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Stability in the homology of unipotent groups

Andrew Putman, Steven V Sam and Andrew Snowden

Let R be a (not necessarily commutative) ring whose additive group is finitely generated and let U, (R) C
GL, (R) be the group of upper-triangular unipotent matrices over R. We study how the homology groups
of U, (R) vary with n from the point of view of representation stability. Our main theorem asserts that
if for each n we have representations M,, of U, (R) over a ring k that are appropriately compatible and
satisfy suitable finiteness hypotheses, then the rule [n] — H;(U,(R), M,) defines a finitely generated
OI-module. As a consequence, if k is a field then dim H; (U, (R), k) is eventually equal to a polynomial
in n. We also prove similar results for the Iwahori subgroups of GL, (O) for number rings O.
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1. Introduction

1A. Homology of unipotent groups. Groups of the form G(R), with G a linear algebraic group over a
ring R, are among the most common and important groups encountered in mathematics. It is therefore a
natural problem to understand their group homology, as homology is one of the most important invariants
of a group. In the case where G is reductive, this problem has been studied intensively and much is
known. See, for instance, [Borel 1974] for G a classical group and R a number ring, and [Quillen 1972]
for G = GL, and R a finite field. These computations are closely connected to algebraic K-theory.

On the other hand, when G is a unipotent group, comparatively little is known. In fact, the class of
unipotent groups is fairly wild, so there might not be too much one can say in complete generality. Let
U, C GL, be the group of upper-unitriangular matrices. These are perhaps the most important unipotent
groups; for example, Engel’s theorem [Borel 1969, Corollary 1.4.8] shows that any unipotent group
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embeds into one of them. Nonetheless, the homology of even these groups is poorly understood. The
purpose of this paper is to establish some new results in this direction.

To illustrate the difficulties in computing the homology of U, (R), let us consider the first few cases.
We take R = [, for simplicity. The group U () is trivial. The group U, ([F,) is simply isomorphic to
the additive group of [, i.e., Z/pZ, and the homology of this group is known (it is Z in degree 0, Z/pZ
in odd degrees, and 0 in positive even degrees). The group Us([F,) is a nonabelian group of order P It
fits into an exact sequence

1 — Z/pZ — Us(F)) — (Z/pZ)* — 1,

where the left Z/pZ is the center of U3([F,). We therefore have a spectral sequence (the Leray—Serre
spectral sequence) that computes the homology of U3 ([F,) in terms of the homology of the outer groups:

E} , =H,((Z/p2)*. Hy(Z/ pZ, 7)) = H,14(U3(F ), D).

The action of (Z/pZ)? on H,(Z/pZ, 7) is trivial, and so the groups on the E? page are easy to compute.
However, it is less clear what the differentials are on the E? page, much less on subsequent pages, and so
it is not obvious how to actually compute the homology of Us(F,,) explicitly from this spectral sequence.

The analysis of U3([F,) we have just made, discouraging though it may be, does highlight a general
theoretical approach to studying the homology of U, ([F,): this group is nilpotent, so one can break it
up into abelian groups and then use the resulting spectral sequences to study its homology. Of course,
this approach becomes increasingly complicated as n grows, and there is probably little chance of
understanding the spectral sequences in an explicit way in general.

The main point of this paper is that, although these spectral sequences become increasingly complicated,
they exhibit a kind of regularity as n varies. The precise formulation of this statement uses the language
of representation stability, and requires some preliminaries, so for the moment we simply give a sample
application to the main objects of interest:

Theorem 1.1. Let R be a (not necessarily commutative) ring whose additive group is finitely generated
and let k be a field. For all i > 0, there exists some f;(t) € Q[t] such that dimH; (U, (R), k) = f;(n) for
n> 0.

For the ring R in the theorem, one could take a finite field, or a number ring, or the ring of 2 x 2
matrices over one of these rings, for example.

Example 1.2. The case R =7 and k = Q) of Theorem 1.1 follows from work of Dwyer [1985, Theorem 1.1].
He shows that the dimension of H; (U, (Z), Q) is the number of permutations in S, with length i, where
the length of a permutation o is the number of pairs i < j such that o (i) > o (j). Denote this number by
1(i, n). We claim that n — (i, n) is a polynomial of degree i for n > 0. As an aside, this shows that the
degree of the polynomials f;(#) in Theorem 1.1 cannot be bounded as we let i vary. We prove the claim
by induction. For i = 1, we have I (1,n) =n — 1 for n > 0. In general, we have the identity

Y IGmg' =0+ +q+q) - (I+q+q +-+¢";

i>0
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see [Stanley 2012, Corollary 1.3.13]. It follows that I (i,n) — I (i,n — 1) = Y"1 (j.n — 1) for n > i.
By induction, the right hand side is a polynomial of degree i — 1 for n >> 0. Hence I (i, n) is a polynomial
of degree i for n > 0, as claimed.

1B. Main results. Our main result is a refined version of Theorem 1.1 where we allow systems of
nontrivial coefficients and give a stronger conclusion. This additional generality is interesting in its own
right, but is required even if one is ultimately only interested in the case of trivial coefficients. Indeed,
our general approach essentially relates the i-th homology group of some system of coefficients to lower
homology groups of some auxiliary systems, and the auxiliary systems can be nontrivial even if the initial
system is trivial.

To formulate this general theorem, we must make sense of a “system” of representations of U, (R). For
this, we introduce the category OVI(R). An object of OVI(R) is a finite rank free R-module equipped
with a totally ordered basis. A morphism of OVI(R) is a map of R-modules that is upper-triangular with
respect to the distinguished ordered bases (see Section 4A). An OVI(R)-module over a commutative ring
k is a functor OVI(R) — Mody. Every object in OVI(R) is isomorphic to R" equipped with its standard
basis for some 7, and the automorphism group of this object is the group U, (R). Thus an OVI(R)-module
M gives rise to a sequence {M,},>0, where M,, = M(R") is a representation of U, (R), and therefore
provides a reasonable notion of a system of U, (R) representations. We are primarily interested in finitely
generated OVI(R)-modules (see Section 2A for the definition): indeed, it is only reasonable to expect
uniform behavior of the homology in this case.

Example 1.3. (a) We have a constant OVI(R)-module given by R" + k for all n. Thus the sequence of
trivial representations of U, (R) forms a “system” in our sense.

(b) Suppose R = k. We then have an OVI(R)-module given by R" — R". We thus see that, in this case,
the sequence of standard representations of U, (R) forms a “system.” Both examples are finitely generated.

Let M be an OVI(R)-module and fix i > 0. For each n we consider the homology group H; (U, (R), M,,).
The various M,, are related by the OVI(R)-module structure, and this should lead to relationships between
these homology groups. We now examine this. Letting [r] denote the ordered set {1, ..., n}, if [n] — [m]
is an order-preserving injection of finite sets then there is an associated morphism R" — R™ in OVI(R).
This gives a map M,, — M,,, which induces a map H; (U, (R), M) — H;(U,,(R), M,,). This suggests
that [n] — H; (U,(R), M,) defines an OI-module, where Ol is the category whose objects are finite totally
ordered sets and whose morphisms are order-preserving injections. We show that this is indeed the case,
and denote this OI-module by H; (U, M). (We note that OI-modules are close relatives of the well-known
FI-modules introduced by Church, Ellenberg, and Farb [Church et al. 2015].)

We can now state our main theorem.

Theorem 1.4. Let R be a ring whose additive group is finitely generated, let k be a noetherian commuta-
tive ring, and M be a finitely generated OVI(R)-module over k. Then H; (U, M) is a finitely generated
Ol-module over k for all i > 0.
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Theorem 1.1 follows immediately from this theorem by taking M, to be the trivial representation of
U, (R) for all n and appealing to the fact that a finitely generated OI-module over a field has eventually
polynomial dimension (see Proposition 3.5 below).

1C. The noetherian result. As stated, to prove Theorem 1.4 we relate the homology of the OVI(R)-
module M to the homology of certain auxiliary coefficient systems constructed by various means. To
ensure that these auxiliary systems are finitely generated, we require the following noetherian result,
which is the primary technical result of this paper:

Theorem 1.5. Let R be a ring whose additive group is finitely generated and let k be a noetherian
commutative ring. Then the category of OVI(R)-modules over k is locally noetherian, that is, any

submodule of a finitely generated module is finitely generated.

Theorem 1.5 differs from much previous work on categories of R-modules in the setting of representa-
tion stability (such as [Putman and Sam 2017; Sam and Snowden 2017]) in that it allows the ring R to
be infinite. In the previous work, the automorphism groups in the categories under consideration were
GL,(R), and finiteness of R is necessary since the group algebra of GL, (R) is not noetherian if R is
infinite. In our situation, the automorphism groups are U, (R). When the additive group of R is finitely
generated, these groups are virtually polycyclic, and a classical result of Philip Hall [1954] says that
group rings of virtually polycyclic groups are noetherian. Our proof of Theorem 1.5 is inspired in part by
Hall’s proof of this fact.

Remark 1.6. It is easy to see that Theorem 1.5 is false if the additive group of R is not finitely generated
(see Section 5D).

Remark 1.7. When the ring R is finite, we in fact show that the category of OVI(R)-modules is quasi-
Grobner in the sense of [Sam and Snowden 2017, Section 4], which implies local noetherianity (but is
stronger). In the general case, we do not show that the category of OVI(R)-modules is quasi-Grobner
(and expect that it is not), and the proof of local noetherianity is far more difficult.

1D. Application to Iwahori groups. Let O be a number ring and let k be a commutative noetherian ring.
A classical result of van der Kallen [1980] says that the homology of the group GL,,(O) stabilizes: for
any fixed i the canonical map

H; (GL,(0), k) — H;(GL,+1(0), k)

is an isomorphism for n >> 0. In particular, if & is a field then the dimension of H; (GL, (0), k) is eventually
constant.

Now let a be a nonzero proper ideal in O and let GL,, (O, a) be the principal congruence subgroup of
level g, i.e., the subgroup of GL,(O) consisting of matrices that are congruent to the identity modulo a.
The homology of these groups does not stabilize; for instance, for £ > 2 and n > 3 the abelianization of
GL,(Z,t7) is (Z /Z)”z_1 (see [Lee and Szczarba 1976]). Building on work of the first author [Putman
2015], Church, Ellenberg, Farb and Nagpal [Church et al. 2014] proved instead that the homology of
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GL, (0O, a) satisfies a version of representation stability: the rule [n] — H; (GL, (O, a), k) defines a finitely
generated FI-module. Consequently, when k is a field, the dimension is eventually polynomial.

The Iwahori subgroup GL, 0(0O, a) is the subgroup of GL, (O) consisting of matrices that are upper-
triangular modulo a. Using Theorem 1.4, we prove an analog of Church, Ellenberg, Farb, and Nagpal’s
result for GL,, 0(O, a).

Theorem 1.8. Let O be a number ring, let a C O be a nonzero proper ideal, and let k be a commutative
noetherian ring. Then the following hold for all i > O:

e The rule [n] — H;(GL, 0(0O, a), k) defines a finitely generated Ol-module over k.
e Ifk is a field then there is a polynomial f € Q[t] such that dimH; (GL,, 0(O, a), k) = f(n) for n > 0.

1E. Outline. In Section 2 we review generalities on modules over categories. In Section 3 we introduce
the category OI and its variants OI(d) and establish basic results about them. In Section 4 we introduce
the category OVI(R) and its variants OVI(R, d) and establish basic results about them. In Section 5, we
prove the main noetherianity result for OVI(R) (Theorem 1.5). In Section 6 we prove the main result of
the paper (Theorem 1.4). Finally, in Section 7 we prove Theorem 1.8.

1F. Notation. Throughout, k denotes a commutative ring, typically noetherian. Unless otherwise speci-
fied, 1 # 0 in all of our rings. For a fixed category €, we write k for the constant functor ¢ — Mody, taking
everything to k and all morphisms to the identity. We let B, C GL, be the group of upper-triangular
matrices, and U, C B, the subgroup where the diagonal entries are equal to 1. We use R to denote the
ring appearing in the definition of OVI(R), and that is typically plugged in to U, or B,,. We generally do
not require it to be commutative. We set [0] = &, and if n is a positive integer, then [n] denotes the set
{1,...,n}.

2. Representations of categories

2A. Generalities. Let C be a category and let k be a noetherian commutative ring. A C-module over k
is a functor M : € — Mody. For an object x € C, we denote by M, the image of x under M. Denote
the category of C-modules by Rep, (C). It is an abelian category. For each x € C, we define a C-module
P, via the formula (Py), = k[Hom(x, y)]. One easily sees that for any C-module M one has a natural
identification Hom(P,, M) = M,. It follows that P, is a projective C-module; we call it the principal
projective at x. A general C-module M is finitely generated if and only if there exists a surjection
Eszl P,, — M for some xi, ..., xx € €. A C-module is said to be noetherian if all of its submodules
are finitely generated, and the category Rep, (C) is said to be locally noetherian if all finitely generated
objects are noetherian.

If ®: € — D is a functor and M is a D-module then the pullback of M along @, denoted ®*(M), is
the C-module defined via the formula ®*(M) = M o ®, so that ®* (M), = Mg (). We now review how
the pullback operation interacts with finite generation. The following definition is [Sam and Snowden
2017, Definition 3.2.1].
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Definition 2.1. We say that a functor ®: C — D satisfies property (F) if the following condition holds
for all y € D. There exist finitely many objects x1, ..., x, € C together with morphisms f;: y — ®(x;)
in D with the following property: for any x € C and any morphism f: y — ®(x) in D, there exists an i,
and a morphism g: x; — x in €, such that f = ®(g) o f;.

Definition 2.2. A category C satisfies property (F) if the diagonal C — € x C satisfies property (F).
The importance of these definitions is due to the following results.

Proposition 2.3. A functor ®: C — D satisfies property (F) if and only if ®*(M) is a finitely generated
C-module for all finitely generated D-modules M.

Proof. See [Sam and Snowden 2017, Proposition 3.2.3]. (|

Recall that a functor ®: € — D is essentially surjective if for all y € D, there exists some x € € such
that ®(x) is isomorphic to y.
Proposition 2.4. Let C be a category such that Rep, (C) is locally noetherian and let ®: C — D be an
essentially surjective functor satisfying property (F). Then Rep, (D) is locally noetherian.
Proof. See [Sam and Snowden 2017, Corollary 3.2.5]. O

If C is a category and M| and M, are C-modules, then we define M; ® M, to be the C-module defined
by the formula (M| ® M3), = (M), ® (M3), for all x € C.

Proposition 2.5. Let C be a category that satisfies property (F) and let M and N be finitely generated
C-modules. Then M Q@ N is finitely generated.

Proof. See [Sam and Snowden 2017, Proposition 3.3.2]. O

We require a slight variant of the above proposition. We say that a C-module M is generated in finite
degrees if there exist xq, ..., xx € C such that M is generated by the M,,, that is, the canonical map
@5‘;1 M, ® P,, — M is surjective. Note that if M is generated in finite degrees and M, is a finitely
generated k-module for all x € C then M is finitely generated.

Proposition 2.6. Let C be a category that satisfies property (F) and let M and N be C-modules generated
in finite degrees. Then M ® N is generated in finite degrees.

Proof. Observe that:

(a) A finite sum of C-modules generated in finite degrees is generated in finite degrees.

(b) If K is a C-module generated in finite degrees and U is any k-module then U ® K is generated in
finite degrees.

(c) Any quotient of a C-module generated in finite degrees is generated in finite degrees. Now, choose
surjections @_, Vi ® P,, — M and @f-:l W;® Py, — N, where the x; and y; are objects of C and the
V; and W; are k-modules (one can take V; = M,, and W; = Ny,;). We thus have a surjection

Pview,;eP, P, > MIN.
ij
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Since C satisfies property (F), each Py, ® Py, is finitely generated (Proposition 2.5). Thus each term in
the sum is generated in finite degrees by (b); since the sum is finite, it is generated in finite degree by (a);
and so we conclude M ® N is generated in finite degrees by (c). U

Now we recall the notion of a Grobner category. See [Sam and Snowden 2017, Section 4.3] for more
details.

Definition 2.7. Let C be an essentially small category, i.e., there exists a set / containing a unique
representative of each isomorphism class in €. For x € €, define |S,| = LI,¢; Hom(x, y). Partially order
|Sx| by defining f < g if there exists a morphism % such that g = hf. We say that C is Grobner if the
following holds for all x € C:

o The poset (|Sx|, <) is noetherian.

o | S| admits a total ordering < with the following two properties:

— The ordering < is compatible with left composition, i.e., f < g implies hf < hg.
— The restriction of < to each Hom(x, y) is a well-ordering.

We say that C is quasi-Gribner if there exists a Grobner category € and an essentially surjective functor
C" — C satisfying property (F).

The key result about quasi-Grober categories is the following [Sam and Snowden 2017, Theorem 4.3.2]:

Theorem 2.8. Let C be a quasi-Grobner category. Then for any noetherian commutative ring k, the
category Repy (C) is locally noetherian.

2B. Kan extension. Let ®: C — D be a functor. The pullback functor ®* on modules admits a left
adjoint @, called the left Kan extension. It also admits a right adjoint @, called the right Kan extension,
but we will not need this.

The left Kan extension can be described explicitly as follows. Let y be an object of D. Define a
category C/, as follows. An object of C/y is a pair (x, f), where x is an object of C and f: ®(x) — y
is a morphism in D. A morphism (x’, f') — (x, f) in €/, is a morphism g: x" — x in C such that
f'= fo®(g). Suppose now that M is a C-module over k. For y € D, define M|e,, to be the €,,-module
defined via the formula (M |¢ /y)(x, ) = M,. We then have

®,(M)y = colim(M|e,, ).

That is, the value of ®,(M) on y is the colimit of the functor M|e,, : €,y — Modg. In certain cases, there
is an even nicer description.

Proposition 2.9. Let ®: C — D be a faithful functor. Assume that for all x', x € C, the Aut(® (x))-orbit
of any element of Homqp (® (x”), ®(x)) contains an element of the form ® (f) for some f € Home(x', x)
that is unique up to the action of Aut(x). Let M be a C-module. Then for all x € C we have a canonical
isomorphism

V(M) o) = Indﬁﬁig(’“”(Mx).
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Proof. Let {h;};c; be a set of coset representatives for Aut(®(x))/ Aut(x). For each i € I, we thus have
an object (x, h;) of €/ (x). Consider an object (x’, g) of C,¢(x). To prove the proposition, it is enough to
prove that there is a unique i € I and a unique morphism (x’, g) = (x, ;) of C/a ().

By definition, g is a morphism ®(x’) — ®(x) in D. By assumption, we can factor g as h®(f) for
some h € Aut(®(x)) and some f € Home(x', x). Moreover, this factorization is unique up to the action
of Aut(x). It follows that there is a unique factorization of the form h; ®(f). The morphism f now
furnishes a map (x’, g) — (x, ;) in C/q(y). It is clear from the discussion that this is the unique i for
which there is such a morphism, and that f is the unique such morphism. O

Left Kan extensions can be used to construct principal projectives, as follows. Let x € C, let pt be the
point category (one object, one morphism), and let i, : pt — C be the functor taking the object of pt to x.
Regarding k as a pt-module, we have (i, ),(k) = Py. Indeed, if M is a C-module, then by definition

Homgep, ) ((ix)1(k), M) = Homgep, (oo (k, iy (M)) = M,,

and thus (i, ), (k) represents the same functor as Py.
Return now to the setting of a functor ®: € — D. Put y = ®(x). Then ®oi, =iy, so

Py = (iy)i1(k) = P1((ix)1(k)) = Pi(Py). (2.10)

We thus see that the left Kan extension takes principal projectives to principal projectives. Since @ is right
exact, it follows from this that @, takes finitely generated C-modules to finitely generated D-modules.

2C. C-groups and their representations. Let C be a category. A C-group is a functor from C to the
category of groups. Fix a C-group G. A G-module over k is a C-module M equipped with a k-linear
action of G, on M, for all x € C, such that for all morphisms f: x — y in € the induced morphism
f«: My — M, is compatible with the actions via the induced homomorphism f,: Gy — G. In other
words, for m € M, and g € G, we have f,(gm) = f.(g) f«(m). The category Rep, (G) of G-modules is
a Grothendieck abelian category.

Let M be a G-module. For x € C, let H; (G, M), be the group homology H;(G,, My). If f: x —> y
is a morphism in €, then the induced morphisms f;: G, — G, and f,: M, — M, together induce
a morphism f,: H;(G, M), — H;(G, M),. This yields a C-module structure on H;(G, M). If k is a
commutative ring, then we will denote by k the constant C-module defined via the formula k, = k. We
then have H; (G, k), = H; (G, k).

The following proposition concerns the homology of a semidirect product of C-groups.

Proposition 2.11. Let G and E be C-groups, and let w: G — E and 1. E — G be morphisms of C-groups
such that w ot =1id. Let K = ker(rr), which is also a C-group. Then we have the following:

(1) H;(K, k) is naturally an E-module.
(2) As a C-module, H;(E, k) is a direct summand of H; (G, k) via v, and m,.
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(3) Write H.(G,k) =H,(E, k) ® M as in (2). Then M admits a C-module filtration where the graded
pieces are subquotients of H;(E, H,_; (K, k)) with0 <i <r — 1.

Proof. (1) The conjugation action of G on K is C-linear. On homology, K acts trivially, and hence this
action descends to give an E-module structure on H; (K, k).

(2) This is clear.

(3) For x € C we have a short exact sequence of groups 1 - K, - G, — E, — 1, which gives a
Hochschild—Serre spectral sequence

E?’JI =H,(E., H;(K,,k)) = H},,(G., k).
The spectral sequence is functorial in x, and so we get a spectral sequence of C-modules
B>, =H,(E, Hy(K.k))= Hp,,(G. k).

In particular, H, (G, k) has a filtration by subquotients of the terms El2 ;- The edge map H,(G, k) —
H,(E,Hy(K, k)) coincides with the map on H, induced by 7 (see [Weibel 1994, Section 6.8.2]) which
we know is a split surjection, so the kernel M has a filtration by subquotients of El2 ,jfor0<i<r-—1.0

3. The category OI and variants

3A. Definitions and first results. Let Ol be the category whose objects are finite totally ordered sets and
whose morphisms are order-preserving injections. For a nonnegative integer d, we define a variant OI(d)
as follows. An object of OI(d) is a pair (S, A) where S is a totally ordered setand L = (A1 < --- < Ag)
is an increasing d-tuple in §. A morphism (S, A) — (T, ) in OI(d) is an order-preserving injection
f: S — T satisfying f(A) = u. Note that OI = OI(0). There is a functor ®: OI(d) — OI given by
d(S, A) = S. We will continue to use the notation ® for this functor throughout the paper (and use it for
all values of d).

Remark 3.1. We introduce OI(d) to help us study an analogous category OVI(R, d), the motivation for
which is discussed in Remark 4.1 below.

Recall that [n] denotes the ordered set {1, ..., n}. Given an Ol-module M, we will write M,, for M.
The category Ol is equivalent to its full subcategory spanned by the [n], so the data of an OI-module M is
equivalent to the data of the M, together with the maps f,: M,, - M,, induced by the order preserving
maps f: [n] — [m]. Similarly, if M is an Ol(d)-module and A is an increasing d-tuple in [n], then we
will write M, , for M(f,,5)-

Proposition 3.2. There is an equivalence of categories Ol(d) = OI¢*!,

Proof. Let (S, A) be an object of OI(d). For 1 <i <d + 1, let S; be the set of elements x € §
such that A;_; < x < A; where, by convention, Ay < x < Agy; for all x. One easily verifies that
(S, X)) — (S1, ..., S4+1) 1s an equivalence. O
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Corollary 3.3. The category Ol(d) is Grobner. In particular, the category of Ol(d)-modules is locally

noetherian.

Proof. By [Sam and Snowden 2017, Theorem 7.1.2] the category OI is Grobner, and by [loc. cit.,
Proposition 4.3.5] a finite product of Grobner categories is Grobner, so by Proposition 3.2 the category

OI(d) is Grobner. The assertion about finitely generated OI(d)-modules now follows from Theorem 2.8.
O

Corollary 3.4. The category Ol(d) satisfies property (F). In particular, the tensor product of finitely
generated Ol(d)-modules is a finitely generated Ol(d)-module and the tensor product of Ol-modules that

are generated in finite degree is also generated in finite degree.

Proof. The category Ol satisfies property (F); this can be proved similarly to [loc. cit., Proposition 7.3.1].
One easily sees that a finite product of categories satisfying property (F) again satisfies property (F),
which combined with Proposition 3.2 yields the fact that OI(d) satisfies property (F). The assertion about
tensor products of finitely generated OI(d)-modules now follows from Proposition 2.5, and the assertion
about tensor products of Ol-modules that are generated in finite degree follows from Proposition 2.6. [

Finally, we state a result about the growth of finitely generated OI-modules over fields.

Proposition 3.5. Let M be a finitely generated Ol-module over a field k. Then the function n — dimy M,

is a polynomial function for n >> 0.

Proof. By [Sam and Snowden 2017, Theorem 7.1.2], OI is an “O-lingual category”, and by [loc. cit.,
Theorem 6.3.2], this implies the polynomiality statement. 0

3B. Kan extension. We now study left Kan extensions along the functor ®: OI(d) — OL

Proposition 3.6. Let M be an OI(d)-module. Then ®\(M), = @, M, ;., where the sum is taken over all
increasing d-tuples M in [n].

Proof. By Section 2B, we see that ®,(M), is colim(M|or),,,)- The category OI(d) () can be viewed
as consisting of triples (S, i, f), where (S, n) € OI(d) and f: S — [n] is a morphism in OI. For an
increasing d-tuple A in [n], let OI(d) [,),» be the full subcategory of OI(d) [,) spanned by triples (S, u, f)
such that f takes u to A. Then OI(d) [, is the disjoint union of its subcategories OI(d) [,),». Furthermore,
([n], A, 1d) is the final object of OI(d) 1. The result now follows. O

Corollary 3.7. The functor ®, is exact.

3C. Shift functors. Fix a functorial coproduct LI on the category of finite sets. For finite sets S and T,
we view S LI T as the disjoint union of S and 7T'; of course, this requires care when S and T share
elements. Consider the functor ¥o: OI(d) — OI(d) given by Xo(S, A) = (S LI {oo}, A), where S LI {oo}
is given a total order by setting x < oo for all x € S. Given an Ol(d)-module M, we define the shift
of M, denoted X (M), to be X5(M). There is a map (S, 1) — (S L {oo}, ) in OI(d) induced by the
inclusion S < S1I {oo}. This map induces a map M — X (M) of OI(d)-modules. We let ¥ (M) denote
the cokernel of this map. We call it the reduced shift of M. This has the following nice property:
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Proposition 3.8. Suppose that M is an Ol-module such that My is a finitely generated k-module and
(M) is a finitely generated Ol-module. Then M is a finitely generated Ol-module.

Proof. By assumption, we can find xi, ..., x, with x; € M,, such that the following holds. Let
X; € X(M)p,—1 = My, be the associated element. Then the images of {xi, ..., X,,} in (M) generate
Y (M). We claim that {xi, ..., x,,} together with a spanning set of M, is a generating set for M. Consider
y € M, for some n > 0. We must show that y is in the span of the indicated elements. We will do this by
induction on n. The base case n = 0 being trivial, we can assume thatn > 1. Let y € ¥ (M), = M,
be the associated element. The image of y in > (M), is in the span of the images of {x,...,X,}. It
follows that we can write y =y’ + y”, where y’ is in the span of {xi, ..., x,,} and y” is in the image of
the composition M,,_; — X (M),_1 = M, By induction, y” is in the span of {x1, ..., x;,} together with
a spanning set of My, so y is as well. U

There is a similar functor Ag: OI(d — 1) — OI(d) defined by Ag(S, A) = (S L {0}, 1), where A’ is
obtained by appending oo to the end of A. For an OI(d)-module M, we let A(M) = Aj(M), which is an
OI(d — 1)-module. For d = 0, we put A(M) = 0 by convention.

The following result shows how the shift functor interacts with the Kan extension along the functor
®: Ol(d) — OL

Proposition 3.9. Let M be an Ol(d)-module. Then there is a natural isomorphism
Z(P1(M)) = O1(E(M)) & Pi(AM)).

Moreover, if a: (M) — Z(D(M)) and B: M — X (M) denote the natural maps, then the diagram

@ \(M)
Z(®(M)) = D(Z(M)) ® Di(A(M))

commutes. In particular, we have a natural isomorphism
(M) = PY(Z(M)) & Py(A(M)).
Proof. Using Proposition 3.6, we have

Z( @1 (M) = EP Muy1.1,
A

where the sum is over all increasing d-tuples A in [n 4 1]. Similarly, we have
(S (M) = EP Muy15,
A

where the sum is over all increasing d-tuples X in [n]. Finally, using the obvious analog of Proposition 3.6
for A we have

DUAM))y = EP Mii10.
A
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where the sum is over all increasing d-tuples A in [n] that end in n + 1. Combining these isomorphisms,
we obtain an identification

Z(P®1(M))p = P1(E(M))n @ Pi(A(M))n.

It is clear that this identification comes from an isomorphism of OI-modules. The rest of the proposition
follows easily. U

4. The category OVI and its variants

4A. Definitions. Fix a ring R (always assumed to be associative and unital, though not necessarily
commutative). Define OVI(R) to be the following category. The objects are ordered free R-modules, that
is, pairs (V, {v;i}ic;) where V is a finite rank free left R-module and {v;} is a basis indexed by a totally
ordered set /. The morphisms (V, {v;}ic;) = (W, {w;},e,) are pairs (f, fo), where f: V — Wisa
linear map and fp: I — J is an order-preserving injection, such that f(v;) = w6 + > < foli) Qi jWj
for scalars a; ;. In words, f takes the i-th basis vector of V to the fy(i)-th basis vector of W up to
“lower order” terms. We note that fj can be recovered from f, so it is often omitted. Furthermore, f is
necessarily a split injection. If the ring R is clear, we will just write OVL.

For a nonnegative integer n, we regard R" as an ordered free module by endowing it with the standard
basis. Every object of OVI is isomorphic to R" for a unique n. For an OVI-module M, we write M, for
its value on R”". The automorphism group of R" in OVl is U, (R), which we denote simply by U, in this
section. It is the subgroup of GL, (R) consisting of upper unitriangular matrices.

Let d be a nonnegative integer. We define a variant OVI(R, d) = OVI(d) as follows. An object is
atuple (V, {v;}icr, A) where (V, {v;};cr) is an ordered free module and A is an increasing d-tuple in /.
A morphism (V, {vi}ies, &) = (W, {wj};es, n) is a morphism (f, fo): (V, {v;}) = (W, {w;}) in OVI
such that fo(A) = p and such that f(v;) = wy,) for all i appearing in A (i.e., no lower terms are allowed
on marked basis vectors).

Foratuple A= (1 <A; <--- <Xy <n) we have an object (R", 1) of OVI(d). Every object of OVI(d)
is isomorphic to a unique (R", A). For an OVI(d)-module M, we write M, , for its value on (R", 1).
We let U, , be the automorphism group of (R", 1) in OVI(d). It is the subgroup of U, fixing the basis
vectors e, for 1 <i <d.

Remark 4.1. We introduce OVI(d) as a technical device for proving Theorem 1.4, which concerns the
homology groups H;(U, M) for OVI(R)-modules M. We will see in Corollary 6.5 that the homology
of the principal projective OVI module at d can be understood in terms of the homology of the trivial
OVI(d)-module, a helpful simplification.

There are several functors to mention:

o There is a functor OI — OVI taking a totally ordered set S to the ordered free module R[S] with
basis S. There is a similar functor OI(d) — OVI(d).
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e There is a functor OVI — OI taking an ordered free module (V, {v;};<s) to the totally ordered set /
and a morphism (f, fo) to fo. There is a similar functor OVI(d) — OI(d).

 There is a functor W: OVI(d) — OVI given by forgetting ». We continue to use the notation ¥ for
this functor throughout the paper.

We have the following basic fact that follows from interpreting left multiplication by a matrix as a
sequence of row operations.
Proposition 4.2. Every morphism ¢: (R", 1) — (R™, u) in Ol(d) has a unique factorization ¢ = ¥ f
where ¥ € Aut(R™, ) and f is in the image of the functor Ol(d) — OVI(d).

4B. The case where R is finite. The purpose of this section is to prove the following fundamental result:

Theorem 4.3. If |R| < o0, then the category OVl is quasi-Grobner. In particular, by Theorem 2.8 the
category Repy (OVI) is locally noetherian when k is noetherian.

Proof. An ordered surjection f: S — T of totally ordered finite sets is a surjection such that for all
i < jin T we have min f~'(i) < min f~'(j). We let OS be the category whose objects are finite
totally ordered sets and whose morphisms are ordered surjections. This category is known to be Grébner
[Sam and Snowden 2017, Theorem 8.1.1]. Given a totally ordered set S, we will regard the dual
R[ST* = Hompg(R[S], R) as an element of OVI as follows. Let S* C R[S]* be the dual basis to the basis
S, and for s € S, write s* € S* for the dual element. Then we order S* via the rule

s{ <s; when s <s. (4.3.a)

Using this convention, there is a functor OS°® — OVI taking a totally ordered set S to R[ST* and an
ordered surjection 7 — S to the dual of the induced surjective linear map R[7] — R[S]. We will show
that this functor satisfies property (F), which will complete the proof.

Let V be an object of OVI. Let Ty, ..., T, € OS be objects and f;: V — R[T;]* be OVI-morphisms
such that the f; are an enumeration of all possible morphisms satisfying the following condition:

o The set T; is a total ordering of a finite subset of V* that spans V* and f;: V — R[T;]* is an

OVI-morphism that is dual to the natural surjection R[7;] — V.

Since V is finite, there are only finitely many such f;. Now consider some S € OS and an OVI-morphism
f:V — R[S]*. To prove that our functor satisfies property (F), it is enough to prove that for some
1 <i <n we can write f = go f;, where g: R[T;]* — R[S]* is dual to an OS-morphism § — T;. Let
T C V* be the image of S under the dual surjection f*: R[S] — V*. Let h: S — T be the resulting
surjection. Order T via the rule

fi <t, when minh~'(#;) <minh™ (1), (4.3.b)

which makes /4 an OS-morphism. Combining (4.3.b) with (4.3.a) (applied to order both S* and T%), we
see that 7* has the ordering

tf <ty when max{s*|se h=' ()Y} < max{s* | s € k' (n)}: (4.3.0)
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Let g: R[T]* — R[S]* be the OVI-morphism dual to £, so

gty= > s* (tel). (4.3.d)

seh=1(1)

Finally, let F: V — R[T]* be the injection dual to the surjection R[T] — V* induced by the inclusion
T — V* so f =go F. The fact that f is an OVI-morphism together with (4.3.c) and (4.3.d) implies
that F is an OVI-morphism. This implies that for some 1 <i <n we have T =T; and F = f;, and we
are done. O

Remark 4.4. By making use of a variant OS(d) of OS, one can prove a version of the above theorem for
OVI(d). Since we do not need this, we omit the details.

4C. Kan extension. We now study left Kan extensions along the functor ¥: OVI(d) — OVL

Proposition 4.5. Let M be an OVI(d)-module. Then

W(M), = P Indy? (M),
A

the sum taken over all increasing sequences 1 <Ay <--- <Ay <n.

Proof. Let OVI(d)' be the category whose objects are those of OVI(d) and where a morphism

V, {vitier, &) > (W, {w;j}jes, 1)

is a morphism (f, fo) as in OVI (ignoring the A and ) such that fy is a morphism in OI(d). The
automorphism groups in OVI(d)’ are the U,,. The functor W factors as W, o ¥q, where W;: OVI(d) —
OVI(d) and W, : OVI(d)" — OVI are the natural functors. Proposition 2.9 applies to the functor ¥, and
so we find

(W)(M), 5 = Indy (My ).
Arguing exactly as in the proof of Proposition 3.6, we find

(W2)1(N)y = ED Ny
A

for any OVI(d)’-module N. The result follows. U

4D. OVI-modules and representations of U. Define an OI(d)-group U; by (Ug),.n = U,y If M is an
OVI(d)-module then we can regard it as an OI(d)-module via the functor OI(d) — OVI(d), and as such
it has the structure of a U;-module. We thus have a functor

{OVI(d)-modules} — {U;-modules}.

One can show that the above functor is fully faithful. We do not need this result, so we do not include a
proof. We write U in place of Uj.
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5. Noetherianity of OVI-modules

The goal of this section is to prove Theorem 1.5, which we recall says that if R is a ring whose underlying
additive group is finitely generated and k is a commutative noetherian ring, then the category of OVI(R)-
modules over k is locally noetherian, that is, any submodule of a finitely generated module is finitely
generated. The ring R here is not required to be commutative. When R is finite, this follows from the much
easier Theorem 4.3. We will also prove a converse to this result that says that (ignoring degenerate cases)
the category Rep; (OVI(R)) is locally noetherian only if k is noetherian and the additive group of R is
finitely generated. We thus have a complete characterization of when Rep, (OVI(R)) is locally noetherian.

This section has four subsections. We begin in Section SA by describing a toy version of our proof.
We then prove a technical ring-theoretic result in Section 5B. The proof of Theorem 1.5 is in the long
Section 5C. Finally, in Section 5D we prove the aforementioned converse to Theorem 1.5.

SA. A toy version of Theorem 1.5. In the next sections, we prove Theorem 1.5. The proof is a bit lengthy
and heavy on notation, but the idea behind it is not too complicated. In this section we sketch the proof
of a simpler result that illustrates the main ideas.

Theorem 1.5 (with R = Z) implies that the group algebra k[U,,(Z)] is left-noetherian, provided k is
noetherian. Let us try to prove this for n = 3. The group algebra can be identified, as a k-module, with

0 = xoysklxi!, it i,

which we treat as a k-submodule of the Laurent polynomial ring in the five variables. The monomials
in this module correspond to the group elements in k[U3(Z)]; the exponents of the x’s give the second
column, while the exponents of the y’s gives the third.

We must show that any Us(Z)-submodule of Q is finitely generated. Let M be a given submodule.
Let Q. be the k-submodule of Q where only positive powers of the variables appear. We would like to
associate to M a monomial ideal in Q, and then use the noetherianity of monomial ideals to conclude
that M is finitely generated. By “ideal” here we really mean k[xi, y;, y»]-submodule. The obvious
attempt at this is to first form M = M N Q and then take its initial module in(M. ), the k-span of the
initial terms of its elements under some monomial order. The problem with this is that in(M4) need
not be an ideal. For example, suppose that M contains the element f = xy3(y2 + 1), with initial term
in(f) = xay2y3. Let’s try to find x; in(f) in in(M,). If we apply the matrix

110

010
001

to f, we get the element f' = x;x2y3(y1y2 + 1), with initial term x1x2y1y2y3. This is equal to x; yq in( f),
so we now need to get rid of the y;. We therefore apply the matrix

10 -1

01 0

00 1
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to f’, to get the element " = x;x yl_1 y3(y1y2 + 1). This has the correct leading term. However, it no
longer belongs to M : the power of y in the nonleading term is negative. Thus in(f”) does not give an
element of in(M_ ). There does not seem to be a way to produce x; in(f) in in(My).

Remark 5.1. This approach is really attempting to show that the monoid algebra Q = k[U3(Z>0)] is
noetherian. In fact, it is not noetherian. For example, the left ideal generated by the matrices

1
0
0

S = 3
— O

for n > 0 in Q is not finitely generated.

To overcome this problem, we take a more subtle approach. Let Q. be the submodule of Q where the
exponent of y, is positive, but we still allow negative powers of x; and y;. Given M C Q,let M, =MNQ,.
We can then form the initial module with respect to y; (that is, we treat the other variables as constants);
call this iny(M,). Since we allow negative powers of y;, the issue in the previous paragraph does not
arise, and inp(M,) is closed under multiplication by xlil, ylil, and y,. We now intersect inp (M,) with
M and then take initial terms with respect to x; and y;. The result is a monomial ideal of Q. Call this
monomial ideal I (M). One can show that if M C M’ and I (M) = I (M') then M = M’. Since Q. is
noetherian as a k[xy, y;, y2]-module, this proves that Q is noetherian as a k[U3(Z)]-module.

The same approach works for k[U,(Z)], but the process is more involved. Let Q be the group algebra,
which we identify with a k-submodule of the Laurent polynomial ring in variables x; ; withi < j. We
let Q0 be the k-submodule where the exponents of x; ; with i > k are positive. Thus 0™ = Q and
0 is what we would call Q. Let M be a U, (Z)-submodule of Q. We obtain a monomial ideal in
Q. as follows: intersect with Q"~ and take the initial submodule with respect to x, ,; then intersect
with Q("*z) and take the initial submodule with respect to x, ,_;; and so on. After n steps we obtain a
monomial ideal in Q. The argument then proceeds as in the previous case.

Remark 5.2. The strategy employed here has some parallels with Hall’s proof [1954, Lemma 3] that the
group ring k[I"] of a polycyclic group I' is noetherian. There the key point is to take a normal subgroup
I’ such that I'/ I'" = Z and treat each element of k[I'] as a Laurent polynomial in x with coefficients in
k[T"'] (where x is some generator for Z) and argue by passing to initial terms.

The proof for OVI(R) differs from the above in only two respects. First, there is a great deal of
additional bookkeeping. Second, we need a noetherianity result for the kind of OI-monomial ideals
that appear in the reduction. This follows easily from Higman’s lemma, and is closely related to the
theorem [Cohen 1967; Aschenbrenner and Hillar 2007; Hillar and Sullivant 2012] that k[x;];en 1S
Inc(N)-noetherian, where Inc(N) is the monoid of increasing functions N — N.

5B. Eliminating additive torsion. For technical reasons, Theorem 1.5 is easier to prove when R is a
ring whose additive group is a finitely generated free abelian group. In this section, we show how to
reduce to that case. Our main tool is the following lemma.



Stability in the homology of unipotent groups 135

Lemma 5.3. Let S be a ring and let k be a commutative ring such that the category of OVI(S)-modules
over k is locally noetherian. Assume that S surjects onto a ring R. Then the category of OVI(R)-modules
over k is locally noetherian.

Proof. The surjection S — R induces a functor ®: OVI(S) — OVI(R). By Proposition 2.4, it is enough
to show that @ satisfies property (F). For some d > 1, let P; be the principal projective OVI(R)-module
associated to R?, so

(Pa)u = k[Homovir)(R?, R)]  (n = 1).

By Proposition 2.3, to prove that & satisfies property (F) it is enough to prove that ®*(P) is finitely
generated. Since the map S — R of rings is surjective, the induced map

Homoyics) (S, $") — Homovir) (R?, R")

is also surjective for all n > 1. This implies that there is a surjective map from the principal projective
OVI(S)-module associated to S? to ®*(Py), and thus that ®*(P,) is finitely generated, as desired. [

Lemma 5.4. Let R be a ring whose additive group is finitely generated. Then there exists a ring S and a
surjection S — R such that the additive group of S is free and finitely generated.

Proof. Let Ry be the torsion subgroup of the additive group of R and let N > 1 be the exponent of Ry,
i.e., the minimal number such that N R, = 0. The proof is by induction on N. In the base case where
N =1, the group Ry is trivial and there is nothing to prove. Assume, therefore, that N > 1 and that the
lemma is true for all smaller exponents. Let p be a prime dividing N. The ring R/pR is a finite ring. Let
Z[R/pR] be the monoid ring of the multiplicative monoid underlying R/pR, so Z[R/pR] consists of
finite sums of formal symbols {[x] | x € R/pR} with the ring structure defined by [x][y] = [xy]. The
additive group of the ring Z[R/pR] is free abelian with basis in bijection with the elements of R/pR,
and there exists a ring surjection Z[R/pR] — R/pR taking [x] € Z[R/pR]to x € R/pR. Let R’ be the
fiber product of the surjections Z[R/pR] — R/pR and R — R/pR, so we have a cartesian square

R —— Z[R/pR]

|

R— R/pR.
Concretely,
R'={(x,r) € Z[R/pR] x R | x and r map to same element of R/pR}.

Since the maps R — R/pR and Z[R/pR] — R/pR are surjective, so is the map R’ — R. Since
the additive group underlying Z[R/pR] is torsion-free, the torsion subgroup (R’)y, consists of pairs
(0,7) € ZIR/pR] X Rior such that r € Ry maps to 0 in R/pR. It follows that

(R/)tor = Rior N PR = pRtor-
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The exponent of (R); is thus N/ p, so by induction there exists a ring S whose additive group is finitely
generated and free together with a surjection S — R’. The desired surjection to R is then the composition
S— R — R. |

5C. The proof of Theorem 1.5. We now commence with the proof of Theorem 1.5, which we recall says
that if R is a ring whose underlying additive group is finitely generated and k is a commutative noetherian
ring, then the category of OVI(R)-modules over k is locally noetherian. By Lemmas 5.3 and 5.4, we can
assume that the additive group of R is a finitely generated free abelian group (this assumption will first
be used in Substep 2a below). Fix some d > 0 and let P, be the principal projective of OVI(R) defined
by the formula

(Pa)a = k[Homovi(r) (RY, R (n = 1).

To prove the theorem, it is enough to prove that the poset of OVI(R)-submodules of P, is noetherian, i.e.,
has no infinite strictly increasing sequences. This is trivial for d = 0, so we can assume that d > 1.

Say that amap f: I — J of posets is conservative if for all i, i’ € I satisfying i <i" and f(i) = f (i),
we have i = i’. If J is a noetherian poset and f: I — J is a conservative map, then [ is also noetherian.
Our strategy will be to use a sequence of conservative poset maps to reduce proving that the poset of
OVI(R)-submodules of P, is noetherian to proving that another easier poset 9M® is noetherian. To help
the reader understand its structure, we divide our proof into three steps (each of which is divided into a
number of substeps).

Since we will introduce a lot of notation, to help the reader recall the meanings of symbols we will list
the notation that is defined in each substep.

Step 1. We construct a poset 971 and reduce the theorem to showing that 9)1 is noetherian.

As in the toy version of our proof, the first step will be to relate the poset of OVI(R)-submodules of P,
to a poset N constructed using certain “generalized polynomial rings”. In fact, 9t will be a poset of certain
special OI(d)-submodules of an OI(d)-module Q. There are three substeps: in Substep 1a we construct
the OI(d)-module Q, in Substep 1b we construct the poset 91 of special OI(d)-submodules of Q, and
then finally in Substep 1c we construct a conservative poset map from the poset of OVI(R)-submodules
of P; to 9.

Substep 1a. We construct the OI(d)-module Q.

Notation deﬁned: An» Tifj’ Tn, An(S), An,a, Tn,oza Q» Qn,a

We will want to view matrices with entries in R as certain kinds of “monomials”. Since we will be
focusing on Py, the relevant matrices will have d columns and some number n > 1 of rows. To that end,
we make the following definition:

* Define A, to be the commutative monoid generated by the set of formal symbols 7" f with1 <i <n

and 1 < j <d and r € R subject to the relations Tl”] Tlri = T{}Hz, where l <i<nand1<j<d

and i, € R.
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Elements of A, are thus “monomials” in the 7 i and are naturally in bijection with n x d matrices with
entries in R: given such a matrix (r; ), the associated element of A, is the product of the Tlr’]’ , Where i
ranges over 1 <i <n and j ranges over 1 < j <d. The monoid product in A, corresponds to matrix
addition. For later use, setting T, ={T; ; | | <i <n, 1 < j <d}, for § C T, we define A,(S) to be the
submonoid of A, generated by {Tifj | T;,; € S,r € R}.

Now consider an element f € Homovy R)(Rd, R™). By definition, f is a linear map R? — R"™ such
that there exists a strictly increasing sequence « = («q, ..., &g) of d elements of [n] = {1, ..., n} with
the following property:

e For 1 <i <d, the map f takes the i-th basis element of R to the sum of the «;-th basis element of
R"™ and an R-linear combination of the basis elements of R" that occur before «;.

Define A, o to be the subset of A, consisting of elements associated to n x d matrices of this form.
Defining

Tn,a={Ti,j |1§]§d’1§l <05j},
an element T € A, o can be written as

=T, Ty, Ty 7 witht' € Ay(T0). (5.5)

o, o «,

We thus have a bijection of sets

Homovy(g)(R?, R") = |_| A

o

where the disjoint union ranges over the strictly increasing sequences « of d elements of [x]. It follows
that

(Pg)n = k[Homoyir) (R?, R")] = @ k[A, ] (5.6)

The various k[A, 4] fit together into an OI(d)-module Q with

Qn,a = k[An,a] ((l’l, O() € OI(d))

Substep 1b. We construct a poset I of OI(d)-submodules of Q.
Notation defined: M, E; o

Consider an OVI(R)-submodule M of P;. We say that M is a homogeneous OVI(R)-submodule of Py
if for all n > 1, the k-submodule M, of (P;), splits according to the decomposition (5.6), i.e., for all
(n, o) € OI(d) there exists some k-submodule M, o, of k[A, 4] such that

Mn = @ Mn,oz-
o

In this case, the various M, , fit together into an OI(d)-submodule of Q. We thus get a poset injection

{homogeneous OVI(R)-submodules of P;} < {OI(d)-submodules of Q}.
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The image of this injection consists of all OI(d)-submodules M of Q such that each M,, , C O, 4 is
preserved by the action of U, (R), which acts on Q, , via the identification of Q, , with the set of formal
k-linear combinations of appropriate n X d matrices.

For the sake of our later arguments, we will actually consider a larger collection of submodules. Define
9 to be the poset of all OI(d)-submodules M of Q such that the following hold. Consider (1, o) € OI(d)
with @ = (g, ..., oq). Let {éy, ..., €,} be the standard basis for R". For 1 < j <dand 1 <i < a; and
r € R, define E l’ o € U, (R) to be the element that takes Za_]. to re; + Ea_/ and fixes all of the other basis
vectors. We then require that M, o be preserved by all of the E; o forl<j<dand1=<i<oajand
r € R. The construction in the previous paragraph gives a poset injection

{homogeneous OVI(R)-submodules of P;} — 1. (5.7)

Substep 1c. We construct a conservative poset map {OVI(R)-submodules of P;} — 9.
Notation defined: none

By (5.7), it is enough to construct a conservative poset map
{OVI(R)-submodules of P;} — {homogeneous OVI(R)-submodules of P,}. (5.8)

For each n > 1, put a total ordering on the set of all strictly increasing sequences « of d elements
of [n] using the lexicographic ordering: o < o if the first nonzero entry o’ — « is positive. Given a
nonzero element f € (Py),, use the identification (5.6) to write f =), fu.« With f, o € k[A, o]. Define
in(f) = fn.a> Where oy is the largest index such that f; o, # 0.

Given an OVI(R)-submodule M of P; and some n > 1, define in(M), to be the k-span of {in(f) |
f € M,}. It is easy to see that in(M) is also an OVI(R)-submodule of P;. Moreover, by construction
in(M) is homogeneous. The map M > in(M) is thus a poset map as in (5.8). We must prove that it is
conservative. Assume otherwise, and let M and M’ be OVI(R)-submodules of P; such that M C M’ and
in(M) =in(M’). Let n > 1 be such that M,, C M. Let x € M, \ M, be such that in(x) lies in k[A, ]
with « as small as possible. Since in(M) =in(M’), we can find some x" € M,, with in(x) = in(x"). But
then x —x’ € M, \ M,, while in(x — x’) lies in k[A, ] with &’ < «, a contradiction.

Step 2. We construct a poset MM and reduce the theorem to showing that 9t is noetherian.

In Step 1, we reduced the theorem to showing that the poset 2t constructed in Substep 1b is noetherian.
The goal of this step is to construct a conservative poset map from 91 to a simpler poset 9. This will
be done in a sequence of steps. Recall that 91 is a subposet of the poset of OI(d)-submodules of an
OI(d)-module Q. In Substep 2a we will construct an OI(d)-module filtration

Q(O) C Q(l) C.--C Q(d) = Q.

Next, in Substeps 2b and 2¢ we will construct two posets 9* and N® of special OI(d)-submodules of
0® such that M@ = 9. Finally, in Substeps 2d and 2e we will construct a sequence of conservative
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poset maps
M =MD - Né=D 5 gn@=-b  qd=2 ... nO 9O,

This reduces the theorem to showing that the poset 9t is noetherian.

Substep 2a. We construct an OI(d)-module filtration
Q(O) C Q(l) C. C Q(d) = Q.
Notation deﬁned: (R7 +) = (Z}\‘v +)’ RZO? An,a,k—i-’ An,a,+, An,+, An,+(S)7 Q(k)7 gllfgl

This step is where we use the fact that the additive group of R is a finitely generated free abelian
group. Fix an identification of this additive group with Z* for some A > 1 such that the multiplicative
identity 1 € R is identified with an element of (Z>()". Let R>( be the submonoid of the additive group
of R corresponding to (Z-0)*. The monoid R-( contains 1 € R, but is not necessarily closed under
multiplication.

Consider (n, a) € OI(d) with ¢ = (a1, ...,a4). For 0 < k < d, define A, o+ to be the set of all
T € Ay o such that if Tl’ ; appears in T with i > o, then r € R>¢. For k =0, we use the convention g =0,
and we will also frequently omit the &, so Aj 4,4 is the set of all T € A, o such that if 7/, appears in
7, then r € R>o. We will similarly define A, 1 and A, +(S) for S C 7,,. We then define 0% to be the
OI(d)-submodule of Q where for all (n, a) € OI(d), we have

0 = k[Anai+]-

We thus have Q¥ = Q. Moreover,
O =kl A+

Substep 2b. For 0 < k < d, we construct a subposet 9t of the poset of OI(d)-submodules of Q®) such
that M@ = I,
Notation defined: MM, (a.iy), (a.iix), (br), (cx)

We begin with some terminology. A k-submodule X of k[A,] is homogeneous with respect to S C T},
if the following holds for all x € X. Write
m
x= T4 Vg
=1

where for all 1 < g <m we have the following: =

e 7, € Ay(S), and the different 7, are all distinct.
o ¥g €K[AL(T, \ S)].
We then require that 7,y, € X forall 1 <g <m.
Now consider some 0 < k < d. Define 9™ to be the set of all OI(d)-submodules M of Q) such that

for all (n, @) € OI(d) with a = (1, ..., og), the following conditions (a.ix), (a.iix), (bg), and (c;) hold.
To simplify our notation, we will set oy = 0.
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(a) The k-module M,, , C k[Ay, o k+] is closed under multiplication by the following elements:
(ix) Tl’] withk <j<dand1<i <o andr € R.
(iig) TZ’J withk+1<j<dand oy <i <ajand r € R>o.

(br) The k-module M, , is closed under the operators El.rﬂj withl <j<kandl<i<oajandr e R.

(cx) The k-module M,, , C k[A; «.r+] is homogeneous with respect to
{To,; j 11 = j <d}U{T;j | k+1<j <dand max(ax, 1) <i <aj;}.

We claim that 9t) = 9t. Condition (by) implies that 9P c O, so we must only prove that 9t C M@,
Consider M € 9 and (n, a) € OI(d) with @ = («y, ..., og). We must verify that M, , satisfies the
properties above:

« For (a.iz), we must show that M, , is closed under multiplication by Tl’ gforl <i<agandreR.
But this can be achieved using the operator E!  , and by the definition of 91 the k-module M, , is

1,09’
closed under this operator, so (a.ig) follows.

» No pairs (i, j) satisfy the conditions of (a.ii;), so that condition is trivial.
» Condition (by) is a special case of the condition defining 91, so it follows.

» The set referred to in condition (c4) consists only of
{To,.j 11 = j=d},

and by definition every element of k[ A, ] is homogeneous with respect to these variables (see (5.5)),
so that condition follows.

Substep 2¢c. For 0 < k < d, we construct a subposet 91 of the poset of OI(d)-submodules of Q®.
Notation defined: N®, (a'.i'y), (@.ii'y), V'), (k)

Our definition of 91 will be a slight modification of our definition of 9. Define M® to be the set
of all OI(d)-submodules N of Q(k) such that for all (n, o) € OI(d) with @ = («y, ..., ag), the following
conditions (a’.i’), (a’.ii’y), (b'x), and (c’x) hold. To simplify our notation, we will set atg = 0.

(") The k-module N, , C k[A, «.r+] is closed under multiplication by the following elements:

(i) Tl.fjwithk—klfjfdandlsi<o¢kandreR.
(i) T/, withk+1<j<dandoy <i <ojandr € R>o.

(b{() The k-module N, , is closed under the operators El’ o withl <j<kandl <i<ajandr €R.
(c;) The k-module N, o C k[A, « k4] is homogeneous with respect to
{To; j 112 j<d}U{T;j |k+2<j<dand a1 <i <o}

Substep 2d. For 1 < k < d, we construct a conservative poset map mE — k=D,
Notation defined: none.
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Consider M € M® | so M is an OI(d)-submodule of Q. Define N = M N 0%~V We claim that
N e M*=D_ This requires checking the conditions (a’.i’;_1), (a’.ii’s_1), (b'x_1), and (c/x_1). Consider
some (n, a) € OI(d) with @ = (aq, ..., ag):

« Condition (a".i’—1) asserts that N, o is closed under multiplication by T; ; with k < j < d and
1 <i < ak—; and r € R. This follows from the fact that both M, , and fo; D are closed under
multiplication by these elements. This is immediate for Qﬁ,]f; Y For M, o, it follows from (a.ig),
which says that M), o is closed under multiplication by 7 ; withk <j<dand 1 <i <o andr € R.

 Condition (a’.ii’;_1) asserts that N, 4 is closed under multiplication by Tl’ ; with k < j <d and
ar-1 <1 < aj and r € R>¢. This follows from the fact that both M, , and Q,(q]f;l) are closed
under multiplication by these elements. This is immediate for Qf,’f; Y For M, 4, it follows from a
combination of (a.ix), which handles the cases where x| <i < o and gives the stronger conclusion
that we can use r € R instead of just r € R>, and (a.iix), which handles the cases where oy <i < «;.
Here one might worry that (a.iiy) requires kK + 1 < j < d instead of k < j < d; however, the case
Jj =k is not needed since no i satisfies oy <i < o.

 Condition (b’;_;) asserts that N, , is closed under the operators Ei, withl <j <k—1and
1 <i <aj and r € R. This follows from the fact that both M,, , and Q,(“; D are closed under these
operators. This is immediate for Qf,/f; Y. For M, 4, it follows from (bg), which says that M, 4 is
closed under the operators El’ o withl<j<kandl1<i<ajandreR.

o Condition (c¢’x_) asserts that N, , is homogeneous with respect to
{To; j 11 <j<d}yU(T;j | k+1<j<dand oy <i <aj;}.

Condition (ci) says that M,  is homogeneous with respect to this same set, and this homogeneity is

(k=1)
no -

preserved when we intersect M, , with Oy

We thus can define a poset map IM® — M*—D taking M € M® to M N Q*~D. We claim that this poset
map is conservative. In fact, it is even injective. Indeed, consider M, M’ € M® Let N = M N Q*—D
and N' = M’ N Q%= and assume that N = N’. We claim that M = M’. By symmetry, it is enough
to prove that M C M'. Consider (n, o) € Ol(d) and x € M, ,. We must prove that x € M, ,. We have

X € Qf,k()x Setting

S={T;jll<j<d l<i<oaj,q1<i<o)={T;|k<j=<d o1 <i<a,

there exists some 7 € A, (S) such that tx € fo;l). By (a.ix), we have tx € M,, o, and thus 7x € N, .
Since N = N' C M’, we deduce that tx € M, ,. Define 71 € A, (S) to be the result of replacing all
the Tl’ ; terms in T with Tfjr Another application of (a.iy) shows that 7~ 'tx =x € M’

n,o’

as desired.

Substep 2e. For 0 < k < d — 1, we construct a conservative poset map % — 9M® .
Notation defined: none.
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Fix some (n, o) € OI(d) with ¢ = (y, ..., og). The most important difference between M® and
N® is that by (cy) the k-modules making up 9* must be homogeneous with respect to

Sn,a,kz{Taj,j [1<j fd}U{Ti,j lk+1<j<dandog <i < and i > 1},
while by (c¢’y) the k-modules making up 91®) must only be homogeneous with respect to
Snak+1 ={To;,j |1 =j<d}U{T;j | k+2<j<dand 41 <i <aj}.

The main function of our poset map M* — M® will be to achieve the needed increase in homogeneity.

For x € ng,)x, we will define an “initial term” in(x) € Q,(,k()x as follows. Define

y/l’a’k = Sn,oz,k \ Sn,oz,k-‘rl = {le | k+1< .] <d and max(ag, 1) <i < Olk—',-l}~

Recall that R is identified as an additive group with Z* and that R-¢ = (Z>¢)"* C R. Using the identification
R = 7%, we will frequently speak of the coordinates of elements of R. We define a total order on
An,+(S;l,a,k) in two steps:

» We first order S, , , by letting 7; ; < T;» j if eitheri < i’ orif i =i’ and j < j'.

» We then order A, (S, , ) as follows. Consider distinct 7, 7" € A, (S, , ;). Enumerating the

P . . .
elements of S, , , in increasing order as T;, j,, ..., T;, j,, we can uniquely write
r r ’ r r
f— 1 ,p‘ frd 1 .p.
= Ywilyjl IpsJp and T T;Is.]l 7;[)’]])‘

for some r;, r;. € R>¢. Let 1 < ¢ < p be the minimal number such that r, # r;. We then say that
7 < 7’ if the first nonzero coordinate of r(/] —ry € R =7" is positive.

For nonzero x € Qf,]f,)x, we can uniquely write
m
X = Z T4 Vg
g=1
where for all 1 < g <m we have the following:

e 7,y # 0 forall g.

e T, € A,,,Jr(S,/Z,ak), and the 7, are enumerated in increasing order 7 < T2 < - -+ < Typ.

* Yq € kAL (T, \ S,;,a,k)]-

We then define in(x) = 7,y € Qﬁ,kzx We also set in(0) = 0. We will call t,, the initial variable of x,

though we remark that this terminology will not be used again until the final paragraph of this substep.

We now construct the poset map N — M® as follows. Consider N € Y. For (n, a) € OI(d),
define in(N), o C szkzx to be the k-span of {in(x) | x € N, 4}. It is easy to see that in(N) is an OI(d)-
submodule of Q®. We claim that in(N) € 9®). To see this, we must check the conditions (a.iz), (a.ii),
(by), and (cg). Consider some (n, a) € OI(d) with o = (aq, ..., ag):
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* We delay (a.ix) until the end, so we start by verifying condition (a.iix), which asserts that in(V), 4 is
closed under multiplication by Tl’ f withk+1<j<dand o <i <a; and r € R>¢. This is immediate
from (a’.ii’;), which asserts that N is closed under multiplication by these same elements.

+ Condition (by) asserts that in(NV), ¢ is closed under the operators E; o withl <j<kand1<i<a;

and r € R. Condition (b';) says that N, , is closed under these operators. To prove that this implies that

in(N),.« is also closed under these operators, it is enough to prove that for x € Qi,]f()x, we have

in(Ej, (x)) = Ef, (in(x)).

To help the reader understand the argument below, we recommend reviewing the correspondence between
elements of A, and n x d matrices from Substep 1a. For nonzero x, write

m
X = E T4 g
q=1

where for all 1 < g <m we have the following:
- 14yq # 0 forall g.
-7, € A”""(Sr/z,oz,k)’ and the 7, are enumerated in increasing order 7 < 12 < - -+ < Typ.
— Yy € K[AL(T,\ S, o )],

Since i < aj <oy, forall 1 <g <m we have
Ei, (tg) =147, and  Ej, (¥g) =Yg,

for some ‘L’C/I € N (T, \ S,/w’k) and y; € k[A, (T, \ S;l’a,k)]. We thus have

m m
E ()= El, (1)) E[ o (v) =) (1, ¥4}
g=1 g=1
and

in(Ej o, (1) = Tn (T Ym¥p) = Ef 4 (in(x)),
as desired.

» Condition (cy) asserts that in(V), o is homogeneous with respect to
Snak ={To; j 11 <j<d}U{T;j|k+1<j<dandoy <i <ajandi>1}.

By (cx), the k-module N, , is homogeneous with respect to S, 4 x+1, and the very definition of in(N), o
is designed to improve this to S, o k-

* We now finally verify (a.ix), which asserts that in(N), 4 is closed under multiplication by Tif ; with
k<j<dand 1 <i <o and r € R. Condition (a’.i';) says that N, , is closed under multiplication by
Tl’] withk+1<j<dand 1 <i <a; and r € R, and this is preserved when we pass to in(N), . We
thus must only verify that in(N), ¢ is closed under multiplication by 7/, with 1 <i < o and r € R.



144 Andrew Putman, Steven V Sam and Andrew Snowden

Consider some x € in(N), . We must show that Tl’ X €1n(N), . Using the already verified condition
(cr), we can assume that x = 7y with

TE An,a(sn,a,k) and y € k[Ana(Tn \ Sn,oc,k)]-
Using the already verified condition (by), we know that E ,’ e (x) €in(N);.o. We then calculate that
El,(x)=E[, (ty)=E, (DE[, () =T 7))y,

where 7’ is a product of elements of {Tlr ;., | k+1<j <d,r € R} that depends on 7 and r and i and
k. Letting (7’ )~! be the result of replacing each Tl’ }, in t/ with T[f/, our already verified cases of (a.ix)
imply that in(N), o is closed under multiplication by (t))~!. In particular,

@) E ) =) (T y = Tty = T x € in(N)y s

1,0 i,
as desired.

The map N — in(N) is thus a poset map from 9% to M®

We claim that this is a conservative poset map. Indeed, consider Ny, N, € MN® such that Ny C N,
and in(N;) = in(N;). We must prove that N; = N;,. Assume otherwise. Let (n, o) € OI(d) be such that
(NDn.a © (N2)y.q- Pick x € (N2)y, o such that x ¢ (N1), o and such that the initial variable (see the second
paragraph of this substep for the definition of this) of x is as small as possible among elements with these
properties (this is possible since with the above ordering An,+(S,/1’a’ i) does not have any infinite strictly
decreasing chains). Since in(N;) = in(N;), we can find some x” € (N}),.o such that in(x") = in(x). But
then x — x" € (N2),.o and x — x" ¢ (N1),.«, while the initial variable of x — x” is strictly smaller than the
initial variable of x, a contradiction.

Step 3. We prove that M© is noetherian.
In Step 2, we reduced the theorem to showing that 91 is noetherian. In this step, we will prove this.

Defining

Ay = |_| Ana,+»
(n,0)€0l(d)
in Substep 3a we first construct a useful partial ordering on A and prove that it is a well partial ordering
(see below for the definition of this). In Substep 3b, we use this partial ordering to prove that 9 is
noetherian.

Substep 3a. We construct a partial ordering on A and prove that it is a well partial ordering.
Notation defined: none.

We define a partial ordering on A ; as follows. Consider 7, 7" € A;. We say that T < 7’ if the following
condition is satisfied:

e Let (n, @), (n',a’) € OI(d) be such that t € A, 4 + and t/ € A, o +. We then require that there
exists an OI(d)-morphism ¢: (n, @) — (n’, @’) and some t” € A,/ o 4 such that t/ = 1”7 - 1, (7).
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It is clear that this is a partial ordering.

The main goal of this substep (which we will accomplish at the end after a number of preliminaries) is
to prove that this partial ordering on A is a well partial ordering, whose definition is as follows. A poset
(B, <) is well partially ordered if every infinite sequence of elements of I3 contains an infinite weakly
increasing subsequence. See [Kruskal 1972] for a survey about well partial orderings. If 3 and i3’ are
posets, then we will endow ‘B x ‘B’ with the ordering where (p1, p}) < (p2, p5) if and only p; < p, and
pi = p5. If P and P’ are both well partially ordered, then so is P8 x P’ (quick proof: given an infinite
sequence in P x ', first pass to a subsequence to make the first coordinate weakly increasing, then pass
to a further subsequence to make the second coordinate also weakly increasing).

Recall that we have identified the additive group of R with Z* and that R>o= (Zzo)’x. Using these
identifications, we will speak of the coordinates of elements of R and R>g. Endow the set R>o U {#}
with the following partial ordering:

» @ is not comparable to any element of R>.

e For r, r € R>q, let r; < ry if all the coordinates of r, — ry are nonnegative.

Since the usual ordering on Z>( is a well partial ordering, the restriction of our partial ordering to
R0 = (Z>0)" is also a well partial ordering. From this, it is easy to see that our partial ordering on
R-o U {®)} is also a well partial ordering. The product ordering on (R=o U {#})? is thus also a well partial
ordering.

Let W denote the set of finite words in the alphabet (R>o U {#})¢. Endow W with the partial ordering
where wi, wy € W satisfy w; < w if and only if the following condition is satisfied. Write w; = £ --- ¢,
and wy = £} --- £/, with each ¢; and £}, an element of (R>o U {®})?. We then require that there exists a
strictly increasing function ¢: [n] <> [n] such that £; < Ef(l.) for all 1 <i < n. This partial ordering on W
is a well partial ordering by Higman’s lemma [1952, Theorem 4.3].

As promised, we now prove that the partial ordering on A defined above is a well partial ordering.
Let W: A4 — W be the following set function. Consider T € A, o + C A4. Write ¢ = (¢, ..., @g), and
expand out T as

T= ]_[ T (rij € Rx0).

l<j<d
I<i<a;

Forl1<j<dand1<i <aj, definer;; € R>oU (@} via the formula
_ i j if1§i<05j,
Fij= s
& ifi=q;.
We remark that by definition we have r,; ; =1 forall 1 < j <d. For 1 <i <n, we define

Ci=(Fi1 Fias - Fia) € (R=0 U (@)

Finally, we define
V(t)=4142---£,.
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It is clear that W is injective. What is more, it is immediate from the definitions that for all 7, 7" € A, we
have
7 <7’ ifand only if ¥ (1) < ¥ (7).

The key point here is that if we interpret elements of A as matrices with d columns and entries in R,
the effect of an OI(d)-morphism on these matrices is to insert extra rows of zeros. Since W is injective
and W is well partially ordered, so is A, as claimed.

Substep 3b. We prove that the poset 9© is noetherian.
Notation defined: none.

Let (A4, <) be the partially ordered set constructed in Substep 3a. By definition, 9 is the poset
of all OI(R)-modules M C Q© such that for all (n, @) € Ol(d) with & = (a1, . .., ag), the k-module
M, o C k[A, 4 +] satisfies the following two properties:

() Ttis closed under multiplication by 7/ forall I < j <d and 1 <i <« and r € Rx.
(1) It is homogeneous with respect to all the possible 7; ;, i.e., with respect to
{Ti;|1<j<dand 1 <i <a;}.
Property (f1) implies that M, o is spanned as a k-module by elements of the form ¢ - T with ¢ € k and
T € Ay o +. Property () implies the following:

(T71) Letti € Ay o+ CAyand 2 € Ay 0, + C Ay and c € k be such thatc- 11 € My, o, and 71 < 15.
Then ¢t € My, o,.

Now assume for the sake of contradiction that 9t is not noetherian. Let
M CM,CM3C---
be an infinite strictly ascending chain in it. By (17), for all i > 1 there exists some (#;, ;) € OI(d) and
some T; € Ay, o+ and some ¢; € k such that
Ci T € (Mi)n;o; \ (Mi—1)n; q;- (5.9)

Since our partial ordering on A is a well partial ordering, we can replace our sequence {M;}°, with a

subsequence and assume that

TS =T3="-.
For i <i’, condition (} 1) implies that
¢i Tt € (Mi)n,s o -
For all ¢ > 1, applying this repeatedly with i’ = g + 1 we see that for all 1 < ¢’ < g we have

g Tg+1 € Mgy 10000 C (Mgdngiyaqs-
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Defining 1, to be the ideal of k generated by {ci, ..., ¢,}, this implies that for all d € I, we have

d- Tq+1 € (Mq)nq-%—l,aq-%—] .

Since k is noetherian, we can pick g >> 0 such that I, = I, ; in particular, ¢, € I,. But this implies
that

Cq+1"Tg+1 € (Mq)n,”l,aqﬂ,

contradicting (5.9).

SD. A converse to Theorem 1.5. We now prove a converse to Theorem 1.5:

Proposition 5.10. Let R be a ring and k be a commutative ring such that the category of OVI(R)-modules
over k is locally noetherian. Then k is noetherian and the additive group of R is finitely generated.

Proof. Let P be the principal projective OVI(R)-module associated to R? and let P* be the submodule of
P generated by all elements lying in P, with n > 2. Then P/P™ is a finitely generated OVI(R)-module
with

k[U>(R)] iftn=2,

0 otherwise.

(P/P+)n={

It follows that an OVI(R)-submodule of P/P™ is exactly the same thing as a left ideal in k[U>(R)], so
k[U,(R)] is a left-Noetherian ring. The group U, (R) is simply the additive group underlying R, so the
proposition follows from the following lemma. U

Lemma 5.11. Let k be a commutative ring and let A be an abelian group such that k[A] is noetherian.
Then k is noetherian and A is finitely generated.

Proof. Since k is a quotient of the noetherian ring k[A] via the augmentation homomorphism, it is
noetherian. For a subgroup B of A, let Iz be the ideal of k[A] generated by [b] — [0] with b € B. Then
k[A]/Ip = k[A/B], and so B can be recovered from /g as the elements b € A such that [b] — [0] € I5.
Suppose that B, is an ascending chain of subgroups of A. Then I, is an ascending chain of ideals in
k[A] and thus stabilizes. Thus the chain B, stabilizes as well, and so A is noetherian (and thus finitely
generated) as an abelian group. U

6. Homology of OVI-modules

In this section, R denotes a (not necessarily commutative) ring whose additive group is a finitely generated
abelian group and k denotes a commutative noetherian ring. Our goal is to prove Theorem 1.4 from
the introduction, which says that if M is a finitely generated OVI-module then H; (U, M) is a finitely
generated OI-module for all i > 0. This theorem is proved in Section 6C below after some preliminaries.
We then prove in Section 6D an analog of Theorem 1.4 where we allow upper triangular matrices that are
not necessarily unipotent.



148 Andrew Putman, Steven V Sam and Andrew Snowden

6A. Homology of some Ol-groups. Recall that a group I is of type FP over k if the trivial k[I"]-module
k admits a projective resolution P, such that each P; is a finitely generated k[I"]-module. In fact, it is
equivalent to ask that each P; be a finitely generated free module; see [Brown 1982, Theorem VIIL.4.3].
Many natural classes of groups are of type FP including finite groups, finitely generated abelian groups,
and lattices in semisimple Lie groups. See [Brown 1982, Chapter VIII] for more information.

Proposition 6.1. Let A be a group of type FP over k and let E be the Ol-group [n]+— A". Let M be an
E-module which is finitely generated as an Ol-module. The following then hold:

(a) The Ol-module H;(E, M) is finitely generated for all i > 0.

(b) Suppose A is abelian. Let C C A be a finite index subgroup, Ay denote the subgroup {(ay, ..., a,) €
A" |ay+---+a, € C}, and Ec be the Ol-group [n] — A{.. Then the Ol-module H;(Ec, M) is
finitely generated for all i > 0.

Proof. Pick a free resolution [, of the k[ A]-module k such that each [; is a finitely generated k[ A]-module
and such that Fy = k[A]. For each n > 0, the complex (F®"), is a free resolution of the k[A"]-module k.
For each i > 0, we assemble the i-th terms of (F®"), into an OI-module X (i) as follows. First, define

X(in=F"= P Fo---F,
ity =i
Next, given an OI-morphism f: [n] — [m], define f.: X (i), — X (i), in the following way. Consider a
summand F;, ® --- ®F; of X (i),. For 1 <a’ <m, define

y i ifa’ = f(a) for some a € [n],
0 otherwise.

We thus obtain a summand [Fii ®---@F; of X(i),. Define fi: X (i), — X (i)m to be the map that takes
F,® --QF;, to [F,-{ ®---®F; by inserting terms that equal 1 € k[A] = Fy into the needed places.

For each i > 0, define Y (i) to be the OI-module [n] +— (X (i), ® M,) a», where the subscript indicates
that we are taking the A"-coinvariants. The Y (i) form a complex

o =>Y3)—->Y2)—-Y(1)—-Y0)—0

of OI-modules, and the OI-module H;(E, M) is the i-th homology group of this complex. By the local
noetherianity of OI (Corollary 3.3), to prove that H;(E, M) is a finitely generated OI-module for all
i > 0, it is enough to prove that each Y (i) is a finitely generated OI-module, which we now do.

For each i > 0, the OI-module X (i) is generated in finite degree (in fact, only terms of degree at most
i are needed). Since M is finitely generated as an OI-module, it is in particular generated in finite degree,
so by Corollary 3.4 the Ol-module X (i) ® M is also generated in finite degree. This implies that Y (i)
is also generated in finite degree. Since F; is a finitely generated k[ A]-module for each i > 0 and M,
is a k[ A"]-module that is finitely generated as a k-module for each n > 0, it follows that the k-module
Y (i), = (F®"); ® M,) a» is a finitely generated k-module for all i, n > 0. Combining this with the fact
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that each Y (i) is generated in finite degree, we deduce that the OI-module Y (i) is finitely generated for
all i > 0, as desired.

For the second statement, the restriction of F®" to A7 is still finitely generated since A. is a finite
index subgroup in A", and we can proceed as before. U

Proposition 6.2. Let A be a group of type FP over k and let E’ be the OI(d)-group given by E,/i ,=A"
Then H;(E’, k) is a finitely generated Ol(d)-module for all i > 0.

Proof. The OI(d)-group E’ is the pullback of the OI-group E from Proposition 6.1 through the forgetful
functor ®: OI(d) — OI. Thus H;(E’, k) is the pullback to OI(d) of the OI-module H;(E, k), which is
finitely generated by that proposition. The result now follows from the fact that & satisfies property (F),
which follows easily from Proposition 3.2. U

6B. A filtration. Our goal in this section is to prove the following result. Recall that X is the reduced
shift functor on OI-modules, i.e., the cokernel of the canonical map M — X (M). Also, Py is the principal
projective OVI-module associated to the object R¢ of OVL

Proposition 6.3. The Ol-module X (H; (U, P,)) has a filtration where the graded pieces are subquotients
of Ol-modules of the form H;(U, P,) withe < d or H;(U, M) with j <i and M a finitely generated
OVI-module.

We begin with a number of lemmas. Recall that &: OI(d) — OI and V: OVI(d) — OVI are the
forgetful functors. Also, Uy is the OI(d)-group (Uy),.n = Uy, where U, is the group discussed in
Section 4A. Finally, the subscript ! is used to denote the left Kan extension discussed in Section 2B.

Lemma 6.4. Let M be an OVI(d)-module. We have an isomorphism of Ol-modules ®,(H; (Uy, M)) =
H; (U, ¥\(M)).
Proof. Recall from Proposition 4.5 that

(M), =@ Indy? (M, 5).
A

Thus, by Shapiro’s lemma we have

H;(U, (M), = H;(Up, W\(M),) = @ Hi Ui, M),
s

and this is exactly ®,(H; (Uy, M)) by Proposition 3.6. This shows that ®(H;(Uy, M)) and H; (U, V\(M))
agree on objects, and a moment’s reflection shows that they also agree on morphisms. (|

Corollary 6.5. We have H;(U, P;) = ®(H; (Uy, k)).

Proof. Let x = (R?, {e;}, 1) € OVI(d) where ¢; is the standard basis and A = (1 <2 < --- < d). Set
y = (R%, {e;}) € OVL. Then W,(P,) = Py by (2.10). Since x is the initial object of OVI(d), we have
P, (y) = k[Hom(x, y)] = k for all y, so P, = k. We thus have W,(k) = P;. Using the fact that P, is just
another name for P, the result now follows from Lemma 6.4 with M = k. O



150 Andrew Putman, Steven V Sam and Andrew Snowden

Let U[’l = X (Uy). This is the OI(d)-group given by (U(Q),,,A = Up41..- The group U, is the
semidirect product U, ; X R", and this description is functorial. More precisely, let E; be the OI(d)-group
given by (E;), , = R". We then have homomorphisms of OI(d)-groups i: Us — U} and p: U; — U,
with pi = id and ker(p) = E;. We observe that E; is in fact naturally an OVI(d)-group, and thus
H;(E,, k) is naturally an OVI(d)-module. Proposition 6.2 says that H; (E,, k) is finitely generated as an
OI(d)-module, so it is also finitely generated as an OVI(d)-module.

Lemma 6.6. The OI(d)-module X (H,(Uy, k)) admits a filtration where the graded pieces are subquo-
tients of H;(Uy, H,_;(E4, k)) withO <i <r — 1.

Proof. The module X (H, (U, k)) is the cokernel of the map
H,(Uy, k) — H,(Uy, k)

induced by the homomorphism i : Uy — U);. The result therefore follows from Proposition 2.11, taking
G=U)and K=U; and E = E,. O

Recall that if M is an OI(d)-module, then right before Proposition 3.9 we defined an OI(d — 1)-module
A(M).

Lemma 6.7. We have ®(A(H;(Uy, k))) = &1(H;(Uy_1, k)).
Proof. By definition,
AH; (Ug, k)p,n = Hi(Ug, k) n)i1joo} 211{00} = Hi (Upnjiifoo} alifoc} > K)-
Since {00} is the maximal element of [n] LI {o0}, we have
Unjufooy.atifoo} = Un a-

Thus by Proposition 3.6 we have

®(A(H; (Ug. 0)) = D Hi (Un. K.
A
the sum taken over appropriate d — 1 tuples A. Again using Proposition 3.6, this is exactly ®,(H; (U;—1, k)).
g

Proof of Proposition 6.3. We have H,. (U, P;) = ®,(H,(Uy, k)) by Corollary 6.5. Thus by Proposition 3.9,
we have

S(H, (U, Pp) = Z(®(H,(Uy, k))) = ©(E(H,(Ug, k))) ® D1(A(H, Uy, k).

By Lemma 6.7, the second term on the right is ®,(H,(U;—1, k)). By Corollary 6.5, this equals
H,.(U, P;_1). By Lemma 6.6, the first term admits a filtration where the graded pieces are subquotients
of &(H;(Uy, H,_;(E4, k))) with 0 <i <r — 1. Setting N; = H,_;(Ey, k), Proposition 6.2 implies that
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N; is a finitely generated OVI(d)-module. Set M; = W (N;), so M; is a finitely generated OVI-module.
By Lemma 6.4, we have
®\(H;(Uy, Ni)) = H;(U, M,).

Combining all of the above, S (H, (U, P;)) admits a filtration where one graded piece is H, (U, P;_1)
and the other graded pieces are subquotients of H;(U, M;) for 0 <i <r — 1. The result follows. U

6C. Proof of Theorem 1.4. We now prove Theorem 1.4. Recall the statement: if R is a ring whose
additive group is a finitely generated abelian group, k is a commutative noetherian ring, and M is a finitely
generated OVI-module, then H; (U, M) is a finitely generated Ol-module for all i > 0. Fix such k and R
for the rest of this section. Consider the following statement:

(S;) For a finitely generated OVI-module M, the Ol-module H; (U, M) is finitely generated.

Let i be given and suppose that (S;) is true for all j < i (a vacuous condition if i = 0). We will prove
(S;), and this will establish the theorem.

We first show by induction on d that H; (U, Py) is a finitely generated OI-module for all d. Suppose
therefore that H; (U, P,) is a finitely generated OI-module for e < d (a vacuous condition for d = 0),
and let us prove that H; (U, P;) is a finitely generated OI-module. By Proposition 6.3, the OI-module
> (H;(U, Py)) has a filtration where each graded piece is a subquotient of an OI-module of the form
H;(U, P,) withe <d or H;(U, M) with j <i and M finitely generated. By the two inductive hypotheses in
force, both of these kinds of OI-modules are finitely generated. Using the local noetherianity of OI-modules
(Corollary 3.3), it follows that X (H; (U, Py)) is a finitely generated OI-module. By Proposition 3.8, this
implies that the OI-module H; (U, Py) is finitely generated, as desired.

Let M be a finitely generated OVI-module. Consider an exact sequence

0 K—>P—->M-—>0

where P is a finite direct sum of principal projective OVI-modules. Since the category of OVI-modules is
locally noetherian (Theorem 1.5), the OVI-module X is finitely generated. We obtain an exact sequence

H;U,P)— H;(U, M)— H;_(U, K).

By the previous paragraph, the OI-module H;(U, P) is finitely generated. By our inductive hypoth-
esis (Si—1), the Ol-module H;_;(U, K) is finitely generated. Using the local noetherianity of OI
(Corollary 3.3), it follows that the OI-module H; (U, M) is finitely generated. We have thus established
(S;), and the proof is complete.

Remark 6.8. The dimension shifting step in the third paragraph above is the only place in the proof of
the theorem where the noetherianity of OVI is used. We never need noetherianity of OVI(d).

Remark 6.9. Suppose the additive group of R is a finite rank free abelian group. We outline an alternative
way to get finite generation of the Ol-module [n] — H;(U,(R); k). Let u,(R) be the Lie algebra of
strictly upper-triangular » x n matrices over R. By [Griinenfelder 1979, Theorem 4.3], there is a spectral
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sequence beginning with the Lie algebra homology of 1, (R) which converges to H; (U, (R); k). The Lie
algebra homology of u,(R) can be computed from the Koszul complex, whose terms are exterior powers
of u, (R), and hence are finitely generated OI-modules (this is similar to the Ol-structure on F®" in the
proof of Proposition 6.1). By noetherianity, H; (U, (R); k) is a finitely generated OI-module.

6D. A variant: Relaxing unipotence. For each n, we let B, (R) denote the group of upper-triangular
invertible n x n matrices with entries in R. We denote the Ol-group [n] +— B,(R) by B. Also, if R is
commutative and C C R* is a subgroup, then let B¢ (R) C B, (R) be the subgroup whose determinant
lies in C. We denote the OI-subgroup [1n] — BS (R) by B€.

The goal of this section is to prove Theorem 6.11 below, which is an analog of Theorem 1.4 for BC.

This requires the following lemma:

Lemma 6.10. If R is commutative and the additive group of R is finitely generated, then the group of

units R* is also finitely generated.

Proof. If R is a domain, then it is either a subring of the ring of integers of a number field, in which case
the statement follows from the Dirichlet unit theorem, or it is a finite field, in which case there is nothing
to prove.

If R is reduced, then we have an injection R — [, R/P where the product is over the finitely many
associated primes of R. Thus we have an injection R* — [[,(R/P)*, and hence R* is finitely generated.

Finally, in general we have an exact sequence of groups
0— N(R) > R* —> (R/N(R))* — 0,

where J1(R) is the nilradical of R equipped with the group structure x * y = x + y + xy, and the
first map takes x to 1 + x. (We note that the right map is surjective since any lift of a unit in
R/M(R) to R is automatically a unit.) By the previous cases, the abelian group (R/91(R))™ is finitely
generated. The fact that the additive group of R is finitely generated implies that R is noetherian,
so N(R)" = 0 for some n. For each k, the x operation on J1(R) descends to ordinary addition on
M(R)F/M(R)**!. Since the additive group MNR* /MR is a subquotient of the finitely generated
additive group of R, the additive group D(R)X/M(R)**! is finitely generated. Lifting additive generators
for M(R)/N(R)?, M(R)Z/M(R)?, ..., M(R)"™' /M(R)" = N(R)"~! to N(R) gives generators for N(R)
with respect to the operation x. We conclude that R* is a finitely generated group. g
Theorem 6.11. Suppose that R is commutative and C C R* is a subgroup. If M is a B-module which is
finitely generated as an Ol-module, then H;(BC, M) is a finitely generated Ol-module for any i > 0.

Proof. Let (R*){, denote the subgroup of (R*)" consisting of sequences whose product lies in C. We

have a short exact sequence of groups
1 — U,(R) > B,(R) > (R*)¢ — L

The group R* is finitely generated by Lemma 6.10, and thus so is (R*){.. The corollary now follows
from the Hochschild—Serre spectral sequence together with Theorem 1.4 and Proposition 6.1. O



Stability in the homology of unipotent groups 153

7. Application to Iwahori subgroups

The goal of this section is to prove Theorem 1.8, whose statement we now recall. Let O be a number
ring, let a C O be a nonzero proper ideal, and let kK be a commutative noetherian ring. For i > 0, let X (i)
be the OI-module defined by the rule [n] — H;(GL, ¢(O, a), k). We must prove that X (i) is a finitely
generated Ol-module and that if & is a field then dim X (i), equals a polynomial in n for n >> 0. The
polynomiality assertion follows from the finite generation assertion together with Proposition 3.5, so we
must only prove that each X (i) is a finitely generated OI-module.

Define R=0/a and let C C R* be the image of O under the quotient map O — R. Let GLS(R) be the
subgroup of GL, (R) consisting of matrices whose determinant lies in C. Strong approximation (see, e.g.,
[Platonov and Rapinchuk 1994, Chapter 7]) implies that the map SL,(O) — SL, (R) is surjective. This
implies that the map GL,(0) — GLS(R) is surjective, which implies that the map GL, (O, o) — Bf (R)
is surjective.

We thus have a short exact sequence

1 — GL, (O, a) = GL, 0(0, a) = BE(R) — 1.
The associated Hochschild—Serre spectral sequence is of the form
H; (B (R), H;(GL, (0, a), k) = Hiy ;(GLy0(0, 0), k) = X (i + j)n-

Let M(j) be the OVI(R)-module defined by M (j), =H;(GL,(O, a), k). Naturality of the above spectral
sequence induces a spectral sequence

H;i(By, M(j) = X (i +j) (7.1)

of OI-modules.

Letting FI be the category of finite sets and injections, the rule defining M (j) also endows it with
an FI-module structure, which is finitely generated by [Church et al. 2014, Theorem D]. The inclusion
OI — FI satisfies property (F) (see [Sam and Snowden 2017, Theorem 7.1.4]), so by Proposition 2.3 the
induced OI-module structure on M () is also finitely generated. This implies in particular that M (j)
is a finitely generated OVI(R)-module. Theorem 6.11 now implies that H; (B¢ (R), M (j)) is a finitely
generated OI-module. Since the category of OI-modules is locally noetherian (see Corollary 3.3), we can
now deduce from (7.1) that each X (i) is a finitely generated OI-module, as desired.

Acknowledgments. We thank Benjamin Steinberg for pointing out a significant simplification to the
proof of Lemma 5.4.
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