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Fano 4-folds with rational fibrations

Cinzia Casagrande

We study (smooth, complex) Fano 4-folds X having a rational contraction of fiber type, that is, a rational
map X --» Y that factors as a sequence of flips followed by a contraction of fiber type. The existence of
such a map is equivalent to the existence of a nonzero, nonbig movable divisor on X. Our main result
is that if ¥ is not P! or P?, then the Picard number px of X is at most 18, with equality only if X is a
product of surfaces. We also show that if a Fano 4-fold X has a dominant rational map X --+ Z, regular
and proper on an open subset of X, with dim(Z) = 3, then either X is a product of surfaces, or py is at
most 12. These results are part of a program to study Fano 4-folds with large Picard number via birational

geometry.
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1. Introduction

Smooth, complex Fano varieties play an important role in projective geometry, both from the classical and
modern point of view, in the framework of the minimal model program. There are finitely many families
of Fano varieties of any given dimension, which are classified up to dimension 3 — the classification of
Fano 3-folds was achieved more than 30 years ago, see [Iskovskikh and Prokhorov 1999] and references
therein. In dimensions 4 and higher there is no classification apart from some special classes, and we still
lack a good understanding of the geometry of Fano 4-folds.

This paper is part of a program to study Fano 4-folds X with large Picard number px, by means of
birational geometry, more precisely via the study of contractions and flips of Fano 4-folds. Our goal is to
get a sharp bound on py, and possibly to classify Fano 4-folds X with “large” Picard number. Let us
notice that, among the known examples of Fano 4-folds, products of del Pezzo surfaces have px < 18,
and the others have px <9 (see [Casagrande et al. 2019] for the case px =9).
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In this paper we focus on Fano 4-folds X having a rational contraction of fiber type. Here a contraction
is a morphism f: X — Y with connected fibers onto a normal projective variety. More generally, a
rational contraction is a rational map f: X --» Y that can be factored as X % X’ AN Y, where X' is a
normal and Q-factorial projective variety, ¢ is birational and an isomorphism in codimension 1, and f’
is a contraction. As usual, f is of fiber type if dim ¥ < dim X. Note that X has a nonconstant rational
contraction of fiber type if and only if there is a nonzero, nonbig movable divisor. Our main results are
the following.

Theorem 1.1. Let X be a smooth Fano 4-fold with a rational contraction of fiber type f: X --+ Y, where
dimY > 0. If Y ZP' and Y 2 P2, then px < 18, with equality only if X is a product of surfaces.

Theorem 1.2. Let X be a smooth Fano 4-fold. Suppose that there exists a dominant rational map
f: X --»Y, regular and proper on an open subset of X, with dimY = 3. Then either X is a product of
surfaces, or px < 12.

Let us say something on the techniques and strategy used in the paper. We consider the following
classes of rational contractions of fiber type:

{*“quasielementary”} C {“special”’} C {general}.

Quasielementary rational contractions of fiber type have been introduced in [Casagrande 2008; 2013a]
(see Section 2A for more details); when f is quasielementary Theorem 1.1 is already known [loc. cit.],
and one can even allow Y = P! and Y = P2,

In this paper we introduce a more general notion, that of “special” rational contraction of fiber type,
which plays a key role in the proof of Theorem 1.1. We define special (regular and rational) contractions
in Section 2B; then we show that every rational contraction of fiber type of a Mori dream space can be
factored as a special rational contraction, followed by a birational map (Proposition 2.13). In particular, if
a Fano variety has a rational contraction of fiber type, then it also has a special rational contraction of
fiber type, so that we can reduce to prove Theorem 1.1 when f is special.

Secondly, we show that up to flips, every special rational contraction of a Mori dream space can be
factored as a sequence of elementary divisorial contractions, followed by a quasielementary contraction
(Theorem 2.15). This allows to relate the study of special rational contractions of Fano 4-folds X to our
previous study of elementary divisorial contractions and quasielementary contractions of 4-folds obtained
from X with a sequence of flips, in [Casagrande 2013a; 2017].

Another key ingredient used in the paper is the Lefschetz defect §x, an invariant of X which basically
allows to bound px in terms of the Picard number of prime divisors in X (see Section 3A for an account).

After developing the necessary techniques and preliminary results in Sections 2—4, we prove Theorem 1.1
first in the case where dimY = 2 in Section 5, and then in the case where dimY = 3 in Section 6.
Theorem 1.2 is then an easy consequence of the case where dim Y = 3.
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1A. Notation and terminology. If N is a finite-dimensional real vector space and ay,...,a, € N,
{ay, ..., a,) denotes the convex cone in A generated by ay, ..., a,. Moreover, for every a # 0, at is the
hyperplane orthogonal to a in the dual vector space N*.

We refer the reader to [Hu and Keel 2000] for the notion of Mori dream space; we always assume that
a Mori dream space is projective, normal and Q-factorial. We recall that Fano varieties are Mori dream
spaces by [Birkar et al. 2010, Corollary 1.3.2]. We also refer to [Kolldr and Mori 1998] for the standard
notions in birational geometry, in particular the definition of flip [loc. cit., Definition 6.5]

Let X be a normal and Q-factorial projective variety.

A small Q-factorial modification (SQM) is a birational map ¢: X --» X’ which is an isomorphism in
codimension one, where X’ is a normal and @Q-factorial projective variety. If X is a Mori dream space,
every SQM can be factored as a finite sequence of flips.

Let f: X — Y be an elementary contraction, namely a contraction with py — py = 1. We say that f
is of type (a, b) if

dimExc(f) =a and dim f(Exc(f)) =5b.

We say that f is of type (dim X — 1, b)*™ if it is the blow-up of a smooth b-dimensional subvariety of Y,
contained in Ypeg. If X is a smooth 4-fold, we say that f is of type (3, 0)€ if f is of type (3,0), Exc(f)
is isomorphic to an irreducible quadric Q, and Ngx(r)/x = Og(—1).

Let D be a divisor. A contraction f: X — Y is D-negative (respectively, D-positive) if there exists
m € 7~ such that —m D (respectively, m D) is Cartier and f-ample. A D-negative flip is the flip of a small,
D-negative elementary contraction, and similarly for D-positive. We do not assume that contractions or
flips are K -negative, unless specified.

When X is a Mori dream space, given a contraction f: X — Y and a divisor D in X, one can run
an MMP for D relative to f. This means that there exists a birational map ¥ : X --+ X', given by a
composition of D-negative flips and elementary divisorial contractions, such that f':= foy~!: X' — Y is
regular, and if D’ is the transform of D in X', then either D’ is f’-nef, or f’ factors through a D’-negative
elementary contraction of fiber type of X'.

A movable divisor is an effective divisor D such that the stable base locus of the linear system |D| has
codimension > 2. A fixed prime divisor is a prime divisor D which is the stable base locus of |D|. We
will consider the usual cones of divisors and of curves

Nef(X) € Mov(X) C Eff(X) c N(X), mov(X) C NE(X) C NV (X),

where all the notations are standard except mov(X), which is the convex cone generated by classes of
curves moving in a family covering X. When X is a Mori dream space, all these cones are closed, rational
and polyhedral. If D is a divisor and C is a curve in X, we denote by [D] € N''(X) and [C] € N|(X)
their numerical equivalence classes.

For every closed subset Z C X, we denote by N (Z, X) the linear subspace of Nj(X) spanned by
classes of curves contained in Z. We will use the following simple property.
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Remark 1.3. Let D be a prime divisor. If ZN D = &, then MV,(Z, X) C D+, in particular V1 (Z, X) C
Ni1(X). This is because D - C = 0 for every curve C C Z.

Let X be a smooth 4-fold. An exceptional plane is a closed subset L C X such that L = P? and
Npjx = OPZ(—1)€B2; an exceptional line is a closed subset £ C X such that £ = P! and Neyx = Opi (—1)®3.

2. Special contractions of fiber type

When studying Fano varieties, or more generally Mori dream spaces, one often needs to consider
contractions of fiber type f: X — Y which are not elementary. In full generality, such contractions are
hard to deal with, in particular ¥ may be very singular and/or non-Q-factorial. For this reason, it is useful
to introduce some classes of contractions of fiber type with good properties, which should include the
elementary case. A first notion of this type is that of “quasielementary” contraction; we briefly recall this
definition and some properties in Section 2A.

Here we introduce a more general notion, that of “special” contraction of fiber type. In Section 2B we
define special contractions, in the regular and rational case; the target is automatically Q-factorial.

In Section 2C we show two factorization results for rational contractions of fiber type of Mori dream
spaces. More precisely, we show that every rational contraction of fiber type of a Mori dream space can
be factored as a special rational contraction, followed by a birational map (Proposition 2.13). Moreover,
up to flips, every special rational contraction of a Mori dream space can be factored as a sequence of
elementary divisorial contractions, followed by a quasielementary contraction (Theorem 2.15).

Finally, in Section 2D we consider special contractions of fiber type f: X — Y which are also
(K +A)-negative for a suitable boundary A on X, and we show that if X has good singularities, then Y
has good singularities too.

2A. Quasielementary contractions. We refer the reader to [Casagrande 2013a, Section 2.2; 2008] for
the notion of quasielementary contraction of fiber type; here we just recall the definition.
Definition 2.1 (quasielementary contraction). Let X be a normal and Q-factorial projective variety and
f: X — Y acontraction of fiber type. We say that f is quasielementary if for every fiber F of f we
have N1 (F, X) = ker f, where f;: N1(X) — Ni(Y) is the push-forward of one-cycles (see Section 1A
for M1 (F, X)).
Let us give an equivalent characterization, for Mori dream spaces.
Proposition 2.2. Let X be a Mori dream space and f: X — Y a contraction of fiber type. The following
are equivalent:
(1) f is quasielementary.
(ii) For every prime divisor D in X, either f(D) =Y, or D = Af* B for some Q-Cartier prime divisor
BinY and ) € Q..
(iii) Y is Q-factorial and for every prime divisor B in Y, the pull-back f* B is irreducible (but possibly
nonreduced).
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Proof. Let F C X be a general fiber of f.

(i)=(iii) The target Y is Q-factorial by [Casagrande 2013a, proof of Remark 2.26]. Let B be a prime
divisor in Y, and let D be an irreducible component of f*B. Then D N F = &, so that N} (F, X) C D+
by Remark 1.3. Since f is quasielementary, we have N (F, X) = ker f, hence ker f, C D+, and D is
the pull-back of a @-divisor in Y (see [loc. cit., Remark 2.9]). Since B = f (D), we must have D = Af*B
with A € Q-¢, so f*B is irreducible.

(i))=-(i) Let o be the minimal face of Eff(X) containing f*(Nef(Y)); by [Casagrande 2013a, Lemma 2.21
and Proposition 2.22] we have ¢ = Eff(X) N N|(F, X)*, and f is quasielementary if and only if
dimo = py.

Suppose that f is not quasielementary. Then dimo > py, so that o & f*N'!(Y), and there exists a
one-dimensional face 7 of o such that T & f*N'(Y). Let D C X be a prime divisor with [D] € . Then D
is not the pull-back of a Q-Cartier prime divisor in Y. On the other hand, we also have [D] € N (F, X )L,
so that D - C = 0 for every curve C C F. Since F ¢ D, we must have F N D = &, hence f(D) C Y.
(ili)=-(@i) Let D C X be a prime divisor which does not dominate Y. Let B C Y be a prime divisor
containing f (D). Then B is Q-Cartier, and D is an irreducible component of f*B, hence f*B = uD
with u € Q. O

2B. Special contractions.

Definition 2.3 (special contraction). Let X be a normal and Q-factorial projective variety and f: X — Y
a contraction of fiber type. We say that f is special if for every prime divisor D C X we have that either
f(D)=Y,or f(D) is a @-Cartier prime divisor in Y.

Remark 2.4. Let X be a normal and Q-factorial projective variety and f: X — Y a contraction of fiber
type. Then f is special if and only if the following conditions hold:
(1) codim f (D) <1 for every prime divisor D C X.
(2) Y is Q-factorial.
Condition (1) above is not enough to ensure that Y is Q-factorial, as the following simple example shows.

Example 2.5. Set Z :=Pp2(OO(1)pO(1)), X :=Z x P!, and let 7 : X — Z be the projection. Then
Z has a small elementary contraction g: Z — Y, and f :=gomw: X — Y satisfies (1) but not (2), in
particular it is not special. Note that X is Fano and f is K-negative.
Remark 2.6. Let X be a normal and Q-factorial projective variety and f: X — Y a contraction of fiber
type:
(a) If X is a Mori dream space and f is elementary, or quasielementary, then f is special by
Proposition 2.2.

(b) If f is special, then the locus where f is not equidimensional has codimension at least 3 in Y.

(c) Let f be special, and ¢: X --» X’ a SQM such that ' := f o ¢! is regular. Then f’ is special.
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The following is a consequence of [Druel 2018, Lemma 2.6].

Lemma 2.7. Let X be a normal and Q-factorial projective variety and f: X — Y a contraction of fiber
type. If f is equidimensional, then Y is Q-factorial and f is special.

Definition 2.8 (special rational contraction). Let X be a normal and (Q-factorial projective variety and
f: X --» Y arational contraction of fiber type. We say that f is special if there existsa SQM ¢ : X --+ X’
such that f' := f o ™! is regular and special.
Remark 2.9. If f: X --» Y is special, then:

Y is (-factorial, by Remark 2.4.

« For every SQM ¢: X --» X’ such that f' := f o ¢! is regular, we have that f’ is special, by

Remark 2.6(c)enumi.
In the next subsection we will prove the following characterization of special rational contractions of

Mori dream spaces.

Proposition 2.10. Let X be a Mori dream space and f: X --+ Y a rational contraction of fiber type.
Then f is special if and only if f cannot be factored as

3y

<+ |
N |~

xZ

h

o |\

where g is a rational contraction, h is birational, and pz > py.

2C. Factorizations. We start this subsection with a construction that will be used in the proofs of two
factorization results, Proposition 2.13 and Theorem 2.15.

Construction 2.11. Let X be a Mori dream space, f: X — Y a contraction, and D C X a prime divisor

such that f(D) C Y. Let us run a MMP for — D, relative to f (see Section 1A). We get a commutative

diagram:
X
]
Y

where W is QQ-factorial, i is a composition of D-positive flips and divisorial contractions (in particular D

4 W
lj (2.12)
T

X

cannot be exceptional for v/, so it has a proper transform Dy in W), and fy := f oy ! is regular. Since
f(D) €Y, the MMP cannot end with a fiber type contraction, and — Dy is fw-nef. Let j: W — T be
the contraction given by NE( fi) N Di. so that fw factors as in (2.12); there exists a (D-Cartier prime
divisor Dy in T such that Dy = Aj* D7 for some A € Q. ¢, and — Dy is k-ample. We have the following
properties:

(a) k is birational, Exc(k) € Dy, f(D) = k(Dr).
®) f, fw,and j coincide in the open subset X ~ Y f(D)).
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(c) The divisorial irreducible components of f ~1(f(D)) are exactly D and the prime exceptional divisors
of V.

Proof. By construction 1 is a composition of D-positive flips and divisorial contractions (relative to f),
hence the images under f of the exceptional divisors of v are all contained in f (D), so these divisors
must be divisorial irreducible components of f ~1(f(D)). On the other hand k~'(k(D7)) = D7, so
fv;l(f(D)) = j_l(DT) = Dy is irreducible. O

(d) f~Y(f(D)) has px — pw + 1 divisorial irreducible components.
(e) k is an isomorphism if and only if f(D) is a @-Cartier prime divisor in Y.

Proof. The “only if” direction is clear, because Dy is Q-Cartier and f (D) = k(Dr). For the other,
suppose that f(D) is a Q-Cartier prime divisor in Y. Since k~Y(f(D)) =k~ '(k(D7)) = Dr, we must
have £*(f (D)) = uDr, with u € Q. Then — Dy is both k-trivial and k-ample, so that k must be an
isomorphism. |

(f) Exc(k) is a prime divisor if and only if codim f(D) > 1.
(g) k is not an isomorphism and codim Exc(k) > 1 if and only if f (D) is a non-Q-Cartier prime divisor.

Proposition 2.13. Let X be a Mori dream space and f: X --+ Y a rational contraction of fiber type.

Then f can be factored as follows:
f

_ —

XZ-s7—3y
8 h
where g is a special rational contraction, and h is birational. Moreover, such a factorization is unique up
to composition with a SOM of Z.

Proof. To show existence of the factorization, we proceed by induction on px — py.

If px — py =1, then f is elementary and hence special, so the statement holds with g = f and h = 1dy.

For the general case, up to composing with a SQM of X, we can assume that f is regular. If f is
special, then as before the statement holds with g = f. Otherwise, there exists a prime divisor D in X
such that f(D) C Y and f(D) is not a Q-Cartier divisor in Y.

We apply Construction 2.11 to f and D. We get a diagram as (2.12), where k is not an isomorphism
by (e), because f (D) is not a Q-Cartier divisor in Y; in particular p7 > py.

The composition f := jow: X --» T is a rational contraction of fiber type with px — pr < px — py;
by the induction assumption, f can be factored as follows:

x-%.42

N
flf\ ﬁ
N

where g is a special rational contraction of fiber type, and  is birational. Then h:=koh: Z — Y is
birational, so we have a factorization as in the statement.
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To show uniqueness, suppose that f has another factorization X 8570 "y with g’ special and A’
birational; notice that both Z and Z’ are Q-factorial by Remark 2.9. We show that the birational map
@:=(h)"oh: Z--»Z7isa SQM.

Let B C Z be a prime divisor. Up to composing g and g’ with a SQM of X, we can assume that
g’ X — Z'isregular. Let D C X be a prime divisor dominating B under g; then g’(D) C Z’, and since
g’ is special, B’ := g’(D) is a prime divisor in Z’. This means that ¢ does not contract B. Similarly, we
see that ¢ ~! does not contract divisors, hence ¢ is a SQM. (|

Proof of Proposition 2.10. Suppose that f is not special, and consider the factorization of f given by
Proposition 2.13. Then % cannot be an isomorphism, thus pz > py.

Conversely, suppose that f has a factorization as in the statement. By applying Proposition 2.13 to g,
we get a factorization of f as follows:

f

X:;;Z—V%Z:%3Y

8

where g’ is special and /'’ is birational. Thus % o &’ is birational with pz > py; by the uniqueness part of
Proposition 2.13, f is not special. U

Notation 2.14. Let X be a Mori dream space and f: X — Y a special contraction; recall that Y is
Q-factorial by Remark 2.4. If B is a prime divisor in Y, then every irreducible component of f*B must
dominate B. As the general fiber of f is irreducible, there are at most finitely many prime divisors
in Y whose pullback to X is reducible. We fix the notation Bj, ..., B, for these divisors in Y, where
m € Z>o, and we denote by r; € Z>, the number of irreducible components of f*B;, fori =1, ..., m (we
ignore the multiplicities of these components, and ignore the possible prime divisors B such that f*B is
irreducible but nonreduced). Note that by Proposition 2.2, f is quasielementary if and only if m = 0.

Given a special rational contraction f: X --+» Y, we will use the same notation By, ..., B, and
1, ..., Fm, with the obvious meaning.

Theorem 2.15. Let X be a Mori dream space and [ : X — Y a special contraction; we use Notation 2.14.
Let E be the union of (arbitrarily chosen) r; — 1 components of f*B;, fori =1, ..., m. Then there is a

factorization

where X' is projective, normal, and Q-factorial, g is birational with Exc(g) = E,! the general fiber of f

is contained in the open subset where g is an isomorphism, and ' is quasielementary.

IWe denote by Exc(g) the closure in X of the exceptional locus of g in its domain.
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Proof. We proceed by induction on px — py. If f is elementary, then it is quasielementary, so £ = & and
the statement holds with X’ = X and f' = f.
Let us consider the general case. If f is quasielementary, then again the statement holds with f' = f.
Suppose that f is not quasielementary, so that m > 1 by Proposition 2.2, and consider the divisor
By C Y. Let D be the irreducible component of f*B; not contained in E; we have f(D) = B; because
f is special. We apply Construction 2.11 to f and D, and get a diagram:

v

X-=->W
"

Y

where W is Q-factorial, ¥ is a sequence of D-positive flips and divisorial contractions, relative to f, and
the general fiber of f is contained in the open subset where v is an isomorphism (by (b)). Moreover
fwB1 is irreducible (by (e)), and the exceptional divisors of 1 are all the components of f*B; except D
(by (¢)). In particular, r; — 1 > 1 elementary divisorial contractions occur in v, so pyw < px. Clearly fw
is still special, and we conclude by applying the induction assumption to fy . O

In particular, given a special contraction f: X — Y with general fiber F', one can bound py in terms
of py, pr, and the number of irreducible components of f*B;,i =1, ..., m.

Corollary 2.16. Let X be a Mori dream space, [ : X — Y a special contraction, and F C X a general
fiber of f. We use Notation 2.14. Then

m

px =py +dmNI(F, X)+ Y (i =) < py+pr+ Y (i —1D).

i=1 i=1
For the proof of Corollary 2.16 we need the following simple property.

Lemma 2.17. Let ¢ : X --» X' be a birational map between normal and Q-factorial projective varieties.
Let T C X be a closed subset contained in the open subset where ¢ is an isomorphism, and set T' :=
o(T) C X'. Then dim N(T, X) = dim N{(T', X').

Proof. We note that N (T, X) is the quotient of the vector space of real 1-cycles in T by the subspace
of 1-cycles y such that y - D = 0O for every divisor D in X, so it is determined by the image of the
restriction map N (X) — N1(T), and similarly for A (7’, X’). Since X and X' are Q-factorial, and T
is contained in the open subset where ¢ is an isomorphism, it is easy to see that the images of the maps
NY(X) = NU(T) and N (X") — N (T") are the same, under the natural isomorphism N1 (T) = N1(T").

g

Proof of Corollary 2.16. Let us consider the factorization of f given by Theorem 2.15. The difference
px — px' is the number of prime exceptional divisors of g, namely > ;" (r; — 1). Moreover F is
contained in the open subset where g is an isomorphism, g(F) C X’ is a general fiber of f’, and
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dim N (F, X) = dimN;(g(F), X') by Lemma 2.17. Finally, since f’ is quasielementary, we have

px = py +dim N (g(F), X'). This yields the statement. O
Corollary 2.18. Let X be a Mori dream space and f: X — Y a special contraction; we use Notation 2. 14.
Then every prime divisor in f*B; is a fixed divisor, fori =1, ..., m.

Moreover, let E be the union of (arbitrarily chosen) r; — 1 components of f*B;, fori =1, ..., m. Then

the classes of the components of E in NV (X) generate a simplicial face o of Eff(X), and o "Mov(X) = {0}.

Proof. Theorem 2.15 implies the existence of a contracting birational map g: X --» X', with X’ Q-
factorial, whose prime exceptional divisors are precisely the components of E. This gives the statement
(see for instance [Okawa 2016, Lemma 2.7]). O

We will also need the following technical property.

Lemma 2.19. Let X be a Mori dream space and f: X --+ Y a special rational contraction; we use
Notation 2.14. Let Eq be an irreducible component of f*B; for some i € {1,...,m}. Then there is a
factorization of f:

x-25%
I
fl J/O’
3
Y+—7

where ¢ is a SOM, o is an elementary divisorial contraction, Exc(o) is the transform of Ey, and
dimo (Exco) >dimY — 1.
Proof. Let us choose a SQM v : X --» X’ such that ' := foy~!: X’ — Y is regular.

We still denote by Ej the transform of Ey in X’; by Corollary 2.18, Ej is a fixed divisor, and it is easy
to see that it cannot be f’-nef. We run a MMP in X’ for Ey, relative to f’, and get a diagram:

x-Yox-f.%
PN
Y<—Z

where £ is a sequence of Eg-negative flips, and o is an elementary divisorial contraction with exceptional
divisor (the transform of) Ey.

Now hoo: X — Y is a special contraction, therefore /(o (Exc(o))) is a divisor in Y, and
dimo (Exc(o)) > dimY — 1. O

2D. Singularities of the target. The goal of this subsection is to prove the following result.

Proposition 2.20. Let X be a smooth projective variety, and A a Q-divisor on X such that (X, A) is
kit. Let f: X — Y be a (K+A)-negative special contraction of fiber type. Then Y has locally factorial,
canonical singularities, and is nonsingular in codimension 2.

Proposition 2.20 will follow from some technical lemmas.
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Lemma 2.21. Let X be a projective variety with locally factorial, canonical singularities, and A a
boundary such that (X, A) is kit. Let f: X — Y be a (K+ A)-negative special contraction of fiber type.
Then Y has locally factorial, canonical singularities.

Proof. It follows from [Fujino 1999, Corollary 4.5] that Y has rational singularities, so it is enough to
show that it is locally factorial [Kollar and Mori 1998, Corollary 5.24].
Let B be a prime divisor in Y. Since Y is (D-factorial, there exists m € Z- such that m B is Cartier.
SetU = f _I(Yreg); since Y is normal and f is special, we have

codim Sing(¥Y) >2 and codim(X\U) > 2.

Then B N Y, is a Cartier divisor on Y, and fl“z,(B N Yiee) is a Cartier divisor on U. Since X is
locally factorial, there exists a Cartier divisor D in X such that Dy = fl>£7 (BN Yreg). Then mD)|y =
fl*l‘]((mB)|yreg) = f*(mB)|y, and hence mD = f*(mB).

We deduce that D - C = 0 for every curve C C X contracted by f. Since f is (K+A)-negative,
this implies that there exists a Cartier divisor B’ on Y such that D = f*B’ [Kollar and Mori 1998,
Theorem 3.7(4)]. Thus we have Bl/Yreg = BN Y, and hence B = B’ is Cartier. O

The following two lemmas are basically [Andreatta et al. 1992, Proposition 1.4 and 1.4.1], where they
are attributed to Fujita.

Lemma 2.22. Let X be a smooth projective variety, and A a Q-divisor on X such that (X, A) is kit. Let
f: X — Y be an equidimensional, (K 4+ A)-negative contraction of fiber type. If Y has at most finite
quotient singularities, then Y is smooth.

Proof. Let F C X be a general fiber of f. Then F is smooth and (F, A|r) is kIt [Kolldr and Mori
1998, Lemma 5.17]; moreover —(Kr + A|r) = —(Kx + A)|r is ample, so that (F, A|r) is log Fano. By
Kawamata—Viehweg vanishing, 1’ (F, Or) = 0 for every i > 0, hence x (F, Or) = 1. Then the same
proof as [Andreatta et al. 1992, Proposition 1.4] applies. UJ

Lemma 2.23. Let X be a smooth projective variety with dim X > 3, and A a Q-divisor on X such that
(X, A)isklt. Let f: X — S be an equidimensional, (K 4+ A)-negative contraction onto a surface. Then S

is smooth.

Proof. Notice first of all that S is Q-factorial by Lemma 2.7. Moreover, by [Fujino 1999, Corollary 4.5],
there exists Q-divisor A" on S such that (S, A’) is klt; in particular S has log terminal singularities,
and hence finite quotient singularities [Kollar and Mori 1998, Proposition 4.18]. Then S is smooth by
Lemma 2.22. 0

Lemma 2.24. Let X be a smooth projective variety, A a Q-divisor on X such that (X, A) is klt, and
f: X = Y a (K+A)-negative contraction of fiber type.

Suppose that the locus where f is not equidimensional has codimension at least 3 in Y, equivalently
that there is no prime divisor D C X such that codim f (D) = 2.

Then Y is smooth in codimension 2.
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Proof. Set m = dimY and let Hy, ..., H,_» be general very ample divisors in Y. Consider § :=
HN.---NH,_,and Z .= f‘l(S) = f*HN--- f*H,_5. Then S is a normal projective surface, Z is
smooth, and f is equidimensional over S, so that fz := fjz: Z — S is an equidimensional contraction.
Moreover (Z, A|z) is klt [Kollar and Mori 1998, Lemma 5.17].

Let C C Z be a curve contracted by f; then f*H; - C = 0 for every i, so that by adjunction

(K2+A\Z)'C=(Kx+A)-C<O,

and f7 is (Kz+A|z)-negative. Thus § is smooth by Lemma 2.23, so § C Y, and hence codim Sing ¥ > 3.
O

Proposition 2.20 follows from Lemma 2.21, Remark 2.6(b)enumi, and Lemma 2.24.

3. Special contractions of Fano varieties of relative dimension 1

3A. Preliminaries on the Lefschetz defect. Let X be a normal and Q-factorial Fano variety. The Lef-
schetz defect §x is an invariant of X, introduced in [Casagrande 2012], and defined as follows:

3x = max{codim N (D, X) | D a prime divisor in X}
(see Section 1A for Ni(D, X)). The main properties of §x are the following.

Theorem 3.1 [Casagrande 2012; Della Noce 2014]. Let X be a Q-factorial, Gorenstein Fano variety,
with canonical singularities and at most finitely many nonterminal points. Then §x < 8.

If moreover X is smooth and 8x > 4, then X = S x Y, where S is a surface.

Theorem 3.2 [Casagrande 2012, Corollary 1.3; 2013b, Theorem 1.2]. Let X be a smooth Fano 4-fold.
Then one of the following holds:

(1) X is a product of surfaces.

(ii) 6x =3 and px <6.
(iii) §x =2 and px < 12.
@iv) 6x < 1.
3B. The case of relative dimension one. In this subsection we show that if X is a Fano variety and
f: X — Y is a special contraction with dim Y =dim X — 1, then px — py <9; this is a generalization of
an analogous result in [Romano 2019] in the case where f is a conic bundle. The strategy of proof is the

same: we use f to produce px — py — 1 pairwise disjoint divisors in X, and then we use them to show
that if px — py > 3, then §x > px — py — 1; finally we apply Theorem 3.1.
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Proposition 3.3. Let X be a Q-factorial, Gorenstein Fano variety, with canonical singularities and at
most finitely many nonterminal points. Let f: X — Y be a special contraction with dimY = dim X — 1.
Then the following hold:

(@) px —py <9.
(b) If px — py = 3, then dx > px — py — L.

If moreover X is smooth and px — py > 5, then there exists a surface S suchthat X =Sx Z,Y = PlxZ,
and f is induced by a conic bundle S — P

For the proof of Proposition 3.3 we need some technical lemmas, that will be used also in Section 6.

Lemma 3.4. Let X be a Mori dream space, and suppose that Kx is Cartier in codimension 2, namely
that there exists a closed subset T C X such that codim T > 3 and K x._r is Cartier.

Let f: X — Y be a K-negative special contraction with dim Y = dim X — 1; we use Notation 2.14.
Then px =py +1+mandr; =2foreveryi =1,...,m.

Let moreover E;, E; be the irreducible components of f*B;. Then the general fiber of f over B; is
ei + e;, where e; and ¢; are integral curves with E; - e; < 0, E; ¢ <0,and —Ky -e; = —Kx -é; = 1.

Proof. Fixi € {1, ..., m}. The closed subset T cannot dominate B;, hence the general fiber of f over
B; is a curve F; contained in X \ 7 where Ky is Cartier. Since —Kx - F; = 2, and f is K-negative,
F; has at most two irreducible components. This implies that r; = 2 and F; = ¢; + ¢;, with ¢; C Ej,
é; C E;, and conversely e¢; ¢ E:, é; ¢ E;. The fiber F; is connected, hence we have E; Ne¢; # &, and
therefore E; - ¢; > 0. Since E; - F; =0, we get E; - ¢; < 0; similarly for Ei. Finally px = py + 1 +m by
Corollary 2.16. (|

Lemma 3.5. In the setting of Lemma 3.4, if moreover codim T >4, then By, ..., B, are pairwise disjoint.

Proof. By contradiction, suppose that B; N By # &. Then B N B; has pure dimension dim X — 3, because
Y is (D-factorial (see Remark 2.4); let W be an irreducible component. Since f is special, the general
fiber Fy of f over W is a curve. Moreover, Fyy is contained in the open subset where K x is Cartier, so
that Fiy = C + C’" with C and C’ integral curves of anticanonical degree 1.

By Lemma 3.4, for i = 1, 2 the general fiber F; of f over B; is e¢; + ¢;, with —Kx - ¢; = 1, and
F; degenerates to Fy. Thus, up to switching the components, we can assume that both e; and e, are
numerically equivalent to C, which implies that e; = e;. This is impossible, because E| # E», E; -¢; <0,
and e; moves in a family of curves dominating E;, fori =1, 2. U

Proof of Proposition 3.3. This the same as the proof of [Romano 2019, Theorem 1.1 and 1.3], so we give
only a sketch. We have px = py + 1 +m by Lemma 3.4. As in [loc. cit., Lemmas 3.9 and 3.10], using
Lemma 3.5, one sees that if m > 2, then 6x > m. Hence the statement follows from Theorem 3.1. [



800 Cinzia Casagrande

4. Preliminary results on Fano 4-folds

From now on, we focus on smooth Fano 4-folds. After giving in Section 4A some preliminary results on
rational contractions of Fano 4-folds, in Section 4B we recall the classification of fixed prime divisors
in a Fano 4-fold X with px > 7, and report some properties that will be crucial in the sequel. Then in
Section 4C we apply the previous results to study special rational contractions of fiber type of X, when
ox >17.

4A. Rational contractions of Fano 4-folds.

Lemma 4.1 [Casagrande 2013a, Remark 3.6 and its proof]. Let X be a smooth Fano 4-fold and ¢ = X --» X
an SOM:

(a) X is smooth, the indeterminacy locus of ¢ is a disjoint union of exceptional planes (see Section 1A),

—1

and the indeterminacy locus of ¢~ is a disjoint union of exceptional lines.

(b) An exceptional line in X cannot meet any integral curve of anticanonical degree 1, in particular it

cannot meet an exceptional plane.

(c) Letr: X —-» X bea SOM that factors as a sequence of K -negative flips. Then the indeterminacy

locus of ¥ (respectively, ') is a disjoint union of exceptional planes (respectively, lines).

Lemma 4.2 [Casagrande 2013a, Remark 3.7]. Let X be a smooth Fano 4-fold and f: X --+ Y a rational
contraction. Then one can factor f as X -£» X’ AN Y, where ¢ is a SOM, X' is smooth, and f’ is a

K -negative contraction.

These results allow to conclude that the target of a special rational contraction of a Fano 4-fold has
mild singularities.

Lemma 4.3. Let X be a smooth Fano 4-fold and f: X --+ Y a special rational contraction. IfdimY =2,

then Y is smooth. If dim Y = 3, then Y has isolated locally factorial, canonical singularities.

Proof. By Lemma 4.2 we can factor f as X %5 X’ L ¥ where @ is a SQM, X’ is smooth, and [’ is
regular, K -negative, and special. Then the statement follows from Proposition 2.20. O

4B. Fixed prime divisors in Fano 4-folds with p > 7. Let X be a Fano 4-fold with px > 7. Fixed prime
divisors in X have been classified in [Casagrande 2013a; 2017] in four types, and have many properties;
this explicit information on the geometry of fixed divisors is a key ingredient in the proof of Theorem 1.1.
In this subsection we recall this classification, and show some properties that will be used in the sequel.

Theorem—Definition 4.4 [Casagrande 2017, Theorem 5.1, Definition 5.3, Corollary 5.26, Definition 5.27].
Let X be a smooth Fano 4-fold with px >, or px =6 and §x <2, and D a fixed prime divisor in X. The
following hold:

(a) Given a SQM X --» X' and an elementary divisorial contraction k: X' — Y with Exc(k) the
transform of D, then k is of type (3, 0)*™, (3, 0)2, (3, D™, or (3, 2).
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(b) The type of k depends only on D, so we define D to be of type (3, 0)*™, (3,0)2, (3, 1)*™, or (3, 2),

respectively.

(c) If D is of type (3, 2), then D is the exceptional divisor of an elementary divisorial contraction of X,
of type (3, 2).
(d) We define Cp C D C X to be the transform of a general irreducible curve ' C X' contracted by k, of

minimal anticanonical degree; the curve Cp depends only on D.

(e) Cp =P, D-Cp=—1, Cp is contained in the open subset where the birational map X --+ X' is an

isomorphism, and Cp moves in a family of curves dominating D.

(f) Let 9 X --> X be a SOM, and E a fixed prime divisor in X. We define the type of E to be the type

of its transform in X.

We will frequently use the notation Cp C D introduced in the Theorem—Definition above.
The next property of fixed divisors of type (3, 2) will be crucial in the sequel.

Lemma 4.5. Let X be a smooth Fano 4-fold with px > 7,0r px =6 and §x <2, X --+ X a SOM, and
D C X a fixed divisor of type (3,2). If N\(D, X) C Ni(X), then either px < 12, or X is a product of

surfaces.

Proof. If §x > 2, we have the statement by Theorem 3.2, so let us assume that §x < 1. Let Dy be the
transform of D in X, so that Dy is the exceptional divisor of an elementary divisorial contraction of X,
of type (3, 2). By [Casagrande 2017, Remark 2.17(2)], Dx cannot contain exceptional planes, hence
dim N (Dy, X) =dim N, (D, X ) by [Casagrande 2013a, Corollary 3.14]. Then px < 12 by [Casagrande
2017, Proposition 5.32]. O]

Lemma 4.6. Let X be a smooth Fano 4-fold with px > 7, or px =6 and §x <2, and let Dy, D, C X be
two distinct fixed prime divisors. We have the following:

(a) First

0 i]CDl-Cl)z:OOI’Dz'CDl:O,
dim([D1], [D2]) "Mov(X) = dim([Cp, ], [Cp,]) "mov(X) =11 if D;-Cp,=D,-Cp, =1,
2 #(DICDQ)(DZCDl)ZZ

(b) If Dy 'CDz ZDZ'CD1 =1, then
([D1], [D2]) "Mov(X) =([D1+ D21) and ([Cp,], [Cp,]) "mov(X) = ([Cp, + Cp,]).

Moreover (D1 4 D3) - (Cp, + Cp,) =0 and D1 + D; is not big.

(¢) If D1 -Cp,=00r Dy-Cp, =0, then {[D1], [D2]) is a face of Eff(X), and {[Cp,]. [Cp,]) is a face
of Mov(X)V.

For the proof, we need the following elementary property in convex geometry.
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Lemma 4.7. Let o be a convex polyhedral cone, of maximal dimension, in a finite dimensional real vector
space N. Let 11 be a one-dimensional face of o, and let o € N* (the dual vector space) be such that
o -1 <0anda-n >0 for every one-dimensional face n # t1 of 0.

If T is a one-dimensional face of o such that o - vy = 0, then 11 + 12 is a face of o.

Proof. Since T, is a face of o, there exists 8 € A* such that 8- x > 0 for every x € o, and B+ No = 15.
Let y € 71 be a nonzero element, and seta :=«-yand b:=8-y. Thena,b e R, a <0, and b > 0
(because 1; # 71 by our assumptions). Let us consider y := ba + |a|B € N*.

We have o - 1o = 8- 15 =0, hence y - 1o = 0. Moreover y -y =ba -y +|a|f -y =0, namely y - 7; =0.
Finally if # is a one-dimensional face of o, different from 7| and 75, we have o - >0, 8- n > 0, and
hence y - n > 0.

Therefore y - x > 0 for every x € o, and Yy~ No = 1| + 15. This shows the statement. U

Proof of Lemma 4.6. We compute {[Di], [D2]) "Mov(X). Set B := A1 D; + Ay D; with A; € R>¢ for
i =1, 2. By [Casagrande 2017, Lemma 5.29(2)], B is movable if and only if B - Cp > 0 for every fixed
prime divisor D C X, and this is equivalent to B - Cp, > 0 for i = 1, 2, namely to

—A1+A2Dy-Cp, >0
{ (4.8)

MDy- CD2 — Xy > 0.
Let S C ([Rzo)2 be the set of nonnegative solutions (A1, A;) of (4.8), so that S determines the intersection
([D11, [D2]) "Mov(X). Notice that (D; - Cp,) (D3 - Cp,) is always nonnegative, because D; # D». It is
elementary to check that:
U S:{(O,O)}<:>1—(D1~CD2)(D2'C]_)1) >0<:>D1-CD2 ZOOIDz'CDl =0.

e Sisahalf-line < 1—(D;-Cp,)(D2-Cp,) =0« D;-Cp, =D, -Cp, =1, moreover in this case
S={®*,2) | »=0}.

e Sis a 2-dimensional cone < 1 — (D - Cp,)(D2-Cp,) <04 (Dy-Cp,)(D2-Cp,) > 2.
Similarly, we compute ([Cp, ], [Cp,]) Nmov(X). We have
mov(X)" = Eff(X) = ([D]) p fixea + Mov(X).

Set y :=A1Cp, + 12Cp, with A1, A € R>o. We have y - M > 0 for every movable divisor M in X (see
[Casagrande 2017, Lemma 5.29(2)]). Hence y € mov(X) if and only if y - D > 0 for every fixed prime
divisor D C X, and this is equivalent to y - D; > 0 for i = 1, 2, namely to
{ —AM +ADy - CDZO
A Dy - Cp, — A0,

which is the same system as (4.8), but with A; and XA, interchanged. Thus the previous discussion yields
(a) and (b).



Fano 4-folds with rational fibrations 803

We show (c). Suppose for instance that D; - Cp, = 0. To see that {[D;], [D2]) is a face of Eff(X), we
apply Lemma 4.7 with o = Eff(X), 71 = ([D2]), « =[Cp,], and 7o = ([ D1]). It is enough to remark that
D - Cp, > 0 for every prime divisor D # D,.

Similarly, to see that ([Cp,], [Cp,]) is a face of Mov(X)", we apply Lemma 4.7 with 0 = Mov(X)",
71 = {[Cp,]), « = [D1], and 72 = {[Cp,]). Indeed ([Cp,]) and {[Cp,]) are one-dimensional faces of
Mov(X)" by [Casagrande 2017, Lemma 5.29(1)]. Moreover D; -y > 0 for every y € mov(X), and
D - Cp > 0 for every fixed prime divisor D # D;. By [loc. cit., Lemma 5.29(2)] we have

Mov(X)" = ([Cp]) p fixed + mov(X),

therefore D) - n > 0 for every one-dimensional face 1 of Mov(X)" different from ([Cp,]). Thus the
hypotheses of Lemma 4.7 are satisfied, and we get (c). U

Lemma 4.9. Let X be a smooth Fano 4-fold with px > 1, and let D1, Dy C X be two distinct fixed prime
divisors such that (D], [D>]) "Mov(X) = {0}. Then, up to exchanging D and D,, one of the following
holds:

(@ D1-Cp,=Dr-Cp,=0and DiN Dy =2.
(b) D1 -Cp, =D, -Cp, =0and D N Dy is a disjoint union of exceptional planes.
(¢) D1-Cp,=Dy-Cp, =0, Dy is of type (3, 2), and D, is not of type (3, 0)*™.
(d) Dy-Cp,>0,D,-Cp, =0, Dy is of type (3, 2), and D, is of type (3, 1)* or (3, 0)2.
Proof. By [Casagrande 2017, Theorem 5.1] there is a diagram
X-»XLsy

where the first map is a SQM and f is an elementary divisorial contraction with exceptional divisor the
transform D, C X of D,. Let D; C X be the transform of D;. By [loc. cit.,, Lemma 2.21], D is the
transform of a fixed prime divisor By C Y.

If 51 N 132 = g, then D; N D; is contained in the indeterminacy locus of the map X --» X , which is a
disjoint union of exceptional planes by Lemma 4.1(a). Therefore either D; N D, = & and we get (a), or
D N Dy has pure dimension 2 and we get (b).

We assume from now on that 131 N 52 #* O.

Suppose that D is of type (3, 1)°™. Then Y is a smooth Fano 4-fold by [Casagrande 2017, Theorem 5.1],
f is the blow-up of a smooth curve C C Y, and B; N C # @. Then [loc. cit., Lemma 5.11] yields that B;
is the exceptional divisor of an elementary divisorial contraction of type (3, 2), and either By - C > 0, or
B; - C < 0. Thus By is generically a P!-bundle over a surface, and the general fiber F of this P!-bundle
satisfies By - F = Ky - F = —1. Using Lemma 4.1(a) and [loc. cit., Lemma 2.18], one sees that D; must
be of type (3, 2). Moreover C N F = & implies that D; is disjoint from the transform F of F in X,
and D; is still generically a P!-bundle with fiber F. The indeterminacy locus of the map X --» X has
dimension at most one (see Lemma 4.1(a)), hence F is contained in the open subset where this map is an
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isomorphism, and in X we get D, - Cp, = ﬁz -F=0. Finally it is easy to check that Dy - Cp, = 0 if
B; - C > 0 (and we have (c)), while D; - Cp, > 0if B; - C <0 (and we have (d)). So we get the statement.

We can assume now that neither D nor D, are of type (3, 1)*™. Suppose that D, is of type (3, 0)*™ or
(3,0)2. Then D is isomorphic to P? or to an irreducible quadric; let ' C D5 be a curve corresponding
to a line. We have 131 -I" > 0, and since I" is contained in the open subset where the map X --» X is an
isomorphism (see Theorem—Definition 4.4(e)), we also have D; - Cp, > 0. This yields D, - Cp, =0 by
Lemma 4.6. Therefore D; cannot be of type (3, 0)*™ nor (3, 0)2, and the only possibility is that D is of
type (3, 2). Moreover, since f (Dz) is contained in By, [Casagrande 2017, Lemma 5.41] yields that D,
cannot be of type (3, 0)°™, so we get again (d).

We are left with the case where both D and D, are of type (3, 2), and we can assume that D;-Cp, =0
by Lemma 4.6. If §x > 3, then Theorem 3.2 implies that X is a product of surfaces; in this case it is
easy to check directly that D, - Cp, = 0. If §x <2, then we get D, - Cp, = 0 by [Casagrande 2013b,
Lemma 2.2(b)]. So we have (c). O

4C. Special rational contractions of Fano 4-folds with px > 7. Given a Fano 4-fold X with py > 7,
and a special rational contraction of fiber type f: X --+ Y, in this subsection we show that, for every
prime divisor B of Y, f*B has at most two irreducible components. Moreover we give conditions on the
type of the fixed prime divisors in f*B, when f*B is reducible.

Lemma 4.10. Let X be a smooth Fano 4-fold with px =7, 0r px =6 and éx <2,and f: X --+ Y a
special rational contraction; we use Notation 2.14. Leti € {1, ..., m}:

o IfdimY = 3, then every fixed divisor in f*B; is of type (3, 2).
o IfdimY = 2, then every fixed divisor in f*B; is of type (3, 2) or (3, 1)5™,
Proof. Let Eg be an irreducible component of f*B;. By Lemma 2.19 there are a SQM X --» X

and an elementary divisorial contraction o : X — Z such that Exc(o) is the transform of Ey, and
dimo (Exc(o)) > dim Y — 1. Theorem—Definition 4.4 yields the statement. O

Lemma 4.11. Let X be a smooth Fano 4-fold with px >, and f: X --+Y a special rational contraction;

we use Notation 2.14. Then r; =2 foreveryi =1, ..., m.
Proof. We consider for simplicity i = 1.

Claim. For every irreducible component D of f* By, there exists another component E of f* By such that
E- CD > 0.

Let us first show that the Claim implies the statement. Assume by contradiction that r; > 2, and let us
consider a component D of f*B;. By the Claim, there exists a second component D, with D, -Cp, > 0,
and since r; > 3, we have ([D1], [D>]) "Mov(X) = {0} by Corollary 2.18. Applying Lemma 4.9, we
conclude that D is not of type (3, 2), and D; is of type (3, 2).

Now we restart with D,, and we deduce that D, is not of type (3, 2), a contradiction. Hence r; = 2.
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We prove the Claim. By Lemma 2.19, there exists a diagram:

1

_)

N<q—><ll

~ -

«—
8

where ¢ is a SQM and o is an elementary divisorial contraction with Exc(c) = D, the transform of D
in X.

Since g oo is special, we have g(a(D)) = Bj and hence G(E) C g Y(By); let E; C Z be an irreducible
component of g‘l(Bl) containing a(D). Let E C X and E C X be the transforms of E, so that E is an
irreducible component of f*B;. Note that E- NE(o) > 0 by construction.

Now let I C D be a general minimal irreducible curve contracted by o; by Theorem—Definition 4.4(d)
and (e), the transform of I" in X is the curve Cp, and I' is contained in the open subset where ol X--3X
is an isomorphism. Therefore E-Cp = E - > 0. (|

5. Fano 4-folds to surfaces

In this section we study rational contractions from a Fano 4-fold to a surface, and show the following.

Theorem 5.1. Let X be a smooth Fano 4-fold having a rational contraction f: X --+ S with dim § = 2.
Then one of the following holds:

(1) X is a product of surfaces.

(i) px <12

(iii) 13 < px <17, S is a smooth del Pezzo surface, the general fiber F of f is a smooth del Pezzo surface
with4 < dim N (F, X) < pr <8, and px <9+ dim N (F, X).

(iv) S =P?and f is special.

Lemma 5.2. Let X be a smooth Fano 4-fold with px > 7, and f: X --+ S a special rational contraction
with dim S = 2; we use Notation 2.14. Then for everyi =1, ..., m the divisor f*B; has two irreducible
components, one a fixed divisor of type (3, 2), and the other one of type (3, 2) or (3, 1)5™.

Proof. We consider for simplicity i = 1. By Lemma 4.11 f*B; has two irreducible components, and by
Lemma 4.10 they are of type (3, 2) or (3, 1)*™. We have to show that they cannot be both of type (3, 1)™.

Let us choose a SQM ¢: X --» X such that f = fopl: X — Sis regular, K -negative, and special
(see Lemma 4.2). Let E, E C X be the irreducible components of f *(B1),and F C Xa general fiber of
f over the curve Bj.



806 Cinzia Casagrande

X1

Suppose that E is of type (3, 1)*™. By Theorems 2.19 and 4.4, we have a diagram:
X-Z- 5( AN

X —

S
where v is SQM and & is the blow-up of a smooth irreducible curve C C X, with exceptional divisor the
transform of E C 5(, and fi(C) = Bj.

Recall from the proof of Lemma 2.19 that v arises from a MMP for E, relative to f. Since f is
K -negative, one can use a MMP with scaling of —K 3 (see [Birkar et al. 2010, Section 3.10], and for this

/Ie

~

specific case [Casagrande 2012, Proposition 2.4] which can be adapted to the relative setting), so that ¥
factors as a sequence of K -negative flips, relative to f. Then by Lemma 4.1(b) and (c), the indeterminacy
locus of v is a disjoint union of exceptional planes, and is disjoint from the indeterminacy locus of ¢!,

In particular, the indeterminacy locus of v is contracted to points by f. Since F is a general fiber of
f over Bj, it must be contained in the open subset where ¥ is an isomorphism, and F:= Y(F) C X
is a general fiber of f over B;. We also note that F is contained in the open subset where ¢~! is an
isomorphism; otherwise there should be an exceptional line contained in E, and this would give an
exceptional line contained in Exc(k), contradicting [Casagrande 2017, Remark 5.6].

Every irreducible component of Exc(k) N F is a fiber of k over C. We deduce that the transform in X
of any curve in £ N F has class in R>o[CEg].

We have dim FNENE > 1, let I" be an irreducible curve in F N EN E. If E were of type (3, 1)S™
too, the transform of I in X should have class in both Ro[Cg] and R>o[Cz]. This would imply that the
classes of Cr and C are proportional, and this is impossible by Theorem-Definition 4.4(e). Therefore

E and E cannot be both of type (3, 1)5™. U

Proof of Theorem 5.1. We can assume that px > 13, otherwise we have (ii).

By Proposition 2.13 f factors as a special rational contraction g: X --» T followed by a birational map
T — S. There exists a SQM ¢: X --» X such that X is smooth and the composition g :=gogp~': X = T
is regular, K-negative and special (see Lemma 4.2); in particular T is a smooth surface by Lemma 4.3.

<

S<—T

X -
I\
f
3
Finally g has r; =2 foreveryi =1, ..., m (we use Notation 2.14) by Lemma 4.11.
Suppose that m = 0, equivalently that g is quasielementary. If g is regular, then [Casagrande 2008,
Theorem 1.1(i)] together with px > 13 yield that X is a product of surfaces, so we have (i).

Assume instead that g is not regular, and let F C X be a general fiber of f, which is also a general
fiber of g. Since the indeterminacy locus of ¢~ ! has dimension 1 (see Lemma 4.1(a)), it does not meet a



Fano 4-folds with rational fibrations 807

general fiber of g. This means that F is contained in the open subset where ¢ is an isomorphism, and
@(F) is a general fiber of g. By Lemma 2.17 and [Casagrande 2013a, Corollary 3.9 and its proof] we
have that F is a smooth del Pezzo surface with pr < 8 and

px =dim N (F, X) + pr < pr + pr <8+ pr.

In particular pr > 13 —8 = 5. Then [loc. cit., Proposition 4.1 and its proof] imply that g is not elementary
and that T is a del Pezzo surface. Therefore py < 17, dimN{(F,X)=px —p7 > 13—9=4,and Sis a
smooth del Pezzo surface too. So we have (iii).

Suppose now that m > 1. By Lemma 5.2, (g)*B; has an irreducible component E which is a fixed
divisor of type (3, 2). We have (g).N;(E, f() = R[B], so that codim N (E, f() >pr—1.If pr > 1,
then we get (i) by Lemma 4.5.

Let us assume that p; = 1. Then T = P2, because 7 is a smooth rational surface. Moreover the
birational map T — S must be an isomorphism, hence S = P? and f is special, and we get (iv). g

6. Fano 4-folds to 3-folds

In this section we study rational contractions from a Fano 4-fold to a 3-dimensional target, and show the
following.

Theorem 6.1. Let X be a smooth Fano 4-fold. If there exists a rational contraction X --+ Y with
dim Y = 3, then either X is a product of surfaces, or px < 12.

Proof. If 6x > 3 the statement follows from Theorem 3.2, so we can assume that §y < 2; we also
assume that px > 7. By Proposition 2.13, we can suppose that the map X --» Y is special. Moreover by
Lemma 4.2 we can factor it as

X2 x Ly,

where ¢ is a SQM, X is smooth, and f is regular, K-negative and special.

By Lemmas 3.4 and 3.5 we have pxy = py +m+1,r, =--- =r, =2, and the divisors By, ..., By,
are pairwise disjoint in Y (we use Notation 2.14). Fori =1, ..., m the irreducible components of f*B;
are fixed divisors of type (3, 2) by Lemma 4.10.

If px — py > 3, then m > 2. Let E|, E, be the irreducible components of f*Bj, and W an irreducible
component of f*B,. Since B;NB, =@, we have E;NW = &, so that N} (E;, X) C N;(X) by Remark 1.3,
and this implies the statement by Lemma 4.5.

If instead px — py = 1, then f is elementary, and px < 11 by [Casagrande 2013a, Theorem 1.1].

We are left with the case where py — py = 2 and m = 1, which we assume from now on. We will
adapt the proof of [loc. cit., Theorem 1.1] of the elementary case to the case px — py = 2, and divide the
proof in several steps. Since m = 1, we set for simplicity B := Bj.

6.2. If MV{(Eq, }~() M ()~() we conclude as before, so we can assume that NV (Eq, )~() =M (5(); this
implies that N1(B, Y) = N (Y).
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By Lemma 3.4, E; U E, is covered by curves of anticanonical degree 1. Since an exceptional line
cannot meet such curves (see Lemma 4.1(b)), we deduce that £ N (E; U E») = & for every exceptional
line ¢ C X.

Notice that even if f is not elementary, by specialty it does not have fibers of dimension 3, and has at
most isolated fibers of dimension 2. Moreover Y is locally factorial and has (at most) isolated canonical
singularities, by Lemma 4.3. More precisely, Sing(Y) is contained in the images of the 2-dimensional
fibers of f (this is due to Ando, see [Andreatta and Wisniewski 1997, Theorem 4.1 and references therein]).

Since X is smooth and Y is locally factorial, it is easy to see that f*B = E| + E,.

Finally, since X is Fano, by [Prokhorov and Shokurov 2009, Lemma 2.8] there exists a Q-divisor Ay
on Y such that (¥, Ay) is a kit log Fano, so that —Ky is big.

6.3. Let g: Y — Yj be a small elementary contraction. Then Exc(g) is the disjoint union of smooth rational
curves lying in the smooth locus of ¥, with normal bundle Op: (—1)®?; in particular Ky - NE(g) = 0.

Proof. Exactly the same proof as the one of [Casagrande 2013a, Lemma 4.5] applies, with the only
difference that, in the notation of [loc. cit., Lemma 4.5], dim A (U /U) could be bigger than 2. We take
T to be any extremal ray of NE((? /U) not contained NE(glf,). U

6.4. Let g: Y — Y, be an elementary divisorial contraction. Then g is the blow-up of a smooth point of
Yp; in particular —Ky - NE(g) > 0.
Proof. Set G :=Exc(g) C Y. Since g is elementary and dim g(G) < 1, we have dim N{(G, Y) < 2; on
the other hand dim N (B, Y) = py = px —2 > 5 (see 6.2), so G # B, and D := f*G is a prime divisor
in X, different from E; and E,, with dimA;(D, X) < dimker f, +dimN{(G,Y) <2+2 =4.

Since G is fixed, also D is a fixed divisor in X; let Dx C X be the transform of D.

6.4.1. We show that D is not of type (3, 2). Otherwise, as in the proof of Lemma 4.5 we see that
dim N (Dyx, X) = dim N (D, )~() < 4. On the other hand we have dx <2 and px > 7, a contradiction.

6.4.2. We show that g is of type (2,0). By contradiction, suppose that g is of type (2,1). As in
[Casagrande 2013a, proof of Lemma 4.6], we show that there is an open subset U C X such that DN U
is covered by curves of anticanonical degree 1. By [Casagrande 2017, Lemma 2.8(3)], Dy still has a
nonempty open subset covered by curves of anticanonical degree 1; this implies that Dx and D are of
type (3, 2) by [loc. cit., Lemma 2.18], a contradiction to 6.4.1.
6.4.3. Thus g is of type (2, 0); set p := g(G) € Y.

Since M1(B, Y) =N1(Y) by 6.2, we must have G N B # & by Remark 1.3. Therefore p € g(B), hence
g*(g(B)) =B +4aG witha > 0, and (go f)*(g(B)) = E1 + E> +aD (see again 6.2).

As in [Casagrande 2013a, proof of Lemma 4.6], we get a diagram:
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where ¥ is a sequence of D-negative flips relative to g o f, k is an elementary divisorial contraction with
exceptional divisor the transform Dc X of D, and f is a contraction of fiber type with dim ker( f1), = 2.
By 6.4.1 and Theorem—Definition 4.4, k is of type (3, 0)*™, (3,0)2, or (3, 1)*™; in particular X, has at
most one isolated locally factorial and terminal singularity. Moreover f is special, so that Yy has locally
factorial, canonical singularities by Lemma 2.21.

6.4.4. Let us consider the factorization of i as a sequence of D-negative flips relative to g o f:

On

~ o] o it
X=Z2y-—->+—-——>2Zi1——>2i——>-——>2Z,=X

C Gi
i1
gof fiok

Yy

With a slight abuse of notation, we still denote by D, E;, E, the transforms of these divisors in Z;, for
i=0,...,n.

We show by induction on i = 0, ..., n that o; is K-negative and that (E; + E;) - £ < 0 for every
exceptional line £ C Z;. For i = 0, this holds by 6.2.

Suppose that the statement is true for i — 1. Let R and R’ be the small extremal rays of NE(Z;_;) and
NE(Z;) respectively corresponding to the flip o;. By the commutativity of the diagram above and by
6.4.3, we have E; + E> +aD = ¢ ,(g(B)), hence (E| + E; +aD) - R =0, where a > 0. On the other
hand D-R <0, thus (E1+ E>)-R>0and (E{+ E>)-R' <O.

If —Kz,_,- R <0, then by [Casagrande 2013a, Remark 3.6(2)] there exists an exceptional line
Lo C Z;_ such that [{o] € R, therefore (E| + E») - £o > 0, contradicting the induction assumption. Hence
—Kz, ,-R>0and o; is K-negative.

Finally if ¢ C Z; is an exceptional line, by [loc. cit., Remark 4.2] we have either £ C dom al._l, or
£Ndom alfl = . In the first case al.*l (¢) is an exceptional line in Z;_, and we deduce that (E1+ E»)-£ <0.
In the second case, we must have [£] € R’ and hence (E| + E3) - £ < 0.

6.4.5. By 6.4.4, v factors as a sequence of K-negative flips, and Lemma 4.1(c) yields that the indetermi-
nacy locus of ! is a disjoint union of exceptional lines ¢y, ..., £;.

6.4.6. Set ), := ffl(p). We show that dim F), = 1.

Note that X and X are isomorphic outside the fibers of g o f and f] o k over p, respectively. In
X we have (g o f)"'(p) = D, and the indeterminacy locus of ¥ must be contained in D. In X we
have (fi ok)~'(p) = k~'(F,) = DU F,, where F, is the transform of the components of F, not
contained in k(l§). On the other hand, by 6.4.5 we also have k! (Fp) = DU £1U---Ul,. This shows
that fp C L1 U---Ul, in particular dim Fp < 1, and since dim k(ﬁ) <1 (see 6.4.3), we conclude that
dimF, = 1.

We have also shown that the transform in X of any irreducible component of F, not contained in k(D)
must be one of the ¢;.
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~

6.4.7. We show that f; is K-negative. Since f is K-negative and fi3 p, = (f1)|z, F,» Ve only have to
check the fiber F),. Let I" be an irreducible component of F),.

Ifr ¢ k(D), then by 6.4.6 we can assume that the transform of I" in X is €. Since k~L(F,) is
connected and ¢4, ..., {; are pairwise disjoint, we have D-¢ 1 > 0; notice also that K4 - £y = 1. Thus
—Kg, -T >0 because k*(—Ky, ) = —K 3 +bD with b € {2, 3} (see 6.4.3).

If instead I" C k(D), then by 6.4.3 k must be of type (3, 1)*" and I' = k(D). By [Casagrande 2017,

Lemma 5.25] there is a SQM ¢;: X; --+ X| where X is a Fano 4-fold, and I is contained in the open
subset where ¢; is an isomorphism, so that _Kffl -I'=—Kx, -¢1(I') > 0.

6.4.8. By 6.4.3,6.4.6, and 6.4.7, X has isolated locally factorial and terminal singularities, Yo has locally
factorial canonical singularities, f} is K-negative, and dim F, = 1. Then [Ou 2018, Lemma 5.5] yields
that p is a smooth point of Yy (note that in [loc. cit.] the contraction is supposed to be elementary, but
this is used only to conclude that Y is locally factorial, which here we already know).

In particular p is a terminal singularity, hence g is K-negative. The possibilities for (G, —Kg ;) are
given in [Andreatta and Wisniewski 1997, Theorem 1.19]; moreover we know that G is Gorenstein, and
by adjunction that —K¢ - C > 2 for every curve C C G. Going through the list, it is easy to see that the
possibilities for G are P2, P! x P!, and the quadric cone. In the first two cases, G C Y;eg, and it follows
from [Mori 1982, Corollary 3.4] that G = P? and g is the blow-up of p.

Suppose instead that G is isomorphic to a quadric cone Q. Then the normal bundle of G has to
be Og(—1), and as in [Mori 1982, page 164] and [Cutkosky 1988, proof of Theorem 5] one sees that
7,0y = Oy(—G) where Z,, is the ideal sheaf of p in Y, so that g2 '(p) = G scheme-theoretically. Then
g factors through the blow-up of p, and being g elementary, it must be the blow-up of p, which yields
G = P? and hence a contradiction. (|

6.5. If Y has an elementary rational contraction of fiber type Y --+ Z, then pz = px — 3 > 4, in particular
Z is a surface. The composition X --+ Z is a rational contraction with px — pz = 3, and we can apply
Theorem 5.1. If (i) or (ii) hold, we have the statement. If (iii) holds, then px > 13 and Z is a del Pezzo
surface, so that pz <9, which is impossible. Finally (iv) cannot hold because pz > 1.

Therefore we can assume that ¥ does not have elementary rational contractions of fiber type.

6.6. Let R be an extremal ray of NE(Y). By 6.5 the associated contraction cannot be of fiber type, thus
it is birational, either small of divisorial. By 6.3 and 6.4, —Ky - R > 0. Since Y is log Fano, NE(Y) is
closed and polyhedral, and we conclude that — Ky is nef and Y is a weak Fano variety (see 6.2).

6.7. Let Y --» Y be a SQM. Then the composition X --» Y is again a special rational contraction with
px — py =2, so all the previous steps apply to Y as well. As in [Casagrande 2013a, page 622], using 6.3
and 6.4 one shows that if £ C Y is a fixed prime divisor, then E can contain at most finitely many curves
of anticanonical degree zero.

6.8. Let us consider all the contracting birational maps Y --» Y| with Q-factorial target, and choose one
with py, minimal.
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Suppose that py, > 3. By minimality, ¥} has an elementary rational contraction of fiber type Y| --» Z,
and Z must be a surface with pz = py, — 1 > 2. The composition X --+ Z is a rational contraction,
let F C X be a general fiber. The general fiber of ¥ --+ Z is a smooth rational curve I' C Y, and
dim N (F, X) <dimN (T, Y) + (ox — py) = 3. Thus we get the statement by Theorem 5.1.

Therefore we can assume that py, <2.

6.9. By [Casagrande 2017, Lemma 4.18], we can factor the map Y --» Y} as Y --» Y/ — Y, where
Y --»Y'isa SQM, and Y’ — Y; is a sequence of elementary divisorial contractions. Now notice that
the composition X --» Y’ is again a special rational contraction with py — py’ = 2, so up to replacing ¥
with Y’, we can assume that the map a: Y --» Y] is regular and is a sequence of r := py — py, elementary
divisorial contractions:

Y=Wo2H W, 2 W, > - —> W, =Y.

Let us show that the exceptional loci of these maps are all disjoint, so that a is just the blow-up of r
distinct smooth points of Y.

We know by 6.4 that a; is the blow-up of a smooth point w; € Wy, and since — Ky is nef, it is easy to
see that if C C W is an irreducible curve containing wy, then — Ky, - C > 2.

Suppose that Exc(a;) contains wy. Then a; is K-negative, and Exc(a;) cannot be covered by curves
of anticanonical degree one. By [Andreatta and Wisniewski 1997, Theorem 1.19] this implies that
Exc(az) = P? and (—K W) |Exc(a) = Op2(2). Then the transform of Exc(ay) would be a fixed prime
divisor covered by curves of anticanonical degree zero, which is impossible by 6.7. Proceeding in the
same way, we conclude that the exceptional loci of the maps a; are all disjoint.

Now Y is weak Fano with isolated locally factorial, canonical singularities, and we have (—Ky, ¥ <72
by [Prokhorov 2005]. Therefore

0 < (=Ky)*=(=Ky)* -8,
which yields » <8 and px = py, +r+2 < 12. O
Theorem 1.1 is a straightforward consequence of Theorems 5.1 and 6.1.

Proof of Theorem 1.2. Let Xo € X and Yy C Y be open subsets such that fo := fx,: Xo > Yo is a
projective morphism. Up to taking the Stein factorization, we can assume that fj is a contraction. Let
A € Pic(Y) be ample and consider H := f*A € Pic(X). Then H is a movable divisor, hence it yields
a rational contraction f’: X --» Y. Itis easy to see that f/y, = fo, in particular dim¥" = 3. Then the
statement follows from Theorem 6.1. 0

7. Fano 4-folds to P!

Let X be a Fano 4-fold and f: X --» P! be a rational contraction; notice that f is always special. In the
following proposition we collect the information that we can give on f.
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Proposition 7.1. Let X be a smooth Fano 4-fold and f: X --» P! be a rational contraction. Let
Fi, ..., Fy be the reducible fibers of f. Then one of the following hold:

1) px =12
(i1) X is a product of surfaces.

(iii) px <m+10, f is not regular, and every F; has two irreducible components, which are fixed divisors
of type (3, D)™ or (3, 0)€.

Proof. We can assume that px > 7, sothatr; =2 fori =1,...,m by Lemma 4.11. By Lemma 4.2 we
can factor f as X -£» X’ L pl where @ is a SQM, X’ is smooth, and f’ is regular and K -negative.

If some F; has a component of type (3, 0)*™, then we get (i) by [Casagrande 2017, Theorem 5.40].

If some F; has a component of type (3, 2), let E C X’ be its transform. Then NV (E, X') Cker(f"), C
N1(X"), so we get (i) or (ii) by Lemma 4.5.

We are left with the case where every component of every F; is of type (3, 1)*™ or (3, 0)€. The general
fiber F of f’is a smooth Fano 3-fold, so that pr < 10 by Mori and Mukai’s classification (see [Iskovskikh
and Prokhorov 1999, Corollary 7.1.2]). If f is regular, then ¢ is an isomorphism, and px < pr + dx, SO
we get (i) or (ii) by Theorem 3.2.

If instead f is not regular, then as in [Casagrande 2013a, proof of Corollary 3.9] one shows that in fact
pr <9. Therefore Corollary 2.16 yields px < m + 10, and we have (iii). Il
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