				lgebra & Number Theory
ай 18				
	8			Volume 13 2019
				No. 9
	j.			
а ^н н				
. О _П .		Degree of irration		eral abelian surfaces
60 0 0			Nathan Chen	
5				
ц; В.,	ų.		msp	
- 10 - 10				

Degree of irrationality of very general abelian surfaces

Nathan Chen

The degree of irrationality of a projective variety X is defined to be the smallest degree of a rational dominant map to a projective space of the same dimension. For abelian surfaces, Yoshihara computed this invariant in specific cases, while Stapleton gave a sublinear upper bound for very general polarized abelian surfaces (A, L) of degree d. Somewhat surprisingly, we show that the degree of irrationality of a very general polarized abelian surface is uniformly bounded above by 4, independently of the degree of the polarization. This result disproves part of a conjecture of Bastianelli, De Poi, Ein, Lazarsfeld, and Ullery.

1. Introduction

Given a projective variety *X* of dimension *n* which is not rational, one can try to quantify how far it is from being rational. When n = 1, the natural invariant is the *gonality* of a curve *C*, defined to be the smallest degree of a branched covering $C' \rightarrow \mathbb{P}^1$ (where *C'* is the normalization of *C*). One generalization of gonality to higher dimensions is the *degree of irrationality*, defined as:

 $\operatorname{irr}(X) := \min\{\delta > 0 \mid \exists \text{ degree } \delta \text{ rational dominant map } X \dashrightarrow \mathbb{P}^n\}.$

Recently, there has been significant progress in understanding the case of hypersurfaces of large degree [Bastianelli 2017; Bastianelli et al. 2014; 2017]. The history behind the development of these ideas is described in [Bastianelli et al. 2017]. The results of those works depend on the positivity of the canonical bundles of the varieties in question, so it is interesting to consider what happens in the K_X -trivial case. Our purpose here is to prove the somewhat surprising fact that the degree of irrationality of a very general polarized abelian surface is uniformly bounded above, independently of the degree of the polarization.

To be precise, let $A = A_d$ be an abelian surface carrying a polarization $L = L_d$ of type (1, d) and assume that $NS(A) \cong \mathbb{Z}[L]$. An argument of Stapleton [2017] showed that there is a positive constant *C* such that

$$\operatorname{irr}(A) \le C \cdot \sqrt{d}$$

for $d \gg 0$, and it was conjectured in [Bastianelli et al. 2017] that equality holds asymptotically. Our main result shows that this is maximally false:

MSC2010: primary 14K99; secondary 14E05.

Keywords: Irrationality, abelian surface.

Research partially supported by the National Science Foundation under the Stony Brook/SCGP RTG grant DMS-1547145.

Theorem 1.1. For an abelian surface $A = A_d$ with Picard number $\rho = 1$, one has

$$\operatorname{irr}(A) \leq 4$$

As far as we can see, the conjecture of [Bastianelli et al. 2017] for very general polarized K3 surfaces (S_d, B_d) of genus d—namely, that there exist positive constants C_1 , C_2 satisfying $C_1 \cdot \sqrt{d} \leq \operatorname{irr}(S_d) \leq C_2 \cdot \sqrt{d}$ for $d \gg 0$ —remains plausible. Here, B_d is an ample line bundle generating $\operatorname{Pic}(S_d)$ with $B_d^2 = 2d - 2$.

For an abelian variety A of dimension n, it has been shown in [Alzati and Pirola 1992] that $irr(A) \ge n+1$. When A is an abelian surface, we give a geometric proof of the fact that $irr(A) \ge 3$ in Lemma 3.1. Yoshihara proved that irr(A) = 3 for abelian surfaces A containing a smooth curve of genus 3 [Yoshihara 1996]. On a related note, Voisin [2018] showed that the covering gonality of a very general abelian variety A of dimension n is bounded from below by f(n), where f(n) grows like log(n), and this lower bound was subsequently improved to $\lceil \frac{1}{2}n + 1 \rceil$ by Martin [2019]. The covering gonality is defined as the minimum integer c > 0 such that given a general point $x \in A$, there exists a curve C passing through x with gonality c.

In the proof of our theorem, assuming as we may that *L* is symmetric, we consider the space $H^0(A, \mathcal{O}_A(2L))^+$ of even sections of $\mathcal{O}_A(2L)$. By imposing suitable multiplicities at the two-torsion points of *A*, we construct a subspace $V \subset H^0(A, \mathcal{O}_A(2L))^+$ which numerically should define a rational map from *A* to a surface $S \subset \mathbb{P}^N$. Using bounds on the degree of the map and the degree of *S*, we construct a rational covering $A \dashrightarrow \mathbb{P}^2$ of degree 4. The main difficulty is to deal with the possibility that $\mathbb{P}_{sub}(V)$ has a fixed component. Our approach was inspired in part by the work of Bauer [1994; 1998; 1999].

2. Set-up

Let $A = A_d$ be an abelian surface with $\rho(A) = 1$. Assume NS(A) $\cong \mathbb{Z}[L]$ where L is a polarization of type (1, d) for some fixed $d \ge 1$, so that $L^2 = 2d$ and $h^0(L) = d$. Let

$$\iota: A \to A, \quad x \mapsto -x$$

be the inverse morphism and let $Z = \{p_1, \ldots, p_{16}\}$ be the set of two-torsion points of A (fixed points of ι). We may assume that L is symmetric — that is, $\iota^* \mathcal{O}_A(L) \cong \mathcal{O}_A(L)$ — by replacing L with a suitable translate. In particular, the cyclic group of order two acts on $H^0(A, \mathcal{O}_A(2L))$. The space of *even* sections $H^0(A, \mathcal{O}_A(2L))^+$ of the line bundle $\mathcal{O}_A(2L)$ (sections s with the property that $\iota^* s = s$) has dimension

$$h^0(A, 2L)^+ = 2d + 2$$

(see [Lange and Birkenhake 1992, Corollary 4.6.6]). Since an even section of $\mathcal{O}_A(2L)$ vanishes to even order at any two-torsion point, it is at most

$$1 + 3 + \dots + (2m - 1) = m^2$$

conditions for an even section to vanish to order 2m at a fixed point $p \in Z$ (see [Bauer 1994] and the Appendix to [Bauer 1998] for more details).

Fix any integer solutions $a_1, \ldots, a_{16} \ge 0$ to the equation

$$\sum_{i=1}^{16} a_i^2 = 2d - 2$$

with $a_{15} = 0 = a_{16}$ (this last assumption will be useful in Corollary 3.4). Such a solution always exists by Lagrange's four-square theorem. Let $V \subset H^0(A, \mathcal{O}_A(2L))^+$ be the space of even sections vanishing to order at least $2a_i$ at each point p_i , so that

dim
$$V \ge 2d + 2 - \sum_{i=1}^{16} a_i^2 \ge 4.$$

Projectivizing via subspaces, let $\mathfrak{d} = \mathbb{P}_{sub}(V) \subseteq |2L|^+$ be the corresponding linear system of divisors, whose dimension is $N := \dim \mathfrak{d} \geq 3$. Write

$$d_i := \operatorname{mult}_{p_i} D$$

for a general divisor $D \in \mathfrak{d}$, so that $d_i \ge 2a_i$.

Remark 2.1. From [Lange and Birkenhake 1992, Section 4.8], it follows that sections of V are pulled back from the singular Kummer surface A/ι , so any divisor $D \in \mathfrak{d}$ is symmetric, i.e., $\iota(D) = D$.

Let $\varphi : A \dashrightarrow \mathbb{P}^N$ be the rational map given by the linear system \mathfrak{d} above (if \mathfrak{d} has a fixed component *F*, take $\mathfrak{d} - F$), and write $S := \overline{\mathrm{Im}(\varphi)}$ for the image of φ . Regardless of whether or not \mathfrak{d} has a fixed component, we find that:

Proposition 2.2. $S \subset \mathbb{P}^N$ is an irreducible and nondegenerate surface.

Proof. Suppose for the sake of contradiction that $\overline{\text{Im}(\varphi)}$ is a nondegenerate curve *C*. Then deg $C \ge 3$ since $N \ge 3$, and a hyperplane section of $C \subset \mathbb{P}^N$ pulls back to a divisor with at least three irreducible components. This contradicts the fact that any divisor $D(\sim_{\text{lin}} 2L) \in \mathfrak{d}$ has at most two irreducible components since $NS(A) \cong \mathbb{Z}[L]$. So the image of φ is a surface.

The following lemma will also be useful:

Lemma 2.3. Let $\varphi : X \dashrightarrow \mathbb{P}^n$ be a rational map from a surface X to a projective space of dimension $n \ge 2$, and suppose that its image $S := \overline{\text{Im}(\varphi)} \subset \mathbb{P}^n$ has dimension 2. Let \mathfrak{d} be the linear system corresponding to φ (assuming \mathfrak{d} has no base components). Then for any $D \in \mathfrak{d}$,

$$\deg \varphi \cdot \deg S \le D^2.$$

Proof. The indeterminacy locus of φ is a finite set.

3. Degree bounds

We first begin with an observation, which holds for an arbitrary abelian surface:

Lemma 3.1. There are no rational dominant maps $A \dashrightarrow \mathbb{P}^2$ of degree 2.

Proof. Suppose there exists such a map f. We have the following diagram

$$A \xrightarrow{f} \mathbb{P}^2 \xrightarrow{g} K^{[2]} \xrightarrow{s} A$$

$$A \xrightarrow{f} K^{[2]}(A) =: s^{-1}(0)$$

where g is the pullback map on 0-cycles, $A^{[2]}$ is the Hilbert scheme of 2 points on A, and s is given by summation composed with the Hilbert–Chow morphism. Since the rational map $s \circ g$ can be extended to a morphism (see [Lange and Birkenhake 1992, Theorem 4.9.4]), it must be constant. So $\overline{\text{Im}(g)}$ is contained in a fiber $s^{-1}(0)$, which is a smooth Kummer K3 surface $K^{[2]}(A)$. Since g is injective, it descends to an injective (and hence birational) map $h : \mathbb{P}^2 \to K^{[2]}(A)$, yielding a contradiction.

We will now study the numerical properties of the linear series ϑ constructed in the previous section. There are two possibilities for ϑ ; either (i) ϑ has no fixed component or (ii) ϑ has a fixed component, denoted by $F \neq 0$. In fact, with a little more work one can show that the second case does not actually occur; see Remark 3.5.

In the second case, let b be the movable component of \mathfrak{d} , so that we may write every divisor $D \in \mathfrak{d}$ as

$$D = F + M$$
 where $M \in \mathfrak{b}$.

By definition, dim $\mathfrak{d} = \dim \mathfrak{b}$. Since NS(*A*) $\cong \mathbb{Z}[L]$, $D \sim_{\text{lin}} 2L$ implies *F*, $M \sim_{\text{alg}} L$ and are irreducible effective divisors for all $M \in \mathfrak{b}$. Choose a general divisor $M \in \mathfrak{b}$ and write

$$m_i := \operatorname{mult}_{p_i} M$$
 and $f_i := \operatorname{mult}_{p_i} F$,

so that $d_i = m_i + f_i \ge 2a_i$ for all *i*. We claim that *F* must be symmetric as a divisor. If not, then

$$\iota(M) + \iota(F) = \iota(D) = D = M + F$$
 for all $D \in \mathfrak{d}$.

This implies that $M = \iota(F)$ and $F = \iota(M)$ for all $M \in \mathfrak{b}$, which would mean that M must also be fixed, leading to a contradiction. Hence, F must be symmetric, and likewise for all $M \in \mathfrak{b}$.

We first need an intermediate estimate:

Proposition 3.2. Assume \mathfrak{d} has a fixed component $F \neq 0$. Keeping the notation as above,

$$\sum_{i=1}^{16} m_i^2 \ge 2d - 8.$$

Proof. The idea here is to use the Kummer construction to push our fixed curve F onto a K3 surface and apply Riemann–Roch. This is analogous to a proof of Bauer's [1999, Theorem 6.1]. Consider the smooth Kummer K3 surface K associated to A:

$$E \subset \hat{A} \xrightarrow{\gamma} \hat{A}/\{1, \sigma\} =: K$$
$$\downarrow Z \subset A$$

where π is the blow-up of A along the collection of two-torsion points Z. Since the points in Z are ι -invariant, ι lifts to an involution σ on \hat{A} and the quotient K is a smooth K3 surface. Let E_i denote the exceptional curve over $p_i \in Z$, so that $E = \sum_{i=1}^{16} E_i$ is the exceptional divisor of π . Since F is symmetric, its strict transform

$$\hat{F} = \pi^* F - \sum_{i=1}^{16} f_i E_i,$$

descends to an irreducible curve $\overline{F} \subset K$. We claim that

$$h^0(K, \mathcal{O}_K(\overline{F})) = 1.$$

In fact, if the linear system $|\mathcal{O}_K(\overline{F})|$ were to contain a pencil, then this would give us a pencil of symmetric curves in $|\mathcal{O}_A(F)|$ with the same multiplicities at the two-torsion points, which contradicts F being a fixed component of \mathfrak{d} .

On the other hand, it is well-known that an irreducible curve \overline{F} on a K3 surface with $h^0(K, \overline{F}) = 1$ satisfies $(\overline{F})^2 = -2$, so

$$-4 = 2(\bar{F})^2 = (\gamma^* \bar{F})^2 = (\hat{F})^2 = F^2 - \sum_{i=1}^{16} f_i^2 = 2d - \sum_{i=1}^{16} f_i^2$$
(1)

combined with $\sum_{i=1}^{16} f_i m_i \leq \sum_{i=1}^{16} \left(\frac{d_i}{2}\right)^2$ yields

$$\sum_{i=1}^{16} d_i^2 = \sum_{i=1}^{16} (f_i^2 + m_i^2 + 2f_i m_i) \le 2d + 4 + \sum_{i=1}^{16} m_i^2 + \frac{1}{2} \sum_{i=1}^{16} d_i^2$$

After rearranging the terms, we find that

$$\sum_{i=1}^{16} m_i^2 \ge -2d - 4 + \frac{1}{2} \sum_{i=1}^{16} d_i^2 \ge -2d - 4 + 2 \sum_{i=1}^{16} a_i^2 = 2d - 8$$
(2)

for a general divisor $D = F + M \in \mathfrak{d}$, which is the desired inequality.

As an immediate consequence:

Theorem 3.3. Keeping the notation as before, let $\varphi : A \dashrightarrow \mathbb{P}^N$ be the rational map corresponding to \mathfrak{d} (or \mathfrak{b} if $F \neq 0$), with image S. Then

$$\deg \varphi \cdot \deg S \le 8. \tag{3}$$

Proof. By applying Proposition 2.2 and blowing-up A along the collection of two-torsion points Z to resolve some of the base points of \mathfrak{d} , we arrive at the diagram

(i) If the linear system ϑ has no fixed components, the divisors corresponding to ψ are of the form

$$\hat{D} \sim_{\text{lin}} \pi^* D - \sum_{i=1}^{16} d_i E_i,$$

where \hat{D} denotes the strict transform of D. By Lemma 2.3 applied to ψ , we have

$$\deg \varphi \cdot \deg S = \deg \psi \cdot \deg S \le \hat{D}^2 = 4L^2 - \sum_{i=1}^{16} d_i^2 \le 4\left(2d - \sum_{i=1}^{16} a_i^2\right) = 8.$$

(ii) If the linear system \mathfrak{d} has a fixed component $F \neq 0$, replace \hat{D} and d_i in the equation above with \hat{M} and m_i , respectively. Proposition 3.2 then gives an analogous bound.

Corollary 3.4. There exists a rational dominant map $\varphi : A \dashrightarrow \mathbb{P}^2$ of degree 4.

Proof. From Remark 2.1, it follows that $\varphi : A \dashrightarrow S \subset \mathbb{P}^N$ factors through the quotient $A \to A/\iota$, so deg φ must be even. In addition, deg $S \ge 2$ since S is nondegenerate. By Lemma 3.1, it is impossible for S to be rational together with deg $\varphi = 2$, so {deg $\varphi = 2$, deg S = 2, 3} is ruled out by the classification of quadric and cubic surfaces (using the fact that $\rho(A) = 1$).

Together with the upper bound deg $\varphi \cdot \deg S \leq 8$ given by Theorem 3.3, there are two possibilities:

$$\{\deg \varphi = 4, \deg S = 2\}$$
 and $\{\deg \varphi = 2, \deg S = 4\}.$

Either of these imply the equality in (3), so that we have a morphism $Bl_Z A \rightarrow S$ which fits into the diagram:

where *K* is the smooth Kummer K3 surface, γ is a branched cover of degree 2, and $G_i := \gamma(E_i)$ are (-2)-curves.

In the first case where deg $\varphi = 4$ and deg S = 2, note that *S* is rational. In the second case where deg $\varphi = 2$ and deg S = 4, recall that we chose the multiplicities a_i so that $a_{15} = 0 = a_{16}$. Thus, equality in (3) forces either $d_{15} = 0 = d_{16}$ or $m_{15} = 0 = m_{16}$. This implies that the curves G_{15} , G_{16} are contracted and their images q_{15} , q_{16} under α are double points on *S* since α is a birational morphism. Projection from a general (N-3)-plane containing one but not both of the q_i defines a rational map $A \longrightarrow \mathbb{P}^2$ of

degree 2 (if q_{15} is a cone point of *S*, pick a general plane passing through q_{16} , and vice versa), which contradicts Lemma 3.1.

This immediately implies Theorem 1.1.

Remark 3.5. The case when \mathfrak{d} has a fixed component $F \neq 0$ cannot occur. To see this, suppose $F \neq 0$ and note that the two cases given in Corollary 3.4 imply that equality must hold throughout the proof of Proposition 3.2. In particular, $d_i = m_i + f_i$ and $\sum_{i=1}^{16} f_i m_i = \sum_{i=1}^{16} \left(\frac{d_i}{2}\right)^2$ implies $f_i = m_i$ for all *i*. Combining this with (1) and (2) gives

$$2d + 4 = \sum_{i=1}^{16} f_i^2 = \sum_{i=1}^{16} m_i^2 = 2d - 8,$$

which is a contradiction.

Acknowledgements

I would like to thank my advisor Robert Lazarsfeld for suggesting the conjecture and for his encouragement and guidance throughout the formulation of the results in this paper. I would also like to thank Frederik Benirschke, Matthew Dannenberg, Mohamed El Alami, François Greer, Samuel Grushevsky, Ljudmila Kamenova, Yoon-Joo Kim, Radu Laza, John Sheridan, David Stapleton, and Ruijie Yang for engaging in valuable discussions. Finally, I am grateful to the referee for reviewing the paper and offering helpful comments.

References

- [Alzati and Pirola 1992] A. Alzati and G. P. Pirola, "On the holomorphic length of a complex projective variety", *Arch. Math.* (*Basel*) **59**:4 (1992), 398–402. MR Zbl
- [Bastianelli 2017] F. Bastianelli, "On irrationality of surfaces in P³", J. Algebra 488 (2017), 349–361. MR Zbl

[Bastianelli et al. 2014] F. Bastianelli, R. Cortini, and P. De Poi, "The gonality theorem of Noether for hypersurfaces", J. Algebraic Geom. 23:2 (2014), 313–339. MR Zbl

[Bastianelli et al. 2017] F. Bastianelli, P. De Poi, L. Ein, R. Lazarsfeld, and B. Ullery, "Measures of irrationality for hypersurfaces of large degree", *Compos. Math.* **153**:11 (2017), 2368–2393. MR Zbl

[Bauer 1994] T. Bauer, "Projective images of Kummer surfaces", Math. Ann. 299:1 (1994), 155–170. MR Zbl

[Bauer 1998] T. Bauer, "Seshadri constants and periods of polarized abelian varieties", *Math. Ann.* **312**:4 (1998), 607–623. MR Zbl

[Bauer 1999] T. Bauer, "Seshadri constants on algebraic surfaces", Math. Ann. 313:3 (1999), 547–583. MR Zbl

- [Lange and Birkenhake 1992] H. Lange and C. Birkenhake, *Complex abelian varieties*, Grundlehren der Math. Wissenschaften **302**, Springer, 1992. MR Zbl
- [Martin 2019] O. Martin, "On a conjecture of Voisin on the gonality of very general abelian varieties", preprint, 2019. arXiv
- [Stapleton 2017] D. Stapleton, *The degree of irrationality of very general hypersurfaces in some homogeneous spaces*, Ph.D. thesis, Stony Brook University, 2017, Available at https://search.proquest.com/docview/1972010253.

[Voisin 2018] C. Voisin, "Chow rings and gonality of general abelian varieties", preprint, 2018. arXiv

[Yoshihara 1996] H. Yoshihara, "Degree of irrationality of a product of two elliptic curves", *Proc. Amer. Math. Soc.* **124**:5 (1996), 1371–1375. MR Zbl

Communicated by Gavril Farkas Received 2019-02-17 Revised 2019-05-17 Accepted 2019-06-25

nathan.chen@stonybrook.edu

Department of Mathematics, Stony Brook University, Stony Brook, NY, United States

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen Massachusetts Institute of Technology Cambridge, USA EDITORIAL BOARD CHAIR David Eisenbud University of California Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds	University of California, Berkeley, USA	Martin Olsson	University of California, Berkeley, USA
Antoine Chambert-Loir	Université Paris-Diderot, France	Raman Parimala	Emory University, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Jonathan Pila	University of Oxford, UK
Brian D. Conrad	Stanford University, USA	Anand Pillay	University of Notre Dame, USA
Samit Dasgupta	University of California, Santa Cruz, USA	Michael Rapoport	Universität Bonn, Germany
Hélène Esnault	Freie Universität Berlin, Germany	Victor Reiner	University of Minnesota, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Peter Sarnak	Princeton University, USA
Hubert Flenner	Ruhr-Universität, Germany	Joseph H. Silverman	Brown University, USA
Sergey Fomin	University of Michigan, USA	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Christopher Skinner	Princeton University, USA
Wee Teck Gan	National University of Singapore	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Andrew Granville	Université de Montréal, Canada	J. Toby Stafford	University of Michigan, USA
Ben J. Green	University of Oxford, UK	Pham Huu Tiep	University of Arizona, USA
Joseph Gubeladze	San Francisco State University, USA	Ravi Vakil	Stanford University, USA
Roger Heath-Brown	Oxford University, UK	Michel van den Bergh	Hasselt University, Belgium
Craig Huneke	University of Virginia, USA	Akshay Venkatesh	Institute for Advanced Study, USA
Kiran S. Kedlaya	Univ. of California, San Diego, USA	Marie-France Vignéras	Université Paris VII, France
János Kollár	Princeton University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Philippe Michel	École Polytechnique Fédérale de Lausanne	Melanie Matchett Wood	University of Wisconsin, Madison, USA
Susan Montgomery	University of Southern California, USA	Shou-Wu Zhang	Princeton University, USA
Shigefumi Mori	RIMS, Kyoto University, Japan		

PRODUCTION

production@msp.org Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2019 is US \$385/year for the electronic version, and \$590/year (+\$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/ © 2019 Mathematical Sciences Publishers

Algebra & Number Theory

Volume 13 No. 9 2019

Proof of a conjecture of Colliot-Thélène and a diophantine excision theorem JAN DENEF	1983
Irreducible characters with bounded root Artin conductor AMALIA PIZARRO-MADARIAGA	1997
Frobenius–Perron theory of endofunctors JIANMIN CHEN, ZHIBIN GAO, ELIZABETH WICKS, JAMES J. ZHANG, XIAOHONG ZHANG and HONG ZHU	2005
Positivity of anticanonical divisors and F-purity of fibers SHO EJIRI	2057
A probabilistic approach to systems of parameters and Noether normalization JULIETTE BRUCE and DANIEL ERMAN	2081
The structure of correlations of multiplicative functions at almost all scales, with applications to the Chowla and Elliott conjectures TERENCE TAO and JONI TERÄVÄINEN	2103
VI-modules in nondescribing characteristic, part I ROHIT NAGPAL	2151
Degree of irrationality of very general abelian surfaces NATHAN CHEN	2191
Lower bounds for the least prime in Chebotarev ANDREW FIORI	2199
Brody hyperbolicity of base spaces of certain families of varieties MIHNEA POPA, BEHROUZ TAJI and LEI WU	2205

