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Lower bounds for the least prime in Chebotarev
Andrew Fiori

In this paper we show there exists an infinite family of number fields L , Galois over Q, for which the
smallest prime p of Q which splits completely in L has size at least (log(|DL |))

2+o(1). This gives a
converse to various upper bounds, which shows that they are best possible.

1. Introduction

The purpose of this note is to prove the following result.

Theorem 1. There exists an infinite family of number fields L , Galois over Q, for which the smallest
prime p of Q which splits completely in L has size at least

(1+ o(1))
(

3eγ

2π

)2( log(|DL |) log(2 log log(|DL |))

log log(|DL |)

)2

as the absolute discriminant DL of L over Q, tends to infinity.

The result is independent of the generalized Riemann hypothesis. The result complements the existing
literature on what is essentially a converse problem, stated generally as:

Problem. Let K be a number field, and L be a Galois extension of K , for any conjugacy class C in
0(L/K ), the Galois group of L/K , show that the smallest (in norm) unramified degree one prime p of K
for which the conjugacy class Frobp is C is small relative to |DL |, the absolute discriminant of L/K .

Solutions to this problem have important applications in the explicit computation of class groups
(see [Belabas et al. 2008]) where smaller is better. Some of the history of just how small we can get is
summarized below:

• Lagarias and Odlyzko [1977] showed NK/Q(p) < (log(|DL |))
2+o(1) conditionally on GRH.

• Bach and Sorenson [1996] gave an explicit constant C so that NK/Q(p)<C(log(|DL |))
2 conditionally

on GRH.

• Lagarias, Montgomery, and Odlyzko [Lagarias et al. 1979] showed there is a constant A such that
NK/Q(p) < |DL |

A.
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• Zaman [2017] showed NK/Q(p) < |DL |
40 for DL sufficiently large.

• Kadiri, Ng and Wong [Kadiri et al. 2019] improved this to NK/Q(p) < |DL |
16 for DL sufficiently

large.

• Ahn and Kwon [2019] showed NK/Q(p) < |DL |
12577 for all L .

By the above, Theorem 1 and the GRH bound above are best possible up to the exact o(1) term.

Remark. The family under consideration will be a subfamily of the Hilbert class fields of quadratic
imaginary extensions of Q. All of the Galois groups will be generalized dihedral groups, and in the family
the degree of the extensions goes to infinity.

We also would like to point out the work of Sandari [2018, Section 1.3] where some similar features
of this family are remarked on in a different context.

2. Proofs

We first recall a few basic facts from algebraic number theory and class field theory.

Lemma 2. Let K = Q(
√
−d) where d = |disc(K )|, let p be a principal prime ideal of K . If we have

NK/Q(p)= (p) then p is a norm of OK and hence p ≥ d
4 .

Proof. Assuming p is principally generated by x , then NK/Q(p) is principally generated by NK/Q(x). As
norms from K are positive, this gives that p must be a norm.

We next note that for x + y
√
−d ∈OK the expression NK/Q(x + y

√
−d)= x2

+ dy2 cannot be prime
if y = 0. Now, because Ok ⊂

1
2 Z+

√
−d
2 Z we conclude that if the norm is a prime, then y ≥ 1

2 , from
which it follows that if p is a norm then p ≥ d

4 . �

Lemma 3. Let K =Q(
√
−d) where d = |disc(K )|, suppose that H is the Hilbert class field of K . If p

is a prime of Z which splits completely in H , then p splits in K as (p)= p1p1 where both p1 and p2 are
principal and NK/Q(pi )= (p). In particular, by the previous lemma p ≥ d

4 .

Proof. The first claim is clear because ramification degrees, inertia degrees and hence splitting degrees
are multiplicative in towers. That pi must be principal is a consequence of class field theory. Principal
ideals for OK map to the trivial Galois element for the Galois group of the Hilbert class field. However,
for unramified prime ideals this map gives Frobenius. As the Frobenius element is trivial precisely when
the inertial degree is 1, equivalently for Galois fields when the prime splits completely, we conclude the
result. �

Remark 4. Denote by χd the quadratic Dirichlet character with fundamental discriminant −d . The main
idea of the proof is to use the class number formula with lower bounds for L(1, χd). Using Siegel’s
ineffective bound gives

d = h2+o(1)
K = log|DH |

2+o(1).

To obtain our precise result we refine the o(1) term using extreme values of L(1, χd).
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Lemma 5. Let K =Q(
√
−d) where d = |disc(K )|> 16, suppose that H is the Hilbert class field of K .

Then

log|DH | = hK log(d)= 1
π

L(1, χd)
√

d log(d)

where hK is the class number of K , DH is the discriminant of H and χd is the quadratic Dirichlet
character with fundamental discriminant −d.

Proof. The first equality is immediate from the multiplicativity of the discriminant in towers, the second
follows from the analytic class number formula

hK =

√
d
π

L(1, χd). �

The estimates on the extreme values of L(1, χd) which we need are the following.

Theorem 6. There exists a family of quadratic imaginary fields K =Q(
√
−d) where d = |disc(K )| such

that for χd , the quadratic Dirichlet character with fundamental discriminant −d , we have

L(1, χd) < (1+ o(1))
π2

6eγ log log(d)
.

A result of this sort was originally proven by Littlewood [1928] conditional on the generalized Riemann
hypothesis, his result was proven unconditionally by Paley [1932] the version stated here follows from
the work of Chowla [1949]. It is possible that the work of Granville and Soundararajan [2003] can further
refine the constants in the above, and consequently those in Theorem 1.

The following proof includes several significant simplifications suggested by the referee. We would
like to thank them for these valuable suggestions.

Proof of Theorem 1. We consider the family of fields L = HK where K is a field from the infinite family
of Theorem 6 for which d > 16. To complete the proof we introduce some notation, define

xd = L(1, χd) log log(d) and fd(x)=
x
√

d log(d)
π log log(d)

.

Then by our choice of d we have

xd <
π2

6eγ
+ o(1)

and by Lemma 5 we have

log |DL | = fd(xd).

Now because the function y 7→ y log(2 log(y))/log(y) is increasing for y > e and as

fd(xd)= log |DL | = hK log(d)≥ log(16) > e
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it follows that
log|DL | log(2 log log|DL |)

log log|DL |
=

fd(xd) log(2 log( fd(xd)))

log( fd(xd))

≤
fd

(
π2

6eγ + o(1)
)

log
(
2 log

(
fd

(
π2

6eγ + o(1)
)))

log
(

fd
(
π2

6eγ + o(1)
))

≤ (1+ o(1))
π

3eγ
√

d.

Combining the above with the bounds p ≥ d
4 from Lemma 3 we obtain the result. �

3. Numerics

Table 1 illustrates the phenomenon by giving the ratio

Ratio= p/
(

3eγ

2π

)2( log(|DL |) log(2 log log(|DL |))

log log(|DL |)

)2

for an example of a the Hilbert class field of a quadratic imaginary field of each class number less than
100 with large discriminant.

Note that in Table 1 we have K =Q(
√
−d) and |DL | = dhK .
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hK d p Ratio

1 163 41 4.1557
2 427 107 2.4287
3 907 227 2.1188
4 1555 389 1.9476
5 2683 673 2.0276
6 3763 941 1.9222
7 5923 1481 2.1071
8 6307 1579 1.7569
9 10627 2657 2.1729
10 13843 3461 2.2386
11 15667 3917 2.0939
12 17803 4451 1.9938
13 20563 5147 1.9503
14 30067 7517 2.3373
15 34483 8623 2.3173
16 31243 7817 1.9050
17 37123 9281 1.9719
18 48427 12107 2.2225
19 38707 9677 1.6747
20 58507 14627 2.1572
21 61483 15373 2.0614
22 85507 21377 2.5024
23 90787 22697 2.4308
24 111763 27941 2.6847
25 93307 23327 2.1425
26 103027 25759 2.1714
27 103387 25847 2.0351
28 126043 31511 2.2543
29 166147 41539 2.6760
30 134467 33617 2.1037
31 133387 33347 1.9698
32 164803 41201 2.2263
33 222643 55661 2.7216

hK d p Ratio

34 189883 47491 2.2528
35 210907 52727 2.3373
36 217627 54409 2.2819
37 158923 39733 1.6620
38 289963 72493 2.6454
39 253507 63377 2.2500
40 260947 65239 2.2034
41 296587 74149 2.3513
42 280267 70067 2.1445
43 300787 75209 2.1838
44 319867 79967 2.2079
45 308323 77081 2.0542
46 462883 115727 2.7990
47 375523 93887 2.2489
48 335203 83813 1.9638
49 393187 98297 2.1693
50 389467 97367 2.0743
51 546067 136519 2.6772
52 439147 109789 2.1422
53 425107 106277 2.0124
54 532123 133033 2.3604
55 452083 113021 1.9839
56 494323 123581 2.0737
57 615883 153991 2.4279
58 586987 146749 2.2565
59 474307 118583 1.8204
60 662803 165701 2.3566
61 606643 151667 2.1185
62 647707 161947 2.1768
63 991027 247759 3.0559
64 693067 173267 2.1783
65 703123 175781 2.1443
66 958483 239623 2.7278

hK d p Ratio

67 652723 163181 1.9030
68 819163 204791 2.2546
69 888427 222107 2.3556
70 811507 202877 2.1215
71 909547 227387 2.2823
72 947923 236981 2.3061
73 886867 221717 2.1227
74 951043 237763 2.2001
75 916507 229127 2.0792
76 1086187 271549 2.3521
77 1242763 310693 2.5821
78 1004347 251087 2.0958
79 1333963 333491 2.6208
80 1165483 291371 2.2775
81 1030723 257687 2.0011
82 1446547 361637 2.6277
83 1074907 268729 1.9851
84 1225387 306347 2.1765
85 1285747 321443 2.2210
86 1534723 383681 2.5366
87 1261747 315437 2.0941
88 1265587 316403 2.0564
89 1429387 357347 2.2395
90 1548523 387137 2.3529
91 1391083 347771 2.1002
92 1452067 363017 2.1371
93 1475203 368801 2.1244
94 1587763 396943 2.2212
95 1659067 414767 2.2638
96 1684027 421009 2.2501
97 1842523 460633 2.3882
98 2383747 595939 2.9359
99 1480627 370159 1.9012

Table 1. Examples of smallest split primes in Hilbert class fields of Q(
√
−d).
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