

Algebra & Number Theory

Volume 14
2020
No. 1

Birationally superrigid Fano 3-folds of codimension 4

Takuzo Okada

Birationally superrigid Fano 3-folds of codimension 4

Takuzo Okada

We determine birational superrigidity for a quasismooth prime Fano 3-fold of codimension 4 with no projection centers. In particular we prove birational superrigidity for Fano 3-folds of codimension 4 with no projection centers which were recently constructed by Coughlan and Ducat. We also pose some questions and a conjecture regarding the classification of birationally superrigid Fano 3-folds.

1. Introduction

A *prime Fano 3-fold* is a normal projective \mathbb{Q} -factorial 3-fold X with only terminal singularities such that $-K_X$ is ample and the class group $\text{Cl}(X) \cong \mathbb{Z}$ is generated by $-K_X$. To such X there corresponds the anticanonical graded ring

$$R(X, -K_X) = \bigoplus_{m \in \mathbb{Z}_{\geq 0}} H^0(X, -mK_X),$$

and by choosing minimal generators we can embed X into a weighted projective space. By the *codimension* of X we mean the codimension of X in the weighted projective space. Based on analysis by Altinok, Brown, Iano-Fletcher, Kasprzyk, Prokhorov, Reid, and others (see for example [Altinok et al. 2002]) there is a database [Brown and Kasprzyk 2009] of numerical data (such as Hilbert series) coming from graded rings that can be the anticanonical graded ring of a prime Fano 3-fold. Currently it is not a classification, but it serves as a list, meaning that the anticanonical graded ring of a prime Fano 3-fold appears in the database.

The database contains a huge number of candidates, which suggests difficulty in the biregular classification of Fano 3-folds. The aim of this paper is to shed light on the classification of birationally superrigid Fano 3-folds. Here, a Fano 3-fold of Picard number 1 is said to be *birationally superrigid* if any birational map to a Mori fiber space is biregular. We remark that in [Ahmadinezhad and Okada 2018] a possible approach to achieving birational classification of Fano 3-folds is suggested by introducing notion of *solid Fano 3-folds*, which are Fano 3-folds not birational to either a conic bundles or a del Pezzo fibration.

Up to codimension 3, we have satisfactory results on the classification of quasismooth prime Fano 3-folds: the classification is complete in codimensions 1 and 2 [Iano-Fletcher 2000; Chen et al. 2011; Altinok 1998] and in codimension 3 the existence is known for all 70 numerical data in the database. Moreover birational superrigidity of quasismooth prime Fano 3-folds of codimension at most 3 has been well studied (see [Iskovskikh and Manin 1971; Corti et al. 2000; Cheltsov and Park 2017; Okada 2014a;

MSC2010: primary 14J45; secondary 14E07, 14E08.

Keywords: Fano variety, Birational rigidity.

Ahmadianzhad and Zucconi 2016; Ahmadianzhad and Okada 2018] and [Okada 2014b, 2018] for solid cases in codimension 2).

For quasismooth prime Fano 3-folds of codimension 4, there are 145 candidates of numerical data in [Brown and Kasprzyk 2009]. In [Brown et al. 2012], existence for 116 data is proved, where the construction is given by birationally modifying a known variety. This process is called unprojection and, as a consequence, a constructed Fano 3-fold corresponding to each of the 116 families admits a Sarkisov link to a Mori fiber space, hence it is not birationally superrigid. The 116 families of Fano 3-folds are characterized as those that possess a singular point which is so called a type I projection center (see [Brown et al. 2012] for details). There are other types of projection centers (such as types II₁, …, II₇, IV according to the database [Brown and Kasprzyk 2009]). Through the known results in codimensions 1, 2 and 3, we can expect that the existence of a projection center violates birational superrigidity. Therefore it is natural to consider prime Fano 3-folds without projection centers for the classification of birational superrigid Fano 3-folds (see also the discussion in Section 5).

According to the database [Brown and Kasprzyk 2009], there are 5 candidates of quasismooth prime Fano 3-folds of codimension 4 with no projection centers. Those are identified by database numbers #25, #166, #282, #308 and #29374. Among them, #29374 corresponds to smooth prime Fano 3-folds of degree 10 embedded in \mathbb{P}^7 , and it is proved in [Debarre et al. 2012] that they are not birationally superrigid (not even birationally rigid, a weaker notion than superrigidity). Recently Coughlan and Ducat [2018] constructed many prime Fano 3-folds including those corresponding to #25 and #282 and we sometimes refer to these varieties as *cluster Fano 3-folds*. There are two constructions, $G_2^{(4)}$ and C_2 formats (see [Coughlan and Ducat 2018, Section 5.6] for details and see page 205 for concrete descriptions) for #282 and they are likely to sit in different components of the Hilbert scheme.

Theorem 1.1. *Let X be a quasismooth prime Fano 3-fold of codimension 4 and of numerical type #282 which is constructed in either $G_2^{(4)}$ format or C_2 format. If X is constructed in C_2 format, then we assume that X is general. Then X is birationally superrigid.*

For the remaining three candidates #25, #166 and #308, we can prove birational superrigidity in a stronger manner; we are able to prove birational superrigidity for these 3 candidates by utilizing only numerical data. Here, by numerical data for a candidate Fano 3-fold X , we mean the weights of the weighted projective space, degrees of the defining equations, the anticanonical degree $(-K_X)^3$ and the basket of singularities of X (see Section 3). Note that we do not know the existence of Fano 3-folds for #166 and #308.

Theorem 1.2. *Let X be a well-formed quasismooth prime Fano 3-fold of codimension 4 and of numerical type #25, #166 or #308. Then X is birationally superrigid.*

2. Birational superrigidity

Basic properties. Throughout this subsection we assume that X is a Fano 3-fold of Picard number 1, that is, X is a normal projective \mathbb{Q} -factorial 3-fold such that X has only terminal singularities, $-K_X$ is ample and $\text{rank } \text{Pic}(X) = 1$.

Definition 2.1. We say that X is *birationally superrigid* if any birational map $\sigma: X \dashrightarrow Y$ to a Mori fiber space $Y \rightarrow T$ is biregular.

By an *extremal divisorial extraction* $\varphi: (E \subset Y) \rightarrow (\Gamma \subset X)$, we mean an extremal divisorial contraction $\varphi: Y \rightarrow X$ from a normal projective \mathbb{Q} -factorial variety Y with only terminal singularities such that E is the φ -exceptional divisor and $\Gamma = \varphi(E)$.

Definition 2.2. Let $\mathcal{H} \sim_{\mathbb{Q}} -nK_X$ be a movable linear system, where n is a positive integer. A *maximal singularity* of \mathcal{H} is an extremal extraction $\varphi: (E \subset Y) \rightarrow (\Gamma \subset X)$ such that

$$c(X, \mathcal{H}) = \frac{a_E(K_X)}{m_E(\mathcal{H})} < \frac{1}{n},$$

where

- $c(X, \mathcal{H}) := \max\{\lambda \mid K_X + \lambda\mathcal{H} \text{ is canonical}\}$ is the *canonical threshold* of (X, \mathcal{H}) ,
- $a_E(K_X)$ is the discrepancy of K_X along E , and
- $m_E(\mathcal{H})$ is the multiplicity along E of the proper transform of \mathcal{H} .

We say that an extremal divisorial extraction is a *maximal singularity* if there exists a movable linear system \mathcal{H} such that the extraction is a maximal singularity of \mathcal{H} . A subvariety $\Gamma \subset X$ is called a *maximal center* if there is a maximal singularity $Y \rightarrow X$ whose center is Γ .

The following is the fundamental theorem in the study of birational superrigidity, which emerged in [Iskovskikh and Manin 1971] and has been simplified and generalized in [Pukhlikov 1998; Corti 1995].

Theorem 2.3 [Corti 1995, Theorem 4.10 and Proposition 2.10]. *If X admits no maximal center, then X is birationally superrigid.*

For the proof of birational superrigidity of a given Fano 3-fold X of Picard number 1 we need to exclude each subvariety of X as a maximal center. In the next subsection we will explain several methods of exclusion under a relatively concrete setting. Here we discuss methods of excluding terminal quotient singular points in a general setting.

For a terminal quotient singular point $p \in X$ of type $\frac{1}{r}(1, a, r-a)$, where r is coprime to a and $0 < a < r$, there is a unique extremal divisorial extraction $\varphi: (E \subset Y) \rightarrow (p \in X)$, which is the weighted blowup with weight $\frac{1}{r}(1, a, r-a)$, and we call it the *Kawamata blowup* (see [Kawamata 1996] for details). The integer $r > 1$ is called the *index* of $p \in X$. For the Kawamata blowup $\varphi: (E \subset Y) \rightarrow (p \in X)$, we have $K_Y = \varphi^*K_X + \frac{1}{r}E$ and

$$(E^3) = \frac{r^2}{a(r-a)}.$$

For a divisor D on X , the *order* of D along E , denoted by $\text{ord}_E(D)$, is defined to be the coefficient of E in φ^*D .

We first explain the most basic method.

Lemma 2.4 [Corti et al. 2000, Lemma 5.2.1]. *Let $p \in X$ a terminal quotient singular point and $\varphi: (E \subset Y) \rightarrow (p \in X)$ the Kawamata blowup. If $(-K_Y)^2 \notin \text{Int} \overline{\text{NE}}(Y)$, then p is not a maximal center.*

For the application of the above lemma, we need to find a nef divisor on Y . The following result, which is a slight generalization of [Okada 2018, Lemma 6.6], is useful.

Lemma 2.5. *Let $p \in X$ be a terminal quotient singular point and $\varphi: (E \subset Y) \rightarrow (p \in X)$ the Kawamata blowup. Assume that there are effective Weil divisors D_1, \dots, D_k such that the intersection $\text{Supp}(D_1) \cap \dots \cap \text{Supp}(D_k)$ does not contain a curve through p . We set*

$$e := \min \left\{ \frac{\text{ord}_E(D_i)}{n_i} \mid 1 \leq i \leq k \right\},$$

where n_i is the positive rational number such that $D_i \sim_{\mathbb{Q}} -n_i K_X$. Then $-\varphi^* K_X - \lambda E$ is a nef divisor for $0 \leq \lambda \leq e$.

Proof. We may assume $e > 0$, that is, $\text{Supp}(D_i)$ passes through p for any i . For an effective divisor $D \sim_{\mathbb{Q}} -n K_X$, we call $\text{ord}_E(D)/n$ the vanishing ratio of D along E . For $1 \leq i \leq k$, we choose a component of D_i , denoted D'_i , which has maximal vanishing ratio along E among the components of D_i . Clearly $D'_1 \cap \dots \cap D'_k$ does not contain a curve through p and we have

$$e' := \min \left\{ \frac{\text{ord}_E(D'_i)}{n'_i} \mid 1 \leq i \leq k \right\} \geq e,$$

where $n'_i \in \mathbb{Q}$ is such that $D'_i \sim_{\mathbb{Q}} -n'_i K_X$. Since D'_1, \dots, D'_k are prime divisors, we can apply [Okada 2018, Lemma 6.6] and conclude that $-\varphi^* K_X - e' E$ is nef. Then so is $-\varphi^* K_X - \lambda E$ for any $0 \leq \lambda \leq e'$ since $-\varphi^* K_X$ is nef, and the proof is completed. \square

We have another method of exclusion which can sometimes be effective when Lemma 2.4 is not applicable.

Lemma 2.6. *Let $p \in X$ be a terminal quotient singular point and $\varphi: (E \subset Y) \rightarrow (p \in X)$ the Kawamata blowup. Suppose that there exists an effective divisor S on X passing through p and a linear system \mathcal{L} of divisors on X passing through p with the following properties:*

- (1) *$\text{Supp}(S) \cap \text{Bs } \mathcal{L}$ does not contain a curve passing through p .*
- (2) *For a general member $L \in \mathcal{L}$, we have*

$$(-K_Y \cdot \tilde{S} \cdot \tilde{L}) \leq 0,$$

where \tilde{S}, \tilde{L} are the proper transforms of S, L on Y , respectively.

Then p is not a maximal center.

Proof. According to [Okada 2018, Lemma 2.20], it suffices to show that there exist infinitely many distinct curves on Y which intersect $-K_Y$ nonpositively and E positively. For a curve or a divisor Δ on X , we denote by $\tilde{\Delta}$ its proper transform on Y .

We write $L \sim -nK_X$. Write $S = \sum m_i S_i + T$, where $m_i > 0$, S_i is a prime divisor and T is an effective divisor which does not pass through p . We have

$$(-K_Y \cdot \tilde{T} \cdot \tilde{L}) = nl(-K_X)^3 \geq 0,$$

where $T \sim -lK_X$ for some $l \geq 0$. Since

$$0 \geq (-K_Y \cdot \tilde{S} \cdot \tilde{L}) = \sum m_i (-K_Y \cdot \tilde{S}_i \cdot \tilde{L}) + (-K_Y \cdot \tilde{T} \cdot \tilde{L}),$$

there is a component S_i for which $(-K_Y \cdot \tilde{S}_i \cdot \tilde{L}) \leq 0$. Since $p \in S_i \cap \text{Bs } \mathcal{L} \subset \text{Supp}(S) \cap \text{Bs } \mathcal{L}$, we may assume that S is a prime divisor by replacing S by S_i .

Write $\mathcal{L} = \{L_\lambda \mid \lambda \in \mathbb{P}^l\}$. For $\lambda \in \mathbb{P}^l$, we write $S \cdot L_\lambda = \sum_i c_i C_{\lambda,i}$, where $c_i \geq 0$ and $C_{\lambda,i}$ is an irreducible and reduced curve on X . Then,

$$\tilde{S} \cdot \tilde{L}_\lambda = \sum_i c_i \tilde{C}_{\lambda,i} + \Xi,$$

where Ξ is an effective 1-cycle supported on E . Since any component of Ξ is contracted by φ and $-K_Y$ is φ -ample, we have $(-K_Y \cdot \Xi) \geq 0$. Thus, for a general $\lambda \in \mathbb{P}^l$, we have

$$0 \geq (-K_Y \cdot \tilde{S} \cdot \tilde{L}_\lambda) \geq \sum_i c_i (-K_Y \cdot \tilde{C}_{\lambda,i}).$$

It follows that $(-K_Y \cdot \tilde{C}_{\lambda,i}) \leq 0$ for some i . We choose such a $\tilde{C}_{\lambda,i}$ and denote it by \tilde{C}_λ° . By assumption (1) the set

$$\{\tilde{C}_\lambda^\circ \mid \lambda \in \mathbb{P}^l \text{ is general}\}$$

consists of infinitely many distinct curves. We have $(-K_Y \cdot \tilde{C}_\lambda^\circ) \leq 0$ by the construction. We see that $(E \cdot \tilde{C}_\lambda^\circ) > 0$ since \tilde{C}_λ° is the proper transform of a curve passing through p . Therefore p is not a maximal center by [Okada 2018, Lemma 2.20]. \square

Fano varieties in a weighted projective space. Let X be a prime Fano 3-fold. As in the introduction, we choose minimal generators of the anticanonical ring $R(X, -K_X)$ and let $X \subset \mathbb{P} := \mathbb{P}(a_0, \dots, a_n)$ be the corresponding embedding. We say that $X \subset \mathbb{P}$ is *anticanonically embedded*. We denote by x_0, \dots, x_n the homogeneous coordinates of \mathbb{P} with $\deg x_i = a_i$. Let

$$F_1 = F_2 = \dots = F_N = 0$$

be defining equations of X inside \mathbb{P} , where $F_i \in \mathbb{C}[x_0, \dots, x_n]$ is a homogeneous polynomial of degree a_i with respect to the grading $\deg x_i = a_i$. We assume that \mathbb{P} is *well-formed*, that is,

$$\gcd\{a_i \mid 0 \leq i \leq n, i \neq j\} = 1$$

for $j = 0, 1, \dots, n$. Note that X is not contained in a linear cone (i.e., a smaller weighted projective space in \mathbb{P}) by minimality of generators of $R(X, -K_X)$.

Definition 2.7. We say that X is *well-formed* if $\text{codim}_X(X \cap \text{Sing}(\mathbb{P})) \geq 2$. We say that X is *quasismooth* if the affine cone

$$(F_1 = F_2 = \dots = F_N = 0) \subset \mathbb{A}^{n+1} = \text{Spec } \mathbb{C}[x_0, \dots, x_n]$$

is smooth outside the origin.

Remark 2.8. The description of $\text{Sing}(\mathbb{P})$ is given in [Remark 2.12](#) below. Under the assumption that $X \subset \mathbb{P}$ is an anticanonically embedded quasismooth prime Fano 3-fold, we believe that well-formedness is a very mild condition (or perhaps it is automatically satisfied). For example, a quasismooth weighted complete intersection $X \subset \mathbb{P}$ which is not contained in a linear cone is well-formed (see [\[Iano-Fletcher 2000, Theorem 6.17\]](#)).

In the following we assume that $X \subset \mathbb{P}$ is well-formed and quasismooth. For $0 \leq i \leq n$, we define $\mathbf{p}_{x_i} = (0 : \dots : 1 : \dots : 0) \in \mathbb{P}$, where the unique 1 is in the $(i+1)$ -th position, and we define $D_i = (x_i = 0) \cap X$ which is a Weil divisor such that $D_i \sim -a_i K_X$.

Lemma 2.9. *If $(-K_X)^3 \leq 1$, then no curve on X is a maximal center.*

Proof. The same proof of [\[Ahmadinezhad and Okada 2018, Lemma 2.1\]](#) applies in this setting without any change. \square

Lemma 2.10. *Assume that $a_0 \leq a_1 \leq \dots \leq a_n$. If $a_{n-1}a_n(-K_X)^3 \leq 4$, then no nonsingular point of X is a maximal center.*

Proof. The proof is almost identical to that of [\[Ahmadinezhad and Okada 2018, Lemma 2.6\]](#). \square

Definition 2.11. Let $\mathcal{C} \subset \{x_0, \dots, x_n\}$ be a nonempty set of homogeneous coordinates. We define

$$\Pi(\mathcal{C}) := \bigcap_{z \in \mathcal{C}} (z = 0) \subset \mathbb{P}, \quad \Pi_X(\mathcal{C}) := \Pi(\mathcal{C}) \cap X \subset X.$$

Sometimes we denote

$$\Pi(\mathcal{C}) = \Pi(x_{i_1}, \dots, x_{i_m}), \quad \Pi_X(\mathcal{C}) = \Pi_X(x_{i_1}, \dots, x_{i_m}),$$

when $\mathcal{C} = \{x_{i_1}, \dots, x_{i_m}\}$. We also define

$$\text{gcd}(\mathcal{C}) := \text{gcd}\{\deg(x_i) \mid x_i \in \mathcal{C}\}.$$

Remark 2.12. We explain some consequences of well-formedness and quasismoothness, which will be frequently used. We keep the above notation and assumptions:

(1) For the singular locus, we have $\text{Sing}(X) = X \cap \text{Sing}(\mathbb{P})$. For the proof see [\[Dimca 1986, Proposition 8\]](#).

Note that $X \subset \mathbb{P}$ is additionally assumed to be a (weighted) complete intersection in [\[loc. cit.\]](#) but the same proof applies.

(2) The singular locus of \mathbb{P} can be described as follows:

$$\text{Sing}(\mathbb{P}) = \bigcup_{\substack{\mathcal{C} \subsetneq \{x_0, \dots, x_n\} \\ \gcd(\{x_0, \dots, x_n\} \setminus \mathcal{C}) > 1}} \Pi(\mathcal{C}).$$

By (1), we have

$$\text{Sing}(X) = \bigcup_{\substack{\mathcal{C} \subsetneq \{x_0, \dots, x_n\} \\ \gcd(\{x_0, \dots, x_n\} \setminus \mathcal{C}) > 1}} \Pi_X(\mathcal{C}).$$

(3) For $\mathcal{C} \subset \{x_0, \dots, x_n\}$, we define

$$\Pi_X^*(\mathcal{C}) := \Pi_X(\mathcal{C}) \cap \left(\bigcap_{z \in \{x_0, \dots, x_n\} \setminus \mathcal{C}} (z \neq 0) \right).$$

Let $\mathcal{C} \subset \{x_0, \dots, x_n\}$ be a subset such that $r := \gcd(\{x_0, \dots, x_n\} \setminus \mathcal{C}) > 1$. Then any point $p \in X$ which is contained in $\Pi_X^*(\mathcal{C})$ is a cyclic quotient singular point of index r and hence any point $p \in X$ which is contained in $\Pi_X(\mathcal{C})$ is a cyclic quotient singular point of index divisible by r .

Lemma 2.13. *Let $p \in X$ be a singular point of type $\frac{1}{2}(1, 1, 1)$ and let*

$$b := \max\{a_i \mid 0 \leq i \leq n, a_i \text{ is odd}\}.$$

If $2b(-K_X)^3 \leq 1$, then p is not a maximal center.

Proof. Let $\mathcal{C} = \{x_{i_1}, \dots, x_{i_m}\}$ be the set of homogeneous coordinates of odd degree. The set $\Pi_X(\mathcal{C}) = D_{i_1} \cap \dots \cap D_{i_m}$ consists of singular points by Remark 2.12. In particular $\Pi_X(\mathcal{C})$ is a finite set of points since X has only terminal singular points. Let $\varphi: (E \subset Y) \rightarrow (p \in X)$ be the Kawamata blowup. Then $\text{ord}_E(D_{i_j}) \geq \frac{1}{2}$ since $2D_{i_j}$ is a Cartier divisor passing through p and thus $-b\varphi^*K_X - \frac{1}{2}E$ is nef by Lemma 2.5. We have

$$(-b\varphi^*K_X - \frac{1}{2}E) \cdot (-K_Y)^2 = b(-K_X)^3 - \frac{1}{2} \leq 0.$$

This shows that $(-K_Y)^2 \notin \text{Int}(\overline{\text{NE}}(Y))$ and p is not a maximal center by Lemma 2.4. \square

Definition 2.14. Let $p = p_{x_k} \in X$ be a terminal quotient singular point of type $\frac{1}{a_k}(1, c, a_k - c)$ for some c with $1 \leq c \leq \frac{1}{2}a_k$. For a nonempty subset $\mathcal{C} = \{x_{i_1}, \dots, x_{i_m}\} \subset \{x_0, \dots, x_n\}$, we define

$$\text{ivr}_p(\mathcal{C}) := \min_{1 \leq j \leq m} \left\{ \frac{\bar{a}_{i_j}}{a_{i_j} a_k} \right\},$$

where \bar{a}_{i_j} is the integer such that $1 \leq \bar{a}_{i_j} \leq a_k$ and \bar{a}_{i_j} is congruent to a_{i_j} modulo a_k , and call it the *initial vanishing ratio* of \mathcal{C} at p .

Definition 2.15. For a terminal quotient singularity p of type $\frac{1}{r}(1, a, r - a)$, we define

$$\text{wp}(p) := a(r - a),$$

and call it the *weight product* of p .

Lemma 2.16. *Let $p = p_{x_k} \in X$ be a terminal quotient singular point. Suppose that there exists a subset $\mathcal{C} \subset \{x_0, \dots, x_n\}$ satisfying the following properties:*

- (1) $p \in \Pi_X(\mathcal{C})$, or equivalently $x_k \notin \mathcal{C}$.
- (2) $\Pi_X(\mathcal{C} \cup \{x_k\}) = \emptyset$.
- (3) $\text{ivr}_p(\mathcal{C}) \geq \text{wp}(p)(-K_X)^3$.

Then p is not a maximal center.

Proof. We write $\mathcal{C} = \{x_{i_1}, \dots, x_{i_m}\}$. We claim that $\Pi_X(\mathcal{C}) = D_{i_1} \cap \dots \cap D_{i_m}$ is a finite set of points. Indeed, if $\Pi_X(\mathcal{C})$ contains a curve, then $\Pi_X(\mathcal{C} \cup \{x_k\}) = \Pi_X(\mathcal{C}) \cap D_k \neq \emptyset$ since D_k is an ample divisor on X . This is impossible by the assumption (2). Note that we have $\text{ord}_E(D_{i_j}) \geq \bar{a}_{i_j}/a_k$ (see [Ahmadinezhad and Okada 2018, Section 3]) so that

$$e := \min \left\{ \frac{\text{ord}_E(D_{i_j})}{a_{i_j}} \mid 1 \leq j \leq m \right\} \geq \text{ivr}_p(\mathcal{C}).$$

By Lemma 2.5, $-\varphi^*K_X - \text{ivr}_p(\mathcal{C})E$ is nef and we have

$$(-\varphi^*K_X - \text{ivr}_p(\mathcal{C})E)(-K_Y)^2 = (-K_X)^3 - \frac{\text{ivr}_p(\mathcal{C})}{\text{wp}(p)} \leq 0$$

by the assumption (3). Therefore $(-K_Y)^2 \notin \text{Int} \overline{\text{NE}}(Y)$ and p is not a maximal center. \square

Let $p \in X$ be a singular point such that it can be transformed to p_{x_k} by a change of coordinates. For simplicity of the description we assume $p = p_{x_0}$ and we set $r = a_0 > 1$. Let $\varphi: (E \subset Y) \rightarrow (p \in X)$ be the Kawamata blowup. We explain a systematic way to estimate $\text{ord}_E(D_i)$ for coordinates x_i and also an explicit description of φ . It is a consequence of the quasimoothness of X that after renumbering the defining equation we can write

$$F_l = \alpha_l x_0^{m_l} x_{i_l} + (\text{other terms}) \quad \text{for } 1 \leq l \leq n-3,$$

where $\alpha_l \in \mathbb{C} \setminus \{0\}$, m_l is a positive integer, $x_0, x_{i_1}, \dots, x_{i_{n-3}}$ are mutually distinct so that by denoting the other 3 coordinates as $x_{j_1}, x_{j_2}, x_{j_3}$ we have

$$\{x_0, x_{i_1}, \dots, x_{i_{n-3}}, x_{j_1}, x_{j_2}, x_{j_3}\} = \{x_0, \dots, x_n\},$$

and we can choose $x_{j_1}, x_{j_2}, x_{j_3}$ as local orbi-coordinates of X at p . In this case the singular point p is of type

$$\frac{1}{r}(a_{j_1}, a_{j_2}, a_{j_3}).$$

Definition 2.17 [Ahmadinezhad and Okada 2018, Definitions 3.6 and 3.7]. For an integer a , we denote by \bar{a} the positive integer such that $\bar{a} \equiv a \pmod{r}$ and $0 < \bar{a} \leq r$. We say that

$$\mathbf{w}(x_1, \dots, x_n) = \frac{1}{r}(b_1, \dots, b_n)$$

is an *admissible weight* at p if $b_i \equiv a_i \pmod{r}$ for any i .

For an admissible weight \mathbf{w} at \mathbf{p} and a polynomial $f = f(x_0, \dots, x_n)$, we denote by $f^{\mathbf{w}}$ the lowest weight part of f , where we assume that $\mathbf{w}(x_0) = 0$.

We say that an admissible weight \mathbf{w} at \mathbf{p} satisfies the *KBL condition* if $x_0^{m_l} x_{i_l} \in F_l^{\mathbf{w}}$ for $1 \leq l \leq n-3$ and

$$(b_{j_1}, b_{j_2}, b_{j_3}) = (\bar{a}_{j_1}, \bar{a}_{j_2}, \bar{a}_{j_3}).$$

Let $\mathbf{w}(x_1, \dots, x_n) = \frac{1}{r}(b_1, \dots, b_n)$ be an admissible weight at \mathbf{p} satisfying the KBL condition. We denote by $\Phi_{\mathbf{w}}: Q_{\mathbf{w}} \rightarrow \mathbb{P}$ the weighted blowup at \mathbf{p} with weight \mathbf{w} , and by $Y_{\mathbf{w}}$ the proper transform of X via $\Phi_{\mathbf{w}}$. Then the induced morphism $\varphi_{\mathbf{w}} = \Phi_{\mathbf{w}}|_{Y_{\mathbf{w}}}: Y_{\mathbf{w}} \rightarrow X$ coincides with the Kawamata blowup at \mathbf{p} . From this we see that the exceptional divisor E is isomorphic to

$$E_{\mathbf{w}} := (g_1 = \dots = g_{n-3} = 0) \subset \mathbb{P}(b_1, \dots, b_n),$$

where $g_l = F_l^{\mathbf{w}}(1, x_1, \dots, x_n)$. Note that the KBL condition implies that the equations defining $E_{\mathbf{w}}$ cut out a copy of $\mathbb{P}(b_{j_1}, b_{j_2}, b_{j_3})$. We refer readers to [Ahmadinezhad and Okada 2018, Section 3] for details.

Lemma 2.18 [Ahmadinezhad and Okada 2018, Lemma 3.9]. *Let $\mathbf{w}(x_1, \dots, x_n) = \frac{1}{r}(b_1, \dots, b_n)$ be an admissible weight at $\mathbf{p} \in X$ satisfying the KBL condition. Then the following assertions hold:*

- (1) *We have $\text{ord}_E(D_i) \geq b_i/r$ for any i .*
- (2) *If $F_l^{\mathbf{w}} = \alpha_l x_0^{m_l} x_{i_l}$, where $\alpha_l \in \mathbb{C} \setminus \{0\}$, for some $1 \leq l \leq n-3$, then the weight*

$$\mathbf{w}'(x_1, \dots, x_n) = \frac{1}{r}(b'_1, \dots, b'_n),$$

where $b'_j = b_j$ for $j \neq l$ and $b'_l = b_l + r$, satisfies the KBL condition. In particular, $\text{ord}_E(D_l) \geq (b_l + r)/r$.

We will use the following notation for a polynomial $f = f(x_0, \dots, x_n)$:

- For a monomial $p = x_0^{e_0} \cdots x_n^{e_n}$, we write $p \in f$ if p appears in f with nonzero (constant) coefficient.
- For a subset $\mathcal{C} \subset \{x_0, \dots, x_n\}$ and $\Pi = \Pi(\mathcal{C})$, we denote by $f|_{\Pi}$ the polynomial in variables $\{x_0, \dots, x_n\} \setminus \mathcal{C}$ obtained by putting $x_i = 0$ for $x_i \in \mathcal{C}$ in f .

3. Proof of birational superrigidity by numerical data

We prove birational superrigidity of codimension 4 quasismooth prime Fano 3-folds with no projections by utilizing only numerical data. The numerical data for each Fano 3-fold will be described in the beginning of the corresponding subsection. The Fano 3-folds are embedded in a weighted projective 7-space, denoted by \mathbb{P} , and we use the symbol p, q, r, s, t, u, v, w for the homogeneous coordinates of \mathbb{P} . We use the following terminologies: Let $X \subset \mathbb{P}$ be a codimension 4 quasismooth prime Fano 3-fold. For a homogeneous coordinate $z \in \{p, q, \dots, w\}$,

- $D_z := (z = 0) \cap X$ is the Weil divisor on X cut out by z , and
- $\mathbf{p}_z \in \mathbb{P}$ is the point at which only the coordinate z does not vanish.

Note that [Theorem 1.2](#) will follow from [Theorems 3.1, 3.2](#) and [3.4](#).

Fano 3-folds of numerical type #25. Let X be a well-formed quasimooth prime Fano 3-fold of numerical type #25, whose data consist of the following:

- $X \subset \mathbb{P}(2_p, 5_q, 6_r, 7_s, 8_t, 9_u, 10_v, 11_w)$.
- $(-K_X)^3 = \frac{1}{70}$.
- $\deg(F_1, F_2, F_3, F_4, F_5, F_6, F_7, F_8, F_9) = (16, 17, 18, 18, 19, 20, 20, 21, 22)$.
- $\mathcal{B}_X = \left\{ 7 \times \frac{1}{2}(1, 1, 1), \frac{1}{5}(1, 1, 4), \frac{1}{7}(1, 2, 5) \right\}$.

Here the subscripts p, q, \dots, w of the weights means that they are the homogeneous coordinates of the indicated degrees, and \mathcal{B}_X indicates the numbers and the types of singular points of X .

Theorem 3.1. *Let X be a well-formed quasimooth prime codimension 4 Fano 3-fold of numerical type #25. Then X is birationally superrigid.*

Proof. By [Lemmas 2.9](#) and [2.10](#), no curve and no nonsingular point on X is a maximal center. By [Lemma 2.13](#), singular points of type $\frac{1}{2}(1, 1, 1)$ are not maximal centers.

Let p be the singular point of type $\frac{1}{5}(1, 1, 4)$. Replacing the coordinate v if necessary, we may assume $p = p_q$. We set $\mathcal{C} = \{p, s, u, v\}$. We have

$$\text{ivr}_p(\mathcal{C}) = \frac{2}{35} = \text{wp}(p)(-K_X)^3.$$

By [Lemma 2.16](#), it remains to show that $\Pi_X := \Pi_X(\mathcal{C} \cup \{q\}) = \emptyset$. We set $\Pi := \Pi(\mathcal{C} \cup \{q\}) \subset \mathbb{P}$ so that $\Pi_X = \Pi \cap X$. Since $p_t \notin X$, one of the defining polynomials contain a power of t . By looking at the degrees of F_1, \dots, F_9 , we have $t^2 \in F_1$. Similarly, we have $r^3 \in F_3$ and $w^2 \in F_9$ after possibly interchanging F_3 and F_4 . The monomial t^2 (resp. r^3) is the only monomial of degree 16 (resp. 18) consisting of the variables r, t, w . The monomials w^2 and t^2r are the only monomials of degree 22 consisting of the variables r, t, w . Hence, rescaling r, t, w , we can write

$$F_1|_{\Pi} = t^2, \quad F_3|_{\Pi} = r^3, \quad F_9|_{\Pi} = w^2 + \alpha t^2 r,$$

for some $\alpha \in \mathbb{C}$. The set Π_X is contained in the common zero locus of the above 3 polynomials inside Π . The equations have only trivial solution and this shows that $\Pi_X = \emptyset$. Thus p is not a maximal center.

Let $p = p_s$ be the singular point of type $\frac{1}{7}(1, 2, 5)$ and set $\mathcal{C} = \{p, q, r\}$. We have

$$\text{ivr}_p(\mathcal{C}) = \frac{1}{7} = \text{wp}(p)(-K_X)^3.$$

By [Lemma 2.16](#), it remains to show that $\Pi_X := \Pi_X(\mathcal{C} \cup \{s\}) = \emptyset$. We set $\Pi := \Pi(\mathcal{C} \cup \{s\}) \subset \mathbb{P}$ so that $\Pi_X = \Pi \cap X$. Since $p_t, p_u, p_v, p_w \notin X$, we may assume $t^2 \in F_1$, $u^2 \in F_3$, $v^2 \in F_6$ and $w^2 \in F_9$ after possibly interchanging defining polynomials of the same degree. Then we can write

$$F_1|_{\Pi} = t^2, \quad F_3|_{\Pi} = u^2 + \alpha v t, \quad F_6|_{\Pi} = v^2 + \beta w u, \quad F_9|_{\Pi} = w^2 + \gamma t^2 r,$$

for some $\alpha, \beta, \gamma \in \mathbb{C}$. This shows that $\Pi_X = \emptyset$ and thus p is not a maximal center. This completes the proof. \square

Fano 3-folds of numerical type #166. Let X be a well-formed quasismooth prime Fano 3-fold of numerical type #166, whose data consist of the following:

- $X \subset \mathbb{P}(2_p, 2_q, 3_r, 3_s, 4_t, 4_u, 5_v, 5_w)$.
- $(-K_X)^3 = \frac{1}{6}$.
- $\deg(F_1, F_2, F_3, F_4, F_5, F_6, F_7, F_8, F_9) = (8, 8, 8, 9, 9, 9, 10, 10, 10)$.
- $\mathcal{B}_X = \left\{ 11 \times \frac{1}{2}(1, 1, 1), \frac{1}{3}(1, 1, 2) \right\}$.

Theorem 3.2. *Let X be a well-formed quasismooth prime codimension 4 Fano 3-fold of numerical type #166. Then X is birationally superrigid.*

Proof. By Lemma 2.9 no curve is a maximal center.

Let $p = (\alpha_p : \alpha_q : \dots : \alpha_w) \in X$ be a nonsingular point where $\alpha_p, \alpha_q, \dots, \alpha_w \in \mathbb{C}$. By Remark 2.12, we have $\Pi_X(p, q, r, s, t, u) = \emptyset$ since X does not have a singular point of index 5. Then we can take a coordinate $x \in \{p, q, r, s, t, u\}$ such that $p \in (x \neq 0)$, i.e., $\alpha_x \neq 0$. The common zero locus of the homogeneous polynomials in the set

$$\{\alpha_y^{\deg x} x^{\deg y} - \alpha_x^{\deg y} y^{\deg x} \mid y \in \{p, q, r, s, t, u, v, w\} \setminus \{x\}\}$$

is a finite set of points including p . Any polynomial in the above set is of degree at most 20 since $x \notin \{v, w\}$. It follows that the base locus of $|\mathcal{I}_p^m(-mlK_X)|$ is a finite set of points, that is, $-lK_X$ isolates p (see [Corti et al. 2000, Definition 5.2.4 and Lemma 5.6.4]), where $l \leq 20$. By the argument in [loc. cit., Section 5.3], we conclude that p is not a maximal center since $20 < 4/(-K_X)^3$.

Let p be a singular point of type $\frac{1}{2}(1, 1, 1)$. After a change of coordinates, we may assume $p = p_p$. We set $\mathcal{C} = \{q, r, s, t, u\}$. We have

$$\text{ivr}_p(\mathcal{C}) = \frac{1}{6} = \text{wp}(p)(-K_X)^3.$$

Moreover we have $\Pi_X(\mathcal{C} \cup \{p\}) = \emptyset$ because X is quasismooth and it does not have a singular point of index 5. Thus, by Lemma 2.16, p is not a maximal center.

Let p be the singular point of type $\frac{1}{3}(1, 1, 2)$. After a change of coordinates, we may assume $p = p_s$. We set $\mathcal{C} = \{p, q, r\}$. Then we have

$$\text{ivr}_p(\mathcal{C}) = \frac{1}{3} = \text{wp}(p)(-K_X)^3.$$

By Lemma 2.16, it remains to show that $\Pi_X := \Pi_X(\mathcal{C} \cup \{s\}) = \emptyset$. We set $\Pi := \Pi(\mathcal{C} \cup \{s\}) \subset \mathbb{P}$ so that $\Pi_X = \Pi \cap X$. We have

$$\Pi_X = (F_1|_{\Pi} = F_2|_{\Pi} = F_3|_{\Pi} = F_7|_{\Pi} = F_8|_{\Pi} = F_9|_{\Pi} = 0) \cap \Pi.$$

We see that $F_1|_{\Pi}, F_2|_{\Pi}, F_3|_{\Pi}$ consist only of monomials in variables t, u and that $F_7|_{\Pi}, F_8|_{\Pi}, F_9|_{\Pi}$ consist only of monomials in variables v, w . It follows that

$$\Pi_X(p, q, r, s, v, w) = \Pi_X \cap \Pi(v, w) = (F_1|_{\Pi} = F_2|_{\Pi} = F_3|_{\Pi} = 0) \cap \Pi(p, q, r, s, v, w).$$

We have $\Pi_X(p, q, r, s, v, w) = \emptyset$ since X is well-formed, quasismooth and X has no singular point of index 4 (see [Remark 2.12](#)). Hence the equations

$$F_1|_{\Pi} = F_2|_{\Pi} = F_3|_{\Pi} = 0$$

imply $t = u = 0$. Similarly, by considering $\Pi_X(p, q, r, s, t, u) = \emptyset$, we see that the equations

$$F_7|_{\Pi} = F_8|_{\Pi} = F_9|_{\Pi} = 0$$

imply $v = w = 0$. It follows that $\Pi_X = \emptyset$ and p is not a maximal center. Therefore X is birationally superrigid. \square

Fano 3-folds of numerical type #282. Let X be a well-formed quasismooth prime Fano 3-fold of numerical type #282, whose data consist of the following:

- $X \subset \mathbb{P}(1_p, 6_q, 6_r, 7_s, 8_t, 9_u, 10_v, 11_w)$.
- $(-K_X)^3 = \frac{1}{42}$.
- $\deg(F_1, F_2, F_3, F_4, F_5, F_6, F_7, F_8, F_9) = (16, 17, 18, 18, 19, 20, 20, 21, 22)$.
- $\mathcal{B} = \left\{ 2 \times \frac{1}{2}(1, 1, 1), 2 \times \frac{1}{3}(1, 1, 2), \frac{1}{6}(1, 1, 5), \frac{1}{7}(1, 1, 6) \right\}$.

Proposition 3.3. *Let X be a well-formed quasismooth prime codimension 4 Fano 3-fold of numerical type #282. Then no curve and no point is a maximal center except possibly for the singular point of type $\frac{1}{6}(1, 1, 5)$.*

Proof. By [Lemmas 2.9, 2.10](#) and [2.13](#), it remains to exclude singular points of type $\frac{1}{3}(1, 1, 2)$ and $\frac{1}{7}(1, 1, 6)$ as maximal centers.

Let p be a singular point of type $\frac{1}{3}(1, 1, 2)$ and let $\varphi: (E \subset Y) \rightarrow (\mathsf{p} \in X)$ be the Kawamata blowup. We claim that $\Pi_X(p, s, t, w) = D_p \cap D_s \cap D_t \cap D_w$ is a finite set of points (containing p). Since X does not contain a singular point of index 10, we may assume that $v^2 \in F_6$. Then, by rescaling v , we have

$$F_6(0, q, r, 0, 0, u, v, 0) = v^2$$

and this shows that $\Pi_X(p, s, t, w) = \Pi_X(p, s, t, v, w)$. The latter set consists of singular points $\{2 \times \frac{1}{3}(1, 1, 2), \frac{1}{6}(1, 1, 5)\}$ (see [Remark 2.12](#)) and thus $\Pi_X(p, s, t, w)$ is a finite set of points. We have

$$\text{ord}_E(D_p), \text{ord}_E(D_s) \geq \frac{1}{3}, \quad \text{ord}_E(D_t), \text{ord}_E(D_w) \geq \frac{2}{3}.$$

By [Lemma 2.5](#), $N := -\varphi^*K_X - \frac{1}{21}E$ is a nef divisor on Y and we have $(N \cdot (-K_Y)^2) = 0$. Thus p is not a maximal center by [Lemma 2.4](#).

Let $p = p_s$ be the singular point of type $\frac{1}{7}(1, 1, 6)$ and set $\mathcal{C} = \{p, q, r\}$. We have

$$\text{ivr}_p(\mathcal{C}) = \frac{1}{7} = \text{wp}(p)(-K_X)^3.$$

We set $\Pi := \Pi(\mathcal{C} \cup \{s\})$. We see that $p_t, p_u, p_v, p_w \notin X$ since X does not have a singular point of index 8, 9, 10, 11. It follows that $t^2 \in F_1$, $w^2 \in F_9$ and we may assume $u^2 \in F_3$, $v^2 \in F_6$. Then, by rescaling t, u, v, w , we can write

$$F_1|_{\Pi} = t^2, \quad F_3|_{\Pi} = \alpha vt + u^2, \quad F_6|_{\Pi} = \beta wu + v^2, \quad F_9|_{\Pi} = w^2,$$

where $\alpha, \beta \in \mathbb{C}$. This shows that $\Pi_X(\mathcal{C} \cup \{s\}) = \Pi \cap X = \emptyset$. Thus p is not a maximal center by [Lemma 2.16](#) and the proof is completed. \square

Fano 3-folds of numerical type #308. Let X be a well-formed quasismooth prime Fano 3-fold of numerical type #308, whose data consist of the following:

- $X \subset \mathbb{P}(1_p, 5_q, 6_r, 6_s, 7_t, 8_u, 9_v, 10_w)$.
- $(-K_X)^3 = \frac{1}{30}$.
- $\deg(F_1, F_2, F_3, F_4, F_5, F_6, F_7, F_8, F_9) = (14, 15, 16, 16, 17, 18, 18, 19, 20)$.
- $\mathcal{B}_X = \left\{ \frac{1}{2}(1, 1, 1), \frac{1}{3}(1, 1, 2), \frac{1}{5}(1, 2, 3), 2 \times \frac{1}{6}(1, 1, 5) \right\}$.

Theorem 3.4. *Let X be a well-formed quasismooth prime Fano 3-fold of numerical type #308. Then X is birationally superrigid.*

Proof. By [Lemmas 2.9, 2.10](#) and [2.13](#) no curve and no nonsingular point is a maximal center and the singular point of type $\frac{1}{2}(1, 1, 1)$ is not a maximal center.

Let p be the singular point of type $\frac{1}{3}(1, 1, 2)$, which is necessarily contained in $(p = q = t = u = w = 0)$, and let $\varphi: (E \subset Y) \rightarrow (p \in X)$ be the Kawamata blowup. We set $\mathcal{C} = \{p, q, u\}$ and $\Pi = \Pi(\mathcal{C}) \subset \mathbb{P}$. Since $p_t, p_w \notin X$, we have $t^2 \in F_1, w^2 \in F_9$ and we can write

$$F_1|_{\Pi} = t^2, \quad F_9|_{\Pi} = w^2 + \alpha t^2 r + \beta t^2 s,$$

where $\alpha, \beta \in \mathbb{C}$. Thus,

$$\Pi_X(\mathcal{C}) = \Pi \cap X = \Pi_X(p, q, t, u, w),$$

and this consists of two $\frac{1}{6}(1, 1, 5)$ points and p . In particular $D_p \cap D_q \cap D_u = \Pi_X(\mathcal{C})$ is a finite set of points. We have

$$\text{ord}_E(D_p) \geq \frac{1}{3}, \quad \text{ord}_E(D_q) \geq \frac{2}{3}, \quad \text{ord}_E(D_u) \geq \frac{2}{3},$$

hence $N := -8\varphi^*K_X - \frac{2}{3}E$ is a nef divisor on Y by [Lemma 2.5](#). We have

$$(N \cdot (-K_Y)^2) = 8(-K_X)^3 - \frac{2}{3^3} \cdot \frac{3^2}{2} = -\frac{1}{15} < 0.$$

By [Lemma 2.4](#), p is not a maximal center.

Let p be a singular point of type $\frac{1}{6}(1, 1, 5)$. After replacing r and s , we may assume $p = p_s$. We set $\mathcal{C} = \{p, q, r\}$. We have

$$\text{ivr}_p(\mathcal{C}) = \frac{1}{6} = \text{wp}(p)(-K_X)^3.$$

Since $p_t, p_u, p_v, p_w \notin X$, we may assume $t^2 \in F_1, u^2 \in F_3, v^2 \in F_6, w^2 \in F_9$ after possibly interchanging F_3 with F_4 and F_6 with F_7 . Then, by setting $\Pi = \Pi(\mathcal{C} \cup \{s\})$ and by rescaling t, u, v, w , we have

$$F_1|_{\Pi} = t^2, \quad F_3|_{\Pi} = u^2 + \alpha vt, \quad F_6|_{\Pi} = v^2 + \beta wu, \quad F_9|_{\Pi} = w^2,$$

where $\alpha, \beta \in \mathbb{C}$. This shows that $\Pi_X(\mathcal{C} \cup \{s\}) = \emptyset$ and p is not a maximal center by [Lemma 2.16](#).

Finally, let p be a singular point of type $\frac{1}{5}(1, 2, 3)$ and let $\varphi: (E \subset Y) \rightarrow (p \in X)$ be the Kawamata blowup. Replacing the coordinate w , we may assume $p = p_q$. We write

$$F_3 = \lambda q^3 p + \mu q^2 r + \nu q^2 s + qf_{11} + f_{16}, \quad F_4 = \lambda' q^3 p + \mu' q^2 r + \nu' q^2 s + qg_{11} + g_{16},$$

where $\lambda, \mu, \nu, \lambda', \mu', \nu' \in \mathbb{C}$ and $f_{11}, f_{16}, g_{11}, g_{16} \in \mathbb{C}[p, r, s, t, u, v, w]$ are homogeneous polynomials of the indicated degrees. Since X is quasismooth at $p = p_q$ and is of type $\frac{1}{5}(1, 2, 3)$, the matrix

$$\begin{pmatrix} \frac{\partial F_3}{\partial p}(p) & \frac{\partial F_3}{\partial r}(p) & \frac{\partial F_3}{\partial s}(p) \\ \frac{\partial F_4}{\partial p}(p) & \frac{\partial F_4}{\partial r}(p) & \frac{\partial F_4}{\partial s}(p) \end{pmatrix} = \begin{pmatrix} \lambda & \mu & \nu \\ \lambda' & \mu' & \nu' \end{pmatrix}$$

is of rank 2.

We first consider the case where $\mu\nu' - \nu\mu' \neq 0$. By replacing r and s , we may assume that $\mu = \nu' = 1$ and $\lambda = \nu = \lambda' = \mu' = 0$. We consider the weight at p

$$\mathbf{w}(p, r, s, t, u, v, w) = \frac{1}{5}(1, 1, 1, 2, 3, 4, 5),$$

which is an admissible weight satisfying the KBL condition. Then $F_3^{\mathbf{w}} = q^2 r$ and $F_4^{\mathbf{w}} = q^2 s$, and this implies $\text{ord}_E(D_r), \text{ord}_E(D_s) \geq \frac{6}{5}$ by [Lemma 2.18](#). Note that $\text{ord}_E(D_p) \geq \mathbf{w}(p) = \frac{1}{5}$ by [Lemma 2.18](#). We set $\mathcal{C} = \{p, r, s\}$ and $\Pi = \Pi(\mathcal{C} \cup \{q\})$. By rescaling t, u, v, w , we can write

$$F_1|_{\Pi} = t^2, \quad F_3|_{\Pi} = u^2 + \alpha vt, \quad F_6|_{\Pi} = v^2 + \beta wu, \quad F_9|_{\Pi} = w^2,$$

where $\alpha, \beta \in \mathbb{C}$. Hence $\Pi_X(\mathcal{C} \cup \{q\}) = \emptyset$. Since D_q is an ample divisor, this implies that $D_p \cap D_r \cap D_s$ is a finite set of points (including p). By [Lemma 2.5](#), $N := -\varphi^*K_X - \frac{1}{5}E$ is a nef divisor on Y . We have

$$(N \cdot (-K_Y)^2) = (-K_X)^3 - \frac{1}{5^3}(E^3) = \frac{1}{30} - \frac{1}{30} = 0,$$

and this shows that p is not a maximal center.

Next we consider the case where $\mu\nu' - \nu\mu' = 0$. By replacing r and s suitably and by possibly interchanging F_3 and F_4 , we may assume that

$$F_3 = q^3 p + qf_{11} + f_{16}, \quad F_4 = q^2 s + qg_{11} + g_{16}.$$

Let \mathbf{w} be the same weight at p as in the previous case, which is again an admissible weight satisfying the KBL condition. It is straightforward to see that $F_3^{\mathbf{w}} = q^3 p$, so that $\text{ord}_E(D_p) \geq \frac{6}{5}$. Let $\mathcal{L} \subset |-6K_X|$ be

the pencil generated by the sections r and s . Since $\text{ord}_E(D_r) = \frac{1}{5}$ and $\text{ord}_E(D_s) \geq \frac{1}{5}$, a general member $L \in \mathcal{L}$ vanishes along E to order $\frac{1}{5}$ so that $\tilde{L} \sim -6\varphi^*K_X - \frac{1}{5}E$. We have

$$(-K_Y \cdot \tilde{D}_p \cdot \tilde{L}) = 6(-K_X)^3 - \frac{\text{ord}_E(D_p)}{5^2} \cdot (E^3) = \frac{1}{5} - \frac{\text{ord}_E(D_p)}{6} \leq 0$$

since $\text{ord}_E(D_p) \geq \frac{6}{5}$. By [Lemma 2.6](#), \mathfrak{p} is not a maximal center and the proof is complete. \square

4. Birational superrigidity of cluster Fano 3-folds

In this section we prove [Theorem 1.1](#) which follows from Theorems [4.2](#) and [4.4](#) below.

#282 by $\mathbb{G}_2^{(4)}$ format. Let X be a quasismooth codimension 4 prime Fano 3-fold of numerical type #282 constructed in $\mathbb{G}_2^{(4)}$ format. Then, by [\[Coughlan and Ducat 2018, Example 5.5\]](#), X is defined by the following polynomials in $\mathbb{P} := \mathbb{P}(1_p, 6_q, 6_r, 7_s, 8_t, 9_u, 10_v, 11_w)$:

$$\begin{aligned} F_1 &= t^2 - qv + sQ_9, \\ F_2 &= ut - qw + s(v + p^2t), \\ F_3 &= t(v + p^2t) - uQ_9 + q(qr + p^4t), \\ F_4 &= (w + p^4s)s - P_{12}q + u(u + p^2s), \\ F_5 &= tw - uv + s(qr + p^4t), \\ F_6 &= (qr + p^4t)t - Q_9w + v(v + p^2t), \\ F_7 &= rs^2 - wu + tP_{12}, \\ F_8 &= P_{12}Q_9 - (vw + p^4qw + p^2uv + uqr + str - stp^2), \\ F_9 &= rs(u + p^2s) - vP_{12} + w(w + p^4s). \end{aligned}$$

Here $P_{12}, Q_9 \in \mathbb{C}[p, q, r, s, t, u, v, w]$ are homogeneous polynomials of the indicated degree. Recall that $(-K_X)^3 = \frac{1}{42}$.

Lemma 4.1. *The following assertions hold:*

- (1) $r^2 \in P_{12}$ and $u \in Q_9$.
- (2) $X \subset \mathbb{P}$ is well-formed.

Proof. It is straightforward to check that X is quasismooth at $\mathfrak{p}_r \in X$ if and only if $r^2 \in P_{12}$ and $u \in Q_9$, and this proves (1).

We prove (2). We set

$$\Pi_2 := \Pi_X(p, s, u, w), \quad \Pi_3 := \Pi_X(p, s, t, v, w).$$

It is enough to show that neither Π_2 nor Π_3 contain a surface (note here that $P_{12}|_{\Pi_2} \neq 0$ by (1)). We see that Π_2 is isomorphic to the closed subscheme in $\mathbb{P}(6_q, 6_r, 8_t, 10_v)$ defined by the equations

$$t^2 - qv = tv + q^2r = qP_{12}|_{\Pi_2} = qrt + v^2 = tP_{12}|_{\Pi_2} = vP_{12}|_{\Pi_2} = 0.$$

We leave the readers to check that Π_2 does not contain a surface. We see that Π_3 is isomorphic to the closed subscheme in $\mathbb{P}(6_q, 6_r, 9_u)$ defined by the equations

$$-uQ_9|_{\Pi_3} + q^2r = -qP_{12}|_{\Pi_3} + u^2 = P_{12}|_{\Pi_3}Q_9|_{\Pi_3} - uqr = 0.$$

Hence Π_3 does not contain a surface since it is clearly a proper closed subset of the surface $\mathbb{P}(6, 6, 9)$. Thus $X \subset \mathbb{P}$ is well-formed. \square

Theorem 4.2. *Let X be a codimension 4 Fano 3-fold of numerical type #282 constructed in $G_2^{(4)}$ format. Then X is birationally superrigid.*

Proof. By Lemma 4.1, $X \subset \mathbb{P}$ is well-formed. We can apply Proposition 3.3 and it remains to exclude the singular point $p \in X$ of type $\frac{1}{6}(1, 1, 5)$ as a maximal center. We have $p = p_r$ since $p_r \in X$ and X has a unique singular point of index 6. We set $\mathcal{C} = \{p, q\}$, $\Pi = \Pi(\mathcal{C})$ and $\Gamma := \Pi_X(\mathcal{C}) = \Pi \cap X$.

We will show that Γ is an irreducible and reduced curve. By Lemma 4.1, we can write

$$P_{12}|_{\Pi} = \lambda r^2, \quad Q_9|_{\Pi} = \mu u,$$

where $\lambda, \mu \in \mathbb{C} \setminus \{0\}$. Then we have

$$\begin{aligned} F_1|_{\Pi} &= t^2 + \mu su, & F_4|_{\Pi} &= ws + u^2, & F_7|_{\Pi} &= rs^2 - wu + \lambda tr^2, \\ F_2|_{\Pi} &= ut + sv, & F_5|_{\Pi} &= tw - uv, & F_8|_{\Pi} &= \lambda \mu r^2 u - (vw + str), \\ F_3|_{\Pi} &= tv - \mu u^2, & F_6|_{\Pi} &= -\mu uw + v^2, & F_9|_{\Pi} &= rsu - \lambda vr^2 + w^2. \end{aligned}$$

We work on the open subset U on which $w \neq 0$. Then $\Gamma \cap U$ is isomorphic to the $\mathbb{Z}/11\mathbb{Z}$ -quotient of the affine curve

$$(\lambda r^2 v + \mu^3 r v^6 - 1 = 0) \subset \mathbb{A}_{r,v}^2.$$

It is straightforward to check that the polynomial $\lambda r^2 v + \mu^3 r v^6 - 1$ is irreducible. Thus $\Gamma \cap U$ is an irreducible and reduced affine curve. It is also straightforward to check that

$$\Gamma \cap (w = 0) = X \cap (p = q = w = 0) = \{p_r, p_s\}.$$

This shows that Γ is an irreducible and reduced curve.

Let $\varphi: (E \subset Y) \rightarrow (p \in X)$ be the Kawamata blowup and let $\tilde{\Delta}$ be the proper transform via φ of a divisor or curve Δ on X . We show that $\tilde{D}_p \cap \tilde{D}_q \cap E$ does not contain a curve. Consider the weight

$$\mathbf{w}(p, q, s, t, u, v, w) = \frac{1}{6}(1, 6, 1, 2, 3, 4, 5),$$

which is clearly an admissible weight satisfying the KBL condition. We set $g_i = F_i^W(p, q, 1, s, t, u, v, w)$. We have

$$\begin{aligned} g_4 &= (w + p^4)s - \lambda q + u(u + p^2s), \\ g_7 &= s^2 + \lambda t, \\ g_8 &= \lambda \mu u - st, \\ g_9 &= s(u + p^2s) - \lambda v. \end{aligned}$$

Since E is isomorphic to the subvariety

$$(g_4 = g_7 = g_8 = g_9 = 0) \subset \mathbb{P}(1_p, 6_q, 1_s, 2_t, 3_u, 4_v, 5_w),$$

it is straightforward to check that $\tilde{D}_p \cap \tilde{D}_q \cap E$ consists of a finite set of points (in fact, 2 points). Thus we have $\tilde{D}_p \cdot \tilde{D}_q = \tilde{\Gamma}$ since $D_p \cdot D_q = \Gamma$.

We have

$$\tilde{D}_p \sim -\varphi^* K_X - \frac{1}{6}E, \quad \tilde{D}_q \sim -6\varphi^* K_X - \frac{e}{6}E,$$

for some integer $e \geq 6$ and hence

$$(\tilde{D}_p \cdot \tilde{\Gamma}) = (\tilde{D}_p^2 \cdot \tilde{D}_q) = \frac{1}{7} - \frac{e}{30} < 0.$$

By [Okada 2018, Lemma 2.18], p is not a maximal center. \square

#282 by C_2 format. Let X be a quasismooth codimension 4 prime Fano 3-fold of numerical type #282 constructed in C_2 format. Then, by [Coughlan and Ducat 2018, Example 5.5], X is defined by the following polynomials in $\mathbb{P}(1_p, 6_q, 6_r, 7_s, 8_t, 9_u, 10_v, 11_w)$:

$$\begin{aligned} F_1 &= tR_8 - S_6Q_{10} + su, \\ F_2 &= tu - wS_6 + sv, \\ F_3 &= rS_6^2 - vR_8 + u^2, \\ F_4 &= tQ_{10} - S_6P_{12} + sw, \\ F_5 &= rsS_6 - wR_8 + uQ_{10}, \\ F_6 &= rs^2 - P_{12}R_8 + Q_{10}^2, \\ F_7 &= rtS_6 - vQ_{10} + uw, \\ F_8 &= rst - wQ_{10} + uP_{12}, \\ F_9 &= rt^2 - vP_{12} + w^2. \end{aligned}$$

Here $P_{12}, Q_{10}, R_8, S_6 \in \mathbb{C}[p, q, r, s, t, u, v, w]$ are homogeneous polynomials of the indicated degree. In the following we assume that $q \in S_6$, and then, we assume that $S_6 = q$ by a change of coordinates.

Lemma 4.3. *Under the above setting, the following assertions hold:*

- (1) $r^2 \in P_{12}$, $v \in Q_{10}$ and $t \in R_8$.
- (2) $X \subset \mathbb{P}$ is well-formed.

Proof. We have $p_r \in X$ and X is quasismooth at p_r if and only if $r^2 \in P_{12}$. Similarly, it is easy to check that if $v \notin Q_{10}$ (resp. $t \notin R_8$), then X is not quasismooth at p_v (resp. p_r). This proves (1). We leave the readers to check that neither Π_2 nor Π_3 contain a surface, where Π_2, Π_3 are those given in the proof of [Lemma 4.1](#), and this proves (2). \square

Theorem 4.4. *Let X be a quasismooth prime codimension 4 Fano 3-fold of numerical type #282 constructed by C_2 format. We assume that $q \in S_6$. Then X is birationally superrigid.*

Proof. By [Lemma 4.3](#), we can apply [Proposition 3.3](#) and it remains to exclude the singular point p of type $\frac{1}{6}(1, 1, 5)$ as a maximal center.

The singular point p corresponds to the solution of the equation

$$p = s = t = u = v = w = S_6 = 0,$$

and thus $p = p_r$ since $S_6 = q$ by our setting. We set $\mathcal{C} = \{p, q\}$ and $\Pi = \Pi(\mathcal{C})$.

We will show that $\Gamma := \Pi \cap X$ is an irreducible and reduced curve. We have $\Pi_X(\{p, q, r, s\}) = \emptyset$ (see the proof of [Proposition 3.3](#)). Hence $\Gamma \cap (s = 0) = \Pi_X(\{p, q, s\})$ does not contain a curve and it remains to show that $\Gamma \cap U_s$ is irreducible and reduced, where $U_s := (s \neq 0) \subset \mathbb{P}$ is the open subset. By [Lemma 4.3](#) we can write

$$P_{12}|_{\Pi} = \lambda r^2, \quad Q_{10}|_{\Pi} = \mu v, \quad R_8|_{\Pi} = \nu t,$$

for some $\lambda, \mu, \nu \in \mathbb{C} \setminus \{0\}$, and we have $S_6|_{\Pi} = 0$. Note that $F_i|_{\Pi} = F_i|_{\Pi}(r, s, t, u, v, w)$ is a polynomial in variables r, s, t, u, v, w and we set $f_i = F_i|_{\Pi}(r, 1, t, u, v, w)$. Let $C \subset \mathbb{A}_{r,t,u,v,w}^5$ be the affine scheme defined by the equations

$$f_1 = f_2 = \cdots = f_9 = 0.$$

Then $\Gamma \cap U_s$ is isomorphic to the quotient of C by the natural $\mathbb{Z}/7\mathbb{Z}$ -action. We have

$$\begin{aligned} f_1 &= \nu t^2 + u, & f_4 &= \mu t v + w, & f_7 &= -\mu v^2 + u w, \\ f_2 &= t u + v, & f_5 &= -\nu t w + \mu u v, & f_8 &= r t - \mu v w + \lambda r^2 u, \\ f_3 &= -\nu t v + u^2, & f_6 &= r - \lambda v r^2 t + \mu^2 v^2, & f_9 &= r t^2 - \lambda r^2 v + w^2. \end{aligned}$$

By the equations $f_1 = 0$, $f_2 = 0$ and $f_4 = 0$, we have

$$u = -\nu t^2, \quad v = -t u = \nu t^3, \quad w = -\mu t v = -\mu \nu t^4.$$

By eliminating the variables u, v, w and cleaning up the equations, C is isomorphic to the hypersurface in $\mathbb{A}_{r,t}^2$ defined by

$$r - \lambda v r^2 t + \mu^2 v^2 t^6 = 0,$$

which is an irreducible and reduced curve since $\mu \nu \neq 0$, and so is $\Gamma \cap U_s$. Thus Γ is an irreducible and reduced curve.

Let $\varphi: (E \subset Y) \rightarrow (p \in X)$ be the Kawamata blowup. We have $e := \text{ord}_E(D_q) \geq \frac{6}{6}$ and $\text{ord}_E(D_p) = \frac{1}{6}$ so that we have

$$\tilde{D}_q \sim -6\varphi^*K_X - \frac{e}{6}E = -6K_Y + \frac{6-e}{6}E, \quad \tilde{D}_p \sim -\varphi^*K_X - \frac{1}{6}E = -K_Y.$$

We show that $\tilde{D}_q \cap \tilde{D}_p \cap E$ does not contain a curve. The Kawamata blowup φ is realized as the weighted blowup at p with the weight

$$\mathbf{w}(p, q, s, t, u, v, w) = \frac{1}{6}(1, 6, 1, 2, 3, 4, 5),$$

which is an admissible weight satisfying the KBL condition. We have

$$\begin{aligned} F_4^{\mathbf{w}} &= -\lambda qr^2 + t(\mu v + h) + sw, \\ F_6^{\mathbf{w}} &= -\lambda \mu tr^2 + rs^2, \\ F_8^{\mathbf{w}} &= \lambda ur^2 + rst, \\ F_9^{\mathbf{w}} &= -\lambda vr^2 + rt^2, \end{aligned}$$

where we define $h := Q_{10}^{\mathbf{w}} - \mu v$. Note that h is a linear combination of up, tp^2, sp^3, rp^4 and thus h is divisible by p . It follows that E is isomorphic to the subscheme in $\mathbb{P}(1_p, 6_q, 1_s, 2_t, 3_u, 4_v, 5_w)$ defined by the equations

$$\lambda q - t(\mu v + h) - sw = \lambda \mu t - s^2 = \lambda u + st = -\lambda v + t^2 = 0.$$

It is now straightforward to check that $\tilde{D}_q \cap \tilde{D}_p \cap E = (p = q = 0) \cap E$ is a finite set of points (in fact, it consists of 2 points). This shows that $\tilde{D}_q \cdot \tilde{D}_p = \tilde{\Gamma}$ since $D_q \cdot D_p = \Gamma$. We have

$$(\tilde{D}_p \cdot \tilde{\Gamma}) = (\tilde{D}_p^2 \cdot \tilde{D}_q) = 6(-K_X)^3 - \frac{e}{6^3}(E^3) = \frac{1}{7} - \frac{e}{30} < 0$$

since $e \geq 6$. By [Okada 2018, Lemma 2.18] p is not a maximal center. □

5. On further problems

Prime Fano 3-folds with no projection centers. We further investigate birational superrigidity of prime Fano 3-folds of codimension c with no projection centers for $5 \leq c \leq 9$. There are only a few such candidates, which can be summarized as follows.

- In codimension $c \in \{5, 7\}$ there is a unique candidate and it corresponds to smooth prime Fano 3-folds of degree $2c+2$. All of these Fano 3-folds are rational (see [Iskovskikh and Prokhorov 1999, Corollary 4.3.5 or Section 12.2]) and are not birationally superrigid.
- In codimension 6 there are 2 candidates; one candidate corresponds to smooth prime Fano 3-folds of degree 14 which are birational to smooth cubic 3-folds (see [Takeuchi 1989; Iskovskikh 1979]) and are not birationally superrigid, and the existence is not known for the other candidate which is #78 in the database.

- In codimension 8 there are 2 candidates; one corresponds to smooth prime Fano 3-folds of degree 18 which are rational (see [\[Iskovskikh and Prokhorov 1999, Corollary 4.3.5 or Section 12.2\]](#)), and the existence is not known for the other candidate which is #33 in the database.
- In codimension 9 there is a unique candidate of smooth prime Fano 3-folds of degree 20. However, according to the classification of smooth Fano 3-folds there is no such Fano 3-fold (see e.g., [\[Takeuchi 1989, Theorem 0.1\]](#)).

It follows that, in codimension up to 9, #33 and #78 are the only remaining unknown cases for birational superrigidity (of general members).

Question 5.1. Do there exist prime Fano 3-folds which correspond to #33 or #78? If yes, then is a (general) such Fano 3-fold birationally superrigid?

In codimension 10 and higher there are a lot of candidates of Fano 3-folds with no projection centers. We expect that many of them are nonexistence cases and that there are only a few birationally superrigid Fano 3-folds in higher codimensions.

Question 5.2. Is there a numerical type (in other words, graded ring database ID) #i in codimension greater than 9 such that a (general) quasismooth prime Fano 3-fold of numerical type #i is birationally superrigid?

Classification of birationally superrigid Fano 3-folds. There are many difficulties in the complete classification of birationally superrigid Fano 3-folds. For example, we need to consider Fano 3-folds which are not necessarily quasismooth or not necessarily prime. We also need to understand subtle behaviors of birational superrigidity in a family.

Question 5.3. Is there a birationally superrigid Fano 3-fold which is either of Fano index greater than 1 or has a nonquotient singularity?

Remark 5.4. By recent developments [\[Pukhlikov 2019; Suzuki 2017; Liu and Zhuang 2019\]](#), it is known that there exist birationally superrigid Fano varieties which have nonquotient singularities at least in very high dimensions. On the other hand, only a little is known for Fano varieties of index greater than 1 (see [\[Pukhlikov 2016\]](#)) and there is no example of birationally superrigid Fano varieties of index greater than 1.

We concentrate on quasismooth prime Fano 3-folds. Even in that case, it is necessary to consider those with a projection center, which are not treated in this paper. Let X be a general quasismooth prime Fano 3-fold of codimension c . Then the following are known:

- When $c = 1$, X is birationally superrigid if and only if X does not admit a type I projection center (see [\[Iskovskikh and Manin 1971; Corti et al. 2000; Cheltsov and Park 2017\]](#)).
- When $c = 2, 3$, X is birationally superrigid if and only if X is singular and admits no projection center (see [\[Iskovskikh and Pukhlikov 1996; Okada 2014a; Ahmadinezhad and Zucconi 2016; Ahmadinezhad and Okada 2018\]](#)).

With this evidence we expect the following.

Conjecture 5.5. Let X be a general quasismooth prime Fano 3-fold of codimension at least 2. Then X is birationally superrigid if and only if X is singular and admits no projection centers.

Acknowledgements

Okada would like to thank Stephen Coughlan for fruitful information on cluster Fano 3-folds. He also would like to thank the referees for valuable suggestions. He is partially supported by JSPS KAKENHI Grant Number JP18K03216.

References

- [Ahmadinezhad and Okada 2018] H. Ahmadinezhad and T. Okada, “Birationally rigid Pfaffian Fano 3-folds”, *Algebr. Geom.* **5**:2 (2018), 160–199. [MR](#) [Zbl](#)
- [Ahmadinezhad and Zucconi 2016] H. Ahmadinezhad and F. Zucconi, “Mori dream spaces and birational rigidity of Fano 3-folds”, *Adv. Math.* **292** (2016), 410–445. [MR](#) [Zbl](#)
- [Altinok 1998] S. Altinok, *Graded rings corresponding to polarised K3 surfaces and \mathbb{Q} -Fano 3-folds*, Ph.D. thesis, University of Warwick, 1998.
- [Altinok et al. 2002] S. Altinok, G. Brown, and M. Reid, “Fano 3-folds, K3 surfaces and graded rings”, pp. 25–53 in *Topology and geometry: commemorating SISTAG* (Singapore, 2001), edited by A. J. Berrick et al., *Contemp. Math.* **314**, Amer. Math. Soc., Providence, RI, 2002. [MR](#) [Zbl](#)
- [Brown and Kasprzyk 2009] G. Brown and A. Kasprzyk, “The graded ring database”, online database, 2009, Available at www.grdb.co.uk.
- [Brown et al. 2012] G. Brown, M. Kerber, and M. Reid, “Fano 3-folds in codimension 4, Tom and Jerry, I”, *Compos. Math.* **148**:4 (2012), 1171–1194. [MR](#) [Zbl](#)
- [Cheltsov and Park 2017] I. Cheltsov and J. Park, *Birationally rigid Fano threefold hypersurfaces*, Mem. Amer. Math. Soc. **1167**, Amer. Math. Soc., Providence, RI, 2017. [MR](#) [Zbl](#)
- [Chen et al. 2011] J.-J. Chen, J. A. Chen, and M. Chen, “On quasismooth weighted complete intersections”, *J. Algebraic Geom.* **20**:2 (2011), 239–262. [MR](#) [Zbl](#)
- [Corti 1995] A. Corti, “Factoring birational maps of threefolds after Sarkisov”, *J. Algebraic Geom.* **4**:2 (1995), 223–254. [MR](#) [Zbl](#)
- [Corti et al. 2000] A. Corti, A. Pukhlikov, and M. Reid, “Fano 3-fold hypersurfaces”, pp. 175–258 in *Explicit birational geometry of 3-folds*, edited by A. Corti and M. Reid, Lond. Math. Soc. Lecture Note Ser. **281**, Cambridge Univ. Press, 2000. [MR](#) [Zbl](#)
- [Coughlan and Ducat 2018] S. Coughlan and T. Ducat, “Constructing Fano 3-folds from cluster varieties of rank 2”, preprint, 2018. [arXiv](#)
- [Debarre et al. 2012] O. Debarre, A. Iliev, and L. Manivel, “On the period map for prime Fano threefolds of degree 10”, *J. Algebraic Geom.* **21**:1 (2012), 21–59. [MR](#) [Zbl](#)
- [Dimca 1986] A. Dimca, “Singularities and coverings of weighted complete intersections”, *J. Reine Angew. Math.* **366** (1986), 184–193. [MR](#) [Zbl](#)
- [Iano-Fletcher 2000] A. R. Iano-Fletcher, “Working with weighted complete intersections”, pp. 101–174 in *Explicit birational geometry of 3-folds*, edited by A. Corti, Lond. Math. Soc. Lecture Note Ser. **281**, Cambridge Univ. Press, 2000. [MR](#) [Zbl](#)
- [Iskovskikh 1979] V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic varieties”, pp. 159–236 in *Current problems in mathematics, XII*, edited by R. V. Gamkrelidze, VINITI, Moscow, 1979. In Russian; translated in *J. Soviet Math.* **13**:6 (1980), 815–868. [MR](#) [Zbl](#)

[Iskovskikh and Manin 1971] V. A. Iskovskikh and Y. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem”, *Mat. Sb. (N.S.)* **86**(128):1(9) (1971), 140–166. In Russian; translated in *Math. USSR-Sb.* **15**:1 (1971), 141–166. [MR](#) [Zbl](#)

[Iskovskikh and Prokhorov 1999] V. A. Iskovskikh and Y. G. Prokhorov, *Algebraic geometry, V: Fano varieties*, Encycl. Math. Sci. **47**, Springer, 1999. [MR](#) [Zbl](#)

[Iskovskikh and Pukhlikov 1996] V. A. Iskovskikh and A. V. Pukhlikov, “Birational automorphisms of multidimensional algebraic manifolds”, *J. Math. Sci.* **82**:4 (1996), 3528–3613. [MR](#) [Zbl](#)

[Kawamata 1996] Y. Kawamata, “Divisorial contractions to 3-dimensional terminal quotient singularities”, pp. 241–246 in *Higher-dimensional complex varieties* (Trento, Italy, 1994), edited by M. Andreatta and T. Peternell, de Gruyter, Berlin, 1996. [MR](#) [Zbl](#)

[Liu and Zhuang 2019] Y. Liu and Z. Zhuang, “Birational superrigidity and K -stability of singular Fano complete intersections”, *Int. Math. Res. Not.* (online publication August 2019).

[Okada 2014a] T. Okada, “Birational Mori fiber structures of \mathbb{Q} -Fano 3-fold weighted complete intersections”, *Proc. Lond. Math. Soc.* (3) **109**:6 (2014), 1549–1600. [MR](#) [Zbl](#)

[Okada 2014b] T. Okada, “Birational Mori fiber structures of \mathbb{Q} -Fano 3-fold weighted complete intersections, III”, 2014. To appear in *Kyoto J. Math.* [arXiv](#)

[Okada 2018] T. Okada, “Birational Mori fiber structures of \mathbb{Q} -Fano 3-fold weighted complete intersections, II”, *J. Reine Angew. Math.* **738** (2018), 73–129. [MR](#) [Zbl](#)

[Pukhlikov 1998] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, *Invent. Math.* **134**:2 (1998), 401–426. [MR](#) [Zbl](#)

[Pukhlikov 2016] A. V. Pukhlikov, “Birational geometry of Fano hypersurfaces of index two”, *Math. Ann.* **366**:1-2 (2016), 721–782. [MR](#) [Zbl](#)

[Pukhlikov 2019] A. V. Pukhlikov, “Birationally rigid complete intersections with a singular point of high multiplicity”, *Proc. Edinb. Math. Soc.* (2) **62**:1 (2019), 221–239. [MR](#) [Zbl](#)

[Suzuki 2017] F. Suzuki, “Birational rigidity of complete intersections”, *Math. Z.* **285**:1-2 (2017), 479–492. [MR](#) [Zbl](#)

[Takeuchi 1989] K. Takeuchi, “Some birational maps of Fano 3-folds”, *Compos. Math.* **71**:3 (1989), 265–283. [MR](#) [Zbl](#)

Communicated by János Kollár

Received 2019-01-31 Revised 2019-06-08 Accepted 2019-08-26

okada@cc.saga-u.ac.jp

Department of Mathematics, Saga University, Saga, Japan

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen

Massachusetts Institute of Technology
Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud

University of California
Berkeley, USA

BOARD OF EDITORS

Bhargav Bhatt	University of Michigan, USA	Raman Parimala	Emory University, USA
Richard E. Borcherds	University of California, Berkeley, USA	Jonathan Pila	University of Oxford, UK
Antoine Chambert-Loir	Université Paris-Diderot, France	Irena Peeva	Cornell University, USA
J.-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Anand Pillay	University of Notre Dame, USA
Brian D. Conrad	Stanford University, USA	Michael Rapoport	Universität Bonn, Germany
Samit Dasgupta	Duke University, USA	Victor Reiner	University of Minnesota, USA
Hélène Esnault	Freie Universität Berlin, Germany	Peter Sarnak	Princeton University, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Joseph H. Silverman	Brown University, USA
Hubert Flenner	Ruhr-Universität, Germany	Michael Singer	North Carolina State University, USA
Sergey Fomin	University of Michigan, USA	Christopher Skinner	Princeton University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Wee Teck Gan	National University of Singapore	J. Toby Stafford	University of Michigan, USA
Andrew Granville	Université de Montréal, Canada	Shunsuke Takagi	University of Tokyo, Japan
Ben J. Green	University of Oxford, UK	Pham Huu Tiep	University of Arizona, USA
Joseph Gubeladze	San Francisco State University, USA	Ravi Vakil	Stanford University, USA
Christopher Hacon	University of Utah, USA	Michel van den Bergh	Hasselt University, Belgium
Roger Heath-Brown	Oxford University, UK	Akshay Venkatesh	Institute for Advanced Study, USA
János Kollár	Princeton University, USA	Marie-France Vignéras	Université Paris VII, France
Philippe Michel	École Polytechnique Fédérale de Lausanne	Kei-Ichi Watanabe	Nihon University, Japan
Susan Montgomery	University of Southern California, USA	Melanie Matchett Wood	University of California, Berkeley, USA
Shigefumi Mori	RIMS, Kyoto University, Japan	Shou-Wu Zhang	Princeton University, USA
Martin Olsson	University of California, Berkeley, USA		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2020 is US \$415/year for the electronic version, and \$620/year (+\$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

 mathematical sciences publishers

nonprofit scientific publishing

<http://msp.org/>

© 2020 Mathematical Sciences Publishers

Algebra & Number Theory

Volume 14 No. 1 2020

Gorenstein-projective and semi-Gorenstein-projective modules CLAUS MICHAEL RINGEL and PU ZHANG	1
The 16-rank of $\mathbb{Q}(\sqrt{-p})$ PETER KOYMANS	37
Supersingular Hecke modules as Galois representations ELMAR GROSSE-KLÖNNE	67
Stability in the homology of unipotent groups ANDREW PUTMAN, STEVEN V SAM and ANDREW SNOWDEN	119
On the orbits of multiplicative pairs OLEKSIY KLURMAN and ALEXANDER P. MANGEREL	155
Birationally superrigid Fano 3-folds of codimension 4 TAKUZO OKADA	191
Coble fourfold, \mathfrak{S}_6 -invariant quartic threefolds, and Wiman–Edge sextics IVAN CHELTsov, ALEXANDER KUZNETSOV and KONSTANTIN SHRAMOV	213