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Supersingular Hecke modules as Galois representations

Elmar Grosse-Klonne

Let F be a local field of mixed characteristic (0, p), let k be a finite extension of its residue field, let
‘H be the pro-p-Iwahori Hecke k-algebra attached to GL;4;(F) for some d > 1. We construct an exact
and fully faithful functor from the category of supersingular #-modules to the category of Gal(F/F)-
representations over k. More generally, for a certain k-algebra H* surjecting onto H we define the
notion of -supersingular modules and construct an exact and fully faithful functor from the category of
#-supersingular *-modules to the category of Gal(F / F)-representations over k.

Introduction 67
1. Lubin-Tate (¢, I')-modules 71
2. Hecke algebras and supersingular modules 85
3. Reconstruction of supersingular H*-modules 91
4. The functor 96
5. Standard objects and full faithfulness 101
6. From G-representations to H-modules 114
Acknowledgements 117
References 117
Introduction

Let F be a local field of mixed characteristic (0, p), let 7 € Of be a uniformizer, let k be a finite
extension of the residue field [, of F. Let d € N. An important line of current research in number
theory is concerned with relating smooth representations of G = GL ;41 (F) over k with finite dimensional
representations of Gal(F/F) over k.

At present, the smooth representation theory of G is understood only up to identifying, constructing
and describing the still elusive supercuspidal representations of G, or equivalently, the supersingular
representations of G. An important role in better understanding this theory is played by the module
theory of the pro- p-Iwahori Hecke k-algebra # attached to G and a pro-p-Iwahori subgroup I in G.
There is a notion of supersingularity for #-modules which, in contrast to that of supersingularity for
G -representations, is transparent and concrete. The notions are compatible in the following sense: at
least after replacing k by an algebraically closed extension field, a smooth admissible irreducible G-
representation V is supersingular if and only if its space of Iy-invariants V0 (which carries a natural
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action by ) is supersingular if and only if V0 admits a supersingular subquotient; see [Ollivier and
Vignéras 2018]. It is true that the functor V - V0 from G-representations to H-modules often looses
information. But the potential of taking into account also its higher derived functors, which again yield
(complexes of) H-modules, has been barely explored so far.

The purpose of the present paper is to explain a method for converting (supersingular) H-modules into
Gal(F/F )-representations over k.

For F = Q) we had constructed in [Grosse-Klonne 2016] an exact functor from finite dimensional
H-modules to Gal(@ »/Q)p)-representations over k. The construction was inspired by Colmez’s functor
from GL,(Q),,)-representations to Gal(Q »/Qp)-representations. It was geometric-combinatorial in that it
invoked coefficient systems on the Bruhat Tits building of GL,(Q,). Unfortunately, we see no way to
generalize this geometric-combinatorial method to arbitrary finite extensions of F* of @Q,. However, when
trying to extract its “algebraic essence”, we found that the functor indeed admits a generalization to any F,
albeit now taking on an entirely algebraic and concrete shape. But in fact, it is this concreteness which
allows us to not only investigate its behavior on irreducible objects, but also to prove that it accurately
preserves extension structures. In this way, even for F' = Q, we significantly improve on our previous
work [Grosse-Klonne 2016].

Let Rep(Gal(F/F)) denote the category whose objects are projective limits of finite dimensional
Gal(F / F)-representations over k. Let Mod,, () denote the category of supersingular -modules which
are inductive limits of their finite dimensional submodules.

Theorem A. There is an exact and fully faithful functor
Mod,s () — Rep(Gal(F/F)), M V(M).

We have dimy (M) = dimy (V (M)) for any M € Mod (H).

The radical elimination of the group G (and its building) from our approach allows us to improve
Theorem A further as follows. We construct k-algebras H** and H* by looking at a certain small set of
distinguished generators of # and by relaxing resp. omitting some of the usual (braid) relations between
them. In this way we get a chain of surjective k-algebra morphisms H* — #* — #{. There is a again a
notion of supersingularity for #**-modules and for #*-modules (which are inductive limits of their finite
dimensional submodules; we assume this for all **-, resp. H*-, resp. H-modules appearing in this paper).
The simple supersingular modules are the same for 7**, for 4* and for 7, but there are more extensions
between them in the category of **-modules, resp. of #*-modules, than in the category of 7{-modules. A
particular useful category Mod,, (H?) is formed by what we call f-supersingular H*-modules. It contains
the category of supersingular H-modules as a full subcategory (but is larger). Now it turns out that
the above functor is actually defined on the category of supersingular #*-modules, and again with
dimy (M) = dimy (V (M)) for any M. When restricting to Mod,, (#*) we furthermore get:

Theorem A*. There is an exact and fully faithful functor

Mody (H*) — Rep(Gal(F/F)), M~ V(M).
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We do not know if the k-algebra H* admits a group theoretic interpretation, as does the double coset
algebra H = k[1p\ G/ Ip]. However, already from the Galois representation theoretic point of view we
think that the additional effort taken in proving Theorem A* (rather than just Theorem A) is justified,
since in this way we identify an even larger abelian subcategory of Rep(Gal(F/F)) as a (supersingular)
module category of a very concretely given k-algebra. In fact, the additional effort is mostly notational.

We define a standard supersingular H-module to be an #-module induced from a supersingular
character of a certain subalgebra H,g of H with [H : Hagr] = d 4 1. Each simple supersingular -module
is a subquotient of a standard supersingular #-module. We also define the notion of a (d + 1)-dimensional
standard cyclic Gal(F/F)-representation; in particular, each irreducible Gal(F/F)-representation of
dimension d + 1 is a (d + 1)-dimensional standard cyclic Gal(F/ F)-representation.

Theorem B. The functor M — V (M) induces a bijection between standard supersingular H-modules
and (d + 1)-dimensional standard cyclic Gal(F | F)-representations. M is irreducible if and only if V (M)

is irreducible.!

However, we emphasize that it is rather the much deeper Theorem A (and A*) which proves that
supersingular modules are of a strong inherent arithmetic nature.

In Section 5E we gather some generic statements which come close to describing the image of the
functor M — V(M).

Let us now indicate the main features of the construction of the functor. We fix once and for all a
Lubin-Tate group for F. More precisely, as this simplifies many formulae, we work with the Lubin—
Tate group associated with the Frobenius power series ®(¢) = t? 4+ wt. On the k-algebra k[[¢]][¢] with
commutation relation ¢ -t =17 -¢@ welet I' = Oy actby y -9 = y'¢ and y -t = [y]o(t), where
[y1e(?) € k[[¢] describes multiplication with y with respect to ® and where Y’ € k* means the image of
y € T'in k*. We view a supersingular H**-module (or #*-module, or 7{-module) M as a k[[¢]-module
by means of #|y = 0. In k[[#][¢] ®pj M we then use the H-action on M to define a certain submodule
V(M) by giving very explicitly a certain number of generators of it. This is done in such a way that
A(M) = kltlle] @k M/ V(M) naturally receives an action by I' and is a torsion k[[#]-module. A very
general construction then allows us to endow A(M)* ®y;7 k(1)) with the structure of a (¢, I')-module
over k((¢)). The notion of a (¢, I')-module over k((¢)) with respect to the chosen Lubin—Tate group &
is explained in full detail in the book [Schneider 2017], where it is also explained that this category is
equivalent with the category of representations of Gal(F/F) over k.

It was pointed out by Cédric Pépin that the syntax of the functor M — V(M) bears strong resemblance
with that of Fontaine’s various functors (using “big rings”).

One may wonder which of our results remain valid if the coefficient field & is allowed to be a more
general field k containing [, i.e., not necessarily finite. First, this finiteness is invoked for the equivalence
of categories between Galois representations and (¢, [')-modules. But it is also invoked in the proofs of

! A numerical version (i.e., comparing cardinalities) of Theorem B was known for quite some time, due to work of Ollivier
and Vignéras [2005].
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Proposition 3.3 (our main result in Section 3 on recovering a supersingular #*-module from subquotients)
and of Theorem 5.10 (on recovering M from A(M)).

In Section 2B we list some automorphisms of H (and of #* and H*). They induce autoequivalences
of the category of supersingular H-modules;> thus, precomposing them to M +— V(M) we get more
functors satisfying Theorems A, A* and B.

We end this paper somewhat speculatively by discussing assignments of Gal(F / F)-representations to
supersingular G-representations. The functor M +— V (M) invites us to search for meaningful assignments
of (complexes of) supersingular 7{-modules to supersingular G-representations Y. First we suggest
studying the left derived functor of the functor taking ¥ to the maximal supersingular #-submodule of Y /.
This entails working in derived categories and appears to be the most natural approach. Nevertheless,
as a variation of this theme we then suggest an exact functor from (suitably filtered) G-representations
to supersingular H-modules. It builds on a general procedure of turning complexes of H-modules into
new H-modules, applied here to complexes arising from E;-spectral sequences attached to the said left
derived functor.

Apparently, the constructions and results of the present paper call for generalizations into various
directions. We mention here just the obvious question of what happens if the pro- p-Iwahori Hecke algebra
‘H attached to G = GL ;1 (F) is replaced by pro-p-Iwahori Hecke algebras # attached to other p-adic
reductive groups G. In extrapolation of what we did here, the general Langlands philosophy suggests
searching for a functor from #-modules to Galois representations such that in some way the algebraic
k-group with root datum dual to that of G shows up on the Galois side — just as it does here in Theorem B.
In a subsequent paper we will propose such a functor. However, in its formal shape it will not precisely
specialize to the functor discussed here if G = GL;1(F ),> and Theorem A will not be a special case of
what we will then prove for general G.

Notations. Let //Q), be a finite field extension. Let [, be the residue field of F (with g elements). Let
7 be a uniformizer in Of. Let k be a finite field extension of [,.

As explained in [Schneider 2017, Proposition 1.3.4], attached to the Frobenius (or Lubin—Tate) formal
power series ® () =t 417 is associated a commutative formal group law (the associated Lubin—Tate
(formal) group law) Fg (X, Y) over Of such that ®(¢) € Endp, (Fe(X, Y)). There is a unique injective
homomorphism of rings

Or — Endo, (Fo (X, Y)), ar> [ale(t)

such that ®(r) =[] (2), see [Schneider 2017, Proposition 1.3.6], where we recall that, by definition,
Endp, (Fo(X,Y)) ={h € Ofrllt]; h(0) =0 and h(Fo (X, Y)) = Fo(h(X), h(Y))}.

Lemma 0.1. Assume that F #+ Q,. Writing [ale(t) = at + ZizZ a;t' (with a; € OF), we have a; = 0
wheneveri —1 ¢ (g — DN. If a?~! = 1 we even have a; =0 for all i > 2.

2But this is not so evident, if true at all, for the category of #-supersingular #*-modules
3But of course, it will be closely related
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Proof. As ©(t) =mt +t1, the power series [a]o(f) = at + Zizz a;t' is characterized by the formula

wlale @) + (lalo®)? =lale (Tt +19).

If a?~! = 1 we see that [a]e(¢) = at satisfies this formula. Given a general a, consider the equalities
[a]le([Ple (1)) = [blo([ale(t)) for all b € Op with b9~ = 1. Since we know [b]e(f) = bt, and since
F # Q, implies the existence of primitive such b’s different from 1, we indeed obtain a; = 0 whenever
i—1¢(g—1DN. O

1. Lubin-Tate (¢, I')-modules

In the first two subsections we transpose some constructions and results from the theory of cyclotomic
(¢, I')-modules over k (i.e., where F' = Q, and where the underlying Lubin-Tate group is G,) to the
context of (¢, [')-modules over k with respect to the Lubin—Tate group attached to ® () =t + ¢ (with
arbitrary F'). Namely, we define an exact functor from admissible (torsion) k[[¢]l-modules with commuting
semilinear actions by I' = O and ¢ to étale (¢, I')-modules over k. The former category is closely
related to that of yr-stable lattices in étale (¢, I')-modules D, and we are lead to transpose some of
Colmez’s constructions [2010] involving the -stable lattices D" and D* to our context. One difference
is that in our context the ir-operator on k((#)) does not satisfy (1) = 1, but this necessitates only minor
modifications.

We then identify a category of admissible (torsion) k[[¢]-modules with actions by I" and ¢ on which
the above functor is fully faithful.

1A. (¢, I')-modules and torsion k[[t]]-modules. Put ®(t) =mt+1t4. Put ' = O;f. The formula y - ¢t =
[y]le(t) with y € ' defines an action of I' by k-algebra automorphisms on k[[#]] and on k((¢)). Consider
the k-algebra

O =k[[]le, ']

with commutation rules given by

ye=9y, yvt=I[yvle®y, ot=tlp

for y € I'. (Here we read [y]o(1)y = ([¥ 1o (1)) y.)*

Definition. A i/-operator on k[[¢]] is a k-linear map v : k[[¢]] — k[[¢]] such that ¥ (y -t) =y - (¥ (¢)) for
all y € T" and such that the following holds true:’ if we view ¢ as acting on k[[¢], then

V(p(a)x) =ay(x) fora,x €k[z]. (1)
Lemma 1.1. There is a surjective \r-operator on k|[t]] which extends to a surjective k-linear operator
¥ = Yoy on k(1)) satisfying formula (1) analogously.

A1l = D) = [7]e (¢) in k[¢]] one may also think of O as O = k[t[OF — {0}] with commutation rules at = [a] (t)a
foralla € O —{0}.
5We do not require (1) = 1.
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We may choose Yy on k((t)) such that form € Z and 0 <i < q — 1 we have®

dem i =0,
Vi@ @)y =10 1<i<qg-2, (2)
" i=qg—1.
Proof. This is explained in [Grosse-Klonne 2019]; it relies on [Schneider and Venjakob 2016, Section 3].

g

In the following we fix the surjective yr-operator 1 on k[[¢]] satisfying formula (2). We extend it to a
k-linear operator ¥ = V() on k(()) as in Lemma 1.1.

Definition. An étale (¢, I')-module over k((¢)) is an O Q7 k((1))-module D which is finite dimensional
over k((#)) such that the k((¢))-linearized structure map

1d®g : k(1)) Qg k) D =5 D
is bijective. We define Mod® (k((¢))) to be the category of étale (¢, I')-module over k((¢)).

Theorem 1.2 (Fontaine, Kisin—Ren, Schneider). There is an equivalence between Mod® (k((t))) and the

category of continuous representations of Gal(F/ F) on finite dimensional k-vector spaces.

Proof. For F = Q),, and the Frobenius power series (1 +7)” — 1 (instead of ®(t) = 7t +19) thisis a
theorem of Fontaine, see paragraph 1.2 in [Fontaine 1990]. The analog of the theorem (for an arbitrary
Frobenius power series) for a coefficient field of characteristic O (hence not k) is due to Kisin and Ren
[2009]. A detailed proof of the theorem stated here can be found in Schneider’s book [2017]. ]

Definition. A torsion k[[#]]-module A is called admissible if
Alt]={x e A; tx =0}
is a finite dimensional k-vector space.

We remark that admissible k[ ¢ ]-modules on which ¢ acts surjectively are precisely the Pontrjagin duals
of finitely generated torsion free, and hence free k[[#]l-modules.

Definition. Mod!(9) is the category of O-modules which are finitely generated over k[[¢][¢] and
admissible (in particular: torsion) over k[[¢].

Lemma 1.3. The categories Mod® (k((1))) and Mod* (D) are abelian.

Proof. An O ®q7k((¢))-module subquotient of an étale (¢, I')-module is again an étale (¢, I')-module: to
see that the étaleness condition (the bijectivity of id ®¢) is preserved under passing to such subquotients,
just notice that it is equivalent with saying that the matrix of ¢ in an arbitrary k((¢))-basis is invertible.
Thus, Mod® (k((2))) is abelian. (Of course, one could also point to Theorem 1.2.)

An 9-module subquotient of an object in Mod® () is again an object in Mod*(9): this is shown in
[Emerton 2008, Proposition 3.3]. Thus, Mod?® (D) is abelian. U

®Notice that £ =0 (in k) if F # Q.
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Definition. For a k-vector space A we write A* = Hom (A, k) (algebraic dual). For a k[[¢]-module A
we endow A* with a k[[#]]-action by putting

(8- )8 = f(Sd)

for S e k[[t], f € A*, § € A. If A even carries a k[¢]][I"]-module structure then also A* receives one,
with y € I" acting as

(v -1 = fy ')
foryel, fe A*,§ € A.

Proposition 1.4. For A € Mod* (D) there is a natural structure of an étale (¢, T')-module on A* k1]

k((t)). The contravariant functor
Mod*/(D) — Mod k(1)) A > A* @iy k() (3)
is exact.
Proof. The map id ®¢ : k[[t]] ®¢ i) A — A gives rise to the k[[¢]|-linear map
A 2 K @y ki A “)

On the other hand, we have the k[[#]-linear map

k] ®g kpey (A = k[t ] Qg ki A)*
a®@li— [bx— L(Y(ab)x)].

(&)

It is shown in [Grosse-Klonne 2019] that the respective base extended maps (4)®x7k((2)) and (5) Qg pk((2))
are bijective. Composing (5)®qp7k((r)) with the inverse of (4)Qxk((2)) thus yields a k((¢))-linear
isomorphism

k(1)) ®gp k(1) (A" ey k(1)) = k(1)) ®g ke (AF) = A* ®xpey k(1))

and hence the desired g-operator on A* Qg k((2)). The exactness of A = A* @, k((¢)) follows from
the exactness of taking duals and of applying (.) ®xpq k((2)). Il

1B. y-stable lattices in (¢, I')-modules.

Lemma 1.5. Let D € Mod® (k((1))). There is a natural additive operator  : D — D satisfying
V(ap(x)) =y (a)x and Y(p(a)x) =ayp(x)

forall a € k((t)) and all x € D, and commuting with the action of T.

Proof. We define the composed map

YD — k(1) ®g k@) D — D
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where the first arrow is the inverse of the structure isomorphism id ®¢ and where the second arrow is
given by a ® x — ¥ (a)x. By construction, it satisfies ¥ (ap(x)) = ¥ (a)x. To see ¥ (¢p(a)x) = ay(x)
observe that by assumption we may write x = ) ; a;¢(d;) with d; € D and g; € k((t)). We then compute

Vip@)x) =Y Yp@aipd)) =Y Vp@ad =ay_ yla)di=ay yapd))=ap(x).

Finally, let y e I". As y and ¢ commute on k[[¢]], and as I" acts semilinearly on D, the additive map
k(1)) g k@) D — k() Qpky P, a®@dr+> y(a)Qy(b)

is the map corresponding to ¥ on D under the isomorphism id ®¢, and under a ® x — ¥ (a)x it commutes
with y on D since y and i commute on k((?)). O

In the following, by a lattice in a k((¢))-vector space D we mean a free k[[z]]-submodule containing a
k((t))-basis of D.

Lemma 1.6. Let D € Mod® (k((t))) and let D be a lattice in (the k((t))-vector space underlying) D. Let
Y+ D — D be the operator constructed in Lemma 1.5:

(a) ¥ (D) is a k[[t]l-module.
(b) If (D) C D then D C (D).
(¢) If D C k[[t] - (D) then ¥ (D) C D.
(d) If (D) C D then (t~'D) C t~' D, and for each x € D there is some n(x) € N such that for all
n > n(x) we have ¥"(x) € t~'D.
Proof. (a) Use ¥ (¢p(a)x) =ay(x) fora € k((t)) and x € D.

(b) Choose a € k[[t]] with y(a) = 1. For d € D we have d = ¥ (a¢(d)) which belongs to ¥ (D) since
(D) C D.

(c) Let d € D. By assumption there are ¢; € D and g; € k[[t] with d = ), a;¢(e;), hence ¥ (d) =
Y i V(ae € D.
(d) Fori > 1 we have

Y@@ HD) co' T aTHy (D) ce T eTHD (6)

where the second inclusion uses the assumption. From ¢(t~!) =179 we get
Y (t~'D) C Y (D) Ct7'D.

Moreover, if n(x) € N is such that x € ¢ (t~")D for n > n(x), then iterated application of formula (6)
shows

Y ) ey ("t HD) cy" "t eYD) - ctT'D

for n > n(x). Il
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Lemma 1.7. (a) There are lattices Dy, Dy in D with
(Do) CtDy C Dy C Dy Ck[[t]-o(Dy).

(b) For Dy, D; as in (a) and for n > 0 we have " (Do) C ¥"T1(Dg) C Dy.
Proof. (a) This is a (simplified) subclaim in the proof of Lemma 2.2.10 in [Schneider 2017] (which follows
[Colmez 2010, Lemme II 2.3]). One proceeds as follows. Let dy, ..., d, be a k((¢))-basis of D. Then also
o)), ..., 9(dy) is k((t))-basis of D. We therefore find f;;, &, € k((t)) with o(d;) =Y /_, fi;d; and
dj=Y"_, &j¢(d), forany 1 < j <r. Choose some n > 0 with 1"~V f;; € tk[[¢] and "~ Dg;; € tk[[t]
foralli, j. Then Do =Y ._, t"k[t]ld; and Dy =Y ;_, t "k[[t]ld; work as desired.
(b) Choose a € k[[¢]] with ¥ (a) = 1. For x € Dy we have ¥"(x) = ¥" ! (ap(x)) € ¥+ (Dy) since
¢(Dg) C tDg implies ¢(x) € Do and hence ag(x) € Dg. This shows " (Dg) C Y (Dy). As
Do C Dy C k[[t] - ¢(Dy), an induction using Lemma 1.6(c) shows " *!(Dg) C D;. O
Proposition 1.8. There exists a unique lattice D* in D with v (D*) = D* and such that for each x € D
there is some n € N with " (x) € D",

For any lattice D in D we have ¥ (D) C D* for all n > 0.

For any lattice D in D with (D) = D we have t D* C D C D*.

Proof. Using the previous lemmata, the proof is the same as the one given in [Colmez 2010, Proposi-
tion I1.4.2]. Ol

Proposition 1.9. (a) For any lattice D in D contained in D* and stable under v we have (D) = D.
(b) The intersection D* of all lattices in D contained in D* and stable under  is itself a lattice, and it
satisfies y (D¥) = D"
Proof. (See [Colmez 2010, Proposition I1.5.11 and Corollaire I1.5.12].)

(a) Since D* as well as D and v (D) are lattices in D?, both D*/D and D* /v (D) are finite dimensional
k-vector spaces. v induces an isomorphism v (D%)/D = D* /(D) (as ¥ (D) C D), hence ¥ (D) = D.
(b) For any D as in (a) we have tD* C D by what we saw in (a) together with Proposition 1.8. This
shows ¢ D¥ C D", hence D" is indeed a lattice, and v (D?) = D" follows by applying (a) once more. [J
Lemma 1.10. D® and D* are stable under the action of T.

Proof. If D is a lattice in D, then so is y - D for any y € I'. If in addition ¥ (D) C D, resp. V(D) = D,
then also ¥ (y - D) C y - D, resp. ¥ (y - D) = y - D. From these observations we immediately get
y-D*= D" and y - D* = D*. O
Proposition 1.11. The functor Modad(D) — Mod®' (k((t))) in Proposition 1.4 sends simple objects to
simple objects.

Proof. Let A € Mod"‘d(D) be simple. By construction, ¥ on A* @7 k((¢)), when restricted to A*, is the

adjoint of ¢ on A. Therefore the simplicity of A as an -module means that A* admits no nontrivial k[[z]]-
submodule stable under I" and . If D is a nonzero (¢, I')-submodule of A* @, k((2)) then also D is
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nonzero and stable under I" and v/, see Proposition 1.9 and Lemma 1.10. As D C (A* @1 k((2))" C A*
we get D" = A* (since A* is stable under V), as desired. O

Lemma 1.12. Let f : D; — D, be a morphism in Mod® (k((1))):

(a) f(D}) C D} and f(D}) C D;.

(b) If f : D1 — D, is injective (resp. surjective), then so is f : D? — Dg.

(©) If f : D1 — D; is injective (resp. surjective), then so is f : DT — D;.
Proof. (a) f (D?) is a free k[[¢]]-submodule of D, on which v acts surjectively. Thus f (Df) + Dg is
a lattice satisfying the defining condition for Dg given in Proposition 1.8, hence f (Df) + Dg = Dg,
hence f(D?) C Dg. Next, let D = {x € D?; fx) e Dg}. It is a lattice in D; since Df is a lattice,
f (Di) cf (Djl:) C Dg and Dg / Dg is a finite dimensional k-vector space. It is also stable under i, hence
contains DT, hence f(DT) C D;.
(b) and (¢) If f : D; — D, is injective then obviously so are f : D? — D; and f : D;J — D;. If
f : Dy — D, is surjective then f (DT) is a lattice in D, stable under v, hence contains Dg. To see
f (D?) = Dg we proceed as in [Colmez 2010, Proposition I1.4.6(iii)] Namely, choose a lattice D’ in D,
with f(D") = Dg. Put D = ano Y™ (D'). By construction we have ¥ (D) C D as well as f(D) = Dg
(since w(Dg) = Dg). Proposition 1.8 shows that D is again a lattice. Let x € Dg. By Proposition 1.8 we
find some n € N such that ¥" (D) C Df. For such an n, choose x,, € Dg and x,, € D with ¥"(x,) = x

and f(X,) = x,. Putu, =¢"(x,) € Dii. By their construction in Lemma 1.5, the operators ¥ on D; and
D, commute with f, thus we may compute

fuy) = f(I//"(fn)) = "/’n(f(jn)) = 1/’"(Xn) =X. O

Lemma 1.13. Let 0 — Dy — D, — D3 — 0 be an exact sequence in Mod® (k((¢))). For each i let
D; C D; be a lattice with W (D;) = D;, and suppose that the above sequence restricts to an exact sequence

0—)D1—>D2—>D3—)0. (7)

If we have D| = D? and D3 = Dg, then we also have D, = D;. If we have D| = Df and D3 = Dg then
we also have D, = Dg.

Proof. By Lemma 1.12 the sequence 0 — D? — D; — Dg — 0 is exact on the left and on the right.
Comparing it with the sequence (7) via DT =Dy, D; C D, and Dg = D3, we immediately get Dg = Dy.
Next, by Lemma 1.12 the sequence 0 — D]lj — Dg — Dg — 0 is exact on the left and on the right. We
compare it with the sequence (7) via D| = D?, D, C Dg and D3 = Dg . We claim

¥ (DN D)= D, ND;.

Of course, ¥ (D N D;) cDin Dg is clear. To see D; N Dg cy (DN Dg) take x € Di N Dg. Choose
y € Dg with ¥ (y) = x. Choose y’ € D, mapping to the same element in D! = D3 as y. We then have
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Y (y') e DoN Dy =Dy and ¥ (y —y') —x € Dy, hence there is some z € Dy with Y (z2) =¥ (y —y') — x,
hence x =y (y—y' —2) e (D1 N Dg) since y — y’ € D ﬂDg andze DN Dg.

The claim is proven. By the definition of Djlj it implies D1 N D: = Df, hence D N D= D since
D, = D}. Thus, D, = D5, 0

Remark. An étale ¢p-module over k((?)) is a k[[#]I[¢] Qs k((¢))-module D which is finite dimensional
over k((¢)) such that the k((¢))-linearized structure map id Q¢ is bijective. The above theory of the operator
¥ and the lattices D* and D works analogously for étale p-modules D over k((t)), i.e., the ["-action is
not really needed.

1C. Partial full faithfulness of A — A* Qe k((2)).

Lemma 1.14. Let N be a k-vector space, and suppose that we are given a k-linear automorphism t of
N, a basis N of N, integers 0 <k, < q — 1 and units «, € k> for v € N. View N as a k[[t]l-module with
tN =0 and let A denote the quotient of kl[tll[¢] Qkpy N by the kl[t1ll¢l-submodule V generated by the

elements

I1®v +ozvtk”<p Qt(v)
with v € N. We then have:

(a) klizlle] ke N is a torsion k[[t]-module.

(b) The map N — Al[t] sending n € N to the class of 1 ® n is an isomorphism. In particular, A is
admissible if N is a finite dimensional k-vector space.

(c) The action of ¢ on A is injective.

Proof. (a) As ¢t = t9¢ in k[[t]ll¢] we may write any element in k[[¢]I[¢] k7 N as a finite sum of
elements of the form a¢p” ® x with a € k[[¢]l, n > 0 and x € N. It is therefore enough to show

ap" @x =0 foreacha €7 k[t]] (8)
where n > 0 and x € N. We may write a = agt?" with ag € k[[¢]) and compute
ap" ®@x =apt?! ¢" @ x = apy"t @ x = 0.

(b) and (c) We may write

kitlleleua N =P P P ki’ ).

veN i=0 0<f<gi—1

Indeed, that k[[#][¢] ®«: N is a quotient of the right hand side follows from formula (8). It is in fact an
isomorphic quotient since all relations between ¢ and ¢ in k[[¢]][¢] can be generated from ¢t = t7¢.
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Consider the three k-subvector spaces

1N =Pket)
veN

=@k®v,

veN

c=Pp Pp rfoarw. 9)

veN i>0 0<f<qi~lk,

v:@@@kﬁd“(l®v+avr’<v<p®r(v)). (10)

veEN i>0 >0
Using the formula ¢t = t9¢ we see
o1 ®@v+atfo@t(v) e kXM Rl @ T(v) +kltTle ! @ v.

We also see that in the sum (10) all summands with € > (¢ — 1)~ 'k, — 1 vanish. Equivalently, in the
sum (10) only those summands are nonzero for which 6 = € + ¢~ 'k, satisfies ¢’ 'k, <6 < g’ — 1. Thus
we find

kel @uqa N =1 NP VEHC. (11)

Let C’, resp. C”, denote the k-subspace of C spanned by all ¢’ ® t(v) with v € N, i > 1 and
0<6 <qg' "k, resp. by all ¢ ® T(v) withv e N and 0 <6 < k,. Then ¢(C) C C’and ¢ : C — C’ is
injective. On the other hand, ¢(1® N) C C” and ¢ : 1 ® N — C” is injective. Since C' N C" =0 we
conclude that ¢ acts injectively on A. Now consider the composed map

C — kIr1le] ®upg N~ kltDlp) @y N — 1@ NEP €

where the first arrow is the inclusion, the last arrow is the projection. This map is bijective, the critical
point being the computation

tht? T @ T) =kt P @T(v) =k e @ TV = ko' T @V
modulo V (for i > 0). It follows that indeed the image of 1 ® N in A is the kernel of ¢ acting on A. [J

Definition. An object A € Mod?(9) is called standard cyclic if it is generated over k[[¢]|[¢] by ker(t|A) =
A[t] and if there is a basis of A[¢] consisting of I'-eigenvectors ey, . . ., ez such that

tk’(pei_l =pie; forall0<i<d

(reading e_; = ¢;), for certain 0 < k; < ¢ — 1 and p; € k* such that k; > O for at least one i, as well as
ki < g — 1 for at least one i.

In the following, we extend any indexing by O, ..., d to an indexing by Z in the obvious way (i.e.,
ki =kitd+1, € = €itd+1s Pi = Pitd+1, Ni = Ni+d+1 for all i € Z). Let V denote the k[[¢]l[¢]-submodule
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of k[[t1l[¢] @y Al?] generated by the elements tYip ®ej_1 — 1 ® pie;. The inclusion A[r] — A extends
to a natural k[[#]l[¢]-linear map

kit o] @y Al£l/V — A. (12)
Proposition 1.15. Let A € Mod? (D) be standard cyclic, with e;, k;, p;, p; as above:

(a) t acts surjectively on A, and there is a distinguished isomorphism of free k|[t]|-modules of rank d + 1
* = k[T ®k (A[]5). (13)

The map (12) is a k[[t]|[¢]-linear isomorphism.
(b) Ifforany 1 < j <d there is some 0 <i <d with k; #k; j, then A is irreducible as a k[[t [|[¢]-module.

(¢) ForO<i <dletn; :T' = k> be the character with y - e; = n;(y)e; for all y € I". Suppose that for
any 1 < j < d which satisfies k; = ki1 j for all 0 < i < d there is some 0 <i < d with n; # 1,4 ;.
Then A is irreducible as an -module.

(d) At least after a finite extension of k we have: A admits a filtration such that each associated graded
piece is an irreducible standard cyclic object in Mod*4(D). If p does not divide d + 1 then A is even
the direct sum of irreducible standard cyclic objects in Mod* (D).

Proof. (This is very similar to [Grosse-Klonne 2016, Proposition 6.2].)

(a) For 0 < j <d consider
wj =kj+qkj1+-+qko+q ™ kgt + g%k

Repeated substitution of ¢t = t7¢ (recall ®(¢) =t modulo ) shows that "/ (pd“e j€k*ej. Ask; >0
for at least one i we have w; > 0, and hence e; € tA. As A[r] is generated over k by all ¢; it follows
that A[¢t] CtA. As A is generated over k[[¢]][¢] by Al[t], the equation ¢t = ¢ therefore shows A C tA,
i.e., t acts surjectively on A. We deduce that A* is a torsion free, and hence free k[[¢]-module of rank
d+1. As A is generated over k[[¢]l[¢] by A[#] the map (12) is surjective. But it is also injective, because
Lemma 1.14 tells us that it induces an isomorphisms between the respective kernels of 1. We view the
bijective map (12) as an identification. The proof of Lemma 1.14 yielded a canonical k-vector space
decomposition A = C @ A[t] where the k-subvector space C of A is generated by the image elements of
the elements t6<p’ ®e € kllt][¢] @k Alt] which do not belong to 1 ® A[t] (for some e € A[t], and some
0, r >0). We may thus identify A[#]* =Homy (A[¢], k) with the subspace of A* =Homy (A, k) consisting
of all f € A* with f|c = 0. The composition of this k-linear embedding A[¢]* — A* with the projection
A* — (A*)/t(A¥) is a k-linear isomorphism. Therefore, and as A* is free and finitely generated over
k[[¢], the k[[¢]-linear map k[[¢] ® (A[t]*) — A* extending the k-linear embedding A[f]* — A* is an
isomorphism as stated in formula (13).
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(b) Let Z be a nonzero k[[t]][¢]-submodule of A. With A also Z is a torsion k[[z]-module, hence
ker(t|z) = Z[t] is nonzero. For nonzero elements z = ZOgigd xie; of Z[t] (with x; € k) put

D@ ={0<i=<d|x#0}, v(@)=ID@I,
n(z) =max{k; |i € D)}, A)=1"9pz.

Then A(z) is again a nonzero element of Z[7]. We have
DAR)={i+1]|n(z) =k andi € D(z)}

(we read elements in {0 < i < d} modulo (d + 1)), in particular v(A(z2)) < v(z). If v(A(2)) = v(2)
then D(A(z)) ={i +1|i € D(z)} and k; = k;;; whenever i, i + j € D(z). This implies that if we had
V(A"(z)) = v(z) > 1 for all n > O then there was some 1 < j <d with k; = k;; forall 0 <i <d.
But this would contradict our hypothesis. Thus, for sufficiently large n > 0 we have V(A" (z)) =1, i.e.,
A"(z) € kXe; for some 0 < i < d. For such n we then even have A"t/ (z) k*e;yj forall j > 0. It
follows that Z contains all ¢;, hence Z = A.

(c) We use the functions v, A already employed in the proof of (b). Let 0 2 Z C A be a nonzero
O-submodule. Choose a nonzero z € Z[¢] for which v(z) is minimal (for all nonzero z € Z[¢]). If v(z) =1
then we obtain Z = A as in the proof of (b). Now assume v(z) > 1. For all n > 0 we have v(A"(z)) < v(2),
hence V(A" (z)) = v(z) by the choice of z. Thus, writing z =) ,_;_, xie; with x; € k, we have x; # 0
and x;4 ; # 0 for some i, j, with j violating the hypothesis in (b). B_y_the hypothesis in (c), replacing i by
i +n and z by A"(z) we may assume that n; # n;4 ;. Pick y € I" with ;(y) # n;+;(y), and pick a € k*
with ae; = y - e¢;. Then az — y - z is a nonzero element in Z[¢] with v(az — y - 7) < v(z): a contradiction.

(d) Passing to a finite extension of k if necessary we may assume that there is a (d + 1)-st root of H?:o 0i
in k. Thus, rescaling the e; if necessary we may assume p; = p; for all i, j. We argue by induction on d.
If A itself is not irreducible then there is, by (c), some 1 < j < d which satisfies k; = k;;; and n; =1, ;
for all 0 <i < d. The minimal such j is a divisor of d + 1. Consider the k-subvector space V of A[¢]
spanned by the vectors ¢; =¢;; for 0 <i < (d +1)/j. Then

J
(Hpi_l>f"’<p---t"‘<p
i=1

induces the automorphism f of V with f(e;) = €; 11 (where we understand €(441)/; = €p). Choose (after
passing to a finite extension of k if necessary) an f-stable filtration 0= Vo C Vi C--- C Vigy1),; =V
such that each V;/V;_; is one dimensional. Then define for 0 < s < (d + 1)/j the O-submodule
Ay =9OVy+---4+ 9OV, of A. It induces on A[t] the filtration

Aslt] = Ay i [t + Vs + 159V + - 1k gV,

By construction, each A;11/A; is standard cyclic, and the induction hypothesis applies. If p does
not divide (d 4+ 1)/j then there is even an f-stable direct sum decomposition V = @&,V with one
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dimensional Viy). Then A = @ A5 with Ay = OV, is a direct sum decomposition of A, and each Ay
is standard cyclic, and the induction hypothesis applies. g

Lemma 1.16. Let A € Mod™ (D) be standard cyclic and put D = A* @y k(1)) € Mod® (k((1))), see
Proposition 1.4. We have D' = A* = DF.

Proof. In Proposition 1.15 we saw that A* is a free k[[¢]-module, hence the natural map A* — D =
A* Qgep k((¢)) 1s injective; we view it as an inclusion.

The g-operator on A is the adjoint of the y-operator on D, in such a way that ¥ (A*) = A* since ¢
acts injectively on A. Therefore the definitions of D% and D* yield D* C A* C D*®. Since D" is a lattice
with ¥ (D) = D* we get t A* C D", together

D'Cc A*c D* and tD*cC D'. (14)

Let ¢; and k; be as in the definition of A being standard cyclic.

Formula (14) implies tA* C D', hence t(A*/D”) =0, hence A*/D" is dual to a subspace W of A[t]
stable under ¢. To prove D" = A* it is therefore enough to prove that A[¢] does not contain a nonzero
subspace W stable under ¢. Assume that such a W does exist. A nonzero element 8 € W may be written
as B = Z?:o aje; with «; € k. Let k = max{k; 1 | o; # 0}. Since by assumption k; > O for at least one i,
replacing B by ¢” B for some r € N if necessary, we may assume k > 0. But then r*¢p is a nonzero linear
combination of the ¢;, whereas we also have t¢f = 0 since o8 € W C A[¢]: a contradiction.

Formula (14) implies tD* C A*, ie., t(D*/A*) = 0. We endow D and all its submodules with
the 7-adic topology. By Pontrjagin duality (as recalled e.g., in [Schneider and Venjakob 2016]) we in
particular have Hom{°™ (A*, k) = A. Now t(D*/ A*) =0 means that the kernel W of the natural projection
Hom{*™(D?, k) — Hom{*™(A*, k) = A is contained in Hom{*"'(D*, k)[¢]. As ¢ acts injectively on D%, it
acts surjectively on Hom{®"(D?, k). Hence, if A* # D then W # 0 and there is some 8 € Hom{*"(D?, k)
with 0 £t € W. Now 8 € W means that 8 maps to an element in A[z]. Since on the other hand tW =0
(as W C Hom®™ (D", k)[1]) we may write 8 = Y ;&; with ; € k, where & € Hom*™ (D, k) lifts ;.
We then also have 0 # te;, € W for some io. As ¢ is injective on W (which follows from the surjectivity
of ¥ on D* and hence on W* = D?/A*) this gives t9¢é;, = pté;, # 0 in Homz"m(Dﬁ, k). Together with
W C Hom{*™(D?, k)[t] we get 19" 'pe;, # 0 in A. Applying the same argument with 1971 p¢;, instead
of &; (again using that t9¢é;, # 0) we see 19~ ot~ pe;  # 0. Next we get 19~ ot~ ot~ pe; £ 0 etc..
But this means g — 1 = k; for each i, contradicting the hypothesis. We obtain A* = D?. g

Definition. Let Mod*(9) denote the subcategory of Mod®(9) whose objects admit a filtration such
that each associated graded piece becomes a standard cyclic object in Mod®!(9) after a suitable field
extension of k.

Remark. Proposition 1.15(d) implies that each subquotient in Mod™ (D) of an object in Mod* (9) again
is an object in Mod*(9).

Proposition 1.17. The restriction of the functor (3) to the category Mod*®*(9O) is exact and fully faithful.
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Proof. We already know that the functor is exact. Next, we claim
D = A*=D* with D= A*®k((1)) (15)

for A € Mod*(9). Indeed, for standard cyclic A this is shown in Lemma 1.16. For A which become
standard cyclic after a field extension k’/k it then follows since the definitions of (.)% and (.)* in terms of
the k-linear operator v imply D*®; k' = (D ®;k')? and D* ®,k’ = (D ®; k’)®. For general A € Mod*(9)
it then follows from Lemma 1.13. We now claim that the reverse functor (on the essential image of the
functor under discussion) is given by sending D to the topological dual (D?)’ of D (where we endow D°
with its 7-adic topology). Indeed, for D in this essential image and for A € Mod*(©) we have natural
isomorphisms
Q) (i) (iii)
(D))" @i k(1) = D" @iy k(1) =D, (A* @y k(1))°) = (A% = A,

where (i) and (iii) follow from Pontrjagin duality, see e.g., Proposition 5.4 in [Schneider and Venjakob
2016], and where (ii) follows from formula (15). O

1D. Standard cyclic étale (¢, I')-modules.

Proposition 1.18. Let A € Mod® (D) be a standard cyclic object, with d, e;, k;, p;, n; as in the definition
resp. as in Proposition 1.15. The étale (¢, I')-module A* Qi k(1)) over k((t)) admits a k((t))-basis
fos ..., fa such that for all 0 < j < d we have

o(fi-) =p; ' T (16)
(reading f_\ = fa), and moreover

V'fj"l}l()/)ijIk[[t]]fj forally €T. (17)

Proof. We use formula (2).

First we assume F # Q. Put N = @?:Ok.ei. As explained in the proof of Proposition 1.15, we have a
bijective map (12) which we view as an identification. In particular, Lemma 1.14 and its proof apply. In
the context of that proof we identify e; with the class of 1 ® ¢; in A. By formula (11) we have a k-linear
isomorphism (1® N)® C = A with C as in formula (9). For 0 < j <d we may therefore define f; € A* by
asking f;(C)=0and f;(e;) =;; for 0 <i < d. Proposition 1.15 tells us that fy, ..., fy is a k[[¢]-basis
of A*. For 6, r > 0 and any i, j we have fj(tegz)’ ®e;) #0if and only if »r = j —i modulo (d + 1)Z and
0=kj+qkj_1+--- +q’_1kj_,+1. As before, Y € Endi(A*) is defined by (¢ (f))(x) = f(p(x)) for
x €A, f € A*. We claim

YA = pio 1Py (™t f -1 (18)

for all j, all m > —k; — 1. Indeed, for 0 <i <d and 0, r > 0 we have

WA N ®e) = (" o 0" @ ).
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If m+ 1 ¢ Zq then this shows (¥ (™ i*! £,))(t%" ® ;) = 0 by what we pointed out above. But
m+ 1 ¢ Zq also implies ¥y (t™) = 0. In the case m + 1 = gn (some n € Z) we compute

W@ " @e) = fi(tT 0t @ ;)
=fi"pt" " ®e))
=pj1fi1(" 9" ®ei)
= (pj—1Vk@y ™t f;-D) 9" @ )

where we used V() (#™) = " ~1. We have proven formula (18).
On the other hand, by tracing the construction in Proposition 1.4 we see that ¢(7f;_1) is characterized
by satisfying

V(" otfi—1) = Yr@yt™tfi—1 (19)

for all m. Comparing formulae (18) and (19) we find ¢(¢f;-1) = ,oj__lltk-f g ; which is equivalent with
formula (16). Next, for y € I' we compute

(v e =fity™ e = fimi(y e = ity e = iy~ fi)(e).

Here the last equation is trivial if i = j, whereas if i # j then both sides vanish. This shows
(v - fi =iy fDly = 0. and hence y - f; — n;(y ") f; € tA* = tkl[t}{fo..... fa}. On the
other hand, by what we pointed out above, (y - fj)(tggo’ ®e) = fj([y]qp(t)(’(p’ ® e;) vanishes if
r+i—j ¢ (d+1)Z, and this shows y - f; € k[[t] f;. We trivially have nj(y_l)fj € kl[z1f;, and
hence altogether y - f; — nj(yfl)fj € tklit{ fo, ..., fay Nklt]l f; = tklz] f;, formula (17).

Now we assume F' = Q,. Let us suppose for simplicity that 7 = g. For 0 < j < d we may define
fi € A* as follows. For 6,r > 0 (and any i, j) we require fj(tegor Qe;) #0Oifandonly if r = j —1i
modulo (d + 1)Z and there are ay, ..., a,_1 € {0, 1} such that

r—1
0=kj+qkj_1++q 'kj_ps1+ Zdiqi_l(l —q);
i=1
if this is the case we put

£ ®e) =pi_1pja- pi_r.

(As usual, the subindices of the p; are read modulo (d 4+ 1)Z.) Again fy, ..., fgz is a k[[¢]-basis of A*.
Again we claim formula (18). As before we see that both sides vanish if m ¢ Zg — 1 U Zq, and coincide
if m € Zg — 1. But the same computation also shows their coincidence if m = gn for some n € N, as
follows:
(w(l’m+kj+1f/))(t0§0r ® e[_) — f/ (tkj+1(ptn+9¢r ® ei)
=pj_1fj—1(t" T " ®e;)
= (pj_1Vkay ™tfi—) (9" ®er)
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where we used Vi) (1) = t". With formula (18) being established, the remaining arguments are exactly
as before. g

Definition. We say that an object D € Mod® (k((¢))) of dimension d + 1 is standard cyclic if it admits a
k((2))-basis fo, ..., fu such that there are o; € k™, characters o : I' - k* andm; € {1—g¢q, ..., —1,0}
for 0 < j < d satisfying the following conditions:

o (mgy,...,mg)¢{0,...,0),(1—gq,...,1—¢q)}.
o o(fj—1) =0o;t" f; for all j (reading f_1 = fy).
oy fj —Olj()/)fj etkltl{ fo,..., fa} forall y €T.

Lemma 1.19. (a) The constant 1_[,6,{:0 oj € k™ as well as, up to cyclic permutation, the ordered tuple
((ag, mg), ..., (@g, mq)), are uniquely determined by the isomorphism class of the (¢, I')-module D.

(b) ay, ..., ay are uniquely determined by oy and my, . .., mgy.

Proof. (a) In the following, for elements of GL;1(k((¢))) we read the (two) respective indices of their
entries always modulo (d + 1)Z.

The effect of ¢ on the basis f, ..., fq is described by T = (T;j)o<i, j<a € GLg41(k((t))) with T} ;11 =
ojt" forO0<i <d,butT; ; =0for j #i +1.

Let 0]/. € k* and ((o), my), ..., (r;, m);)) be another de}tum as above, let D’ be an étale (¢, I')-module
admitting a k((t))-basis fj, ..., f; with <p(f]f_1) = aj’.tmifjf and y - fjf — a}(y)fjf e tklt1{fg. ---. [y}
for y € I'. Define T' = (Tl.’j)oii,jfd € GLy1(k((2))) similarly as above.

Suppose that there is an isomorphism of (¢, I')-modules D" = D. With respect to the bases f, and f/
it is described by some A(t) = (a; j(¢))o<i,j<a € GLa+1(k((?))). In view of ¢t = @ (¢)¢, the compatibility
of the isomorphism with the respective g-actions comes down to the matrix equation

T-A(t)=A(®()-T'.

For the individual entries this is equivalent with

m'. —

] ;
ai,j(t) = oo 1" " ai g j 1 (P(1))

for all i, j. Iteration of this equation yields
d
a; j(t) = (Ha;_ea;z@f(r))mf—fm"f)al-, J( @)
=0

for all i, j. (Here (1) resp. @4t (1) means ®(P(--- P(¢)---)).) From this we deduce that for fixed
i, j either a; ; is a nonzero constant and ]_[‘Z:O aj/._gal.__lg =1 and m’j_e =m;_¢ for all ¢, or ¢; j = 0. But
since A(r) is invertible we do find i, j with a; ; # 0. It already follows that ]_[?:0 oj = ]_[?:0 o and
that (my, ..., m)) coincides with (my, ..., mg) up to cyclic permutation. But since in addition we just
saw that A is a constant matrix, with ¢; ; = 0 if and only if @;_; j_1 = 0, we see that the same index

permutation takes o’; to ;.
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(b) This follows from the fact that, in view of the defining formulae, D is generated by fy as a ¢-module
over k((1)). O

Proposition 1.20. The functor A — A* Qg k(1)) induces a bijection between the set of standard cyclic
objects in Mod™ (D) and the set of standard cyclic objects in Mod® (k((1))).

Proof. A*®qpk((¢)) for a standard cyclic object A € Mod?®(9) is a standard cyclic object in Mod® (k((1)))
by Proposition 1.18. With Lemma 1.19(a) we see that the assignment A — A* ®q, k((t)) is injective on
standard cyclic objects in Mod™ (9). It s also surjective: Proposition 1.18 (together with Lemma 1.19(b))
explicitly says how to convert the parameter data describing a standard cyclic object in Mod® (k((¢))) into
the parameter data describing a standard cyclic object in Mod®(©). g

Definition. A (d+1)-dimensional standard cyclic Gal(F / F)-representation is a Gal(F / F)-representation
over k which corresponds, under the equivalence of categories in Theorem 1.2, to an object in Mod® (k((¢)))
of dimension d + 1 which is standard cyclic.

2. Hecke algebras and supersingular modules

2A. The pro-p-Iwahori Hecke algebra 7. We introduce the pro-p-Iwahori Hecke algebra H of
GL,+1(F) with coefficients in k in a slightly unorthodox way, which however is well suited for our later
constructions.

Let T be a free Z/(q — 1)-module of rank d + 1. Then Hom(I', T) (with I = Oy is also free of rank
d + 1 over Z/(q — 1). We write the group law of T multiplicatively, but that of Hom(I", T') we write
additively. Let e*, ), ..., o) be a Z/(g — 1)-basis of Hom(T', 7). Put oy = — Zle ;. We let the
symmetric group G441 act on Hom(I, T) as follows. We think of G, as the permutation group of
{0, 1, ..., d}, generated by the transposition s = (01) € G441 and the cycle w € G441 with w(i) =i + 1
for all 0 <i <d — 1. We then put

w-ef=e"+taj, w-of=af and w-o’ =« forl<i<d.

Ifd =1 we put
s-ef=e"—a), s-of=—qa’ fori=0,1,
but if d > 2 we put
sef=e"—a), s-of=af+ta), saf=—e, sy =a]+a), s-o=a for3<i<d.

One easily checks that there is a unique action of G, on T such that for y € I' and f € Hom(I', T) we
have

w-(fy)=(w-Hy) and s-(f(y)=(s- ).

Define o) (F ;) to be the image of the composition [ 7 — I’ L, T where the first map is the Teichmiiller
homomorphism.
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Definition. (a) The k-algebra H is generated by elements 7!, T; and 7, for t € T, subject to the
following relations (with ¢, ¢’ € T):

T,T,T,T, ' I,T, = T,T,T, ' T,T,T, ifd>1, (20)
T, T, "T,T" =T, " T, T"T, forall 1 <m <d, 1)

T2 = Tyz, = 1,7, with i, = Y T, (22)

T, ' =1=1,'T,,, reay (F) (23)

T4 T, = T,797, (24)

LTy =To, Tip =1, (25)

T,T, =TyTy., (26)

LT, =T,T;.,. (27)

Notice that T7¢*! is central in H.

(b) Hagr is the k-subalgebra of H generated by all 7; for f € T, by Tof“, T, d=1 and by all T)'T,T™ for
mel’z.

(c) H” is the quotient of # by the two sided ideal spanned by all elements 7, — 1 withr € T.

Caution. H,g differs from the similarly denoted algebra in [Vignéras 2005]. (The difference is that here
we include (T4+1)2))

Remark. Let 7 denote the subgroup of G = GL41(F) consisting of diagonal matrices with entries
in the image of the Teichmiiller homomorphism [F; — Op. For y €T let ¥ be its image in F;. In T
define the elements ¢*(y) = diag(y’, 14) and aiv(y) =diag(l;_1, ¥, =1, 14_;) for 1 <i <d. Define the
elements @ = (w;;)o<i, j<a and s = (;j)o<i,j<a of G by wgo =7 and w; ;41 =1 (for0 <i <d — 1) and
w;j = 0 for all other pairs (7, j), resp. by sj0 = so1 =s;; = 1 fori > 2, and s;; = 0 for all other pairs (i, j).

Let Iy denote the pro-p-Iwahori subgroup of G for which g = (g;;)o<i,j<a € G belongs to Iy if and
only if all the following conditions are satisfied: g;; € mOp fori > j, and g;; € Of fori < j, and
gi €l +mOpF.

op ~

Claim. The corresponding pro- p-Iwahori Hecke algebra k[ 1o\ G/ 1p]°® =Endi[c; (indg k)P is isomorphic
with H, in such a way that the double coset Iogly for g € T U {s, w} corresponds to the element T, e H.

To prove this claim we use the description of k[Ip\ G /I]°? worked out by Vignéras [2005] (or rather we
use the description of k[1o\G/Iy]°P which results from the description of k[Iy\G/Iy] given in [loc. cit.]).

Let T denote the maximal torus of diagonal matrices in G, let N(T') be its normalizer in G. Let T}
(resp. Tp) denote the subgroup of 7' consisting of diagonal matrices with entries in the kernel of O — [F;
(resp. in O;); thus Tp/ T1 = T.For0<i <d define s; = w' “sw'~'. The (classes of) so, s1, . . ., 54 are the
Coxeter generators of a Coxeter subgroup Wog of N(T)/ Ty, and N(T)/ Ty is generated by Wy together
with the element w. The length function £ : Wy — Z5( can be extended to a function £ : N(T)/To — Z>¢
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in such a way that £(w) = 0. We again denote by £ the induced function W) = N(T)/T; — Z~,. For
we WD and w € N(T) lifting w, the double coset Iyw’ly only depends on w; we denote it by Ty,.
For 0 <i <d let T; be the image of one of the two cocharacters [FqX — T associated with s;. (Here we
identify 7 with the maximal torus of diagonal matrices in GL,(F,). If 1 <i <d then s; is the simple
reflection associated with the coroot oziv , and ozl.v ([F;) =T;.) Now, according to [Vignéras 2005], a k-basis
of k[Io\G/Io]° is given by the set of all T,, for w € WV, and the multiplication is uniquely determined
by the relations

TwTw = Tyw for w, w’ € W with £(w) + £(w') = L(ww), (28)
TS% =157 where 7; = Z T, for0<i <d. 29)
tET,‘

In the following we repeatedly use that conjugating these relations by powers of T, leads to similar
relations (since £(w) = 0). From formula (28) we first deduce Ty, = T/ ~!T, T}~ and then that T*!
and T = T, together with the elements 7; for ¢ € T generate k[1o\G/1y]°P as a k-algebra. Next, from
§i8i—18; = 8;i—18;8i—1 1n Wy (for 0 <i <d;ifi =0readi — 1 =d) we get T, T, Ty, =T, T, T;, , by
applying formula (28) twice, but this comes down to formula (20) (up to conjugation by a power of T,).
Similarly from s;s; = sjs; in Wy for0 <i < j—1=<d —1 withi+d > j we get T, I, =Ty, Ty, by
applying formula (28) twice, but this comes down to formula (21) (up to conjugation by a power of T,).
Formula (29) for any i is a T,,-power conjugate of formula (22). Finally, formulae (23), (24), (25), (26)
and (27) are special instances of formula (28). Conversely, it is not hard to see that these, together with
formulae (20), (21) and (22) suffice to generate all relations in k[Ip\ G /Iy]°P. The claim is proven.

We add if I denotes the Iwahori subgroup of G containing Iy, then 4’ becomes isomorphic with the
Iwahori Hecke algebra k[I\G/I]°P.

Definition. A character yx : Har — k is called supersingular if the following two conditions are both
satisfied:

(a) There is anm € Z with x(T'T,T,™) = 0.

(b) There is an m € Z with either x(T!)T,T,") = —1 or x(T)'t,T ") = 0.7
Definition. (a) An H-module M is called standard supersingular if it is isomorphic with H ®7,,; , k.e,
where H,¢ acts on the one dimensional k-vector space k.e through a supersingular character x.

Equivalently, M is standard supersingular if and only if M = P, <, T, (M) with an H,g-module
M; of k-dimension 1 on which H,¢ acts through a supersingular character.®

(b) An irreducible H-module is called supersingular if it is a subquotient of a standard supersingular
‘H-module.

TWe have x(T"tsT,;™) = 0 if and only if x (/" T, T,;™) # 1 for some ¢ € ay (Fg), if and only if X(Ot;é+l (y)) # 1 for
some y €I'.
8Then ‘Haff acts on each 7,7 (M) through a supersingular character.
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A finite dimensional H-module is called supersingular if each of its irreducible subquotients is
supersingular.

More generally, an H-module is called supersingular if it is the inductive limit of its finite dimensional
H-submodules and if each finite dimensional #-submodule is supersingular.’

Remark. For nonzero finite dimensional 7{-modules, the above definition of supersingularity is equivalent
with the one given by Vignéras. This follows from the discussion in Section 6 of [Vignéras 2017]. There
is also a notion of supersingularity for #-modules which are not necessarily inductive limits of their finite
dimensional submodules. In the present paper however, without further mentioning all H-modules will be

assumed to be inductive limits of their finite dimensional submodules.

Remark. In the literature on modules over Hecke algebras, the term standard module is occasionally
used, but this usage is unrelated to our terminology.

2B. The coverings H* and H* of H.
Definition. (a) Let 7 denote the k-algebra generated by elements Taj—”, T, and T, for t € T, subject to

o the relations (22), (23), (25), (26),

the relations (27) for t = oziv(y) @llo<i<d,yel),

the relation

Tg‘i‘l TSZ — TSZT(g+1, (30)

o the relations
T,T>=T>T, forallreT, (31)

o the relations
T’T,T*T, ' T?T, = T,T*T, ' T*T,T? ifd > 1, (32)
2T, "T?T" =T, " T*T"T* forall l <m <d. (33)

(b) Let #* denote the k-algebra generated by the elements T,.-!, Ty and T, for ¢ € T, subject to
e the relations (22), (23), (25), (26),
o the relations (27) for t = ozl.v(y) all0<i<d,yel),

o the relations (31).

Lemma 2.1. In H we have the relations (30), (31), (32) and (33).

9t is easy to see that the irreducible subquotients of a supersingular H-module are the irreducible subquotients of its finite
dimensional #-submodules.
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Proof. Tt is immediate that the relations (27) and (24) imply the relations (31) and (30), respectively. For
1l <m<dandt €a(F;) we have so™ -t = »™ - 1, hence T Ztealv(l]:q) Ty = Zzealv([ﬂ,) T, Ts. The
same applies with —m instead of m, hence

I,T,"oT) =T, "tT,)T, and T,T)'vT, " =T)tT, "T.
This, together with Ts2 = 1, Ty = T, 7, (formula (22)), justifies (i) and (iii) in
22 Lo orome T T L (e T T T, T T, Y o2,
whereas (ii) is justified by (21). We have shown (33). Finally, to see (32) comes down, using (22), (26)

and (27), to comparing

T, T52 Tw_l T52 T, Ts2 = ( Z Tafl -1 Tw*‘swig Tw”swsw*‘ ‘t3) T, T Tw_l 1,1,7T;,

t.0.13€a) (Fy)

TSZ Tw_l Tsz T, T52 T, = ( Z T} Ty 3 Tswlsa)-t_g) I, T, Ts Ta)_l I, T,.

11,0, 13€a) (Fy)

That these are equal follows from (20) and equality of the bracketed terms; for the latter observe

1

wsw 'sw-t =t for anytealv(F;). O

In view of Lemma 2.1 we have natural surjections of k-algebras
H* > H - H—H .

Remark. H* (and in particular H* and %) is generated as a k-algebra by TF!, T; and the Tox(y) for
yel.

Lemma 2.2. There are unique k-algebra involutions t of H, H* and H™ with
(T =Ty, WT)=1t—-T,, «T)=T forteT.

Proof. This is a slightly tedious but straightforward computation. (For H see [Vignéras 2005, Corollary 2].)
O

Remark. Besides ¢ consider the k-algebra involution B of H, H* and H** given on generators by
) =T, BT)=T. PT)=T. forreT.

Moreover, for any automorphism o of I' there is an associated automorphism «, of #, H* and H** given
on generators by

ao(T) =Ty, ao(T) =Ty, o(Toy) = Tooyy fory €T, d e Hom(T, T).

Do «, B and the o, generate the automorphism group of H (resp. of H*, resp. of H*) modulo inner
automorphisms?
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Lemma 2.3. Let M be an H*-module. We have a direct sum decomposition

M= pmE=-1d @ MT=0
Proof. One computes r = (¢ — 1)ty = —1, and this shows Ty = —id on 1m(T2) as well as T2 0 on
im(7? —id). O

Let [0, g — 2]?® be the set of tuples € = (€;)o<i<q With€; € {0, ..., g — 2} and ZOgigd €; = 0 modulo
(g —1). We often read the indices as elements of Z/(d + 1), thus €; = €; for i, j € Z whenever
i —j € (d+1)Z. We let the symmetric group G, (generated by s,  as before) act on [0, g — 2]
follows:

(w-€)o=€¢; and (w-€);j=¢;_1 forl<i<d.
Ifd =1 we put
(s-€)j=—¢ fori=0,1,
but if d > 2 we put
(s-€)j=—€1, (s-€)og=¢€o+€1, (s-€r=€1+e, (s-€);=¢ for3<i<dl

Throughout we assume that all eigenvalues of the 7, for t € T acting on an #*-module belong to k.
Let M be an #**-module. For a € [0, ¢ — 2] and € = (€;)9<i<a € [0, g —2]® and j € {0, 1} put
={xeM|T v(V)(x) =yCxforally €T, all0<i <d},
s =1xe M€ | Ty (x) = y“x for all y € '},
M{[j1={x € M{ | T} (x) = jx}.
The T; for t € T are of order divisible by ¢ — 1, hence are diagonalizable on the k-vector space M. Since

they commute among each other and with TSZ, we may simultaneously diagonalize all these operators
(see Lemma 2.3 for T%), hence

M = @ M (34)

Lemma 2.4. Foranye €[0,q — 2]1® and a € [0, q — 2] we have

T,(M{) =M, and T,(M) C M**.

a—eg
If M is even an H-module then
€1t+a-

Ty (Mg) C M€ (35)

10Here and below we understand —¢; to mean the representative in [0, ¢ — 2] of the class of —¢; in Z/(q — 1), and similarly
foreg + €1 and €] + €.
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Proof. T,(M¢) = M®€ and T;(M€) C M** follow from formulas (26) and (27), respectively, for the
t = a;’(y). For the following computation recall that @ - e* = e* +o: For y e I" and x € M; we have
Ter () T (X) = ToTwen) () (X) = T Ter () Ty () (%) = ¥~ T ().

This shows Tw(M;) = Mg, For formula (35) recall that 5 - ¢* = ¢* — o and employ formula (27). O

Any x € M can be uniquely written as
x = Z x, withx, € Z M.
a€l0,q-2] €c[0,q—2]®
Given a € Z and x € M, we write x, = x; where a € [0, g — 2] is determined by a —a € (g — 1)Z.
Definition. (a) An H*-module M is called standard supersingular if the #*-action factors through H,
making it a standard supersingular 7{-module.

(b) An irreducible 7{*-module is called supersingular if it is a subquotient of a standard supersingular
H*-module. An H*-module M is called supersingular if it is the inductive limit of finite dimensional
#H*-modules and if each of its irreducible subquotients is supersingular.

(c) An H*-module M is called supersingular if it satisfies the condition analogous to (b).

(d) A supersingular H*-module is called f-supersingular if for all e € M, ge [0] with €; > O we have
(Ts€)ctey+a =0 forallg —1—¢€ <c=<gq-2.
Lemma 2.5. (a) An H-module is supersingular if and only if it is supersingular when viewed as an
HE-module. A supersingular H-module is -supersingular when viewed as an H*-module.

(b) The category of supersingular H-modules, the category of supersingular H*-modules, the category
of supersingular H**-modules and the category of #-supersingular H*-modules are abelian.

Proof. Statement (a) follows from formula (35). Statement (b) is clear from the definitions. Il

3. Reconstruction of supersingular #/*-modules

Given an #*-module M together with a submodule M such that M /M, is supersingular, we address
the problem of reconstructing the #*-module M from the H*-modules M, and M /M, together with an
additional set of data (intended to be sparse). Our proposed solution (Proposition 3.3) critically relies on
the braid relations (32) and (33).

Lemma 3.1. Let By, ..., By, be linear operators on a k-vector space M such that
BJZ-ZBJ' forall0 < j <n,
BjByB;=BjyBjBj forall0<]' j<n,
BjBj = Bj/B; forall0 < j' < j<nwithj—j >2.
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Put B = B, --- BBy and let x € M with B"'x = x for some m > 1. Then we have Bjx = x for each
0<j=n
Proof. We first claim

BBjy1=B;B forall0<j<n. (36)
Indeed,

BBji1 =By Bjt2Bj+1BjBj_1---B1ByBji

=B, ---Bj2Bj11BjBj11Bj_1---B1By

=B,---Bj2B;Bj11B;Bj_1--- BBy

= B;p.

Choose v > 1 with mv > n. For 0 < j <n we then compute
X 2 mvy_ IBn—jIBmv—n-i-jx (1=1) IBn—jBnIBmv—n-i-jx (2) leBn—lemv—n-i-jx:leBmvx (i=V) Bjx,

where (i) and (iv) follow from the hypothesis " x = x, where (ii) follows from B, = B and where (iii)
follows from repeated application of formula (36). O

Proposition 3.2. Let M be an H*-module, let My C M be an H*-submodule such that M/ My is supersin-
gular. Let & € (M/Mo)¢ (some € € [0, g —2]®) be such that X{i} = T:*'% is an eigenvector under Ty, for
eachi € Z. For liftings x € M of X put x{i} = T *x:

(a) If the H*-action on M factors through H then we may choose x € M€ such that for each i with
T,(x{i}) = 0 and ('t - €); = 0 we have Ty (x{i}) = 0.

(b) If the H*-action on M factors through H then we may choose x € M€ such that for each i with
T,(x{i}) = —x{i} we have T,(x{i}) = —x{i}.

(c) We may choose x € M€ such that for each i with TS2 (x{i}) =0 we have TS2 x{i}) =0.
(d) We may choose x € M€ such that for each i with TSZ()_C{i}) = x{i} we have Tsz(x{i}) =x{i}.

Proof. (a) Leti; < --- < i, be the increasing enumeration of the set of all 0 <i < d with Ty Tof,“()'c) =0
and (w'T!-€); =0. Replacing M by its #*-submodule generated by x and M, we may assume that M /M
is a subquotient of a standard supersingular #-module, attached to a supersingular character x : Hax — k.
If we had T, 7! (X) = 0 and (w'™! - €); =0 for all 0 < i < d then this would mean x (T"T,T,,™) =0
and x (T't;T,™) # 0 for all m € Z, in contradiction with the supersingularity of x. Hence there is some
0 <i <d not occurring among {iy, ..., i,}. Thus, after a cyclic index shift, we may assume i, < d.

Start with an arbitrary lift x € M€ of x.

We claim that for any j with 0 < j <r, after modifying x if necessary, we can achieve T5(x{is}) =0
for all s with 1 <s < j. For j = r this is the desired statement.

Let us illustrate the argument in the case d =1 first. (This will logically not be needed for the general
case. Notice e.g., that the subarguments (2) and (3) below are required only if d > 1.) Then we have

r =1 and i; = 0, and the claim for j = 1 states that there is some x € M€ lifting x with T;T,(x) = 0.
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But indeed, X = x + T, IT.T,,x works: First, ¥ lifts ¥ because of 7, T,,¥ = 0. Next, ¥ belongs to M€
because of T~ LT, T,,.x € M€ (which follows from x € M€ and the assumption (@' *1.€); =0). Finally,
T, T, (%) = 0, because T, % € M¥< = M€ and (o''+! - €); = 0 imply (T + THT,x =0.

Now let us consider the case of a general d. Induction on j. For j = 0 there is nothing to do. Now fix
1 < j <r and assume that x satisfies the condition for j — 1, i.e., assume T (x{i;}) = O for all s with
1<s<j—1.For—1<i<dand0<m < j define inductively

xfijo=x{i} =T ",
iympr = To " Toclijom ).
We establish several subclaims.
(1) x{i}y € M@,

For m =0 there is nothing to do. Next, if the claim is true for an arbitrary m, then we have in particular
Xij—mm € Mo e By assumption we know (w’—"*1 . €); = 0, which implies (M@ ™" ey ¢
M e Thus, we get x{ij—mtmt+1 = Ts(x{ij—m}m) € M@ From this we get x{i}ur1 =
Ts(x{i}n) € M@ for general i by applying powers of T, t0 x{i;_}m+1-

2) Ts(x{is}m)=0foralll <s<jandall0<m < j—s.

We induct on m. For m = 0 this is true by induction hypothesis (on j). Now let 0 <m < j —s and

assume that we know the claim for m — 1 instead of m. In particular we then know T (x{is},,—1) = 0. We

deduce o N S
Ty(xelishn) = Ty~ " T 0 T ™ " el jemegt Y1)

=TT T (el

=T, T T (e i)

=0
where we use the braid relation (21) (which applies since |is —i;_,1| > 1 and i, < d). The induction on
m is complete.
3) Ts(x{is}m)=0foralll <s<jandall j—s+1<m<].

We induct on m+s— j. The induction begins with m+s—j =2. By (2) we know T (x{ij_n41}m—2) =0.
Thus, if i;_,,4+1 + 1 < ij_,42, the same argument as in (2) shows Ty (x{i;j_u+1}m—1) = 0 and hence
x{i}, =0 for all i, and there is nothing more to do. If however i;_, 1 +1=i;_,,12 we compute

Ty Oclijoms2tm) = LT T, T T (i j—mtt hm—2)
=T,T; Tw_lTs T, T; (x{ij—m—H}m—Z)
=0
where we use the braid relation (20). This settles the case m +s — j =2. Form +s — j > 2 we now
argue exactly as in (2) again: T (x{is},,) = 0 implies T5(x{is},n+1) = 0. The induction is complete.

@) ToOelijmbm +x{ijm}ms1) =0 forall 0 < m < j.
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Indeed, by (1) and our assumption (w'i-n*1.€); =0 we know that X{ij_m}m is fixed under Talv(p) and
hence is killed by Ts2 + Ty, as follows from the quadratic relation (22). As x{ij_mu}m+1 = Ts(x{ij—m}m)
this gives the claim.

B)x= Zofmfj x{—1},, lifts x.
Indeed, we have T (x{i;}) € My by our defining assumption on i;. It follows that x{—1},, € M for all
m > 1, hence x — x € M.

(6) From (1) we deduce x{i} € M e Writing

f{i3}=< > x{is}m>+<x{is}js+x{i5}js+1)+( > x{is}m>

0<m<j—s j—stl<m<j

we see that (2), (3) and (4) imply T;(x{i;}) =0 forall s with 1 <s < j.
The induction on j is complete; we may substitute x for the old x.

(b) Composing the given H-module structure on M with the involution ¢ of Lemma 2.2 we get a new
‘H-module structure on M. Applying statement (a) to this new H-module and then translating back
via ¢, we get statement (b). Notice that here, in contrast to the setting in (a), we automatically have
(@1 €)1 =0 for each i with Ty (x{i}) = —x{i}.

(c) Statement (c) is proved in the same way as statement (a), with the following minor modifications: each
occurrence of T, must be replaced by T2, and in the definition of x{i},1 the alternating sign (—1)"*!
must be included, i.e.,

lidmir = (D" T T2 (i dm) 37)

In particular, we then have x{i;_,,}n+1 = —TS2 (x{ij—m}m). In (2) and (3), the appeal to the braid relations
(20), (21) must be replaced by an appeal to the braid relations (32), (33). In (4), the appeal to Ts2 +7T,=0
on vectors fixed under 7,y ) must be replaced by an appeal to T# — T? = 0 (it is here where the
alternating sign in the defining formula (37) is needed). Notice that here, in contrast to the setting in
(a), we do not need to impose (' +1.¢€); =0 for each i with TS2 (x{i}) = 0. (On the one hand, because
of TS2(M €) C MF€ for any € the argument analogous to the one in (a)(1) carries over; on the other hand,
because of T;‘ - TS2 =0 on all of M the argument analogous to the one in (a)(4) carries over.)

(d) Composing the given #*-module structure on M with the involution : of Lemma 2.2 we get a new
#H*-module structure on M. Applying statement (c) to this new #*-module and then translating back
via ¢, we get statement (d). O

Proposition 3.3. Let M be an H*-module, let Mo C M be an HE-submodule such that M/ My is supersin-
gular. The action of H* on M is uniquely determined by the following combined data:

(a) The action of H* on My and on M /M.
(b) The action of T+ and of T;T,, on M.
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(c) The restriction of T,, to (T, T,) ™" (My), i.e., the map
(xeM|T,T,(x) € Mo} =2 M.

(d) The subspace Y ..o, 2o M€ of M.
€1=0
Proof. The k-algebra 1" is generated by T, by T and by le. Therefore we only need to see that the
action of Ty and T, on M can be reconstructed from the given data (a), (b), (c), (d). Exhausting M /M,
step by step we may assume that M /M is an irreducible supersingular #*-module.

We first show that 7 is uniquely determined. For this we make constant use of Lemma 2.3 (and the
decomposition (34)). As Ts|y, is given to us, it is enough to show that for any nonzero x in M /My
with either T (x) = —Xx or Ty (x) = 0 we find some lifting x € M such that T;(x) can be reconstructed.
Consider first the case T;(x) = —Xx. By the quadratic relation (22) (see Lemma 2.3) we then have
X €D cciogn® (M/Mp)<, and using the datum (d) as well as our knowledge of the subspace Ty M (since

T.M = f;?)wM this is given to us in view of datum (b)), we lift X to some x € TsM NY 020 M€
(use the decomposition (34)). For such x we have T;(x) = —x. Now consider the case T ()'c)q;o 0. An
arbitrary lifting x € M of x then satisfies T;(x) € My, and T;(x) is determined by the given data as
Ty (x) = (I, T,)T, (x) (notice that the datum (c) is equivalent with the datum Ts_l(Mo) TL_I> M).

To show that Ty, is uniquely determined, suppose that besides 7, € Auty (M) there is another candidate
T,, € Auty (M) extending the data (a), (b), (c), (d) to another #*-action on M.

We find and choose some nonzero x € M /M, such that Ta{ (x) is an eigenvector under T, for each

j € Z. For any x € M lifting x we have
T,=T, onMy+kT:'(x)if T,TJ(x)=0 (38)

as both 7, and T, respect the datum (c).
Let iy < --- < i, be the increasing enumeration of the set

0<i<d|T*Tix=T!x).
S w w

As M /M is a subquotient of a standard supersingular H-module, this set is not the full set {0 <i <d}.
Applying a suitable power of T, and reindexing we may assume that 0 does not belong to this set, i.e.,
that iy > 0.

Choose a lifting x € M of X such that for each i € {ig, ..., i} +Z(d + 1) we have T>T/ x = T x. This
is possible by Proposition 3.2. Put zo = x. For i > 1 put

Z'_{Twziq i ¢ {ig,....in} +Z(d+1),
TP,z i€lioy ... in) FZd+1).

We claim

zi=T!x (39)
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for each i > 0. Induction on i. The case i = 0 is trivial. Fori > 1 with i ¢ {ip, ..., iy} +Z(d+ 1) we
compute

@ (i)

i = 1pZi—1 = Ta)Zifl = ch)x

where in (i) we use statement (38) and in (ii) we use the induction hypothesis. For i > 1 with i €
{io, ...,in}+7Z(d + 1) we compute

o @ ()
2 =TTzt = T/ Tyzi) = Thx
where in (i) we use the assumption 7T, = Tj Tw, and in (ii) we use the induction hypothesis 7;,z; _; =Ta’;x
and the assumption on x. The induction is complete. Put

B, =T, " T*T,).

+(d+1)v

The relation (30) implies B;;, = T, g Tszf}ij ~@+DY for each v € Z. Thus

@ F—md+1) @ F—m(d+1) pmd+1)
- [0}

(Bi, -+ Biy Biy)"x Zm@+1) = T,

w
for m > 0, where (i) follows from the definition of z,, 441y, whereas (ii) follows from formula (39). Choos-

T(f," @by — x (as T, and Tw are automorphisms

ing m large enough we may assume 7, @+Dy = x and
of a finite vector space); then

(B cee B,-lBl-o)mx=x.

in
The braid relations (32), (33) show that the B, satisfy the hypotheses of Lemma 3.1 (in particular, the

commutation B;,B; = B; Bj, if n > 1 follows from iy > 0). This Lemma now tells us Bi; -+ BiBi,x =x

in

for each 0 < j < n. But by the definition of the z; this means
=Tx (40)

for each 0 <i <d 4+ 1. When compared with formula (39) this yields 7, = T,, since M is generated as a
k-vector space by M, together with the T x (or: the Tcix) for0<i <d. (|
Remarks. The above proof of Proposition 3.3 shows the following:

(i) The subspace in (d) could be replaced by the subspace {x € M | Tsz(x) =x}.

(ii) If the H*-action factors through an #-action, then the datum (d) can be entirely left out (7, can then
be reconstructed without a priori knowledge of Ty).

4. The functor

Here we define a functor M — A(M) from supersingular #**-modules to torsion k[ ]]-modules with ¢
and I" actions, as outlined in the introduction. Its entire content is encapsulated in the explicit formula for
the elements /(e) introduced below.
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Let M be an H**-module. View M as a k[[t]-module with t =0 on M. Let I" act on M by
yx =Tk, 00
for y € I', making M a k[[#]|[["]-module. We have an isomorphism of k[[#]][¢]-modules
O ®xpery M = kit 1le] @iy M

and hence an action of O on k[[#]l[¢] Qg M.
Fore € M;[j] (any € € [0, g — 212, any a € [0, g — 2], any j € {0, 1}) define the element

he) = {teup@ T, le)+1 ®e+2‘1 Sro®T; (T, Oererra) =0,
e T, () +1®e i=1
of k[[t1ll¢] kg M. Define V(M) to be the k[[¢]l[¢]-submodule of k[[#]l[¢] @« M generated by the
elements h(e) for all e € M¢[j] (all €, a, j). Define

kTl Qkpg M

AM) = VM)

Remark. If M is even an H-module, then in view of formula (35) the definition of /(e) simplifies to

become
hee) = {t€‘¢® T ' @) +1®e+¢®T, (Tee) j=0,

1 19R@T, ) +1®e j=1.
In this case it is not necessary to split up M into eigenspaces under the action of T.«(r), and the notation
of many of the subsequent computations simplifies (no underlined subscripts are needed). However, they
hardly simplify in mathematical complexity, not even if we restrict to H’-modules only (in which case

always €] =0 and Tp+(,) = 1).
Lemma 4.1. Let e € M[j]. The integer
b= {;—1 i?j
satisfies k, = €, modulo (¢ — 1).
Proof. j =1 means TS2 (e) = e, hence the claim follows from the relation (22). O

Lemma 4.2. Fore € M; [j1we have y - h(e) = h(T *(y)(e))for all y € I'. In particular, V(M) is stable
under the action of T', hence is an O-submodule of k[[t1[¢] Qg M. Hence A(M) is even an O-module.

Proof. First notice that T, (y)(e) €M, °[j]. In particular, h(T *(y)(e)) is well defined. For y € I" we find
y-(l®e):1®y'e:1®Tej(y)(e). 41)
Next, we compute

. - @k, - () g,
y-(t*o®T, () =y oy T, () = "o T, T, (o). (42)
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In (i) we used yt = [y]o(t)y and [y]e () = yt modulo #7k[[¢]] (Lemma 0.1) and the fact that, since
m=0ink, we have t79 @ M = ®(t)p @ M = ¢t ® M = 0. To see (ii) observe

y T, (e) =T, T, (e

_ p—1lp—1
=T Tyt (@

=11
=T Tipe_avy)(©)

(e —a
=T, Tay ) Tor(y) ©)
=y T T (@)
where in the last step we use Lemma 4.1. Combining formulae (41) and (42) we are done in the case
j = 1. In the case j =0 we in addition need the formula

q—2 q-2
y ) 9@ T, (Te)erara) = )19 ® T, (T Tor)€)cter ta)- (43)
c=0 c=0

Let us prove this (for e € Mg[0]). For f € Z and y € I' we compute

T ey (T30 ) 8 Teei Tayiy 1y (T, )
Lyl (Te), @
=y U T (%) s
= y-f*ﬂ*“(TsTe*(y)e)I.
In (i) recall that 0! - e* = &* — alv, in (ii) notice that (Tse)f e M*€ and (s-€); = —e€;. Forc € [0, g — 2]

we deduce | |
y-te® T, ((T5€)cqe14a)) = Yto®y - (T, (Ts€)cqe14a))

=y 19Tl T, (Ts€)eter+a)
- )/Cfc(p ® TCJIT(;EIe*)(y)((ne)C-i‘Gl'i‘a)
=19 T, ' (TsTo ()€ ey +a)

where in the last equality we inserted formula (44). U

Proposition 4.3. (a) If M is supersingular and finite dimensional, then we have: A(M) is a torsion
kl[t1-module, generated by M as a k[[t]|[¢]-module, and ¢ acts injectively on it. The dual A(M)* =
Homy (A(M), k) is a free k[[t]-module of rank dimy(M). The map M — A(M) which sends m € M

to the class of 1 ® m induces a bijection
M= AM)[t]. (45)
(b) A(M) belongs to Mod* ().

(c) The assignment M — A(M) is an exact functor from the category of supersingular H**-modules to
Mod* (D).
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Proof. (a) Notice first that it is enough to prove these claims after a finite base extensions of k.

Assume first that M is irreducible. It can then be realized as a subquotient of a standard supersingular
‘H-module N —in fact, it can even be realized as a submodule or as a quotient of such an N. Observing
the decomposition (34) for N, we see that there are a k-basis eg, ..., eg of N as well as 0 < kej <g-—1
for 0 < j < d, not all of them = 0 and not all of them = g — 1, such that V(N) is generated by the
elements h(e;) = £k T, e )+ 1®e;. It follows that A(N) is standard cyclic. Now it is easy to see
that A(M) is a subquotient of A(N). Thus, by Proposition 1.15(d), it is standard cyclic as well, at least
after a finite extension of k. Therefore all our claims follow from Lemma 1.14 and Proposition 1.15(a).

Now let M be arbitrary (supersingular, finite dimensional). Choose a separated and exhausting
descending filtration of M by #*-submodules F*M with irreducible subquotients F*~!M/F* M. Since
on any standard supersingular #-module (and hence on any of its subquotients, and hence on any
irreducible H**-module) we have T, = —TS2 and hence ker(Tsz) = ker(Ty), the filtration satisfies

T,(F* "M Nker(T?) Cc F*M (46)

for each u € Z. Putting
F" =kltlle] @y F*M

we claim
V(FEM)=V(M)NF*, 47)

Arguing by induction, we may assume that this is known with p — 1 instead of . Let £ be a family of
elements e € (F“_IM)Z[je] (for suitable €, € [0, g — 2]% and q, € [0, g —2] and j, € {0, 1} depending
on e) which induces a k-basis of F*~!M/F"M. We consider an expression

D et h(e) (48)

J1.J2€250,e€E

with c¢j, j, . € k. Assuming that the expression (48) belongs to F* we need to see that it even belongs to
V(FFM).
Suppose that this is false. We may then define

j1=min{j >0 | cj,jz,etﬁ(pjh(e) ¢ V(F"M) for some j, >0, some e € £}.
Claim. We find some j, and some e with cjl’jzﬁetjz(pj‘h(e) e F* —V(FIM).

For e € £ the expression
1Qe+thp T, () (49)

is congruent to s(e) modulo F*, in view of e € F*~!M and formula (46). Therefore, modulo F* the
expression (48) reads

j j j 1 cke —1
D Chpet?el @etcj et o T, (o).

JisJ2.€
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Notice that ¢/'t*¢p € k[[t]¢/1+'. The claim now follows in view of

j Fripm
—@Okmw TV (50)
J>

F/le

The claim proven, we may argue by induction on the number of summands in the expression (48)
which do not belong to V(F*M). We may thus assume from the start that the expression (48) consists
of a single summand #/2¢/' h(e), and that moreover e ¢ F*M for this e. The aim is then to deduce
t2@plth(e) € V(F*M), which contradicts our above assumption.

Let us write € = €, and a = a,. The vanishing of #/2¢/! h(e) modulo F* means, by the decomposition
(50) again, that

J2 M o j ]l
P Q@e=0=1t o ® T, Ye)

(i.e., absolute vanishing, not just modulo F*). If TS2 (e) = e then this shows t/2¢/! h(e) = 0. Now suppose
TS2 (e) =0 (and hence k, < g — 1). The definition of & (e) together with the vanishings (i) and (ii) shows
q—2
t2@lh(e) = 179" Y 19 T, (Tye)ererta)-
c=0

Since the vanishing (ii) also forces 172/ 1 t*¢ € k[[t]jp/'Tt, there is some i and some J = 0 with
2ol =1helt and i >q— k..
If k, = 0 (and hence i > ¢) then again the conclusion is #2¢/! h(e) = 0. It remains to discuss the case

where 0 < k, < g — 1. In this case, (Ty€)cte,+a € M*€ and (s-€); = —€; impliesg — 1 —k, = k(T;e)mlM
for each c. We thus see

- ” — .k s€lc+e+a -
t1 ke—H(/) ® Tw 1((Tse)c+q+a) = tH—L (t . )i(/) ® Tw 1((Tse)c+q+a) +1® (Tse)c+el+a)
q—2

=" D10 everra) = D1 T 0 @ T, (T (Ty€) ety ta)eteva)
c'=0

by the definition of 2 ((Tse)c+e,+a). again since (Tse)cte,+a € M*€ and (s-€); = —€1. For0 < f <g -2
we have

Y (T erara) fra= Y, (T((Ts€)ererta) fra =0

0<c,c’<q—2 0<c<q-2
c+c'=f

as follows from Tsz(e) = (0. This shows

q—2

Z t1+c+c’¢ ® Tw—l((fy((ﬂe)w))c%cw) =0
c,c'=0

Since e belongs to F*~!M, formula (46) shows h((Ts€)ct+e,+a) € V(F¥M). Together we obtain
l‘q_kﬁ_c(p@Tw_l((Tse)cheHra) € V(F*M), hence ti+c¢)®Tw_l((Tse)C+€1+a) eEV(FI'M)forO<c<g-—2.
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This gives
q—2
thehe) = the! 1 Q@ T, (Tue)ete ra) € V(F*M),
c=0
as desired.

Formula (47) is proven. It allows us to deduce all our claims for M from the corresponding claims for
the F*~'M/F"M; but for them they have already been established above.

(b) For each irreducible supersingular -module M, extending k if necessary, A(M) admits a filtration
such that each associated graded piece is a standard cyclic object in Mod®d(£), as pointed out above. Since
the functor A is exact (see statement (c)) it therefore takes finite dimensional supersingular 7**-modules
to objects in Mod*(O).

(c) Itis clear that M — A(M) is a (covariant) right exact functor. To see left exactness, let M; — M; be
injective. Since the kernel of A(M) — A(M>) is a torsion k[[¢][-module it has, if nonzero, a nonzero
vector killed by ¢. By formula (45) it must belong to (the image of) M|, contradicting the injectivity of
M, — M,. Il

5. Standard objects and full faithfulness

S5A. The bijection between standard supersingular Hecke modules and standard cyclic Galois rep-
resentations. Let M be a standard supersingular #-module, arising from the supersingular character
X : Har — k. There is some ep € M such that, putting e; = a,_jeo, we have M = @‘;:0 k.e; and
Hagr acts on k.ep by x. Denote by n; : I' — k* the character through which Tei(l.) acts on k.ej, i.e.,
Tl (ej) =nj(y)e; fory eT.

Lemma S.1. (a) Thereare 0 <k, <q—1jfor0< j<d, notall of them =0 and not all of them = q — 1,

such that

*ipRT (e) =—1®e; (51)

in A(M) forall0 < j <d.

(b) If for any 1 < j < d there is some 0 <i < d with k., # k
k[t 1[@]l-module.

then A(M) is irreducible as a

Citjo

(c) Suppose that for any 1 < j < d which satisfies k., = ke, i forall 0 <i <m there is some 0 <i <d
with n; # ni+j. Then A(M) is irreducible as an O-module.

Proof. For M as above, V(M) is generated by elements of the form i (e) = thep ® T, le)+1®e. They
give rise to formula (51), hence statement (a). For statements (b) and (c) apply Proposition 1.15; in (c)
notice that y - (1 ®e;) =n,(y) ®e; fory €T. O
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Lemma 5.2. (a) Conjugating x by powers of T, means cyclically permuting the ordered tuple
(Mo, key)s - - ., (N, ke,)) associated with x as above. Knowing the conjugacy class of x (under
powers of T,,) is equivalent with knowing the tuple ((no, ke,), - - ., (Na, ke,)) up to cyclic permutations,
together with x (T4+1).

(b) (Vignéras) Two standard supersingular H-modules are isomorphic if and only if the element Tlf“ eH
acts on them by the same constant in k> and if they arise from two supersingular characters Hyg — k
which are conjugate under some power of T,.

(c) (Vignéras) A standard supersingular H-module M arising from x is simple if and only if the orbit of
x under conjugation by powers of T, has cardinality d + 1.

Proof. Statement (a) is clear. For (b) and (c) see [Vignéras 2005, Proposition 3 and Theorem 5]. Il

Proposition 5.3. The functor M +— A(M) induces a bijection between the set of isomorphism classes of
standard supersingular H-modules and the set of standard cyclic objects in Mod* (D) of k-dimension
d + 1. If the standard supersingular H-module M is simple, then A(M) € Mod* (D) is simple.

Proof. This follows from Lemmas 5.1 and 5.2. O

Theorem 5.4. (1) The functor M — A(M)* g k((2)) induces a bijection between the set of isomor-
phism classes of standard supersingular H-modules and the set of isomorphism classes of standard

cyclic étale (¢, I')-modules of dimension d + 1.

(2) The functor M — A(M)* Qs k() induces a bijection between the set of isomorphism classes of
simple supersingular H-modules of k-dimension d + 1 and the set of isomorphism classes of simple

étale (¢, I')-modules of dimension d + 1.

Proof. Statement (a) follows from Propositions 1.20 and 5.3. Statement (b) follows from statement
(a) and the full faithfulness of the functor M +— A(M)* ®xp k((¢)) on supersingular -modules, see
Theorem 5.11 below. (To see that if M is simple then so is A(M)* Q. k((t)) one may alternatively use
Proposition 5.3 together with Proposition 1.11.) 0

Remark. We may rewrite (51) as
lkef(p®€j+1=—l®€j forO0<j<d-1
thap @ x (T, Neg=—1®ey

where we used 7, (eq) = T, 9" 1(e0) = x (T 9 Yep. Thus (—1)4Tx (T, 9=1) € k* is the constant

referred to in Lemma 1.19.

Corollary 5.5. The functor M +— A(M)* Qg k(2)), composed with the functor of Theorem 1.2, induces
a bijection between the set of isomorphism classes of standard supersingular H-modules of k-dimension

d+1 and the set of isomorphism classes of (d+1)-dimensional standard cyclic Gal(F | F)-representations.

Proof. Theorem 5.4. Il
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Remark. (a) Combining Corollary 5.5 and Theorem 5.4 one can derive the following “numerical
Langlands correspondence”: the set of (absolutely) simple (d 4 1)-dimensional #-modules with fixed
scalar action by Ta‘f“ has the same cardinality as the set of (absolutely) irreducible (d + 1)-dimensional
Gal(F / F)-representations with fixed determinant of Frobenius. This numerical Langlands correspondence
was proven already in [Vignéras 2005, Theorem 5].

(b) There is an alternative and arguably more natural definition of supersingularity for H-modules. Its
agreement with the one given in Section 2A, and hence the “numerical Langlands correspondence” with
respect to this alternative definition of supersingularity, was proven in [Ollivier 2010].

5B. Reconstruction of an initial segment of M from A(M). Let [0, g — 1]% be the set of tuples =
((i)o<i<qg With u; € {0, ..., g — 1} and ZOSiSd u; =0 modulo (¢ — 1). We often read the indices as
elements of Z/(d + 1), thus u; = u; for i, j € Z wheneveri — j € (d + 1)Z.

Let A be an 9D-module. For u € [0, g — 11® let FA[t]* be the k-subvector space of Aft] = {x €
A | tx = 0} generated by all x € A[¢] satisfying tHig - - - t*1pt*px € Alt] forall 0 <i <d, as well as
thig ... MMy € k*x.

Put FA[1] =) o FA[]* (sum in A[r]).

nel0,g—1

Lemma 5.6. FA[t]=&D o FA[t], i.e., the sum is direct.

nel0,qg—1

Proof. Consider the lexicographic enumeration (1), 1£(2), (3), . .. of [0, ¢ — 1]® such that for each pair
r’ > r there is some 0 < iy <d with u; (r) > p;(r’) for all i <io, and p;,(r) > i, (r’). Let Zrzl x =0
with x, € FA[t]*"). We prove x, = 0 for all r by induction on r. So, fix r and assume x,» = 0 for
all ¥ <r,hence 3o, x =3 1% —> . % =0. Forr’ > r we have tha g oM p(x,0) = 0.

Therefore

0= tud(r)(p . tm(r)§0<zxﬂ>

r'>r
— Z tﬂd(r)¢ e tHO(r)(pxr/
r'>r

— [Md(r)(p - [MO(r)(pxr = kxxr
and hence x, = 0. ]

We define k-linear endomorphisms T, Ty and T,«(,) (for y € I') of FA[t] as follows. In view of
Lemma 5.6 it is enough to define their values on x € FA[¢]*; we put

—x pg=q—11

T,(x) = —t"px, Teop@) =y '-x, T(x)=
0 Mg <q—1.

1

Here y ~" - x is understood with respect to the I'-action induced by the $-module structure on A(M).
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Definition. For an H**-module M and u € [0, g — 1]% let FM* denote the k-subvector space of M
consisting of x € M satisfying the following conditions for all 0 <i < d:

-1 i Mo i

Talv(y)(Tw(x)) =yHMT, (x) forall y el (52)

. —T! ic1=q—1,
T(T} () = { o¥) Hi-1=d (53)

0 i1 <q—1.

Let FM denote the subspace of M generated by the FM* for all i € [0, g — 1]®.
For u € [0, g — 112 let €, €[0,qg— 2]<I> be the unique element with

(€u)—i = i mod (g — 1). (54)

for all ;.

Lemma 5.7. (a) We have FM" C M€~
(b) FM is an H**-submodule of M.

(c) FM contains each H**-submodule of M which is a subquotient of a standard supersingular H*-
module.

(d) Suppose that M is supersingular. Viewing the isomorphism A(M)[t] = M (Proposition 4.3) as an
identity, we have FM" C FA(M)[t1* for each u € [0, g — 11%, and in particular
FM C FAM)[t]. (55)

The operators T,, T and Ty, acting on FA(M)[t] as defined above restrict to the operators
Ty, Ty, Toxyy € HEE acting on FM.

Proof. (a) Let u € [0, g —1]®. For x € FM*, any y € I" and any i we compute

-1 | _ p—igp—1 i Y 77 B (79 P
T 0O = Tapyon ) = To Ty To () =y =y 7ix,

o' o () @
ie,x e M,
(b) Let 1 € [0, g — 1]® and define 1’ € [0, g — 1]® by p} = ;4 for all i. For x € FM*, any y € " and
any i we compute

Tty T (Mo () = T (T () =y T ) = y M 1T ().

We also find Ty (T)(T,,(x))) = Ty (T, (x)) = =T M (x) = =T (T, (x0)) if i =g — 1, but Ty (T (T, (x))) =
T, (T (x)) =0if u; < g—1. Together this shows T,,(x) € FM* , i.e., T,(FM") C FM™ . It is immediate
from the definitions that T3 (FM*) C FM*. For x € FM"*, any y, ¥y’ € I' and any i we compute

Ta_lvl(y)Tttl;(Te*(V/)(x)) = Ta_lvl(y)TW"-e*)(y') T(0) = Tiienin V" Th(x) = Y Ty (Tor ) (1)),



Supersingular Hecke modules as Galois representations 105

If wi—1 =g — 1 we also compute

T Tci(Te*(V/)(x)) = T Is Tai)(x)
= _T(s-w‘[~e*)(y’)Tai(x)
= —T (T (i et (y) (X))
= —T/ (T () (x)).

Here, in the last equation we use @' -s- @' -e* =e* for2 <i <d;fori =1 weuse w-s- @ ' -e* —e* =
and Tag(y/)(x) = TJlTalv(y/)Tw(x) =y HMx=x(@spug=qg—1); fori =0 we use s - g* —e* = —a
and T gy (x) = yH'x =x (as w—y =g — 1). If however u;—1 < g — 1 then T;T, (To+,1y (X)) =
Tis.-i-eyy) Ts Tui(x) = 0. Together this shows T+, (x) € FM¥, i.e., Tern(FMH*) C FMH.

(c) On a standard supersingular 7**-module, and hence on its subquotients, the actions of T, Ty and
Talv(y) satisfy formulae (52) and (53), for suitable p’s.

(d) Let € [0, g — 1]® and define ' € [0, g — 1]® by w; = piy1 for alli. Let x € FM*. The proof
of (b) shows T,(x) € 3", Mg" [01if s, = juo < g — 1, resp. T,(x) € ¥, Mg" [11if ;= po=¢ — 1. In
either case, the definition of A(M) then says T,,(x) = —t"°@px. This shows FM* C FA(M)[t]* and that
the action of T, on 7 M is indeed as stated. For the actions of 7 and T+, this is clear anyway. O

Remark. The inclusion (55) is in fact an equality.

5C. Reconstruction of §-supersingular H*-modules M from A(M).

Lemma 5.8. Let M be an irreducible supersingular H-module. Let i € [0,q — 11®, x € M and
Ujc € Mo s e fori >0and0 < c < q—2 (with €, given by formula (54)). Assume u; . =0 if
(i) ui=0,0r
(i) ui=qg—1landc >0, or
(i) ui<g—landc=>qg—1—pu;.
Assume that, if we put x{—1} = x, then

q—2

iy =tMpGeli — 1) =Y 1“pu;

c=0

belongs to M = A(M)[t] for each i > 0. Finally, assume that x{D} = x for some D > QO with D + 1 €
Z(d +1). Then there is some x’ € M with x — x’' € M and such that

iy=trg(-- " o0 px")) - )

belongs to M for each i, and x'{ D} = x'. Moreover, if x is an eigenvector for T+ ), then x' can be chosen
to be an eigenvector for Te-(r), with the same eigenvalues.
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Proof. 1t is easy to see that all the irreducible subquotients of a standard supersingular #-module
are isomorphic. In particular, an irreducible supersingular H-module is isomorphic with a submodule
of a standard supersingular H-module. Therefore we may assume that M itself is a (not necessarily
irreducible) standard supersingular 7{-module. We then have a direct sum decomposition M = @?:OM L/}
with dimg (M) = 1 and integers 0 < k; < g — 1 such that

T, (MU = tkjgo(M[j+l]) — MUl (56)

(always reading j modulo (d + 1)). More precisely, we have M1 € M€ for certain €; € [0, ¢ —2]®,
and choosing the above k; minimally, we have k; = (v - € j+1) 1 modulo (g — 1). It follows that

kltloM = EB k[tloMU' = QB @z ‘oMU, (57)

j=0 ¢=0

For m € M write m = Zj ml1 with mU1 e pMU1, By formulae (56), (57), the defining formula for x{i}
splits up into the formulae

q—2
(il = tipx(i = V) = > o) (58)
c=0
for all j. We use them to show
o™ =0 ifc—p ¢ (¢—DZ. (59)

If u; € {0, g — 1} then formula (59) follows from our assumptions on the u; .. Now assume u; ¢ {0, g — 1}

[H—l]

. —1 i+1, . . 41 i+1, .
and u; # 0 for some c. The assumption u; . € M® s €y implies Ta,(ulUCJr ]) e M*®" €« and since

g—1—pi=q—1—ei=@o™ ) ifu ¢{0,q-1}

we get T, (u[JH]) tq_l_“fgo(ul[.f:rl]), ie, kj =g —1—p;. Now le":() oMUt is a direct sum
of one dimensional k-vector spaces, with x{i}l/] € tXipMU+1 trip(x{i — 1)U+ e tHip MU+ and
tc(p(u[]+ 1Y € t¢oMU for all ¢. Since by assumption u; . =0 forc>q — 1 — pu; = k;, formula (58)

[J‘H]) _

shows €@ (u 0 whenever ¢ # ;.

Formula (59) is proven. Arguing once more with formulae (56), (57) and (58) shows
[peli — V) =0 or oy =01 if i =g —1. (60)

In the following, by u; ,_1 we mean u; o. If t“lgo(u[]H]) # (0 we may write

[j+1]
I, )

tHipx(i — ) — gl T = o e (!

for some p; ; € k, since t* g (x{i — 1}/ 1) and t’”(p(uif ; 1) belong to the same one-dimensional k-vector
space. The upshot of formulae (59) and (60) is then that formula (58) simplifies to become either

x{i}[j] — t’““go(x{i _ 1}[j+1]) (61)
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or
. i . i+1
(il = py el (62)

for some p; ; € k. Departing from xUT = x{D}U1 we repeatedly substitute formula (61); if this is possible
D + 1 many times we end up with

xU = x{(DW = o (1M o op(xl1))) - ),

and in this case we put n(j) = 0. Otherwise, after D + 1 — n(j) many substitutions of formula (61), for
some 1 <n(j) < D+ 1, we end the procedure by substituting formula (62) (once) and obtain
_ _ . . L n(i
M = x{D)W = p;thr (. - (IM"(/)‘/’(IMM_I‘p(”i,(j)—lr,lffn)(]j),l))) )

[j+1=n()]
n(j)—1, -1
We study this second case n(j) > 0 further. By construction,

with t#(-1pu # 0, for some p; € k.

[j+1-n()] )

. — tMn()—1
wil =1 =100y,
i d belongs to M. On the other hand, uy,(; Me'5" e imolies T, (b 7))
1s nonzero and belongs to M. On the other hand, u,(j)—1,u,;,, € implies w(”n(j)—l,u,,(j),l

n(j).
M5 ""€u and hence

)e

(s D-€,); [j+1-n()] _ [j+1=n(j)] sV .e
! WU gy ) = Tl 1) €M "
Together this means (t,(j)—1 = (s@™) - €,,)1 modulo (g — 1) and w;{—1} € M5@"<u_ But we also have
Hn(j)—1 = (™) -€,)1. Combining we see (iy(j)—1 = —MUn(j)—1 Mmodulo (¢ — 1). Hence, we either have

Mn(jy—1 =0 0r tyjy—1 = (g — 1)/2 or pyy—1 = g — 1. In view of the assumed vanishings of the u; .
[j+1-n()]

(and of un(j)—l,un(jm

# 0) this leaves pt,(j)—1 = g — 1 as the only possibility. It follows that
50" e, ="V e,
and hence w;{—1} e M "€y Next, again by construction we know that

wjls) = 10 g (w; (s — 1)

belongs to M, for 0 < s < D — n(j). By what we learned about w;{—1} this implies w;{s} =

(—1) 75w {1} € M by an induction on s (and we also see Un(j)+s € {ko, ..., kq} with
the k; from formula (56)). For s = D —n(j) we obtain xU/! = x{D}ll € Méx.
We now put x' =3, -, xUl. O

Lemma 5.9. Let M be an irreducible supersingular H-module. Let i € [0, ¢ — 1]1%° and x € M such that

xfiy =" " px)) )

belongs to M = A(M)[t] for each i > 0, and such that x{D} = x for some D > Qwith D+ 1 € Z(d + 1).
Then x € M and x{i} = (—T,)'x for each i.
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Proof. This follows from the formulae (56) and (57) in the proof of Lemma 5.8. The argument is very
similar to the one given in the proof of Lemma 5.6. g

Theorem 5.10. Let M be a f-supersingular H*-module. Via the isomorphism M = A(M)|t], the action
of H* on M can be recovered from the action of O on A(M).

Proof. We may assume dimy (M) < oo. Define inductively the filtration (F ‘M )i=o of M by H*-submodules
as follows: FOM =0, and F'T!'M is the preimage of F(M/F!M) under the projection M — M/F'M.
The H*-action on the graded pieces can be recovered in view of Lemma 5.7. Exhausting M step by step
it is therefore enough to consider the following setting: The action of H* has already been recovered on
an H*-submodule M, of M and on the quotient M /M, and the latter is irreducible.

We reconstruct the action of 7+ on M by means of

1

Toh(x)=y  -x foryel

as is tautological from our definitions. Next we are going to reconstruct the decomposition

M = @ M. (63)

ecl0.9-2]®,
a€l0,q-2]

Let D > 0 be such that D + 1 € Z(d + 1) and fP*! =id for each k-vector space automorphism f of M.
(Such a D does exist. Indeed, M is finite, hence Aut; (M) is finite, hence there is some n € N with f" =id
for each f € Auty(M). Now take D = (d +1)n—1.) For € € [0, ¢ —2]® and a € [0, ¢ — 2] define M!¢! to
be the k-subspace of M generated by all x € M with y - x = y“x (all y € I") and satisfying the follo;zving

.. . . . —1 i+1
condition: there is some u € [0, g — 11® (depending on x) with €, = €, and there are u; . € M7 °¢ e

for i > 0 and 0 < ¢ < g — 2 with the following properties: Firstly, u; . = 0 if
(i) wi =0, or
(i) uj=g—1landc >0, or
(i) ui<g—1landc>qg—1—pu;.
Secondly, putting x{—1} = x and

iy =1pCeli — 1) = Y t“pui, (64)

we have x{i} € M = A(M)[t] for any i, as well as x{D} = x.
It will be enough to prove M = M1, We first show
M, C Mé[f]. (65)

We start with x € F(M/My)* N (M/Mo); for some p with €, = €. By Proposition 3.2 we may lift it
to some x € M€ such that for each i with T, T/ !X = 0 we have T>T/*!x = 0. As T,, maps simultaneous
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eigenspaces for the T; (with ¢ € T') again to such simultaneous eigenspaces, and as TS2 commutes with
the 7;, we may assume x € M. Putting

x(i}= (=T, *'x
. . . . i+l .
for —1 <i < D, repeated application of Lemma 2.4 shows x{i} € M;’ T € with
Ge,1=a, aco=a—¢€ and dae;=a—€y—€g_jy1— " —€q

fori <d, and then a.; = a.; fori —i’ € Z(d +1).
fO<u;<qg—1put
uie =Ty (T {i)) e pitac)-

As x € F(M/Mp)* and u; <q — 1 we have u; . € My, and as x{i} € M€ we have Ujc € M“fl“"m'f,
together u; . € M(‘)"fl“"’ﬂ'e. From u; < g — 1 we furthermore deduce k,(;y = (@' ! - €) = ;, and since
Tszx{i} = 0 we then see
toxfi — 1) —x{i} = Y t“pu; . = h(—x{i}) =0. (66)
C

Since furthermore (75 (x{i}))c+p;+a.; =0 and hence u; . =0 for g —1—u; < ¢ < g —2 by g-supersingularity

(if 0 < i < g — 1 then p; = €_;), all the conditions on the u; . in the definition of x € M| are satisfied.
If u; = q — 1 we have TSZ(TSZx{i}) = Tszx{i} and hence kTSzx{i} = g — 1 (independently of the value of
w; we have (o't €); = u; modulo (¢ — 1)), hence

117 T N (T2 (i) + TPx (i} = h(T*x{i}) = 0. (67)
Similarly we see k(,(;;_r2,(;)) = 0 and hence
oT,  (x(i} = T2x i) + x (i} — T7x{i} = h(x (i) — T)x{i}) = 0. (68)
We compute
1 p(eli = 1) = =17 T, (x (i)
= 17T, T2 (x(i})
=T (x{i})
= T, (i} = TPx (i) +x(i)
where the second equality is the result of applying 9! to formula (68), where the third equality is
formula (67) and where the fourth equality is formula (68). Thus, putting u; 0 = 7, Yx{i) — Tszx{i})
and u; . = 0 for ¢ > 0, we again get formula (66). Moreover, u; o belongs to My as x € F(M/My)*
and w; = g — 1; but it also belongs to M® @€ since u; = g — 1 implies w~ 'so'*! . € = ' - €. By
construction, x{d} = (—=T,)¢*t!(x), hence x{D} = (—=T,)?*!x = x.

It follows that x € Mg[f]. We have shown that any element in 7 (M /Mo)" N (M /M)y, for n with €, =€,
lifts to an element in Mg N MEEEJ. Since we have (M/Mo)¢ =" ,cj0.0—1e F(M/Mp)* (see Lemma 5.7) and

€ =€
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since this is respected by the action of Te+(r), we thus have reduced our problem to showing (M), C M EEEJ.
But for this we may appeal to an induction on dimg (M) (which we may assume to be finite).
We have shown formula (65). Now we show

M c M. (69)

Let x € M[[f], we[0,q —1]® (with €, =€) and u; . be as in the definition of M(EG]. Define x{i} for

—1 <i < D as in that definition. By Lemma 5.9 and the proof of the inclusion (65) we find x € M;
and u; . € M(‘)’)_ls‘dHf for 0 <i < D such that, after replacing x by x — X and u; . by u; . — il; ., we may

assume x € M.

Claim. If x € M and if My is irreducible, then there is some x' € (M), with x — x' € (MO)Z and such
that

iy =1 " et"ex)) - )
belongs to My for all i, and x'{D} = x'.

This follows from Lemma 5.8.

If My is not irreducible, choose an ‘H-submodule My in My such that My/ My is irreducible. By the
above claim and again invoking the proof of the inclusion (65), after modifying x by another element of
M, (now even of (My)¢,) and suitably modifying the u; ., we may assume u; . € Mqo. Thus, it is now
enBugh to solve the pro:t)lem for the new x € (My), (and the new u; . € Moo). We continue in this way.
Since we may assume that dimy (M) is finite, an induction on the dimension of M allows us to conclude.

We have reconstructed the decomposition (63) of M.

Now we reconstruct 737, acting on M. As we already know the decomposition (63), it is enough to
reconstruct T T,,(e) for e € Mj,/, all €', a’. Given such e, let € be its class in M /My. By Lemma 2.4 there
are then ¢, a such that 7,,¢ € EM/MO)Z.

First assume €; = 0. We then reconstruct T, T,(e) as T, T,(e) = t1 _1<p(e). Indeed, to see this we
may assume (by Lemma 2.3) that T,(e) is an eigenvector for Tsz. If Tssz(e) = T,(e) and hence
T,T,(e) = —T,(e), the claim follows from the definition of h(T,(e)). If TSZTw(e) = 0 then in fact
T, T, (e) = 0 (since also €; = 0), and the definition of 4(7T,,(e)) shows 17" p(e) = 0.

Now assume €; > 0. This implies TSZTw(e) =0 and k7, () = €1, and by fi-supersingularity we get

trootlge=— 3" 1Mol N (TThe)eterta)-
0=c<q—l—kr,e@)
Here (TsT,€)c1e,+a € My and g — 1 — k7, () = (s - €)1. The map
P MM e D TeT G0
0<c<q—1—kr,) O0<c<q—l—kr,(@

is injective. This is first seen in the case where My is irreducible; it then follows by an obvious devissage
argument. We therefore see that the (7;7,€)c+e,+4 for 0 < c < g —1 — k7, () can be read off from
tk1o@+1pe, hence also T, T, e can be read off from %7+ pe (by #-supersingularity).
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The restriction of T, to {x € M | T, T,,(x) € My} is reconstructed as follows. Given x € (M/ Mo)g’jef

(for some €, some a) with T;T,,x = 0, we use the decomposition (34) to lift x to some x € M;":éf. Since

(w™'-€)g=¢€, Lemma 2.4 says Tpx e M 5 . It then follows from the definitions that

T,x = _tél(px - Z tc(pTw_l ((TYwa)c—l—el—l—a)-

c>0

We have now collected all the data required in Proposition 3.3 for reconstructing M as an H*-module. [

5D. Full faithfulness on §-supersingular H*-modules. Let Rep(Gal(F /F)) denote the category of rep-
resentations of Gal(F /F) on k-vector spaces which are projective limits of finite dimensional continuous
Gal(F/ F)-representations.

Let Mod,, (#*) denote the category of f-supersingular H*-modules. Let Mod, (H) and Mod,, (%)
denote the categories of supersingular -modules and supersingular #**-modules, respectively.

Let M € Modg (H%) with dimg(M) < co. By Proposition 4.3 we have A(M) € Mod*(9), thus
AM)* ey k(1)) € Mod® (k((1))) (see Proposition 1.4). Let V(M) be the object in Rep(Gal(I*:/F))
assigned to A(M)* ®jq,q k((t)) by Theorem 1.2. Exhausting an object in Mod,, (%) by its finite
dimensional subobjects we see that this construction extends to all of Mod,, (H®).

Theorem 5.11. The assignment
Mody (H*) — Rep(Gal(F/F)), M~ V(M) (70)
is an exact contravariant functor, with dimy (M) = dimy (V (M)) for any M. Also,
Mod,, (H*) — Rep(Gal(F/F)), M V(M), a1
Mod (H) — Rep(Gal(F/F)), M V(M)

are exact and fully faithful contravariant functors.

Proof. Exactness follows from exactness of M +— A(M) (Proposition 4.3), exactness of A > A* Qg
k((t)) (Proposition 1.4) and exactness of the equivalence functor in Theorem 1.2. From Proposition 4.3 we
get dimy (M) = dimy ) (A(M)* ke k(2))), from Theorem 1.2 we get dimyg ) (A(M)* Qkpy k(1)) =
dimg (V (M)).

To prove faithfulness on Mod, (H"), suppose that we are given finite dimensional objects M, M’
in Mod (%*) and a morphism p : V(M') — V(M) in Rep(Gal(F/F)). By Theorem 1.2, the latter
corresponds to a unique morphism of étale (¢, I')-modules

1AM @iy k(1) = AM)* ®pqey k(1)).

By Proposition 1.17 (which applies since Proposition 4.3 tells us A(M), A(M') € Mod*(9)) it is induced
by a unique morphism of -modules u : A(M) — A(M’). Clearly u takes A(M)[t] to A(M')[t], i.e., it
takes M to M’'. Applying Theorem 5.10 to both M and M’ we see that ;v : M — M’ is H*-equivariant. If
M, M’ € Modg (#*) are not necessarily finite dimensional, the same conclusion is obtained by exhausting
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M, M’ by its finite dimensional submodules. We deduce the stated full faithfulness on Mod, (H%). It
implies full faithfulness on Modg () (see Lemma 2.5). O

Example. The analogs of Proposition 3.3 and Theorem 5.11 (on the functor in formula (71)) fail for
supersingular #**-modules. To see this, take d = 2, and endow the 6-dimensional k-vector space M
with basis e, e1, €2, fo, f1, f> with the structure of an H*-module as follows. T, for each ¢t € T acts
trivially. Put Ty (fo) = Ts(e1) = Ty(e2) = 0 and T (eo) = —eo, Ts(f1) = — f1. Ts(f2) = — fo. Fixa €k
and put T, (eo) = ey, T(e1) = ez, Ty(e2) = eo, T (fo) = f1 +aer, To(f1) = f2 —aez, Tu(f2) = fo.
This is even an #*-module if and only if & = 0, if and only if it is decomposable (as an H**-module).
The corresponding O-module A(M) is defined by the relations ey = —ey, pe; = —ep, 4 _lgoeg = —e¢y,
ofr = —fo, tq_lgo(fo —aeg) — f1, tq_lgo(fl + aer) — fr. But this O-module is in fact independent of «,
since 197 pe; = 17" 'pey = 0. Thus, an H*-analog of Theorem 5.11 fails. To see that an H*-analog of
Proposition 3.3 fails take My to be the k-subvector space of M spanned by e, e, e; it is stable under
H*. The action of H** on My and on M /M, does not depend on «. The actions of T4*! = T3, of T«
and of 7T, do not depend on «. We have (T T,,)~'(My) = My + kf> and hence the restriction of 7,, to
(T, T,,) "' (My) does not depend on «. We have M = Ze M¢€ with M€ = 0 whenever €; # 0. Thus, an
#**-analog of Proposition 3.3 would predict that also the action of T, (even of %) is independent of «,
which however is apparently not the case.

5E. The essential image.

Definition. Let Hom(I", k*)® denote the group of (d + 1)-tuples a = («y, . .., ag) of characters « e
I' — k*. Let &4, act on Hom(T", k*)® by the formulae

(w-a)g=0y and (w-a);=a;—1 forl<i<d,

s-a)y=a, G-a)j=a and (s-a);=«a; for2<i<d.

Recall the action of G411 on [0, g — 2]1°. Combining both (diagonally), we obtain an action of G411 on
Hom(T, k*)® x [0, q— 212,

In Lemma 1.19 we attached to each standard cyclic étale (¢, [')-module D of dimension d 4+ 1 an
ordered tuple ((ao, mo), ..., (aq, mgq)) (with integers m; € [1 — g, 0] and characters o; : I' — k),
unique up to a cyclic permutation. Sending each m; to the representative in [0, g — 2] of its class in
Z/(g — 1), the tuple (my, ..., my) gives rise to an element in [0, g — 2]®. On the other hand, the tuple
(a0, . .., ag) constitutes an element in Hom(T", k*)®. Taken together we thus attach to D an element in
Hom(T, £*)® x [0, g — 2]®, unique up to cyclic permutation. Equivalently, we attach to D an orbit in
Hom(T", £*)® x [0, ¢ — 2]® under the action of the subgroup of G, generated by w.

Now let D}, D) be irreducible étale (¢, I')-modules over k((¢)). We say that D}, D) are strongly
G,441-linked if they are subquotients of (d + 1)-dimensional standard cyclic étale (¢, I')-modules D,
D, respectively, and if Dy, D, give rise to the same & 4 -orbit in Hom(T, k9% x [0, q— 2]1°. We

say that D|, D} are &, -linked if they are subquotients of (d 4 1)-dimensional standard cyclic étale
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(¢, I')-modules Dy, D, respectively, and if D, D, give rise to the same &, 1-orbit in [0, g — 2]1% (or
equivalently, if the assigned tuples (up to cyclic permutation) in [0, ¢ — 2]® coincide as unordered tuples

(with multiplicities)).

Remark. (a) Let D denote the étale (¢, I')-module over k((¢)) corresponding to V (M), for a finite
dimensional supersingular #**-module M. Our constructions show M = Hom{*"(D*, k)[t] (where D" is

given the ¢-adic topology). Moreover:
(i) Consider the natural map of k[[¢]][¢]-modules
kp : k][] iy M — Hom™™ (D", k).

As a k[[¢][¢]-module, ker(kp) is generated by ker(xkp) N (k@ M + k[[t]lp @ M).
(i) Each irreducible subquotient of D is a subquotient of a (d + 1)-dimensional standard cyclic étale
(¢, I')-module; more precisely:

(ii)(1) If D (or equivalently, M) is indecomposable, then any two irreducible subquotients of D are
G441-linked.

(i1)(2) If M is even a supersingular #-module, and if D (or equivalently, M) is indecomposable, then
any two irreducible subquotients of D are strongly S, ;-linked.

(ii)(3) If M is even a supersingular H°-module, then each irreducible subquotient of D is a subquotient
of a (d + 1)-dimensional standard cyclic étale (¢, I')-module with parameters m ; € {1 — g, 0}
and o; =1 for all j.

(iii) For any (¢, I')-submodule Dy of D the yr-operator on Dy N DF is surjective.

(b) Does property (i) mean (at least if property (iii) is assumed) that D is the reduction of a crystalline
p-adic Gal(F/ F)-representation with Hodge—Tate weights in [—1, 0]?

(c) Property (iii) means that the functor Dy — Dg is exact on the category of subquotients Dy of D.

(d) It should not be too hard to show that properties (i), (ii)(1) and (iii) together in fact characterize the
essential image of the functor (70).

(e) On the other hand, properties (i), (i1)(2) and (iii) together do not characterize the essential image of
the functor (71). To see this for d = 1 consider the following étale (¢, I')-module D (which satisfies (i),
(ii)(2), (iii)). It is given by a k-basis e, e1, fo, f1, g0, g1 of (D*)*[¢] and the following relations:

per=eo. @fi=fo. egi=g0. 1" 'geo=e1r, 1" ofo=fiter. 17 'pg0=2g1+ fo.
Another object not in the essential image is defined by the set of relations

per=eo, @fi=fo, wgi=g0, 17 'geo=er, t'"ofo=fi+te, 17 '0g0=g1+f1.
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6. From G-representations to -modules

6A. Supersingular cohomology. Put G = GL;(F), let Iy be a pro-p-Iwahori subgroup in G, and fix
an isomorphism between # and the pro-p-Iwahori Hecke algebra k[Iy\G/Iy] corresponding to Iy C G.
For a smooth G-representation Y (over k) the subspace Y0 of Iy-invariants then receives a natural action
by H. Let us denote by HC (I, Y) the maximal supersingular #-submodule of Y. It is clear that this
defines a left exact functor

Mod(G) — Mod (), Y — H2(Iy, Y)

where Mod(G) denotes the category of smooth G-representations. The category Mod(G) is a Grothendieck
category [Schneider 2015, Lemma 1] and has enough injective objects [Vignéras 1996, 1.5.9]. Let D1 (G)
denote the derived category of complexes of smooth G-representations vanishing in negative degrees,
let D (#) denote the derived category of complexes of supersingular H-modules vanishing in negative
degrees. The above functor gives rise to a right derived functor

Ry (o, ) : DT (G) — DL (H). (72)

Let D (Gal(F/F))) denote the derived category of complexes in Rep(Gal(F/F)) vanishing in negative
degrees. Since the functor V is exact, it induces a functor

V: DI (H) — Dt (Gal(F/F))).
We may compose them with R ([p, .) to obtain a functor
VoRy(lp,.): DT(G) — D (Gal(F/F))).

Remark. The functor Hg (I, .) is the composite of the left exact functor Mod(G) — Mod(#), Y + Y10
(taking Ip-invariants) and the left exact functor Mod(H) — Mod(H), M — M, which takes an H-
module to its maximal supersingular H-submodule. Also Mod(#) is a Grothendieck category with
enough injective objects. Writing R(lp, .) and R (.) for the respective right derived functors, we have a
morphism Ry (lp, .) = Ry () o R({o, .).

Remark. Of course, we expect the functor V o Ry (lp,.) to be meaningful only when restricted to
(complexes of) supersingular G-representations. The reason is the following theorem of Ollivier and
Vignéras [2018]: A smooth admissible irreducible G-representation Y over an algebraic closure k of k is
supersingular if and only if Y is a supersingular 7 ® k-module, if and only if Y admits a supersingular
subquotient.

It is known that, beyond the case where G = GL,(Q,), a smooth admissible irreducible supersingular
G-representation Y over k is not uniquely determined by the #-module Y%. Is it perhaps uniquely
determined by the derived object Ry (1o, Y) € D (#)? It would then also be uniquely determined by the
derived object V (R (Io, Y)) € Dt (Gal(F/F))).
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Remark. For the universal module Y = indg k we have Hg (Ip, Y) =0 since H = (indg k)’ does not
contain nonzero finite dimensional H-submodules (let alone supersingular ones).

6B. An exact functor from G-representations to H-modules. We fix a (d 4 1)-st root of unity & € k>
. d ;
with % &/ =0. |
For an #-module M and j € Z let M¥' be the #-module which coincides with M as a module over
the k-subalgebra k[T, T;],7, but with T,,|, .; = &/ T, .
Let 6 : My — M, be a morphism of H-modules. For (xg, x;) € My @® M put

T, ((x0, x1)) = (Ty(x0), Te,(8(x0)) + & T, (x1)),
T ((x0, x1)) = (Ts(x0), Ts(x1)),
T, ((x0, x1)) = (T;(x0), T:(x1)) forteT.

Lemma 6.1. These formulae define an H-module structure on My @ M; we denote this new H-module

by My @° M. We have an exact sequence of H-modules
0—>M]$—>MOEB‘3M1—>M0—>O. (73)

The morphism § : My — M can be recovered from the exact sequence (73).
If there is some A € k* with T4+ = A on Mo and on My, then also T4+ = % on My @° My,

Proof. By induction on i one shows
i1
TE((x0, x1)) = (T} (x0), E' TL(x1) + Y E/ T (8(x0)))
j=0
for i > 0, and hence T4+ ((xo, x1)) = (T4 (x0), T4 (x1)). From here, all the required relations are
straightforwardly verified, showing that indeed we have defined an 7{-module.

Obviously, from the exact sequence (73) both My and M| can be recovered. That also § can be
recovered follows from the following more general consideration. Suppose that we are given § : My — M|
and € : No — N; and a morphism of H-modules f : My @ M; — Ny & N, with f(Mf) C Nf.
Then there are ‘H-module homomorphisms fy : My — No, f1: MlS — ng and f My — le with
f((x0, x1)) = (fo(x0). f1(x1) + f(x0)). For xo € My we compute

[ (To(x0,0) = f (T (x0), Ty (8(x0))) = (T (fo(x0)), T (f1(8(x0))) + £ T (f (x0))),
T, (f (x0, 0)) = T (fox0), £ (x0)) = (T (fo(x0)), Tuw(€ (fo(x0))) +& T (f (x0))).-

As f(T,(x0,0)) = T,(f (x0,0)) we deduce T, (e(fo(x0))) = T, (f1(6(xp))), and since T,, is an isomor-
phism even €( fo(x0)) = f1(8(x0)). O

Let
(Mo 8) =122 M 25 My 2o My 25 m, 2 0

be a complex of H-modules.



116 Elmar Grosse-Klonne

Lemma 6.2. (a) There is a unique H-module @i‘ezM j with the following properties:
e As a k-vector space, @i;ZMj =®@jezM;.
e For any j we have t(M;) C M; + M for each T € H; in particular, the subspace M~ ; =
®j>jMj is an H-submodule.
j

o The H-module M ; /M= > is isomorphic with Mf] @S M§+1 as defined in Lemma 6. 1.

(b) If there is some L € k> with T¢T! = ) on each M, then T4+ = ) on @‘;’eZMj.

(c) The assignment (M,, $5,) — (EBi-'eZM j» (M>}) jez) is an exact and faithful functor from the category of

complexes of H-modules to the category of filtered H-modules. The isomorphism class of the complex
(M,, 8.) can be recovered from the isomorphism class of the filtered H-module (@i‘eZMj, (M=) jez)-

Proof. This is clear from Lemma 6.1. (]

Definition. (a) For a smooth G-representation Y over k and i > 0 let us denote by H (Iy, Y) the i-th
cohomology group of R (ly, Y), see formula (72).

(b) We say that a smooth G-representation Y over k is exact if for each i > 0 the functor Y’ Hs’s (Ip, Y
is exact on the category of G-subquotients Y’ of Y.

(c) An exhaustive and separated decreasing filtration (¥/) jez of a smooth G-representation Y over k is

exact if Y7 /Y711 is exact for each j.
Example. A semisimple smooth G-representation is exact.

Let R denote the following category: objects are smooth G-representations with an exact filtration,
morphisms are G-equivariant maps respecting the filtrations (i.e., f : Y — W with f(Y?) Cc W' for all i).
We denote objects (Y, (Y))iez) in Rg simply by Y.

Let () denote the category of E;-spectral sequences in the category of H-modules.

For Y* € M we have the spectral sequence

E(Y*) =[EM""(Y*) = H™ (Lo, Y™ /Y™ = H' ' (Io, Y)].

A morphism f : Y* — W* in R¢ induces morphisms H” (Iy, Y /Y*1) — H™ (I, W'/ WiT!) for any m
and i, and these induce a morphism of spectral sequences E(Y*) — E(W*). We thus obtain a functor

R —> E(H), Y'+— EX°).

For r > 1 let ), be the set of equivalence classes of pairs of integers (m, n), where (m, n) is declared
to be equivalent with (m’, n’) if and only if there is some j € Z with (m, n) = (m' + jr,n’ — j(r — 1)).
For y € ), let E} (Y*) be the complex of #-modules whose terms are the E™"™(Y*) with (m, n) € y, and
whose differentials d, : E™"(Y*) — E™*""="+1(Y*) are given by the spectral sequence. We apply the
functor of Lemma 6.2 to E; (Y*) to obtain a (filtered) supersingular 7{-module E; (Y*).

For a morphism f:Y*— W*in fRs we have induced H-linear maps f, : ®ycy, E)(Y)— Dyey, E)(W*).
Notice however that, in general, for a given y € ), there is no y’ € ), such that fr(Ery (Y*)) C E} /(W'),

evenifr =1.
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Lemma 6.3. Let Y* — W* — X* be a complex in Rg such that for each i the induced sequence
0— Yi/yi+l o wi/witl 5 X1/ X+ 5 0 is exact. We then have an exact sequence of supersingular

‘H-modules
0— QB E](Y") — @ E}(W*) — @ E](X*) — 0.
YEV YEV YEVI
Proof. This follow from the constructions. O

Remark. The analog of Lemma 6.3 is false for the maps f, forr > 1.

Remark. For a smooth G-representation Y endowed with an exact filtration, we may apply the functor
V of Section 5D to the supersingular H-module E; (Y*) (any r). In this way, we assign a Gal(F /F)-
representation to Y. We propose this construction as a nonderived alternative to that of Section 6A. Of
course, again it will be meaningful only on supersingular G-representations.

We expect that for G = GL,(Q)), this construction, with r = 1, essentially recovers the restriction of

Colmez’s functor to all supersingular G-representations.!!

Acknowledgements

I thank Laurent Berger, Peter Schneider and Gergely Zabradi for helpful discussions related to this
work. I thank Marie-France Vignéras for a very close reading of the text and for detailed suggestions for
improvement. I thank the anonymous referees for their careful reading and helpful recommendations. I
thank Rachel Ollivier for the invitation to UBC Vancouver in the spring of 2017; some progress on this
work was obtained during that visit.

References

[Colmez 2010] P. Colmez, “(¢, I')-modules et représentations du mirabolique de GL2(Qp)”, pp. 61-153 in Représentations
p-adiques de groupes p-adiques, I1: Représentations de GLo(Q)) et (¢, I')-modules, edited by L. Berger et al., Astérisque
330, Soc. Math. France, Paris, 2010. MR Zbl

[Emerton 2008] M. Emerton, “On a class of coherent rings, with applications to the smooth representation theory of GL(Qp)
in characteristic p”, preprint, 2008, Available at https://tinyurl.com/emerpdf.

[Fontaine 1990] J.-M. Fontaine, “Représentations p-adiques des corps locaux, I”, pp. 249-309 in The Grothendieck Festschrift,
II, edited by P. Cartier et al., Progr. Math. 87, Birkhiuser, Boston, 1990. MR Zbl

[Grosse-Klonne 2016] E. Grosse-Klonne, “From pro-p Iwahori-Hecke modules to (¢, I')-modules, I, Duke Math. J. 165:8
(2016), 1529-1595. MR Zbl

[Grosse-Klonne 2019] E. Grosse-Klonne, “A note on multivariable (¢, I')-modules”, Res. Number Theory 5:1 (2019), art. id. 6.
MR Zbl

[Kisin and Ren 2009] M. Kisin and W. Ren, “Galois representations and Lubin-Tate groups”, Doc. Math. 14 (2009), 441-461.
MR Zbl

[Ollivier 2010] R. Ollivier, “Parabolic induction and Hecke modules in characteristic p for p-adic GL,,”, Algebra Number
Theory 4:6 (2010), 701-742. MR Zbl

[Ollivier and Vignéras 2018] R. Ollivier and M.-F. Vignéras, “Parabolic induction in characteristic p”, Selecta Math. (N.S.) 24:5
(2018), 3973-4039. MR Zbl

Hje., not only to those generated by their /p-invariants


http://www.numdam.org/item/AST_2010__330__61_0/
http://msp.org/idx/mr/2642405
http://msp.org/idx/zbl/1235.11107
https://tinyurl.com/emerpdf
https://tinyurl.com/emerpdf
http://dx.doi.org/10.1007/978-0-8176-4575-5_6
http://msp.org/idx/mr/1106901
http://msp.org/idx/zbl/0743.11066
http://dx.doi.org/10.1215/00127094-3450101
http://msp.org/idx/mr/3504178
http://msp.org/idx/zbl/1364.11103
http://dx.doi.org/10.1007/s40993-018-0144-8
http://msp.org/idx/mr/3887224
http://msp.org/idx/zbl/07086420
https://www.math.uni-bielefeld.de/documenta/vol-14/16.html
http://msp.org/idx/mr/2565906
http://msp.org/idx/zbl/1246.11112
http://dx.doi.org/10.2140/ant.2010.4.701
http://msp.org/idx/mr/2728487
http://msp.org/idx/zbl/1243.22017
http://dx.doi.org/10.1007/s00029-018-0440-0
http://msp.org/idx/mr/3874689
http://msp.org/idx/zbl/06976958

118 Elmar Grosse-Klonne

[Schneider 2015] P. Schneider, “Smooth representations and Hecke modules in characteristic p”, Pacific J. Math. 279:1-2 (2015),
447-464. MR Zbl

[Schneider 2017] P. Schneider, Galois representations and (¢, I')-modules, Cambridge Stud. Adv. Math. 164, Cambridge Univ.
Press, 2017. MR Zbl

[Schneider and Venjakob 2016] P. Schneider and O. Venjakob, “Coates—Wiles homomorphisms and Iwasawa cohomology for
Lubin-Tate extensions”, pp. 401-468 in Elliptic curves, modular forms and Iwasawa theory (Cambridge, 2015), edited by D.
Loeffler and S. L. Zerbes, Springer Proc. Math. Stat. 188, Springer, 2016. MR Zbl

[Vignéras 1996] M.-F. Vignéras, Représentations [-modulaires d’un groupe réductif p-adique avec l#p, Progr. Math. 137,
Birkhéuser, Boston, 1996. MR Zbl

[Vignéras 2005] M.-F. Vignéras, “Pro- p-Iwahori—-Hecke ring and supersingular ﬁp-representations”, Math. Ann. 331:3 (2005),
523-556. Correction in 333:3 (2005), 699-701. MR Zbl

[Vignéras 2017] M.-F. Vigneras, “The pro-p-Iwahori—-Hecke algebra of a reductive p-adic group, III: Spherical Hecke algebras
and supersingular modules”, J. Inst. Math. Jussieu 16:3 (2017), 571-608. MR Zbl

Communicated by Marie-France Vignéras
Received 2018-12-10 Revised 2019-05-06 Accepted 2019-09-01

gkloenne@math.hu-berlin.de Mathematisch-Naturwissenschaftliche Fakultat, Institut fiir Mathematik,
Humboldt-Universitit zu Berlin, Germany

mathematical sciences publishers :'msp


http://dx.doi.org/10.2140/pjm.2015.279.447
http://msp.org/idx/mr/3437786
http://msp.org/idx/zbl/1359.16011
http://dx.doi.org/10.1017/9781316981252
http://msp.org/idx/mr/3702016
http://msp.org/idx/zbl/1383.11001
http://dx.doi.org/10.1007/978-3-319-45032-2_12
http://dx.doi.org/10.1007/978-3-319-45032-2_12
http://msp.org/idx/mr/3629658
http://msp.org/idx/zbl/1409.11107
http://msp.org/idx/mr/1395151
http://msp.org/idx/zbl/0859.22001
http://dx.doi.org/10.1007/s00208-004-0592-4
https://doi.org/10.1007/s00208-005-0679-6
http://msp.org/idx/mr/2122539
http://msp.org/idx/zbl/1107.22011
http://dx.doi.org/10.1017/S1474748015000146
http://dx.doi.org/10.1017/S1474748015000146
http://msp.org/idx/mr/3646282
http://msp.org/idx/zbl/06725048
mailto:gkloenne@math.hu-berlin.de
http://msp.org

Bhargav Bhatt
Richard E. Borcherds
Antoine Chambert-Loir
J-L. Colliot-Thélene
Brian D. Conrad
Samit Dasgupta
Héleéne Esnault
Gavril Farkas
Hubert Flenner
Sergey Fomin
Edward Frenkel
Wee Teck Gan
Andrew Granville
Ben J. Green

Joseph Gubeladze
Christopher Hacon
Roger Heath-Brown
Janos Kollar
Philippe Michel
Susan Montgomery
Shigefumi Mori
Martin Olsson

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen

Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California
Berkeley, USA

BOARD OF EDITORS

University of Michigan, USA
University of California, Berkeley, USA
Université Paris-Diderot, France

CNRS, Université Paris-Sud, France
Stanford University, USA

Duke University, USA

Freie Universitit Berlin, Germany
Humboldt Universitit zu Berlin, Germany
Ruhr-Universitidt, Germany

University of Michigan, USA
University of California, Berkeley, USA
National University of Singapore
Université de Montréal, Canada
University of Oxford, UK

San Francisco State University, USA
University of Utah, USA

Oxford University, UK

Princeton University, USA

Ecole Polytechnique Fédérale de Lausanne

University of Southern California, USA
RIMS, Kyoto University, Japan
University of California, Berkeley, USA

Raman Parimala
Jonathan Pila

Irena Peeva

Anand Pillay

Michael Rapoport
Victor Reiner

Peter Sarnak

Joseph H. Silverman
Michael Singer
Christopher Skinner
Vasudevan Srinivas

J. Toby Stafford
Shunsuke Takagi
Pham Huu Tiep

Ravi Vakil

Michel van den Bergh
Akshay Venkatesh
Marie-France Vignéras

Kei-Ichi Watanabe

Melanie Matchett Wood

Shou-Wu Zhang

Emory University, USA

University of Oxford, UK

Cornell University, USA

University of Notre Dame, USA
Universitdt Bonn, Germany
University of Minnesota, USA
Princeton University, USA

Brown University, USA

North Carolina State University, USA
Princeton University, USA

Tata Inst. of Fund. Research, India
University of Michigan, USA
University of Tokyo, Japan
University of Arizona, USA

Stanford University, USA

Hasselt University, Belgium

Institute for Advanced Study, USA
Université Paris VII, France

Nihon University, Japan

University of California, Berkeley, USA

Princeton University, USA

PRODUCTION
production @msp.org
Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2020 is US $415/year for the electronic version, and $620/year (4+$60, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

ANT peer review and production are managed by EditFLow® from MSP.

PUBLISHED BY
:l mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2020 Mathematical Sciences Publishers


http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/

Algebra & Number Theory

Volume 14 No. 1 2020

Gorenstein-projective and semi-Gorenstein-projective modules 1
CLAUS MICHAEL RINGEL and PU ZHANG
The 16-rank of Q(\/—p) 37

PETER KOYMANS

Supersingular Hecke modules as Galois representations 67
ELMAR GROSSE-KLONNE

Stability in the homology of unipotent groups 119
ANDREW PUTMAN, STEVEN V SAM and ANDREW SNOWDEN

On the orbits of multiplicative pairs 155
OLEKSIY KLURMAN and ALEXANDER P. MANGEREL

Birationally superrigid Fano 3-folds of codimension 4 191
TAKUZO OKADA

Coble fourfold, Gg-invariant quartic threefolds, and Wiman—Edge sextics 213
IVAN CHELTSOV, ALEXANDER KUZNETSOV and KONSTANTIN SHRAMOV

0652(2020



	Introduction
	1. Lubin–Tate (,)-modules 
	1A. (,)-modules and torsion k[-3mu[t ]-3mu]-modules
	1B. -stable lattices in (,)-modules
	1C. Partial full faithfulness of *k[-3mu[t ]-3mu]k (-1.5mu(t )-1.5mu)
	1D. Standard cyclic étale (,)-modules

	2. Hecke algebras and supersingular modules
	2A. The pro-p-Iwahori Hecke algebra H
	2B. The coverings H and H of H

	3. Reconstruction of supersingular H-modules
	4. The functor
	5. Standard objects and full faithfulness
	5A. The bijection between standard supersingular Hecke modules and standard cyclic Galois representations
	5B. Reconstruction of an initial segment of M from (M)
	5C. Reconstruction of -supersingular H-modules M from (M)
	5D. Full faithfulness on -supersingular H-modules
	5E. The essential image

	6. From G-representations to H-modules
	6A. Supersingular cohomology
	6B. An exact functor from G-representations to H-modules

	Acknowledgements
	References
	
	

