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Degree of irrationality of very general abelian surfaces
Nathan Chen

The degree of irrationality of a projective variety X is defined to be the smallest degree of a rational
dominant map to a projective space of the same dimension. For abelian surfaces, Yoshihara computed this
invariant in specific cases, while Stapleton gave a sublinear upper bound for very general polarized abelian
surfaces (A, L) of degree d. Somewhat surprisingly, we show that the degree of irrationality of a very
general polarized abelian surface is uniformly bounded above by 4, independently of the degree of the
polarization. This result disproves part of a conjecture of Bastianelli, De Poi, Ein, Lazarsfeld, and Ullery.

1. Introduction

Given a projective variety X of dimension n which is not rational, one can try to quantify how far it is
from being rational. When n = 1, the natural invariant is the gonality of a curve C , defined to be the
smallest degree of a branched covering C ′→P1 (where C ′ is the normalization of C). One generalization
of gonality to higher dimensions is the degree of irrationality, defined as:

irr(X) :=min{δ > 0 | ∃ degree δ rational dominant map X 99K Pn
}.

Recently, there has been significant progress in understanding the case of hypersurfaces of large degree
[Bastianelli 2017; Bastianelli et al. 2014; 2017]. The history behind the development of these ideas is
described in [Bastianelli et al. 2017]. The results of those works depend on the positivity of the canonical
bundles of the varieties in question, so it is interesting to consider what happens in the K X -trivial case.
Our purpose here is to prove the somewhat surprising fact that the degree of irrationality of a very general
polarized abelian surface is uniformly bounded above, independently of the degree of the polarization.

To be precise, let A = Ad be an abelian surface carrying a polarization L = Ld of type (1, d) and
assume that NS(A)∼= Z[L]. An argument of Stapleton [2017] showed that there is a positive constant C
such that

irr(A)≤ C ·
√

d

for d� 0, and it was conjectured in [Bastianelli et al. 2017] that equality holds asymptotically. Our main
result shows that this is maximally false:
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Theorem 1.1. For an abelian surface A = Ad with Picard number ρ = 1, one has

irr(A)≤ 4.

As far as we can see, the conjecture of [Bastianelli et al. 2017] for very general polarized K3 surfaces
(Sd , Bd) of genus d — namely, that there exist positive constants C1,C2 satisfying C1 ·

√
d ≤ irr(Sd)≤

C2 ·
√

d for d � 0 — remains plausible. Here, Bd is an ample line bundle generating Pic(Sd) with
B2

d = 2d − 2.
For an abelian variety A of dimension n, it has been shown in [Alzati and Pirola 1992] that irr(A)≥n+1.

When A is an abelian surface, we give a geometric proof of the fact that irr(A)≥3 in Lemma 3.1. Yoshihara
proved that irr(A)= 3 for abelian surfaces A containing a smooth curve of genus 3 [Yoshihara 1996]. On
a related note, Voisin [2018] showed that the covering gonality of a very general abelian variety A of
dimension n is bounded from below by f (n), where f (n) grows like log(n), and this lower bound was
subsequently improved to

⌈ 1
2 n+ 1

⌉
by Martin [2019]. The covering gonality is defined as the minimum

integer c > 0 such that given a general point x ∈ A, there exists a curve C passing through x with
gonality c.

In the proof of our theorem, assuming as we may that L is symmetric, we consider the space
H 0(A,OA(2L))+ of even sections of OA(2L). By imposing suitable multiplicities at the two-torsion
points of A, we construct a subspace V ⊂ H 0(A,OA(2L))+ which numerically should define a rational
map from A to a surface S⊂PN . Using bounds on the degree of the map and the degree of S, we construct
a rational covering A 99K P2 of degree 4. The main difficulty is to deal with the possibility that Psub(V )
has a fixed component. Our approach was inspired in part by the work of Bauer [1994; 1998; 1999].

2. Set-up

Let A = Ad be an abelian surface with ρ(A)= 1. Assume NS(A)∼= Z[L] where L is a polarization of
type (1, d) for some fixed d ≥ 1, so that L2

= 2d and h0(L)= d. Let

ι : A→ A, x 7→ −x

be the inverse morphism and let Z = {p1, . . . , p16} be the set of two-torsion points of A (fixed points
of ι). We may assume that L is symmetric — that is, ι∗OA(L)∼=OA(L)— by replacing L with a suitable
translate. In particular, the cyclic group of order two acts on H 0(A,OA(2L)). The space of even sections
H 0(A,OA(2L))+ of the line bundle OA(2L) (sections s with the property that ι∗s = s) has dimension

h0(A, 2L)+ = 2d + 2

(see [Lange and Birkenhake 1992, Corollary 4.6.6]). Since an even section of OA(2L) vanishes to even
order at any two-torsion point, it is at most

1+ 3+ · · ·+ (2m− 1)= m2
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conditions for an even section to vanish to order 2m at a fixed point p ∈ Z (see [Bauer 1994] and the
Appendix to [Bauer 1998] for more details).

Fix any integer solutions a1, . . . , a16 ≥ 0 to the equation

16∑
i=1

a2
i = 2d − 2,

with a15 = 0= a16 (this last assumption will be useful in Corollary 3.4). Such a solution always exists by
Lagrange’s four-square theorem. Let V ⊂ H 0(A,OA(2L))+ be the space of even sections vanishing to
order at least 2ai at each point pi , so that

dim V ≥ 2d + 2−
16∑

i=1

a2
i ≥ 4.

Projectivizing via subspaces, let d = Psub(V ) ⊆ |2L|+ be the corresponding linear system of divisors,
whose dimension is N := dim d≥ 3. Write

di :=multpi D

for a general divisor D ∈ d, so that di ≥ 2ai .

Remark 2.1. From [Lange and Birkenhake 1992, Section 4.8], it follows that sections of V are pulled
back from the singular Kummer surface A/ι, so any divisor D ∈ d is symmetric, i.e., ι(D)= D.

Let ϕ : A 99K PN be the rational map given by the linear system d above (if d has a fixed component
F , take d− F), and write S := Im(ϕ) for the image of ϕ. Regardless of whether or not d has a fixed
component, we find that:

Proposition 2.2. S ⊂ PN is an irreducible and nondegenerate surface.

Proof. Suppose for the sake of contradiction that Im(ϕ) is a nondegenerate curve C . Then deg C ≥ 3
since N ≥ 3, and a hyperplane section of C ⊂ PN pulls back to a divisor with at least three irreducible
components. This contradicts the fact that any divisor D(∼lin 2L) ∈ d has at most two irreducible
components since NS(A)∼= Z[L]. So the image of ϕ is a surface. �

The following lemma will also be useful:

Lemma 2.3. Let ϕ : X 99KPn be a rational map from a surface X to a projective space of dimension n≥ 2,
and suppose that its image S := Im(ϕ)⊂ Pn has dimension 2. Let d be the linear system corresponding
to ϕ (assuming d has no base components). Then for any D ∈ d,

degϕ · deg S ≤ D2.

Proof. The indeterminacy locus of ϕ is a finite set. �
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3. Degree bounds

We first begin with an observation, which holds for an arbitrary abelian surface:

Lemma 3.1. There are no rational dominant maps A 99K P2 of degree 2.

Proof. Suppose there exists such a map f . We have the following diagram

A[2] A

A P2 K [2](A) s−1(0)

s

f

h

g

=:

where g is the pullback map on 0-cycles, A[2] is the Hilbert scheme of 2 points on A, and s is given by
summation composed with the Hilbert–Chow morphism. Since the rational map s ◦g can be extended to a
morphism (see [Lange and Birkenhake 1992, Theorem 4.9.4]), it must be constant. So Im(g) is contained
in a fiber s−1(0), which is a smooth Kummer K3 surface K [2](A). Since g is injective, it descends to an
injective (and hence birational) map h : P2 99K K [2](A), yielding a contradiction. �

We will now study the numerical properties of the linear series d constructed in the previous section.
There are two possibilities for d; either (i) d has no fixed component or (ii) d has a fixed component,
denoted by F 6= 0. In fact, with a little more work one can show that the second case does not actually
occur; see Remark 3.5.

In the second case, let b be the movable component of d, so that we may write every divisor D ∈ d as

D = F +M where M ∈ b.

By definition, dim d= dim b. Since NS(A)∼= Z[L], D ∼lin 2L implies F,M ∼alg L and are irreducible
effective divisors for all M ∈ b. Choose a general divisor M ∈ b and write

mi :=multpi M and fi :=multpi F,

so that di = mi + fi ≥ 2ai for all i . We claim that F must be symmetric as a divisor. If not, then

ι(M)+ ι(F)= ι(D)= D = M + F for all D ∈ d.

This implies that M = ι(F) and F = ι(M) for all M ∈ b, which would mean that M must also be fixed,
leading to a contradiction. Hence, F must be symmetric, and likewise for all M ∈ b.

We first need an intermediate estimate:

Proposition 3.2. Assume d has a fixed component F 6= 0. Keeping the notation as above,

16∑
i=1

m2
i ≥ 2d − 8.
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Proof. The idea here is to use the Kummer construction to push our fixed curve F onto a K3 surface and
apply Riemann–Roch. This is analogous to a proof of Bauer’s [1999, Theorem 6.1]. Consider the smooth
Kummer K3 surface K associated to A:

E Â Â/{1, σ } K

Z A

⊂

π

γ
=:

⊂

where π is the blow-up of A along the collection of two-torsion points Z . Since the points in Z are
ι-invariant, ι lifts to an involution σ on Â and the quotient K is a smooth K3 surface. Let Ei denote the
exceptional curve over pi ∈ Z , so that E =

∑16
i=1 Ei is the exceptional divisor of π . Since F is symmetric,

its strict transform

F̂ = π∗F −
16∑

i=1

fi Ei ,

descends to an irreducible curve F ⊂ K . We claim that

h0(K ,OK (F))= 1.

In fact, if the linear system |OK (F)| were to contain a pencil, then this would give us a pencil of symmetric
curves in |OA(F)| with the same multiplicities at the two-torsion points, which contradicts F being a
fixed component of d.

On the other hand, it is well-known that an irreducible curve F on a K3 surface with h0(K , F)= 1
satisfies (F)2 =−2, so

−4= 2(F)2 = (γ ∗F)2 = (F̂)2 = F2
−

16∑
i=1

f 2
i = 2d −

16∑
i=1

f 2
i (1)

combined with
∑16

i=1 fi mi ≤
∑16

i=1
( di

2

)2 yields

16∑
i=1

d2
i =

16∑
i=1

( f 2
i +m2

i + 2 fi mi )≤ 2d + 4+
16∑

i=1

m2
i +

1
2

16∑
i=1

d2
i .

After rearranging the terms, we find that

16∑
i=1

m2
i ≥−2d − 4+ 1

2

16∑
i=1

d2
i ≥−2d − 4+ 2

16∑
i=1

a2
i = 2d − 8 (2)

for a general divisor D = F +M ∈ d, which is the desired inequality. �

As an immediate consequence:

Theorem 3.3. Keeping the notation as before, let ϕ : A 99K PN be the rational map corresponding to d

(or b if F 6= 0), with image S. Then
degϕ · deg S ≤ 8. (3)
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Proof. By applying Proposition 2.2 and blowing-up A along the collection of two-torsion points Z to
resolve some of the base points of d, we arrive at the diagram

Â BlZ A

A S PN .

:=

π
ψ

ϕ
⊂

(i) If the linear system d has no fixed components, the divisors corresponding to ψ are of the form

D̂ ∼lin π
∗D−

16∑
i=1

di Ei ,

where D̂ denotes the strict transform of D. By Lemma 2.3 applied to ψ , we have

degϕ · deg S = degψ · deg S ≤ D̂2
= 4L2

−

16∑
i=1

d2
i ≤ 4

(
2d −

16∑
i=1

a2
i

)
= 8.

(ii) If the linear system d has a fixed component F 6= 0, replace D̂ and di in the equation above with M̂
and mi , respectively. Proposition 3.2 then gives an analogous bound. �

Corollary 3.4. There exists a rational dominant map ϕ : A 99K P2 of degree 4.

Proof. From Remark 2.1, it follows that ϕ : A 99K S ⊂ PN factors through the quotient A→ A/ι, so
degϕ must be even. In addition, deg S ≥ 2 since S is nondegenerate. By Lemma 3.1, it is impossible for
S to be rational together with degϕ = 2, so {degϕ = 2, deg S = 2, 3} is ruled out by the classification of
quadric and cubic surfaces (using the fact that ρ(A)= 1).

Together with the upper bound degϕ · deg S ≤ 8 given by Theorem 3.3, there are two possibilities:

{degϕ = 4, deg S = 2} and {degϕ = 2, deg S = 4}.

Either of these imply the equality in (3), so that we have a morphism BlZ A→ S which fits into the
diagram:

Ei BlZ A K Gi

A S PN

⊂

π

γ

α

⊃

ϕ
⊂

where K is the smooth Kummer K3 surface, γ is a branched cover of degree 2, and Gi := γ (Ei ) are
(−2)-curves.

In the first case where degϕ = 4 and deg S = 2, note that S is rational. In the second case where
degϕ = 2 and deg S = 4, recall that we chose the multiplicities ai so that a15 = 0= a16. Thus, equality
in (3) forces either d15 = 0= d16 or m15 = 0=m16. This implies that the curves G15,G16 are contracted
and their images q15, q16 under α are double points on S since α is a birational morphism. Projection
from a general (N−3)-plane containing one but not both of the qi defines a rational map A 99K P2 of
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degree 2 (if q15 is a cone point of S, pick a general plane passing through q16, and vice versa), which
contradicts Lemma 3.1. �

This immediately implies Theorem 1.1.

Remark 3.5. The case when d has a fixed component F 6= 0 cannot occur. To see this, suppose F 6= 0
and note that the two cases given in Corollary 3.4 imply that equality must hold throughout the proof
of Proposition 3.2. In particular, di = mi + fi and

∑16
i=1 fi mi =

∑16
i=1
( di

2

)2 implies fi = mi for all i .
Combining this with (1) and (2) gives

2d + 4=
16∑

i=1

f 2
i =

16∑
i=1

m2
i = 2d − 8,

which is a contradiction.
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