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Birationally superrigid Fano 3-folds of codimension 4
Takuzo Okada

We determine birational superrigidity for a quasismooth prime Fano 3-fold of codimension 4 with no
projection centers. In particular we prove birational superrigidity for Fano 3-folds of codimension 4
with no projection centers which were recently constructed by Coughlan and Ducat. We also pose some
questions and a conjecture regarding the classification of birationally superrigid Fano 3-folds.

1. Introduction

A prime Fano 3-fold is a normal projective Q-factorial 3-fold X with only terminal singularities such that
−K X is ample and the class group Cl(X)∼= Z is generated by −K X . To such X there corresponds the
anticanonical graded ring

R(X,−K X )=
⊕

m∈Z≥0

H 0(X,−mK X ),

and by choosing minimal generators we can embed X into a weighted projective space. By the codimension
of X we mean the codimension of X in the weighted projective space. Based on analysis by Altınok,
Brown, Iano-Fletcher, Kasprzyk, Prokhorov, Reid, and others (see for example [Altınok et al. 2002]) there
is a database [Brown and Kasprzyk 2009] of numerical data (such as Hilbert series) coming from graded
rings that can be the anticanonical graded ring of a prime Fano 3-fold. Currently it is not a classification, but
it serves as a list, meaning that the anticanonical graded ring of a prime Fano 3-fold appears in the database.

The database contains a huge number of candidates, which suggests difficulty in the biregular classifi-
cation of Fano 3-folds. The aim of this paper is to shed light on the classification of birationally superrigid
Fano 3-folds. Here, a Fano 3-fold of Picard number 1 is said to be birationally superrigid if any birational
map to a Mori fiber space is biregular. We remark that in [Ahmadinezhad and Okada 2018] a possible
approach to achieving birational classification of Fano 3-folds is suggested by introducing notion of solid
Fano 3-folds, which are Fano 3-folds not birational to either a conic bundles or a del Pezzo fibration.

Up to codimension 3, we have satisfactory results on the classification of quasismooth prime Fano
3-folds: the classification is complete in codimensions 1 and 2 [Iano-Fletcher 2000; Chen et al. 2011;
Altınok 1998] and in codimension 3 the existence is known for all 70 numerical data in the database.
Moreover birational superrigidity of quasismooth prime Fano 3-folds of codimension at most 3 has been
well studied (see [Iskovskikh and Manin 1971; Corti et al. 2000; Cheltsov and Park 2017; Okada 2014a;
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Ahmadinezhad and Zucconi 2016; Ahmadinezhad and Okada 2018] and [Okada 2014b, 2018] for solid
cases in codimension 2).

For quasismooth prime Fano 3-folds of codimension 4, there are 145 candidates of numerical data
in [Brown and Kasprzyk 2009]. In [Brown et al. 2012], existence for 116 data is proved, where the
construction is given by birationally modifying a known variety. This process is called unprojection and,
as a consequence, a constructed Fano 3-fold corresponding to each of the 116 families admits a Sarkisov
link to a Mori fiber space, hence it is not birationally superrigid. The 116 families of Fano 3-folds are
characterized as those that possess a singular point which is so called a type I projection center (see
[Brown et al. 2012] for details). There are other types of projection centers (such as types II1, . . . , II7, IV
according to the database [Brown and Kasprzyk 2009]). Through the known results in codimensions 1, 2
and 3, we can expect that the existence of a projection center violates birational superrigidity. Therefore
it is natural to consider prime Fano 3-folds without projection centers for the classification of birational
superrigid Fano 3-folds (see also the discussion in Section 5).

According to the database [Brown and Kasprzyk 2009], there are 5 candidates of quasismooth prime
Fano 3-folds of codimension 4 with no projection centers. Those are identified by database numbers #25,
#166, #282, #308 and #29374. Among them, #29374 corresponds to smooth prime Fano 3-folds of degree
10 embedded in P7, and it is proved in [Debarre et al. 2012] that they are not birationally superrigid
(not even birationally rigid, a weaker notion than superrigidity). Recently Coughlan and Ducat [2018]
constructed many prime Fano 3-folds including those corresponding to #25 and #282 and we sometimes
refer to these varieties as cluster Fano 3-folds. There are two constructions, G(4)2 and C2 formats (see
[Coughlan and Ducat 2018, Section 5.6] for details and see page 205 for concrete descriptions) for #282
and they are likely to sit in different components of the Hilbert scheme.

Theorem 1.1. Let X be a quasismooth prime Fano 3-fold of codimension 4 and of numerical type #282
which is constructed in either G(4)2 format or C2 format. If X is constructed in C2 format, then we assume
that X is general. Then X is birationally superrigid.

For the remaining three candidates #25, #166 and #308, we can prove birational superrigidity in a
stronger manner; we are able to prove birational superrigidity for these 3 candidates by utilizing only nu-
merical data. Here, by numerical data for a candidate Fano 3-fold X , we mean the weights of the weighted
projective space, degrees of the defining equations, the anticanonical degree (−K X )

3 and the basket of sin-
gularities of X (see Section 3). Note that we do not know the existence of Fano 3-folds for #166 and #308.

Theorem 1.2. Let X be a well-formed quasismooth prime Fano 3-fold of codimension 4 and of numerical
type #25, #166 or #308. Then X is birationally superrigid.

2. Birational superrigidity

Basic properties. Throughout this subsection we assume that X is a Fano 3-fold of Picard number 1, that
is, X is a normal projective Q-factorial 3-fold such that X has only terminal singularities, −K X is ample
and rank Pic(X)= 1.
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Definition 2.1. We say that X is birationally superrigid if any birational map σ : X 99K Y to a Mori fiber
space Y → T is biregular.

By an extremal divisorial extraction ϕ : (E⊂Y )→ (0⊂ X), we mean an extremal divisorial contraction
ϕ : Y → X from a normal projective Q-factorial variety Y with only terminal singularities such that E is
the ϕ-exceptional divisor and 0 = ϕ(E).

Definition 2.2. Let H∼Q −nK X be a movable linear system, where n is a positive integer. A maximal
singularity of H is an extremal extraction ϕ : (E ⊂ Y )→ (0 ⊂ X) such that

c(X,H)=
aE(K X )

m E(H)
<

1
n
,

where

• c(X,H) :=max{λ | K X + λH is canonical } is the canonical threshold of (X,H),

• aE(K X ) is the discrepancy of K X along E , and

• m E(H) is the multiplicity along E of the proper transform of H.

We say that an extremal divisorial extraction is a maximal singularity if there exists a movable linear
system H such that the extraction is a maximal singularity of H. A subvariety 0 ⊂ X is called a maximal
center if there is a maximal singularity Y → X whose center is 0.

The following is the fundamental theorem in the study of birational superrigidity, which emerged in
[Iskovskikh and Manin 1971] and has been simplified and generalized in [Pukhlikov 1998; Corti 1995].

Theorem 2.3 [Corti 1995, Theorem 4.10 and Proposition 2.10]. If X admits no maximal center, then X
is birationally superrigid.

For the proof of birational superrigidity of a given Fano 3-fold X of Picard number 1 we need to
exclude each subvariety of X as a maximal center. In the next subsection we will explain several methods
of exclusion under a relatively concrete setting. Here we discuss methods of excluding terminal quotient
singular points in a general setting.

For a terminal quotient singular point p ∈ X of type 1
r (1, a, r − a), where r is coprime to a and

0< a < r , there is a unique extremal divisorial extraction ϕ : (E ⊂ Y )→ (p ∈ X), which is the weighted
blowup with weight 1

r (1, a, r−a), and we call it the Kawamata blowup (see [Kawamata 1996] for details).
The integer r > 1 is called the index of p ∈ X . For the Kawamata blowup ϕ : (E ⊂ Y )→ (p ∈ X), we
have KY = ϕ

∗K X +
1
r E and

(E3)=
r2

a(r − a)
.

For a divisor D on X , the order of D along E , denoted by ordE(D), is defined to be the coefficient of E
in ϕ∗D.

We first explain the most basic method.
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Lemma 2.4 [Corti et al. 2000, Lemma 5.2.1]. Let p ∈ X a terminal quotient singular point and
ϕ : (E ⊂ Y ) → (p ∈ X) the Kawamata blowup. If (−KY )

2 /∈ Int NE(Y ), then p is not a maximal
center.

For the application of the above lemma, we need to find a nef divisor on Y . The following result,
which is a slight generalization of [Okada 2018, Lemma 6.6], is useful.

Lemma 2.5. Let p ∈ X be a terminal quotient singular point and ϕ : (E ⊂ Y )→ (p ∈ X) the Kawamata
blowup. Assume that there are effective Weil divisors D1, . . . , Dk such that the intersection Supp(D1)∩

· · · ∩Supp(Dk) does not contain a curve through p. We set

e :=min
{

ordE(Di )

ni
| 1≤ i ≤ k

}
,

where ni is the positive rational number such that Di ∼Q −ni K X . Then −ϕ∗K X −λE is a nef divisor for
0≤ λ≤ e.

Proof. We may assume e > 0, that is, Supp(Di ) passes through p for any i . For an effective divisor
D∼Q−nK X , we call ordE(D)/n the vanishing ratio of D along E . For 1≤ i ≤ k, we choose a component
of Di , denoted D′i , which has maximal vanishing ratio along E among the components of Di . Clearly
D′1 ∩ · · · ∩ D′k does not contain a curve through p and we have

e′ :=min
{

ordE(D′i )
n′i

| 1≤ i ≤ k
}
≥ e,

where n′i ∈Q is such that D′i ∼Q −n′i K X . Since D′1, . . . , D′k are prime divisors, we can apply [Okada
2018, Lemma 6.6] and conclude that −ϕ∗K X − e′E is nef. Then so is −ϕ∗K X − λE for any 0≤ λ≤ e′

since −ϕ∗K X is nef, and the proof is completed. �

We have another method of exclusion which can sometimes be effective when Lemma 2.4 is not
applicable.

Lemma 2.6. Let p ∈ X be a terminal quotient singular point and ϕ : (E ⊂ Y )→ (p ∈ X) the Kawamata
blowup. Suppose that there exists an effective divisor S on X passing through p and a linear system L of
divisors on X passing through p with the following properties:

(1) Supp(S)∩BsL does not contain a curve passing through p.

(2) For a general member L ∈ L, we have

(−KY · S̃ · L̃)≤ 0,

where S̃, L̃ are the proper transforms of S, L on Y , respectively.

Then p is not a maximal center.

Proof. According to [Okada 2018, Lemma 2.20], it suffices to show that there exist infinitely many distinct
curves on Y which intersect −KY nonpositively and E positively. For a curve or a divisor 1 on X , we
denote by 1̃ its proper transform on Y .
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We write L ∼−nK X . Write S=
∑

mi Si+T , where mi > 0, Si is a prime divisor and T is an effective
divisor which does not pass through p. We have

(−KY · T̃ · L̃)= nl(−K X )
3
≥ 0,

where T ∼−l K X for some l ≥ 0. Since

0≥ (−KY · S̃ · L̃)=
∑

mi (−KY · S̃i · L̃)+ (−KY · T̃ · L̃),

there is a component Si for which (−KY · S̃i · L̃) ≤ 0. Since p ∈ Si ∩BsL ⊂ Supp(S)∩BsL, we may
assume that S is a prime divisor by replacing S by Si .

Write L={Lλ |λ∈Pl
}. For λ∈Pl , we write S ·Lλ=

∑
i ci Cλ,i , where ci ≥ 0 and Cλ,i is an irreducible

and reduced curve on X . Then,

S̃ · L̃λ =
∑

i

ci C̃λ,i +4,

where 4 is an effective 1-cycle supported on E . Since any component of 4 is contracted by ϕ and −KY

is ϕ-ample, we have (−KY ·4)≥ 0. Thus, for a general λ ∈ Pl , we have

0≥ (−KY · S̃ · L̃λ)≥
∑

i

ci (−KY · C̃λ,i ).

It follows that (−KY ·C̃λ,i )≤ 0 for some i . We choose such a C̃λ,i and denote it by C̃◦λ. By assumption (1)
the set

{C̃◦λ | λ ∈ Pl is general}

consists of infinitely many distinct curves. We have (−KY · C̃◦λ) ≤ 0 by the construction. We see that
(E · C̃◦λ) > 0 since C̃◦λ is the proper transform of a curve passing through p. Therefore p is not a maximal
center by [Okada 2018, Lemma 2.20]. �

Fano varieties in a weighted projective space. Let X be a prime Fano 3-fold. As in the introduction, we
choose minimal generators of the anticanonical ring R(X,−K X ) and let X ⊂ P := P(a0, . . . , an) be the
corresponding embedding. We say that X ⊂P is anticanonically embedded. We denote by x0, . . . , xn the
homogeneous coordinates of P with deg xi = ai . Let

F1 = F2 = · · · = FN = 0

be defining equations of X inside P, where Fi ∈ C[x0, . . . , xn] is a homogeneous polynomial of degree
di with respect to the grading deg xi = ai . We assume that P is well-formed, that is,

gcd{ai | 0≤ i ≤ n, i 6= j } = 1

for j = 0, 1, . . . , n. Note that X is not contained in a linear cone (i.e., a smaller weighted projective space
in P) by minimality of generators of R(X,−K X ).
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Definition 2.7. We say that X is well-formed if codimX (X ∩Sing(P))≥ 2. We say that X is quasismooth
if the affine cone

(F1 = F2 = · · · = FN = 0)⊂ An+1
= Spec C[x0, . . . , xn]

is smooth outside the origin.

Remark 2.8. The description of Sing(P) is given in Remark 2.12 below. Under the assumption that
X ⊂ P is an anticanonically embedded quasismooth prime Fano 3-fold, we believe that well-formedness
is a very mild condition (or perhaps it is automatically satisfied). For example, a quasismooth weighted
complete intersection X ⊂ P which is not contained in a linear cone is well-formed (see [Iano-Fletcher
2000, Theorem 6.17]).

In the following we assume that X ⊂ P is well-formed and quasismooth. For 0 ≤ i ≤ n, we define
pxi = (0 : · · · :1 : · · · :0)∈P, where the unique 1 is in the (i+1)-th position, and we define Di = (xi =0)∩X
which is a Weil divisor such that Di ∼−ai K X .

Lemma 2.9. If (−K X )
3
≤ 1, then no curve on X is a maximal center.

Proof. The same proof of [Ahmadinezhad and Okada 2018, Lemma 2.1] applies in this setting without
any change. �

Lemma 2.10. Assume that a0 ≤ a1 ≤ . . .≤ an . If an−1an(−K X )
3
≤ 4, then no nonsingular point of X is

a maximal center.

Proof. The proof is almost identical to that of [Ahmadinezhad and Okada 2018, Lemma 2.6]. �

Definition 2.11. Let C ⊂ {x0, . . . , xn} be a nonempty set of homogeneous coordinates. We define

5(C) :=
⋂
z∈C

(z = 0)⊂ P, 5X (C) :=5(C)∩ X ⊂ X.

Sometimes we denote

5(C)=5(xi1, . . . , xim ), 5X (C)=5X (xi1, . . . , xim ),

when C = {xi1, . . . , xim }. We also define

gcd(C) := gcd{deg(xi ) | xi ∈ C }.

Remark 2.12. We explain some consequences of well-formedness and quasismoothness, which will be
frequently used. We keep the above notation and assumptions:

(1) For the singular locus, we have Sing(X)= X∩Sing(P). For the proof see [Dimca 1986, Proposition 8].
Note that X ⊂ P is additionally assumed to be a (weighted) complete intersection in [loc. cit.] but
the same proof applies.
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(2) The singular locus of P can be described as follows:

Sing(P)=
⋃

C({x0,...,xn}
gcd({x0,...,xn}\C)>1

5(C).

By (1), we have
Sing(X)=

⋃
C({x0,...,xn}

gcd({x0,...,xn}\C)>1

5X (C).

(3) For C ⊂ {x0, . . . , xn}, we define

5∗X (C) :=5X (C)∩
( ⋂

z∈{x0,...,xn}\C

(z 6= 0)
)
.

Let C ⊂ {x0, . . . , xn} be a subset such that r := gcd({x0, . . . , xn} \ C) > 1. Then any point p ∈ X
which is contained in 5∗X (C) is a cyclic quotient singular point of index r and hence any point p ∈ X
which is contained in 5X (C) is a cyclic quotient singular point of index divisible by r .

Lemma 2.13. Let p ∈ X be a singular point of type 1
2(1, 1, 1) and let

b :=max{ai | 0≤ i ≤ n, ai is odd }.

If 2b(−K X )
3
≤ 1, then p is not a maximal center.

Proof. Let C = {xi1, . . . , xim } be the set of homogeneous coordinates of odd degree. The set 5X (C) =
Di1 ∩ · · · ∩ Dim consists of singular points by Remark 2.12. In particular 5X (C) is a finite set of points
since X has only terminal singular points. Let ϕ : (E ⊂ Y )→ (p ∈ X) be the Kawamata blowup. Then
ordE(Di j ) ≥

1
2 since 2Di j is a Cartier divisor passing through p and thus −bϕ∗K X −

1
2 E is nef by

Lemma 2.5. We have (
−bϕ∗K X −

1
2 E
)
· (−KY )

2
= b(−K X )

3
−

1
2 ≤ 0.

This shows that (−KY )
2 /∈ Int NE(Y ) and p is not a maximal center by Lemma 2.4. �

Definition 2.14. Let p= pxk ∈ X be a terminal quotient singular point of type 1
ak
(1, c, ak − c) for some c

with 1≤ c ≤ 1
2ak . For a nonempty subset C = {xi1, . . . , xim } ⊂ {x0, . . . , xn}, we define

ivrp(C) := min
1≤ j≤m

{
ai j

ai j ak

}
,

where ai j is the integer such that 1≤ ai j ≤ ak and ai j is congruent to ai j modulo ak , and call it the initial
vanishing ratio of C at p.

Definition 2.15. For a terminal quotient singularity p of type 1
r (1, a, r − a), we define

wp(p) := a(r − a),

and call it the weight product of p.
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Lemma 2.16. Let p= pxk ∈ X be a terminal quotient singular point. Suppose that there exists a subset
C ⊂ {x0, . . . , xn} satisfying the following properties:

(1) p ∈5X (C), or equivalently xk /∈ C.

(2) 5X (C ∪ {xk})=∅.

(3) ivrp(C)≥ wp(p)(−K X )
3.

Then p is not a maximal center.

Proof. We write C= {xi1, . . . , xim }. We claim that5X (C)= Di1∩· · ·∩Dim is a finite set of points. Indeed,
if 5X (C) contains a curve, then 5X (C ∪ {xk}) = 5X (C)∩ Dk 6= ∅ since Dk is an ample divisor on X .
This is impossible by the assumption (2). Note that we have ordE(Di j ) ≥ ai j /ak (see [Ahmadinezhad
and Okada 2018, Section 3]) so that

e :=min
{

ordE(Di j )

ai j

| 1≤ j ≤ m
}
≥ ivrp(C).

By Lemma 2.5, −ϕ∗K X − ivrp(C)E is nef and we have

(−ϕ∗K X − ivrp(C)E)(−KY )
2
= (−K X )

3
−

ivrp(C)
wp(p)

≤ 0

by the assumption (3). Therefore (−KY )
2 /∈ Int NE(Y ) and p is not a maximal center. �

Let p ∈ X be a singular point such that it can be transformed to pxk by a change of coordinates. For
simplicity of the description we assume p= px0 and we set r = a0 > 1. Let ϕ : (E ⊂ Y )→ (p ∈ X) be
the Kawamata blowup. We explain a systematic way to estimate ordE(Di ) for coordinates xi and also
an explicit description of ϕ. It is a consequence of the quasismoothness of X that after renumbering the
defining equation we can write

Fl = αl x
ml
0 xil + (other terms) for 1≤ l ≤ n− 3,

where αl ∈ C \ {0}, ml is a positive integer, x0, xi1, . . . , xin−3 are mutually distinct so that by denoting the
other 3 coordinates as x j1, x j2, x j3 we have

{x0, xi1, . . . , xin−3, x j1, x j2, x j3} = {x0, . . . , xn},

and we can choose x j1, x j2, x j3 as local orbi-coordinates of X at p. In this case the singular point p is of
type

1
r (a j1, a j2, a j3).

Definition 2.17 [Ahmadinezhad and Okada 2018, Definitions 3.6 and 3.7]. For an integer a, we denote
by a the positive integer such that a ≡ a (mod r) and 0< a ≤ r . We say that

w(x1, . . . , xn)=
1
r (b1, . . . , bn)

is an admissible weight at p if bi ≡ ai (mod r) for any i .



Birationally superrigid Fano 3-folds of codimension 4 199

For an admissible weight w at p and a polynomial f = f (x0, . . . , xn), we denote by f w the lowest
weight part of f , where we assume that w(x0)= 0.

We say that an admissible weight w at p satisfies the KBL condition if xml
0 xil ∈ Fw

l for 1≤ l ≤ n− 3
and

(b j1, b j2, b j3)= (a j1, a j2, a j3).

Let w(x1, . . . , xn) =
1
r (b1, . . . , bn) be an admissible weight at p satisfying the KBL condition. We

denote by 8w : Qw→ P the weighted blowup at p with weight w, and by Yw the proper transform of X
via 8w. Then the induced morphism ϕw =8w|Yw : Yw→ X coincides with the Kawamata blowup at p.
From this we see that the exceptional divisor E is isomorphic to

Ew := (g1 = · · · = gn−3 = 0)⊂ P(b1, . . . , bn),

where gl = Fw
l (1, x1, . . . , xn). Note that the KBL condition implies that the equations defining Ew cut

out a copy of P(b j1, b j2, b j3). We refer readers to [Ahmadinezhad and Okada 2018, Section 3] for details.

Lemma 2.18 [Ahmadinezhad and Okada 2018, Lemma 3.9]. Let w(x1, . . . , xn)=
1
r (b1, . . . , bn) be an

admissible weight at p ∈ X satisfying the KBL condition. Then the following assertions hold:

(1) We have ordE(Di )≥ bi/r for any i .

(2) If Fw
l = αl x

ml
0 xil , where αi ∈ C \ {0}, for some 1≤ l ≤ n− 3, then the weight

w′(x1, . . . , xn)=
1
r (b
′

1, . . . , b′n),

where b′j = b j for j 6= l and b′l = bl + r , satisfies the KBL condition. In particular, ordE(Dl) ≥

(bl + r)/r .

We will use the following notation for a polynomial f = f (x0, . . . , xn):

• For a monomial p= xe0
0 · · · x

en
n , we write p ∈ f if p appears in f with nonzero (constant) coefficient.

• For a subset C ⊂ {x0, . . . , xn} and 5 = 5(C), we denote by f |5 the polynomial in variables
{x0, . . . , xn} \ C obtained by putting xi = 0 for xi ∈ C in f .

3. Proof of birational superrigidity by numerical data

We prove birational superrigidity of codimension 4 quasismooth prime Fano 3-folds with no projections
by utilizing only numerical data. The numerical data for each Fano 3-fold will be described in the
beginning of the corresponding subsection. The Fano 3-folds are embedded in a weighted projective
7-space, denoted by P, and we use the symbol p, q, r, s, t, u, v, w for the homogeneous coordinates of P.
We use the following terminologies: Let X ⊂ P be a codimension 4 quasismooth prime Fano 3-fold. For
a homogeneous coordinate z ∈ {p, q, . . . , w},

• Dz := (z = 0)∩ X is the Weil divisor on X cut out by z, and

• pz ∈ P is the point at which only the coordinate z does not vanish.
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Note that Theorem 1.2 will follow from Theorems 3.1, 3.2 and 3.4.

Fano 3-folds of numerical type #25. Let X be a well-formed quasismooth prime Fano 3-fold of numerical
type #25, whose data consist of the following:

• X ⊂ P(2p, 5q , 6r , 7s, 8t , 9u, 10v, 11w).

• (−K X )
3
=

1
70 .

• deg(F1, F2, F3, F4, F5, F6, F7, F8, F9)= (16, 17, 18, 18, 19, 20, 20, 21, 22).

• BX =
{
7× 1

2(1, 1, 1), 1
5(1, 1, 4), 1

7(1, 2, 5)
}
.

Here the subscripts p, q, . . . , w of the weights means that they are the homogeneous coordinates of
the indicated degrees, and BX indicates the numbers and the types of singular points of X .

Theorem 3.1. Let X be a well-formed quasismooth prime codimension 4 Fano 3-fold of numerical
type #25. Then X is birationally superrigid.

Proof. By Lemmas 2.9 and 2.10, no curve and no nonsingular point on X is a maximal center. By
Lemma 2.13, singular points of type 1

2(1, 1, 1) are not maximal centers.
Let p be the singular point of type 1

5(1, 1, 4). Replacing the coordinate v if necessary, we may assume
p= pq . We set C = {p, s, u, v}. We have

ivrp(C)= 2
35 = wp(p)(−K X )

3.

By Lemma 2.16, it remains to show that 5X := 5X (C ∪ {q}) = ∅. We set 5 := 5(C ∪ {q}) ⊂ P so
that 5X = 5 ∩ X . Since pt /∈ X , one of the defining polynomials contain a power of t . By looking
at the degrees of F1, . . . , F9, we have t2

∈ F1. Similarly, we have r3
∈ F3 and w2

∈ F9 after possibly
interchanging F3 and F4. The monomial t2 (resp. r3) is the only monomial of degree 16 (resp. 18)
consisting of the variables r, t, w. The monomials w2 and t2r are the only monomials of degree 22
consisting of the variables r, t, w. Hence, rescaling r, t, w, we can write

F1|5 = t2, F3|5 = r3, F9|5 = w
2
+αt2r,

for some α ∈ C. The set 5X is contained in the common zero locus of the above 3 polynomials inside 5.
The equations have only trivial solution and this shows that 5X =∅. Thus p is not a maximal center.

Let p= ps be the singular point of type 1
7(1, 2, 5) and set C = {p, q, r}. We have

ivrp(C)= 1
7 = wp(p)(−K X )

3.

By Lemma 2.16, it remains to show that 5X :=5X (C ∪ {s})=∅. We set 5 :=5(C ∪ {s})⊂ P so that
5X = 5∩ X . Since pt , pu, pv, pw /∈ X , we may assume t2

∈ F1, u2
∈ F3, v2

∈ F6 and w2
∈ F9 after

possibly interchanging defining polynomials of the same degree. Then we can write

F1|5 = t2, F3|5 = u2
+αvt, F6|5 = v

2
+βwu, F9|5 = w

2
+ γ t2r,
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for some α, β, γ ∈ C. This shows that 5X =∅ and thus p is not a maximal center. This completes the
proof. �

Fano 3-folds of numerical type #166. Let X be a well-formed quasismooth prime Fano 3-fold of numer-
ical type #166, whose data consist of the following:

• X ⊂ P(2p, 2q , 3r , 3s, 4t , 4u, 5v, 5w).

• (−K X )
3
=

1
6 .

• deg(F1, F2, F3, F4, F5, F6, F7, F8, F9)= (8, 8, 8, 9, 9, 9, 10, 10, 10).

• BX =
{
11× 1

2(1, 1, 1), 1
3(1, 1, 2)

}
.

Theorem 3.2. Let X be a well-formed quasismooth prime codimension 4 Fano 3-fold of numerical type
#166. Then X is birationally superrigid.

Proof. By Lemma 2.9 no curve is a maximal center.
Let p= (αp : αq : · · · : αw) ∈ X be a nonsingular point where αp, αq , . . . , αw ∈ C. By Remark 2.12,

we have 5X (p, q, r, s, t, u) = ∅ since X does not have a singular point of index 5. Then we can take
a coordinate x ∈ {p, q, r, s, t, u} such that p ∈ (x 6= 0), i.e., αx 6= 0. The common zero locus of the
homogeneous polynomials in the set

{αdeg x
y xdeg y

−αdeg y
x ydeg x

| y ∈ {p, q, r, s, t, u, v, w} \ {x} }

is a finite set of points including p. Any polynomial in the above set is of degree at most 20 since
x /∈ {v,w}. It follows that the base locus of |Im

p (−ml K X )| is a finite set of points, that is, −l K X isolates p
(see [Corti et al. 2000, Definition 5.2.4 and Lemma 5.6.4]), where l ≤ 20. By the argument in [loc. cit.,
Section 5.3], we conclude that p is not a maximal center since 20< 4/(−K X )

3.
Let p be a singular point of type 1

2(1, 1, 1). After a change of coordinates, we may assume p= pp. We
set C = {q, r, s, t, u}. We have

ivrp(C)= 1
6 = wp(p)(−K X )

3.

Moreover we have 5X (C ∪ {p})=∅ because X is quasismooth and it does not have a singular point of
index 5. Thus, by Lemma 2.16, p is not a maximal center.

Let p be the singular point of type 1
3(1, 1, 2). After a change of coordinates, we may assume p= ps .

We set C = {p, q, r}. Then we have

ivrp(C)= 1
3 = wp(p)(−K X )

3.

By Lemma 2.16, it remains to show that 5X :=5X (C ∪ {s})=∅. We set 5 :=5(C ∪ {s})⊂ P so that
5X =5∩ X . We have

5X = (F1|5 = F2|5 = F3|5 = F7|5 = F8|5 = F9|5 = 0)∩5.
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We see that F1|5, F2|5, F3|5 consist only of monomials in variables t, u and that F7|5, F8|5, F9|5

consist only of monomials in variables v,w. It follows that

5X (p, q, r, s, v, w)=5X ∩5(v,w)= (F1|5 = F2|5 = F3|5 = 0)∩5(p, q, r, s, v, w).

We have 5X (p, q, r, s, v, w)=∅ since X is well-formed, quasismooth and X has no singular point of
index 4 (see Remark 2.12). Hence the equations

F1|5 = F2|5 = F3|5 = 0

imply t = u = 0. Similarly, by considering 5X (p, q, r, s, t, u)=∅, we see that the equations

F7|5 = F8|5 = F9|5 = 0

imply v = w = 0. It follows that 5X = ∅ and p is not a maximal center. Therefore X is birationally
superrigid. �

Fano 3-folds of numerical type #282. Let X be a well-formed quasismooth prime Fano 3-fold of numer-
ical type #282, whose data consist of the following:

• X ⊂ P(1p, 6q , 6r , 7s, 8t , 9u, 10v, 11w).

• (−K X )
3
=

1
42 .

• deg(F1, F2, F3, F4, F5, F6, F7, F8, F9)= (16, 17, 18, 18, 19, 20, 20, 21, 22).

• B =
{
2× 1

2(1, 1, 1), 2× 1
3(1, 1, 2), 1

6(1, 1, 5), 1
7(1, 1, 6)

}
.

Proposition 3.3. Let X be a well-formed quasismooth prime codimension 4 Fano 3-fold of numerical
type #282. Then no curve and no point is a maximal center except possibly for the singular point of type
1
6(1, 1, 5).

Proof. By Lemmas 2.9, 2.10 and 2.13, it remains to exclude singular points of type 1
3(1, 1, 2) and

1
7(1, 1, 6) as maximal centers.

Let p be a singular point of type 1
3(1, 1, 2) and let ϕ : (E ⊂ Y )→ (p ∈ X) be the Kawamata blowup.

We claim that 5X (p, s, t, w)= Dp ∩ Ds ∩ Dt ∩ Dw is a finite set of points (containing p). Since X does
not contain a singular point of index 10, we may assume that v2

∈ F6. Then, by rescaling v, we have

F6(0, q, r, 0, 0, u, v, 0)= v2

and this shows that 5X (p, s, t, w) = 5X (p, s, t, v, w). The latter set consists of singular points {2×
1
3(1, 1, 2), 1

6(1, 1, 5)} (see Remark 2.12) and thus 5X (p, s, t, w) is a finite set of points. We have

ordE(Dp), ordE(Ds)≥
1
3 , ordE(Dt), ordE(Dw)≥

2
3 .

By Lemma 2.5, N := −ϕ∗K X −
1
21 E is a nef divisor on Y and we have (N · (−KY )

2)= 0. Thus p is not
a maximal center by Lemma 2.4.
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Let p= ps be the singular point of type 1
7(1, 1, 6) and set C = {p, q, r}. We have

ivrp(C)= 1
7 = wp(p)(−K X )

3.

We set 5 :=5(C ∪ {s}). We see that pt , pu, pv, pw /∈ X since X does not have a singular point of index
8, 9, 10, 11. It follows that t2

∈ F1, w2
∈ F9 and we may assume u2

∈ F3, v2
∈ F6. Then, by rescaling

t, u, v, w, we can write

F1|5 = t2, F3|5 = αvt + u2, F6|5 = βwu+ v2, F9|5 = w
2,

where α, β ∈C. This shows that5X (C∪{s})=5∩X =∅. Thus p is not a maximal center by Lemma 2.16
and the proof is completed. �

Fano 3-folds of numerical type #308. Let X be a well-formed quasismooth prime Fano 3-fold of numer-
ical type #308, whose data consist of the following:

• X ⊂ P(1p, 5q , 6r , 6s, 7t , 8u, 9v, 10w).

• (−K X )
3
=

1
30 .

• deg(F1, F2, F3, F4, F5, F6, F7, F8, F9)= (14, 15, 16, 16, 17, 18, 18, 19, 20).

• BX =
{ 1

2(1, 1, 1), 1
3(1, 1, 2), 1

5(1, 2, 3), 2× 1
6(1, 1, 5)

}
.

Theorem 3.4. Let X be a well-formed quasismooth prime Fano 3-fold of numerical type #308. Then X is
birationally superrigid.

Proof. By Lemmas 2.9, 2.10 and 2.13 no curve and no nonsingular point is a maximal center and the
singular point of type 1

2(1, 1, 1) is not a maximal center.
Let p be the singular point of type 1

3(1, 1, 2), which is necessarily contained in (p= q = t = u=w= 0),
and let ϕ : (E ⊂ Y )→ (p ∈ X) be the Kawamata blowup. We set C = {p, q, u} and 5=5(C)⊂P. Since
pt , pw /∈ X , we have t2

∈ F1, w
2
∈ F9 and we can write

F1|5 = t2, F9|5 = w
2
+αt2r +βt2s,

where α, β ∈ C. Thus,

5X (C)=5∩ X =5X (p, q, t, u, w),

and this consists of two 1
6(1, 1, 5) points and p. In particular Dp ∩ Dq ∩ Du =5X (C) is a finite set of

points. We have

ordE(Dp)≥
1
3 , ordE(Dq)≥

2
3 , ordE(Du)≥

2
3 ,

hence N := −8ϕ∗K X −
2
3 E is a nef divisor on Y by Lemma 2.5. We have

(N · (−KY )
2)= 8(−K X )

3
−

2
33 ·

32

2 =−
1
15 < 0.

By Lemma 2.4, p is not a maximal center.



204 Takuzo Okada

Let p be a singular point of type 1
6(1, 1, 5). After replacing r and s, we may assume p= ps . We set

C = {p, q, r}. We have
ivrp(C)= 1

6 = wp(p)(−K X )
3.

Since pt , pu, pv, pw /∈ X , we may assume t2
∈ F1, u2

∈ F3, v
2
∈ F6, w

2
∈ F9 after possibly interchanging

F3 with F4 and F6 with F7. Then, by setting 5=5(C ∪ {s}) and by rescaling t, u, v, w, we have

F1|5 = t2, F3|5 = u2
+αvt, F6|5 = v

2
+βwu, F9|5 = w

2,

where α, β ∈ C. This shows that 5X (C ∪ {s})=∅ and p is not a maximal center by Lemma 2.16.
Finally, let p be a singular point of type 1

5(1, 2, 3) and let ϕ : (E ⊂ Y )→ (p ∈ X) be the Kawamata
blowup. Replacing the coordinate w, we may assume p= pq . We write

F3 = λq3 p+µq2r + νq2s+ q f11+ f16, F4 = λ
′q3 p+µ′q2r + ν ′q2s+ qg11+ g16,

where λ,µ, ν, λ′, µ′, ν ′ ∈ C and f11, f16, g11, g16 ∈ C[p, r, s, t, u, v, w] are homogeneous polynomials
of the indicated degrees. Since X is quasismooth at p= pq and is of type 1

5(1, 2, 3), the matrix( ∂F3
∂p (p)

∂F3
∂r (p)

∂F3
∂s (p)

∂F4
∂p (p)

∂F4
∂r (p)

∂F4
∂s (p)

)
=

(
λ µ ν

λ′ µ′ ν ′

)
is of rank 2.

We first consider the case where µν ′− νµ′ 6= 0. By replacing r and s, we may assume that µ= ν ′ = 1
and λ= ν = λ′ = µ′ = 0. We consider the weight at p

w(p, r, s, t, u, v, w)= 1
5(1, 1, 1, 2, 3, 4, 5),

which is an admissible weight satisfying the KBL condition. Then Fw
3 = q2r and Fw

4 = q2s, and this
implies ordE(Dr ), ordE(Ds)≥

6
5 by Lemma 2.18. Note that ordE(Dp)≥ w(p)= 1

5 by Lemma 2.18. We
set C = {p, r, s} and 5=5(C ∪ {q}). By rescaling t, u, v, w, we can write

F1|5 = t2, F3|5 = u2
+αvt, F6|5 = v

2
+βwu, F9|5 = w

2,

where α, β ∈ C. Hence 5X (C ∪ {q})=∅. Since Dq is an ample divisor, this implies that Dp ∩ Dr ∩ Ds

is a finite set of points (including p). By Lemma 2.5, N := −ϕ∗K X −
1
5 E is a nef divisor on Y . We have

(N · (−KY )
2)= (−K X )

3
−

1
53 (E

3)= 1
30 −

1
30 = 0,

and this shows that p is not a maximal center.
Next we consider the case where µν ′ − νµ′ = 0. By replacing r and s suitably and by possibly

interchanging F3 and F4, we may assume that

F3 = q3 p+ q f11+ f16, F4 = q2s+ qg11+ g16.

Let w be the same weight at p as in the previous case, which is again an admissible weight satisfying the
KBL condition. It is straightforward to see that Fw

3 = q3 p, so that ordE(Dp)≥
6
5 . Let L⊂ |−6K X | be
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the pencil generated by the sections r and s. Since ordE(Dr )=
1
5 and ordE(Ds)≥

1
5 , a general member

L ∈ L vanishes along E to order 1
5 so that L̃ ∼−6ϕ∗K X −

1
5 E . We have

(−KY · D̃p · L̃)= 6(−K X )
3
−

ordE(Dp)

52 · (E3)=
1
5
−

ordE(Dp)

6
≤ 0

since ordE(Dp)≥
6
5 . By Lemma 2.6, p is not a maximal center and the proof is complete. �

4. Birational superrigidity of cluster Fano 3-folds

In this section we prove Theorem 1.1 which follows from Theorems 4.2 and 4.4 below.

#282 by G
(4)
2 format. Let X be a quasismooth codimension 4 prime Fano 3-fold of numerical type #282

constructed in G
(4)
2 format. Then, by [Coughlan and Ducat 2018, Example 5.5], X is defined by the

following polynomials in P := P(1p, 6q , 6r , 7s, 8t , 9u, 10v, 11w):

F1 = t2
− qv+ s Q9,

F2 = ut − qw+ s(v+ p2t),

F3 = t (v+ p2t)− uQ9+ q(qr + p4t),

F4 = (w+ p4s)s− P12q + u(u+ p2s),

F5 = tw− uv+ s(qr + p4t),

F6 = (qr + p4t)t − Q9w+ v(v+ p2t),

F7 = rs2
−wu+ t P12,

F8 = P12 Q9− (vw+ p4qw+ p2uv+ uqr + str − stp2),

F9 = rs(u+ p2s)− vP12+w(w+ p4s).

Here P12, Q9 ∈C[p, q, r, s, t, u, v, w] are homogeneous polynomials of the indicated degree. Recall that
(−K X )

3
=

1
42 .

Lemma 4.1. The following assertions hold:

(1) r2
∈ P12 and u ∈ Q9.

(2) X ⊂ P is well-formed.

Proof. It is straightforward to check that X is quasismooth at pr ∈ X if and only if r2
∈ P12 and u ∈ Q9,

and this proves (1).
We prove (2). We set

52 :=5X (p, s, u, w), 53 :=5X (p, s, t, v, w).
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It is enough to show that neither 52 nor 53 contain a surface (note here that P12|52 6= 0 by (1)). We see
that 52 is isomorphic to the closed subscheme in P(6q , 6r , 8t , 10v) defined by the equations

t2
− qv = tv+ q2r = q P12|52 = qrt + v2

= t P12|52 = vP12|52 = 0.

We leave the readers to check that 52 does not contain a surface. We see that 53 is isomorphic to the
closed subscheme in P(6q , 6r , 9u) defined by the equations

−uQ9|53 + q2r =−q P12|53 + u2
= P12|53 Q9|53 − uqr = 0.

Hence 53 does not contain a surface since it is clearly a proper closed subset of the surface P(6, 6, 9).
Thus X ⊂ P is well-formed. �

Theorem 4.2. Let X be a codimension 4 Fano 3-fold of numerical type #282 constructed in G
(4)
2 format.

Then X is birationally superrigid.

Proof. By Lemma 4.1, X ⊂ P is well-formed. We can apply Proposition 3.3 and it remains to exclude the
singular point p ∈ X of type 1

6(1, 1, 5) as a maximal center. We have p= pr since pr ∈ X and X has a
unique singular point of index 6. We set C = {p, q}, 5=5(C) and 0 :=5X (C)=5∩ X .

We will show that 0 is an irreducible and reduced curve. By Lemma 4.1, we can write

P12|5 = λr2, Q9|5 = µu,

where λ,µ ∈ C \ {0}. Then we have

F1|5 = t2
+µsu, F4|5 = ws+ u2, F7|5 = rs2

−wu+ λtr2,

F2|5 = ut + sv, F5|5 = tw− uv, F8|5 = λµr2u− (vw+ str),

F3|5 = tv−µu2, F6|5 =−µuw+ v2, F9|5 = rsu− λvr2
+w2.

We work on the open subset U on which w 6= 0. Then 0 ∩U is isomorphic to the Z/11Z-quotient of the
affine curve

(λr2v+µ3rv6
− 1= 0)⊂ A2

r,v.

It is straightforward to check that the polynomial λr2v +µ3rv6
− 1 is irreducible. Thus 0 ∩U is an

irreducible and reduced affine curve. It is also straightforward to check that

0 ∩ (w = 0)= X ∩ (p = q = w = 0)= {pr , ps}.

This shows that 0 is an irreducible and reduced curve.
Let ϕ : (E ⊂ Y )→ (p ∈ X) be the Kawamata blowup and let 1̃ be the proper transform via ϕ of a

divisor or curve 1 on X . We show that D̃p ∩ D̃q ∩ E does not contain a curve. Consider the weight

w(p, q, s, t, u, v, w)= 1
6(1, 6, 1, 2, 3, 4, 5),
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which is clearly an admissible weight satisfying the KBL condition. We set gi = Fw
i (p, q, 1, s, t, u, v, w).

We have
g4 = (w+ p4)s− λq + u(u+ p2s),

g7 = s2
+ λt,

g8 = λµu− st,

g9 = s(u+ p2s)− λv.

Since E is isomorphic to the subvariety

(g4 = g7 = g8 = g9 = 0)⊂ P(1p, 6q , 1s, 2t , 3u, 4v, 5w),

it is straightforward to check that D̃p ∩ D̃q ∩ E consists of a finite set of points (in fact, 2 points). Thus
we have D̃p · D̃q = 0̃ since Dp · Dq = 0.

We have
D̃p ∼−ϕ

∗K X −
1
6 E, D̃q ∼−6ϕ∗K X −

e
6 E,

for some integer e ≥ 6 and hence

(D̃p · 0̃)= (D̃2
p · D̃q)=

1
7 −

e
30 < 0.

By [Okada 2018, Lemma 2.18], p is not a maximal center. �

#282 by C2 format. Let X be a quasismooth codimension 4 prime Fano 3-fold of numerical type #282
constructed in C2 format. Then, by [Coughlan and Ducat 2018, Example 5.5], X is defined by the
following polynomials in P(1p, 6q , 6r , 7s, 8t , 9u, 10v, 11w):

F1 = t R8− S6 Q10+ su,

F2 = tu−wS6+ sv,

F3 = r S2
6 − vR8+ u2,

F4 = t Q10− S6 P12+ sw,

F5 = rsS6−wR8+ uQ10,

F6 = rs2
− P12 R8+ Q2

10,

F7 = r t S6− vQ10+ uw,

F8 = rst −wQ10+ u P12,

F9 = r t2
− vP12+w

2.

Here P12, Q10, R8, S6 ∈ C[p, q, r, s, t, u, v, w] are homogeneous polynomials of the indicated degree.
In the following we assume that q ∈ S6, and then, we assume that S6 = q by a change of coordinates.

Lemma 4.3. Under the above setting, the following assertions hold:

(1) r2
∈ P12, v ∈ Q10 and t ∈ R8.

(2) X ⊂ P is well-formed.
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Proof. We have pr ∈ X and X is quasismooth at pr if and only if r2
∈ P12. Similarly, it is easy to check

that if v /∈ Q10 (resp. t /∈ R8), then X is not quasismooth at pv (resp. pr ). This proves (1). We leave the
readers to check that neither 52 nor 53 contain a surface, where 52,53 are those given in the proof of
Lemma 4.1, and this proves (2). �

Theorem 4.4. Let X be a quasismooth prime codimension 4 Fano 3-fold of numerical type #282 con-
structed by C2 format. We assume that q ∈ S6. Then X is birationally superrigid.

Proof. By Lemma 4.3, we can apply Proposition 3.3 and it remains to exclude the singular point p of type
1
6(1, 1, 5) as a maximal center.

The singular point p corresponds to the solution of the equation

p = s = t = u = v = w = S6 = 0,

and thus p= pr since S6 = q by our setting. We set C = {p, q} and 5=5(C).
We will show that 0 := 5∩ X is an irreducible and reduced curve. We have 5X ({p, q, r, s}) = ∅

(see the proof of Proposition 3.3). Hence 0 ∩ (s = 0) =5X ({p, q, s}) does not contain a curve and it
remains to show that 0 ∩Us is irreducible and reduced, where Us := (s 6= 0)⊂ P is the open subset. By
Lemma 4.3 we can write

P12|5 = λr2, Q10|5 = µv, R8|5 = νt,

for some λ,µ, ν ∈ C \ {0}, and we have S6|5 = 0. Note that Fi |5 = Fi |5(r, s, t, u, v, w) is a polynomial
in variables r, s, t, u, v, w and we set fi = Fi |5(r, 1, t, u, v, w). Let C ⊂ A5

r,t,u,v,w be the affine scheme
defined by the equations

f1 = f2 = · · · = f9 = 0.

Then 0 ∩Us is isomorphic to the quotient of C by the natural Z/7Z-action. We have

f1 = νt2
+ u, f4 = µtv+w, f7 =−µv

2
+ uw,

f2 = tu+ v, f5 =−νtw+µuv, f8 = r t −µvw+ λr2u,

f3 =−νtv+ u2, f6 = r − λνr2t +µ2v2, f9 = r t2
− λr2v+w2.

By the equations f1 = 0, f2 = 0 and f4 = 0, we have

u =−νt2, v =−tu = νt3, w =−µtv =−µνt4.

By eliminating the variables u, v, w and cleaning up the equations, C is isomorphic to the hypersurface
in A2

r,t defined by

r − λνr2t +µ2ν2t6
= 0,

which is an irreducible and reduced curve since µν 6= 0, and so is 0 ∩Us . Thus 0 is an irreducible and
reduced curve.
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Let ϕ : (E ⊂ Y )→ (p ∈ X) be the Kawamata blowup. We have e := ordE(Dq)≥
6
6 and ordE(Dp)=

1
6

so that we have

D̃q ∼−6ϕ∗K X −
e
6 E =−6KY +

6−e
6 E, D̃p ∼−ϕ

∗K X −
1
6 E =−KY .

We show that D̃q ∩ D̃p∩ E does not contain a curve. The Kawamata blowup ϕ is realized as the weighted
blowup at p with the weight

w(p, q, s, t, u, v, w)= 1
6(1, 6, 1, 2, 3, 4, 5),

which is an admissible weight satisfying the KBL condition. We have

Fw
4 =−λqr2

+ t (µv+ h)+ sw,

Fw
6 =−λµtr2

+ rs2,

Fw
8 = λur2

+ rst,

Fw
9 =−λvr2

+ r t2,

where we define h := Qw
10−µv. Note that h is a linear combination of up, tp2, sp3, r p4 and thus h is

divisible by p. It follows that E is isomorphic to the subscheme in P(1p, 6q , 1s, 2t , 3u, 4v, 5w) defined
by the equations

λq − t (µv+ h)− sw = λµt − s2
= λu+ st =−λv+ t2

= 0.

It is now straightforward to check that D̃q ∩ D̃p ∩ E = (p = q = 0)∩ E is a finite set of points (in fact, it
consists of 2 points). This shows that D̃q · D̃p = 0̃ since Dq · Dp = 0. We have

(D̃p · 0̃)= (D̃2
p · D̃q)= 6(−K X )

3
−

e
63 (E

3)= 1
7 −

e
30 < 0

since e ≥ 6. By [Okada 2018, Lemma 2.18] p is not a maximal center. �

5. On further problems

Prime Fano 3-folds with no projection centers. We further investigate birational superrigidity of prime
Fano 3-folds of codimension c with no projection centers for 5 ≤ c ≤ 9. There are only a few such
candidates, which can be summarized as follows.

• In codimension c ∈ {5, 7} there is a unique candidate and it corresponds to smooth prime Fano
3-folds of degree 2c+2. All of these Fano 3-folds are rational (see [Iskovskikh and Prokhorov 1999,
Corollary 4.3.5 or Section 12.2]) and are not birationally superrigid.

• In codimension 6 there are 2 candidates; one candidate corresponds to smooth prime Fano 3-folds of
degree 14 which are birational to smooth cubic 3-folds (see [Takeuchi 1989; Iskovskikh 1979]) and
are not birationally superrigid, and the existence is not known for the other candidate which is #78
in the database.
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• In codimension 8 there are 2 candidates; one corresponds to smooth prime Fano 3-folds of degree
18 which are rational (see [Iskovskikh and Prokhorov 1999, Corollary 4.3.5 or Section 12.2]), and
the existence is not known for the other candidate which is #33 in the database.

• In codimension 9 there is a unique candidate of smooth prime Fano 3-folds of degree 20. However,
according to the classification of smooth Fano 3-folds there is no such Fano 3-fold (see e.g., [Takeuchi
1989, Theorem 0.1]).

It follows that, in codimension up to 9, #33 and #78 are the only remaining unknown cases for birational
superrigidity (of general members).

Question 5.1. Do there exist prime Fano 3-folds which correspond to #33 or #78? If yes, then is a
(general) such Fano 3-fold birationally superrigid?

In codimension 10 and higher there are a lot of candidates of Fano 3-folds with no projection centers.
We expect that many of them are nonexistence cases and that there are only a few birationally superrigid
Fano 3-folds in higher codimensions.

Question 5.2. Is there a numerical type (in other words, graded ring database ID) #i in codimension
greater than 9 such that a (general) quasismooth prime Fano 3-fold of numerical type #i is birationally
superrigid?

Classification of birationally superrigid Fano 3-folds. There are many difficulties in the complete clas-
sification of birationally superrigid Fano 3-folds. For example, we need to consider Fano 3-folds which
are not necessarily quasismooth or not necessarily prime. We also need to understand subtle behaviors of
birational superrigidity in a family.

Question 5.3. Is there a birationally superrigid Fano 3-fold which is either of Fano index greater than 1
or has a nonquotient singularity?

Remark 5.4. By recent developments [Pukhlikov 2019; Suzuki 2017; Liu and Zhuang 2019], it is known
that there exist birationally superrigid Fano varieties which have nonquotient singularities at least in very
high dimensions. On the other hand, only a little is known for Fano varieties of index greater than 1
(see [Pukhlikov 2016]) and there is no example of birationally superrigid Fano varieties of index greater
than 1.

We concentrate on quasismooth prime Fano 3-folds. Even in that case, it is necessary to consider those
with a projection center, which are not treated in this paper. Let X be a general quasismooth prime Fano
3-fold of codimension c. Then the following are known:

• When c = 1, X is birationally superrigid if and only if X does not admit a type I projection center
(see [Iskovskikh and Manin 1971; Corti et al. 2000; Cheltsov and Park 2017]).

• When c = 2, 3, X is birationally superrigid if and only if X is singular and admits no projection
center (see [Iskovskikh and Pukhlikov 1996; Okada 2014a; Ahmadinezhad and Zucconi 2016;
Ahmadinezhad and Okada 2018]).
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With this evidence we expect the following.

Conjecture 5.5. Let X be a general quasismooth prime Fano 3-fold of codimension at least 2. Then X is
birationally superrigid if and only if X is singular and admits no projection centers.
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