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We construct two small resolutions of singularities of the Coble fourfold (the double cover of the four-
dimensional projective space branched over the Igusa quartic). We use them to show that all Ge-invariant
three-dimensional quartics are birational to conic bundles over the quintic del Pezzo surface with the
discriminant curves from the Wiman—Edge pencil. As an application, we check that Ge-invariant three-
dimensional quartics are unirational, obtain new proofs of rationality of four special quartics among them
and irrationality of the others, and describe their Weil divisor class groups as Ge-representations.
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1. Introduction

Consider the projectivization P> of the standard permutation representation of the symmetric group S
over an algebraically closed field k of characteristic zero, and the invariant hyperplane P* given by the
equation

X1+x2+x3+x4+x5+x6=0 (1.1)

therein, where xi, ..., xg are homogeneous coordinates in 5. Consider the classical family of Gg-
invariant quartics X,, t € KU {o0}, in this hyperplane defined by the equations

(xl +x2 +x3 +x4 —i—xs +x6) t(x12+x§+x32+xf+x52+x§)2 =0; (1.2)
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studied in [Beauville 2013]. Every Gg-invariant quartic in P* is one of the quartics X,; moreover, most
of these quartics have automorphism groups isomorphic to Gg, and every quartic threefold with a faithful
Ge-action is isomorphic to some X, (see Lemma 3.4). We refer to these quartics as Gg-invariant quartics.

Every quartic X, is singular along a certain 30-point orbit Y39 C P* of the group G (see Section 3.1),
and X3 coincides with Sing(X,) unless ¢t = oo or ¢ is in the finite discriminant set

. 1 1 1
D:={3.7.5

}. (1.3)

3~

For these special values of ¢ the singular locus of X; is even larger (see Theorem 3.3 for its detailed
description).

The quartic X /4 that corresponds to the parameter t = 4—1‘ is particularly interesting. Its equation can be
written as

(xi‘+x§+x§+x2+x§+xé)— %(x%+x%+x§+xf+x52+x§)2 =0 (1.4)

inside the hyperplane (1.1). It is called the Igusa quartic. The Igusa quartic is singular along a union of 15
lines (that itself forms an interesting configuration CR, called the Cremona—Richmond configuration).
In this sense, X4 is the most singular of all Ge-invariant quartics, except for X, (which is a double
quadric, i.e., a quadric with an everywhere nonreduced scheme structure).

The quartic X, is known as the Burkhardt quartic. It has the largest symmetry group among the other
quartics in this family (with the exception of X,); see [Coble 1906] and Lemma 3.4. It also has many
other interesting properties; see for instance [Todd 1936; de Jong et al. 1990; Hunt 1996, Section 5].

The quartics X6 and X7,10 have been studied in [Cheltsov and Shramov 2016b], compare [Todd
1933; 1935; Cheltsov and Shramov 2014].

The double cover of P* branched over the Igusa quartic is called the Coble fourfold. We denote it
by # and write

T — p*

for the double covering morphism. The Coble fourfold can be written as a complete intersection in the
weighted projective space P(2, 1%) of the hyperplane (1.1) with the hypersurface

xg = (x} x5 + x5+ x5+ x5 +xg) — Alf(x12+x§+x32+xf+x52+x§)2, (1.5)

where x is the coordinate of weight 2. The Coble fourfold #  is singular along the Cremona—Richmond
configuration CR, because so is the Igusa quartic. Moreover, it has a big group of symmetries: it carries
an action of the symmetric group G¢ by permutation of coordinates

g (X() X1 X2 1X3:X4 X5 :x6) = (XO cXg(1) - Xg(2) - Xg(3) - Xg(4) - Xg(5) ng(())), (1.6)
and also the Galois involution o : % — % of the double cover

O(XQ X1 :X2:X3:X4:X5:X6):=(—X0:X1:X2:X3:X4:X5:Xg), (1.7)
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commuting with the symmetric group action. One can check (see Corollary 3.5) that they generate the
whole automorphism group

Aut(%) = Gg X 11,

where u, denotes the group of order 2. Sometimes it is convenient to twist the action of the symmetric
group by the Galois involution. The obtained action

8O (X0 X1 :X2:X3:Xx4:X5:X6) = (€(8)X0:Xg(1) : Xg(2) : Xg(3) : Xg(4) : Xg(5) : Xg(6))» (1.8)

where g € Gg and €(g) is the sign of the permutation g, is called the twisted action. In contrast,
the action (1.6) is called the natural action. It is important not to confuse between these two actions, so
we strongly recommend the reader to keep an eye on them. Note however, that the actions agree on the
alternating group 2l¢ C Gg. Similarly, if G is a subgroup of G, by the natural and the twisted action
of G on # we mean the restrictions to G of the natural and the twisted actions of Gg, respectively.

Recall that the group G¢ has outer automorphisms (in fact, the group Out(Sg) is of order 2; see for
instance [Howard et al. 2008]) characterized by the property that they take a transposition in G¢ to a
permutation of cycle type [2, 2, 2]; see Lemma 5.12 for other information about outer automorphisms. If
the image of a subgroup G C S under an outer automorphism is not conjugate to G, we call this image
a nonstandard embedding of G. For instance, we have nonstandard embeddings of &5, A5, &4 x G, etc.

The first main result of this paper is a construction of two small resolutions of singularities of the Coble
fourfold that are equivariant with respect to maximal proper subgroups of Gg; note that the rank of the
Ge-invariant Weil divisor class group of # (with respect both to the natural and the twisted action of G¢)
equals 1; see Corollary 5.4, hence there are no small resolutions of singularities of ¢ equivariant with
respect to the entire group G¢. The varieties %4 > and %5 | discussed below already appeared in [Farkas
and Verra 2016] in a slightly different context. A smooth quintic del Pezzo surface S is unique up
to isomorphism, and Aut(S) = Gs; see for instance [Dolgachev 2012, Section 8.5]; we fix such an
isomorphism.

Theorem 1.9. Consider the twisted Ge-action (1.8) on the Coble fourfold %'

(i) For every nonstandard embedding G4 x Sy — Gg there is an G4 x Sy-equivariant small resolution
of singularities
pa2: Yo =Blp, p p, p,(P*xP?) — %,

where Blp, p, p,. P, (P2 xP?) is the blow up of P> xP? at a general quadruple of points Py, Py, P, P3
in P? x P2,

(ii) For every nonstandard embedding Gs — Gg there is an Gs-equivariant small resolution of singular-
ities

ps1: %1 =Ps(wz) — ¥,

where S is the quintic del Pezzo surface and 74 is a vector bundle of rank 3 on S.
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(iii) The maps p42 and ps,| are isomorphisms over the complement of the Cremona—Richmond configu-
ration CR C % and are uniquely defined up to the Galois involution o of % over P* by the above
properties.

(iv) For every nonstandard embedding Gs — S¢ and every subgroup G4 C Ss there is a unique
Ga-equivariant small birational map 0, : %51 --+» %4 2 such that the diagram

Si—————— + %o
105,1\1 AZ
p @y pi (1.10)
S y P2

commutes, where p: % 1 = Pgs(%43) — S is the natural projection, py : % 2 — P2 x P2 — P2 is the
composition of the blow up with the first projection, and ¢ is the unique S4-equivariant birational

contraction S — P2.

The vector bundle %4 is described explicitly in Section 2.2.

The Coble fourfold is constructed from the Igusa quartic X4, but it turns out that it has a very
interesting property with respect to all Ge-invariant quartics. Since the pencil {X,} is generated by X /4
and the double quadric X ,, we have

XiaNX;=XooNX; foranytg{%,oo}.

Hence the restriction of X,4 to X, has multiplicity 2, so that the double cover 77 : % — P* splits over X;.
In other words, 7~ (X,) is the union of two irreducible components that are isomorphic to X, and are
swapped by the Galois involution (1.7). It is natural here to replace the parameter ¢ in the pencil with the
new parameter T defined by

2+1
t= , 1.11
2 (1.11)
and define the subvarieties 2, C % C P(2, 1°) by (1.1), (1.5), and the formula
T
x0+§(x12+x%+x§+xf+x52+x§)=0. (1.12)

Note that 27 C ¢ is fixed by the natural action of Gg, but is not fixed by the twisted action. This trivial
observation leads to various reductions of groups of symmetries.
With this definition of 27 we have an equality (see Lemma 3.12)

JT_I(X(TZ+1)/4) = % U %—T-

The map o: 27 — 2~ is an isomorphism and the map 7 : 27 — X(;241),4 is an isomorphism for
all T # 00. The map 7 : 2o — (Xoo)red 18 the double covering branched over (Xoo)rea N X1/4. Thus,
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the threefolds £ have the same singularities as the quartics X, (except for Z5, which becomes smooth
away from the Gg-orbit X39; see Remark 3.13).
We consider the preimages of the divisors 27 in the small resolutions %5 ; and % ,:

2= 01 (20), 2= 0p,(20). (1.13)

Because of the mixture of the natural and the twisted action, the natural groups of symmetries of the
maps 0s 1 : 3&@5’1 — 27 and pg7: 3&;4’2 — 27 (that is, the groups with respect to which these maps are
equivariant) get smaller. In particular, for 7 # 0, co the first of them reduces to 2(5 and the other to

As0:= (64 x G) NAg = G4.
Our second main result is the following. Recall the discriminant set © defined in (1.3).
Theorem 1.14. The maps
psa: 20— 2 and  pag: 270 — 2%
are birational contractions for all T, and are small for T # 0. Similarly, the maps
mopsi: 20 = Xgapys and wopsn: 277 = Xy

are birational contractions for all T # 0o, and are small for T # 0, 0o. Moreover, %5’1 is smooth (and

thus ps.1 is a small resolution of singularities of Z) unless
_ 241
4

The above maps are equivariant with respect to the following group actions:

t en.

‘ P5,10rTTOLPs 1 4,2 0F T O P42
T ;é 0, (0. ¢] 9[5 Ql4’2

tT=00rt=00 Ss G
where all subgroups of G¢ are nonstandard and the action is twisted.

We use the above results to construct an interesting (birational) conic bundle structure on the quartics X,
as follows. The fourfold %5 | = Ps(%4) by definition comes with a P2-fibration p: %1 — S over the
quintic del Pezzo surface S. We consider its restriction to the threefolds %5’1 C %5.1. We show that the
maps

p: 5&”3 T8

are 2s-equivariant conic bundles (and for 7 = 0, co they are Ss-equivariant). We also discuss their
properties, and identify their discriminant curves in S with the Wiman—Edge pencil (see Section 3.2 for
its definition and the choice of parametrization) of 2As-invariant divisors from the linear system |—2Kg]|.

All this is combined in our third main result. Recall that a flat conic bundle 2" — § is called standard
if both 2" and S are smooth and the relative Picard rank p(%2"/S) equals 1.
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Theorem 1.15. The map p: %5’1 — S is a flat conic bundle, equivariant with respect to the group s
(for T =0, oo it is Gs-equivariant). It is a standard conic bundle unless
241
=
4

Its discriminant locus is the curve Agy C S from the Wiman—Edge pencil, where

en.

‘E3—‘L'

s(@ = 57243

(1.16)

for an appropriate choice of the resolution ps .

We apply the above results in several ways. First, we prove unirationality of G¢-invariant quartics X,
(see Corollary 4.2). Further, we give a new and uniform proof of rationality and irrationality of the
quartics X,. For t ¢ ® irrationality follows from the description of the intermediate Jacobian of a resolution
of singularities of X, via the Prym variety arising from the conic bundle; see Theorem 4.4. For t € © we
show that the conic bundle can be transformed birationally into the product S x P!, hence X is rational;
see Theorem 4.6. Finally, we describe the class groups CI(X;) of Weil divisors of the quartics X, as
Ge-representations (see Theorem 5.1), and discuss G-Sarkisov links centered at these quartics for some
subgroups G C G¢. We also prove unirationality and irrationality of the threefold 2%, and describe its
class group as an G¢g X p,-representation.

The plan of our paper is the following. In Section 2 we construct the resolutions of the Coble fourfold %
and prove Theorem 1.9. In Section 3 we discuss the conic bundle structures on the Gg-invariant quartics
induced by the resolutions of the Coble fourfold, and prove Theorems 1.14 and 1.15. In Section 4 we
prove rationality and irrationality of the quartics X;, and in Section 5 we describe the G¢-action on their
class groups. In the Appendix we discuss the Cremona—Richmond configuration CR = Sing(X/4) of 15
lines in P* and show that such configuration is unique up to a projective transformation of [P*.

Throughout the paper k denotes an algebraically closed field of characteristic zero; however, many
constructions do not use the assumption that the field is algebraically closed. By u,, we denote the cyclic
group of order n. Furthermore, we denote by

Gniny = 6ny X Gy CSpyyn, and Ay, = Anyn, NSp; 0y C Anjpny (1.17)
the subgroup of &, ,, that consists of permutations preserving the subsets of the first 7 and the last n;
indices, and its intersection with the alternating group A,,,+,, C G;,4n,. Note that 2,5 » = &, _».
2. Small resolutions of the Coble fourfold

Recall that the fourfold % is defined by (1.5) as the double cover of P* (considered as the hyperplane (1.1)
in P?) branched over the Igusa quartic (1.4). It comes with the natural and the twisted actions of the
symmetric group Sg; see (1.6) and (1.8), the double covering 7: % — P* and its Galois involution
o:% — %;see (1.7), commuting with both actions of Gg.
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The fourfold # has been studied by Coble [1915; 1916; 1917]. He showed that % is a compactification
of the moduli space of ordered sets of 6 points in the projective plane. A modern treatment of % has been
given in [Dolgachev and Ortland 1988; Matsumoto et al. 1992; Hunt 1996; Howard et al. 2008]; see also
[Bauer and Verra 2010]. In particular, Dolgachev and Ortland [1988] proved that % can be obtained as
the GIT-quotient (??)®/ SL3(K) with respect to the diagonal action of SL3(K). In [Clingher et al. 2019]
the variety # came up in the study of moduli spaces of K3 surfaces. Hunt [1996] called it the Coble
variety (he also denoted it by #). In the current paper we prefer to call ¢ the Coble fourfold.

Since the Coble fourfold # is singular, it is interesting to construct its resolution of singularities that
would be natural from the geometric point of view. One interesting resolution was provided by Naruki
[1982]; see also [Hacking et al. 2009; Dolgachev et al. 2005, Section 2]. It has plenty of important
properties due to its interpretation as a moduli space of cubic surfaces. However, it is quite big (it has a
horde of exceptional divisors). On the other hand, one can observe that the variety % has non-Q-factorial
singularities, so we can hope to have a nice small resolution (i.e., with exceptional locus of codimension 2).

In this section we construct two small resolutions of singularities of #/; one is equivariant with respect
to the subgroup G4 2 C S¢ and another is equivariant with respect to the subgroup &5 C Sg. Note that
in both cases a nonstandard embedding of the subgroup is used (equivalently, a standard embedding is
composed with an outer automorphism of Gg) and in both cases we consider the twisted action of G on #/.

2.1. Blow up of P*> x P2. Let W3 be the irreducible three-dimensional representation of the symmetric
group G4 with the nontrivial determinant, i.e., a summand of the four-dimensional permutation repre-
sentation. Explicitly, W3 = R(3, 1) in the notation of [Fulton and Harris 1991, Section 4.1]. Choose a
G4-orbit of length 4

(P, Pi, P>, P3} C P(W3) = P2

In appropriate coordinates such quadruple can be written as
Phb=(1:1:1), Pi=(1:0:0), P,=(0:1:0), P3=(0:0:1). (2.1)

Denote by
PiPiCP(W3), 0<i<j<3,

the line passing through the points P; and P;.
Consider the diagonal action of G4 on P(W3) x P(W3) and the diagonal quadruple

P ={Py, P, P>, P;} CP(W3) xP(W3), P;=(P,P).

Note that P is an G4-orbit. The vector space W3 ® W3 can be regarded as a representation of the
group Gy 2; see (1.17), where G, acts diagonally and the nontrivial element of &, interchanges the
factors. The linear span of the points P; in P(W3 ® W3) induces an embedding of the permutation
representation k* of &4 (with the trivial action of &,) into W3 ® W3. We denote by

Ws = (W3 ® W3)/k* (2.2)
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the quotient five-dimensional representation of G4 5. Note that as a representation of Gy it is the direct
sum Ws|g, =R(2,2) ®R(2, 1, 1); here we again use the (standard) notation oi [Fulton and Harris 1991,
Section 4.1].

The linear projection W3 ® W3 — W3 induces a rational map

T42: P(W3) X P(W3) = P(W3® W3) --» P(W5s).

Note that the center of this projection is the linear span of the orbit P in P(W3 ® W3), which intersects
P(W3) x P(W3) exactly by P. Therefore, to regularize the map 774 » we should consider the blow up %4 »
of P(W3) x P(W3) in the quadruple P

D2 := Blp, py. by, (P(W3) x P(W3)) £ P(W3) x P(W3) (2.3)

with B being the blow up morphism. This induces a commutative diagram:

();// < (2.4)

P(W3) x P(W3) = — — == = = 5 P(W5)

By construction the fourfold #; » is smooth and carries a faithful action of G4 5. The above diagram is
G4 2-equivariant.

We are going to show that the map 74 : %4>, — P(Ws) defined by the diagram (2.4) factors through
the Coble fourfold; more precisely, 74 » factors as a composition

Yo L2 7 T P(Ws),

with p4 2 being a small G4 >-equivariant resolution of singularities. We accomplish this in two steps.
First, consider the linear projection

P(W3) x P(W3) < P(W3 @ W3) --»

from the linear span of the points Py, P>, and Ps; as before, the latter linear span intersects P(W3) x P(W3)
exactly by the triple Py, P>, P3. If (u; : us : u3) and (v; : v; : v3) are homogeneous coordinates on the
first and the second factors of P(W3) x P(W3) such that (2.1) holds, this map is given by

((u1 U u3), (l)l U2 v3)) = (u2v3 CU3V1 T UV D U3V D UVR I/tzvl), (2.5)

and it is easy to describe its structure. We denote by yy, ¥2, y3, 21, 22, and z3 the homogeneous coordinates
on P>, so that the right-hand side of (2.5) is the point (y; : y2:¥3:21:22:23).



Coble fourfold, Gg-invariant quartic threefolds, and Wiman—Edge sextics 221

Lemma 2.6. The linear projection P(W3) x P(W3) --» P3 with center in the span of the points Py, P>, P3

induces an &3 »-equivariant commutative diagram

Blp, p,, P, (P(W3) X P(W3))

/ K

PW3)xP(W3) — — — — — — — — — — — — — — — — — >, —— P
where B’ is the blow up, %’ 5 C P> is a singular cubic hypersurface given by the equation

Y1Y2¥3 = 212223, 2.7)
and /OA’LZ is a small birational contraction. The map ,04’”2 contracts
e the proper transforms of the six planes P(W3) x P; and P; x P(W3), 1 <i <3, and
o the proper transforms of the three quadrics P,_PJ x PiP;,1<i< Jj <3,

onto nine lines L;;, 1 <1, j <3, given in P> by the equations

w=zu=0, k#i, l#].

Moreover, P:;,z is an isomorphism over the complement of the lines L;;. Finally, the map /OA’L2 o ()
takes the point Py to the point Pg=(1:1:1:1:1:1) € @4”2.
Proof. The map is toric, so everything is easy to describe. We skip the actual computation which is
straightforward but tedious. 0

The cubic fourfold (2.7) is known as Perazzo primal, [Dolgachev 2012, Exercise 9.16; Looijenga 2009,
Section 6].

Using the equation (2.7) one can easily check that the union of the nine lines L;; is the singular locus
of the cubic % ,.

The second step is to project the cubic %{2 from the point P;.

Lemma 2.8. The linear projection 7} ,: %/, --» P(Ws) from the point Py defines a regular map
my 5 Bl P, (%)) — P(W5s) that fits into a commutative diagram

4
P42

Blpy (%) @
F &‘ / (2.9)
, 2
Yy m e + P(Ws)

where % is the Coble fourfold, w: % — P(W5s) is the double covering, and ,04/(’2 is a small birational
morphism. Furthermore, the exceptional locus of py , is the union of proper transforms of the six

planes I1,, C %{2 given by the equations

i =Yw@), 1<i<3,
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indexed by all bijections w: {1, 2,3} — {1, 2, 3}; the map ,04’(’2 contracts them onto six lines in % (i.e.,
rational curves that are isomorphically projected to lines in P(Ws)), and is an isomorphism over the

complement of those.

Proof. Note that the point P is a smooth point of the cubic @4/’2, so the projection from it factors through
a double covering of P(W5s); in fact, this is the Stein factorization for the morphism nj(’ ,- We have to
identify its branch divisor with the Igusa quartic.

Take a point

Yitz)=On:y2:¥3:21:22:23)

in ® which is different from P;. The line M(,,..,) in P(W5) passing through the point (y; : z;) and the
point P can be parametrized as

My, ={(A+puyr: A+ py2: A+ puys : A+ pzr A+ pzz 0 A+ uzz)l, (2.10)

where A and p are considered as homogeneous coordinates on this line. Substituting this parametrization
into (2.7), we see that the intersection of M(,,..,) with the cubic %, is given by the equation

A+ uyD) A+ uy2)(A + wys) = (A + pz1) (A + nz2) (A + ©z3).

Expanding both sides and canceling the factor u that corresponds to the intersection point P}, we can
rewrite the above equation as

(51(9) — $1(2)A% + (52(¥) — $2(2) A+ (53(y) — 53(2))u? =0, (2.11)

where s; denotes the elementary symmetric polynomial of degree d. Restricting (2.11) to the hyperplane

yi+yn+ytzi+z22+z3=0, (2.12)

which is identified by the linear projection ﬁﬁu from the point P with the space P(W5s), we obtain
the equation of the double cover over P(Ws) we are interested in (embedded into the projectivization
of the vector bundle Op(ws) ® Opws)(—1) over P(Ws)). The branch divisor of 7 , is given in the
hyperplane (2.12) by the discriminant of the quadratic (2.11)

(52(3) — 52(2)* —4(s1(y) — $1(2)) (53 (y) — 53(2)) = 0. (2.13)

Let us show that the quartic X” C P* defined by equations (2.12) and (2.13) is isomorphic to the Igusa
quartic; this will identify the double covering with the Coble fourfold in a way respecting the projection
to P4, that is, ensuring that the upper right triangle in diagram (2.9) is commutative.

To do this we use the following substitutions:

xi=y1—300)+ 311, xu=z1+3510) - 3512),
=y —350)+151), xs=z22+315100) — 351(2), (2.14)

x3=y3—35100) +351(2), Xe=z3+351(y) — 351(2).
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They express the composition of the projection 77, , with a particular identification of its target space P(Ws)
with the hyperplane (1.1) in P°. A direct verification shows that substituting these expressions into (1.4)
of the Igusa quartic we get (2.13). This proves that (2.13) is isomorphic to the cone over the Igusa quartic
with the vertex at the point P;, hence its intersection with (2.12) is isomorphic to the Igusa quartic.

Finally, we describe the exceptional locus of the projection nj(’ ,- Clearly, it is the union of those
lines M(y,;;) that are contained in the cubic %} ,, i.e., the subvariety of those points (y; : z;) for which (2.11)
is identically zero. This condition can be rewritten as

$1(y) —51(2) = $2(y) — $2(2) = 83(y) —53(2) =0

Of course, this is equivalent to (y; : z;) € I1,, for some permutation w. Thus the exceptional locus is
the union of the proper transforms of the planes IT,,. Each of these planes passes through P, hence is
contracted onto a line in P* = P(W5s). O

Remark 2.15. There is also a computation-free way to identify the branch divisor X" of the map 7 , with
the Tgusa quartic. Indeed, note that the singular locus of X” contains 15 lines (the images of the 9 singular
lines L;; of %f , and the images of the 6 planes IT,,), then check that they form a Cremona-Richmond
configuration (e.g., by using Theorem A.8), and then apply Corollary A.14.

Remark 2.16. Using (2.11) it is easy to write the (birational) involution of the double covering 6?/4/’2 ——»P*
explicitly. Indeed, choose a point (y; : z;) = (y1: ¥2 : y3: 21 : 22 : Z3) on the cubic @4’ , C P> different
from P(;. Using the parametrization (2.10), we see that the point (y; : z;) corresponds to A = 0. Keeping
in mind that s3(y) = s3(z) at our point (y; : z;), and finding the second root of the (2.11) in A/u, we
conclude that the involution of the double covering @4”2 --» P* is given by

i 2 zi) = ((51(y) = s1(2)yi — (52() —52(2)) : (51(¥) — 51(2))zi — ($2(y) — 52(2)))- (2.17)
Furthermore, the induced birational involution of P(W3) x P(W3) can be written as

0420 (1 :uz:uz), (v :v2:v3))
V) — U3 U3 — Vg V1 — VU2 Uy —us usz —uj up—uy
> — . , . — i (2.18)
((det(v; b)) det(i:vl) " det() gg)) (det(vg v) det(i:vl)  det(! zg)))

to see this one can just compose (2.5) with (2.17) and observe that it gives the same result as a composition

of (2.18) with (2.5). Similarly, we deduce from (2.13) that the ramification divisor of the map 74, is
given by the equation

§2(u2v3, uzvy, u1v2) = $2(U3v2, UIV3, UVY),

that can be compactly rewritten as
Uiv] UV U3V3
det( i ) —0. (2.19)

V1 v2 U3

This gives a determinantal representation of a threefold birational to the Igusa quartic.
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Combining the results of Lemmas 2.6 and 2.8 we obtain a commutative diagram

ﬂ/
P(W3) x P(W3) «——— Blp, p, p,(P(W3) x P(W3)) ¢——— %

| o) 1

ﬂ//

Tap | - - %/2 Blp, (%/2) (2.20)
4.2 P
Lo I
P(Ws) < i v

where the upper right square is Cartesian and the composition %4 » — P(W3) x P(W3) of the upper
horizontal arrows is the blow up map .

Proposition 2.21. The linear projection w4 2: P(W3) x P(W3) --+» PP(Ws) with center in the span of the
points Py, P, P>, and P5 gives rise to a commutative diagram

/ 742 / (2.22)

P(W3) x P(W3) = — — ~2 = = 5 P(W5)

where p4 3 is a small resolution of singularities defined uniquely up to a composition with the Galois
involution o : % — %. The map p4 > contracts

o the proper transforms of the eight planes P(W3) x P; and P; x P(W3), 0 <i <3,
e the proper transforms of the six quadrics P,_P] X P,_PJ 0<i<j<3, and
e the proper transform of the diagonal P(W3) — P(W3) x P(W3),

and is an isomorphisms on the complement of those. Moreover, the morphism 14 5 induces a nonstandard
embedding G42 — Gg such that p4 s is G4 2-equivariant with respect to the twisted action of G4, on %'

Proof. We define the map p4 » as the composition of the right vertical arrows in (2.20). Its uniqueness up
to o is evident. We note that the composition
pazo B P(W3) x P(W3) --» & C P(2, 1°)

can be defined by explicit formulas:

X0 = —UIU3VIV2 — UU2V2V3 — UU3VIV3 + U UV V3 + UQU3V V2 + U U3VLV3,

x1 = 5 (uav3 — 2u3v1 — 2u1v2 + U3V + U3 + Uzvy),

Xy = %(—21421)3 +u3vy — 2uv2 +uzvy + uv3 +urvy),

X3 = $(—2uv3 — 2u3vy + u1vs + u3vy + U1 vs + usvy), (2.23)

X4 = 3(uav3 + u3vy + u1vz + uzvy — 2u1v3 — 2unv1),

X5 = %(sz3 +uzvy +uvy —2u3vy +u1v3 — 2uvy),

X6 = %(uzv_z 4+ uzvy +uiva — 2uzvy — 2u vz + upvy).
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Indeed, xq defines in % the ramification divisor of the map m, hence its pullback to P(W3) x P(W3)
coincides (up to a scalar) with the equation (2.19) of the ramification divisor of 74 >. The pullbacks
of x1,...,x¢ are given by the composition of (2.14) and (2.5), which gives the required formulas.
Substituting those into (1.5), we see that the scalar in the formula for xg is £1. So, (2.23) gives one of
the two maps p4 2, while the other sign choice gives o o p4 2.

For the description of the exceptional locus of ps4 2 we combine the results of Lemmas 2.6 and 2.8 with
the simple observation (using (2.5)) that the map ,02’2 of ~! from (2.20) takes the two planes P(W3) x Py
and Py x P(W3) to the planes IT,,, where w are cycles of length 3; takes the three quadrics PyP; x PyP;
to the planes I1,,, where w are transpositions; and takes the diagonal to IT,,, where w is the identity
permutation.

The space W5 by definition (2.2) comes with an G4 action, such that the map w4 2: %2 — P(Ws)
obtained by resolving the indeterminacy of the linear projection 742 is G4 2-equivariant. It follows that
its branch divisor, which was shown to be the Igusa quartic X4, is invariant under this action. On the
other hand, it is well known that Aut(X,4) = S¢ (this follows for instance from [Finkelnberg 1987,
Section 3; Hunt 1996, Proposition 3.3.1]; see also Lemma 3.4 below). Thus, we obtain an embedding
64,2 —> 66.

Moreover, for every element g € G4 5 the conjugation of the diagram (2.22) by g gives a diagram of
the same form. Since p4 » is uniquely defined up to o, we obtain an equality

1 _ k@)

gopsnog 0 04,2,

where k: G40 — Z/27 is a group homomorphism. Using the explicit expression for xg provided by (2.19)
it is easy to see that transpositions in the group &4, change the sign of x¢. This means that k is the
homomorphism of parity G¢ — Z/2Z restricted to G4 2, which means that the map p4 5 is equivariant
with respect to the twisted action (1.8) of G¢ on %

Finally, to show that the embedding G4, < G¢ is nonstandard, we use (2.23) to observe that
transpositions in G4 2 go to permutations of cycle type [2, 2, 2] in G¢. Alternatively, we could notice that
the restriction of the representation (1.1) with respect to a standard embedding &4 <— G¢ decomposes as
a direct sum of three irreducible representations of G4 (see (5.11) and Lemma 5.12), while (2.2) is the
sum of two irreducibles. g

Let us emphasize again that there are exactly two maps pa4 2 that fit into commutative diagram (2.22):
the first is given by (2.23) and the second is obtained by its composition with o, i.e., by the change of
sign of xo. The particular choice (2.23) will lead us to a particular choice of the map ps | in the next
subsection.

We write down here a simple consequence of Proposition 2.21 concerning the Weil divisor class group
of the Coble fourfold.

Corollary 2.24. One has Tk C(#) = 6.
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Proof. Since the map p42: %2 — % is a small resolution of singularities, it induces an isomorphism
Cl(#') = Pic(#4.2), and since %} 7 is the blow up of P2 x P2 in 4 points, its Picard rank equals 6. O

In Theorem 5.1 we will describe the action of the group G4 x u, on Cl(#) ® Q.

Remark 2.25. For each three-element subset I C {1, ..., 6} denote by Ic{l,..., 6}its complement.
Consider the hyperplane H; C P* defined in (1.1) by the equation

in = 0. (2.26)

Note that H; = Hj. In the terminology of the Appendix these are the ten jail hyperplanes (A.5) of the
Cremona—Richmond configuration. The preimage of H; on % splits as the union of two irreducible
components. Indeed, consider the subvariety 7 C ¢ defined by the (2.26) together with the equation

xo + %(22;& - le.2> =0. (2.27)

iel iel
Then it is easy to check that
Y (Hy) =77 (Hy) = 75 U o4

An even easier way to see this splitting is provided by the morphism p4 ». Indeed, using formulas (2.23)
one can check that the preimages on P2 x P? of the six hyperplanes Hiy4, Hios, Hi34, Hize, Hass,
and Hjsg are divisors given by equations

(1 —u3z)vo=0, wui(va—v3)=0, wu3z(vy—vy)=0,

(U —u3z)vi =0, (U1 —ux)v3=0, wuz(vyi—v3)=0,

respectively. Each of these divisors is a union of two irreducible components, and each component is the
product P; P; x P2 or P> x P; P; for appropriate i and j. Note that the action of G4 on the set of all
twelve of these irreducible components is transitive. For each I denote

A = p ().

Therefore, if I is one of the above six triples or one of their complements, then ,3(%”,4’2) is one of the
above twelve components, hence these divisors %”14’2 form a single G4 »-orbit.

Similarly, formulas (2.23) show that the preimages on [P x [P? of the remaining four hyperplanes
Hy23, Hys6, Haa6, and Higs are irreducible divisors singular at the points Py, P, P>, and P3, respectively.
This means that for each of the above four triples / the preimage T, 21 (Hy) of Hy on % 5 consists of two
irreducible components, one of them being the exceptional divisor of the blow up g over the corresponding
point P,. A straightforward computation shows that

42 42 42 42
Ay Hser s Hags
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are the exceptional divisors, while

4,2 4,2 4,2 4,2
Hises  Mzas Hsss K
are the proper transforms of irreducible divisors from P2 x P2,
Using the above observations we can write down the resolution p4 > as a blow up. Set

42 40 42 42 42 42 40 42 42 42
AT =gy + Hsg + Hoge + 45, and AT = 50+ Hogy + A5 + A -

Then the divisor —jff 2 s B-ample. Since rk Pic(%,z)e“-2 =2 by definition (2.3) (indeed, the group G4 >
acts transitively on the set { P;, P>, P3, P4} and swaps the factors of P(W3) x P(W3)) the divisor %ﬁf 2
is ps4p-ample, so that the divisor —j‘ff’z is also p42-ample. We conclude that the small birational
morphism p4 > is the blow up of the Weil divisor 756 + 534 + 35 + 26 on #'. Note that the other
choice of an &4 »-equivariant small resolution of singularities of ¢/, that is, the morphism o o p4 2, is the

blow up of the Weil divisor J#{,3 + H#is¢ + 346 + H345 on ¥

2.2. P2-bundle over the quintic del Pezzo surface. In this section we construct another resolution of the
Coble fourfold, using geometry of the quintic del Pezzo surface. Before explaining the construction, we
start with recalling this geometry (we refer the reader to [Dolgachev 2012, Section 8.5; Cheltsov and
Shramov 2016a, Section 6.2] for more details).

Let S be the (smooth) del Pezzo surface of degree 5. Recall that S can be represented as the blow up
of P2 in four points (in five different ways), and one has Aut(S) = Gs. The vector space H 0¢s, a)gl) is
the unique irreducible six-dimensional representation of G5 (corresponding to the partition (3, 1, 1) in the
notation of [Fulton and Harris 1991, Section 4.1]); see [Shepherd-Barron 1989, Lemma 1]; in particular,

1

this representation is invariant under the sign twist. Moreover, the anticanonical line bundle wy " is very

ample and defines an &5-equivariant embedding
S P =PHS, 05")Y)

such that S is an intersection of five quadrics in P°. The five-dimensional space of quadrics passing
through S in P? is an irreducible representation of Gs; see [Shepherd-Barron 1989, Proposition 2]. We
denote by

Ws:= HY (P, I5(2))" (2.28)

its dual space. Later, we will identify this space with the space defined by (2.2).

Below we consider the Grassmannian Gr(2, WSV) = Gr(3, Ws) of two-dimensional vector subspaces
in WY (respectively, three-dimensional subspaces in Ws) and denote by % and %; the tautological
rank 2 and rank 3 subbundles in the trivial vector bundles on this Grassmannian with fibers W; and Ws,
respectively.

The following result is well known.
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Lemma 2.29. There is an Ss-equivariant linear embedding P> ¢ P(A3Ws) such that
S =Gr(3, Ws) NP’ C P(A*W5)

is a complete intersection of the Grassmannian Gr(3, Ws) with P>,

Proof. We use the technique of excess conormal bundles developed in [Debarre and Kuznetsov 2018,
Appendix A]. Since S is an intersection of quadrics, the composition

WY ® Ops — I15(2) — (Is/13)(2)

is surjective. The conormal sheaf N, Sv/ps =g/l § is locally free of rank 3 on S, hence the above surjection
induces an Gs-equivariant map S — Gr(3, W) such that the pullback of the dual tautological bundle %"

from Gr(3, Ws) to S is isomorphic to (Is/] 52)(2). By adjunction formula we have

det(Is/13) = wps), @ wy ' = det(WY) @ 0§ @ g ',
hence
det((Is/13)(2)) = det(WY) ® wg !,

hence the pullback of Og3,ws) (1) = det(%3v) to § is isomorphic to det(WSV) ® a)gl. The induced map
AYWY = HO(Gr(3, Ws), Gaiaws) (1) — HO(S, det(WY) ® w5 ') = det(WY) ® H(S, wg')

is Gs-equivariant and surjective (since the target space is an irreducible Gs-representation). Moreover,
since the Gs-representation H°(S, a)gl) is invariant under the sign twist, the above composition defines
an embedding

P> =P(H(S, wg")Y) — P(A*Ws)

such that S C Gr(3, Ws) NP>, It remains to show that this embedding of S is an equality.

Since Gr(3, Ws) C P(A3Ws) is cut out by Pliicker quadrics that are parametrized by the space
WY ® det(WY), we obtain a map (where the first isomorphism takes place by [Debarre and Kuznetsov
2018, Proposition A.7])

WY ®@det(WY) = HY(P(A*Ws), Igiaws) (2) — HO(P?, I5(2)) = WY (2.30)

which by construction commutes with the natural Gs-action. It is nonzero since Gr(3, Ws) does not
contain P>, hence it is an isomorphism by irreducibility of Ws. Since S is an intersection of quadrics, it
follows that S = Gr(3, Ws) N [P>. O

Remark 2.31 (cf. [Shepherd-Barron 1989, Corollary 3]). In (2.30) we obtained an Gs-equivariant
isomorphism WY ®det(WJ) =W This allows to identify W as the (unique) irreducible five-dimensional
representation of &5 with det(Ws) being trivial. It corresponds to the Young diagram of the partition (3, 2)
in the notation of [Fulton and Harris 1991, Section 4.1].
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We denote the restriction of the tautological bundles %5 and %4 to S also by % and %3. The tautological
embeddings %, — W5v ® Os and 73 — W5 ® Os induce &s-equivariant maps

Ps(%) — P(WJ) and Pgs(%) — P(Ws).
Below we describe these maps explicitly. We start with the first of them.

Lemma 2.32. The image of the map @ : Ps(%) — P(WY) is the Segre cubic hypersurface in P(W3) = P4,
and Ps (%) provides its small Ss-equivariant resolution of singularities.

Proof. Let us describe the fiber of @ over a point of P(WY). Thinking of such a point as of a four-
dimensional subspace Uy C W3, we conclude that

@ ' ([Us]) = Gr(3, Us) NP° € Gr(3, Ws) NP> = S.

Since Gr(3, Uy) = [P3, this intersection is a linear space contained in S, hence either is empty, or is a
point, or is a line. Conversely, if L C § is a line, then

WL =0L® 0L (—1)

because %," is globally generated with det(%,") = a)gl. Moreover, the section

L=Pp(O) = Pr(nl|L) — Ps(%)

of the projection P (%>|1) — L is contracted by the map @ . This proves that @ contracts precisely the
exceptional sections over the ten lines of S, hence the image

Z =@ (Ps(%)) C P(WY)

is a hypersurface with ten isolated singular points and the map P5(%,) — Z is a small resolution of
singularities. On the other hand, since det(%5) = ws, it follows that

Wps(2) = @ Opawy) (—2).

Since the map Pg(%) — Z is small, we have wz = ﬁp(w;)(—2)|z, so that Z is a cubic hypersurface.
It remains to notice that the only three-dimensional cubic with ten isolated singular points is the Segre
cubic; see e.g., [Dolgachev 2016, Proposition 2.1]; alternatively, one can deduce this from the fact that
the group &s acting in the irreducible five-dimensional representation W< has a unique cubic invariant,
which must thus define the Segre cubic. O



230 Ivan Cheltsov, Alexander Kuznetsov and Konstantin Shramov

Remark 2.33 [Dolgachev 2016, Section 2; Prokhorov 2010, Proposition 4.6]. The relation of the quintic
del Pezzo surface S and the Segre cubic threefold Z extends to an Gs-equivariant diagram

Mo,e
Blsu(PH)« - - — - — - - Ps(%)
p3 \ Z / S = ./\70,5

Here M, is the moduli spaces of stable rational curves with n marked points, the left outer diagonal
arrows provide its Kapranov’s representation (the lower left arrow is the blow up of five general points
on P?), the right outer diagonal arrows compose to the forgetful map My ¢ — My s, the inner diagonal
arrows contract ten smooth rational curves each (and provide two &s-equivariant small resolutions of Z),
and the dashed arrow is a flop in these curves.

The above diagram can be thought of as an G5-Sarkisov link from the Mori fiber space Ps(%,) — S
to P3 centered at Z; see Section 5.1 below for explanation of terminology. It is natural to ask what is the
Gs-Sarkisov link starting from Pg(%3) — S. We will see in diagram (2.48) below that it is a symmetric
link centered at the Coble fourfold #'.

So, we consider the projectivization Pg(%43) of the rank 3 bundle %3 and denote it by

%51 :=Ps().

The embedding %3 < Ws ® s induces an Gs-equivariant diagram

%1
/ R (2.34)
S

P(Ws)

where p is the natural projection % | = Pg(%3) — S, and 75| is the composition of the embedding
%1 — S x P(Ws) with the projection to the second factor. In particular, the restriction of the map p to
any fiber of 75 ; is an isomorphism to its image. This allows to consider every fiber

Sw =15 | (w)

of the map 75,1 as a closed subscheme of S. In the next lemma we describe these subschemes.

For each point w € P(W5s) denote by Ws/w the four-dimensional quotient of the space W5 by the line
in W5 that corresponds to w. Every two-dimensional subspace in Ws/w gives (by taking preimage) a
three-dimensional subspace in W5 containing w. This allows to consider Gr(2, Ws/w) as a subvariety
of Gr(3, W5s).
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Lemma 2.35. The fiber S, of the map ns | over a point w € P(Ws) can be described as
S = Gr(2, Ws/w) NP> C Gr(3, Ws) NP> = 8.
In particular, S, is either a zero-dimensional scheme of length 2, or a line, or a conic.

Proof. The first equality is obvious. Consequently, S,, is a linear section of the four-dimensional
quadric Gr(2, W5/w) of codimension at most 4. So, if §,, is zero-dimensional, it is a scheme of
length 2. Furthermore, if S, is one-dimensional, it is either a line or a conic. It remains to notice
that dim S, < dim S = 2 since S is irreducible. Il

Our goal is to describe the map 75 1 in (2.34). We start by presenting some surfaces in %5 | contracted
by it. Recall that S contains 10 lines. Recall also that %4 is a subbundle in the trivial vector bundle with
fiber W5 over S, so that %5 ; is a subvariety in S x P(W5s).

Lemma 2.36. For every line L C S there is a unique line L’ C P(W5s) such that for the surface Ry = L x L'
one has
Rp C %1 CSxP(Ws). (2.37)

In particular, the map s | contracts Ry, onto the line L'. Moreover, if L1 # L, are distinct lines on S

then the corresponding lines L, L’2 C P(Ws) are distinct as well.

Proof. Since L is a line on Gr(3, Ws), there is a unique two-dimensional subspace U, C W35 such that
L Cc P(Ws/U,) C Gr(3, Ws). Then for every point [Uz] of L we have U, C Us, thatis, U, ® 01 C 24|,
hence

LxPUy)=Pr(U,®OL) CPs(%)=%5.

Thus, the line L' = P(U,) C P(W5s) has the required property.
Furthermore, for any two-dimensional subspace U, C W35 the intersection

P(Ws/Uz) NS =P(Ws/Up) NP?

is a linear space contained in S, hence is either empty, or a point, or a line. In particular, two distinct
lines L and L, on S cannot correspond to the same subspace U, C W5, hence the corresponding lines L
and L} in P(Ws) are distinct. O

As we already mentioned, a quintic del Pezzo surface is classically represented as the blow up of P? in
four general points. Let ¢: S — P2 be one of such blow up representations with exceptional divisors Eq,
E\, E;, and E3. Denote by e; their classes in Pic(S), and by ¢ the pullback of the line class from P2 to S,
so that

Ks~—=30+ey+e+er+es.

The line bundle &s(£) defines the contraction ¢: S — P2 and the line bundle &5(2¢ — ey — e] — €2 — €3)
defines a conic bundle ¢: S — P!. The combination of ¢ and ¢ defines an embedding

Ox@: 8> P> xP!
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whose image is a divisor of bidegree (2, 1). Moreover, the composition of ¢ x ¢ with the Segre
embedding P? x P! < P is the anticanonical embedding of S, therefore we have an exact sequence of
normal bundles

0 — Ng/prupt = Ngjps = Np2ypijpsls — 0. (2.38)
The first of these bundles is isomorphic to
P Op(2) ® P Op1 (1) = O5(4L —eg — €1 — €3 — e3),

and the second is isomorphic to %3 (6¢ — 2eg — 2e; — 2ey — 2e3) by the proof of Lemma 2.29. The third
vector bundle in (2.38) can be computed as follows: We denote by Jp» the tangent bundle of P".

Lemma 2.39. For any positive integers m, n we have Npn ypn jpmntmn = Fpn K Fpn.

Proof. Let A and B be vector spaces of dimension m + 1 and n 4 1 respectively. Tensoring pullbacks
to P(A) x P(B) of the Euler sequences

0— Opay > AQ Opay(1) = Ipay — 0 and 00— Oppy — BQ Opp)(1) — Ipi) — 0,
we obtain an exact sequence

0— Opayxp) > A® Opayxps) (1, 0) ® B ® Opayxps)(0, 1)
— A® BQ Opayxpp)(1, 1) = Tpay X Ip) — 0.

Comparing it with the restriction to P(A) x P(B) of the Euler sequence
0— OpayxpB) > AQ B Opayxpy(1, 1) = Ipaen)IPpayxp) — 0

of P(A ® B) and with the pullbacks of the Euler sequences of P(A) and P(B), we obtain an exact

sequence
0 — prp(4) Tp(a) ® Pip(s) TpB) = TpaeB)Pa)xps) = Tp) W Tps) — 0,
where prp 4, and prpp) are the projections, which proves the lemma. O

Applying Lemma 2.39 in the case m =2, n = 1, we see that the third bundle in (2.38) is isomorphic to
¢ (Tp2) @ ¢" (Tp1) = 9" Tp2 ® O5(4L —2e0 — 2e1 — 2e3 — 2e3).

So, twisting the normal bundle sequence (2.38) by the line bundle &s(—6£€ + 2eg 4 2e; + 2e; 4 2e3) we
obtain

0—> Os(—20+ey+er+er+e3) > U —> o (Fp2(—2)) > 0 (2.40)

Denote by r,: § — Pg(%;3) the section of the projection p induced by the first map in (2.40).
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Lemma 2.41. There is a line 'y C P(W5s) and a commutative diagram

S L pys)

|

r,C—— P(Ws)

that identifies the line I', with the base of the conic bundle ¢. In particular, for any w € I'y the
fiber Sy, = n;ll (w) is a conic from the pencil @.

Proof. By definition of r,, the composition
5107y S — p(Ws)

is given by the line bundle O5(2¢ — ey — e} — e2 — e3) on S, hence factors as the projection ¢ followed
by a linear embedding. This proves that we have the required diagram. Moreover, it follows that for
every w € I the fiber 75 11 (w) contains a conic from the pencil ¢. By Lemma 2.35 the fiber coincides
with this conic. O

For each contraction ¢: S — P? (recall that for a quintic del Pezzo surface S there are five such
contractions), define the surface

Ry, =71,(S) CPs(%), (2.42)
so that the map 75 1 contracts it onto the line I'y, C P(W5).

Lemma 2.43. The five lines Iy C P(Ws) corresponding to the contractions ¢: S — P2 are pairwise
disjoint. Moreover, for each ¢ the line Ty, is distinct from the lines L' C P(W5s) associated with lines L
on S in Lemma 2.36.

Proof. If w is a common point of the curves I, and I'y/, then by Lemma 2.41 the fiber S, is a conic that
belongs to the corresponding pencils ¢ and ¢’, hence the pencils coincide, hence ¢ = ¢'.

Assume that I'y, = L', where L’ is associated with some line L C S as in Lemma 2.36. By Lemma 2.36
we have L C S, for each w € L' =T, and by Lemma 2.41 when w runs over I, the curves S,, run over
the corresponding pencil of conics @. So, the assumption we made implies that every conic in the pencil
contains the line L, which is absurd. U

Now we are ready to prove the main result of this subsection.

Proposition 2.44. The Gs-equivariant morphism ms 1: %1 — P(Ws) gives rise to a commutative
diagram

P51
5.1 x

/ ) / (2.45)

S P(Ws)
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where % is the Coble fourfold, w: % — P(Ws) is the double covering, and ps.1 is a small resolution of
singularities, defined uniquely up to composition with the Galois involution o : % — % . Furthermore,
the exceptional locus of ps 1 is the union of 15 irreducible rational surfaces {Rp}rcs U{Ry},. s p2, such
that:

o R = P! x P'; each of these surfaces is contracted by p onto the line L C S and by ms.| onto the
line L' C P(W5s).

* R, = S withthe map p: R, — S being an isomorphism and with the map 7s 1|r, being the conic
bundle ¢: R, — Ty, over the line Iy C P(W5s).

Moreover, the morphism 15 1 induces a nonstandard embedding G5 — G¢ such that ps .1 is Ss-equivariant
with respect either to the natural or to the twisted action of Gs on %'

Using a compatibility result from Proposition 2.50, we will show in Section 2.4 that ps is Gs-
equivariant with respect to the twisted action of a nonstandard &s.

Proof. By Lemma 2.35 the map 75,1 is generically finite of degree 2. Denote by R C %5 ; the ramification
locus of the morphism 75 1: %51 — P(Ws5) and by B =75 1 (R) C P(W5) its image. Let us show that B
is the Igusa quartic. For this we show that B is projectively dual to the Segre cubic Z = w (Ps(%));
see Lemma 2.32.

Indeed, by Lemma 2.35 we know that B is the locus of w € P(W5s) such that S, is either a double
point or a curve. On the other hand, w defines a hyperplane P(w') C P(WY) in the dual projective space,
and

@ (ZNPw™) =Ps(2) xpwy) P(w™)

is a relative hyperplane in the P!'-bundle Pg(%:) — S. Moreover, the zero locus of the corresponding
section of %," is precisely the scheme S,,. If S,, is zero-dimensional then by [Kuznetsov 2016, Lemma 2.1]
we have

o (ZNPw™)) =Bly, (9),

and if it is one-dimensional, then @ ~!(Z N P(w')) contains the surface Ps, (%5]s, ), hence is reducible.
Thus, @ ~!(Z NP(w')) is singular if and only if w € B. Since the singular points of Z are nodes, and o
resolves them, it follows that B is the projective dual of Z. Hence B = X4 is the Igusa quartic (see
[Hunt 1996, Proposition 3.3.1]).

It follows from Lemma 2.35 that the map 75 1 is an étale double cover over P(W5s) \ B, and that the
Stein factorization of the map ms | provides a (unique up to o) decomposition

U L 7 T P(Ws),

where ps 1 is a birational map.
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Let us show that ps5 ; is small. Indeed, since det(%3) = ws, it follows that
a)%l = JTS*’lﬁn:D(ws)(—?)) = ,O;lﬂ*ﬁ[p(ws)(—:S). (2.46)

On the other hand, 7 is a double covering branched over a quartic, hence one has wy = 7% Opw;)(—3).
Thus wa , = pZ @, i.e., the map ps 1 is crepant. Since %5 1 is smooth it follows that the map ps 1 is an
isomorphism over the smooth locus of ¢/, hence the exceptional locus of ps ; is contained in

P51 (Sing(#) = 75 | (Sing(X 1)) = 75} (CR),

i.e., in the preimage of the Cremona—Richmond configuration of 15 lines. But by Lemma 2.35 the fibers
of 75,1 are at most one-dimensional, hence dim(n; 11 (CR)) < 2. This proves that ps 1 is small.

Next, let us show that
751 (CR) = (U R(p) U (U RL>. (2.47)
¢ L

By Lemmas 2.36 and 2.41 the surfaces R; and R, are contracted onto the union of ten lines L and five
lines Iy, in P(W5s), which are pairwise distinct by Lemmas 2.36 and 2.43. Therefore

CR = (U r(p) U (2UL’).
@ L
It remains to show that for any w € I'y, or w € L' the fiber §,, = s, 11 (w) is contained either in R, or
in Ry. If w € Ty, this is proved in Lemma 2.41. Now take w € L’. By Lemma 2.36 we have L C S,,,
hence by Lemma 2.35 the curve S, is either the line L (hence S,, C Ry) or a conic (hence S,, C R, for
appropriate ¢). This proves (2.47).

The vector space W5 by definition (2.28) comes with a natural Gs-action, and, moreover, the map
75,1 %5,1 — P(Ws) is Gs-equivariant. It follows that its branch divisor B = X /4 is invariant under this
action. This gives an embedding &5 — Aut(X/4) = S C Aut(#), such that for every element g € Ss
the conjugation of the diagram (2.45) by g gives a diagram of the same form. Therefore, one has

k@

gopsi10g 0051,

where k: G5 — Z/27 is a group homomorphism. If it is trivial, then ps ; is equivariant with respect to
the natural action, and if k is the homomorphism of parity, then ps ; is equivariant with respect to the
twisted action (as we mentioned above, we will show in Section 2.4 that k is indeed the homomorphism
of parity).

To show that the embedding G5 < Gg is nonstandard we use the same argument as in the proof of
Proposition 2.21. The restriction of the five-dimensional representation (1.1) to the image of a standard
embedding &5 — G4 decomposes as a direct sum of two irreducible representations (see Lemma 5.12),
while the Gs-representation W5 is irreducible by (2.28) and [Shepherd-Barron 1989, Proposition 2]. [J
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Similarly to the case of p4 », the morphism ps ; is not uniquely defined even when the corresponding
nonstandard subgroup Gs is fixed. Moreover, there is a commutative diagram

P 100051

—————— + %51
/ \ / \ (2.48)
0ops,|

Here Ps. i 00 o ps,1 is a small birational map. In fact, we know that rk Pic(S)®s = 1; see for instance
[Cheltsov and Shramov 2016a, Lemma 6.2.2(i)]; this means that

rk C1(%5 1) = rk Pic(%5,1)5 =2,

and therefore rk Pic(#)®s = 1. The latter implies that ps 1 and o o p5 1 are the only Gs-equivariant small
resolutions of singularities of % and that p5_ % o0 o ps 1 is an Ss-flop. Consequently, the diagram (2.48) is
an Gs-Sarkisov link between two copies of the Mori fiber space %5 1 — S centered at % (see Section 5.1).

Remark 2.49. Recall the notation of Remark 2.25. Denote
A = p3 (),

SO that one has s, 1(H 1) = 75, 1(H ) = j‘fs Ty %5 ! One can check that ten out of twenty divisors
% lc %; 1 are the preimages of lines on S via the map p, and the other ten are relative hyperplane
sections for p (this decomposition is the orbit decomposition for the action of Gs5). We denote by ,%ﬁ
the sum of the divisors of the first type, and by > the sum of the divisors of the second type. The
divisor jﬁf 1is the p-pullback of an ample divisor on S, hence it is p5 1-ample. Consequently, —>" s
ps.1-ample, hence the small birational morphism ps ; is the blow up of the Weil divisor ps | (j‘f_s’l) on%.
See Remark 2.57 below for an explicit description of this blow up.

2.3. Compatibility of resolutions. In this section we relate the resolutions %, > and %5 ; of the Coble
fourfold. Recall that the first of them is associated with a nonstandard embedding G4 7 < Gg, and the
second is associated with a nonstandard embedding Gs < G¢. Note that each (standard or nonstandard)
subgroup &4 C G¢ can be extended to a subgroup G42 C S¢ and such extension is unique. Indeed,
the second factor G, in G4 = G4 x Gy is just the centralizer of G4 in G4. Recall also that for
each G4 C G5 = Aut(S) there is a unique S4-equivariant contraction ¢ : § — P? of the quintic del Pezzo
surface S onto the plane.

Proposition 2.50. Let G5 «— Gg be a nonstandard embedding. Choose a subgroup &4 C Gs and
let G4 C B¢ be its unique extension. Let pao: Yo — % be the Gaz-equivariant resolution of
singularities constructed in Proposition 2.21 and let ¢ : S — P? be the unique S4-equivariant contraction
of the quintic del Pezzo surface. Then there is a unique Ss-equivariant resolution ps1: %1 — % as
in Proposition 2.44 and a unique S4-equivariant small birational map 0,: % | --+ %4 » such that the
diagram (1.10) is commutative.
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Of course, if ps 1 is fixed, there is only one 6; such that the inner triangle in the diagram (1.10)
commutes, namely, 6] = ,04_’ ; o ps.1. But it is a priori not clear why the outer square commutes. So, to
prove Proposition 2.50 we move in the opposite direction: we first construct #; such that the outer square
commutes, and after that check that the inner triangle commutes for this 6; and for an appropriate choice
of ps,1.

We start with some notation and a lemma. Let ¢: S — P2 be the G4-equivariant contraction, and,
as before, denote by Eg, E|, E», and E3 the exceptional divisors of the blow up ¢, by e; their classes
in Pic(S) and by £ the pullback of the line class of [P?. Recall also the rank 3 bundle %3 on S.

Since %3V is globally generated and det(%SV) |E, = a)gl |E, = OF, (1), we have

WU\, = O, ® O, ® O, (—1).

Therefore, we have a canonical surjective morphism %3 — 0, (—1) of sheaves on §. The sum of these
morphisms gives an exact G4-equivariant sequence

3
0> &— % —> @Ok (-1)—>0 (2.51)
i=0

and defines a rank 3 vector bundle & on S equivariant with respect to Gy.

Lemma 2.52. One has & = 05(—£)®3.

Proof. Consider the composition of the embedding
Os(—2+ep+e1+ex+e3) = s

from (2.40) with the projection %3 — O, (—1). If it is equal to zero, then the map %3 — O, (—1) factors
through a map ¢*(9p2(—2)) — O, (—1). But the sheaf ¢*(Fp2(—2)) restricts to E; trivially, hence no
such map exists. This contradiction shows that the composition is nontrivial. But since

Os(=2L+eg+e1 +ex+e3)|g = O, (—1),

any nontrivial morphism Os(—2¢ 4 ep 4 e; + €2 + e3) — Of,(—1) is surjective. Therefore, the sum of
these morphisms Os(—2¢+eg+e; +ex+e3) —> @1.3:0 Ok, (—1) is surjective, hence its kernel is 0g(—2¢)
and we have a commutative diagram

0 —— O5(=20) —— Os(—20+eg+e1 +ex+e3) —— @y Ok, (—1) —— 0

| | |

0 & A P;_y O (—1) ——0

Taking into account (2.40), we see that the first column extends to an exact sequence

0— O5(—=20) > & —> ¢*(Ip2(—2)) — 0. (2.53)
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It remains to show that it coincides with the pullback of a twist of the Euler sequence on P2, Since
the pullback functor ¢* is fully faithful, and the Euler sequence is the unique nonsplit extension of 2
by Op2, it is enough to show that (2.53) is nonsplit.

Assume on the contrary that there is a splitting ¢*(Ip2(—2)) — &. Composing it with the embedding
& — 94, we obtain a splitting ¢*(Ip2(—2)) — %3 of (2.40). It induces an embedding

S xp2 FI(1, 2; 3) = Ps (@™ (Fp2(—2))) — Ps(%) = % 1,
such that its composition with 5 1 coincides with the projection
S xp2 FI(1,2; 3) — FI(1, 2; 3) — (P?)V.
But this contradicts the fact that ps 1 is a small contraction. ]

Proof of Proposition 2.50. Let us construct the map 6;. Let V| be a three-dimensional vector space such
that the target plane of ¢ is P(V}). We can choose an isomorphism

ap: P(Vi) — P(W3)

such that the points of P(V}) to which the divisors E; are contracted by ¢ go to the points P; of P(W3)
defined by (2.1). Note that such an isomorphism is unique and S4-equivariant.

Next, let V, be the three-dimensional vector space such that & = V, ® 0s(—£). Note that the
space Vo, = H (S, £(¢)) has a natural structure of an G4-representation, and the above isomorphism
& =V, ® Os(—L) is G4-equivariant. Under this identification the first map in (2.51) becomes an
G4-equivariant embedding of sheaves

Vo ® Og(—0) == a4, (2.54)

which is an isomorphism away from the union of E;. Its dual map extends to an exact G4-equivariant

sequence
3

0— 2" £5 vy ® 05(0) — @ 0x, — 0. (2.55)
i=0
The second map defines four linear functions on V,’, i.e., four points on P(V;). We can choose an
isomorphism

az: P(V2) — P(W3)

such that these points go to the points P; of P(W3) defined by (2.1). Again, such an isomorphism is
unique and G4-equivariant.

Now we put all the above constructions together. The morphism & defined by (2.54) induces a birational
map

S x P(Vy) Z Pg(Va ® Os(—0)) 2> Ps(%3) = %5 .
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We define 6, as the composition
—1 . —1
%51 55 S x P(Vy) £55 P(V) x P(Va) 2292 P(W3) x P(W3) os 245,

where the last map is the inverse of the blow up (2.3). Clearly, 6, is birational and G4-equivariant, since
all the maps used in its definition are. Finally, its composition with p; equals ¢ o p by construction, hence
the outer square in (1.10) commutes.

Next, let us show an equality of the maps

40601 =75 (2.56)

from %5 1 to P(Ws). For this, consider the diagram

Py, P, P, P
WY ® O WY @WY @0y — B gy o
H ;l(azv@a.v) ‘
HO(S,£Y)
WY ® 0 VY ® VY ®os Dio s
L] l
u) VY ® O5(t) Bio 7,

Here the bottom line is (2.55), the middle line is obtained from it by passing to global sections and
tensoring with Oy, and the maps between these lines are induced by evaluation of sections (hence the
lower squares commute). The top line is obtained by identification (2.2), the upper-right square commutes
by definition of o and ;. Therefore, there is a unique identification of the spaces W in this diagram
(note that the one in the top line is defined by (2.2), while the other is defined by (2.28)) such that the
upper-left square commutes. From now on we use implicitly the induced identification of the spaces Ws.

As a result of this commutativity two morphisms WY ® 0s — V,’ ® 0s(¢) in the diagram coincide.
One of them induces the rational map

S x P(Vy) 25 %% 1 2205 P(Ws),
and the other induces the rational map
S x P(Vs) L9 pvy) x P(Vs) 22925 P(W3) x P(W3) 7425 P(Ws);

the map ¢ appears here because all the global sections of ¢5(£) are pullbacks via ¢. So, we have an
equality of rational maps

Tap0(ap Xxan)o(p xid) =ms510&

from S x P(V,) to P(Ws). Composing it with the map £ ~! on the right and using (2.4) and the definition
of 6, we deduce the required equality (2.56).
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From (2.56) we further deduce an equality
7T o(psp001) =m4p006) =751.

Hence, the composition p4 2 06} provides one of the two possible factorizations ps | of the morphism 75 ;.
This shows that for one of the two choices of ps 1, the inner triangle in (1.10) is commutative. O

It is worth noting that if we want to replace the map p; in the diagram (1.10) by another projection p;
and preserve its commutativity, we will have to replace the subgroup G5 containing &4 by the unique
other such subgroup (more precisely, we will have to replace the embedding &5 < G4 with the one
obtained from it by a conjugation with the factor G, in G45).

Remark 2.57. Recall the notation of Remarks 2.25 and 2.49, and assume that we are in the situation
of Proposition 2.50: the resolution p4 1 is defined by (2.23) and the resolution ps ; is such that the
diagram (1.10) commutes. Then we have

S 501 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1

A = Mgy + Hse T Hje + Hys + Higy + Hze + Higs +Hys + Hose + M

S0 50 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1

A = Hyse + A5y + Hiss + Ay + Hse + s + Hijs + Aoz + A5 + H5s -
Consequently, ps. is the blow up of the Weil divisor

Hase + s + 35 + Ao + Hise + Has + Hae + Hze + Hza + Hos
on%.

2.4. Proof of Theorem 1.9. In Proposition 2.21 we constructed the morphism p4 » for some nonstandard
subgroup &4, C Gg, and checked that it is G4 2-equivariant for the twisted action and small. To
construct p4 » for any other nonstandard embedding, we may use a conjugation by an appropriate element
of G¢. This proves assertion (i).

Similarly to the above, in Proposition 2.44 we constructed a morphism ps ; for some nonstandard
embedding G5 — Gg (and the same trick as above then gives ps ; for any other nonstandard G5 C Gg) and
checked that it is small. Moreover, the compatibility isomorphism 6; was constructed in Proposition 2.50;
by the way it proves assertion (iv).

Furthermore, we checked that the morphism ps | is &s-equivariant with respect either to the natural or
to the twisted action of G5 on #'. To show that the action is twisted, we use Proposition 2.50. Choose a
subgroup G4 C Gs, a transposition g € G4, and consider the commutative diagram (1.10). Since 6; is

1

G4-equivariant and g o pg 208~ =0 0 p42 (as p42 1s equivariant with respect to the twisted action), we

have

gopsi08 '=gopsr00i08  =gopir08 0 =00ps200=00ps,1,

hence ps 1 is equivariant with respect to the twisted action as well. This completes the proof of assertion (ii).

Finally, recall that we checked in Propositions 2.21 and 2.44 that p4 7 and ps ; are isomorphisms over
the complement of the Cremona—Richmond configuration CR = Sing(X/4) C P4, This gives the proof
of assertion (iii) and completes the proof of Theorem 1.9. O
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3. Conic bundle structures on Sg-invariant quartics

Recall the pencil {X;} of Gg-invariant quartics defined by the (1.2) inside the hyperplane P* C P>
given by (1.1). In this section we discuss the conic bundle structures on the quartics X; induced by the
resolutions of the Coble fourfold.

3.1. Sg-invariant quartics revisited. We start by collecting some facts about automorphism groups
of X, their singularities and class groups.

Let CR be the Cremona—Richmond configuration of 15 lines with 15 intersection points; see the
Appendix. The intersection points of the lines of CR form the orbit

Ti5={g - 2:2:=1:—-1:-1:-1) | g € G¢}.
Besides this, we consider also the orbits

S ={g-G:—=1:=1:—1:—-1:-1)]| g € Sg},

To={g-(1:1:1:=1:=1:=1) |ge&¢,

Tis={g-(1:-1:0:0:0:0) | g € S},

T={g-(:1:0:0: v’ | & € Ge},

where w is a primitive cubic root of unity and the lower index on the left-hand side stands for cardinality
of the orbit. We note that

Ti5s CCR, X30CCR, (ZgUXjpUX;5)NCR=2.
Remark 3.1. The quartic X, defined by (1.2) with t = 0o is the quadric O given by the equation
x12+x%+x32+xf+x52+x§=0 (3.2)
taken with multiplicity 2. Note that
QcNYis =9, QoNCR = X3,
and the intersection is transversal.

The singularities of the quartics X, have been described by van der Geer [1982] in terms of these orbits.
Recall the discriminant set © defined by (1.3).

Theorem 3.3 [van der Geer 1982, Theorem 4.1]. One has

t tgDU{oo} t=75 t= ua

=
10
Sing(X;) %30 CR  X30UXis X30UXjp 230U

=

=
AN—

In particular, X, is normal if t # oo.

Moreover, all singular points of the quartics X, are nodes provided that t # zlt’ 0.

One can describe automorphism groups of the quartics X;.
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Lemma 3.4. The following assertions hold.:

(i) One has Aut(X1,7) = PSpy(F3), where F5 is the field of three elements.
(ii) One has Aut(X;) = &g provided that t ¢ {% oo}.

(iii) If X is a normal quartic hypersurface with a faithful action of the group S, then X is isomorphic to
one of the quartics X;.

Proof. Assertion (i) is well known; see e.g., [Coble 1906].

Take any ¢ # oco. Since the quartic X; is normal by Theorem 3.3, its hyperplane section is the
anticanonical class, hence the group Aut(X,) is naturally embedded into PGLs(k). Moreover, one
has &g C Aut(X;) by the definition of X,. It follows from the classification of finite subgroups of PGL5 (k)
that either Aut(X;) = G¢ or Aut(X,) = PSp,(F3); see [Feit 1971, Section 8.5]. But the group PSp,(F3)
has a unique invariant quartic hypersurface in P*, which is the Burkhardt quartic X, /2. This proves
assertion (ii).

Finally, assume that X is a normal quartic hypersurface invariant under some faithful action of the
group &g on P4, Using the classification of projective representations of the group &g we deduce that
this action comes from an irreducible five-dimensional representation of Gg; in fact, it is enough to look
at the classification of projective representations of the smaller group 2lg, which can be found for instance
in [Conway et al. 1985, page 5]. The latter Gg-representation is unique up to an outer automorphism and
a sign twist (cf. Lemma 5.12). This implies assertion (iii). O

Corollary 3.5. We have Aut(%') = Gg X W,.

Proof. The group on the right-hand side acts on # by (1.6) and (1.7), and the action is clearly faithful. It
remains to show that any automorphism of % belongs to this group. For this we note that the morphism
7. % — P* is defined by the ample generator of Pic(#). Indeed, rk Pic(%') = 1 by Lefschetz hyperplane
section theorem (see [Dolgachev 1982, Theorem 4.2.2]), because # is a hypersurface in the weighted
projective space P(2, 1°). The pullback of the hyperplane in P* via 7 is not divisible in Pic(%') by degree
reasons, and thus generates Pic(#'). Hence 7 is equivariant with respect to any automorphism of %. This
induces a homomorphism Aut(%#') — PGL5(K) whose kernel is generated by the Galois involution o .
The image of the homomorphism is the subgroup of PGLs(K) that fixes the branch divisor X4 of 7.
Moreover, the latter subgroup acts faithfully on X4, hence is contained in Aut(X,4) = Ge. O

For further reference we state here a description of the class groups of X;.

Lemma 3.6. The following table lists the ranks of the class groups of the quartics X;:

t t¢©U{OO} l:% l:% t:% =

=S

rk C1(X,) 6 1 16 11 7
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Proof. First, assume 1 ¢ D U{oo}. Let X, be the blow up of X, at its singular points. Then X, is smooth by
Theorem 3.3. Now the assertion follows from [Cynk 2001, Theorem 2] and [Beauville 2013, Lemma 2].
The cases t = % t= é, and 1 = 17—0, are discussed in [Kaloghiros 2011, Theorem 1.1(iii); Cheltsov and
Shramov 2016b, Sections 5-6].
Finally, consider the case t = }1. As it was already mentioned, the Igusa quartic X4 is projectively
dual to the Segre cubic threefold Z C P*. In fact, projective duality gives an Gg-equivariant birational
map Z --+ X1,4 that blows up 10 ordinary double points of Z and blows down the proper transforms

of 15 planes on Z; see e.g., the proof of [Prokhorov 2010, Lemma 3.10]. In particular, one has
tk C1(X1/4) =1k CI(Z) + 10 — 15,

and since the class group of the Segre cubic Z has rank 6 (see e.g., [Prokhorov 2013, Theorem 7.1]), we
obtain rk CI(X1/4) =1. O

In Theorem 5.1 we will describe the action of the group G4 on CI(X;) ® Q.

3.2. Wiman-Edge pencil. Consider the projective plane P? with homogeneous coordinates wy, wa,
and wj and the following two polynomials of degree six

= 2 22 2D 2
Do(wy, wr, w3) = (w; —w3) (w3 —wi)(w; —w3),

_ (3.7)
Do (wy, wy, w3) = w? + wg + wg + (w% + w% + w%)(w‘f + w‘z‘ + wg‘) — 12w%w§w§.

It is easy to see that the sextic curves on P> defined by these polynomials are singular at the following
four points

1:1:1), (A:—-1:-1), (=1:1:-1), (=1:—1:1), (3.8)
hence they induce a pair of global sections
Do, o € H(S, 05?)

of the double anticanonical line bundle on the blow up S of P? at the points (3.8), i.e., on the quintic del
Pezzo surface. By [Edge 1981] the section @, is invariant with respect to the action of Aut(S) = Gs,
while the @ is acted on by G5 via the sign character. Therefore, there is an Gs-invariant pencil of
2As-invariant curves A C S given by the equation

DPy+5Poy =0, s€kU{oo}. (3.9)

As we already mentioned, the curves A are double anticanonical divisors on S. We refer to the pencil (3.9)
as the Wiman—Edge pencil. It was studied in various contexts in [Wiman 1896b; Edge 1981; Inoue and
Kato 2005; Cheltsov and Shramov 2016a, Section 6.2; Dolgachev et al. 2018; Zamora 2018].

Theorem 3.10 [Edge 1981; Cheltsov and Shramov 2016a, Theorem 6.2.9]. The Wiman—Edge pencil
contains exactly five singular curves: Ao, A, /125> and A, =3 They can be described as follows:
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o Ay is the union of 10 lines on S; it has 15 singular points.
* Ay, =3 are unions of 5 smooth conics; each of these curves has 10 singular points.

o Ay, a5 are irreducible rational curves; each of these curves has 6 singular points.

Every singular point of any of these curves is a node. The group s acts transitively on the set of singular

points and on the set of irreducible components of each of these curves.

Remark 3.11. The curves Ap and A, in the Wiman—Edge pencil are not just 2s-invariant, but also
Gs-invariant. The first of them, as we already mentioned, is the union of 10 lines. The other one is a
smooth curve of genus 6 known as the Wiman’s sextic curve; see [Wiman 1896b; Edge 1981]; it should
not be confused with a smooth plane sextic curve studied by Wiman [1896a]. By construction, Ao, admits
a faithful action of the group Gs, and one can show that its full automorphism group is also Gs.

3.3. Preimages of Sg-invariant quartics in the Coble fourfold. Recall that the Coble fourfold # is
defined as a complete intersection in the weighted projective space (2, 1°) of the hyperplane (1.1) with
the hypersurface (1.5). It comes with a double covering 7 : % — P* over the projective space in which
the pencil {X;} of Gg-invariant quartics sits, and with the Galois involution o : # — % of the double
covering.

As in Section 1, we define a pencil of hypersurfaces 2; C # by (1.12). By definition each of the
varieties 27 is Gg-invariant with respect to the natural Gg-action. Moreover, 2y and 2, are invariant
under the whole group Aut(%) = Gg X i,.

Lemma 3.12. For every T # 00 we have
JT_I(X(12+1)/4) =2:UZ ¢,

and the involution o induces an Sg-equivariant isomorphism o : X; — Z_; for the natural action
of G¢. The map 7w: X — X (;241y4 Is an isomorphism for all T # 0o, and the map 7@ Zoo — Xoo
factors through the double covering over the quadric Qoo = (Xoo)red defined by (3.2) that is branched
over X140 Qoo. The map 7 is Sg X uy-equivariant for T = 0, 00 and Se-equivariant otherwise.

Proof. The hypersurface 7~ (X (r24+1y/4) C & 1s defined by the equation
(xf —i—x;‘ +x§ —|—)ch1 +x§ —i—xé — }T(tz + 1)(x12 —i—x% +x32 —|—x§ +x52 —I—xé)2 =0,
which in view of the equation (1.5) of % can be rewritten as
0= x(z) - 14—2()612 +x% +x§ +x§ +x52 +x€2))2
= (xo + %(x]2 +x22 —i—)c32 +x§ +x52 —|-x62)2)(x0 — %()cl2 +x§ —|—x32 +x‘% +x52 +x62)2).

Hence 7~ (X (r24+1y/4) 18 the union of 27 and 2 ;. The Galois involution o acts by xo — —xo, hence
defines an isomorphism between 27 and 2~.. To check that the map 7: 27 — X(;244)4 is an iso-
morphism, just use (1.12) to express xg in terms of other x;; plugging it into the equation of the Coble
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fourfold %', we deduce the equation of the quartic X;. For T = oo this of course does not work, but the
equations of 2, just give

X x3 x4 xf x4+ xd =xF — (f x5+ x5+ xf+Hxd +xd) =0
which defines a double covering of O, whose branch locus is XoN Qoo = X174 N Q.
The equivariance of the maps o and 7 is obvious. 0

Remark 3.13. The singular locus of 2, consists of the unique G¢-orbit of length 30 that is projected
by 7 to the Gg-orbit X3¢; see e.g., [Przyjalkowski and Shramov 2016, Section 6].

Now we say a couple of words about the Weil divisor class groups of the threefolds 2. Consider the
set

a 1 3
D:=10,x1, +——, +—¢, (3.14)
o145 ]

that is, the preimage of the discriminant set © defined in (1.3) under the map (1.11).

Lemma 3.15. The following table lists the ranks of the class groups of the threefolds 2+ :

5 — - =+ L —+3
T T€®D =0 t==#£I ‘L'_:I:ﬁ 1:_:|:\/g

tkCI(Z) | 6 1 16 11 7

Proof. If we assume that T 7 oo, then the assertion follows from Lemma 3.6 in view of Lemma 3.12.
For 7 = 0o we argue similarly to the proof of Lemma 3.6 (see the proof of [Przyjalkowski and Shramov
2016, Proposition 6.3]). Let Z4 be the blow up of 2, along its singular locus, i.e., the preimage of the
Sg-orbit T30; see Remark 3.13. Then 2 is smooth, and one proceeds as in [Cynk 2001, Theorem 2],
using the computation of [Beauville 2013, Lemma 2]. O

3.4. Pencil of Verra threefolds. We consider the pullbacks 27>'! and 2.*? of the threefolds 2; to the
resolutions %5 | and % > of singularities of the Coble fourfold, so that 3&”{5’1 C %, and 3{;4’2 C % 2 are
defined by (1.13). In the next section we will study the first of them, but now let us consider the second
one. We assume that the map p4 > is defined by (2.23).

To simplify the situation, we consider the images of the threefolds 3&”{4’2 with respect to the contraction
B:%or— P2 x P2 = P(W3) x P(W3), see Section 2.1. Define

5?;1,2 — ,3(%{4’2) C ﬂ:D2 X [FDZ.

As in Section 2.1 we use (] : us : u3) and (v; : va : v3) for coordinates on the factors of P x P2, and
let P; = (P;, P;) with P; defined by (2.1).

Below we consider divisors of bidegree (2, 2) in P2 x P2 (and call them Verra threefolds) as conic
bundles over the first factor. We write their equations as symmetric 3 x 3-matrices with coefficients being
quadratic polynomials in u1, us, u3. So, if g(u) = (g;;(u)) is such a matrix, the corresponding equation
is g(u)(v) :==)_qij(w)vjv; =0.
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Proposition 3.16. The subvariety 2 ;"2 C P? x P? is a Verra threefold given by the equation

qo() (V) + Tqoo(u)(v) =0, (3.17)
where
1 0 uz(uy —uy) uz(uy —u3)
qo(u) = 3 uz(up —uy) 0 uy(uz —uz) |, and (3.18)
up(uy —uz) wy(uz —uz) 0
1 4(u%—u2u3+u§) u3(u1+u2)—2u1u2—2u§ uz(u1+u3)—2u1u3—2u§
goo(t) = 3 u3(u1+u2)—2u1u2—2u§ 4(u%—u1u3+u§) ul(u2+u3)—2u2u3—2u%
ur(uy +uz) —2uuz — 2u% ui(uy +usz) — 2urusz — 214% 4(u% —ujuy+ u%)
(3.19)

Proof. By (1.12), the variety 2 3’2 is given by the equation xo = 0. Writing the formula for x¢ from (2.23)
in the matrix form, we get (3.18). Similarly, 2 &2 is given by the equation

%(xl2 +x3 +x3 +x7+x3+x3) =0,
Substituting expressions for x; from (2.23) and rewriting everything in the matrix form, we get (3.19).
Therefore, (3.17) is the same as (1.12). Il
Remark 3.20. Of course, one can cancel the common factor % in (3.18) and (3.19). However, we prefer
to keep it so that go(#)(v) and goc(#)(v) are the same as the two summands in (1.12).
Since the maps f: 24? — Z42and myp =mwopyn: 24— X (2414 are birational for all 7 # oo,
the projection p;: 242 — P? provides every (reduced) Gg-invariant quartic with a birational structure

of a conic bundle. Similarly, the map p;: 242 — P? provides a birational structure of a conic bundle
on the threefold 2%,. The explicit formulas of Proposition 3.16 allow to compute their discriminant loci.

Lemma 3.21. The discriminant curve of the conic bundle py: 2 1’2 — P? is the curve A, C P? defined

by the equation
(512 +3)Pp+ (2 — 1) D =0, (3.22)

where ®y and ®, are the sextic polynomials (3.7), and the coordinates (w; : wy : w3) are related

to (uy : uy : u3) by the formula
Uy =wy+ w3, uUy=wi+w3i, U3=w;+ w.
Proof. A straightforward computation shows that
12 det(go(u) + Tgoo (1)) = (57> +3) P + (1° — 7) Pos. O

The drawback of this conic bundle model is the lack of flatness. Indeed, it is easy to see that over
each of the points P; (see (2.1)) the matrix go(u) is identically zero, so the fiber of .2 3’2 over P; is the
whole P2, In the next subsection we check that using the resolution %5 ; of the Coble fourfold, we obtain
flat conic bundles.
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3.5. Pencil of conic bundles over the quintic del Pezzo surface. Recall that 3&”,5’1 C % is defined
in (1.13) as the preimage of the threefold 27 C % under the resolution ps51: %, — #%. For its
investigation it will be very convenient to use explicit formulas of Section 3.4. So, to benefit from those
we assume that we are in the situation of Proposition 2.50, i.e., a subgroup &4 C G5 and a nonstandard
embedding &5 — G are chosen, the choice of p4 is fixed as in (2.23), the map 6;: %5 | --» %2 is a
birational isomorphism for which the outer square of diagram (1.10) commutes, and ps | = p4,2 0 6;.

Remark 3.23. As we already discussed, for 7 # 0, oo the subvariety 27 is invariant with respect to
the natural action of G, while the map ps |: % — % is equivariant with respect to the twisted
action of &s C G. As a result, the subvariety 2.>! C #>! is only invariant under the action of the
subgroup 2As N S5 = 2As, on which the two actions agree. Similarly, the projection ps 1 : %;5’1 — 2 1s
only 2As-equivariant. On the other hand, for T = 0 or t = oo, the subvariety 2.>'! C % is &s-invariant
and the map ps,| is Gs-equivariant.

Lemma 3.24. The map p: 2! — S is a flat conic bundle with the discriminant curve Ay, C S defined
by (3.9), where

B -1
© 512437

The map p is Us-equivariant for T # 0, oo and Gs-equivariant for T =0, oco.

s(t) (3.25)

Proof. Equivariance of the maps p: 2:>'! — S follows from invariance of 2;>! discussed in Remark 3.23
and Gs-equivariance of the P2-bundle p: % | — S. The restriction of (1.10) gives a commutative diagram

%IS 1 _ _ 1 N <9}/{4,2
05,1 04,2 lﬂ
» 2, f;&,z (3.26)
l[’l
S Y p2

The divisor 22! C % is the preimage of the quadric threefold Qo C P(W5) with respect to the morphism
ms,1: %1 — P(Ws), hence it is the zero locus of a section of the line bundle Opg4,)(2). Since %f’l
form a pencil, all of them are the zero loci of sections of the same line bundle, hence correspond to
symmetric morphisms %3 — %’ on S (in particular, p: ,%rs’l — S is a conic bundle). Therefore, the
discriminant curve of 2;>:! is the zero locus of a morphism

ws = det(7%3) — det(7) = wy ',

i.e., a double anticanonical divisor.
On the other hand, the above diagram shows that the discriminant locus of .27>+! contains the proper
transform of the discriminant curve A; of 2 1’2 whose equation is (3.22). If 3 — 7 #£ 0t is a sextic
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curve passing with multiplicity 2 through each of the points P;, hence its proper transform to S is a curve

on § with equation

(512 +3)Po + (° — 1) Do =0, (3.27)

i.e., the curve Ay (). In the case when 73 — 17 =0, the curve A, is the union of six lines on P2, and its
proper transform on S is the union of six lines on S. But the conic bundle p: 2! — S is 2s-equivariant.
Thus its discriminant curve is Qs-invariant, and hence it should also contain the other four lines of S. We
conclude this case by noting that the sum of the ten lines Ag on S is a double anticanonical divisor, and it
is indeed given by the equation (3.27) with 73 — 7 =0.

It remains to show that the conic bundle is flat. For this we note that a nonflat point of a conic bundle
is a point of multiplicity at least 3 on its discriminant curve. But by Theorem 3.10 all singular points of
these curves are nodes. U

Before going further, we discuss some properties of the map s: P! — P! defined by (3.25).

Lemma 3.28. The map s: P! — P! is a triple covering with simple ramification at four points T = ++/—3
and T = +1/+/5.

Proof. A direct computation. U

In the next table we list some special values of 7 together with the values of the functions s(7)
and 1(t) = (2 + 1) /4 at these points.

1 / 3 1 3
s(7) 0 :|:\/Lj3 :|:#F5 00
1 1 1 1 7 3 1
{2 T 3 5

The second row contains the values of the parameter s that correspond to singular members of the
Wiman-Edge pencil (see Theorem 3.10) and infinity. The first row contains their preimages; boxed cells
mark ramification points of the map s(7); see Lemma 3.28. The third row contains the values of the
map ¢(7) at these points; boxed cells mark the points of the discriminant set © and infinity.

Since the degree of the map s is 3, the same singular curves in the Wiman—-Edge pencil may appear
as the discriminant loci of the preimages 3&;5’1 of different quartics X,. For instance, the Igusa and the
Burkhardt quartics both correspond to the union A of the ten lines on S. Note also that the quartics X /¢
and X7,10 share their discriminant curves with nonspecial quartics X_;, and X3,19 respectively. As we
will see in Proposition 3.30, these two are characterized by the fact that the corresponding curves in the
Wiman-Edge pencil are singular, while the total spaces of the threefolds %f*l are smooth. In Section 4
we will see that this subtle difference has a drastic effect on rationality properties.
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To proceed we will need the following general result. Its proof can be found in [Beauville 1977,
Proposition 1.2] or [Sarkisov 1982, Proposition 1.8], except for the fact that the singularity of Zp is a
node, but this can also be extracted from the arguments in either of these two papers.

Lemma 3.29 [Beauville 1977, Proposition 1.2; Sarkisov 1982, Proposition 1.8]. Let p: 2" — S be a
flat conic bundle over a smooth surface S. Assume that its discriminant locus A C S has a node at a
point P € S. Then 2 has a singular point over P if and only if the fiber Zp = p~'(P) is a conic of
corank 1 (that is, a union of two distinct lines), and in this case the singularity of & over P is a node at

the (unique) singular point of Z'p.

The next assertion describes the singular loci of the threefolds 27>-!. Recall the morphism s | defined
in (2.34) and the discriminant set D from (3.14).

Proposition 3.30. The threefold %f Lis smooth for all T & D (including T = 00). Fort € D the singular
locus of 27> is mapped by s, isomorphically to a subset of P* as follows:

T 0 #£1 =+ +

i
e

ms1(Sing(22>h) | Y15 Tis To X6

Fort €D the singularities of 3&;5’1 form a single As-orbit, every singular point Q of 3&”,5*1 is a node, and
the fiber p~'(p(Q)) of the conic bundle p: %f’l — § passing through Q is the union of two distinct
lines intersecting at Q.

Proof. To start with, let us show that for 7 # 0 the threefold 3&’,5*1 is smooth along the exceptional locus
of the morphism ps 1, which by Proposition 2.44 is the reducible surface

(U RL>U(U R(p) =75 (CR) C %,,. (3.31)
L @

Recall that each of its irreducible components is a smooth surface in %5 ;1 (see Lemmas 2.36 and 2.41).
Note that a Cartier divisor in a smooth fourfold is smooth along its intersection with a smooth surface
provided that their scheme intersection is a smooth curve. So, it is enough to check that the intersections
23'NRy and 275 N R, are smooth curves for all 7 # 0. But the divisors 2;>! form a pencil, and 2"

(which by definition is equal to the ramification divisor of 75 ;) contains all these surfaces. Therefore,
23'NR,=22"NR, and 27'NR,=23'NR,.

So, it is enough to show that 22! N R, and 23! N R, are smooth curves. But 25! = n;}(Qoo),
while R, and R;, are the preimages of the 15 lines of the Cremona—Richmond configuration CR. The
quadric Q« intersects all these lines transversally at two points away from the intersection points of
the lines by Remark 3.1, and taking into account Lemma 2.35 and Proposition 2.44 we conclude that
23N Ry is the union of two disjoint lines, and 23! N R,, is the union of two disjoint smooth conics.
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Since the map ps 1 : %5’1 — %7 is an isomorphism over P4 \ CR (because so is the map %5 | — %),
it follows that for all T % 0 we have

Sing(27") = Sing(27) \ CR,

and in view of Lemma 3.12, Theorem 3.3, Remark 3.13, and Lemma 3.29, we obtain the required
description of singularities of 2.>! for T # 0.

Next, consider the case t =0. The map p: 3&”05’1 — § is a flat conic bundle with the discriminant locus
being the curve Ay, i.e., the union of the 10 lines on S. It follows that 3{05’1 is smooth over the complement
of the 15 intersection points of the lines on S. Since all these points are nodes of Ag, Lemma 3.29 shows
that the threefold 3&”05’1 has a singularity over such a point P if and only if the conic (3&”05’1) p=p N(P)
is the union of two distinct lines (and then the singular point is a node located at the intersection point of
these lines). Since the 15 intersection points of the lines on S form a single 2s-orbit (see Theorem 3.10),
it is enough to check everything over one of them.

Take the intersection point P € S such that ¢(P) = (0:1:1). We know from diagram (3.26) that the
conic (3&”05’1) p is isomorphic to the conic (2 3’2)¢( p), hence by Proposition 3.16 it is given by the matrix

0 1 -1
qo(Ozl:l):% 1 0 0]). (3.32)
0 O

Its rank equals 2, hence (2 g,z)w( p), and thus also (3&”05’1) p, 1s a union of two lines. Moreover, the
intersection point of the irreducible components of (2 3’2)¢( p) is the point (0: 1: 1), and using (2.23) we
compute that

T42(00:1:1),0:1:1))=2:—=1:-1:2:—-1:-1) € Yys.

By s-equivariance of the map s | and transitivity of s-action on Y5 (see Corollary A.4) we conclude
that 75 1 (Sing(25")) = Y. 0

Corollary 3.33. For all T # 0, 00 the morphism 7ws 1 : 21 — X (;241))4 is birational and small. Also,

the morphism ps 1 : %0%1 — 2o is birational and small.

Proof. Indeed, as we have seen in the proof of Proposition 3.30, for T #0 the nontrivial fibers of 27>! — 2;
are 30 rational curves, one over each of the 30 intersection points of X3y = CRNQ. Since the
map 77 : 27 —> X(;241)/4 18 an isomorphism for 7 # 0o by Lemma 3.12, the assertion follows. 0

Remark 3.34. For v =0 the surface (3.31) is equal to the exceptional locus of 75 ; : 3&”05’1 — X1/4, hence
this morphism is not small, but is still birational.

3.6. Proofs of Theorems 1.14 and 1.15. For t # 0 the map ps.;: 2! — 2 is small and birational by
Corollary 3.33. The same argument works for p4 5 : %4’2 — 2 without changes. Finally, smoothness
of 273! for nonspecial 7 is proved in Proposition 3.30. The maps ps and 7 o ps,; have required
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equivariance by Remark 3.23 and Lemma 3.12. The same arguments prove equivariance of the maps p4 2
and 7 o ps 2. This completes the proof of Theorem 1.14.

Now let us prove Theorem 1.15. By Proposition 3.30 the total spaces of the conic bundles p: 3&”}1 )
are smooth for t ¢ D, so since rk Pic(S) =5, to show that p is a standard conic bundle for t ¢ D it is
enough to check that rk Pic(%f'l) = 6 for these 7. But since the map ps 1 : ,%”15’1 — 27 is small, we have

Pic(2>1) = CI(27).
Thus the assertion of the theorem follows from Lemma 3.15. O

Remark 3.35. Assume the notation of Remark 2.25, and suppose that ¢ ¢ {}‘, %, oo} One can check that
the restrictions of each hyperplane H;;; C P* to X, splits as the union of two smooth quadric surfaces
in Hij = P3. For t = % these two quadric surfaces collide into a smooth quadric with a nonreduced
structure, and for r = % they degenerate into unions of pairs of planes. Considering the preimages of these
surfaces on 25, where as usual ¢ = (2 + 1)/4, and using Remarks 2.25 and 2.49, one can describe the
small resolutions p4 2 and ps | of singularities of 27 as blow ups of certain Weil divisors on 27.

4. Rationality

In this section we provide some applications of the results obtained earlier. Namely, we check that all
quartics X, are unirational, give a new and uniform proof of irrationality of G¢-invariant quartics X,
for t ¢ ® U{oo} (and also of the threefold 2 ), and rationality of X, for r € ®.

4.1. Unirationality of Se-invariant quartics. We start with a short proof of unirationality of the Gg-in-
variant quartics X, and the threefold 2,. The next fact is well known.

Lemma 4.1. Let V be an irreducible Verra threefold, i.e., an irreducible hypersurface of bidegree (2, 2)
in P? x P2. Then V is unirational.

Proof. Let p;: V — P2, i =1, 2, be the natural projections. Both p; are (possibly nonflat) conic bundles.
Let L C P? be a general line, and put T = Py Y(L). Since V is irreducible and L is general, the surface
T is irreducible by Bertini’s theorem. Also, the map p; provides the surface T with a conic bundle
structure over L = P!, hence 7 is rational. Note also that 7 = V N (P> x L) is a divisor of bidegree (2, 2)
in P? x P!, hence the projection p;: T — P? is dominant (actually, T is a rational 2-section of py).
Since pi: V — [P? is a conic bundle, the standard base change argument implies unirationality of V. [J

Combining Lemma 4.1 with Proposition 3.16, we obtain
Corollary 4.2. The quartics X, t # 00, and the threefold %, are unirational.

Remark 4.3. One can use the same approach to prove rationality of the Burkhardt quartic X/, (this is a
classical fact going back to [Todd 1936]; see also Theorem 4.6 below). For this consider the corresponding
Verra threefold 277> C P2 x P2 and let T = p; ' (P P,) C 271 be the preimage of the line passing through
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two of the points (2.1), that is, the line vz = 0. As before, T is a divisor of bidegree (2, 2) in P2 x P!,
Using (3.18) and (3.19) we can rewrite explicitly its equation go(u)(vy, v2, 0) 4+ goo (1) (vy, v2,0) =0 as

(q0(1) + Goo () (v1, V2, 0) = % (U2 + WUV + W U3V + WU3V2) (U1V2 + W U2V + WU3VY + W U3VY),

where w is a primitive cubic root of unity. Thus we see that T = T; U T, where T; is a divisor of
bidegree (1, 1). In particular, each T; provides a rational section of the conic bundle p;: 2 ?’2 — P2 and
rationality of 2~ 411’2 follows. Since the threefold .2 41"2 is birational to the quartic X2, the rationality of
the latter follows as well.

4.2. Irrationality of nonspecial Sg-invariant quartics. Beauville [2013] proved that the quartic X; is
irrational provided that ¢ ¢ ® U {oo} by using the G¢-action on the intermediate Jacobian of a suitable
resolution of singularities of X;. By [Beauville 2013], the intermediate Jacobian J; of the blow up of
the 30 singular points of X; is five-dimensional, and the action of G¢ on J; is faithful; on the other hand, if
it is a product of Jacobians of curves, it cannot have a faithful Ge-action. Irrationality of the threefold 25
was proved using the same approach in [Przyjalkowski and Shramov 2016, Proposition 6.3]. With the
help of the conic bundle structure on these varieties constructed in Theorem 1.15, we can give another
proof of their irrationality.

Theorem 4.4. Ift ¢ © U {00}, then X, is irrational. Also, the variety Z is irrational.

Proof. By Theorem 1.14 it is enough to show that the threefold 3&”,5’1 is irrational for t ¢ D. By
Theorem 1.15 the map p: 2! — S is a standard conic bundle with the nodal discriminant curve A
contained in the linear system |—2K|. Here s = s(7) is given by the formula (1.16). The conic bundle p
induces a double cover A s = A that by Lemma 3.29 is branched only over the nodes of the curve A;.
Applying [Beauville 1977, Proposition 2.8], we see that the intermediate Jacobian of the threefold 5&”,5*1 is
isomorphic as a principally polarized abelian variety to the Prym variety Prym(As, Ay). Now [Shokurov
1983, Main Theorem] implies that Prym(A s» Ag) 1s not a product of Jacobians of curves, hence %f’l is
irrational. O

Remark 4.5. The intermediate Jacobian of EKIS*I can be described fairly explicitly. For instance, it was
observed by Dimitri Markushevich that it is isogenous to the fifth power of an elliptic curve (whose
Jj-invariant depends on t). Here is a sketch of his argument. Let % — 2, be a minimal Ge-equivariant
resolution of singularities, so that Jac(ﬁff) = Jac(%S’l). The action of the group G¢ on Jac(ﬁ&) can
be lifted to an action of the semidirect product G¢ x H 3(5&;,, Z) on H 3(3&, C). Now [Bernstein and
Schwarzman 2006, Theorem 3.1] proves that there is an G¢-equivariant isomorphism

H*(Z,, Q) = Q(66) © 1Q(S6),

where (Q(Sg) is the root lattice associated with the group G¢ considered as a Weyl group of Dynkin
type As, and A = A(7) is a complex number with positive imaginary part. Therefore, Jac(Z~) is isogenous
to E(1)°, where E(A) = C/(Z ® \Z).
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Note by the way, that there is another popular family of threefolds with five-dimensional intermediate
Jacobians, namely, smooth cubic threefolds. However, it was pointed out by Beauville that the quartics X;
are not birational to smooth cubics. Indeed, if a quartic X, is birational to a smooth cubic threefold Y,
then the intermediate Jacobian J(Y) is isomorphic to J;, and thus there is a faithful Gg-action on J(Y)
(note that J, must coincide with its Griffiths component in this case). Torelli’s theorem for smooth cubic
threefolds (see [Beauville 1982, Proposition 6]) implies that there is a faithful Gg-action on Y itself,
which is impossible, because the only cubic threefold with a faithful Gg-action is the Segre cubic that has
ten singular points.

It would be interesting to find out if the quartics X, with ¢ ¢ © are stably rational or not.

4.3. Rationality of special S¢-invariant quartics. The result of Theorem 4.4 is sharp: the threefolds
X12, X174, X176, and X719 are rational. In fact, rationality of the Burkhardt quartic X/, was proved
by Todd [1936] (see also Remark 4.3), rationality of the Igusa quartic X /4 follows from rationality of
its projectively dual variety (which is the Segre cubic), and rationality of the quartics X6 and X719
is also known; see [Todd 1933; 1935; Cheltsov and Shramov 2016b]. However, using our results one
can give a uniform proof of rationality of all these threefolds; this proof does not use explicit rationality
constructions.

Theorem 4.6. The quartics X1,2, X1/4, X176, and X710 are rational.

Proof. Suppose that 7 € D,sothatr €D and s € {0, £1/4/125, +1/4/=3}, where as usual t = (t>+1)/4
and s = s(7); see (3.25). By Theorem 1.14 it is enough to show that %5’] is rational.

Consider the conic bundle p: 3&”3*1 — S. The singular locus of its discriminant A; is a finite set of
nodes; see Theorem 3.10. Actually, by Lemma 3.24 the set Sing(A;) consists of 15 points when ¢ = %
ort= %, of 10 points when t = %, and of 6 points when t = %. We also know from Proposition 3.30 that
all singularities of 3&;5’1 are nodes, and for every singular point Q of 3&”{5’1 the fiber p~1(p(Q)) is the
union of two lines, with Q being their intersection point.

The conic bundle p is not standard because the threefold ,%”,5*1 is singular, so we start by transforming
it to a standard one. Let v: S — S be the blow up of the quintic del Pezzo surface S at Sing(A), and
consider the base change p’: 27>! x S — § of the conic bundle p. Its discriminant curve is the preimage
on § of the discriminant curve of p. In particular, it contains all exceptional curves of the blow up v as
irreducible components of multiplicity 2, and the corank of the fibers of p’ over the points of each of
these curves equals 1. Modifying the conic bundle along these lines as in [Sarkisov 1982, Lemma 1.14]
(see also [Debarre and Kuznetsov 2020, Section 2.5]), we can get rid of the corresponding components of
the discriminant. In other words, we obtain a small birational map

22V xg§ - 22! (4.7)

over S, such that the threefold 2> comes with a flat conic bundle j: 27>! — § whose discriminant
curve is the proper transform A; C § of A, with respect to v. In particular, the curve A, is smooth (hence
also 272! is smooth), and by Theorem 3.10 has ten connected components when ¢ = % ort= %, five
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components when ¢t = é, and just one component when ¢ = 1—70. Moreover, every connected component
of As is rational.

Since A is smooth, the conic bundle j has only simple degenerations. In particular, it induces an étale
double covering over A;. Since every connected component A?) C A, is smooth and rational, the double

covering is trivial, hence the preimage p~! (Agi)) consists of two irreducible components
~—1 A0\ _ @ /7
A = ejuer,

each being a P'-bundle over Aﬁ”. Choosing for each i one of them and contracting all chosen components
simultaneously over S (see [Sarkisov 1982, 1.17]), we obtain a commutative diagram

/

Here the horizontal arrow is a birational morphism, and p is an everywhere nondegenerate conic bundle.

75,1 75,1
’ —> ’
2 23]
b
S

Since § is a rational surface, its Brauer group is trivial, hence this [P!-bundle is a projectivization of a
vector bundle, hence birational to S x P!, hence rational. This means that %f’l is also rational. O

Remark 4.8. The birational transformation 27> --» 251 x ¢§ --» 2>! can be described very explicitly;
see Construction I in the proof of [Cheltsov et al. 2019b, Theorem 4.2]. It is a composition of the blow
ups of all singular points Q € 27! followed by the Atiyah flops in the union of proper transforms of the
two irreducible components of the conic p~!(p(Q)); see Proposition 3.30.

The construction that we used in the proof of Theorem 4.6 has the following consequence, which we
will need in Section 5. Recall the notation of (1.17).

Corollary 4.9. Fort € D the relative divisor class group Cl(%f'l /S) ® Q has the following structure as
a representation of the group Us:

1 3

Cl23/H®Q | 1®Indy’ (1) 1&hdy (1) 1ehdid) 161

Here Ind%5 stands for the induction functor from the subgroup G = A4 or G = Uz 2 = &3 in As, while 1
stands for the trivial representation, and —1 stands for the sign representation of Gs. The first summand 1
in each cell is generated by the canonical class of %5,1.

Proof. The canonical class K is invariant with respect to the group action, hence generates a trivial

23!
subrepresentation in C1(2;>'1 /S) ® Q. Consider the quotient

Clo(27'/8) @ @ := (CU(2;'/S) @ Q) /QK 5.1
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To describe it we use the notation introduced in the proof of Theorem 4.6. First, we have
Clo(2;1/8) = Clo((27! x5 8)/5).
Furthermore, since (4.7) is a small birational map, we have
Clo((27! x5 8)/8) = Clo(271/3).
Finally, it is clear that Clo(27>!/ S) ® Q is contained in an As-equivariant exact sequence
0~ Palr,1— P@ioejieale)n — Clo(Z;>'/$H®Q 0,

where we sum up over the set of irreducible components of AS(,), and the first map takes the class
[A%))] € Pic(S) to [O/1+[©]] € Pic(Z>1). It follows that Clo(Z;>!/$) ® Q has the basis [©/] —[6]],
and the group 2[5 permutes the basis vectors, possibly changing their signs.

Recall that the group s acts transitively on the set of irreducible components of As(,) by Theorem 3.10.
Let G C 25 be the stabilizer of some irreducible component of A s(t)» say, of Ai(g). The action of G on
the set {©(, ©;} defines a homomorphism v: G — {£1}, i.e., a one-dimensional representation of G,
and we conclude that

Clo(Z:31/8) ® @ = Ind¥ (v).

So, it remains to identify the possible stabilizers G for various 7, and the homomorphisms v.
When t = +3/+/5, the curve A s(r) 1s irreducible, hence G is the whole group 25, and since it has no
nontrivial one-dimensional representations, we conclude that

5,1 o ~ pit ~
Clo(75;) /S ®Q=Ind () = 1.

When 7 = 41/4/—3, the curve As(r) has five components, G is the subgroup 2l4 of s, and since
again it has no nontrivial one-dimensional representations, we conclude that

Clo(Z7}) /—4/5) ® 0 = Indy’ (D).

When 7 =0 or T = %1, the curve As(r) has ten components (corresponding to the lines on §) and G is
the subgroup 2z » = G3 of As. It remains to show that it fixes the components @{) and (%’ when 7 =0,
and swaps them when v = £1.

The stabilizer 23 » of a line L C S permutes three points of its intersection with other lines on S. Each
of these points, in its turn, is stabilized by a transposition in 2(3 » = &3. So, it is enough to check how
these transpositions act on &, and ©.

Consider the point P = (0: 1: 1) as in the proof of Proposition 3.30. Then it is easy to see that the
subgroup of 25 that preserves both lines passing through P is generated by the automorphism

1 0 0
g=[1 0 -1
1 -1 0
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of order two of the plane, while the fiber p~!(P) is given by (3.32) in the case T = 0, and by

2 1 =2
g0O0:1: D +geo@:1: =1 1 2 -1
2 -1 2

in the case T = 1. Now verifying that g fixes the components of the conic p~!'(P) if T =0 and swaps the
components if T =1 is straightforward.
The computation in the case T = —1 is similar to that in the case 7 = 1. O

The part of the above argument that identifies the relative class group of a conic bundle in terms of the
induced representation is completely general and can be proved for any conic bundle with only simple
degenerations, and for an arbitrary group acting on it.

5. Representation structure of the class groups

The main result of this section is the description of the G¢-action on the class groups of the Coble fourfold
and of the quartics X, and its applications to the equivariant birational geometry of these varieties. We
will be mostly interested in the quartics X; with ¢t # Alf, 00, because the quartic X/4 has nonisolated
singularities, and at the same time its class group is not very intriguing by Lemma 3.6 (see Remark 5.24
below), while the quartic X, is nonreduced; however, we will also perform the same computations for
the threefold 2.

5.1. The result and its applications. We start by stating our main result and its consequences. We will use
the following notation for representations of the symmetric groups. For each partition A = (A1, A2, ..., A;)
of an integer n (i.e., a nonincreasing sequence of positive integers summing up to n) we denote by

R(Q) =R(A1, A2, ..., Ar)

the irreducible Q-representation of the group &, as described in [Fulton and Harris 1991, Section 4.1].
For instance, R(n) is the trivial representation, while R(1") is the sign representation. Note that the
standard permutation representation is the direct sum R(n) @R(n — 1, 1).

We denote by R(A)X 1 and R(A)XI(—1) the representations of the group G¢ x p,, which are isomorphic
to R(A) when restricted to G¢ and on which the nontrivial element of u, acts by 1 or —1, respectively.

Theorem 5.1. The group CI(%) is torsion free and there are the following isomorphisms of Gg X p5-

representations:

ClZ)®Q=Cl(Zx) @Q=(R(6)X1) & (R(3, 3) X (—1)).
In particular, for the natural action of Gg there are isomorphisms of Gg-representations

Cl(Z) @ Q=Cl(Zx) ® Q=R(6) ®R(, 3),
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while for the twisted action of G¢ there are isomorphisms of Gg-representations
Cl(Z)Q=Cl(Zx) ® Q=R(6) DR(2, 2, 2).
Finally, there are the following isomorphisms of Gg-representations:
Cl(X;) ® Q=R(6) ®R(3, 3) Jort ¢ © U {oo}
Cl(X12) ® Q=R(6) ®R(3, 3) BR(3, 13),
Cl(X1/6) ® Q=R(6) ®R(3,3) ®R(2, 2, 2),
Cl(X7/10) ® Q@ = R(6) ®R(3, 3) ®R(1°).

The proof of Theorem 5.1 takes the next subsection, and now we discuss its applications to equivariant
birational geometry.

Recall that an n-dimensional variety X with an action of a group G is G-rational if there exists a
G-equivariant birational map between X and P” for some action of G on P”. Also recall that a G-
equivariant morphism ¢: X — § of normal varieties acted on by a finite group G is called a G-Mori fiber
space, if X has terminal singularities, one has rk Pic(X)¢ = rk C1(X), the fibers of ¢ are connected and
of positive dimension, the anticanonical divisor —Kx is ¢-ample, and the relative G-invariant Picard
rank rkPic(X/S)G equals 1.

The first application of Theorem 5.1 is due to the following expectation, which is proved in several
particular cases, see [Mella 2004; Shramov 2008; Cheltsov et al. 2019a, Proof of Theorem 1.1].

Conjecture 5.2. Let X be either a nodal quartic threefold, or a nodal double covering of a smooth
three-dimensional quadric branched over its intersection with a quartic. Let G be a finite subgroup
in Aut(X) such that

tk CI(X)¢ = 1.

If there is a G-equivariant birational map X --+ X', where X' — S’ is a G-Mori fiber space, then X = X'.

In particular, X is not G-rational.

Of course, this applies to each of the G¢-invariant quartics X, with ¢ # J—P 00, and to the threefold 2+
as well. For each subgroup G C G the rank of the invariant class group C1(X,)¢ can be easily computed
from the result of Theorem 5.1 by restricting the representation and computing the multiplicity of the trivial
summand. We used GAP [2017] to perform this computation; see http://www.mi-ras.ru/~akuznet/GAP-
code/rk-code.txt for the source code. To state our result in a precise form we first introduce our notation
for the (conjugacy classes of) subgroups of G¢ that will be used until the end of Section 5.1. We will also
use notation (1.17).

Notation 5.3. Given a subgroup G C G4 we denote by G C G4 the image of G under an outer auto-
morphism of Gg (it is well-defined up to conjugation). Furthermore, if G| C &,,,..., G, C G, are
subgroups and n; + - - - +n, < 6, then by G| x - - - x G, we denote the corresponding subgroup in

6111 X X Gnr = 6111 ny C 6n1+--~+n, C 66.

.....
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Next, we use the notation g [cy, ..., ¢,] for a cyclic subgroup of order d generated by a permutation
of cycle type [cy, ..., c-]. We abbreviate us[5] to just us.

By V4 we denote the Klein four-group, i.e., the unique subgroup of order 4 in A4 C S4. By V4, we
denote a subgroup of G472 C &6 whose projection to the first factor &4 gives an isomorphism with Vg,
while the projection to the second factor G is surjective.

By D», we denote the dihedral group of order 2n. It is naturally embedded into the group &, so
for n < 6 it is a subgroup of Sg; note that Dy, = 63,2.

There are four conjugacy classes of subgroups isomorphic to Dg in G¢. They can be described as follows.
The first class contains subgroups of (the standard) G4 in Gg; according to the above conventions, we will
refer to subgroups from this conjugacy class simply as Dg. There are three nontrivial homomorphisms

Uo: Dg — my, vi:Dg— py, vx:Dg— uy,
determined by their kernels
Ker(vo) = py[4],  Ker(vy) = Vi, Ker(vy) = 62,.

Thinking of these as of subgroups of symmetries of a square, the first is generated by rotations, the second
by reflections with respect to the lines passing through the middle points of its opposite sides, and the
third by reflections with respect to the diagonals; this is the mnemonics for the notation o, 4, and x. We
denote by Dg, D;, and Dg the images of the map

D8M64Xﬂ2;64,2C66

for v = v,, vy, and vy, respectively. Note that Dg = Ds.

The intersection &5 N S5 of a standard and a nonstandard subgroups Gs is a subgroup of order 20
isomorphic to ps X p4, and such groups form a unique conjugacy class of subgroups of order 20 in Gg.
Also, the subgroups g4 X fty, 3 X f3, Do, Dg X G2, (3 X f3) X fy, (3 X f3) X fy, and &G33 X M,
of G¢ are unique up to conjugation.

Finally, recall the definitions (1.6) of the natural and (1.8) of the twisted actions of G¢ on the Coble
fourfold # and on the threefold 2o, C %'. Theorem 5.1 implies:

Corollary 5.4. Figure 1 contains a complete list (ordered by cardinality) of subgroups G C G¢ such
that tk C1(X)© = 1, where X is either X;, or Zwo, or %. If X is either Zuo or ¥, and G is any subgroup
of G X W, that contains the second factor, then one also has rk C1(X o =1.

In particular, Conjecture 5.2 suggests that the varieties listed in Corollary 5.4 are not G-rational with
respect to the corresponding groups.

Another interesting case of G-equivariant behavior arises when rk C1(X)¢ = 2. The following result is
well known to experts.
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X, action of Gg G

X, 1 ¢DU{oo}; |Ge, A, Gs, Gs, G533 X o, As, Gu2, Guz, (U3 X f3) X fy,
Zso, natural action;|S3 3, G4, G4, Aa 2, ™As X G2, s X fy, G3 X p3, Dg x Gy, s,
%, natural action |S3, by X Wy, V4 X fL,, Dg, D¢, 63, Vi

Lo, twisted action; | Se, Us, Ss, G33 X Wy, As, G4, (3 X f3) X py, 633, G4,
7, twisted action %4,2, Ay x 67, 3 X Mms, 63,2, Ay, S3, [L6[3, 2]

G, As, G5, s, B33 X fy, As, Sy, Gua, (3 X f3) X g, B33, Gy,
g2, fs X gy, Dg x &3

Xi/6 Ge, Ao, G5, 633 X o, As, Gan, (U3 X w3) X Py, Sg, Ay 2, A4 X G2, Ay

Se, G5, 65, 633 X o, G40, 6_54,2,_6_53,3, Sy, G4, Ay X Ga, s X g,
G3 x 3, Dy x &3, G32, fy X fy, Dg, Dy, Va4 X 1o, G3, V42

X1

X710

Figure 1. Subgroups G C &g such that rk CI(X)G =1, where X is either X;, or 25, or %

Proposition 5.5 (cf. [Corti 1995; Hacon and McKernan 2013]). Let X be a terminal Fano variety (so
that, in particular, the canonical class Kx is a Q-Cartier divisor). Let G be a finite subgroup in Aut(X)
such that tk Cl(X)® = 2 and tk Pic(X)© = 1. Then there exists a unique G-equivariant diagram:

v NS N

Here X are varieties with terminal singularities such that
tk Pic(X+)% =1k CI(X1)° =2, 1kPic(X+/X)% =1,

the maps fy are small birational morphisms, the map t is a nontrivial G-flop, the maps 1 are small and

birational (and possibly are just isomorphisms), the varieties X', have terminal singularities,
rk Pic(X/,)% =k CI(X/,)% =2,

and each of the maps px., is either a K, -negative divisorial contraction onto a terminal Fano variety Z +
with tk C1(Z+)¢ = 1, or a G-Mori fibration.

The diagram (5.6) is a special case of a so-called G-Sarkisov link (that is a G-equivariant version
of a usual Sarkisov link; see e.g., [Corti 1995, Definition 3.4] or [Cheltsov 2005, Theorem 1.6.14] for
notation). One sometimes says that the link (5.6) is centered at X.

Theorem 5.1 allows us to write down a complete list of subgroups G C Gg for which Proposition 5.5 can
be used (as before, we obtained it with the help of GAP [2017]; see http://www.mi-ras.ru/~akuznet/GAP-
code/rk-code.txt for the source code).
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X, action of Gg G

X, t¢DU{oco}; |As, B33, sz, Ay x G2, &3 X w3, (U3 X f3) X fy, 3.2, Dy,
%007 natural ClCtiOl’l,; Mm3 X s, DSa Dé‘rs My X Uy X [y, 637 Q13,2’ M’6[6]’ IL6[39 2]’ Ms,
%, natural action | pyl4], wal4, 2], no12, 2] x w521, psl31, mol2, 2, 2]

Zso, twisted action; 6_55, gls, 6_54,2, 63,3, §l4,2, Ay X Gy, s X Ly, 6_53 X [,
@, twisted action |(3 X f3) X fty, Dg X &3, Dig, 3 X p3, Dg, Dy, Dy, pty X R,
M’Z X M’Z X ”‘27 Ql3,25 M’S’ l’l’4[4a 2]’ ILZ[Z] X ILZ[Z]a IL3[3]

As, G33, G4, 42, A4 x G2, Ay x G2, &3 x p3, (k3 X L3) X Ry, G32,

X = '
12 63,2, s, D1o, Dg, Dg, D, Dy, fy X py, g X fy X Py, Va X o

¥ Gs, 42, 833, G333, fs X By, B3 X w3, &3 x 3, D X o, S32, Dy,
1/6 Ry X o, 63, mel3, 2]

X e, As, G333, (U3 X p3) X g, Az 2, Ay X G, G3 X p3, 632, U4, Dg,
7/10

M’Z X M’Z X MZ? 637 IL6[6]5 IL6[3’ 2]5 IL4[4], I'LZ[29 2] X M2[2]’ M2[25 27 2]

Figure 2. Subgroups G C Gg such that rk CI(X)¢ =2, where X is either X;, or 2o, Or ¥

Corollary 5.7. Figure 2 contains a complete list (ordered by cardinality) of subgroups G C G¢ such
that tk CI(X)© = 2, where X is either X;, or Zso, or % In particular, for each of these varieties there is
a G-Sarkisov link (5.6) centered at X with respect to the corresponding groups.

Example 5.8. If 1 ¢ ® U {00} and G = s, the G-Sarkisov link (5.6) is obtained by restricting the
diagram (2.48):

Here t = (%2 4 1)/4, ¢ is the restriction of the map ps_; oo opsto %f’l (it is a composition of 30 Atiyah
flops), and 4 are the identity maps. The map ¢ can be also defined as the map induced by an action of
an odd permutation in the subgroup G5 C S¢ containing 2As.

Example 5.9. If G = Ss, then the G-Sarkisov link (5.6) for 2, comes from a restriction of the
commutative diagram (2.48) to 25 (recall that 25 is Aut(#/)-invariant).

5.2. Class group computation. In this section we prove Theorem 5.1. We start with a description of the
Gs-action on the Picard group of the quintic del Pezzo surface.

Lemma 5.10. There is an isomorphism of Gs-representations

Pic(S) @ @ =R(5) R4, 1).
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Proof. The surface S can be obtained as a blow up of [P? in four points, and this blow up is G4-invariant.
Therefore, one has

(Pic($) ® Q)|e, =R &R &R, 1).

Here the first summand is the pullback of the line class, and the last two form the permutation representation
spanned by the classes of the exceptional divisors of the blow up. Now the assertion easily follows, since

R(5)ls, =R@4), R4, Dls, =R@A) ®RE, 1), (5.11)

and moreover, by Pieri’s rule [Fulton and Harris 1991, Exercise 4.44] the irreducible Gs-representations
R(5) and R(4, 1) are the only ones that restrict to G4 as sums of R(4)’s and R(3, 1)’s. Il

Further on we will use a similar argument to describe an Gg-representation from its restriction to a
nonstandard subgroup Gs. For this the following calculation is quite useful.

Lemma 5.12. The following table contains all irreducible representations V of S, their images V under

an outer automorphism of Sg, and the restrictions of V and V to a standard subgroup Ss.

dim V 1% v Vs, Vies
1 R(6) R(5)
1 R(19) R(1%)
5 R(5,1) R(2% R(5) ®R(4, 1) R(22, 1)
5 R(2,1% R@3?Y) | RQ, 1)@R(1D) R(3,2)
9 R(4,2) R4, 1) ®R(3,2)
9 R(2%, 1%) R(2%, 1) ®R(2, 13)
10 R4, 1% R@3,1%) |R@, D®R3B, 1) R3B, 1) @®R2, 1%
16 R(3,2,1) R(3,2) ®R(@3, 1) @R(2%, 1)

Proof. The restrictions to &5 are computed by Pieri’s rule, so we only need to explain the action of an
outer automorphism. For this note that an outer automorphism acts on the conjugacy classes of G4 by
swapping the following cycle types

2] < [2,2,2], [3]<[3,3], [6]<« I[3,2],

and fixing the other types. By using the character table of G (see for instance [James and Liebeck 1993,
Example 19.17]) it is then straightforward to check that an outer automorphism swaps

RS, D« R(2.2,2, R21H<RGE3), RE 1) <RE ),
and fixes the other irreducible representations. O

Now we are ready to prove the part of Theorem 5.1 concerning the Coble fourfold.
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Proposition 5.13. The group CI(%) is torsion free, and there is an isomorphism
ClZ)Q=ROIX]) & R@3E,3) X (1))
of representations of the group Aut(%') = S¢ X |,.

Proof. Since % | — % is a small Gs-equivariant resolution, we have an Gs-equivariant isomorphism
Cl(#') = Pic(#5,1) with respect to the twisted action of a nonstandard subgroup Gs. Since %5 is
a P2-bundle over the quintic del Pezzo surface S, we have an Gs-equivariant direct sum decomposition

Pic(%5.1) = ZH & p*(Pic(S)).

Here the first summand is generated by the pullback of the hyperplane class of P* under the map 7 o ps.1,
and so is Gs-invariant. This proves that C1(#/) is torsion free.
Furthermore, it follows from Lemma 5.10 that there is an isomorphism of Gs-representations

(CL(Z) ® D)|s; =R(S) ®R(OS) ®R(A4, 1).
Since the embedding of G5 < Gg is nonstandard, it follows from Lemma 5.12 that
CLZ) ® D)|s, =R(6) DR(2,2,2);

we emphasize the fact that this isomorphism holds for the twisted action of G on #. The first sum-
mand R(6) is generated by the class H, hence lifts to R(6) X 1 as a representation of Gg x u,. Since the
quotient of Z' by the Galois involution o is P* and its class group is of rank 1, it follows that the action
of , on the second summand R(2, 2, 2) is nontrivial. Hence the natural action of G4 on the second
summand is obtained from R(2, 2, 2) by the sign twist, i.e., the corresponding representation is R(3, 3)
(recall that the sign twist modifies an irreducible representation by a transposition of its partition), and the
assertion of the proposition follows. U

Below we will also need to describe certain Gs-representations from their restrictions to 2ls. For this
the following calculation is useful. Denote by Rj, Rg, Rg’ , R4, and Rs the irreducible representations
of the group s of dimensions 1, 3, 3, 4, and 5, respectively; see for instance [Fulton and Harris 1991,
Exercise 3.5].

Lemma 5.14. The following table contains all irreducible representation of S5 and their restrictions
to As.

R(A) |R(B) R@) |R@E, 1 R@,1° | R3B,2) R2%1) | R@G3, 1%
R(L) | Ry Ry Rs R, @ R}

Proof. 1t is enough to know that a restriction of an Gs-representation R(A) to s contains the trivial
subrepresentation R; if and only if R(X) is trivial or is the sign representation, i.e., if A = (5) or A = (1°).
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This follows from Frobenius reciprocity, because
Indy’ (Ry) = R(5) ®R(1%).

With this in mind, there is only one way to represent the dimensions of R(A) as sums of dimensions of
irreducible 2s-representations. It remains to notice that the Gs-representation R(3, 12) is defined over Q,
while both three-dimensional 2{s-representations Rg and Rg/ are not, so the restriction of R(3, 12) to Us

splits as R @ RY. O

Now we are almost ready to attack the class groups of the quartics X,. For each 7 we have a natural
composition

Cl(#) = CI(# \ CR) = Pic(# \ CR) —=> Pic(2; \ CR) — CI(2Z; \ CR) = CI(2;). (5.15)

Here res denotes the restriction map. The first and the last isomorphisms take place since the Cremona—
Richmond configuration CR = Sing(#") has codimension greater than 1 both in # and 27, and the
second isomorphism follows from smoothness of % \ CR.

Lemma 5.16. For all T # 0 the composition C(%) — CI(2Z7) of the maps in (5.15) is an Sg-equivariant
embedding with respect to the natural action of &¢. For T = 00 it is an G¢ X W,-equivariant embedding.

Moreover, for T ¢ ® it is an isomorphism.

Proof. All the maps in (5.15) are equivariant with respect to the natural action of G¢ (or of the whole
group Gg X M, in case T = 00), hence so is the composition, and it remains to prove injectivity. For this
we forget about the Gg-action and consider the diagram

Pic(%5,1) ——— Pic(2>")

(ps.n*l l(ps,l)* (5.17)

Cl(¥) —— CI(Z7)

which is easily seen to be commutative. The vertical arrows are isomorphisms, since the birational
maps ps.1: %1 — % and ps 1: %5’1 — Z; for T # 0 are small by Theorems 1.9 and 1.14. So, it is
enough to check that the morphism res is injective, which is obvious, since %5 | is a P>-bundle over S
and ,%;5’1 is a (flat) conic bundle inside %5 ;.

Moreover, for T ¢ ® the conic bundle is standard, hence the image of the top arrow is a sublattice of
index 2 or 1, depending on whether the conic bundle has a rational section or not. Since we also know
from [Beauville 2013] or Theorem 4.4 that for t ¢ D the threefold 3&”15’1 is not rational, we conclude that
the conic bundle p: 2;>*! — S has no rational sections, and thus res is an isomorphism. g

Remark 5.18. Recall that by Lemma 3.12 for T #0, 0o one has an isomorphism 2; = X, for t = (t>41) /4.
Thus Proposition 5.13 and Lemma 5.16 provide a description of C1(X,) for all # ¢ ®© U {oo}.

It remains to analyze the class groups of the special quartics X;.
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We can think of the map (5.15) as of a map CI(#') — Cl(X,); this map is S¢-equivariant, where the
action of G¢ on # is natural. We denote the cokernel of this map by

ExCl(X,) :=Cl(X;)/ Cl(#),

and refer to this group as the excess class group of X,. To prove Theorem 5.1 we need to compute the

1 1

latter group for 7 = 3, ¢, and 110 as an Gg-representation. For this we need a couple of observations.

Lemma 5.19. For a standard subgroup &4 C Sg we have tk C1(X,)®* = 1 for any t # oo. In particular,
we have tk EXC1(X,)®* = 0 for any t # .

Proof. We may assume that &, preserves the homogeneous coordinates xs and xg on P>. Denote
pi = x{ 4+ —i—xé. Consider the quotients P°/&,4 and X,/S;4. Then

PS /&, = P(1,1,1,2,3, 4),

where the weighted homogeneous coordinates of weights 1, 1, 1, 2, 3, and 4 correspond to the G4-invariants
Xs, X6, P1, P2, P3, and pg4, respectively. The quotient variety X,/S4 is given in P(1, 1, 1, 2, 3, 4) by the
equations

pi=ps—tp3=0,

so that X,/64 = P(1, 1, 2, 3). Therefore, we have rk Cl(X,)64 =rk CI(X;/&4) = 1; see for instance
[Fulton 1984, 1.7.5]. Since also rk C1(#)%+ =1 (see Corollary 5.4), it follows that rk ExCI(X NG =0. O

Remark 5.20 [Cheltsov et al. 2019a, Remark 2.11]. An argument similar to the proof of Lemma 5.19
was (incorrectly!) used in the proof of [Cheltsov and Shramov 2014, Theorem 1.20] for the standard
subgroup 24 » = G4 in Gg to deduce that rk C1(X /2)216 = 1. However, the assertion is correct: it was
later obtained in [Cheltsov et al. 2019a, Corollary 2.10] by a different method. Using Theorem 5.1 we
can find this rank as well: indeed, one has rk C1(X; /2)9[6 =rk CI(X; /2)2[4,2 =1 by Corollary 5.4.

Lemma 5.21. For a nonstandard subgroup Gs C S¢ we have rk Cl(X1/6)65 = 2. In particular, we
have tk ExC1(X6)%5 = 1.

Proof. By [Cheltsov and Shramov 2016b, Section 6] the quartic X/¢ is Gs5-equivariantly isomorphic
away from codimension 2 to the blow up X /6 of ten lines in P3, that form a so-called double-five
configuration. Therefore we have CI(X /) = Cl(}A( 1/6) as Gs-representations. Furthermore, the group G5
acts transitively on this configuration of lines, hence rk Cl()A( 1 /6)65 =2. Since also rk C1(#)%5 = 1 (see
Corollary 5.4, and keep in mind that according to Notation 5.3 the nonstandard subgroup G5 C S is
denoted by &s), it follows that rk ExCI(X /)5 = 1. O

Now we are ready to describe the excess class groups for the special quartics.

Proposition 5.22. There are the following isomorphisms of Gg-representations:

ExCI(X12) ® Q=R(3, 1), ExCl(X1/6) ® Q=R(2,2,2), ExCI(X7/10) ® Q@ =R(1%).
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Proof. We replace the quartics X2, X1/6, and X7,19 by their partial resolutions of singularities 2 15’1,
3&”15/ \15 and 3&”35/ «lﬁ respectively. Similarly to the proof of Lemma 5.16, we obtain isomorphisms of
2s-representations

CIZ>/H®@Q= (CUZ>1/S) @ (Cl(2>/ Cl@> 1)) @Q = R, & (ExCI(X,) @ Q)la,,  (5.23)

with the summand R; on the right generated by the canonical class. Next we use the computation of
Corollary 4.9 to describe the left-hand side of (5.23). Namely, by Corollary 4.9 the left-hand side is
isomorphic to R} & Indg5 (v) for a certain subgroup G C 2s and its one-dimensional representation v.
Canceling the R; summands, we obtain an isomorphism

(ExCI(X,) ® @)|g; = Indy (v).

It only remains to use the description of the subgroup G and its representation v also provided by
Corollary 4.9.

In the case t = % so that T = 1, it gives

(ExCl(X1/2) ® Q) g, = Indﬁg,z(—n >~ R, ® R} ® Ry.

Therefore, by Lemma 5.14 we deduce that (ExCl(X,2) ® Q)|g, is isomorphic either to R(3, 1% @
R(4, 1) or to R(3, 1?) ®R(2, 1%), hence by Lemma 5.12 we have either ExCI(X /) ® Q =R(4, 1%) or
ExCI(X1,) ® Q@ = R(3, 13). The first case is impossible by Lemma 5.19, because by Pieri’s rule the
restriction of the G¢-representation R(4, 1?) to a standard subgroup &4 contains a trivial subrepresentation,
hence the required result.

Similarly, in the case t = %, sothatt =1/ /=3, we have

(ExCI(X1/6) ® @)|at; = Indy’ (1) = Ry @ R

Therefore, by Lemma 5.14 we deduce that (ExCI(X/6) ® Q)|gs; is isomorphic to the sum of one of the
representations R(5) and R(1°), and one of the representations R(4, 1) and R(2, 13). On the other hand,
(ExCI(X1/6) ® @)|s, should contain R(5) by Lemma 5.21, so it follows that (ExCI(X/6) ® Q)|g; is
either R(5) ®R(4, 1), or R(5) ®R(2, 1°). By Lemma 5.12 only the first of them can be obtained as a
restriction of a representation of G¢ with respect to a nonstandard embedding of &5, and the corresponding
representation of Sg is R(2, 2, 2). Thus, we have ExCl(X/6) ® @ =R(2, 2, 2).
Finally, in the case t = 17—0, so that T =3/ \/3, we have
(ExC1(X7/10) ® Q)|2s = Ry,

hence ExCl(X7,10) ® Q is either R(6) or R(19). Again, the first case is impossible by Lemma 5.19, hence
the required result. O

Now we are ready to prove the main result of this section.
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Proof of Theorem 5.1. The description of C1(#) ® Q is given by Proposition 5.13, and the descriptions
of Cl(Z2%) ® Q and CI(X,;) ® Q for r € © U {oo} follow from a combination of Proposition 5.13 with
Lemma 5.16. The last three isomorphisms follow from Proposition 5.22 in view of the definition of the
excess class group. U

Remark 5.24. To study G-equivariant birational maps of the remaining Gg-invariant quartic X4 to
G-Mori fiber spaces, one can replace X4 by its projective dual, which is the Segre cubic Z. This may
be simpler because Z has terminal singularities. The corresponding problem for Z was partially solved in
[Avilov 2016, Theorem 1.3]. In particular, if G is a standard subgroup s in &g, then rk C1(Z)¢ =1 by
[Avilov 2016, Proposition 3.1], and we expect that Z, and thus also X /4, is not G-rational. In this case
the induced action of G on Z is also given by a standard embedding s = G — Aut(Z) = Gg; see e.g.,
[Howard et al. 2008, Section 2.2]. On the contrary, if G is a nonstandard subgroup s in Gg, then Z is
known to be G-rational; see [Prokhorov 2010, 3.16].

Remark 5.25. One of the geometric interpretations of the nontrivial summands of CI(X;) ® () that
appear in Theorem 5.1 is as follows. Suppose that ¢ # %, 00, so that the singularities of X, are nodes
by Theorem 3.3. Let v: X, — X, be the blow up of all singular points of X, and let Dy, ..., D, be
the exceptional divisors of v. Then X, is smooth, and D; = P! x P'. Let M;" and M, be the rulings
from two different families on D;. One can check that there is a natural perfect pairing between the
vector subspace in H 4()~( ¢» C) spanned by the one-cycles MI.Jr — M;" and the space (CI(X;)/ Pic(X;)) ® C.
Note also that the structure of this subspace of H 4()? ¢» C) as an Gg-representation can be independently
deduced from [Schoen 1985, Proposition 1.3] and [Beauville 2013, Lemma 1].

Appendix: Cremona-Richmond configuration

The Cremona—Richmond configuration is the configuration CR of 15 lines with 15 triple intersection
points in P* formed by the singular locus of the Igusa quartic. By a small abuse of terminology, we will
sometimes say that the singular locus is the configuration CR itself. We refer the reader to [Cremona
1877; Richmond 1900; Dolgachev 2004, Section 9] for basic properties.

Explicitly, the configuration CR can be described as follows. Consider P* as the hyperplane given
by (1.1) in P> with the usual Gg-action. For each pairs-splitting

{1,...,6} =L ululs,
where |I1| = |Ib| = |I3]| = 2, let L(j,|1,/1;) be the line in P4 given by equations
x; =x;if {i, j} = I, for some p € {1, 2, 3}.
This gives 15 lines in P*; for instance, L1 2/3.4i5.6) is the line given by equations
X1 =Xp, X3=2X4, X5=Xg, (A.1)

and the other lines are obtained from this by the G¢-action.
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Similarly, for every two-element subset I C {1, ..., 6} let P; be the point in P* given by equations
x; =xj if eitheri, jelori, j € I,
where 1 is the complement of / in {1, ..., 6}. This gives 15 points in P*: for instance,
Pip=2:2:-1:-1:-1:-1), (A.2)

and the other points are obtained from this by the G¢-action (so, this is the set Y5 defined in Section 3.1).
It is easy to see that P; lies on L(y,|1,1,) if and only if I = I, for some p € {1, 2, 3}, i.e., if I is one of
the pairs in the pairs-splitting, or, equivalently, the pairs-splitting extends the pair /. In particular, there
are three lines through each of the points (corresponding to three pairs-splittings of 7), and there are three
points on each line (corresponding to three pairs in a pairs-splitting). Moreover, the points P; are the only
intersection points of the lines Ly, |1,|1;). Because of this CR is often referred to as a (153)-configuration.
In this section we discuss some properties of CR. In particular, in Theorem A.8 we show that CR is
determined uniquely up to a projective transformation of P* by its combinatorial structure (under a mild
nondegeneracy assumption), and that the Igusa quartic is the only quartic whose singular locus contains CR.
We start by a discussion of combinatorics of CR.

Lemma A.3. The configuration CR is combinatorially self-dual: an outer automorphism of G induces
a bijection between the set of points P; and the set of lines L, 1, 1,) that preserves the incidence

correspondence.
Proof. There is a natural bijection between subsets of cardinality two in the set {1, ..., 6}, and transposi-
tions in the group Gg. Similarly, there is a natural bijection between pairs-splittings of the set {1, ..., 6},

and elements of cycle type [2, 2, 2] in G¢. Let us denote the transposition corresponding to a subset
I'C{l,...,6}byw(]), and the element of cycle type [2, 2, 2] corresponding to a pairs-splitting (11, 2, I3)
of {1,...,6} by w(/y, I, I3). The incidence relation of lines and points of CR can be reformulated in
group-theoretic terms: the line L(;,|1,/1;) is incident to the point P; if and only if the permutations w(/) and
w(ly, I, I3) commute (or, which is the same, the composition w(/) o w([y, I, I3) has cycle type [2, 2]).

Choose an outer automorphism « of the group G¢. The automorphism « interchanges transpositions
with elements of cycle type [2, 2, 2]. Thus « defines a map from the set of points of CR to the set of lines
of CR, and a map from the set of lines of CR to the set of points of CR. Moreover, this map preserves
the incidence relation. 0

Lemma A.3 implies the following result that we used in the main part of the paper.

Corollary A.4. Every standard subgroup 215 C S¢ acts transitively on the set of lines of CR, and every
nonstandard subgroup As C S¢ acts transitively on the set of points of CR.

Proof. The first assertion is evident from combinatorics, and the second assertion follows from the first
one in view of the bijection of Lemma A.3. O
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The following description of CR is very useful. Choose a triples-splitting

{1,...,6}=KouK;, |Kol=|K;i|=3.

For each bijection g: Ko — K let I'(g) be the pairs-splitting formed by all pairs {ko, g(ko)}, where ko

runs through Ky (and hence g (ko) runs through K). The 6 lines and 9 points

{Lrg)}getsoko, k) and  {Pry x, } ko ki) ekox K

form a subconfiguration CR/KO’ k, C CR of the Cremona-Richmond configuration; see Figure 3. Because
of its characteristic shape we call it a jail configuration. Note that CR’KO’ k, 1s contained in the hyperplane

Hg, ::{Zxk=0}={2xk=0}=:HKl.

kEKO kEK}
We call it the jail hyperplane.
P4 Pis P35
L(1,62,43,5)
Pis P34 Py6
L1,512,6/3,4)
P36 Pys P4
L(1,42,53,6)

Laspa36  Laeprsss  Laapess

ssssss

ration CR.

The remaining 9 lines and 6 points

{Lko. k11 Ko\kol K1 \k1) } (ko kekoxk;  and  {Pr}ick, or 1ck,

form a complete bipartite graph; see Figure 4; we call it a bipartite configuration.

Py 3 Ps¢
Py P46
P> Pys

Figure 4. The bipartite subconfiguration CR{, , 3, 456 in the Cremona—Richmond
configuration CR.

For any decomposition
CR = CR), x, UCRg, g,

(AS)
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into a jail and bipartite subconfiguration its components interact quite weakly: every line L x| ko\ko|K1\k1)
from the bipartite component passes through a single point Py, , in the jail component. This gives a bijec-
tion between bipartite lines and jail points (compatible with the natural bijection of both sets with Ky x K1).

Lemma A.6. Let C be a configuration of 15 lines with 15 intersection points in P* which is not contained

in P and is combinatorially isomorphic to the Cremona—Richmond configuration. If C =C'UC” is a jail—

bipartite decomposition then the jail component C' spans a hyperplane, and the bipartite component C”
4

spans P~

Proof. The jail component C" has the shape shown in Figure 3. Two vertical lines do not intersect, hence
they span a hyperplane H' C P*. Three horizontal lines intersect each of them, hence they are contained
in H'. The last vertical line intersects the horizontal lines, hence it is also contained in H'.

The bipartite component C” has the shape shown in Figure 4. Assume it is contained in a hyperplane
H" C P*. Then every line of the bipartite component is contained in H”. Since every point of the jail
component lies on a line of the bipartite component, it follows that the jail component is also contained
in H”. Thus C C H”, which contradicts the assumptions of the lemma. O

Remark A.7. The set {1, 2, 3,4, 5, 6} has 10 distinct triples-splittings, giving rise to 10 distinct jail-
bipartite decompositions of the Cremona—Richmond configuration. The 10 hyperplanes supporting the
jail components of CR appeared in Remark 2.25.

Theorem A.8. Let C be a configuration of 15 lines with 15 intersection points in P* which is not contained
in P3 and is combinatorially isomorphic to the Cremona—Richmond configuration. Then it is projectively

isomorphic to the Cremona—Richmond configuration.

Proof. Choose a jail-bipartite decomposition C = C"' U C”. Choose five points Py, ..., Ps in the bipartite
component C” that are not contained in a hyperplane (this is possible by Lemma A.6), and let H' be the
hyperplane containing the jail component C'. Note that P; ¢ H' for all i. Indeed, if P; € H' then every
line of the bipartite component passing through P; would be contained in H’ (since it also contains a
point of the jail component), hence the three points of C” that are connected to P; by lines in C” will
be also contained in H'. Applying the same argument to one of these points, we would deduce that the
whole bipartite component is contained in H', hence C C H’, which contradicts our assumptions.

Assume that the points P;, P3, and Ps are not connected to each other by lines in C”; that is, they
are contained in one part of the bipartite component, and P,, P, are contained in the other. Since the
points P; do not lie on a hyperplane, they can be taken to points

Pi=(1:0:0:0:0), P3=(0:0:1:0:0), P;=(0:0:0:0:1),
P,=(0:1:0:0:0), P4=(0:0:0:1:0),

(A9)

of P* by a projective transformation. Since the hyperplane H’ does not pass through the points P;, it can
be simultaneously taken to the hyperplane defined by the equation

X1 —x2+x3—x4+x5=0.
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Now for each odd i and even j consider the line passing through P; and P;. By assumption it belongs to

the bipartite component C”. The intersection points of these lines with H' are the following six points
Pr=(01:1:0:0:0), P3p=(0:1:1:0:0), Ps5=(0:1:0:0:1),
P4=(01:0:0:1:0), Py4=(0:0:1:1:0), Ps4=(0:0:0:1:1).

(A.10)

It follows that P;; are points of the jail component C'. Consequently, the following six lines belong to the

jail component C':
(P12, Pag) ={x1 —xy=x3—x4 =x5 =0}, (P12, Ps4) = {x1 —x2 = x5 —x4 = x3 =0},
(P32, Pia) ={x3—xo=x1 —xa=x5 =0}, (P32, Pa) ={x3—x2=x5 —xa=x; =0},
(Psp, Pra) ={xs —xo=x1 —x4 =x3 =0}, (Psz, P34) ={x5 —x2 =x3 — x4 =x1 =0},
and their three extra intersection points
P1234=(1:1:12120), P1245=(1:1202121), P2345:(02121:121) (A.ll)
also belong to C'. Finally, the last point Py of the bipartite component is the point
Po=(P1, Pr3as) N (P3, Pioas) N (Ps, Pioza) =(1:1:1:1:1). (A.12)

This proves that such configuration is unique up to a projective transformation. The explicit transformation
from P* to P> that takes the points (A.9), (A.10), (A.11), and (A.12) to the points P; ; that were defined
in (A.2) is given by the matrix

-2 1 -2 1 1
1-2 1 1 1}’
1 -2 1-2 1
1 1 1 -2 1

in particular, the point Ps is mapped to the point P in (A.2). This completes the proof of Theorem A.8.
O

Remark A.13. Let C be a configuration combinatorially isomorphic to CR. Then one can always project C
isomorphically to P?. In particular, the assumption of Theorem A.8 requiring that the configuration is not

contained in P3 is necessary.

Corollary A.14. Let C be a configuration of 15 lines with 15 intersection points in P* which is not
contained in 3 and is combinatorially isomorphic to the Cremona—Richmond configuration. Suppose
that X is a quartic threefold that contains C in its singular locus. Then it is projectively isomorphic to the

lgusa quartic.

Proof. By Theorem A.8 it is enough to show that the Igusa quartic X is the unique quartic singular along C.
Suppose that X’ is another quartic with this property. Since X is irreducible, the intersection Z = XN X’ is



Coble fourfold, Gg-invariant quartic threefolds, and Wiman—Edge sextics 271

two-dimensional, and deg Z = 16. Let C’ be one of the jail subconfigurations of C. Then C’ is contained in
a unique two-dimensional smooth quadric T'; this quadric is swept out by lines that meet three of the lines
in C'. The lines of C’ are singular both on X and X’, so we conclude that T is contained in Z. It remains
to notice that C contains 10 jail subconfigurations, all of them giving rise to different two-dimensional
quadrics contained in Z. The degree of the union of these quadrics is 20; this is greater than deg Z, which
gives a contradiction. U
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