

Lemma 4.18. Let M be a VI-module, and X, Y be vector spaces. We have an exact sequence of the form

1Y M→1X+Y M→6Y1X M→ 0.

Moreover, in the nondescribing characteristic, this can be extended to

0→ κY M→ κ X+Y M→6Y κ X M→1Y M→1X+Y M→6Y1X M→ 0.

Proof. Let ` : 0→ Y , `′ : 0→ X and `′′ : 0→ X + Y be natural maps. Then we have composable maps
6` : M → 6Y M and 6Y6`

′

: 6Y M → 6Y6X M , where the composite is (6Y6`
′

) ◦6` = 6`
′′

. Two
composable morphisms u, v in an abelian category induce an exact sequence [Mac Lane 1963, Exercise 6,
Section II.5]

0→ ker(u)→ ker(v ◦ u)→ ker(v)→ coker(u)→ coker(v ◦ u)→ coker(v)→ 0.

Set u =6` and v=6Y6`
′

. Since 6Y is right exact we see that coker v=6Y1X M and the first assertion
follows. In nondescribing characteristic, 6Y is exact. Thus we have ker(v)=6Y κ X M . This finishes the
proof. �

Corollary 4.19. Let X and Y be vector spaces, and fix maximal flags on X and Y . Let ` ∈ HomVI(X, Y )
be a map that takes the maximal flag on X to an initial segment of the flag on Y . Then t0(1`M) < t0(M).

Proof. Choose a complement Z of `(X) in Y . Then the maximal flag on Y will induce a maximal flag
on Z . We can identify ` with τ X (`′) where `′ : 0→ Z . This shows that 6` = 6X1`

′

= 6X1Z . Thus
by Corollary 4.4, it is enough to show that t0(1Z M) < t0(M). By the previous lemma, it suffices to
prove it in the case when dim Z = 1. But in this case, we have t0(1Z M)= deg(6HVI

0 (M)) < t0(M) (see
Proposition 4.15). This completes the proof. �

Derived saturated objects. Our aim here is to show that the semiinduced modules are always derived
saturated, and that the converse holds in the nondescribing characteristic. We recall that a module M is
derived saturated if and only if R0(M)= 0 (Proposition 2.7).

Lemma 4.20. The natural map 6(Ri0)(M)→ (Ri0)6M is an isomorphism. Equivalently, 6 preserves
0-acyclic objects.

Proof. We follow the argument in [Djament 2016, Proposition A.3] to prove our assertion. The proof is
by induction on i . The base case i = 0 is immediate as 6 commutes with 0. Suppose that i > 0, and that
the result has been proven for j < i .

We first apply a dimension shifting argument to see that the natural map 6(Ri0)(M)→ (Ri0)6M is
injective. To see this, consider any exact sequence

0→ M→ I → N → 0
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where I is an injective. This yields a commutative diagram

6(Ri−10)I 6(Ri−10)(N ) 6(Ri0)(M) 0

(Ri−10)6 I (Ri−10)6N (Ri0)6M (Ri0)6 I

whose rows are exact. By induction, the first two vertical arrows are isomorphisms. Thus by the four
lemma, we see that the third vertical arrow is injective.

By Lemma 2.5, we see that Rk0N = 0 whenever k > 0 and N is a torsion module. Thus, for any i > 0,
Ri0(M/0(M))= Ri0M . Given a vector space X , we have the following natural exact sequence

0→ M/0(M)→6X M→1X M→ 0.

By the corresponding long exact sequence for 0, we obtain the following exact sequence

Ri−10(6X M)→ Ri−10(1X M)→ Ri0(M)→6X Ri0(M),

where the exactness comes from the injectivity of the map 6X (Ri0)(M)→ (Ri0)6X M proved in the
previous paragraph. We conclude that

ker(Ri0(M)→ (Ri0)6X M)= coker(Ri−10(6X M)→ Ri−10(1X M)).

Since 6 is exact, and commutes with 6X and 1X (Proposition 4.15), we see that

6 ker(Ri0(M)→ (Ri0)6X M)=6 coker(Ri−10(6X M)→ Ri−10(1X M))

= coker(Ri−10(6X6M)→ Ri−10(1X6M)) (by induction)

= ker(Ri0(6M)→ (Ri0)6X6M)

Thus 6 commutes with ker(id→ 6X ) ◦ (Ri0) for any X . Since X is arbitrary and 6 is cocontinuous,
we see that 6 commutes with Ri0. This finishes the proof. �

The following result is motivated by [Djament 2016, Proposition 1.1].

Proposition 4.21. If F is an induced VI-module, then Ri0(F)= 0 for i ≥ 0.

Proof. We have the following natural commutative diagram:

Ri0(F) 6X Ri0(F)

Ri0(6X F)

6`

Ri0(6`)

where ` is the map from 0 to X . Since 6`, applied to F , is split-injective (Proposition 4.5), we see
that Ri0(6`) is injective. By the previous lemma, the vertical map is an isomorphism. Thus the map
6` : Ri0(F)→6X Ri0(F) is injective as well. Since X is arbitrary, we see that Ri0(F) is torsion-free.
By definition, Ri0(F) is also a torsion VI-module. Hence Ri0(F)= 0. �
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Corollary 4.22. Semiinduced modules are derived saturated.

Corollary 4.23. In a short exact sequence, if two of the objects are semiinduced then so is the third.

Proof. Let 0→ L→ M→ N → 0 be an exact sequence of modules presented in finite degrees. Then
there exists a d such that L ,M, N are generated in degree ≤ d. We proceed by induction on d. First
suppose that N is semiinduced. In this case, HVI

1 (L)= 0 if and only if HVI
1 (M)= 0. So the result follows

from Proposition 3.10. Now suppose that L and M are semiinduced. By the previous corollary, N is
derived-saturated. In particular, N is torsion-free. We claim that

0→ L≺d → M≺d → N≺d → 0

is an exact sequence. To see this, first note that we have a natural exact sequence

0→ L ∩M≺d → M≺d → N≺d → 0,

and that L≺d ⊂ L ∩M≺d . Now suppose, if possible, x is in L ∩M≺d but not in L≺d . Then there exists
a y ∈ M(Fd−1) and a VI-morphism f such that f?(y) = x ∈ L . Since x is not in L≺d , we see that
y /∈ L(Fd−1). Let x, y be the images of x and y in N . Then y 6= 0, but f?(y)= x = 0. This contradicts
the fact that N is torsion-free, proving the claim.

By induction, N≺d is semiinduced. Thus it suffices to show that N/N≺d is induced from d . By applying
the snake lemma to the diagram,

0 L M N 0

0 L≺d M≺d N≺d 0

we obtain an exact sequence

0→ L�d/L≺d → M�d/M≺d → N�d/N≺d → 0.

Since the first two objects in this exact sequence are induced from d, so is the third (Proposition 3.6).
This completes the proof. �

Question 4.24. Let A, B, N be semiinduced modules and assume that A, B ⊂ N . Then is it true that
A∩ B is semiinduced?

The case of nondescribing characteristic. We now assume that we are in the nondescribing characteristic
and prove the converse of Corollary 4.22. Along the way, we show that 6 commutes with 0 which,
indeed, is a crucial step of our proof.

Lemma 4.25. Let V be a k[G]-module, and assume that the size of G is invertible in k. Let x be an
element of VG , and let x̃ be a lift of x in V . Then

(a) 1/|G|
∑

σ∈G σ x̃ in another lift of x.

(b) x = 0 if and only if
∑

σ∈G σ x̃ = 0.



2172 Rohit Nagpal

Proof. This is a standard result. �

Lemma 4.26. Let M be a torsion-free VI-module, and let X be a vector space. Then6X M is torsion-free.

Proof. We may assume that X is of dimension one (Proposition 4.11). Let Y be another vector space of
dimension one. It suffices to show that the map f? : 6X M(Z)→6X M(Z +Y ) induced by the inclusion
f : Z→ Z + Y is injective for every Z . Suppose f?(x)= 0 for some x . By the previous lemma, there is
a lift x̃ ∈ 6X M(Z) = M(X + Z) of x which is invariant with respect to UX (Z). Since f?(x) = 0 and
f?(x̃) ∈6X M(Z + Y )= M(X + Z + Y ) is a lift of f?(x), the previous lemma tells us that∑

σ∈UX (Y+Z)

σ f?(x̃)= 0.

But UX (Y + Z)= UX (Y )×UX (Z) and x̃ is invariant with respect to UX (Z), and so we conclude that∑
σ∈UX (Y )

σ f?(x̃)= 0.

Let W be the VB module given by k[HomVB(X ′⊕ Z ,−)] where X ′ is a one-dimensional space. Fix
an isomorphism α : X ′ + Z → X + Z . Then [α] is a generator of the VI-module I(W ). There is a
unique map ψ : I(W )→ M which takes [α] to x̃ . Let N be the VI-submodule of I(W ) generated by∑

σ∈UX (Y ) σ f?([α]). Then the equation at the end of the last paragraph shows that ψ factors through
the projection I(W )→ I(W )/N . We claim that ψ = 0. Since M is torsion-free and ψ factors through
I(W )/N , it suffices to show that I(W )/N is a torsion module. Fix an isomorphism h : Y → X . Let S be
the collection consisting of q−1 automorphisms of X +Y + Z that fix Z , send Y to X via h, and send X
to Y via a nonzero multiple of h−1. Then the following equation can be easily verified:( ∑

τ∈UY (X)

τ −
∑
τ∈S

τ

)( ∑
σ∈UX (Y )

σ f?([α])
)
= q f?([α]).

Since q is invertible, the above equation shows that f?([α]) ∈ N . This shows that I(W )/N is torsion, and
so ψ = 0. This implies that x = 0, completing the proof. �

Proposition 4.27. 6 commutes with 0.

Proof. Let M be a VI-module, and X be a vector space of dimension one so that 6 =6X . Since 6 is
exact and 0M ⊂ M , we see that 60M ⊂ 06M . For the reverse inclusion, first note that M/0M is
torsion-free. Thus by the previous lemma and the exactness of 6, we see that

6(M/0M)= (6M)/(60M)

is torsion-free, and so the torsion part 06M of 6M is contained in 60(M), completing the proof. �

We now focus on showing that 6 preserves 0-acyclic objects. We need a couple of lemma.

Lemma 4.28 [Djament 2016, Corollaire A.4]. Let M be a VI-module, and let n be a nonnegative integer.
Then the following are equivalent:
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(a) Rk0(M)= 0 for 0≤ k ≤ n.

(b) For each 0≤ k ≤ n and vector spaces X1, . . . , Xk , the VI-module 1X11X2 · · ·1Xk M is torsion-free.

Proof. We prove the assertion by induction on n. The base case n = 0 is trivial. Assume now that n > 0,
and that the assertion holds for smaller values of n.

Suppose first that (b) holds. Then, by induction, Rk0(M)= 0 for 0≤ k < n. In particular, M is torsion
free. So for any vector space X , we have a short exact sequence:

0→ M→6X M→1X M→ 0.

By induction, Rk0(1X M) = 0 for 0 ≤ k < n. Thus the long exact sequence corresponding to the
exact sequence above yields that Rn0(M)→ Rn0(6X M) is injective. We have the following natural
commutative diagram:

Rn0(M) 6X Rn0(M)

Rn0(6X M)

6`

Rn0(6`)

where ` is the map from 0 to X . Since the vertical map is an isomorphism (Lemma 4.20), we conclude
that the horizontal map is injective as well. Since this holds for each X and Rn0(M) is a torsion module,
we have Rn0(M)= 0. Thus (a) holds.

Conversely, suppose that (a) holds. Since n > 0, the module M is torsion-free. So for any vector space
X , we have a short exact sequence

0→ M→6X M→1X M→ 0.

The corresponding long exact sequence yields Rk0(6X M)∼=Rk0(1X M) for 0≤ k < n. By Lemma 4.20,
we conclude that Rk0(1X M) = 0 for 0 ≤ k < n. Now (b) follows immediately from the induction
hypothesis. This completes the proof. �

Lemma 4.29. Let M be a VI-module and let X, X1, . . . , Xk be vector spaces. Suppose that the VI-module
1X11X2 · · ·1Xk M is torsion-free. Then 1X11X2 · · ·1Xk6X M is torsion-free.

Proof. By Proposition 4.15, we see that 1X11X2 · · ·1Xk6X M = 6X1X11X2 · · ·1Xk M . Set N =
1X11X2 · · ·1Xk M , and note that

1X11X2 · · ·1Xk6X M(Z)=6X1X11X2 · · ·1Xk M(Z)
UX

(∑k
i=1 X i+Z

) = N (X + Z)
UX

(∑k
i=1 X i+Z

).
Set VX (−)= UX

(∑k
i=1 X i +−

)
. We now follow the proof of Lemma 4.26 closely.

We may assume without loss of generality that X is of dimension one. Let Y be another vector space
of dimension one. It suffices to show that the map f? : 6X N (Z)VX (Z)→6X N (Z +Y )VX (Z+Y ) induced
by the inclusion f : Z→ Z +Y is injective for every Z . Suppose f?(x)= 0 for some x . By Lemma 4.25,
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there is a lift x̃ ∈6X N (Z)= N (X + Z) of x which is invariant with respect to VX (Z). Since f?(x)= 0
and f?(x̃) ∈6X N (Z + Y )= N (X + Z + Y ) is a lift of f?(x), Lemma 4.25 tells us that∑

σ∈VX (Y+Z)

σ f?(x̃)= 0.

But VX (Y + Z)= UX (Y )× VX (Z) and x̃ is invariant with respect to VX (Z), and so we conclude that∑
σ∈UX (Y )

σ f?(x̃)= 0.

Let W be the VB module given by k[HomVB(X ′⊕ Z ,−)] where X ′ is a one-dimensional space. Fix
an isomorphism α : X ′ + Z → X + Z . Then [α] is a generator of the VI-module I(W ). There is a
unique map ψ : I(W )→ N which takes [α] to x̃ . Let N ′ be the VI-submodule of I(W ) generated by∑

σ∈UX (Y ) σ f?([α]). Then the equation at the end of the last paragraph shows that ψ factors through
the projection I(W )→ I(W )/N ′. We claim that ψ = 0. Since M is torsion-free and ψ factors through
I(W )/N ′, it suffices to show that I(W )/N ′ is a torsion module. This has already been established in the
proof of Lemma 4.26. So ψ = 0. This implies that x = 0, completing the proof. �

Proposition 4.30. The functor 6 preserves 0-acyclic objects.

Proof. Let M be a 0-acyclic object. By Proposition 2.7 and Lemma 2.5, the VI-module M/0(M)
is derived saturated. By Lemma 4.28, for each k ≥ 0 and vector spaces X1, . . . , Xk , the VI-module
1X11X2 · · ·1Xk (M/0(M)) is torsion-free. By the previous lemma, for each k ≥ 0 and vector spaces
X1, . . . , Xk , the VI-module 1X11X2 · · ·1Xk6(M/0(M)) is torsion-free. By Lemma 4.28 again,
6(M/0(M)) is derived saturated. Since0 commutes with6 (Proposition 4.27), we see that6M/0(6M)
is derived saturated. By Lemma 2.5, 6M is 0-acyclic, completing the proof. �

The following question is quite natural:

Question 4.31. Do either 6 or 6 preserve injective objects? Note, a positive answer is known in the
q = 1 (FI-modules) case; see [Gan 2017].

Lemma 4.32. If M is derived saturated, then so are 6M and 1M.

Proof. Since 6 commutes with 0 (Proposition 4.27) and preserves 0-acyclic objects (Proposition 4.30),
we have R06M = 6R0M = 0. Thus by Proposition 2.7, we see that 6M is derived saturated. The
result about 1M follows from the exact sequence (see Proposition 4.8)

0→ M→6M→1M→ 0. �

Lemma 4.33 (nonvanishing coinvariants). Suppose K ≤ H ≤ G are finite groups. Let W be a k[H ]-
module such that K acts trivially on W . Then for any k[G]-submodule V of IndG

H W , we have VK = 0⇐⇒
V = 0.
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Proof. Let T = {τ1, . . . , τn} be a full set of representatives in G of the left coset space G/H . We assume
that τ1 = 1G . Any element x ∈ IndG

H W can be thought of as a function x : T→ W , and the action of
σ ∈G on x is given by (σ x)(τni )= hi x(τi ) where hi ∈ H and ni are uniquely determined by the equation
στi = τni hi . As a special case, we note that if σ ∈ K , then we have σ = στ1 = τ1h1 = h1 ∈ K . Since K
acts trivially on W , we conclude that (σ x)(τ1)= σ(x(τ1))= x(τ1).

Assume now that V is nontrivial. Let x ∈ V be a nonzero element. As in the previous paragraph, we
think of x as a function from T to W . Since G acts transitively on G/H , there exists a σ ∈ G such that
σ x is nonzero on τ1. Now suppose, if possible, the image of σ x in VK is 0. Then σ x can be written as

σ x =
∑

j

(x j − σ j x j )

where x j are in IndG
H W , and σ j are in K . By the previous paragraph, (x j − σ j x j )(τ1)= 0 for each j . It

follows that (σ x)(τ1)= 0, which is a contradiction. This completes the proof. �

Lemma 4.34. Let M be a derived saturated submodule of a semiinduced module P. Then t0(M)≤ t0(P).

Proof. We proceed by induction on d = t0(P). Denote the induced module P/P≺d by I and its submodule
(M + P≺d)/P≺d by N . Suppose first that N is an induced submodule of I . In this case, we have
t0(N )≤ t0(I )= d . Using the exact sequence

0→ M ∩ P≺d → M→ N → 0

we see that M∩P≺d is a derived saturated submodule of P≺d . By induction, we have t0(M∩P≺d)≤ d−1,
and it follows that t0(M)≤ d = t0(P). Thus we can assume that N is not an induced module. In this case,
there exists an r > d such that HVI

0 (N )r is nonzero. Pick the least such r . We claim that HVI
0 (N )(F

r ) is a
k[GL(Fr )]-submodule of I(HVI

0 (I/N )d)(Fr ). To see this, let N ′ be the submodule of I(W ) generated by
Nd . By Proposition 3.7, we have N ′ = I(Nd). By minimality of r , we have N ′ = N≺r ⊂ N . The claim
now follows from the following:

HVI
0 (N )(F

r )= (N/N≺r )(F
r )

= (N/I(Nd))(F
r )

⊂ (I/I(Nd))(F
r )

= I((I/N )d)(Fr ) (By Proposition 3.6)

= I(HVI
0 (I/N )d)(Fr ).

Let A+ B+ X be a decomposition of Fr such that dim A= d and dim X = 1. Set W =HVI
0 (I/N )(A).

Clearly, W is a k[GL(A)]-module. Let H be the subgroup of GL(Fr ) that stabilizes A. There is a natural
surjection φ : H→GL(A). We let H act on W via this surjection. Since UX (A+ B) lies in the kernel of
φ, we see that UX (A+ B) acts trivially on W . We also have

I(HVI
0 (I/N )d)(Fr )= IndGL(Fr )

H W.



2176 Rohit Nagpal

By the previous lemma, we conclude that (6HVI
0 (N ))r−1 is nonzero. Since HVI

0 is right exact, it follows
that (6HVI

0 (M))r−1 is nonzero. By Proposition 4.15, we see that t0(1M) ≥ r − 1 > d − 1. But by
Lemma 4.32, 1M is a derived saturated submodule of 1P , which contradicts the inductive hypothesis.
This contradiction completes the proof. �

The following argument is motivated by [Nagpal and Snowden 2018, Proposition 2.9].

Proposition 4.35. Let M be a module generated in finite degrees. If M is derived saturated then it admits
a resolution F•→ M of length at most t0(M)+ 1 where each Fi is an induced module generated in finite
degrees.

Proof. Let d = t0(M), and let r be the least number such that HVI
0 (M) is nontrivial in degree r . We prove

by induction on d−r that there is a resolution F•→M of length at most d−r+1. Let F0=
⊕

0≤k≤d I(Vk)

where Vk = Mk . We note that HVI
0 (M)r = Vr = HVI

0 (F0)r and HVI
0 (M)k = 0 = HVI

0 (F0)k for k < r . By
construction, t0(F0)≤ d and there is a surjection ψ : F0→ M . Clearly, we have HVI

0 (ker(ψ))k = 0 for
k ≤ r . Since both M and F0 are derived saturated, we see that ker(ψ) is derived saturated as well. By the
previous lemma, t0(ker(ψ))≤ d. Thus by induction on d − r , ker(ψ) admits a resolution of the desired
format. We can append F0 to this resolution to get a resolution of M , completing the proof. �

Theorem 4.36. Assume that we are in the nondescribing characteristic. Let M be a module generated in
finite degrees. Then M is derived saturated if and only if it is semiinduced.

Proof. Corollary 4.22 shows that semiinduced modules are derived saturated. The other implication
follows from the previous proposition and Corollary 4.23. �

An FI-module analog of the result above has been proven in [Djament 2016, Theorem A.9].

The shift theorem. Here we assume that k is a noetherian ring.

Theorem 4.37 [Putman and Sam 2017; Sam and Snowden 2017a]. The category of VI-modules over a
noetherian ring is locally noetherian. In particular, if M is a finitely generated VI-module over k then
0(M) is supported in finitely many degrees.

We now state and prove our main theorem (an FI-module analog has been proven by the author in
[Nagpal 2015, Theorem A]).

Theorem 4.38 (the shift theorem). Assume that we are in the nondescribing characteristic, and let M be
a finitely generated VI-module. Then the following hold:

(a) 6n M and 6n M are semiinduced for large enough n.

(b) There exists a finite length complex I • supported in nonnegative degrees with the following properties:

• I 0
= M.

• I i is semiinduced for i > 0.
• I n
= 0 for n > t0(M)+ 1.

• Hi (I •) is supported in finitely many degrees for each i .
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We need a lemma.

Lemma 4.39. Let Y be fixed vector space, and N be a torsion VI-module. For a vector space X , let `X

denote the map from 0 to X. If 6Y6`X : 6Y N →6Y6X N is an injection for all X then 6Y N = 0.

Proof. Suppose, if possible, 6Y N (Z) is nontrivial for some vector space Z , and pick a nonzero element
x ∈6Y N (Z). Let x̃ be a lift of x in N (Y + Z). Since N is torsion, there is a vector space X such that
for every linear injection f : Y + Z → X + Y + Z the induced map f? : N (Y + Z)→ N (Y + X + Z)
takes x̃ to zero. But this shows that 6Y6`X takes x to zero, contradicting the injectivity hypothesis. This
completes the proof. �

Proof of Theorem 4.38. We first prove that 6n M is semiinduced for large enough n. We do this by
induction on t0(M). By Theorem 4.37, h0(M)<∞. Let X be a nontrivial vector space. Then the cokernel
1X M of M→6X M satisfies t0(1X M) < t0(M) (Corollary 4.19). Moreover, the kernel K = κ X (M) of
M→6X M is a torsion-module supported in degrees ≤ h0(M) (Lemma 4.7).

We claim that 6Y1X M is semiinduced for large enough Y which is independent of dim X . To see
this, suppose that X is of dimension g. Since t0(1X M) < t0(M), the induction hypothesis implies that
there exists a number kg such that 6Y1X M is semiinduced whenever the dimension of Y is larger
than kg. Pick a t larger than h0(M) and k1, and assume that the dimension of Y is at least t . Then
6Y K =6Y κ X (M)= 0, and so Lemma 4.18 yields the following exact sequence

0→1Y M→1X+Y M→6Y1X M→ 0.

Now suppose X is of dimension 1. Then the last term in this exact sequence is semiinduced as t > k1.
We conclude that 6Y ′1Y M is semiinduced if and only if 6Y ′1Y+X M is semiinduced (Corollary 4.23).
In other words, we may assume kt+1 = kt for any t >max(h0(M), k1). Thus if Y is of dimension larger
than h0(M) and ki for 1≤ i ≤max(h0(M), k1)+ 1, then 6Y1X M is semiinduced for all X . This proves
the claim.

Let Y be large enough such that 6Y1X M is semiinduced for all X , and assume that the dimension of
Y is larger than h0(M). Then 6Y K =6Y κ X (M)= 0, and so we have an exact sequence

0→6Y M→6Y6X M→6Y1X M→ 0.

By Corollary 4.22 and Proposition 2.7, we see that R0(6Y1X M)= 0. Thus by the exact sequence above,
we conclude that Ri0(6Y M)∼= Ri0(6Y6X M) where the isomorphism is given by Ri0(6Y6`) where
` : 0→ X is the unique map. By Proposition 4.27, we see that

Ri0(6Y6`−)=6Y6`Ri0(−).

This shows that the map

6Y6` : 6Y Ri0(M)→6Y6X Ri0(M)
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is an isomorphism for each X . The previous lemma implies that 6Y Ri0(M)= 0. Thus Ri0(6Y M)= 0
for all i (Proposition 4.27). By Proposition 2.7 and Theorem 4.36, 6Y M is semiinduced. Thus 6n M is
semiinduced for large n (see Proposition 4.11).

To prove that 6n M is semiinduced for large enough n we need part (b), which we now prove by
induction on t0(M). Let Y be a vector space such that 6Y M is semiinduced, and ` : 0→ Y be the unique
map. Set I 0

= M , I 1
=6Y M where the map I 0

→ I 1 is 6`. The cokernel of this map is 1`M . We have
t0(1`M) < t0(M) (Corollary 4.19). By induction, there is a complex J • of length at most t0(M) with
J 0
=1`M , J i semiinduces for i > 0, and Hi (J •) finitely supported for each i . Now set I i

= J i−1 for
i ≥ 2, and note that we can naturally append these to I 0

→ I 1 to get a complex I •. Clearly, this I • has all
the required properties. This proves part (b).

Finally, we show that 6n M is semiinduced for large enough n. For this let I • be the complex as in
part (b). Let n be large enough such that deg Hi (I •) < n for all i . By construction, 6n I • is exact and
6n I i are semiinduced for i > 0 (shift of a semiinduced module is semiinduced; Corollary 4.4). By
Corollary 4.23, 6n I 0

=6n M is semiinduced. This completes the proof. �

Remark 4.40. The proof of part (b) above shows that if M→ N is a map of finitely generated VI-modules
then we can find complexes I • and J • for M and N respectively (with all the properties as mentioned in
part (b)) and a natural map I •→ J • extending the map M→ N .

Remark 4.41. It is easy to see that the shift theorem together with Corollary 4.23 imply that ModVI is
locally noetherian. Since we have only used Corollary 1.5 in our proof, it follows that Theorem 1.4 is
equivalent to its corollary.

5. Some consequences of the shift theorem

Unless otherwise mentioned, we assume that we are in the nondescribing characteristic, and that k is
noetherian.

Stable degree and the q-polynomiality of dimension. We define the stable degree of a VI-module M ,
denoted δ(M), by

δ(M) := inf
n≥0

t0(6n M).

This is an invariant associated to VI-module with several useful properties that we prove below. An
invariant with the same name, but for FI-modules, is discussed in [Church et al. 2018, Section 2].

Proposition 5.1. Let M be a finitely generated module. We have the following:

(a) If M is semiinduced, then δ(M)= t0(M).

(b) δ(M) is the common value of t0(6n M) for n� 0.

(c) δ(M) is the common value of t0(6n M) for n� 0.

(d) δ(M)= δ(6n M)= δ(6n M) for any n ≥ 0.
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(e) δ(M)≤ t0(M) <∞.

(f) If 0→ L→ M→ N → 0 is a short exact sequence, δ(M)=max(δ(L), δ(N )).

(g) If K is a subquotient of M , δ(K )≤ δ(M).

(h) If T is a torsion submodule of M , then δ(M/T )= δ(M).

(i) The cokernel 1X M of the natural map M→6X M satisfies δ(1X M) <max(δ(M), 0).

Proof. (a) First suppose that M = I(V ) is induced. From the equalities 6I(V ) = I(V ) ⊕ I(6V )
(Proposition 4.12) and t0(I(V ))= deg V , we see that δ(M)= t0(6n M)= t0(M). Since induced modules
are acyclic with respect to HVI

0 (Proposition 3.10) and 6 is exact, we conclude that the result holds for
semiinduced modules as well.

(b)–(e) Since t0(6n M) is a decreasing function of n (Proposition 4.9), we see that δ(M) = δ(6n M)
for any n. By the shift theorem (Theorem 4.38) and part (a), we conclude that δ(M) is the common
value of t0(6n M) for n � 0. Let a be large such that 6a M is semiinduced and n be large such that
6n M is semiinduced (use the shift theorem again). Then we have an injection 6n M→ 6n6a M . By
Corollary 4.23, Proposition 3.10 and part (a), we see that t0(6n M)≤ t0(6n6a M)= δ(6a M)= δ(M).
Conversely, since we also have t0(6n M)≥ t0(6n M), we see that part (c) holds. Part (d) follows from (b)
and (c) once we note that t0(6n M) and t0(6n M) are decreasing functions of n (Proposition 4.9). Part (e)
is trivial from this discussion.

(f)–(h) Choose n large enough that 6n L , 6n M , and 6n N are semiinduced. Since semiinduced modules
are homology-acyclic, we have a short exact sequence

0→ HVI
0 (6

n L)→ HVI
0 (6

n M)→ HVI
0 (6

n N )→ 0.

Thus, t0(6n M) = max(t0(6n L), t0(6n L)), which implies the claim in light of part (c). Part (g) is a
consequence of part (f). For part (h), note that T is supported in finitely many degrees (Theorem 4.37).
By part (d), δ(T )= 0. Part (h) now follows from Part (f).

(i) First suppose that M is semiinduced. Then by Corollary 4.23,1X M is semiinduced. By Corollary 4.19,
we see that t0(1X M) < t0(M). By part (a), we conclude that δ(1X M) < δ(M). Thus the result holds
for semiinduced modules. Now suppose that M is not semiinduced. Let Y be large so that 6Y M is
semiinduced. We have an exact sequence

0→ M/κY (M)→6Y M→1Y M→ 0.

Applying 1X , we obtain the following exact sequence:

(L11
X )(1Y M)→1X (M/κY (M))→1X6Y M→1X1Y M→ 0.

The first term of this sequence is torsion (Proposition 4.17). Thus by parts (g) and (h), we see that

δ(1X (M/κY (M)))≤ δ(1X6Y M) < δ(6Y M)= δ(M).

Now consider the exact sequence

1XκY (M)→1X M→1X (M/κY (M))→ 0.
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Since the first term is torsion, we conclude that δ(1X M)= δ(1X (M/κY (M))) < δ(M). This completes
the proof. �

Corollary 5.2. Let I • be the complex as in Theorem 4.38. Then we may assume that t0(I 1)= δ(M), and
t0(I i )≤ δ(M)− i ≤ t0(M)− i for i > 1.

Proof. This follows from the construction of I • and the properties of the stable degree. �

Lemma 5.3. Assume that k is a field. Let I(V ) be a module induced from d. Then

dimk I(V )(Fn)=
(qn
− 1)(qn

− q) · · · (qn
− qd−1)

(qd − 1)(qd − q) · · · (qd − qd−1)
dimk V (Fd)

for every n ≥ 0. In particular, there is a polynomial P ∈ Q[X ] such that dimk I(V )(Fn) = P(qn) for
every n ≥ 0.

Proof. This easily follows from the equality I(V )(Fn)= k[HomVI(F
d , Fn)]⊗k[GLd ] V (F

d). �

Theorem 5.4 (q-polynomiality of dimension). Assume that k is a field. Let M be a finitely generated
VI-module. Then there exists a polynomial P of degree δ(M) such that dimk M(Fn)= P(qn) for n� 0.

Proof. Let a be large enough such that N := 6a M is semiinduced. By Proposition 5.1, we have
t0(N )= δ(M). Set d = δ(M). By Corollary 3.11, N�i/N≺i is induced from i , and N�d/N≺d is nonzero.
By the previous lemma, there exists a polynomial P such that dimk N (Fn)= P(qn) for every n ≥ 0. This
shows that dimk M(Fn)= P(qn−a) for n ≥ a, completing the proof. �

Remark 5.5. The least a such that 6a M is semiinduced is exactly equal to hmax(M)+ 1 where

hmax(M)=max
i≥0

hi (M)

is the maximum of all local cohomology degrees. This follows easily from Theorem 4.36, and the fact
that 0 commutes with 6. We shall prove in the next section that hi (M)= 0 for i > δ(M)+ 1. Thus in
the proof above, we have dimk M(Fn)= P(qn) for n >max0≤i≤δ(M)+1 hi (M)= hmax(M).

Finiteness of local cohomology and regularity. Let D be the full triangulated subcategory of the bounded
derived category Db(ModVI) consisting of those objects that are represented by finite complexes with
finitely generated cohomologies.

Proposition 5.6. Let M be an object of D. Then:

(a) R0(M) is in D and can be represented by a finite complex of finitely generated torsion modules.

(b) RS(M) is in D and can be represented by a finite complex of finitely generated induced modules.

(c) Ri0(M) is finitely generated for each i and vanishes if i � 0.

(d) There is an exact triangle

R0(M)→ M→ RS(M)→ .
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Proof. By the shift theorem (Theorem 4.38) and Remark 4.40, we have an exact triangle of the form

T → M→ F→

in D such that T is represented by a finite complex of finitely generated torsion modules and F is
represented by a finite complex of finitely generated semiinduced modules (see [Nagpal et al. 2018,
Lemma 2.3] for more details). By Proposition 4.35, F is quasiisomorphic to a finite complex of finitely
generated induced modules. By Corollary 2.6 and Proposition 4.21, we have R0(T )∼= T and R0(F)= 0.
Thus by applying R0 to the triangle above yields T ∼= R0(M). By Corollary 2.6, Theorem 4.36, we see
that RS(T ) = 0 and RS(F) ∼= F . Thus by applying RS to the triangle above yields RS(M) ∼= F . The
proof is now complete by Proposition 2.7. �

The FI-module analog of the theorem below has been studied in [Sam and Snowden 2016].

Theorem 5.7 (finiteness of local cohomology). Let M be a finitely generated VI-module. Then R0(M)
and RS(M) are objects of D and are supported in nonnegative degrees. Moreover, we have the following

(a) Ri0(M)= 0 if i > δ(M)+ 1.

(b) Ri S(M)= 0 if i > δ(M).

(c) We have an exact sequence 0→ 0(M)→ M→ S(M)→ R10(M)→ 0.

(d) Ri+10(M)∼= Ri S(M) for i ≥ 1.

Proof. Let I = I • be the complex as in the shift theorem (Theorem 4.38). Then I is supported in
nonnegative degrees and I i

= 0 if i > δ(M)+ 1 (see Proposition 5.1 part (i) and the construction of I •).
We may take T , as in the proof of Proposition 5.6, to be equal (or quasiisomorphic; see [Nagpal et al.
2018, Lemma 2.3]) to I . This shows that part (a) holds. The rest is immediate from Proposition 2.7. �

Corollary 5.8. Let I • be the complex as in Theorem 4.38. Then Ri0(M)= Hi (I •).

Lemma 5.9. There is a resolution of the VI-module k = A/A+ of the form I(St•)→ k→ 0, where Std
denote the Steinberg representation of GLd .

Proof. We refer the reader to [Charney 1984, page 7] where an argument for split Steinberg representation
is given. The argument for the Steinberg representation is similar. �

Lemma 5.10. Let M be a finitely generated torsion module, and suppose deg M = d. Then ti (M)− i ≤ d
for all i ≥ 0.

Proof. Since induced modules are homology-acyclic (Proposition 3.10), the previous lemma implies that
HVI

i (M)= TorA
i (k,M)= Hi (I(St•)⊗A M). Clearly, I(Sti )⊗A M = Sti ⊗VB M is supported in degrees

≤ d + i . The result follows. �

For a finitely generated VI-module M , let r(M)=max0≤i≤δ(M)+1(hi (M)+i). The following argument
is based on [Nagpal et al. 2018, Corollary 2.5].
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Theorem 5.11 (finiteness of regularity). Let M be a finitely generated VI-module. Then ti (M)−i ≤ r(M)
for all i > 0. In particular, M has finite Castelnuovo–Mumford regularity.

Proof. By Theorem 5.7 and the previous lemma, we see that ti (R0(M))− i ≤ r(M). Since RS(M) is
supported in nonnegative cohomological degrees (which we think of as nonpositive homological degrees),
we conclude that ti (RS(M)) = 0 for i > 0 (Proposition 3.10). The exact triangle R0(M)→ M →
RS(M)→ of Proposition 5.6 implies that ti (M) ≤ max(ti (R0(M)), ti (RS(M))). Thus for i > 0, we
obtain ti (M)− i ≤ r(M). This completes the proof. �

Representation stability in characteristic zero. In this section, we assume that k is an algebraically
closed field of characteristic 0. We first recall a parametrization of irreducible representations of GLn over
k, we follow [Zelevinsky 1981, Section 9]. Let Cn be the isomorphism classes of cuspidal representations
(irreducible representations which cannot be obtained via a parabolic induction) of GLn and set C=tn≥1Cn .
If ρ ∈ Cn , we set |ρ| = n. Let P be the set of partitions. Given a partition λ, we set |λ| = n if λ is a
partition of n. Given a function µ : C→ P, we set |µ| =

∑
x∈C|x ||µ(x)|. The isomorphism classes of

irreducible representations of GLn are in bijection with the set of functions µ satisfying |µ| = n. We fix
an irreducible representation Mµ corresponding to each partition function µ.

Let ι ∈ C1 be the trivial representation of GL1. For a partition function µ with µ(ι) = λ, we define
another partition function µ[n] by

µ[n](ρ)=
{
(n− |µ|, λ1, λ2, . . .) if ρ = ι,
µ(ρ) if ρ 6= ι.

This definition makes sense only if n ≥ |µ| + λ1.
Let

M0
φ0
−→ M1

φ1
−→ M2

φ2
−→ · · ·

be a sequence such that each Mn is a k[GLn]-module and each φn is GLn-equivariant. Following [Gan
and Watterlond 2018] which, in turn, is based on [Church and Farb 2013], we call such a sequence
representation stable of degree d starting at N if the following three conditions are satisfied for every
n ≥ N :

(RS1) Injectivity: The map φn : Mn→ Mn+1 is injective.

(RS2) Surjectivity: The GLn+1 orbits of φn(Mn) span all of Mn+1.

(RS3) Multiplicities: There is a decomposition

Mn =
⊕

µ

M⊕c(µ)
µ[n]

where the multiplicities 0≤ c(µ) <∞ do not depend on n, and c(µ)= 0 if |µ|> d.

We now prove and improve [Gan and Watterlond 2018, Theorem 1.6].
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Theorem 5.12 (representation stability). Let M be a finitely generated VI-module. Denote M(Fn) by Mn ,
and let φn : Mn→ Mn+1 be the map induced by the natural inclusion Fn ↪→ Fn+1. Then the sequence

M0
φ0
−→ M1

φ1
−→ M2

φ2
−→ · · ·

is representation stable of degree δ(M) starting at N :=max(hmax(M)+ 1, 2t0(M)).

Proof. Since h0(M) < N , we see that (RS1) holds. Similarly, t0(M) ≤ N implies that (RS2) holds.
Now we prove (RS3). Let I • be the complex as in Theorem 4.38. Then I •(Fn) is exact if n > hmax(M)
(Corollary 5.8). Since I 0

= M , it suffices to prove (RS3) for I i for each i > 0. We may also assume that
t0(I 1)= δ(M), and t0(I i )≤ δ(M)− i ≤ t0(M)− i for i > 1 (Corollary 5.2). Thus it suffices to show (RS3)
for a semiinduced module generated in degrees ≤ δ(M). By Proposition 3.2, every semiinduced module
is induced in characteristic zero. Thus we are reduced to showing (RS3) for a finitely generated induced
module generated in degrees ≤ δ(M). This follows from Pieri’s formula (see [Gan and Watterlond 2018,
Lemma 2.8]), completing the proof. �

Classification of indecomposable injectives in characteristic zero. We first classify torsion-free injec-
tives in the proposition below. We repeatedly use the fact that in characteristic zero, every induced module
is projective (Proposition 3.2), and so every semiinduced module is, in fact, induced.

Proposition 5.13. Every induced (and hence semiinduced) VI-module is injective in ModVI. A torsion-
free injective VI-module is induced.

Proof. Let I(W ) be a finitely generated induced module. Note that VI-modules form a locally noetherian
category (Theorem 4.37), and so any direct sum of injective modules is injective. Since any induced
module is a direct sum of finitely generated induced modules, it suffices to show that I(W ) is injective.

We start by showing that Ext1(Q, I(W ))= 0 for any finitely generated module Q. This is equivalent
to showing that any short exact sequence of the form

0→ I(W )→ M→ Q→ 0

splits. Thus it suffices to show that any injection f : I(W ) → M admits a section whenever M is
finitely generated. Let X be a vector space of large enough dimension so that 6X M is semiinduced
(Theorem 4.38). Let ` : 0→ X be the unique map. Exactness of 6X and the commutativity of the diagram

6XI(W ) 6X M

I(W ) M

6X ( f )

6`

f

6`

shows that 6` f : I(W )→ 6X M is injective. By Corollary 4.23, the cokernel of 6` f is semiinduced.
By Proposition 3.2 and the characteristic 0 hypothesis, every semiinduced module is projective. Hence
6` f admits a section s. Then s6` is a section of f , as required.
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Next, let M ⊂ N be arbitrary VI-modules, and 8 : M→ I(W ) be an arbitrary map. We will show that
8 extends to N which finishes the proof of the first assertion. We follow the proof of Baer’s criterion
as in [Stacks 2005–, Tag 0AVF]. By Zorn’s lemma, it suffices to show that if M ( N then 8 extends
to a submodule M ′ ⊂ N which properly contains M . For this, pick an x ∈ N \ M , and let M ′ be the
submodule of N generated by M and x . Then x ∈ N (Fd) for some d . Note that

Q := { f ∈ I(d) : f x ∈ M}

is a VI-submodule of I(d). By the previous paragraph, we have Ext1(I(d)/Q, I(W )) = 0. Thus the
map ψ : Q→ I(W ) given by f 7→8( f x) extends to a map ψ̃ : I(d)→ I(W ). Now consider the map
9̃ : M ⊕ I(d)→ I(W ) given by

(y, f ) 7→8(y)− ψ̃( f ).

The kernel of this map contains the kernel of the natural map M ⊕ I(d)→ N given by (y, f ) 7→ y+ f x .
Thus 9̃ factors through a map9 : M ′→ I(W ). It is easy to check that this map extends8. This concludes
the proof of the first assertion.

Let I be an arbitrary torsion-free injective module. Then by the shift theorem, I embeds into a direct
sum J of induced modules. Since I is injective, the embedding I→ J splits. This shows that the injection
I�d → J�d is split as well, and so I�d is injective and torsion-free. It follows that R0(I�d) = 0, and
so I�d must be derived saturated. Thus I�d is induced (Theorem 4.36). since colimits are exact and
I = lim

−−→d I�d , we see that I is a direct sum of induced modules, concluding the proof of the second
assertion. �

We now classify torsion injectives. For this we do not need any assumption on k (noetherianity is still
needed but the nondescribing characteristic assumption is not needed). So assume that k is an arbitrary
noetherian ring. Let V be a monoidal category. Given two functors F1 : C→ V and F2 : C

op
→ V there

is a natural notion of a tensor product F1⊗C F2 (we refer the readers to [Palmquist and Newell 1971]
for details). More explicitly, if C= VI and V= (Modk,⊗k), then F1⊗VI F2 is given by the following
k-module( ⊕

X∈Obj(VI)

F1(X)⊗k F2(X)
)
/〈 f?(v)⊗w− v⊗ f ?(w) : f ∈ HomVI(X, Y ), v ∈ F1(X), w ∈ F2(Y )〉.

The following lemma is elementary.

Lemma 5.14. k[HomVI(−, Fd)] is a projective VIop-module. Moreover, for any VI-module N , we have

k[HomVI(−, Fd)]⊗VI N = N (Fd).

Let E be a k[GLd ]-module. We denote by Ǐ(E) the VI-module given by

Homk[GLd ](k[HomVI(−, Fd)], E).

Ǐ(E) is clearly a torsion VI-module (note that Ǐ(E)(Y )= 0 for Y � Fd ).

http://stacks.math.columbia.edu/tag/0AVF
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Proposition 5.15. For any k[GLd ]-module, we have

HomModVI(M, Ǐ(E))= Homk[GLd ](M(F
d), E).

In particular, if E is an injective k[GLd ]-module then Ǐ(E) is an injective VI-module.

Proof. By the tensor-hom adjunction, we have

HomModVI(M, Ǐ(E))= HomModVI(M,Homk[GLd ](k[HomVI(−, Fd)], E))

= Homk[GLd ](k[HomVI(−, Fd)]⊗VI M, E)

= Homk[GLd ](M(F
d), E)

where the last equality follows from the previous lemma. If E is injective, the functor given by

M 7→ Homk[GLd ](M(F
d), E)

is exact, and hence Ǐ(E) is injective. �

For a VI-module M , we denote the maximal submodule supported in degrees ≤ d by M�d .

Proposition 5.16. Suppose I = Ǐ(E). Then I (Fd)∼= E. Moreover, I≺d
= 0 and I�d

= I .

Proof. Clearly, I (Fd)= Homk[GLd ](k[GLd ], E)∼= E . For the second statement, it suffices to show that if
9 is a nonzero element of I (X), then g?(9) is nonzero for any g ∈HomVI(X, Y ) with Y �Fd . So suppose
9 ∈ I (X) = Homk[GLd ](k[HomVI(X, Fd)], E). If 9 is nonzero then there exists an h ∈ HomVI(X, Fd)

such that 9(h) 6= 0. Let f ∈HomVI(X, Fd) be such that f g= h. Now (g?(9))( f )=9( f g)=9(h) 6= 0.
Thus g?(9) is nonzero completing the proof. �

A principal injective of type d is a VI-module of the form Ǐ(E) where E is an injective k[GLd ]-module.
By Proposition 5.16, the degree d part of a principal injective of type d is an injective k[GLd ]-module.

Lemma 5.17. Let M be a VI-module. Then M�d/M≺d injects into a principal injective I of type d. In
fact, if E is the injective hull of M�d(Fd) as a k[GLd ]-module, then we may take I = Ǐ(E).

Proof. Let N = M�d/M≺d . Then N is supported in degree ≤ d, and by definition of N , `? : N (X)→
N (Fd) is injective for any X and any `∈HomVI(X, Fd). Thus if f : N→ I is a map, then f is injective if
and only if f (Fd) : N (Fd)→ I (Fd) is injective. Now let ι : N (Fd)→ E be the injective-hull of N (Fd)=

M�d(Fd) as a k[GLd ]-module. Then by Proposition 5.15, ι induces a map ι? : N→ Ǐ(E). By our previous
argument, it suffices to show that it is injective in degree d . But in degree d , this map is given by the image
of ι under the natural adjunction isomorphism Homk[GLd ](N (F

d), E)→ Homk[GLd ](N (F
d), Ǐ(E)(Fd))

(see Proposition 5.16) and hence is injective. �

Proposition 5.18. Suppose M is supported in degrees ≤ d. Let Ek be the injective-hull of M�k(Fk) as a
k[GLk]-module. Then M embeds into the injective module

⊕
k≤d Ǐ(Ek).

Proof. If a module is supported in degree ≤ d, then it admits a filtration with modules of the form
M�k/M≺k with k ≤ d. The proposition now follows from Lemma 5.17 and the horseshoe lemma. �
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Proposition 5.19. A direct sum of injectives is injective. If M is any torsion module and Ek is the
injective-hull of M�k(Fk) as a k[GLd ]-module, then M embeds into the injective module

⊕
k≥0 Ǐ(Ek).

Proof. It is a standard fact that in a locally noetherian category a direct sum of injectives is an injective.
Thus the first statement follows (Theorem 4.37). Now let M be a torsion module. Then M = lim

−−→d M�d is
a filtered colimit of modules supported in finitely many degrees. Since ModVI is a Grothendieck category,
filtered colimits are exact. Hence the result follows from Proposition 5.18. �

Proposition 5.20. A torsion module is injective in Modtors
VI if and only if it is isomorphic to a direct sum

of principal injectives. In particular, a torsion module is injective in Modtors
VI if and only if it is injective in

ModVI.

Proof. By the previous proposition, a direct sum of principal injectives is injective. Let I be a torsion
injective. Then by the previous proposition again, I admits an embedding f : I→ J :=

⊕
k≥0 Ǐ(Ek) where

Ek is the injective-hull of I�k(Fk) as a k[GLk]-module. Since I is injective in Modtors
VI , f admits a section s.

This implies that I�k/I≺k is a direct summand of J�k/J≺k
= Ǐ(Ek). Thus (I�k/I≺k)(Fk) = I�k(Fk)

is a direct summand of Ǐ(Ek)(F
k) = Ek . Since a direct summand of injective module is injective, we

see that I�k(Fk) is injective, and hence is equal to its injective hull Ek . Thus if K = coker( f ), then
(K�k/K≺k)(Fk)= 0 for each k. By Nakayama’s lemma, K = 0. This shows that f is an isomorphism,
completing the proof. �

We are now ready to prove our main theorem on classification of indecomposable injectives. Note that
the FI-module analog of this result is proved in [Sam and Snowden 2016, Theorem 4.3.4].

Theorem 5.21 (classification of indecomposable injectives). Assume that k is a field of characteristic
zero. Every injective is a direct sum of a torsion-free injective and a torsion injective. Moreover, we have
the following:

(a) The set of torsion-free indecomposable injectives consists of modules of the form I(E) where E (or,
more precisely, E(Fd)) is an irreducible k[GLd ]-module for some d.

(b) The set of torsion indecomposable injectives consists of modules of the form Ǐ(E) where E is an
irreducible k[GLd ]-module for some d.

Proof. In light of Lemma 2.5, every injective is a direct sum of a torsion injective and a torsion-free
injective. Part (a) follows from Proposition 5.13, and part (b) follows from Proposition 5.20. �

Finiteness of injective dimension in characteristic zero.

Lemma 5.22. Let M be a finitely generated torsion module. Then M has finite injective dimension.

Proof. We prove the assertion by induction on d = h0(M). We have an exact sequence

0→ M≺d
→ M→ M�d/M≺d

→ 0.

Since h0(M≺d) < d, the induction hypothesis implies that M≺d has finite injective dimension. By
the horseshoe lemma, it suffices to prove that M�d/M≺d has finite injective dimension. For that, let
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E = M�d/M≺d(Fd). Since we are in characteristic zero, E is an injective k[GLd ]-module. As in
Lemma 5.17, there is an embedding ι : M�d/M≺d

→ Ǐ(E) which induces an isomorphism in degree d.
This shows that h0(coker(ι)) < d. By induction, coker(ι) has finite injective dimension. Since Ǐ(E) is
injective, we conclude that M�d/M≺d has finite injective dimension, concluding the proof. �

The FI-module analog of the following result is proved in [Sam and Snowden 2016, Theorem 4.3.1].

Theorem 5.23 (finiteness of injective dimension). Every finitely generated VI-module has finite injective
dimension.

Proof. Let M be a finitely generated VI-module. By Proposition 5.6, there exists an exact triangle

X→ M→ F→

where X is a finite length complex of finitely generated torsion modules and F is a finite length complex
of finitely generated semiinduced modules. In characteristic zero, every semiinduced module is injective.
Thus is suffices to show that every finitely generated torsion module has finite injective dimension. But
this is the content of the previous lemma. This finishes the proof. �
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