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Let F be a local field of mixed characteristic (0, p), let k be a finite extension of its residue field, let
H be the pro-p-Iwahori Hecke k-algebra attached to GLd+1(F) for some d ≥ 1. We construct an exact
and fully faithful functor from the category of supersingular H-modules to the category of Gal(F̄/F)-
representations over k. More generally, for a certain k-algebra H] surjecting onto H we define the
notion of ]-supersingular modules and construct an exact and fully faithful functor from the category of
]-supersingular H]-modules to the category of Gal(F̄/F)-representations over k.
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Introduction

Let F be a local field of mixed characteristic (0, p), let π ∈ OF be a uniformizer, let k be a finite
extension of the residue field Fq of F . Let d ∈ N. An important line of current research in number
theory is concerned with relating smooth representations of G =GLd+1(F) over k with finite dimensional
representations of Gal(F/F) over k.

At present, the smooth representation theory of G is understood only up to identifying, constructing
and describing the still elusive supercuspidal representations of G, or equivalently, the supersingular
representations of G. An important role in better understanding this theory is played by the module
theory of the pro-p-Iwahori Hecke k-algebra H attached to G and a pro-p-Iwahori subgroup I0 in G.
There is a notion of supersingularity for H-modules which, in contrast to that of supersingularity for
G-representations, is transparent and concrete. The notions are compatible in the following sense: at
least after replacing k by an algebraically closed extension field, a smooth admissible irreducible G-
representation V is supersingular if and only if its space of I0-invariants V I0 (which carries a natural
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action by H) is supersingular if and only if V I0 admits a supersingular subquotient; see [Ollivier and
Vignéras 2018]. It is true that the functor V 7→ V I0 from G-representations to H-modules often looses
information. But the potential of taking into account also its higher derived functors, which again yield
(complexes of) H-modules, has been barely explored so far.

The purpose of the present paper is to explain a method for converting (supersingular) H-modules into
Gal(F/F)-representations over k.

For F =Qp we had constructed in [Grosse-Klönne 2016] an exact functor from finite dimensional
H-modules to Gal(Qp/Qp)-representations over k. The construction was inspired by Colmez’s functor
from GL2(Qp)-representations to Gal(Qp/Qp)-representations. It was geometric-combinatorial in that it
invoked coefficient systems on the Bruhat Tits building of GLn(Qp). Unfortunately, we see no way to
generalize this geometric-combinatorial method to arbitrary finite extensions of F of Qp. However, when
trying to extract its “algebraic essence”, we found that the functor indeed admits a generalization to any F ,
albeit now taking on an entirely algebraic and concrete shape. But in fact, it is this concreteness which
allows us to not only investigate its behavior on irreducible objects, but also to prove that it accurately
preserves extension structures. In this way, even for F =Qp we significantly improve on our previous
work [Grosse-Klönne 2016].

Let Rep(Gal(F/F)) denote the category whose objects are projective limits of finite dimensional
Gal(F/F)-representations over k. Let Modss(H) denote the category of supersingular H-modules which
are inductive limits of their finite dimensional submodules.

Theorem A. There is an exact and fully faithful functor

Modss(H)→ Rep(Gal(F/F)), M 7→ V (M).

We have dimk(M)= dimk(V (M)) for any M ∈Modss(H).

The radical elimination of the group G (and its building) from our approach allows us to improve
Theorem A further as follows. We construct k-algebras H]] and H] by looking at a certain small set of
distinguished generators of H and by relaxing resp. omitting some of the usual (braid) relations between
them. In this way we get a chain of surjective k-algebra morphisms H]]

→H]
→H. There is a again a

notion of supersingularity for H]]-modules and for H]-modules (which are inductive limits of their finite
dimensional submodules; we assume this for all H]]-, resp. H]-, resp. H-modules appearing in this paper).
The simple supersingular modules are the same for H]], for H] and for H, but there are more extensions
between them in the category of H]]-modules, resp. of H]-modules, than in the category of H-modules. A
particular useful category Modss(H]) is formed by what we call ]-supersingular H]-modules. It contains
the category of supersingular H-modules as a full subcategory (but is larger). Now it turns out that
the above functor is actually defined on the category of supersingular H]]-modules, and again with
dimk(M)= dimk(V (M)) for any M . When restricting to Modss(H]) we furthermore get:

Theorem A#. There is an exact and fully faithful functor

Modss(H])→ Rep(Gal(F/F)), M 7→ V (M).
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We do not know if the k-algebra H] admits a group theoretic interpretation, as does the double coset
algebra H ∼= k[I0\G/I0]. However, already from the Galois representation theoretic point of view we
think that the additional effort taken in proving Theorem A# (rather than just Theorem A) is justified,
since in this way we identify an even larger abelian subcategory of Rep(Gal(F/F)) as a (supersingular)
module category of a very concretely given k-algebra. In fact, the additional effort is mostly notational.

We define a standard supersingular H-module to be an H-module induced from a supersingular
character of a certain subalgebra Haff of H with [H :Haff] = d+ 1. Each simple supersingular H-module
is a subquotient of a standard supersingular H-module. We also define the notion of a (d+1)-dimensional
standard cyclic Gal(F/F)-representation; in particular, each irreducible Gal(F/F)-representation of
dimension d + 1 is a (d + 1)-dimensional standard cyclic Gal(F/F)-representation.

Theorem B. The functor M 7→ V (M) induces a bijection between standard supersingular H-modules
and (d+1)-dimensional standard cyclic Gal(F/F)-representations. M is irreducible if and only if V (M)
is irreducible.1

However, we emphasize that it is rather the much deeper Theorem A (and A#) which proves that
supersingular modules are of a strong inherent arithmetic nature.

In Section 5E we gather some generic statements which come close to describing the image of the
functor M 7→ V (M).

Let us now indicate the main features of the construction of the functor. We fix once and for all a
Lubin–Tate group for F . More precisely, as this simplifies many formulae, we work with the Lubin–
Tate group associated with the Frobenius power series 8(t)= tq

+π t . On the k-algebra k[[t]][ϕ] with
commutation relation ϕ · t = tq

· ϕ we let 0 = O×F act by γ · ϕ = γ ′ϕ and γ · t = [γ ]8(t), where
[γ ]8(t) ∈ k[[t]] describes multiplication with γ with respect to 8 and where γ ′ ∈ k× means the image of
γ ∈ 0 in k×. We view a supersingular H]]-module (or H]-module, or H-module) M as a k[[t]]-module
by means of t |M = 0. In k[[t]][ϕ]⊗k[[t]] M we then use the H-action on M to define a certain submodule
∇(M) by giving very explicitly a certain number of generators of it. This is done in such a way that
1(M)= k[[t]][ϕ]⊗k[[t]] M/∇(M) naturally receives an action by 0 and is a torsion k[[t]]-module. A very
general construction then allows us to endow 1(M)∗⊗k[[t]] k((t)) with the structure of a (ϕ, 0)-module
over k((t)). The notion of a (ϕ, 0)-module over k((t)) with respect to the chosen Lubin–Tate group 8
is explained in full detail in the book [Schneider 2017], where it is also explained that this category is
equivalent with the category of representations of Gal(F/F) over k.

It was pointed out by Cédric Pépin that the syntax of the functor M 7→ V (M) bears strong resemblance
with that of Fontaine’s various functors (using “big rings”).

One may wonder which of our results remain valid if the coefficient field k is allowed to be a more
general field k containing Fq , i.e., not necessarily finite. First, this finiteness is invoked for the equivalence
of categories between Galois representations and (ϕ, 0)-modules. But it is also invoked in the proofs of

1A numerical version (i.e., comparing cardinalities) of Theorem B was known for quite some time, due to work of Ollivier
and Vignéras [2005].
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Proposition 3.3 (our main result in Section 3 on recovering a supersingular H]-module from subquotients)
and of Theorem 5.10 (on recovering M from 1(M)).

In Section 2B we list some automorphisms of H (and of H] and H]]). They induce autoequivalences
of the category of supersingular H-modules;2 thus, precomposing them to M 7→ V (M) we get more
functors satisfying Theorems A, A# and B.

We end this paper somewhat speculatively by discussing assignments of Gal(F/F)-representations to
supersingular G-representations. The functor M 7→ V (M) invites us to search for meaningful assignments
of (complexes of) supersingular H-modules to supersingular G-representations Y . First we suggest
studying the left derived functor of the functor taking Y to the maximal supersingular H-submodule of Y I0 .
This entails working in derived categories and appears to be the most natural approach. Nevertheless,
as a variation of this theme we then suggest an exact functor from (suitably filtered) G-representations
to supersingular H-modules. It builds on a general procedure of turning complexes of H-modules into
new H-modules, applied here to complexes arising from E1-spectral sequences attached to the said left
derived functor.

Apparently, the constructions and results of the present paper call for generalizations into various
directions. We mention here just the obvious question of what happens if the pro-p-Iwahori Hecke algebra
H attached to G = GLd+1(F) is replaced by pro-p-Iwahori Hecke algebras H attached to other p-adic
reductive groups G. In extrapolation of what we did here, the general Langlands philosophy suggests
searching for a functor from H-modules to Galois representations such that in some way the algebraic
k-group with root datum dual to that of G shows up on the Galois side — just as it does here in Theorem B.
In a subsequent paper we will propose such a functor. However, in its formal shape it will not precisely
specialize to the functor discussed here if G = GLd+1(F),3 and Theorem A will not be a special case of
what we will then prove for general G.

Notations. Let F/Qp be a finite field extension. Let Fq be the residue field of F (with q elements). Let
π be a uniformizer in OF . Let k be a finite field extension of Fq .

As explained in [Schneider 2017, Proposition 1.3.4], attached to the Frobenius (or Lubin–Tate) formal
power series 8(t)= π t + tq is associated a commutative formal group law (the associated Lubin–Tate
(formal) group law) F8(X, Y ) over OF such that 8(t) ∈ EndOF (F8(X, Y )). There is a unique injective
homomorphism of rings

OF → EndOF (F8(X, Y )), a 7→ [a]8(t)

such that 8(t)= [π ]8(t), see [Schneider 2017, Proposition 1.3.6], where we recall that, by definition,

EndOF (F8(X, Y ))= {h ∈OF [[t]]; h(0)= 0 and h(F8(X, Y ))= F8(h(X), h(Y ))}.

Lemma 0.1. Assume that F 6= Q2. Writing [a]8(t) = at +
∑

i≥2 ai t i (with ai ∈ OF ), we have ai = 0
whenever i − 1 /∈ (q − 1)N. If aq−1

= 1 we even have ai = 0 for all i ≥ 2.
2But this is not so evident, if true at all, for the category of ]-supersingular H]-modules
3But of course, it will be closely related
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Proof. As 8(t)= π t + tq , the power series [a]8(t)= at +
∑

i≥2 ai t i is characterized by the formula

π [a]8(t)+ ([a]8(t))q = [a]8(π t + tq).

If aq−1
= 1 we see that [a]8(t) = at satisfies this formula. Given a general a, consider the equalities

[a]8([b]8(t)) = [b]8([a]8(t)) for all b ∈ OF with bq−1
= 1. Since we know [b]8(t) = bt , and since

F 6=Q2 implies the existence of primitive such b′s different from 1, we indeed obtain ai = 0 whenever
i − 1 /∈ (q − 1)N. �

1. Lubin–Tate (ϕ, 0)-modules

In the first two subsections we transpose some constructions and results from the theory of cyclotomic
(ϕ, 0)-modules over k (i.e., where F =Qp and where the underlying Lubin–Tate group is Gm) to the
context of (ϕ, 0)-modules over k with respect to the Lubin–Tate group attached to 8(t)= π t + tq (with
arbitrary F). Namely, we define an exact functor from admissible (torsion) k[[t]]-modules with commuting
semilinear actions by 0 = O×F and ϕ to étale (ϕ, 0)-modules over k. The former category is closely
related to that of ψ-stable lattices in étale (ϕ, 0)-modules D, and we are lead to transpose some of
Colmez’s constructions [2010] involving the ψ-stable lattices D\ and D] to our context. One difference
is that in our context the ψ-operator on k((t)) does not satisfy ψ(1)= 1, but this necessitates only minor
modifications.

We then identify a category of admissible (torsion) k[[t]]-modules with actions by 0 and ϕ on which
the above functor is fully faithful.

1A. (ϕ, 0)-modules and torsion k[[t]]-modules. Put 8(t)= π t + tq . Put 0 =O×F . The formula γ · t =
[γ ]8(t) with γ ∈ 0 defines an action of 0 by k-algebra automorphisms on k[[t]] and on k((t)). Consider
the k-algebra

O= k[[t]][ϕ, 0]

with commutation rules given by

γ ϕ = ϕγ, γ t = [γ ]8(t)γ, ϕt = tqϕ

for γ ∈ 0. (Here we read [γ ]8(t)γ = ([γ ]8(t))γ .)4

Definition. A ψ-operator on k[[t]] is a k-linear map ψ : k[[t]] → k[[t]] such that ψ(γ · t)= γ · (ψ(t)) for
all γ ∈ 0 and such that the following holds true:5 if we view ϕ as acting on k[[t]], then

ψ(ϕ(a)x)= aψ(x) for a, x ∈ k[[t]]. (1)

Lemma 1.1. There is a surjective ψ-operator on k[[t]] which extends to a surjective k-linear operator
ψ = ψk((t)) on k((t)) satisfying formula (1) analogously.

4As tq
=8(t)= [π ]8(t) in k[[t]] one may also think of O as O= k[[t]][OF −{0}] with commutation rules at = [a]8(t)a

for all a ∈OF −{0}.
5We do not require ψ(1)= 1.
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We may choose ψk((t)) on k((t)) such that for m ∈ Z and 0≤ i ≤ q − 1 we have6

ψk((t))(tmq+i )=


q
π

tm i = 0,
0 1≤ i ≤ q − 2,
tm i = q − 1.

(2)

Proof. This is explained in [Grosse-Klönne 2019]; it relies on [Schneider and Venjakob 2016, Section 3].
�

In the following we fix the surjective ψ-operator ψ on k[[t]] satisfying formula (2). We extend it to a
k-linear operator ψ = ψk((t)) on k((t)) as in Lemma 1.1.

Definition. An étale (ϕ, 0)-module over k((t)) is an O⊗k[[t]] k((t))-module D which is finite dimensional
over k((t)) such that the k((t))-linearized structure map

id⊗ϕ : k((t))⊗ϕ,k((t)) D ∼=−→ D

is bijective. We define Modet(k((t))) to be the category of étale (ϕ, 0)-module over k((t)).

Theorem 1.2 (Fontaine, Kisin–Ren, Schneider). There is an equivalence between Modet(k((t))) and the
category of continuous representations of Gal(F/F) on finite dimensional k-vector spaces.

Proof. For F = Qp and the Frobenius power series (1+ t)p
− 1 (instead of 8(t) = π t + tq) this is a

theorem of Fontaine, see paragraph 1.2 in [Fontaine 1990]. The analog of the theorem (for an arbitrary
Frobenius power series) for a coefficient field of characteristic 0 (hence not k) is due to Kisin and Ren
[2009]. A detailed proof of the theorem stated here can be found in Schneider’s book [2017]. �

Definition. A torsion k[[t]]-module 1 is called admissible if

1[t] = {x ∈1; t x = 0}

is a finite dimensional k-vector space.

We remark that admissible k[[t]]-modules on which t acts surjectively are precisely the Pontrjagin duals
of finitely generated torsion free, and hence free k[[t]]-modules.

Definition. Modad(O) is the category of O-modules which are finitely generated over k[[t]][ϕ] and
admissible (in particular: torsion) over k[[t]].

Lemma 1.3. The categories Modet(k((t))) and Modad(O) are abelian.

Proof. An O⊗k[[t]]k((t))-module subquotient of an étale (ϕ, 0)-module is again an étale (ϕ, 0)-module: to
see that the étaleness condition (the bijectivity of id⊗ϕ) is preserved under passing to such subquotients,
just notice that it is equivalent with saying that the matrix of ϕ in an arbitrary k((t))-basis is invertible.
Thus, Modet(k((t))) is abelian. (Of course, one could also point to Theorem 1.2.)

An O-module subquotient of an object in Modad(O) is again an object in Modad(O): this is shown in
[Emerton 2008, Proposition 3.3]. Thus, Modad(O) is abelian. �

6Notice that q
π = 0 (in k) if F 6=Qp .
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Definition. For a k-vector space 1 we write 1∗ = Homk(1, k) (algebraic dual). For a k[[t]]-module 1
we endow 1∗ with a k[[t]]-action by putting

(S · f )(δ)= f (Sδ)

for S ∈ k[[t]], f ∈1∗, δ ∈1. If 1 even carries a k[[t]][0]-module structure then also 1∗ receives one,
with γ ∈ 0 acting as

(γ · f )(δ)= f (γ−1δ)

for γ ∈ 0, f ∈1∗, δ ∈1.

Proposition 1.4. For 1 ∈Modad(O) there is a natural structure of an étale (ϕ, 0)-module on 1∗⊗k[[t]]

k((t)). The contravariant functor

Modad(O)→Modet(k((t))), 1 7→1∗⊗k[[t]] k((t)) (3)

is exact.

Proof. The map id⊗ϕ : k[[t]]⊗ϕ,k[[t]]1→1 gives rise to the k[[t]]-linear map

1∗
(id⊗ϕ)∗
−−−→ (k[[t]]⊗ϕ,k[[t]]1)∗. (4)

On the other hand, we have the k[[t]]-linear map

k[[t]]⊗ϕ,k[[t]] (1∗)→ (k[[t]]⊗ϕ,k[[t]]1)∗

a⊗ ` 7→ [b⊗ x 7→ `(ψ(ab)x)].
(5)

It is shown in [Grosse-Klönne 2019] that the respective base extended maps (4)⊗k[[t]]k((t)) and (5)⊗k[[t]]k((t))
are bijective. Composing (5)⊗k[[t]]k((t)) with the inverse of (4)⊗k[[t]]k((t)) thus yields a k((t))-linear
isomorphism

k((t))⊗ϕ,k((t)) (1∗⊗k[[t]] k((t)))= k((t))⊗ϕ,k[[t]] (1∗)→1∗⊗k[[t]] k((t))

and hence the desired ϕ-operator on 1∗⊗k[[t]] k((t)). The exactness of 1 7→1∗⊗k[[t]] k((t)) follows from
the exactness of taking duals and of applying (.)⊗k[[t]] k((t)). �

1B. ψ-stable lattices in (ϕ, 0)-modules.

Lemma 1.5. Let D ∈Modet(k((t))). There is a natural additive operator ψ : D→ D satisfying

ψ(aϕ(x))= ψ(a)x and ψ(ϕ(a)x)= aψ(x)

for all a ∈ k((t)) and all x ∈ D, and commuting with the action of 0.

Proof. We define the composed map

ψ : D→ k((t))⊗ϕ,k((t)) D→ D
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where the first arrow is the inverse of the structure isomorphism id⊗ϕ and where the second arrow is
given by a⊗ x 7→ ψ(a)x . By construction, it satisfies ψ(aϕ(x))= ψ(a)x . To see ψ(ϕ(a)x)= aψ(x)
observe that by assumption we may write x =

∑
i aiϕ(di ) with di ∈ D and ai ∈ k((t)). We then compute

ψ(ϕ(a)x)=
∑

i

ψ(ϕ(a)aiϕ(di ))=
∑

i

ψ(ϕ(a)ai )di = a
∑

i

ψ(ai )di = a
∑

i

ψ(aiϕ(di ))= aψ(x).

Finally, let γ ∈ 0. As γ and ϕ commute on k[[t]], and as 0 acts semilinearly on D, the additive map

k((t))⊗ϕ,k((t)) D→ k((t))⊗ϕ,k((t)) D, a⊗ d 7→ γ (a)⊗ γ (b)

is the map corresponding to γ on D under the isomorphism id⊗ϕ, and under a⊗x 7→ψ(a)x it commutes
with γ on D since γ and ψ commute on k((t)). �

In the following, by a lattice in a k((t))-vector space D we mean a free k[[t]]-submodule containing a
k((t))-basis of D.

Lemma 1.6. Let D ∈Modet(k((t))) and let D be a lattice in (the k((t))-vector space underlying) D. Let
ψ : D→ D be the operator constructed in Lemma 1.5:

(a) ψ(D) is a k[[t]]-module.

(b) If ϕ(D)⊂ D then D ⊂ ψ(D).

(c) If D ⊂ k[[t]] ·ϕ(D) then ψ(D)⊂ D.

(d) If ψ(D) ⊂ D then ψ(t−1 D) ⊂ t−1 D, and for each x ∈ D there is some n(x) ∈ N such that for all
n ≥ n(x) we have ψn(x) ∈ t−1 D.

Proof. (a) Use ψ(ϕ(a)x)= aψ(x) for a ∈ k((t)) and x ∈ D.

(b) Choose a ∈ k[[t]] with ψ(a) = 1. For d ∈ D we have d = ψ(aϕ(d)) which belongs to ψ(D) since
ϕ(D)⊂ D.

(c) Let d ∈ D. By assumption there are ei ∈ D and ai ∈ k[[t]] with d =
∑

i aiϕ(ei ), hence ψ(d) =∑
i ψ(ai )ei ∈ D.

(d) For i ≥ 1 we have

ψ(ϕi (t−1)D)⊂ ϕi−1(t−1)ψ(D)⊂ ϕi−1(t−1)D (6)

where the second inclusion uses the assumption. From ϕ(t−1)= t−q we get

ψ(t−1 D)⊂ ψ(ϕ(t−1)D)⊂ t−1 D.

Moreover, if n(x) ∈ N is such that x ∈ ϕn(t−1)D for n ≥ n(x), then iterated application of formula (6)
shows

ψn(x) ∈ ψn(ϕn(t−1)D)⊂ ψn−1(ϕn−1(t−1)D)⊂ · · · ⊂ t−1 D

for n ≥ n(x). �
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Lemma 1.7. (a) There are lattices D0, D1 in D with

ϕ(D0)⊂ t D0 ⊂ D0 ⊂ D1 ⊂ k[[t]] ·ϕ(D1).

(b) For D0, D1 as in (a) and for n ≥ 0 we have ψn(D0)⊂ ψ
n+1(D0)⊂ D1.

Proof. (a) This is a (simplified) subclaim in the proof of Lemma 2.2.10 in [Schneider 2017] (which follows
[Colmez 2010, Lemme II 2.3]). One proceeds as follows. Let d1, . . . , dr be a k((t))-basis of D. Then also
ϕ(d1), . . . , ϕ(dr ) is k((t))-basis of D. We therefore find f̃i j , g̃i j ∈ k((t)) with ϕ(d j ) =

∑r
i=1 f̃i j di and

d j =
∑r

i=1 g̃i jϕ(di ), for any 1≤ j ≤ r . Choose some n≥ 0 with tn(q−1) f̃i j ∈ tk[[t]] and tn(q−1)g̃i j ∈ tk[[t]]
for all i, j . Then D0 =

∑r
i=1 tnk[[t]]di and D1 =

∑r
i=1 t−nk[[t]]di work as desired.

(b) Choose a ∈ k[[t]] with ψ(a) = 1. For x ∈ D0 we have ψn(x) = ψn+1(aϕ(x)) ∈ ψn+1(D0) since
ϕ(D0) ⊂ t D0 implies ϕ(x) ∈ D0 and hence aϕ(x) ∈ D0. This shows ψn(D0) ⊂ ψn+1(D0). As
D0 ⊂ D1 ⊂ k[[t]] ·ϕ(D1), an induction using Lemma 1.6(c) shows ψn+1(D0)⊂ D1. �

Proposition 1.8. There exists a unique lattice D] in D with ψ(D])= D] and such that for each x ∈ D
there is some n ∈ N with ψn(x) ∈ D].

For any lattice D in D we have ψn(D)⊂ D] for all n� 0.
For any lattice D in D with ψ(D)= D we have t D]

⊂ D ⊂ D].

Proof. Using the previous lemmata, the proof is the same as the one given in [Colmez 2010, Proposi-
tion II.4.2]. �

Proposition 1.9. (a) For any lattice D in D contained in D] and stable under ψ we have ψ(D)= D.

(b) The intersection D\ of all lattices in D contained in D] and stable under ψ is itself a lattice, and it
satisfies ψ(D\)= D\.

Proof. (See [Colmez 2010, Proposition II.5.11 and Corollaire II.5.12].)

(a) Since D] as well as D and ψ(D) are lattices in D], both D]/D and D]/ψ(D) are finite dimensional
k-vector spaces. ψ induces an isomorphism ψ(D])/D = D]/ψ(D) (as ψ(D)⊂ D), hence ψ(D)= D.

(b) For any D as in (a) we have t D]
⊂ D by what we saw in (a) together with Proposition 1.8. This

shows t D]
⊂ D\, hence D\ is indeed a lattice, and ψ(D\)= D\ follows by applying (a) once more. �

Lemma 1.10. D\ and D] are stable under the action of 0.

Proof. If D is a lattice in D, then so is γ · D for any γ ∈ 0. If in addition ψ(D)⊂ D, resp. ψ(D)= D,
then also ψ(γ · D) ⊂ γ · D, resp. ψ(γ · D) = γ · D. From these observations we immediately get
γ · D\

= D\ and γ · D]
= D]. �

Proposition 1.11. The functor Modad(O)→ Modet(k((t))) in Proposition 1.4 sends simple objects to
simple objects.

Proof. Let 1 ∈Modad(O) be simple. By construction, ψ on 1∗⊗k[[t]] k((t)), when restricted to 1∗, is the
adjoint of ϕ on1. Therefore the simplicity of1 as an O-module means that1∗ admits no nontrivial k[[t]]-
submodule stable under 0 and ψ . If D is a nonzero (ϕ, 0)-submodule of 1∗⊗k[[t]] k((t)) then also D\ is
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nonzero and stable under 0 and ψ , see Proposition 1.9 and Lemma 1.10. As D\
⊂ (1∗⊗k[[t]] k((t)))\⊂1∗

we get D\
=1∗ (since 1∗ is stable under ψ), as desired. �

Lemma 1.12. Let f : D1→ D2 be a morphism in Modet(k((t))):

(a) f (D]

1)⊂ D]

2 and f (D\

1)⊂ D\

2.

(b) If f : D1→ D2 is injective (resp. surjective), then so is f : D]

1→ D]

2.

(c) If f : D1→ D2 is injective (resp. surjective), then so is f : D\

1→ D\

2.

Proof. (a) f (D]

1) is a free k[[t]]-submodule of D2 on which ψ acts surjectively. Thus f (D]

1)+ D]

2 is
a lattice satisfying the defining condition for D]

2 given in Proposition 1.8, hence f (D]

1)+ D]

2 = D]

2,
hence f (D]

1) ⊂ D]

2. Next, let D = {x ∈ D\

1; f (x) ∈ D\

2}. It is a lattice in D1 since D\

1 is a lattice,
f (D\

1)⊂ f (D]

1)⊂ D]

2 and D]

2/D\

2 is a finite dimensional k-vector space. It is also stable under ψ , hence
contains D\

1, hence f (D\

1)⊂ D\

2.

(b) and (c) If f : D1 → D2 is injective then obviously so are f : D]

1 → D]

2 and f : D\

1 → D\

2. If
f : D1 → D2 is surjective then f (D\

1) is a lattice in D2 stable under ψ , hence contains D\

2. To see
f (D]

1)= D]

2 we proceed as in [Colmez 2010, Proposition II.4.6(iii)] Namely, choose a lattice D′ in D1

with f (D′)= D]

2. Put D =
∑

n≥0 ψ
n(D′). By construction we have ψ(D)⊂ D as well as f (D)= D]

2

(since ψ(D]

2)= D]

2). Proposition 1.8 shows that D is again a lattice. Let x ∈ D]

2. By Proposition 1.8 we
find some n ∈ N such that ψn(D) ⊂ D]

1. For such an n, choose xn ∈ D]

2 and x̃n ∈ D with ψn(xn) = x
and f (x̃n)= xn . Put un = ψ

n(x̃n) ∈ D]

1. By their construction in Lemma 1.5, the operators ψ on D1 and
D2 commute with f , thus we may compute

f (un)= f (ψn(x̃n))= ψ
n( f (x̃n))= ψ

n(xn)= x . �

Lemma 1.13. Let 0→ D1 → D2 → D3 → 0 be an exact sequence in Modet(k((t))). For each i let
Di ⊂ Di be a lattice with ψ(Di )= Di , and suppose that the above sequence restricts to an exact sequence

0→ D1→ D2→ D3→ 0. (7)

If we have D1 = D\

1 and D3 = D\

3, then we also have D2 = D\

2. If we have D1 = D]

1 and D3 = D]

3 then
we also have D2 = D]

2.

Proof. By Lemma 1.12 the sequence 0→ D\

1→ D\

2→ D\

3→ 0 is exact on the left and on the right.
Comparing it with the sequence (7) via D\

1 = D1, D\

2 ⊂ D2 and D\

3 = D3, we immediately get D\

2 = D2.
Next, by Lemma 1.12 the sequence 0→ D]

1→ D]

2→ D]

3→ 0 is exact on the left and on the right. We
compare it with the sequence (7) via D1 = D]

1, D2 ⊂ D]

2 and D3 = D]

3. We claim

ψ(D1 ∩ D]

2)= D1 ∩ D]

2.

Of course, ψ(D1 ∩ D]

2)⊂ D1 ∩ D]

2 is clear. To see D1 ∩ D]

2 ⊂ ψ(D1 ∩ D]

2) take x ∈ D1 ∩ D]

2. Choose
y ∈ D]

2 with ψ(y)= x . Choose y′ ∈ D2 mapping to the same element in D]

3 = D3 as y. We then have
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ψ(y′) ∈ D2 ∩ D1 = D1 and ψ(y− y′)− x ∈ D1, hence there is some z ∈ D1 with ψ(z)= ψ(y− y′)− x ,
hence x = ψ(y− y′− z) ∈ ψ(D1 ∩ D]

2) since y− y′ ∈ D1 ∩ D]

2 and z ∈ D1 ∩ D]

2.
The claim is proven. By the definition of D]

1 it implies D1 ∩ D]

2 = D]

1, hence D1 ∩ D]

2 = D1 since
D1 = D]

1. Thus, D2 = D]

2. �

Remark. An étale ϕ-module over k((t)) is a k[[t]][ϕ]⊗k[[t]] k((t))-module D which is finite dimensional
over k((t)) such that the k((t))-linearized structure map id⊗ϕ is bijective. The above theory of the operator
ψ and the lattices D] and D\ works analogously for étale ϕ-modules D over k((t)), i.e., the 0-action is
not really needed.

1C. Partial full faithfulness of 1 7→1∗⊗k[[t]] k((t)).

Lemma 1.14. Let N be a k-vector space, and suppose that we are given a k-linear automorphism τ of
N , a basis N of N , integers 0≤ kν ≤ q − 1 and units αν ∈ k× for ν ∈N . View N as a k[[t]]-module with
t N = 0 and let 1 denote the quotient of k[[t]][ϕ]⊗k[[t]] N by the k[[t]][ϕ]-submodule ∇ generated by the
elements

1⊗ ν+αν tkνϕ⊗ τ(ν)

with ν ∈N . We then have:

(a) k[[t]][ϕ]⊗k[[t]] N is a torsion k[[t]]-module.

(b) The map N → 1[t] sending n ∈ N to the class of 1⊗ n is an isomorphism. In particular, 1 is
admissible if N is a finite dimensional k-vector space.

(c) The action of ϕ on 1 is injective.

Proof. (a) As ϕt = tqϕ in k[[t]][ϕ] we may write any element in k[[t]][ϕ] ⊗k[[t]] N as a finite sum of
elements of the form aϕn

⊗ x with a ∈ k[[t]], n ≥ 0 and x ∈ N . It is therefore enough to show

aϕn
⊗ x = 0 for each a ∈ tqn

k[[t]] (8)

where n ≥ 0 and x ∈ N . We may write a = a0tqn
with a0 ∈ k[[t]] and compute

aϕn
⊗ x = a0tqn

ϕn
⊗ x = a0ϕ

nt ⊗ x = 0.

(b) and (c) We may write

k[[t]][ϕ]⊗k[[t]] N ∼=
⊕
ν∈N

⊕
i≥0

⊕
0≤θ≤q i−1

k.tθϕi
⊗ τ(ν).

Indeed, that k[[t]][ϕ]⊗k[[t]] N is a quotient of the right hand side follows from formula (8). It is in fact an
isomorphic quotient since all relations between ϕ and t in k[[t]][ϕ] can be generated from ϕt = tqϕ.
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Consider the three k-subvector spaces

1⊗ N =
⊕
ν∈N

k⊗ τ(ν)

=

⊕
ν∈N

k⊗ ν,

C =
⊕
ν∈N

⊕
i>0

⊕
0≤θ<q i−1kν

k.tθϕi
⊗ τ(ν), (9)

∇ =

⊕
ν∈N

⊕
i>0

⊕
ε≥0

k.tεϕi−1(1⊗ ν+αν tkνϕ⊗ τ(ν)). (10)

Using the formula ϕt = tqϕ we see

tεϕi−1(1⊗ ν+αν tkνϕ⊗ τ(ν)) ∈ k×.tε+q i−1kνϕi
⊗ τ(ν)+ k[[t]]ϕi−1

⊗ ν.

We also see that in the sum (10) all summands with ε ≥ (q − 1)q i−1kν − 1 vanish. Equivalently, in the
sum (10) only those summands are nonzero for which θ = ε+q i−1kν satisfies q i−1kν ≤ θ ≤ q i

−1. Thus
we find

k[[t]][ϕ]⊗k[[t]] N ∼= 1⊗ N
⊕
∇

⊕
C. (11)

Let C ′, resp. C ′′, denote the k-subspace of C spanned by all tθϕi
⊗ τ(ν) with ν ∈ N , i > 1 and

0≤ θ < q i−1kν , resp. by all tθϕ⊗ τ(ν) with ν ∈N and 0≤ θ < kν . Then ϕ(C)⊂ C ′ and ϕ : C→ C ′ is
injective. On the other hand, ϕ(1⊗ N ) ⊂ C ′′ and ϕ : 1⊗ N → C ′′ is injective. Since C ′ ∩C ′′ = 0 we
conclude that ϕ acts injectively on 1. Now consider the composed map

C→ k[[t]][ϕ]⊗k[[t]] N t (.)
−→ k[[t]][ϕ]⊗k[[t]] N → 1⊗ N

⊕
C

where the first arrow is the inclusion, the last arrow is the projection. This map is bijective, the critical
point being the computation

t (k.tq i−1kν−1ϕi
⊗ τ(ν))= k.tq i−1kνϕi

⊗ τ(ν)= k.ϕi−1tkνϕ⊗ τ(ν)≡ k.ϕi−1
⊗ ν

modulo ∇ (for i > 0). It follows that indeed the image of 1⊗ N in 1 is the kernel of t acting on 1. �

Definition. An object1∈Modad(O) is called standard cyclic if it is generated over k[[t]][ϕ] by ker(t |1)=
1[t] and if there is a basis of 1[t] consisting of 0-eigenvectors e0, . . . , ed such that

tkiϕei−1 = ρi ei for all 0≤ i ≤ d

(reading e−1 = ed), for certain 0≤ ki ≤ q − 1 and ρi ∈ k× such that ki > 0 for at least one i , as well as
ki < q − 1 for at least one i .

In the following, we extend any indexing by 0, . . . , d to an indexing by Z in the obvious way (i.e.,
ki = ki+d+1, ei = ei+d+1, ρi = ρi+d+1, ηi = ηi+d+1 for all i ∈ Z). Let ∇ denote the k[[t]][ϕ]-submodule
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of k[[t]][ϕ]⊗k[[t]]1[t] generated by the elements tkiϕ⊗ ei−1−1⊗ρi ei . The inclusion 1[t]→1 extends
to a natural k[[t]][ϕ]-linear map

k[[t]][ϕ]⊗k[[t]]1[t]/∇ →1. (12)

Proposition 1.15. Let 1 ∈Modad(O) be standard cyclic, with ei , ki , ρi , ρi as above:

(a) t acts surjectively on1, and there is a distinguished isomorphism of free k[[t]]-modules of rank d+1

1∗ ∼= k[[t]]⊗k (1[t]∗). (13)

The map (12) is a k[[t]][ϕ]-linear isomorphism.

(b) If for any 1≤ j ≤ d there is some 0≤ i ≤ d with ki 6= ki+ j , then1 is irreducible as a k[[t]][ϕ]-module.

(c) For 0≤ i ≤ d let ηi : 0→ k× be the character with γ · ei = ηi (γ )ei for all γ ∈ 0. Suppose that for
any 1 ≤ j ≤ d which satisfies ki = ki+ j for all 0 ≤ i ≤ d there is some 0 ≤ i ≤ d with ηi 6= ηi+ j .
Then 1 is irreducible as an O-module.

(d) At least after a finite extension of k we have: 1 admits a filtration such that each associated graded
piece is an irreducible standard cyclic object in Modad(O). If p does not divide d + 1 then 1 is even
the direct sum of irreducible standard cyclic objects in Modad(O).

Proof. (This is very similar to [Grosse-Klönne 2016, Proposition 6.2].)

(a) For 0≤ j ≤ d consider

w j = k j + qk j−1+ · · ·+ q j k0+ q j+1kd + · · ·+ qdk j+1.

Repeated substitution of ϕt = tqϕ (recall 8(t)= tq modulo π ) shows that tw jϕd+1e j ∈ k×e j . As ki > 0
for at least one i we have w j > 0, and hence e j ∈ t1. As 1[t] is generated over k by all e j it follows
that 1[t] ⊂ t1. As 1 is generated over k[[t]][ϕ] by 1[t], the equation ϕt = tqϕ therefore shows 1⊂ t1,
i.e., t acts surjectively on 1. We deduce that 1∗ is a torsion free, and hence free k[[t]]-module of rank
d+ 1. As 1 is generated over k[[t]][ϕ] by 1[t] the map (12) is surjective. But it is also injective, because
Lemma 1.14 tells us that it induces an isomorphisms between the respective kernels of t . We view the
bijective map (12) as an identification. The proof of Lemma 1.14 yielded a canonical k-vector space
decomposition 1= C ⊕1[t] where the k-subvector space C of 1 is generated by the image elements of
the elements tθϕr

⊗e ∈ k[[t]][ϕ]⊗k[[t]]1[t] which do not belong to 1⊗1[t] (for some e ∈1[t], and some
θ, r ≥ 0). We may thus identify1[t]∗=Homk(1[t], k) with the subspace of1∗=Homk(1, k) consisting
of all f ∈1∗ with f |C = 0. The composition of this k-linear embedding 1[t]∗→1∗ with the projection
1∗→ (1∗)/t (1∗) is a k-linear isomorphism. Therefore, and as 1∗ is free and finitely generated over
k[[t]], the k[[t]]-linear map k[[t]] ⊗k (1[t]∗)→1∗ extending the k-linear embedding 1[t]∗→1∗ is an
isomorphism as stated in formula (13).
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(b) Let Z be a nonzero k[[t]][ϕ]-submodule of 1. With 1 also Z is a torsion k[[t]]-module, hence
ker(t |Z )= Z [t] is nonzero. For nonzero elements z =

∑
0≤i≤d xi ei of Z [t] (with xi ∈ k) put

D(z)= {0≤ i ≤ d | xi 6= 0}, ν(z)= |D(z)|,

η(z)=max{ki | i ∈ D(z)}, 3(z)= tη(z)ϕz.

Then 3(z) is again a nonzero element of Z [t]. We have

D(3(z))= {i + 1 | η(z)= ki and i ∈ D(z)}

(we read elements in {0 ≤ i ≤ d} modulo (d + 1)), in particular ν(3(z)) ≤ ν(z). If ν(3(z)) = ν(z)
then D(3(z)) = {i + 1 | i ∈ D(z)} and ki = ki+ j whenever i, i + j ∈ D(z). This implies that if we had
ν(3n(z)) = ν(z) > 1 for all n ≥ 0 then there was some 1 ≤ j ≤ d with ki = ki+ j for all 0 ≤ i ≤ d.
But this would contradict our hypothesis. Thus, for sufficiently large n ≥ 0 we have ν(3n(z))= 1, i.e.,
3n(z) ∈ k×ei for some 0 ≤ i ≤ d. For such n we then even have 3n+ j (z) ∈ k×ei+ j for all j ≥ 0. It
follows that Z contains all ei , hence Z =1.

(c) We use the functions ν, 3 already employed in the proof of (b). Let 0 6= Z ⊂ 1 be a nonzero
O-submodule. Choose a nonzero z ∈ Z [t] for which ν(z) is minimal (for all nonzero z ∈ Z [t]). If ν(z)= 1
then we obtain Z =1 as in the proof of (b). Now assume ν(z)> 1. For all n≥ 0 we have ν(3n(z))≤ ν(z),
hence ν(3n(z))= ν(z) by the choice of z. Thus, writing z =

∑
0≤i≤d xi ei with xi ∈ k, we have xi 6= 0

and xi+ j 6= 0 for some i, j , with j violating the hypothesis in (b). By the hypothesis in (c), replacing i by
i + n and z by 3n(z) we may assume that ηi 6= ηi+ j . Pick γ ∈ 0 with ηi (γ ) 6= ηi+ j (γ ), and pick a ∈ k×

with aei = γ · ei . Then az− γ · z is a nonzero element in Z [t] with ν(az− γ · z) < ν(z): a contradiction.

(d) Passing to a finite extension of k if necessary we may assume that there is a (d+1)-st root of
∏d

i=0 ρi

in k. Thus, rescaling the ei if necessary we may assume ρi = ρ j for all i, j . We argue by induction on d .
If 1 itself is not irreducible then there is, by (c), some 1≤ j ≤ d which satisfies ki = ki+ j and ηi = ηi+ j

for all 0 ≤ i ≤ d. The minimal such j is a divisor of d + 1. Consider the k-subvector space V of 1[t]
spanned by the vectors εi = ei j for 0≤ i < (d + 1)/j . Then( j∏

i=1

ρ−1
i

)
tk jϕ · · · tk1ϕ

induces the automorphism f of V with f (εi )= εi+1 (where we understand ε(d+1)/j = ε0). Choose (after
passing to a finite extension of k if necessary) an f -stable filtration 0= V0 ⊂ V1 ⊂ · · · ⊂ V(d+1)/j = V
such that each Vi/Vi−1 is one dimensional. Then define for 0 ≤ s ≤ (d + 1)/j the O-submodule
1s =OV0+ · · ·+OVs of 1. It induces on 1[t] the filtration

1s[t] =1s−1[t] + Vs + tk1ϕVs + · · ·+ tk j−1ϕ · · · tk1ϕVs .

By construction, each 1i+1/1i is standard cyclic, and the induction hypothesis applies. If p does
not divide (d + 1)/j then there is even an f -stable direct sum decomposition V = ⊕s V[s] with one
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dimensional V[s]. Then 1=⊕s1[s] with 1[s] =OV[s] is a direct sum decomposition of 1, and each 1[s]
is standard cyclic, and the induction hypothesis applies. �

Lemma 1.16. Let 1 ∈Modad(O) be standard cyclic and put D = 1∗⊗k[[t]] k((t)) ∈Modet(k((t))), see
Proposition 1.4. We have D\

=1∗ = D].

Proof. In Proposition 1.15 we saw that 1∗ is a free k[[t]]-module, hence the natural map 1∗→ D =
1∗⊗k[[t]] k((t)) is injective; we view it as an inclusion.

The ϕ-operator on 1 is the adjoint of the ψ-operator on D, in such a way that ψ(1∗)=1∗ since ϕ
acts injectively on 1. Therefore the definitions of D\ and D] yield D\

⊂1∗ ⊂ D]. Since D\ is a lattice
with ψ(D\)= D\ we get t1] ⊂ D\, together

D\
⊂1∗ ⊂ D] and t D]

⊂ D\. (14)

Let ei and ki be as in the definition of 1 being standard cyclic.
Formula (14) implies t1∗ ⊂ D\, hence t (1∗/D\)= 0, hence 1∗/D\ is dual to a subspace W of 1[t]

stable under ϕ. To prove D\
=1∗ it is therefore enough to prove that 1[t] does not contain a nonzero

subspace W stable under ϕ. Assume that such a W does exist. A nonzero element β ∈W may be written
as β =

∑d
i=0 αi ei with αi ∈ k. Let k =max{ki+1 | αi 6= 0}. Since by assumption ki > 0 for at least one i ,

replacing β by ϕrβ for some r ∈N if necessary, we may assume k > 0. But then tkϕβ is a nonzero linear
combination of the ei , whereas we also have tϕβ = 0 since ϕβ ∈W ⊂1[t]: a contradiction.

Formula (14) implies t D]
⊂ 1∗, i.e., t (D]/1∗) = 0. We endow D] and all its submodules with

the t-adic topology. By Pontrjagin duality (as recalled e.g., in [Schneider and Venjakob 2016]) we in
particular have Homcont

k (1∗, k)=1. Now t (D]/1∗)=0 means that the kernel W of the natural projection
Homcont

k (D], k)→Homcont
k (1∗, k)=1 is contained in Homcont

k (D], k)[t]. As t acts injectively on D], it
acts surjectively on Homcont

k (D], k). Hence, if1∗ 6= D] then W 6= 0 and there is some β ∈Homcont
k (D], k)

with 0 6= tβ ∈W . Now tβ ∈W means that β maps to an element in 1[t]. Since on the other hand tW = 0
(as W ⊂Homcont

k (D], k)[t]) we may write β =
∑d

i=0 αi ẽi with αi ∈ k, where ẽi ∈Homcont
k (D], k) lifts ei .

We then also have 0 6= t ẽi0 ∈W for some i0. As ϕ is injective on W (which follows from the surjectivity
of ψ on D] and hence on W ∗ = D]/1∗) this gives tqϕẽi0 = ϕt ẽi0 6= 0 in Homcont

k (D], k). Together with
W ⊂ Homcont

k (D], k)[t] we get tq−1ϕei0 6= 0 in 1. Applying the same argument with tq−1ϕẽi0 instead
of ẽi (again using that tqϕẽi0 6= 0) we see tq−1ϕtq−1ϕei0 6= 0. Next we get tq−1ϕtq−1ϕtq−1ϕei0 6= 0 etc..
But this means q − 1= ki for each i , contradicting the hypothesis. We obtain 1∗ = D]. �

Definition. Let Mod♣(O) denote the subcategory of Modad(O) whose objects admit a filtration such
that each associated graded piece becomes a standard cyclic object in Modad(O) after a suitable field
extension of k.

Remark. Proposition 1.15(d) implies that each subquotient in Modad(O) of an object in Mod♣(O) again
is an object in Mod♣(O).

Proposition 1.17. The restriction of the functor (3) to the category Mod♣(O) is exact and fully faithful.
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Proof. We already know that the functor is exact. Next, we claim

D\
=1∗ = D] with D =1∗⊗k[[t]] k((t)) (15)

for 1 ∈Mod♣(O). Indeed, for standard cyclic 1 this is shown in Lemma 1.16. For 1 which become
standard cyclic after a field extension k ′/k it then follows since the definitions of (.)\ and (.)] in terms of
the k-linear operator ψ imply D\

⊗k k ′= (D⊗k k ′)\ and D]
⊗k k ′= (D⊗k k ′)]. For general1∈Mod♣(O)

it then follows from Lemma 1.13. We now claim that the reverse functor (on the essential image of the
functor under discussion) is given by sending D to the topological dual (D\)′ of D\ (where we endow D\

with its t-adic topology). Indeed, for D in this essential image and for 1 ∈Mod♣(O) we have natural
isomorphisms

((D\)′)∗⊗k[[t]] k((t))
(i)
∼= D\

⊗k[[t]] k((t))∼= D, ((1∗⊗k[[t]] k((t)))\)′
(ii)
∼= (1

∗)′
(iii)
∼= 1,

where (i) and (iii) follow from Pontrjagin duality, see e.g., Proposition 5.4 in [Schneider and Venjakob
2016], and where (ii) follows from formula (15). �

1D. Standard cyclic étale (ϕ, 0)-modules.

Proposition 1.18. Let 1 ∈Modad(O) be a standard cyclic object, with d , ei , ki , ρi , ηi as in the definition
resp. as in Proposition 1.15. The étale (ϕ, 0)-module 1∗⊗k[[t]] k((t)) over k((t)) admits a k((t))-basis
f0, . . . , fd such that for all 0≤ j ≤ d we have

ϕ( f j−1)= ρ
−1
j−1t1+k j−q f j (16)

(reading f−1 = fd ), and moreover

γ · f j − η
−1
j (γ ) f j ∈ tk[[t]] f j for all γ ∈ 0. (17)

Proof. We use formula (2).
First we assume F 6=Qp. Put N =⊕d

i=0k.ei . As explained in the proof of Proposition 1.15, we have a
bijective map (12) which we view as an identification. In particular, Lemma 1.14 and its proof apply. In
the context of that proof we identify ei with the class of 1⊗ ei in 1. By formula (11) we have a k-linear
isomorphism (1⊗N )⊕C ∼=1 with C as in formula (9). For 0≤ j ≤ d we may therefore define f j ∈1

∗ by
asking f j (C)= 0 and f j (ei )= δi j for 0≤ i ≤ d . Proposition 1.15 tells us that f0, . . . , fd is a k[[t]]-basis
of 1∗. For θ, r ≥ 0 and any i, j we have f j (tθϕr

⊗ ei ) 6= 0 if and only if r ≡ j − i modulo (d+ 1)Z and
θ = k j + qk j−1+ · · · + qr−1k j−r+1. As before, ψ ∈ Endk(1

∗) is defined by (ψ( f ))(x) = f (ϕ(x)) for
x ∈1, f ∈1∗. We claim

ψ(tm+k j+1 f j )= ρ j−1ψk((t))(tm)t f j−1 (18)

for all j , all m ≥−k j − 1. Indeed, for 0≤ i ≤ d and θ, r ≥ 0 we have

(ψ(tm+k j+1 f j ))(tθϕr
⊗ ei )= f j (tm+k j+1ϕtθϕr

⊗ ei ).
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If m + 1 /∈ Zq then this shows (ψ(tm+k j+1 f j ))(tθϕr
⊗ ei ) = 0 by what we pointed out above. But

m+ 1 /∈ Zq also implies ψk((t))(tm)= 0. In the case m+ 1= qn (some n ∈ Z) we compute

(ψ(tm+k j+1 f j ))(tθϕr
⊗ ei )= f j (tk j+qnϕtθϕr

⊗ ei )

= f j (tk jϕtn+θϕr
⊗ ei )

= ρ j−1 f j−1(tn+θϕr
⊗ ei )

= (ρ j−1ψk((t))(tm)t f j−1)(tθϕr
⊗ ei )

where we used ψk((t))(tm)= tn−1. We have proven formula (18).
On the other hand, by tracing the construction in Proposition 1.4 we see that ϕ(t f j−1) is characterized

by satisfying

ψ(tmϕ(t f j−1))= ψk((t))(tm)t f j−1 (19)

for all m. Comparing formulae (18) and (19) we find ϕ(t f j−1)= ρ
−1
j−1tk j+1 f j which is equivalent with

formula (16). Next, for γ ∈ 0 we compute

(γ · f j )(ei )= f j (γ
−1
· ei )= f j (ηi (γ

−1)ei )= (ηi (γ
−1) f j )(ei )= (η j (γ

−1) f j )(ei ).

Here the last equation is trivial if i = j , whereas if i 6= j then both sides vanish. This shows
(γ · f j − η j (γ

−1) f j )|N = 0, and hence γ · f j − η j (γ
−1) f j ∈ t1∗ = tk[[t]]{ f0, . . . , fd}. On the

other hand, by what we pointed out above, (γ · f j )(tθϕr
⊗ ei ) = f j ([γ ]8(t)θϕr

⊗ ei ) vanishes if
r + i − j /∈ (d + 1)Z, and this shows γ · f j ∈ k[[t]] f j . We trivially have η j (γ

−1) f j ∈ k[[t]] f j , and
hence altogether γ · f j − η j (γ

−1) f j ∈ tk[[t]]{ f0, . . . , fd} ∩ k[[t]] f j = tk[[t]] f j , formula (17).
Now we assume F = Qp. Let us suppose for simplicity that π = q. For 0 ≤ j ≤ d we may define

f j ∈ 1
∗ as follows. For θ, r ≥ 0 (and any i, j) we require f j (tθϕr

⊗ ei ) 6= 0 if and only if r ≡ j − i
modulo (d + 1)Z and there are a1, . . . , ar−1 ∈ {0, 1} such that

θ = k j + qk j−1+ · · ·+ qr−1k j−r+1+

r−1∑
i=1

ai q i−1(1− q);

if this is the case we put

f j (tθϕr
⊗ ei )= ρ j−1ρ j−2 · · · ρ j−r .

(As usual, the subindices of the ρ? are read modulo (d + 1)Z.) Again f0, . . . , fd is a k[[t]]-basis of 1∗.
Again we claim formula (18). As before we see that both sides vanish if m /∈ Zq − 1∪Zq , and coincide
if m ∈ Zq − 1. But the same computation also shows their coincidence if m = qn for some n ∈ N, as
follows:

(ψ(tm+k j+1 f j ))(tθϕr
⊗ ei )= f j (tk j+1ϕtn+θϕr

⊗ ei )

= ρ j−1 f j−1(tn+θ+1ϕr
⊗ ei )

= (ρ j−1ψk((t))(tm)t f j−1)(tθϕr
⊗ ei )
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where we used ψk((t))(tm)= tn . With formula (18) being established, the remaining arguments are exactly
as before. �

Definition. We say that an object D ∈Modet(k((t))) of dimension d + 1 is standard cyclic if it admits a
k((t))-basis f0, . . . , fd such that there are σ j ∈ k×, characters α j : 0→ k× and m j ∈ {1− q, . . . ,−1, 0}
for 0≤ j ≤ d satisfying the following conditions:

• (m0, . . . ,md) /∈ {(0, . . . , 0), (1− q, . . . , 1− q)}.

• ϕ( f j−1)= σ j tm j f j for all j (reading f−1 = fd ).

• γ · f j −α j (γ ) f j ∈ tk[[t]]{ f0, . . . , fd} for all γ ∈ 0.

Lemma 1.19. (a) The constant
∏d

j=0 σ j ∈ k× as well as, up to cyclic permutation, the ordered tuple
((α0,m0), . . . , (αd ,md)), are uniquely determined by the isomorphism class of the (ϕ, 0)-module D.

(b) α1, . . . , αd are uniquely determined by α0 and m0, . . . ,md .

Proof. (a) In the following, for elements of GLd+1(k((t))) we read the (two) respective indices of their
entries always modulo (d + 1)Z.

The effect of ϕ on the basis f0, . . . , fd is described by T = (Ti j )0≤i, j≤d ∈GLd+1(k((t))) with Ti,i+1 =

σi tmi for 0≤ i ≤ d, but Ti, j = 0 for j 6= i + 1.
Let σ ′j ∈ k× and ((α′0,m′0), . . . , (α

′

d ,m′d)) be another datum as above, let D′ be an étale (ϕ, 0)-module
admitting a k((t))-basis f ′0, . . . , f ′d with ϕ( f ′j−1) = σ

′

j t
m′j f ′j and γ · f ′j − α

′

j (γ ) f ′j ∈ tk[[t]]{ f ′0, . . . , f ′d}
for γ ∈ 0. Define T ′ = (T ′i j )0≤i, j≤d ∈ GLd+1(k((t))) similarly as above.

Suppose that there is an isomorphism of (ϕ, 0)-modules D′ ∼= D. With respect to the bases f• and f ′
•

it is described by some A(t)= (ai, j (t))0≤i, j≤d ∈GLd+1(k((t))). In view of ϕt =8(t)ϕ, the compatibility
of the isomorphism with the respective ϕ-actions comes down to the matrix equation

T · A(t)= A(8(t)) · T ′.

For the individual entries this is equivalent with

ai, j (t)= σ ′jσ
−1
i tm′j−mi ai−1, j−1(8(t))

for all i, j . Iteration of this equation yields

ai, j (t)=
( d∏
`=0

σ ′j−`σ
−1
i−`(8

`(t))m
′

j−`−mi−`

)
ai, j (8

d+1(t))

for all i, j . (Here 8`(t) resp. 8d+1(t) means 8(8(· · ·8(t) · · · )).) From this we deduce that for fixed
i, j either ai, j is a nonzero constant and

∏d
`=0 σ

′

j−`σ
−1
i−` = 1 and m′j−` = mi−` for all `, or ai, j = 0. But

since A(t) is invertible we do find i, j with ai, j 6= 0. It already follows that
∏d

j=0 σ j =
∏d

j=0 σ
′

j and
that (m′0, . . . ,m′d) coincides with (m0, . . . ,md) up to cyclic permutation. But since in addition we just
saw that A is a constant matrix, with ai, j = 0 if and only if ai−1, j−1 = 0, we see that the same index
permutation takes α′j to α j .
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(b) This follows from the fact that, in view of the defining formulae, D is generated by f0 as a ϕ-module
over k((t)). �

Proposition 1.20. The functor1 7→1∗⊗k[[t]] k((t)) induces a bijection between the set of standard cyclic
objects in Modad(O) and the set of standard cyclic objects in Modet(k((t))).

Proof. 1∗⊗k[[t]]k((t)) for a standard cyclic object1∈Modad(O) is a standard cyclic object in Modet(k((t)))
by Proposition 1.18. With Lemma 1.19(a) we see that the assignment 1 7→1∗⊗k[[t]] k((t)) is injective on
standard cyclic objects in Modad(O). It is also surjective: Proposition 1.18 (together with Lemma 1.19(b))
explicitly says how to convert the parameter data describing a standard cyclic object in Modet(k((t))) into
the parameter data describing a standard cyclic object in Modad(O). �

Definition. A (d+1)-dimensional standard cyclic Gal(F/F)-representation is a Gal(F/F)-representation
over k which corresponds, under the equivalence of categories in Theorem 1.2, to an object in Modet(k((t)))
of dimension d + 1 which is standard cyclic.

2. Hecke algebras and supersingular modules

2A. The pro- p-Iwahori Hecke algebra H. We introduce the pro-p-Iwahori Hecke algebra H of
GLd+1(F) with coefficients in k in a slightly unorthodox way, which however is well suited for our later
constructions.

Let T be a free Z/(q − 1)-module of rank d + 1. Then Hom(0, T ) (with 0 =O×F ) is also free of rank
d + 1 over Z/(q − 1). We write the group law of T multiplicatively, but that of Hom(0, T ) we write
additively. Let e∗, α∨1 , . . . , α

∨

d be a Z/(q − 1)-basis of Hom(0, T ). Put α∨0 = −
∑d

i=1 α
∨

i . We let the
symmetric group Sd+1 act on Hom(0, T ) as follows. We think of Sd+1 as the permutation group of
{0, 1, . . . , d}, generated by the transposition s = (01) ∈Sd+1 and the cycle ω ∈Sd+1 with ω(i)= i + 1
for all 0≤ i ≤ d − 1. We then put

ω · e∗ = e∗+α∨0 , ω ·α∨0 = α
∨

d and ω ·α∨i = α
∨

i−1 for 1≤ i ≤ d.

If d = 1 we put

s · e∗ = e∗−α∨1 , s ·α∨i =−α
∨

i for i = 0, 1,

but if d ≥ 2 we put

s ·e∗ = e∗−α∨1 , s ·α∨0 = α
∨

0 +α
∨

1 , s ·α∨1 =−α
∨

1 , s ·α∨2 = α
∨

1 +α
∨

2 , s ·α∨i = α
∨

i for 3≤ i ≤ d.

One easily checks that there is a unique action of Sd+1 on T such that for γ ∈ 0 and f ∈Hom(0, T ) we
have

ω · ( f (γ ))= (ω · f )(γ ) and s · ( f (γ ))= (s · f )(γ ).

Define α∨1 (F
×
q ) to be the image of the composition F×q →0

α∨1−→ T where the first map is the Teichmüller
homomorphism.
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Definition. (a) The k-algebra H is generated by elements T±1
ω , Ts and Tt for t ∈ T , subject to the

following relations (with t, t ′ ∈ T ):

Ts TωTs T−1
ω Ts Tω = TωTs T−1

ω Ts TωTs if d > 1, (20)

Ts T−m
ω Ts T m

ω = T−m
ω Ts T m

ω Ts for all 1< m < d, (21)

T 2
s = Tsτs = τs Ts with τs =

∑
t∈α∨1 (F

×
q )

Tt , (22)

TωT−1
ω = 1= T−1

ω Tω, , (23)

T d+1
ω Ts = Ts T d+1

ω , (24)

Tt Tt ′ = Tt ′t , T1T
= 1, (25)

Tt Tω = TωTω·t , (26)

Tt Ts = Ts Ts·t . (27)

Notice that T d+1
ω is central in H.

(b) Haff is the k-subalgebra of H generated by all Tt for t ∈ T , by T d+1
ω , T−d−1

ω and by all T m
ω Ts T−m

ω for
m ∈ Z.

(c) H[ is the quotient of H by the two sided ideal spanned by all elements Tt − 1 with t ∈ T .

Caution. Haff differs from the similarly denoted algebra in [Vignéras 2005]. (The difference is that here
we include (T d+1

ω )Z.)

Remark. Let T denote the subgroup of G = GLd+1(F) consisting of diagonal matrices with entries
in the image of the Teichmüller homomorphism F×q → O×F . For γ ∈ 0 let γ be its image in F×q . In T
define the elements e∗(γ )= diag(γ , 1d) and α∨i (γ )= diag(1i−1, γ , γ

−1, 1d−i ) for 1≤ i ≤ d . Define the
elements ω = (ωi j )0≤i, j≤d and s = (si j )0≤i, j≤d of G by ωd0 = π and ωi,i+1 = 1 (for 0≤ i ≤ d − 1) and
ωi j = 0 for all other pairs (i, j), resp. by s10 = s01 = si i = 1 for i ≥ 2, and si j = 0 for all other pairs (i, j).

Let I0 denote the pro-p-Iwahori subgroup of G for which g = (gi j )0≤i, j≤d ∈ G belongs to I0 if and
only if all the following conditions are satisfied: gi j ∈ πOF for i > j , and gi j ∈ OF for i < j , and
gi i ∈ 1+πOF .

Claim. The corresponding pro-p-Iwahori Hecke algebra k[I0\G/I0]
op∼=Endk[G](indG

I0
k)op is isomorphic

with H, in such a way that the double coset I0gI0 for g ∈ T ∪ {s, ω} corresponds to the element Tg ∈H.

To prove this claim we use the description of k[I0\G/I0]
op worked out by Vignéras [2005] (or rather we

use the description of k[I0\G/I0]
op which results from the description of k[I0\G/I0] given in [loc. cit.]).

Let T denote the maximal torus of diagonal matrices in G, let N (T ) be its normalizer in G. Let T1

(resp. T0) denote the subgroup of T consisting of diagonal matrices with entries in the kernel of O×F → F×q

(resp. in O×F ); thus T0/T1∼= T . For 0≤ i ≤ d define si =ω
1−i sωi−1. The (classes of) s0, s1, . . . , sd are the

Coxeter generators of a Coxeter subgroup Waff of N (T )/T0, and N (T )/T0 is generated by Waff together
with the element ω. The length function ` :Waff→Z≥0 can be extended to a function ` : N (T )/T0→Z≥0
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in such a way that `(ω)= 0. We again denote by ` the induced function W (1)
= N (T )/T1→ Z≥0. For

w ∈ W (1) and w′ ∈ N (T ) lifting w, the double coset I0w
′ I0 only depends on w; we denote it by Tw.

For 0≤ i ≤ d let T i be the image of one of the two cocharacters F×q → T associated with si . (Here we
identify T with the maximal torus of diagonal matrices in GLd+1(Fq). If 1≤ i ≤ d then si is the simple
reflection associated with the coroot α∨i , and α∨i (F

×
q )= T i .) Now, according to [Vignéras 2005], a k-basis

of k[I0\G/I0]
op is given by the set of all Tw for w ∈W (1), and the multiplication is uniquely determined

by the relations

TwTw′ = Tw′w for w,w′ ∈W (1) with `(w)+ `(w′)= `(ww′), (28)

T 2
si
= Tsi τi where τi =

∑
t∈T i

Tt for 0≤ i ≤ d. (29)

In the following we repeatedly use that conjugating these relations by powers of Tω leads to similar
relations (since `(ω) = 0). From formula (28) we first deduce Tsi = T i−1

ω Ts T 1−i
ω and then that T±1

ω

and Ts = Ts1 together with the elements Tt for t ∈ T generate k[I0\G/I0]
op as a k-algebra. Next, from

si si−1si = si−1si si−1 in Waff (for 0≤ i ≤ d; if i = 0 read i − 1= d) we get Tsi Tsi−1 Tsi = Tsi−1 Tsi Tsi−1 by
applying formula (28) twice, but this comes down to formula (20) (up to conjugation by a power of Tω).
Similarly from si s j = s j si in Waff for 0 ≤ i < j − 1 ≤ d − 1 with i + d > j we get Tsi Ts j = Ts j Tsi by
applying formula (28) twice, but this comes down to formula (21) (up to conjugation by a power of Tω).
Formula (29) for any i is a Tω-power conjugate of formula (22). Finally, formulae (23), (24), (25), (26)
and (27) are special instances of formula (28). Conversely, it is not hard to see that these, together with
formulae (20), (21) and (22) suffice to generate all relations in k[I0\G/I0]

op. The claim is proven.
We add if I denotes the Iwahori subgroup of G containing I0, then H[ becomes isomorphic with the

Iwahori Hecke algebra k[I\G/I ]op.

Definition. A character χ : Haff→ k is called supersingular if the following two conditions are both
satisfied:

(a) There is an m ∈ Z with χ(T m
ω Ts T−m

ω )= 0.

(b) There is an m ∈ Z with either χ(T m
ω Ts T−m

ω )=−1 or χ(T m
ω τs T−m

ω )= 0.7

Definition. (a) An H-module M is called standard supersingular if it is isomorphic with H⊗Haff,χ k.e,
where Haff acts on the one dimensional k-vector space k.e through a supersingular character χ .

Equivalently, M is standard supersingular if and only if M =
⊕

0≤m≤d T m
ω (M1) with an Haff-module

M1 of k-dimension 1 on which Haff acts through a supersingular character.8

(b) An irreducible H-module is called supersingular if it is a subquotient of a standard supersingular
H-module.

7We have χ(T m
ω τs T−m

ω ) = 0 if and only if χ(T m
ω Tt T−m

ω ) 6= 1 for some t ∈ α∨1 (F
×
q ), if and only if χ(α∨m+1(γ )) 6= 1 for

some γ ∈ 0.
8Then Haff acts on each T m

ω (M1) through a supersingular character.
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A finite dimensional H-module is called supersingular if each of its irreducible subquotients is
supersingular.

More generally, an H-module is called supersingular if it is the inductive limit of its finite dimensional
H-submodules and if each finite dimensional H-submodule is supersingular.9

Remark. For nonzero finite dimensional H-modules, the above definition of supersingularity is equivalent
with the one given by Vignéras. This follows from the discussion in Section 6 of [Vignéras 2017]. There
is also a notion of supersingularity for H-modules which are not necessarily inductive limits of their finite
dimensional submodules. In the present paper however, without further mentioning all H-modules will be
assumed to be inductive limits of their finite dimensional submodules.

Remark. In the literature on modules over Hecke algebras, the term standard module is occasionally
used, but this usage is unrelated to our terminology.

2B. The coverings H]] and H] of H.

Definition. (a) Let H] denote the k-algebra generated by elements T±1
ω , Ts and Tt for t ∈ T , subject to

• the relations (22), (23), (25), (26),

• the relations (27) for t = α∨i (γ ) (all 0≤ i ≤ d , γ ∈ 0),

• the relation

T d+1
ω T 2

s = T 2
s T d+1

ω , (30)

• the relations

Tt T 2
s = T 2

s Tt for all t ∈ T , (31)

• the relations

T 2
s TωT 2

s T−1
ω T 2

s Tω = TωT 2
s T−1

ω T 2
s TωT 2

s if d > 1, (32)

T 2
s T−m

ω T 2
s T m

ω = T−m
ω T 2

s T m
ω T 2

s for all 1< m < d. (33)

(b) Let H]] denote the k-algebra generated by the elements T±1
ω , Ts and Tt for t ∈ T , subject to

• the relations (22), (23), (25), (26),

• the relations (27) for t = α∨i (γ ) (all 0≤ i ≤ d , γ ∈ 0),

• the relations (31).

Lemma 2.1. In H we have the relations (30), (31), (32) and (33).

9It is easy to see that the irreducible subquotients of a supersingular H-module are the irreducible subquotients of its finite
dimensional H-submodules.
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Proof. It is immediate that the relations (27) and (24) imply the relations (31) and (30), respectively. For
1< m < d and t ∈ α∨1 (Fq) we have sωm

· t = ωm
· t , hence Ts

∑
t∈α∨1 (Fq )

Tωm ·t =
∑

t∈α∨1 (Fq )
Tωm ·t Ts . The

same applies with −m instead of m, hence

Ts T−m
ω τs T m

ω = T−m
ω τs T m

ω Ts and Ts T m
ω τs T−m

ω = T m
ω τs T−m

ω Ts .

This, together with T 2
s = τs Ts = Tsτs (formula (22)), justifies (i) and (iii) in

T 2
s T−m

ω T 2
s T m

ω

(i)
= τs(T−m

ω τs T m
ω )Ts T−m

ω Ts T m
ω

(ii)
= τs(T−m

ω τs T m
ω )T

−m
ω Ts T m

ω Ts
(iii)
= T−m

ω T 2
s T m

ω T 2
s ,

whereas (ii) is justified by (21). We have shown (33). Finally, to see (32) comes down, using (22), (26)
and (27), to comparing

TωT 2
s T−1

ω T 2
s TωT 2

s =

( ∑
t1,t2,t3∈α∨1 (Fq )

Tω−1·t1 Tω−1sω·t2 Tω−1sωsω−1·t3

)
TωTs T−1

ω Ts TωTs,

T 2
s T−1

ω T 2
s TωT 2

s Tω =
( ∑

t1,t2,t3∈α∨1 (Fq )

Tt1 Tsω−1·t2 Tsω−1sω·t3

)
Ts TωTs T−1

ω Ts Tω.

That these are equal follows from (20) and equality of the bracketed terms; for the latter observe
ωsω−1sω · t = t for any t ∈ α∨1 (F

×
q ). �

In view of Lemma 2.1 we have natural surjections of k-algebras

H]]
→H]

→H→H[.

Remark. H]] (and in particular H] and H) is generated as a k-algebra by T±1
ω , Ts and the Te∗(γ ) for

γ ∈ 0.

Lemma 2.2. There are unique k-algebra involutions ι of H, H] and H]] with

ι(Tω)= Tω, ι(Ts)= τs − Ts, ι(Tt)= Tt for t ∈ T .

Proof. This is a slightly tedious but straightforward computation. (For H see [Vignéras 2005, Corollary 2].)
�

Remark. Besides ι consider the k-algebra involution β of H, H] and H]] given on generators by

β(Tω)= T−1
ω , β(Ts)= Ts, β(Tt)= Ts·t for t ∈ T .

Moreover, for any automorphism o of 0 there is an associated automorphism αo of H, H] and H]] given
on generators by

αo(Tω)= Tω, αo(Ts)= Ts, αo(T∂(γ ))= T∂(o(γ )) for γ ∈ 0, ∂ ∈ Hom(0, T ).

Do ι, β and the αo generate the automorphism group of H (resp. of H], resp. of H]]) modulo inner
automorphisms?
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Lemma 2.3. Let M be an H]]-module. We have a direct sum decomposition

M = MTs=−id
⊕

MT 2
s =0.

Proof. One computes τ 2
s = (q − 1)τs =−τs and this shows Ts =− id on im(T 2

s ) as well as T 2
s = 0 on

im(T 2
s − id). �

Let [0, q − 2]8 be the set of tuples ε = (εi )0≤i≤d with εi ∈ {0, . . . , q − 2} and
∑

0≤i≤d εi ≡ 0 modulo
(q − 1). We often read the indices as elements of Z/(d + 1), thus εi = ε j for i, j ∈ Z whenever
i − j ∈ (d + 1)Z. We let the symmetric group Sd+1 (generated by s, ω as before) act on [0, q − 2]8 as
follows:

(ω · ε)0 = εd and (ω · ε)i = εi−1 for 1≤ i ≤ d.

If d = 1 we put

(s · ε)i =−εi for i = 0, 1,

but if d ≥ 2 we put

(s · ε)1 =−ε1, (s · ε)0 = ε0+ ε1, (s · ε)2 = ε1+ ε2, (s · ε)i = εi for 3≤ i ≤ d.10

Throughout we assume that all eigenvalues of the Tt for t ∈ T acting on an H]]-module belong to k.
Let M be an H]]-module. For a ∈ [0, q − 2] and ε = (εi )0≤i≤d ∈ [0, q − 2]8 and j ∈ {0, 1} put

Mε
= {x ∈ M | T−1

α∨i (γ )
(x)= γ εi x for all γ ∈ 0, all 0≤ i ≤ d},

Mε
a = {x ∈ Mε

| Te∗(γ )(x)= γ ax for all γ ∈ 0},

Mε
a [ j] = {x ∈ Mε

a | T
2

s (x)= j x}.

The Tt for t ∈ T are of order divisible by q−1, hence are diagonalizable on the k-vector space M . Since
they commute among each other and with T 2

s , we may simultaneously diagonalize all these operators
(see Lemma 2.3 for T 2

s ), hence

M =
⊕
ε,a, j

Mε
a [ j]. (34)

Lemma 2.4. For any ε ∈ [0, q − 2]8 and a ∈ [0, q − 2] we have

Tω(Mε
a )= Mω·ε

a−ε0
and Ts(Mε)⊂ M s·ε .

If M is even an H-module then

Ts(Mε
a )⊂ M s·ε

ε1+a. (35)

10Here and below we understand −εi to mean the representative in [0, q − 2] of the class of −εi in Z/(q − 1), and similarly
for ε0+ ε1 and ε1+ ε2.
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Proof. Tω(Mε) = Mω·ε and Ts(Mε) ⊂ M s·ε follow from formulas (26) and (27), respectively, for the
t = α∨i (γ ). For the following computation recall that ω · e∗ = e∗+α∨0 : For γ ∈ 0 and x ∈ Mε

a we have

Te∗(γ )Tω(x)= TωT(ω·e∗)(γ )(x)= TωTe∗(γ )Tα∨0 (γ )(x)= γ
a−ε0 Tω(x).

This shows Tω(Mε
a )= Mω·ε

a−ε0
. For formula (35) recall that s · e∗ = e∗−α∨1 and employ formula (27). �

Any x ∈ M can be uniquely written as

x =
∑

a∈[0,q−2]

xa with xa ∈
∑

ε∈[0,q−2]8
Mε

a .

Given a ∈ Z and x ∈ M , we write xa = xã where ã ∈ [0, q − 2] is determined by a− ã ∈ (q − 1)Z.

Definition. (a) An H]-module M is called standard supersingular if the H]-action factors through H,
making it a standard supersingular H-module.

(b) An irreducible H]-module is called supersingular if it is a subquotient of a standard supersingular
H]-module. An H]-module M is called supersingular if it is the inductive limit of finite dimensional
H]-modules and if each of its irreducible subquotients is supersingular.

(c) An H]]-module M is called supersingular if it satisfies the condition analogous to (b).

(d) A supersingular H]-module is called ]-supersingular if for all e ∈ Mε
a [0] with ε1 > 0 we have

(Tse)c+ε1+a = 0 for all q − 1− ε1 ≤ c ≤ q − 2.

Lemma 2.5. (a) An H-module is supersingular if and only if it is supersingular when viewed as an
H]-module. A supersingular H-module is ]-supersingular when viewed as an H]-module.

(b) The category of supersingular H-modules, the category of supersingular H]-modules, the category
of supersingular H]]-modules and the category of ]-supersingular H]-modules are abelian.

Proof. Statement (a) follows from formula (35). Statement (b) is clear from the definitions. �

3. Reconstruction of supersingular H]-modules

Given an H]-module M together with a submodule M0 such that M/M0 is supersingular, we address
the problem of reconstructing the H]-module M from the H]-modules M0 and M/M0 together with an
additional set of data (intended to be sparse). Our proposed solution (Proposition 3.3) critically relies on
the braid relations (32) and (33).

Lemma 3.1. Let B0, . . . , Bn be linear operators on a k-vector space M such that

B2
j = B j for all 0≤ j ≤ n,

B j B j ′B j = B j ′B j B j ′ for all 0≤ j ′, j ≤ n,

B j B j ′ = B j ′B j for all 0≤ j ′ < j ≤ n with j − j ′ ≥ 2.



92 Elmar Grosse-Klönne

Put β = Bn · · · B1 B0 and let x ∈ M with βm x = x for some m ≥ 1. Then we have B j x = x for each
0≤ j ≤ n.

Proof. We first claim
βB j+1 = B jβ for all 0≤ j < n. (36)

Indeed,
βB j+1 = Bn · · · B j+2 B j+1 B j B j−1 · · · B1 B0 B j+1

= Bn · · · B j+2 B j+1 B j B j+1 B j−1 · · · B1 B0

= Bn · · · B j+2 B j B j+1 B j B j−1 · · · B1 B0

= B jβ.

Choose ν ≥ 1 with mν ≥ n. For 0≤ j ≤ n we then compute

x
(i)
= βmνx = βn− jβmν−n+ j x

(ii)
= βn− j Bnβ

mν−n+ j x
(iii)
= B jβ

n− jβmν−n+ j x=B jβ
mνx

(iv)
= B j x,

where (i) and (iv) follow from the hypothesis βm x = x , where (ii) follows from Bnβ = β and where (iii)
follows from repeated application of formula (36). �

Proposition 3.2. Let M be an H]-module, let M0 ⊂ M be an H]-submodule such that M/M0 is supersin-
gular. Let x ∈ (M/M0)

ε (some ε ∈ [0, q − 2]8) be such that x{i} = T i+1
ω x is an eigenvector under Ts , for

each i ∈ Z. For liftings x ∈ M of x put x{i} = T i+1
ω x :

(a) If the H]-action on M factors through H then we may choose x ∈ Mε such that for each i with
Ts(x{i})= 0 and (ωi+1

· ε)1 = 0 we have Ts(x{i})= 0.

(b) If the H]-action on M factors through H then we may choose x ∈ Mε such that for each i with
Ts(x{i})=−x{i} we have Ts(x{i})=−x{i}.

(c) We may choose x ∈ Mε such that for each i with T 2
s (x{i})= 0 we have T 2

s (x{i})= 0.

(d) We may choose x ∈ Mε such that for each i with T 2
s (x{i})= x{i} we have T 2

s (x{i})= x{i}.

Proof. (a) Let i1 < · · ·< ir be the increasing enumeration of the set of all 0≤ i ≤ d with Ts T i+1
ω (x)= 0

and (ωi+1
·ε)1= 0. Replacing M by its H]-submodule generated by x and M0 we may assume that M/M0

is a subquotient of a standard supersingular H-module, attached to a supersingular character χ :Haff→ k.
If we had Ts T i+1

ω (x)= 0 and (ωi+1
· ε)1 = 0 for all 0≤ i ≤ d then this would mean χ(T m

ω Ts T−m
ω )= 0

and χ(T m
ω τs T−m

ω ) 6= 0 for all m ∈ Z, in contradiction with the supersingularity of χ . Hence there is some
0≤ i ≤ d not occurring among {i1, . . . , ir }. Thus, after a cyclic index shift, we may assume ir < d .

Start with an arbitrary lift x ∈ Mε of x .
We claim that for any j with 0≤ j ≤ r , after modifying x if necessary, we can achieve Ts(x{is})= 0

for all s with 1≤ s ≤ j . For j = r this is the desired statement.
Let us illustrate the argument in the case d = 1 first. (This will logically not be needed for the general

case. Notice e.g., that the subarguments (2) and (3) below are required only if d > 1.) Then we have
r = 1 and i1 = 0, and the claim for j = 1 states that there is some x̃ ∈ Mε lifting x with Ts Tω(x̃) = 0.
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But indeed, x̃ = x + T−1
ω Ts Tωx works: First, x̃ lifts x because of Ts Tωx = 0. Next, x̃ belongs to Mε

because of T−1
ω Ts Tωx ∈ Mε (which follows from x ∈ Mε and the assumption (ωi1+1

· ε)1 = 0). Finally,
Ts Tω(x̃)= 0, because Tω x̃ ∈ Mω·ε

= Mωi1+1
·ε and (ωi1+1

· ε)1 = 0 imply (Ts + T 2
s )Tω x̃ = 0.

Now let us consider the case of a general d . Induction on j . For j = 0 there is nothing to do. Now fix
1 ≤ j ≤ r and assume that x satisfies the condition for j − 1, i.e., assume Ts(x{is}) = 0 for all s with
1≤ s ≤ j − 1. For −1≤ i ≤ d and 0≤ m < j define inductively

x{i}0 = x{i} = T i+1
ω x,

x{i}m+1 = T i−i j−m
ω Ts(x{i j−m}m).

We establish several subclaims.

(1) x{i}m ∈ Mωi+1
·ε .

For m = 0 there is nothing to do. Next, if the claim is true for an arbitrary m, then we have in particular
x{i j−m}m ∈ Mω

i j−m+1
·ε . By assumption we know (ωi j−m+1

· ε)1 = 0, which implies Ts(Mω
i j−m+1

·ε) ⊂

Mω
i j−m+1

·ε . Thus, we get x{i j−m}m+1 = Ts(x{i j−m}m) ∈ Mω
i j−m+1

·ε . From this we get x{i}m+1 =

Ts(x{i}m) ∈ Mωi+1
·ε for general i by applying powers of Tω to x{i j−m}m+1.

(2) Ts(x{is}m)= 0 for all 1≤ s ≤ j and all 0≤ m < j − s.
We induct on m. For m = 0 this is true by induction hypothesis (on j). Now let 0< m < j − s and

assume that we know the claim for m−1 instead of m. In particular we then know Ts(x{is}m−1)= 0. We
deduce

Ts(x{is}m)= Ts T is−i j−m+1
ω Ts T i j−m+1−is

ω T is−i j−m+1
ω (x{i j−m+1}m−1)

= Ts T is−i j−m+1
ω Ts T i j−m+1−is

ω (x{is}m−1)

= T is−i j−m+1
ω Ts T i j−m+1−is

ω Ts(x{is}m−1)

= 0

where we use the braid relation (21) (which applies since |is − i j−m+1|> 1 and ir < d). The induction on
m is complete.

(3) Ts(x{is}m)= 0 for all 1≤ s ≤ j and all j − s+ 1< m ≤ j .
We induct on m+s− j . The induction begins with m+s− j=2. By (2) we know Ts(x{i j−m+1}m−2)=0.

Thus, if i j−m+1 + 1 < i j−m+2, the same argument as in (2) shows Ts(x{i j−m+1}m−1) = 0 and hence
x{i}m = 0 for all i , and there is nothing more to do. If however i j−m+1+ 1= i j−m+2 we compute

Ts(x{i j−m+2}m)= Ts TωTs T−1
ω Ts Tω(x{i j−m+1}m−2)

= TωTs T−1
ω Ts TωTs(x{i j−m+1}m−2)

= 0

where we use the braid relation (20). This settles the case m + s − j = 2. For m + s − j > 2 we now
argue exactly as in (2) again: Ts(x{is}m)= 0 implies Ts(x{is}m+1)= 0. The induction is complete.

(4) Ts(x{i j−m}m + x{i j−m}m+1)= 0 for all 0≤ m < j .
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Indeed, by (1) and our assumption (ωi j−m+1
· ε)1 = 0 we know that x{i j−m}m is fixed under Tα∨1 (0) and

hence is killed by T 2
s + Ts , as follows from the quadratic relation (22). As x{i j−m}m+1 = Ts(x{i j−m}m)

this gives the claim.

(5) x̃ =
∑

0≤m≤ j x{−1}m lifts x .
Indeed, we have Ts(x{i j }) ∈ M0 by our defining assumption on i j . It follows that x{−1}m ∈ M0 for all

m ≥ 1, hence x − x̃ ∈ M0.

(6) From (1) we deduce x̃{i} ∈ Mωi+1
·ε . Writing

x̃{is} =

( ∑
0≤m< j−s

x{is}m

)
+ (x{is} j−s + x{is} j−s+1)+

( ∑
j−s+1<m≤ j

x{is}m

)
we see that (2), (3) and (4) imply Ts(x̃{is})= 0 for all s with 1≤ s ≤ j .

The induction on j is complete; we may substitute x̃ for the old x .

(b) Composing the given H-module structure on M with the involution ι of Lemma 2.2 we get a new
H-module structure on M . Applying statement (a) to this new H-module and then translating back
via ι, we get statement (b). Notice that here, in contrast to the setting in (a), we automatically have
(ωi+1

· ε)1 = 0 for each i with Ts(x{i})=−x{i}.

(c) Statement (c) is proved in the same way as statement (a), with the following minor modifications: each
occurrence of Ts must be replaced by T 2

s , and in the definition of x{i}m+1 the alternating sign (−1)m+1

must be included, i.e.,

x{i}m+1 = (−1)m+1T i−i j−m
ω T 2

s (x{i j−m}m) (37)

In particular, we then have x{i j−m}m+1=−T 2
s (x{i j−m}m). In (2) and (3), the appeal to the braid relations

(20), (21) must be replaced by an appeal to the braid relations (32), (33). In (4), the appeal to T 2
s +Ts = 0

on vectors fixed under Tα∨1 (0) must be replaced by an appeal to T 4
s − T 2

s = 0 (it is here where the
alternating sign in the defining formula (37) is needed). Notice that here, in contrast to the setting in
(a), we do not need to impose (ωi+1

· ε)1 = 0 for each i with T 2
s (x{i})= 0. (On the one hand, because

of T 2
s (M

ε)⊂ Mε for any ε the argument analogous to the one in (a)(1) carries over; on the other hand,
because of T 4

s − T 2
s = 0 on all of M the argument analogous to the one in (a)(4) carries over.)

(d) Composing the given H]-module structure on M with the involution ι of Lemma 2.2 we get a new
H]-module structure on M . Applying statement (c) to this new H]-module and then translating back
via ι, we get statement (d). �

Proposition 3.3. Let M be an H]-module, let M0 ⊂ M be an H]-submodule such that M/M0 is supersin-
gular. The action of H] on M is uniquely determined by the following combined data:

(a) The action of H] on M0 and on M/M0.

(b) The action of Te∗(0) and of Ts Tω on M.
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(c) The restriction of Tω to (Ts Tω)−1(M0), i.e., the map

{x ∈ M | Ts Tω(x) ∈ M0}
Tω
−→ M.

(d) The subspace
∑

ε∈[0,q−2]8
ε1=0

Mε of M.

Proof. The k-algebra H] is generated by Te∗(0), by Ts and by T±1
ω . Therefore we only need to see that the

action of Ts and Tω on M can be reconstructed from the given data (a), (b), (c), (d). Exhausting M/M0

step by step we may assume that M/M0 is an irreducible supersingular H]-module.
We first show that Ts is uniquely determined. For this we make constant use of Lemma 2.3 (and the

decomposition (34)). As Ts |M0 is given to us, it is enough to show that for any nonzero x in M/M0

with either Ts(x) = −x or Ts(x) = 0 we find some lifting x ∈ M such that Ts(x) can be reconstructed.
Consider first the case Ts(x) = −x . By the quadratic relation (22) (see Lemma 2.3) we then have
x ∈

∑
ε∈[0,q−2]8

ε1=0
(M/M0)

ε , and using the datum (d) as well as our knowledge of the subspace Ts M (since

Ts M = Ts TωM this is given to us in view of datum (b)), we lift x to some x ∈ Ts M ∩
∑

ε∈[0,q−2]8
ε1=0

Mε

(use the decomposition (34)). For such x we have Ts(x) = −x . Now consider the case Ts(x) = 0. An
arbitrary lifting x ∈ M of x then satisfies Ts(x) ∈ M0, and Ts(x) is determined by the given data as
Ts(x)= (Ts Tω)T−1

ω (x) (notice that the datum (c) is equivalent with the datum T−1
s (M0)

T−1
ω−→ M).

To show that Tω is uniquely determined, suppose that besides Tω ∈Autk(M) there is another candidate
T̃ω ∈ Autk(M) extending the data (a), (b), (c), (d) to another H]-action on M .

We find and choose some nonzero x ∈ M/M0 such that T j
ω (x) is an eigenvector under Ts , for each

j ∈ Z. For any x ∈ M lifting x we have

Tω = T̃ω on M0+ k.T j−1
ω (x) if Ts T j

ω (x)= 0 (38)

as both T̃ω and Tω respect the datum (c).
Let i0 < · · ·< in be the increasing enumeration of the set

{0≤ i ≤ d | T 2
s T i

ωx = T i
ωx}.

As M/M0 is a subquotient of a standard supersingular H-module, this set is not the full set {0≤ i ≤ d}.
Applying a suitable power of Tω and reindexing we may assume that 0 does not belong to this set, i.e.,
that i0 > 0.

Choose a lifting x ∈ M of x such that for each i ∈ {i0, . . . , in}+Z(d+1) we have T 2
s T i

ωx = T i
ωx . This

is possible by Proposition 3.2. Put z0 = x . For i ≥ 1 put

zi =

{
T̃ωzi−1 i /∈ {i0, . . . , in}+Z(d + 1),
T 2

s T̃ωzi−1 i ∈ {i0, . . . , in}+Z(d + 1).

We claim

zi = T i
ωx (39)
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for each i ≥ 0. Induction on i . The case i = 0 is trivial. For i ≥ 1 with i /∈ {i0, . . . , in} +Z(d + 1) we
compute

zi = T̃ωzi−1
(i)
= Tωzi−1

(ii)
= T i

ωx

where in (i) we use statement (38) and in (ii) we use the induction hypothesis. For i ≥ 1 with i ∈
{i0, . . . , in}+Z(d + 1) we compute

zi = T 2
s T̃ωzi−1

(i)
= T 2

s Tωzi−1
(ii)
= T i

ωx

where in (i) we use the assumption Ts Tω = Ts T̃ω, and in (ii) we use the induction hypothesis Tωzi−1=T i
ωx

and the assumption on x . The induction is complete. Put

Bi j = T̃−i j
ω T 2

s T̃ i j
ω .

The relation (30) implies Bi j = T̃−i j+(d+1)ν
ω T 2

s T̃ i j−(d+1)ν
ω for each ν ∈ Z. Thus

(Bin · · · Bi1 Bi0)
m x

(i)
= T̃−m(d+1)

ω zm(d+1)
(ii)
= T̃−m(d+1)

ω T m(d+1)
ω x

for m ≥ 0, where (i) follows from the definition of zm(d+1), whereas (ii) follows from formula (39). Choos-
ing m large enough we may assume T m(d+1)

ω x = x and T̃ m(d+1)
ω x = x (as Tω and T̃ω are automorphisms

of a finite vector space); then

(Bin · · · Bi1 Bi0)
m x=x .

The braid relations (32), (33) show that the Bi j satisfy the hypotheses of Lemma 3.1 (in particular, the
commutation Bi0 Bin = Bin Bi0 if n > 1 follows from i0 > 0). This Lemma now tells us Bi j · · · Bi1 Bi0 x = x
for each 0≤ j ≤ n. But by the definition of the zi this means

zi = T̃ i
ωx (40)

for each 0≤ i ≤ d + 1. When compared with formula (39) this yields Tω = T̃ω since M is generated as a
k-vector space by M0 together with the T i

ωx (or: the T̃ i
ωx) for 0≤ i ≤ d . �

Remarks. The above proof of Proposition 3.3 shows the following:

(i) The subspace in (d) could be replaced by the subspace {x ∈ M | T 2
s (x)= x}.

(ii) If the H]-action factors through an H-action, then the datum (d) can be entirely left out (Tω can then
be reconstructed without a priori knowledge of Ts).

4. The functor

Here we define a functor M 7→1(M) from supersingular H]]-modules to torsion k[[t]]-modules with ϕ
and 0 actions, as outlined in the introduction. Its entire content is encapsulated in the explicit formula for
the elements h(e) introduced below.
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Let M be an H]]-module. View M as a k[[t]]-module with t = 0 on M . Let 0 act on M by

γ · x = T−1
e∗(γ )(x)

for γ ∈ 0, making M a k[[t]][0]-module. We have an isomorphism of k[[t]][ϕ]-modules

O⊗k[[t]][0] M ∼= k[[t]][ϕ]⊗k[[t]] M

and hence an action of O on k[[t]][ϕ]⊗k[[t]] M .
For e ∈ Mε

a [ j] (any ε ∈ [0, q − 2]8, any a ∈ [0, q − 2], any j ∈ {0, 1}) define the element

h(e)=
{

tε1ϕ⊗ T−1
ω (e)+ 1⊗ e+

∑q−2
c=0 tcϕ⊗ T−1

ω ((Tse)c+ε1+a) j = 0,
tq−1ϕ⊗ T−1

ω (e)+ 1⊗ e j = 1

of k[[t]][ϕ] ⊗k[[t]] M . Define ∇(M) to be the k[[t]][ϕ]-submodule of k[[t]][ϕ] ⊗k[[t]] M generated by the
elements h(e) for all e ∈ Mε

a [ j] (all ε, a, j). Define

1(M)=
k[[t]][ϕ]⊗k[[t]] M
∇(M)

.

Remark. If M is even an H-module, then in view of formula (35) the definition of h(e) simplifies to
become

h(e)=
{

tε1ϕ⊗ T−1
ω (e)+ 1⊗ e+ϕ⊗ T−1

ω (Tse) j = 0,
tq−1ϕ⊗ T−1

ω (e)+ 1⊗ e j = 1.

In this case it is not necessary to split up M into eigenspaces under the action of Te∗(0), and the notation
of many of the subsequent computations simplifies (no underlined subscripts are needed). However, they
hardly simplify in mathematical complexity, not even if we restrict to H[-modules only (in which case
always ε1 = 0 and Te∗(γ ) = 1).

Lemma 4.1. Let e ∈ Mε
a [ j]. The integer

ke =

{
ε1 j = 0,
q − 1 j = 1,

satisfies ke ≡ ε1 modulo (q − 1).

Proof. j = 1 means T 2
s (e)= e, hence the claim follows from the relation (22). �

Lemma 4.2. For e ∈ Mε
a [ j] we have γ · h(e)= h(T−1

e∗(γ )(e)) for all γ ∈ 0. In particular, ∇(M) is stable
under the action of 0, hence is an O-submodule of k[[t]][ϕ]⊗k[[t]] M. Hence 1(M) is even an O-module.

Proof. First notice that T−1
e∗(γ )(e) ∈ Mε

a [ j]. In particular, h(T−1
e∗(γ )(e)) is well defined. For γ ∈ 0 we find

γ · (1⊗ e)= 1⊗ γ · e = 1⊗ T−1
e∗(γ )(e). (41)

Next, we compute

γ · (tkeϕ⊗ T−1
ω (e))

(i)
= γ ke tkeϕ⊗ γ · T−1

ω (e)
(ii)
= tkeϕ⊗ T−1

ω T−1
e∗(γ )(e). (42)
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In (i) we used γ t = [γ ]8(t)γ and [γ ]8(t) ≡ γ t modulo tqk[[t]] (Lemma 0.1) and the fact that, since
π = 0 in k, we have tqϕ⊗M =8(t)ϕ⊗M = ϕt ⊗M = 0. To see (ii) observe

γ · T−1
ω (e)= T−1

e∗(γ )T
−1
ω (e)

= T−1
ω T−1

(ω−1·e∗)(γ )(e)

= T−1
ω T−1

(e∗−α∨1 )(γ )
(e)

= T−1
ω Tα∨1 (γ )T

−1
e∗(γ )(e)

= γ−ke T−1
ω T−1

e∗(γ )(e)

where in the last step we use Lemma 4.1. Combining formulae (41) and (42) we are done in the case
j = 1. In the case j = 0 we in addition need the formula

γ ·

q−2∑
c=0

tcϕ⊗ T−1
ω ((Tse)c+ε1+a)=

q−2∑
c=0

tcϕ⊗ T−1
ω ((Ts Te∗(γ )e)c+ε1+a). (43)

Let us prove this (for e ∈ Mε
a [0]). For f ∈ Z and γ ∈ 0 we compute

T(ω−1·e∗)(γ )((Tse) f )
(i)
= Te∗(γ )Tα∨1 (γ−1)((Tse) f )

(ii)
= γ f−ε1(Tse) f

= γ f−ε1−a(Ts(γ
ae)) f

= γ f−ε1−a(Ts Te∗(γ )e) f .

(44)

In (i) recall that ω−1
· e∗ = e∗−α∨1 , in (ii) notice that (Tse) f ∈ M s·ε and (s · ε)1 =−ε1. For c ∈ [0, q−2]

we deduce
γ · (tcϕ⊗ T−1

ω ((Tse)c+ε1+a))= γ
ctcϕ⊗ γ · (T−1

ω ((Tse)c+ε1+a))

= γ ctcϕ⊗ T−1
e∗(γ )T

−1
ω ((Tse)c+ε1+a)

= γ ctcϕ⊗ T−1
ω T−1

(ω−1·e∗)(γ )((Tse)c+ε1+a)

= tcϕ⊗ T−1
ω ((Ts Te∗(γ )e)c+ε1+a)

where in the last equality we inserted formula (44). �

Proposition 4.3. (a) If M is supersingular and finite dimensional, then we have: 1(M) is a torsion
k[[t]]-module, generated by M as a k[[t]][ϕ]-module, and ϕ acts injectively on it. The dual 1(M)∗ =
Homk(1(M), k) is a free k[[t]]-module of rank dimk(M). The map M→1(M) which sends m ∈ M
to the class of 1⊗m induces a bijection

M ∼=1(M)[t]. (45)

(b) 1(M) belongs to Mod♣(O).

(c) The assignment M 7→1(M) is an exact functor from the category of supersingular H]]-modules to
Modad(O).
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Proof. (a) Notice first that it is enough to prove these claims after a finite base extensions of k.
Assume first that M is irreducible. It can then be realized as a subquotient of a standard supersingular

H-module N — in fact, it can even be realized as a submodule or as a quotient of such an N . Observing
the decomposition (34) for N , we see that there are a k-basis e0, . . . , ed of N as well as 0≤ ke j ≤ q − 1
for 0 ≤ j ≤ d, not all of them = 0 and not all of them = q − 1, such that ∇(N ) is generated by the
elements h(e j )= tke j ϕ⊗ T−1

ω (e j )+1⊗ e j . It follows that 1(N ) is standard cyclic. Now it is easy to see
that 1(M) is a subquotient of 1(N ). Thus, by Proposition 1.15(d), it is standard cyclic as well, at least
after a finite extension of k. Therefore all our claims follow from Lemma 1.14 and Proposition 1.15(a).

Now let M be arbitrary (supersingular, finite dimensional). Choose a separated and exhausting
descending filtration of M by H]]-submodules FµM with irreducible subquotients Fµ−1 M/FµM . Since
on any standard supersingular H-module (and hence on any of its subquotients, and hence on any
irreducible H]]-module) we have Ts =−T 2

s and hence ker(T 2
s )= ker(Ts), the filtration satisfies

Ts(Fµ−1 M ∩ ker(T 2
s ))⊂ FµM (46)

for each µ ∈ Z. Putting

Fµ
= k[[t]][ϕ]⊗k[[t]] FµM

we claim

∇(FµM)=∇(M)∩ Fµ. (47)

Arguing by induction, we may assume that this is known with µ− 1 instead of µ. Let E be a family of
elements e ∈ (Fµ−1 M)εe

ae [ je] (for suitable εe ∈ [0, q − 2]8 and ae ∈ [0, q − 2] and je ∈ {0, 1} depending
on e) which induces a k-basis of Fµ−1 M/FµM . We consider an expression∑

j1, j2∈Z≥0,e∈E

c j1, j2,et j2ϕ j1h(e) (48)

with c j1, j2,e ∈ k. Assuming that the expression (48) belongs to Fµ we need to see that it even belongs to
∇(FµM).

Suppose that this is false. We may then define

j1 =min{ j ≥ 0 | c j, j2,et j2ϕ j h(e) /∈ ∇(FµM) for some j2 ≥ 0, some e ∈ E}.

Claim. We find some j2 and some e with c j1, j2,et j2ϕ j1h(e) ∈ Fµ
−∇(FµM).

For e ∈ E the expression

1⊗ e+ tkeϕ⊗ T−1
ω (e) (49)

is congruent to h(e) modulo Fµ, in view of e ∈ Fµ−1 M and formula (46). Therefore, modulo Fµ the
expression (48) reads ∑

j1, j2,e

c j1, j2,et j2ϕ j1 ⊗ e+ c j1, j2,et j2ϕ j1 tkeϕ⊗ T−1
ω (e).
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Notice that ϕ j1 tkeϕ ∈ k[[t]]ϕ j1+1. The claim now follows in view of

Fµ−1

Fµ
=

⊕
j≥0

k[[t]]ϕ j
⊗k[[t]]

Fµ−1 M
FµM

. (50)

The claim proven, we may argue by induction on the number of summands in the expression (48)
which do not belong to ∇(FµM). We may thus assume from the start that the expression (48) consists
of a single summand t j2ϕ j1h(e), and that moreover e /∈ FµM for this e. The aim is then to deduce
t j2ϕ j1h(e) ∈ ∇(FµM), which contradicts our above assumption.

Let us write ε = εe and a = ae. The vanishing of t j2ϕ j1h(e) modulo Fµ means, by the decomposition
(50) again, that

t j2ϕ j1 ⊗ e
(i)
= 0

(ii)
= t j2ϕ j1 tkeϕ⊗ T−1

ω (e)

(i.e., absolute vanishing, not just modulo Fµ). If T 2
s (e)= e then this shows t j2ϕ j1h(e)= 0. Now suppose

T 2
s (e)= 0 (and hence ke < q − 1). The definition of h(e) together with the vanishings (i) and (ii) shows

t j2ϕ j1h(e)= t j2ϕ j1
q−2∑
c=0

tcϕ⊗ T−1
ω ((Tse)c+ε1+a).

Since the vanishing (ii) also forces t j2ϕ j1 tkeϕ ∈ k[[t]]ϕ j1+1t , there is some i and some j ′2 ≥ 0 with

t j2ϕ j1 = t j ′2ϕ j1 t i and i ≥ q − ke.

If ke = 0 (and hence i ≥ q) then again the conclusion is t j2ϕ j1h(e) = 0. It remains to discuss the case
where 0< ke < q−1. In this case, (Tse)c+ε1+a ∈ M s·ε and (s · ε)1 =−ε1 implies q−1− ke = k(Tse)c+ε1+a

for each c. We thus see

tq−ke+cϕ⊗ T−1
ω ((Tse)c+ε1+a)= t1+c(t

k(Ts e)c+ε1+aϕ⊗ T−1
ω ((Tse)c+ε1+a)+ 1⊗ (Tse)c+ε1+a)

= t1+ch((Tse)c+ε1+a)−

q−2∑
c′=0

t1+c+c′ϕ⊗ T−1
ω ((Ts((Tse)c+ε1+a))c′+c+a)

by the definition of h((Tse)c+ε1+a), again since (Tse)c+ε1+a ∈ M s·ε and (s ·ε)1 =−ε1. For 0≤ f ≤ q−2
we have ∑

0≤c,c′≤q−2
c+c′= f

(Ts((Tse)c+ε1+a)) f+a =
∑

0≤c≤q−2

(Ts((Tse)c+ε1+a)) f+a = 0

as follows from T 2
s (e)= 0. This shows

q−2∑
c,c′=0

t1+c+c′ϕ⊗ T−1
ω ((Ts((Tse)c+ε1+a))c′+c+a)= 0.

Since e belongs to Fµ−1 M , formula (46) shows h((Tse)c+ε1+a) ∈ ∇(FµM). Together we obtain
tq−ke+cϕ⊗T−1

ω ((Tse)c+ε1+a)∈∇(FµM), hence t i+cϕ⊗T−1
ω ((Tse)c+ε1+a)∈∇(FµM) for 0≤ c≤ q−2.
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This gives

t j2ϕ j1h(e)=
q−2∑
c=0

t j ′2ϕ j1 t i+cϕ⊗ T−1
ω ((Tse)c+ε1+a) ∈ ∇(FµM),

as desired.
Formula (47) is proven. It allows us to deduce all our claims for M from the corresponding claims for

the Fµ−1 M/FµM ; but for them they have already been established above.

(b) For each irreducible supersingular H-module M , extending k if necessary, 1(M) admits a filtration
such that each associated graded piece is a standard cyclic object in Modad(O), as pointed out above. Since
the functor 1 is exact (see statement (c)) it therefore takes finite dimensional supersingular H]]-modules
to objects in Mod♣(O).

(c) It is clear that M 7→1(M) is a (covariant) right exact functor. To see left exactness, let M1→ M2 be
injective. Since the kernel of 1(M1)→1(M2) is a torsion k[[t]]-module it has, if nonzero, a nonzero
vector killed by t . By formula (45) it must belong to (the image of) M1, contradicting the injectivity of
M1→ M2. �

5. Standard objects and full faithfulness

5A. The bijection between standard supersingular Hecke modules and standard cyclic Galois rep-
resentations. Let M be a standard supersingular H-module, arising from the supersingular character
χ : Haff → k. There is some e0 ∈ M such that, putting e j = T− j

ω e0, we have M =
⊕d

j=0 k.e j and
Haff acts on k.e0 by χ . Denote by η j : 0 → k× the character through which T−1

e∗(.) acts on k.e j , i.e.,
T−1

e∗(γ )(e j )= η j (γ )e j for γ ∈ 0.

Lemma 5.1. (a) There are 0≤ ke j ≤ q−1 for 0≤ j ≤ d , not all of them= 0 and not all of them= q−1,
such that

tke j ϕ⊗ T−1
ω (e j )=−1⊗ e j (51)

in 1(M) for all 0≤ j ≤ d.

(b) If for any 1 ≤ j ≤ d there is some 0 ≤ i ≤ d with kei 6= kei+ j , then 1(M) is irreducible as a
k[[t]][ϕ]-module.

(c) Suppose that for any 1≤ j ≤ d which satisfies kei = kei+ j for all 0≤ i ≤ m there is some 0≤ i ≤ d
with ηi 6= ηi+ j . Then 1(M) is irreducible as an O-module.

Proof. For M as above, ∇(M) is generated by elements of the form h(e)= tkeϕ⊗ T−1
ω (e)+ 1⊗ e. They

give rise to formula (51), hence statement (a). For statements (b) and (c) apply Proposition 1.15; in (c)
notice that γ · (1⊗ e j )= η j (γ )⊗ e j for γ ∈ 0. �
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Lemma 5.2. (a) Conjugating χ by powers of Tω means cyclically permuting the ordered tuple
((η0, ke0), . . . , (ηd , ked )) associated with χ as above. Knowing the conjugacy class of χ (under
powers of Tω) is equivalent with knowing the tuple ((η0, ke0), . . . , (ηd , ked )) up to cyclic permutations,
together with χ(T d+1

ω ).

(b) (Vignéras) Two standard supersingular H-modules are isomorphic if and only if the element T d+1
ω ∈H

acts on them by the same constant in k× and if they arise from two supersingular characters Haff→ k
which are conjugate under some power of Tω.

(c) (Vignéras) A standard supersingular H-module M arising from χ is simple if and only if the orbit of
χ under conjugation by powers of Tω has cardinality d + 1.

Proof. Statement (a) is clear. For (b) and (c) see [Vignéras 2005, Proposition 3 and Theorem 5]. �

Proposition 5.3. The functor M 7→1(M) induces a bijection between the set of isomorphism classes of
standard supersingular H-modules and the set of standard cyclic objects in Modad(O) of k-dimension
d + 1. If the standard supersingular H-module M is simple, then 1(M) ∈Modad(O) is simple.

Proof. This follows from Lemmas 5.1 and 5.2. �

Theorem 5.4. (1) The functor M 7→1(M)∗⊗k[[t]] k((t)) induces a bijection between the set of isomor-
phism classes of standard supersingular H-modules and the set of isomorphism classes of standard
cyclic étale (ϕ, 0)-modules of dimension d + 1.

(2) The functor M 7→1(M)∗⊗k[[t]] k((t)) induces a bijection between the set of isomorphism classes of
simple supersingular H-modules of k-dimension d + 1 and the set of isomorphism classes of simple
étale (ϕ, 0)-modules of dimension d + 1.

Proof. Statement (a) follows from Propositions 1.20 and 5.3. Statement (b) follows from statement
(a) and the full faithfulness of the functor M 7→ 1(M)∗⊗k[[t]] k((t)) on supersingular H-modules, see
Theorem 5.11 below. (To see that if M is simple then so is 1(M)∗⊗k[[t]] k((t)) one may alternatively use
Proposition 5.3 together with Proposition 1.11.) �

Remark. We may rewrite (51) as

tke j ϕ⊗ e j+1 =−1⊗ e j for 0≤ j ≤ d − 1

tked ϕ⊗χ(T−d−1
ω )e0 =−1⊗ ed

where we used T−1
ω (ed) = T−d−1

ω (e0) = χ(T−d−1
ω )e0. Thus (−1)d+1χ(T−d−1

ω ) ∈ k× is the constant
referred to in Lemma 1.19.

Corollary 5.5. The functor M 7→1(M)∗⊗k[[t]] k((t)), composed with the functor of Theorem 1.2, induces
a bijection between the set of isomorphism classes of standard supersingular H-modules of k-dimension
d+1 and the set of isomorphism classes of (d+1)-dimensional standard cyclic Gal(F/F)-representations.

Proof. Theorem 5.4. �
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Remark. (a) Combining Corollary 5.5 and Theorem 5.4 one can derive the following “numerical
Langlands correspondence”: the set of (absolutely) simple (d + 1)-dimensional H-modules with fixed
scalar action by T d+1

ω has the same cardinality as the set of (absolutely) irreducible (d + 1)-dimensional
Gal(F/F)-representations with fixed determinant of Frobenius. This numerical Langlands correspondence
was proven already in [Vignéras 2005, Theorem 5].

(b) There is an alternative and arguably more natural definition of supersingularity for H-modules. Its
agreement with the one given in Section 2A, and hence the “numerical Langlands correspondence” with
respect to this alternative definition of supersingularity, was proven in [Ollivier 2010].

5B. Reconstruction of an initial segment of M from 1(M). Let [0, q − 1]8 be the set of tuples µ =
(µi )0≤i≤d with µi ∈ {0, . . . , q − 1} and

∑
0≤i≤d µi ≡ 0 modulo (q − 1). We often read the indices as

elements of Z/(d + 1), thus µi = µ j for i, j ∈ Z whenever i − j ∈ (d + 1)Z.
Let 1 be an O-module. For µ ∈ [0, q − 1]8 let F1[t]µ be the k-subvector space of 1[t] = {x ∈

1 | t x = 0} generated by all x ∈1[t] satisfying tµiϕ · · · tµ1ϕtµ0ϕx ∈1[t] for all 0 ≤ i ≤ d, as well as
tµdϕ · · · tµ1ϕtµ0ϕx ∈ k×x .

Put F1[t] =
∑

µ∈[0,q−1]8 F1[t]µ (sum in 1[t]).

Lemma 5.6. F1[t] =
⊕

µ∈[0,q−1]8 F1[t]µ, i.e., the sum is direct.

Proof. Consider the lexicographic enumeration µ(1), µ(2), µ(3), . . . of [0, q−1]8 such that for each pair
r ′ > r there is some 0≤ i0 ≤ d with µi (r)≥ µi (r ′) for all i < i0, and µi0(r) > µi0(r

′). Let
∑

r≥1 xr = 0
with xr ∈ F1[t]µ(r). We prove xr = 0 for all r by induction on r . So, fix r and assume xr ′ = 0 for
all r ′ < r , hence

∑
r ′≥r xr ′ =

∑
r≥1 xr −

∑
r ′<r xr = 0. For r ′ > r we have tµd (r)ϕ · · · tµ0(r)ϕ(xr ′) = 0.

Therefore

0= tµd (r)ϕ · · · tµ0(r)ϕ

(∑
r ′≥r

xr ′

)
=

∑
r ′≥r

tµd (r)ϕ · · · tµ0(r)ϕxr ′

= tµd (r)ϕ · · · tµ0(r)ϕxr ∈ k×xr

and hence xr = 0. �

We define k-linear endomorphisms Tω, Ts and Te∗(γ ) (for γ ∈ 0) of F1[t] as follows. In view of
Lemma 5.6 it is enough to define their values on x ∈ F1[t]µ; we put

Tω(x)=−tµ0ϕx, Te∗(γ )(x)= γ−1
· x, Ts(x)=

{
−x µd = q − 11
0 µd < q − 1.

Here γ−1
· x is understood with respect to the 0-action induced by the O-module structure on 1(M).
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Definition. For an H]]-module M and µ ∈ [0, q − 1]8 let FMµ denote the k-subvector space of M
consisting of x ∈ M satisfying the following conditions for all 0≤ i ≤ d:

T−1
α∨1 (γ )

(T i
ω(x))= γ

µi−1 T i
ω(x) for all γ ∈ 0, (52)

Ts(T i
ω(x))=

{
−T i

ω(x) µi−1 = q − 1,
0 µi−1 < q − 1.

(53)

Let FM denote the subspace of M generated by the FMµ for all µ ∈ [0, q − 1]8.
For µ ∈ [0, q − 1]8 let εµ ∈ [0, q − 2]8 be the unique element with

(εµ)−i ≡ µi mod (q − 1). (54)

for all i .

Lemma 5.7. (a) We have FMµ
⊂ Mεµ .

(b) FM is an H]]-submodule of M.

(c) FM contains each H]]-submodule of M which is a subquotient of a standard supersingular H]]-
module.

(d) Suppose that M is supersingular. Viewing the isomorphism 1(M)[t] ∼= M (Proposition 4.3) as an
identity, we have FMµ

⊂ F1(M)[t]µ for each µ ∈ [0, q − 1]8, and in particular

FM ⊂ F1(M)[t]. (55)

The operators Tω, Ts and Te∗(γ ) acting on F1(M)[t] as defined above restrict to the operators
Tω, Ts, Te∗(γ ) ∈H]] acting on FM.

Proof. (a) Let µ ∈ [0, q − 1]8. For x ∈ FMµ, any γ ∈ 0 and any i we compute

T−1
α∨1−i (γ )

(x)= T−1
(ωi ·α∨1 )(γ )

(x)= T−i
ω T−1

α∨1 (γ )
T i
ω(x)= γ

µi−1 x = γ (εµ)1−i x,

i.e., x ∈ Mεµ .

(b) Let µ ∈ [0, q− 1]8 and define µ′ ∈ [0, q− 1]8 by µ′i = µi+1 for all i . For x ∈ FMµ, any γ ∈ 0 and
any i we compute

T−1
α∨1 (γ )

(T i
ω(Tω(x)))= T−1

α∨1 (γ )
(T i+1
ω (x))= γ µi T i+1

ω (x)= γ µi T i
ω(Tω(x)).

We also find Ts(T i
ω(Tω(x)))=Ts(T i+1

ω (x))=−T i+1
ω (x)=−T i

ω(Tω(x)) ifµi =q−1, but Ts(T i
ω(Tω(x)))=

Ts(T i+1
ω (x))=0 ifµi <q−1. Together this shows Tω(x)∈FMµ′ , i.e., Tω(FMµ)⊂FMµ′ . It is immediate

from the definitions that Ts(FMµ)⊂ FMµ. For x ∈ FMµ, any γ, γ ′ ∈ 0 and any i we compute

T−1
α∨1 (γ )

T i
ω(Te∗(γ ′)(x))= T−1

α∨1 (γ )
T(ω−i ·e∗)(γ ′)T

i
ω(x)= T(ω−i ·e∗)(γ ′)γ

µi−1 T i
ω(x)= γ

µi−1 T i
ω(Te∗(γ ′)(x)).
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If µi−1 = q − 1 we also compute

Ts T i
ω(Te∗(γ ′)(x))= T(s·ω−i ·e∗)(γ ′)Ts T i

ω(x)

=−T(s·ω−i ·e∗)(γ ′)T
i
ω(x)

=−T i
ω(T(ωi ·s·ω−i ·e∗)(γ ′)(x))

=−T i
ω(Te∗(γ ′)(x)).

Here, in the last equation we use ωi
·s ·ω−i

·e∗= e∗ for 2≤ i ≤ d; for i = 1 we use ω ·s ·ω−1
·e∗−e∗= α∨0

and Tα∨0 (γ ′)(x) = T−1
ω Tα∨1 (γ ′)Tω(x) = γ

−µ0 x = x (as µ0 = q − 1); for i = 0 we use s · e∗ − e∗ = −α∨1
and T−α∨1 (γ ′)(x) = γ

µ−1 x = x (as µ−1 = q − 1). If however µi−1 < q − 1 then Ts T i
ω(Te∗(γ ′)(x)) =

T(s·ω−i ·e∗)(γ ′)Ts T i
ω(x)= 0. Together this shows Te∗(γ ′)(x) ∈ FMµ, i.e., Te∗(γ ′)(FMµ)⊂ FMµ.

(c) On a standard supersingular H]]-module, and hence on its subquotients, the actions of Tω, Ts and
Tα∨1 (γ ) satisfy formulae (52) and (53), for suitable µ’s.

(d) Let µ ∈ [0, q − 1]8 and define µ′ ∈ [0, q − 1]8 by µ′i = µi+1 for all i . Let x ∈ FMµ. The proof
of (b) shows Tω(x) ∈

∑
a M

εµ′
a [0] if µ′d = µ0 < q− 1, resp. Tω(x) ∈

∑
a M

εµ′
a [1] if µ′d = µ0 = q− 1. In

either case, the definition of 1(M) then says Tω(x)=−tµ0ϕx . This shows FMµ
⊂F1(M)[t]µ and that

the action of Tω on FM is indeed as stated. For the actions of Ts and Te∗(γ ) this is clear anyway. �

Remark. The inclusion (55) is in fact an equality.

5C. Reconstruction of ]-supersingular H]-modules M from 1(M).

Lemma 5.8. Let M be an irreducible supersingular H-module. Let µ ∈ [0, q − 1]8, x ∈ M and
ui,c ∈ Mω−1sωi+1

·εµ for i ≥ 0 and 0≤ c ≤ q − 2 (with εµ given by formula (54)). Assume ui,c = 0 if

(i) µi = 0, or

(ii) µi = q − 1 and c > 0, or

(iii) µi < q − 1 and c ≥ q − 1−µi .

Assume that, if we put x{−1} = x , then

x{i} = tµiϕ(x{i − 1})−
q−2∑
c=0

tcϕui,c

belongs to M ∼=1(M)[t] for each i ≥ 0. Finally, assume that x{D} = x for some D > 0 with D+ 1 ∈
Z(d + 1). Then there is some x ′ ∈ M with x − x ′ ∈ Mεµ and such that

x ′{i} = tµiϕ(· · · (tµ1ϕ(tµ0ϕx ′)) · · ·)

belongs to M for each i , and x ′{D} = x ′. Moreover, if x is an eigenvector for Te∗(0), then x ′ can be chosen
to be an eigenvector for Te∗(0), with the same eigenvalues.
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Proof. It is easy to see that all the irreducible subquotients of a standard supersingular H-module
are isomorphic. In particular, an irreducible supersingular H-module is isomorphic with a submodule
of a standard supersingular H-module. Therefore we may assume that M itself is a (not necessarily
irreducible) standard supersingular H-module. We then have a direct sum decomposition M =⊕d

j=0 M [ j]

with dimk(M [ j])= 1 and integers 0≤ k j ≤ q − 1 such that

Tω(M [ j+1])= tk jϕ(M [ j+1])= M [ j] (56)

(always reading j modulo (d + 1)). More precisely, we have M [ j] ⊂ Mε j for certain ε j ∈ [0, q − 2]8,
and choosing the above k j minimally, we have k j ≡ (ω · ε j+1)1 modulo (q − 1). It follows that

k[t]ϕM =
d⊕

j=0

k[t]ϕM [ j] =
d⊕

j=0

k j⊕
c=0

tcϕM [ j+1]. (57)

For m ∈ M write m =
∑

j m[ j] with m[ j] ∈ M [ j]. By formulae (56), (57), the defining formula for x{i}
splits up into the formulae

x{i}[ j] = tµiϕ(x{i − 1}[ j+1])−

q−2∑
c=0

tcϕ(u[ j+1]
i,c ) (58)

for all j . We use them to show

tcϕ(u[ j+1]
i,c )= 0 if c−µi /∈ (q − 1)Z. (59)

If µi ∈ {0, q−1} then formula (59) follows from our assumptions on the ui,c. Now assume µi /∈ {0, q−1}
and u[ j+1]

i,c 6= 0 for some c. The assumption ui,c ∈ Mω−1sωi+1
·εµ implies Tω(u

[ j+1]
i,c ) ∈ M sωi+1

·εµ , and since

q − 1−µi = q − 1− ε−i = (sωi+1
· εµ)1 if µi /∈ {0, q − 1}

we get Tω(u
[ j+1]
i,c ) = −tq−1−µiϕ(u[ j+1]

i,c ), i.e., k j = q − 1− µi . Now
∑k j

c=0 tcϕM [ j+1] is a direct sum
of one dimensional k-vector spaces, with x{i}[ j] ∈ tk jϕM [ j+1], tµiϕ(x{i − 1}[ j+1]) ∈ tµiϕM [ j+1] and
tcϕ(u[ j+1]

i,c ) ∈ tcϕM [ j+1] for all c. Since by assumption ui,c = 0 for c ≥ q − 1−µi = k j , formula (58)
shows tcϕ(u[ j+1]

i,c )= 0 whenever c 6= µi .
Formula (59) is proven. Arguing once more with formulae (56), (57) and (58) shows

[tµiϕ(x{i − 1}[ j+1])= 0 or ϕ(u[ j+1]
i,0 )= 0] if µi = q − 1. (60)

In the following, by ui,q−1 we mean ui,0. If tµiϕ(u[ j+1]
i,µi

) 6= 0 we may write

tµiϕ(x{i − 1}[ j+1])− tµiϕ(u[ j+1]
i,µi

)= ρi, j tµiϕ(u[ j+1]
i,µi

)

for some ρi, j ∈ k, since tµiϕ(x{i−1}[ j+1]) and tµiϕ(u[ j+1]
i,µi

) belong to the same one-dimensional k-vector
space. The upshot of formulae (59) and (60) is then that formula (58) simplifies to become either

x{i}[ j] = tµiϕ(x{i − 1}[ j+1]) (61)
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or

x{i}[ j] = ρi, j tµiϕ(u[ j+1]
i,µi

) (62)

for some ρi, j ∈ k. Departing from x [ j] = x{D}[ j] we repeatedly substitute formula (61); if this is possible
D+ 1 many times we end up with

x [ j] = x{D}[ j] = tµDϕ(· · · (tµ1ϕ(tµ0ϕ(x [ j]))) · · · ),

and in this case we put n( j)= 0. Otherwise, after D+ 1− n( j) many substitutions of formula (61), for
some 1≤ n( j)≤ D+ 1, we end the procedure by substituting formula (62) (once) and obtain

x [ j] = x{D}[ j] = ρ j tµDϕ(· · · (tµn( j)ϕ(tµn( j)−1ϕ(u[ j+1−n( j)]
n( j)−1,µn( j)−1

))) · · · )

with tµn( j)−1ϕu[ j+1−n( j)]
n( j)−1,µn( j)−1

6= 0, for some ρ j ∈ k.
We study this second case n( j) > 0 further. By construction,

w j {−1} = tµn( j)−1ϕ(u[ j+1−n( j)]
n( j)−1,µn( j)−1

)

is nonzero and belongs to M . On the other hand, un( j)−1,µn( j)−1 ∈Mω−1sωn( j)
·εµ implies Tω(u

[ j+1−n( j)]
n( j)−1,µn( j)−1

)∈

M sωn( j)
·εµ and hence

t (sω
n( j)
·εµ)1ϕ(u[ j+1−n( j)]

n( j)−1,µn( j)−1
)=−Tω(u

[ j+1−n( j)]
n( j)−1,µn( j)−1

) ∈ M sωn( j)
·εµ .

Together this means µn( j)−1 ≡ (sωn( j)
· εµ)1 modulo (q − 1) and w j {−1} ∈ M sωn( j)

·εµ . But we also have
µn( j)−1 ≡ (ω

n( j)
· εµ)1. Combining we see µn( j)−1 ≡−µn( j)−1 modulo (q − 1). Hence, we either have

µn( j)−1 = 0 or µn( j)−1 = (q − 1)/2 or µn( j)−1 = q − 1. In view of the assumed vanishings of the ui,c

(and of u[ j+1−n( j)]
n( j)−1,µn( j)−1

6= 0) this leaves µn( j)−1 = q − 1 as the only possibility. It follows that

sωn( j)
· εµ = ω

n( j)
· εµ

and hence w j {−1} ∈ Mωn( j)
·εµ . Next, again by construction we know that

w j {s} = tµn( j)+sϕ(w j {s− 1})

belongs to M , for 0 ≤ s ≤ D − n( j). By what we learned about w j {−1} this implies w j {s} =
(−1)s+1T s+1

ω w j {−1} ∈ Mωn( j)+s+1
·εµ by an induction on s (and we also see µn( j)+s ∈ {k0, . . . , kd} with

the k` from formula (56)). For s = D− n( j) we obtain x [ j] = x{D}[ j] ∈ Mεµ .
We now put x ′ =

∑
n( j)=0 x [ j]. �

Lemma 5.9. Let M be an irreducible supersingular H-module. Let µ ∈ [0, q − 1]8 and x ∈ M such that

x{i} = tµiϕ(· · · (tµ1ϕ(tµ0ϕx)) · · ·)

belongs to M ∼=1(M)[t] for each i ≥ 0, and such that x{D} = x for some D > 0 with D+ 1 ∈ Z(d + 1).
Then x ∈ Mεµ and x{i} = (−Tω)i x for each i .
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Proof. This follows from the formulae (56) and (57) in the proof of Lemma 5.8. The argument is very
similar to the one given in the proof of Lemma 5.6. �

Theorem 5.10. Let M be a ]-supersingular H]-module. Via the isomorphism M ∼=1(M)[t], the action
of H] on M can be recovered from the action of O on 1(M).

Proof. We may assume dimk(M)<∞. Define inductively the filtration (F i M)i≥0 of M by H]-submodules
as follows: F0 M = 0, and F i+1 M is the preimage of F(M/F i M) under the projection M→ M/F i M .
The H]-action on the graded pieces can be recovered in view of Lemma 5.7. Exhausting M step by step
it is therefore enough to consider the following setting: The action of H] has already been recovered on
an H]-submodule M0 of M and on the quotient M/M0, and the latter is irreducible.

We reconstruct the action of Te∗(0) on M by means of

Te∗(γ )(x)= γ−1
· x for γ ∈ 0

as is tautological from our definitions. Next we are going to reconstruct the decomposition

M =
⊕

ε∈[0,q−2]8,
a∈[0,q−2]

Mε
a . (63)

Let D > 0 be such that D+ 1 ∈ Z(d + 1) and f D+1
= id for each k-vector space automorphism f of M .

(Such a D does exist. Indeed, M is finite, hence Autk(M) is finite, hence there is some n ∈N with f n
= id

for each f ∈Autk(M). Now take D = (d+1)n−1.) For ε ∈ [0, q−2]8 and a ∈ [0, q−2] define M [ε]a to
be the k-subspace of M generated by all x ∈ M with γ · x = γ ax (all γ ∈ 0) and satisfying the following
condition: there is some µ ∈ [0, q − 1]8 (depending on x) with εµ = ε, and there are ui,c ∈ Mω−1sωi+1

·ε
0

for i ≥ 0 and 0≤ c ≤ q − 2 with the following properties: Firstly, ui,c = 0 if

(i) µi = 0, or

(ii) µi = q − 1 and c > 0, or

(iii) µi < q − 1 and c ≥ q − 1−µi .

Secondly, putting x{−1} = x and

x{i} = tµiϕ(x{i − 1})−
∑

c

tcϕui,c, (64)

we have x{i} ∈ M ∼=1(M)[t] for any i , as well as x{D} = x .
It will be enough to prove Mε

a = M [ε]a . We first show

Mε
a ⊂ M [ε]a . (65)

We start with x ∈ F(M/M0)
µ
∩ (M/M0)

ε
a for some µ with εµ = ε. By Proposition 3.2 we may lift it

to some x ∈ Mε such that for each i with Ts T i+1
ω x = 0 we have T 2

s T i+1
ω x = 0. As Tω maps simultaneous
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eigenspaces for the Tt (with t ∈ T ) again to such simultaneous eigenspaces, and as T 2
s commutes with

the Tt , we may assume x ∈ Mε
a . Putting

x{i} = (−Tω)i+1x

for −1≤ i ≤ D, repeated application of Lemma 2.4 shows x{i} ∈ Mωi+1
·ε

aε,i with

aε,−1 = a, aε,0 = a− ε0 and aε,i = a− ε0− εd−i+1− · · ·− εd

for i ≤ d , and then aε,i = aε,i ′ for i − i ′ ∈ Z(d + 1).
If 0≤ µi < q − 1 put

ui,c = T−1
ω ((Ts(x{i}))c+µi+aε,i ).

As x ∈ F(M/M0)
µ and µi < q− 1 we have ui,c ∈ M0, and as x{i} ∈ Mωi+1

·ε we have ui,c ∈ Mω−1sωi+1
·ε ,

together ui,c ∈ Mω−1sωi+1
·ε

0 . From µi < q − 1 we furthermore deduce kx{i} = (ω
i+1
· ε)1 = µi , and since

T 2
s x{i} = 0 we then see

tµiϕ(x{i − 1})− x{i}−
∑

c

tcϕui,c = h(−x{i})= 0. (66)

Since furthermore (Ts(x{i}))c+µi+aε,i =0 and hence ui,c=0 for q−1−µi ≤ c≤q−2 by ]-supersingularity
(if 0< µi < q − 1 then µi = ε−i ), all the conditions on the ui,c in the definition of x ∈ M [ε]a are satisfied.

If µi = q − 1 we have T 2
s (T

2
s x{i})= T 2

s x{i} and hence kT 2
s x{i} = q − 1 (independently of the value of

µi we have (ωi+1
· ε)1 ≡ µi modulo (q − 1)), hence

tq−1ϕT−1
ω (T 2

s x{i})+ T 2
s x{i} = h(T 2

s x{i})= 0. (67)

Similarly we see k(x{i}−T 2
s x{i}) = 0 and hence

ϕT−1
ω (x{i}− T 2

s x{i})+ x{i}− T 2
s x{i} = h(x{i}− T 2

s x{i})= 0. (68)

We compute
tq−1ϕ(x{i − 1})=−tq−1ϕT−1

ω (x{i})

=−tq−1ϕT−1
ω T 2

s (x{i})

= T 2
s (x{i})

= ϕT−1
ω (x{i}− T 2

s x{i})+ x{i}

where the second equality is the result of applying tq−1 to formula (68), where the third equality is
formula (67) and where the fourth equality is formula (68). Thus, putting ui,0 = T−1

ω (x{i} − T 2
s x{i})

and ui,c = 0 for c > 0, we again get formula (66). Moreover, ui,0 belongs to M0 as x ∈ F(M/M0)
µ

and µi = q − 1; but it also belongs to Mω−1sωi+1
·ε since µi = q − 1 implies ω−1sωi+1

· ε = ωi
· ε. By

construction, x{d} = (−Tω)d+1(x), hence x{D} = (−Tω)D+1x = x .
It follows that x ∈M [ε]a . We have shown that any element in F(M/M0)

µ
∩(M/M0)

ε
a , for µ with εµ= ε,

lifts to an element in Mε
a ∩M [ε]a . Since we have (M/M0)

ε
=
∑

µ∈[0,q−1]8
εµ=ε

F(M/M0)
µ (see Lemma 5.7) and
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since this is respected by the action of Te∗(0), we thus have reduced our problem to showing (M0)
ε
a ⊂M [ε]a .

But for this we may appeal to an induction on dimk(M) (which we may assume to be finite).
We have shown formula (65). Now we show

M [ε]a ⊂ Mε
a . (69)

Let x ∈ M [ε]a , µ ∈ [0, q − 1]8 (with εµ = ε) and ui,c be as in the definition of M [ε]a . Define x{i} for
−1 ≤ i ≤ D as in that definition. By Lemma 5.9 and the proof of the inclusion (65) we find x̃ ∈ Mε

a

and ũi,c ∈ Mω−1sωi+1
·ε

0 for 0≤ i ≤ D such that, after replacing x by x − x̃ and ui,c by ui,c− ũi,c, we may
assume x ∈ M0.

Claim. If x ∈ M0 and if M0 is irreducible, then there is some x ′ ∈ (M0)a with x − x ′ ∈ (M0)
ε
a and such

that
x ′{i} = tµiϕ(· · · (tµ1ϕ(tµ0ϕx ′)) · · ·)

belongs to M0 for all i , and x ′{D} = x ′.

This follows from Lemma 5.8.
If M0 is not irreducible, choose an H-submodule M00 in M0 such that M0/M00 is irreducible. By the

above claim and again invoking the proof of the inclusion (65), after modifying x by another element of
Mε

a (now even of (M0)
ε
a) and suitably modifying the ui,c, we may assume ui,c ∈ M00. Thus, it is now

enough to solve the problem for the new x ∈ (M0)a (and the new ui,c ∈ M00). We continue in this way.
Since we may assume that dimk(M) is finite, an induction on the dimension of M allows us to conclude.

We have reconstructed the decomposition (63) of M .
Now we reconstruct Ts Tω acting on M . As we already know the decomposition (63), it is enough to

reconstruct Ts Tω(e) for e ∈ Mε′

a′ , all ε′, a′. Given such e, let e be its class in M/M0. By Lemma 2.4 there
are then ε, a such that Tωe ∈ (M/M0)

ε
a .

First assume ε1 = 0. We then reconstruct Ts Tω(e) as Ts Tω(e) = tq−1ϕ(e). Indeed, to see this we
may assume (by Lemma 2.3) that Tω(e) is an eigenvector for T 2

s . If T 2
s Tω(e) = Tω(e) and hence

Ts Tω(e) = −Tω(e), the claim follows from the definition of h(Tω(e)). If T 2
s Tω(e) = 0 then in fact

Ts Tω(e)= 0 (since also ε1 = 0), and the definition of h(Tω(e)) shows tq−1ϕ(e)= 0.
Now assume ε1 > 0. This implies T 2

s Tω(e)= 0 and kTω(e) = ε1, and by ]-supersingularity we get

tkTω(e)+1ϕe =−
∑

0≤c<q−1−kTω(e)

tc+1ϕT−1
ω ((Ts Tωe)c+ε1+a).

Here (Ts Tωe)c+ε1+a ∈ M s·ε
0 and q − 1− kTω(e) = (s · ε)1. The map⊕

0≤c<q−1−kTω(e)

M s·ε
0 → M0, (yc)c 7→

∑
0≤c<q−1−kTω(e)

tc+1ϕT−1
ω (yc)

is injective. This is first seen in the case where M0 is irreducible; it then follows by an obvious devissage
argument. We therefore see that the (Ts Tωe)c+ε1+a for 0 ≤ c < q − 1− kTω(e) can be read off from
tkTω(e)+1ϕe, hence also Ts Tωe can be read off from tkTω(e)+1ϕe (by ]-supersingularity).
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The restriction of Tω to {x ∈ M | Ts Tω(x) ∈ M0} is reconstructed as follows. Given x ∈ (M/M0)
ω−1
·ε

a−ε1

(for some ε, some a) with Ts Tωx = 0, we use the decomposition (34) to lift x to some x ∈ Mω−1
·ε

a−ε1
. Since

(ω−1
· ε)0 = ε1, Lemma 2.4 says Tωx ∈ Mε

a . It then follows from the definitions that

Tωx =−tε1ϕx −
∑
c≥0

tcϕT−1
ω ((Ts Tωx)c+ε1+a).

We have now collected all the data required in Proposition 3.3 for reconstructing M as an H]-module. �

5D. Full faithfulness on ]-supersingular H]-modules. Let Rep(Gal(F/F)) denote the category of rep-
resentations of Gal(F/F) on k-vector spaces which are projective limits of finite dimensional continuous
Gal(F/F)-representations.

Let Modss(H]) denote the category of ]-supersingular H]-modules. Let Modss(H) and Modss(H]])

denote the categories of supersingular H-modules and supersingular H]]-modules, respectively.
Let M ∈ Modss(H]]) with dimk(M) < ∞. By Proposition 4.3 we have 1(M) ∈ Modad(O), thus

1(M)∗⊗k[[t]] k((t)) ∈Modet(k((t))) (see Proposition 1.4). Let V (M) be the object in Rep(Gal(F/F))
assigned to 1(M)∗ ⊗k[[t]] k((t)) by Theorem 1.2. Exhausting an object in Modss(H]]) by its finite
dimensional subobjects we see that this construction extends to all of Modss(H]]).

Theorem 5.11. The assignment

Modss(H]])→ Rep(Gal(F/F)), M 7→ V (M) (70)

is an exact contravariant functor, with dimk(M)= dimk(V (M)) for any M. Also,

Modss(H])→ Rep(Gal(F/F)), M 7→ V (M),

Modss(H)→ Rep(Gal(F/F)), M 7→ V (M)
(71)

are exact and fully faithful contravariant functors.

Proof. Exactness follows from exactness of M 7→1(M) (Proposition 4.3), exactness of 1 7→1∗⊗k[[t]]

k((t)) (Proposition 1.4) and exactness of the equivalence functor in Theorem 1.2. From Proposition 4.3 we
get dimk(M)= dimk((t))(1(M)∗⊗k[[t]] k((t))), from Theorem 1.2 we get dimk((t))(1(M)∗⊗k[[t]] k((t)))=
dimk(V (M)).

To prove faithfulness on Modss(H]), suppose that we are given finite dimensional objects M , M ′

in Modss(H]) and a morphism µ : V (M ′)→ V (M) in Rep(Gal(F/F)). By Theorem 1.2, the latter
corresponds to a unique morphism of étale (ϕ, 0)-modules

µ :1(M ′)∗⊗k[[t]] k((t))→1(M)∗⊗k[[t]] k((t)).

By Proposition 1.17 (which applies since Proposition 4.3 tells us1(M),1(M ′)∈Mod♣(O)) it is induced
by a unique morphism of O-modules µ :1(M)→1(M ′). Clearly µ takes 1(M)[t] to 1(M ′)[t], i.e., it
takes M to M ′. Applying Theorem 5.10 to both M and M ′ we see that µ : M→ M ′ is H]-equivariant. If
M,M ′ ∈Modss(H]) are not necessarily finite dimensional, the same conclusion is obtained by exhausting
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M , M ′ by its finite dimensional submodules. We deduce the stated full faithfulness on Modss(H]). It
implies full faithfulness on Modss(H) (see Lemma 2.5). �

Example. The analogs of Proposition 3.3 and Theorem 5.11 (on the functor in formula (71)) fail for
supersingular H]]-modules. To see this, take d = 2, and endow the 6-dimensional k-vector space M
with basis e0, e1, e2, f0, f1, f2 with the structure of an H]]-module as follows. Tt for each t ∈ T acts
trivially. Put Ts( f0) = Ts(e1) = Ts(e2) = 0 and Ts(e0) = −e0, Ts( f1) = − f1, Ts( f2) = − f2. Fix α ∈ k
and put Tω(e0) = e1, Tω(e1) = e2, Tω(e2) = e0, Tω( f0) = f1 + αe1, Tω( f1) = f2 − αe2, Tω( f2) = f0.
This is even an H]-module if and only if α = 0, if and only if it is decomposable (as an H]]-module).
The corresponding O-module 1(M) is defined by the relations ϕe0 =−e1, ϕe1 =−e2, tq−1ϕe2 =−e0,
ϕ f2 =− f0, tq−1ϕ( f0−αe0)− f1, tq−1ϕ( f1+αe1)− f2. But this O-module is in fact independent of α,
since tq−1ϕe1 = tq−1ϕe0 = 0. Thus, an H]]-analog of Theorem 5.11 fails. To see that an H]]-analog of
Proposition 3.3 fails take M0 to be the k-subvector space of M spanned by e0, e1, e2; it is stable under
H]]. The action of H]] on M0 and on M/M0 does not depend on α. The actions of T d+1

ω = T 3
ω , of Te∗(0)

and of Ts Tω do not depend on α. We have (Ts Tω)−1(M0)= M0+ k f2 and hence the restriction of Tω to
(Ts Tω)−1(M0) does not depend on α. We have M =

∑
ε Mε with Mε

= 0 whenever ε1 6= 0. Thus, an
H]]-analog of Proposition 3.3 would predict that also the action of Tω (even of H]]) is independent of α,
which however is apparently not the case.

5E. The essential image.

Definition. Let Hom(0, k×)8 denote the group of (d + 1)-tuples α = (α0, . . . , αd) of characters α j :

0→ k×. Let Sd+1 act on Hom(0, k×)8 by the formulae

(ω ·α)0 = αd and (ω ·α)i = αi−1 for 1≤ i ≤ d,

(s ·α)0 = α1, (s ·α)1 = α0 and (s ·α)i = αi for 2≤ i ≤ d.

Recall the action of Sd+1 on [0, q − 2]8. Combining both (diagonally), we obtain an action of Sd+1 on
Hom(0, k×)8×[0, q − 2]8.

In Lemma 1.19 we attached to each standard cyclic étale (ϕ, 0)-module D of dimension d + 1 an
ordered tuple ((α0,m0), . . . , (αd ,md)) (with integers m j ∈ [1 − q, 0] and characters α j : 0 → k×),
unique up to a cyclic permutation. Sending each m j to the representative in [0, q − 2] of its class in
Z/(q − 1), the tuple (m0, . . . ,md) gives rise to an element in [0, q − 2]8. On the other hand, the tuple
(α0, . . . , αd) constitutes an element in Hom(0, k×)8. Taken together we thus attach to D an element in
Hom(0, k×)8× [0, q − 2]8, unique up to cyclic permutation. Equivalently, we attach to D an orbit in
Hom(0, k×)8×[0, q − 2]8 under the action of the subgroup of Sd+1 generated by ω.

Now let D′1, D′2 be irreducible étale (ϕ, 0)-modules over k((t)). We say that D′1, D′2 are strongly
Sd+1-linked if they are subquotients of (d + 1)-dimensional standard cyclic étale (ϕ, 0)-modules D1,
D2 respectively, and if D1, D2 give rise to the same Sd+1-orbit in Hom(0, k×)8 × [0, q − 2]8. We
say that D′1, D′2 are Sd+1-linked if they are subquotients of (d + 1)-dimensional standard cyclic étale
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(ϕ, 0)-modules D1, D2 respectively, and if D1, D2 give rise to the same Sd+1-orbit in [0, q − 2]8 (or
equivalently, if the assigned tuples (up to cyclic permutation) in [0, q − 2]8 coincide as unordered tuples
(with multiplicities)).

Remark. (a) Let D denote the étale (ϕ, 0)-module over k((t)) corresponding to V (M), for a finite
dimensional supersingular H]]-module M . Our constructions show M =Homcont

k (D\, k)[t] (where D\ is
given the t-adic topology). Moreover:

(i) Consider the natural map of k[[t]][ϕ]-modules

κD : k[[t]][ϕ]⊗k[[t]] M→ Homcont
k (D\, k).

As a k[[t]][ϕ]-module, ker(κD) is generated by ker(κD)∩ (k⊗M + k[[t]]ϕ⊗M).

(ii) Each irreducible subquotient of D is a subquotient of a (d + 1)-dimensional standard cyclic étale
(ϕ, 0)-module; more precisely:

(ii)(1) If D (or equivalently, M) is indecomposable, then any two irreducible subquotients of D are
Sd+1-linked.

(ii)(2) If M is even a supersingular H-module, and if D (or equivalently, M) is indecomposable, then
any two irreducible subquotients of D are strongly Sd+1-linked.

(ii)(3) If M is even a supersingular H[-module, then each irreducible subquotient of D is a subquotient
of a (d + 1)-dimensional standard cyclic étale (ϕ, 0)-module with parameters m j ∈ {1− q, 0}
and α j = 1 for all j .

(iii) For any (ϕ, 0)-submodule D0 of D the ψ-operator on D0 ∩ D\ is surjective.

(b) Does property (i) mean (at least if property (iii) is assumed) that D is the reduction of a crystalline
p-adic Gal(F/F)-representation with Hodge–Tate weights in [−1, 0]?

(c) Property (iii) means that the functor D0 7→ D\

0 is exact on the category of subquotients D0 of D.

(d) It should not be too hard to show that properties (i), (ii)(1) and (iii) together in fact characterize the
essential image of the functor (70).

(e) On the other hand, properties (i), (ii)(2) and (iii) together do not characterize the essential image of
the functor (71). To see this for d = 1 consider the following étale (ϕ, 0)-module D (which satisfies (i),
(ii)(2), (iii)). It is given by a k-basis e0, e1, f0, f1, g0, g1 of (D\)∗[t] and the following relations:

ϕe1 = e0, ϕ f1 = f0, ϕg1 = g0, tq−1ϕe0 = e1, tq−1ϕ f0 = f1+ e1, tq−1ϕg0 = g1+ f0.

Another object not in the essential image is defined by the set of relations

ϕe1 = e0, ϕ f1 = f0, ϕg1 = g0, tq−1ϕe0 = e1, tq−1ϕ f0 = f1+ e0, tq−1ϕg0 = g1+ f1.
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6. From G-representations to H-modules

6A. Supersingular cohomology. Put G = GLd+1(F), let I0 be a pro-p-Iwahori subgroup in G, and fix
an isomorphism between H and the pro-p-Iwahori Hecke algebra k[I0\G/I0] corresponding to I0 ⊂ G.
For a smooth G-representation Y (over k) the subspace Y I0 of I0-invariants then receives a natural action
by H. Let us denote by H 0

ss(I0, Y ) the maximal supersingular H-submodule of Y I0 . It is clear that this
defines a left exact functor

Mod(G)→Modss(H), Y 7→ H 0
ss(I0, Y )

where Mod(G) denotes the category of smooth G-representations. The category Mod(G) is a Grothendieck
category [Schneider 2015, Lemma 1] and has enough injective objects [Vignéras 1996, I.5.9]. Let D+(G)
denote the derived category of complexes of smooth G-representations vanishing in negative degrees,
let D+ss (H) denote the derived category of complexes of supersingular H-modules vanishing in negative
degrees. The above functor gives rise to a right derived functor

Rss(I0, .) : D+(G)→ D+ss (H). (72)

Let D+(Gal(F/F))) denote the derived category of complexes in Rep(Gal(F/F)) vanishing in negative
degrees. Since the functor V is exact, it induces a functor

V : D+ss (H)→ D+(Gal(F/F))).

We may compose them with Rss(I0, .) to obtain a functor

V ◦ Rss(I0, .) : D+(G)→ D+(Gal(F/F))).

Remark. The functor H 0
ss(I0, .) is the composite of the left exact functor Mod(G)→Mod(H), Y 7→ Y I0

(taking I0-invariants) and the left exact functor Mod(H)→ Modss(H), M 7→ Mss which takes an H-
module to its maximal supersingular H-submodule. Also Mod(H) is a Grothendieck category with
enough injective objects. Writing R(I0, .) and Rss(.) for the respective right derived functors, we have a
morphism Rss(I0, .)→ Rss(.) ◦ R(I0, .).

Remark. Of course, we expect the functor V ◦ Rss(I0, .) to be meaningful only when restricted to
(complexes of) supersingular G-representations. The reason is the following theorem of Ollivier and
Vignéras [2018]: A smooth admissible irreducible G-representation Y over an algebraic closure k of k is
supersingular if and only if Y I0 is a supersingular H⊗k k-module, if and only if Y I0 admits a supersingular
subquotient.

It is known that, beyond the case where G = GL2(Qp), a smooth admissible irreducible supersingular
G-representation Y over k is not uniquely determined by the H-module Y I0 . Is it perhaps uniquely
determined by the derived object Rss(I0, Y ) ∈ D+ss (H)? It would then also be uniquely determined by the
derived object V (Rss(I0, Y )) ∈ D+(Gal(F/F))).
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Remark. For the universal module Y = indG
I0

k we have H 0
ss(I0, Y )= 0 since H = (indG

I0
k)I0 does not

contain nonzero finite dimensional H-submodules (let alone supersingular ones).

6B. An exact functor from G-representations to H-modules. We fix a (d + 1)-st root of unity ξ ∈ k×

with
∑d

j=0 ξ
j
= 0.

For an H-module M and j ∈ Z let Mξ j
be the H-module which coincides with M as a module over

the k-subalgebra k[Ts, Tt ]t∈T , but with Tω|Mξ j = ξ j Tω|M .
Let δ : M0→ M1 be a morphism of H-modules. For (x0, x1) ∈ M0⊕M1 put

Tω((x0, x1))= (Tω(x0), Tω(δ(x0))+ ξTω(x1)),

Ts((x0, x1))= (Ts(x0), Ts(x1)),

Tt((x0, x1))= (Tt(x0), Tt(x1)) for t ∈ T .

Lemma 6.1. These formulae define an H-module structure on M0⊕M1; we denote this new H-module
by M0⊕

δ M1. We have an exact sequence of H-modules

0→ Mξ

1 → M0⊕
δ M1→ M0→ 0. (73)

The morphism δ : M0→ M1 can be recovered from the exact sequence (73).
If there is some λ ∈ k× with T d+1

ω = λ on M0 and on M1, then also T d+1
ω = λ on M0⊕

δ M1,

Proof. By induction on i one shows

T i
ω((x0, x1))= (T i

ω(x0), ξ
i T i
ω(x1)+

i−1∑
j=0

ξ j T i
ω(δ(x0)))

for i > 0, and hence T d+1
ω ((x0, x1)) = (T d+1

ω (x0), T d+1
ω (x1)). From here, all the required relations are

straightforwardly verified, showing that indeed we have defined an H-module.
Obviously, from the exact sequence (73) both M0 and M1 can be recovered. That also δ can be

recovered follows from the following more general consideration. Suppose that we are given δ :M0→M1

and ε : N0 → N1 and a morphism of H-modules f : M0 ⊕
δ M1 → N0 ⊕

ε N1 with f (Mξ

1 ) ⊂ N ξ

1 .
Then there are H-module homomorphisms f0 : M0 → N0, f1 : Mξ

1 → N ξ

1 and f̃ : M0 → N ξ

1 with
f ((x0, x1))= ( f0(x0), f1(x1)+ f̃ (x0)). For x0 ∈ M0 we compute

f (Tω(x0, 0))= f (Tω(x0), Tω(δ(x0)))= (Tω( f0(x0)), Tω( f1(δ(x0)))+ ξTω( f̃ (x0))),

Tω( f (x0, 0))= Tω( f0(x0), f̃ (x0))= (Tω( f0(x0)), Tω(ε( f0(x0)))+ ξTω( f̃ (x0))).

As f (Tω(x0, 0))= Tω( f (x0, 0)) we deduce Tω(ε( f0(x0)))= Tω( f1(δ(x0))), and since Tω is an isomor-
phism even ε( f0(x0))= f1(δ(x0)). �

Let
(M•, δ•)= [· · ·

δ−2
−→ M−1

δ−1
−→ M0

δ0
−→ M1

δ1
−→ M2

δ2
−→ · · · ]

be a complex of H-modules.
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Lemma 6.2. (a) There is a unique H-module ⊕δ•j∈Z M j with the following properties:

• As a k-vector space, ⊕δ•j∈Z M j =⊕ j∈Z M j .
• For any j we have τ(M j ) ⊂ M j + M j+1 for each τ ∈ H; in particular, the subspace M≥ j =

⊕ j ′≥ j M j ′ is an H-submodule.
• The H-module M≥ j/M≥ j+2 is isomorphic with Mξ j

j ⊕
δ j Mξ j

j+1 as defined in Lemma 6.1.

(b) If there is some λ ∈ k× with T d+1
ω = λ on each M j , then T d+1

ω = λ on ⊕δ•j∈Z M j .

(c) The assignment (M•, δ•) 7→ (⊕
δ•
j∈Z M j , (M≥ j ) j∈Z) is an exact and faithful functor from the category of

complexes of H-modules to the category of filtered H-modules. The isomorphism class of the complex
(M•, δ•) can be recovered from the isomorphism class of the filtered H-module (⊕δ•j∈Z M j , (M≥ j ) j∈Z).

Proof. This is clear from Lemma 6.1. �

Definition. (a) For a smooth G-representation Y over k and i ≥ 0 let us denote by H i
ss(I0, Y ) the i-th

cohomology group of Rss(I0, Y ), see formula (72).

(b) We say that a smooth G-representation Y over k is exact if for each i ≥ 0 the functor Y ′ 7→ H i
ss(I0, Y ′)

is exact on the category of G-subquotients Y ′ of Y .

(c) An exhaustive and separated decreasing filtration (Y j ) j∈Z of a smooth G-representation Y over k is
exact if Y j/Y j+1 is exact for each j .

Example. A semisimple smooth G-representation is exact.

Let RG denote the following category: objects are smooth G-representations with an exact filtration,
morphisms are G-equivariant maps respecting the filtrations (i.e., f : Y →W with f (Y i )⊂W i for all i).
We denote objects (Y, (Y i )i∈Z) in RG simply by Y •.

Let E(H) denote the category of E1-spectral sequences in the category of H-modules.
For Y • ∈RG we have the spectral sequence

E(Y •)= [Em,n
1 (Y •)= H m+n

ss (I0, Y m/Y m+1)⇒ H m+n
ss (I0, Y )].

A morphism f : Y •→W • in RG induces morphisms H m
ss (I0, Y i/Y i+1)→ H m

ss (I0,W i/W i+1) for any m
and i , and these induce a morphism of spectral sequences E(Y •)→ E(W •). We thus obtain a functor

RG→ E(H), Y • 7→ E(Y •).

For r ≥ 1 let Yr be the set of equivalence classes of pairs of integers (m, n), where (m, n) is declared
to be equivalent with (m′, n′) if and only if there is some j ∈ Z with (m, n)= (m′+ jr, n′− j (r − 1)).
For y ∈ Yr let E y

r (Y •) be the complex of H-modules whose terms are the Em,n
r (Y •) with (m, n) ∈ y, and

whose differentials dr : Em,n
r (Y •)→ Em+r,n−r+1

r (Y •) are given by the spectral sequence. We apply the
functor of Lemma 6.2 to E y

r (Y •) to obtain a (filtered) supersingular H-module E y
r (Y •).

For a morphism f :Y •→W • inRG we have induced H-linear maps fr :⊕y∈Yr E y
r (Y •)→⊕y∈Yr E y

r (W •).
Notice however that, in general, for a given y ∈ Yr there is no y′ ∈ Yr such that fr (E

y
r (Y •))⊂ E y′

r (W •),
even if r = 1.
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Lemma 6.3. Let Y • → W •
→ X • be a complex in RG such that for each i the induced sequence

0→ Y i/Y i+1
→W i/W i+1

→ X i/X i+1
→ 0 is exact. We then have an exact sequence of supersingular

H-modules
0→

⊕
y∈Y1

E y
1 (Y

•)→
⊕
y∈Y1

E y
1 (W

•)→
⊕
y∈Y1

E y
1 (X

•)→ 0.

Proof. This follow from the constructions. �

Remark. The analog of Lemma 6.3 is false for the maps fr for r > 1.

Remark. For a smooth G-representation Y endowed with an exact filtration, we may apply the functor
V of Section 5D to the supersingular H-module E y

r (Y •) (any r). In this way, we assign a Gal(F/F)-
representation to Y . We propose this construction as a nonderived alternative to that of Section 6A. Of
course, again it will be meaningful only on supersingular G-representations.

We expect that for G = GL2(Qp), this construction, with r = 1, essentially recovers the restriction of
Colmez’s functor to all supersingular G-representations.11
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