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p-adic cyclotomic multiple zeta values depend on the choice of a number of iterations of the crystalline
Frobenius of the pro-unipotent fundamental groupoid of P1

\ {0, µN ,∞}. In this paper we study how
the iterated Frobenius depends on the number of iterations, in relation with the computation of p-adic
cyclotomic multiple zeta values in terms of cyclotomic multiple harmonic sums. This provides new results
on that computation and the definition of a new pro-unipotent harmonic action.
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0. Introduction

0A. p-adic cyclotomic multiple zeta values, computation and iteration of the Frobenius. Cyclotomic
multiple zeta values are the following iterated integrals: for any positive integers, d and ni (1≤ i ≤ d)
and roots of unity ξi (1≤ i ≤ d), such that (nd , ξd) 6= (1, 1),

ζ((ni )d; (ξi )d)= (−1)d
∫ 1

tn=0

dtn
tn − εn

∫ tn

tn−1=0
· · ·

∫ t2

t1=0

dt1
t1− ε1

, (0-1)

where n =
∑d

i=1 ni and (εn, . . . , ε1)= (

nd−1︷ ︸︸ ︷
0, . . . , 0, 1, . . . ,

n1−1︷ ︸︸ ︷
0, . . . , 0, 1). We choose N such that the εi are

N -th roots of unity. Let p be a prime number prime to N . p-adic cyclotomic multiple zeta values are
defined as p-adic analogues of the above iterated integrals. They are elements of the extension K of
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Qp generated by a primitive N -th root of unity. There are two types of p-adic cyclotomic multiple zeta
values; both of the notions rely on the Frobenius of the crystalline pro-unipotent fundamental groupoid of
P1
\ {0, µN ,∞} at the base-points E10 and E11, as follows (see Section 1A3 for details):

(i) Numbers ζKZ
q ((ni )d; (ξi )d) ∈ K defined by Coleman integration i.e., by using a Frobenius-invariant

path [Furusho 2004; 2007; Yamashita 2010] (here, q is the cardinality of the residue field of K ).

(ii) For each α ∈ Z \ {0}, numbers ζp,α((ni )d; (ξi )d) ∈ K defined by the image by Frobenius iterated α
times of the canonical path in the de Rham fundamental groupoid of P1

\ {0, µN ,∞} ([Jarossay
2019, Section 1] and, for particular values of α, [Yamashita 2010; Deligne and Goncharov 2005;
Ünver 2004; 2016]).

p-adic cyclotomic multiple zeta values can be considered as canonical coefficients of the Frobenius,
and conversely one can recover the Frobenius by knowing only p-adic cyclotomic multiple zeta values.

Cyclotomic multiple harmonic sums are the following numbers:

hm((ni )d; (ξi )d+1)=
∑

0<m1<···<md<m

(
ξ2
ξ1

)n1
· · ·
(
ξd+1
ξd

)nd
( 1
ξd+1

)m

mn1
1 · · ·m

nd
d

. (0-2)

In the complex case we have ζ((ni )d; (ξi )d)= limm→∞ hm((ni )d; ((ξi )d , 1)). Similarly it is possible to
compute p-adic cyclotomic multiple zeta values in terms of cyclotomic multiple harmonic sums [Jarossay
2015], thanks to a big combinatorial simplification proved by the main result of [Jarossay 2019]. (Two
cases, α =−1, N = 1 and α =−1, d ≥ 2, are handled in [Ünver 2015] and [Ünver 2016], respectively,
through a different computation that does not use the simplification of [Jarossay 2019]; those results are
more complicated and seem difficult to use.) In this paper we are going to study the following question:
how does the iterated Frobenius depend on its number of iterations? More specifically, we are going to
connect this question and the framework of [Jarossay 2015].

0B. Principles of the study. Most of the time, we are not going to consider directly the Frobenius but,
instead, the harmonic Frobenius, defined in [Jarossay 2015, Definition 2.3.5], (we will reproduce it in
Section 1D). It is a variant of the Frobenius which is much simpler and more natural from the point of
view of multiple harmonic sums, and computing it suffices to compute the Frobenius.

Whereas the Frobenius is an isomorphism of bundles with connection, the harmonic Frobenius is a
map on a space which contains the noncommutative generating series of weighted multiple harmonic
sums harm((ni )d; (ξi )d+1)= mnd+···+n1hm((ni )d; (ξi )d+1).

We will use the fact that the harmonic Frobenius can be expressed in two ways:

(a) One “in terms of integrals”, i.e., in which the coefficients of the harmonic Frobenius are expressed in
terms of p-adic cyclotomic multiple zeta values, which are integrals and which we want to compute.

(b) Another one “in terms of series”, in which the coefficients of the harmonic Frobenius are certain
sums of series expressed in terms of the numbers harpα ((ni )d; (ξi )d+1), which are explicit.
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In [Jarossay 2015], by writing these two expressions and observing that they are equal, we get an
expression for p-adic cyclotomic multiple zeta values in terms of the numbers harpα ((ni )d; (ξi )d+1) and
vice-versa. We are going to do something similar here, not for the harmonic Frobenius but for the study of
the numbers harq α̃ ((ni )d; (ξi )d+1), as functions of α̃ ∈N∗. Since the harmonic Frobenius can be expressed
in terms of these numbers, this will directly provide a study of the iterated harmonic Frobenius in terms
of its number of iterations.

After some preliminaries (Section 1) we will do this study in terms of integrals (Section 2), in terms
of series (Section 3), and we will use the fact that these two ways give the same result (Section 4). In
Section 5 we will go back from the harmonic Frobenius to the Frobenius.

Moreover, we will keep track of the motivic structure underlying this framework. Indeed, p-adic
cyclotomic multiple zeta values are reductions of p-adic periods [Yamashita 2010], and there is a motivic
Galois action on the pro-unipotent fundamental groupoid of P1

\ {0, µN ,∞} [Deligne and Goncharov
2005, Section 5].

The Frobenius is expressed by means of the Ihara action (1-1), which is the image of the motivic Galois
action by a certain morphism (see Section 1A3). In [Jarossay 2015], the passage from the Frobenius
to the harmonic Frobenius lifts to a passage from the Ihara action to an operation which we called the
pro-unipotent harmonic action of integrals, and we also find a pro-unipotent harmonic action of series
(see Section 1D). The interest of pro-unipotent harmonic actions is that, being byproducts of the motivic
Galois action, they retain certain properties of motivic Galois actions; and having a computation which
keeps track of the motivic Galois action is key for us. The pro-unipotent harmonic actions are the main
objects in our papers [Jarossay 2014; 2016a; 2016b] in which we show the compatibility between our
computation and the motivic Galois theory of p-adic cyclotomic multiple zeta values.

Establishing the definition of pro-unipotent harmonic actions requires enriching the pro-unipotent
fundamental groupoid, which is a groupoid in affine schemes over P1

\ {0, µN ,∞} by turning it into a
groupoid in ultrametric complete normed algebras [Jarossay 2015, Section 1].

0C. A few definitions. The study will require new definitions. First, we will define an ad hoc notion
of contraction mapping (Definition 1B.2). We will show that the Frobenius at base-points (E11, E10) is a
contraction in our ad hoc sense. This will shed light on the dynamics of the Frobenius which has a unique
fixed point. Thus, the ultrametric framework established in [Jarossay 2015] will be crucial here because
in this framework we will introduce a notion of contraction mapping and we will see that the Frobenius is
a contraction. Keeping track of the motivic structures will also require new definitions.

We will study harq α̃ as a function of α̃ “in terms of integrals” (Section 2) by viewing harq α̃ via their
expression in terms of p-adic cyclotomic multiple zeta values proved in the main theorem of [Jarossay
2015]. This will be done in two different ways, corresponding to the two types of p-adic cyclotomic
multiple zeta values evoked in Section 0A:

(i) A way involving the fixed point of the Frobenius and the numbers ζKZ
q . It will lead us to introduce a

pro-unipotent harmonic action of integrals at (1, 0), ◦
∫1,0
har (Definition 2A.3), which is a variant of
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the notion introduced in [Jarossay 2015]. Another point of view on this object will be explained in
the Appendix.

(ii) A way involving the numbers ζp,α0 . It will lead us to introduce a map iter∫har(a,3) of iteration of the
harmonic Frobenius of integrals at (1, 0), (3 and a are formal variables which represent respectively
q α̃ and α̃/α̃0) (Definition 3B.1).

In the study of harq α̃ as a function of α̃ in terms of series (Section 3), we do not have an analogue of
the fixed point and the study will lead us to introduce a map of iteration of the harmonic Frobenius of
series iter6har(a,3) (Definition 3B.1).

Finally, in Section 4, we will relate Sections 2 and 3 by defining a map of comparison between series
and integrals, which will be injective thanks to the results of Sections 2 and 3.

As in [Jarossay 2015] these definitions enable us to express the computation not number by number,
but as a new structure on the pro-unipotent fundamental group, which is more efficient. Indeed, this
structure retains certain features of the motivic Galois theory of periods, which will be crucial in our
subsequent papers [Jarossay 2014; 2016a; 2016b] in which we will relate the motivic Galois theory of
p-adic cyclotomic multiple zeta values to our formulas.

0D. Results. The main result consists of three equations to express harq α̃ as a function of α̃, and the
comparison between them.

The first two equations (proved in Section 2), in which the harmonic Frobenius is thought of in terms
of integrals, correspond to (i) and (ii) above. The first one (0-3) involves the fixed-point of the Frobenius
and will be called the fixed point equation of the harmonic Frobenius of integrals at (1, 0); the second one
(0-4) will be the iteration equation of the harmonic Frobenius of integrals at (1, 0).

Finally, the third equation (0-5) (proved in Section 3), in which the harmonic Frobenius is thought of
in terms of series, will be the iteration equation of the harmonic Frobenius of integrals at (1, 0).

In (0-4) and (0-5) the dependence of harq α̃ in α̃ is via a power series in K [[q α̃]][α̃] and in (0-3) it is via
a power series in K [[q α̃]]. We are going to see that these expansions are equal (0-6); in particular, the
coefficients of (q α̃)0α̃m for m ≥ 1 will vanish.

In the statement below, for any α̃ ∈ Z∪ {±∞} \ {0}, 8q,α̃ is the generating series of the numbers ζq,α̃

and 8q,−∞ =8
KZ
q is the generating series of the numbers ζKZ

q (Notation 1A.1), harq,α is a generating
series of generalized prime weighted cyclotomic multiple harmonic sums (Definition 1C.2), and τ is
defined in (1-2).

Theorem. Let α̃0, α̃ ∈ N∗ such that α̃0 | α̃:

(i) (integrals) The pro-unipotent harmonic action of integrals at (1, 0), denoted by ◦
∫1,0
har , is a continuous

group action, and we have

harq,α̃ = τ(q α̃)(8−1
q,−∞e18q,−∞) ◦

∫1,0
har harq,−∞ . (0-3)
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The map of iteration of the Frobenius of integrals at (1, 0), denoted by iter
∫1,0
har , satisfies, at words

w = ((ni )d; (ξi )d+1) such that α̃/α̃0 > d ,

harq,α̃(w)= iter
∫1,0
har

(
α̃

α̃0
, q α̃0

)
(8−1

q,α̃0
e18q,α̃0)(w). (0-4)

(ii) (series) The map of iteration of the Frobenius of series, denoted by iter6har, satisfies

harq,α̃ = iter6har

(
α̃

α̃0
, q α̃0

)
(harq,α̃0). (0-5)

(iii) (comparison between integrals and series) We have the following equalities of formal power series
with formal variables a and 3:

τ(3)(8−1
q,−∞e18q,−∞) ◦

∫1,0
har harq,−∞ = iter∫har(a,3)(8

−1
q,α̃0

e18q,α̃0)= iter6har(a,3)(harq,α̃0). (0-6)

The first terms of the equations of the theorem are written in Example 4A.2.
In Section 5, we deduce a similar result for the iteration of the Frobenius on the affinoid analytic

subspace P1,an
\
⋃
ξ∈µN (K ) B(ξ, 1) of P1,an/K , knowing that the fixed-point equation of the Frobenius is

already given by Coleman integration. One of these equations uses the regularization of p-adic iterated
integrals studied in [Jarossay 2019]. In the Appendix, we explain that the pro-unipotent harmonic action
of integrals in (1, 0) corresponds to a certain Poisson bracket.

The main result provides a natural way to compute the fixed point 8q,−∞ i.e., p-adic cyclotomic
multiple zeta values in the sense of Coleman integration. Indeed, we see that the fixed point of the
Frobenius 8q,−∞ ∈ 51,0(K ) appears naturally as a way to express the coefficients of the iteration
equations, and that these iteration equations can be understood in terms of explicit sums of series. This
gives a way to compute Coleman integration without directly doing Coleman integration.

The main result also allows us to replace the map of comparison from integrals to series defined in
[Jarossay 2015] by a map which has the advantage of being injective.

From a dynamical point of view, the main result gives an asymptotic expansion at infinite order of the
convergence of the iterated (harmonic) Frobenius towards its fixed point. More precise information would
follow from nonvanishing results or results on the valuation of p-adic cyclotomic multiple zeta values, or
of certain infinite sums of them. This gives a correspondence between certain arithmetical properties of
p-adic cyclotomic multiple zeta values and dynamical properties of the Frobenius. A correspondence
between dynamical properties of the Frobenius and analytic properties of cyclotomic multiple harmonic
sums is also deduced in Section 5.

The pro-unipotent harmonic action ◦
∫1,0
har which is defined in this paper will be central in our next

papers [Jarossay 2014; 2016a; 2016b] on the explicit version of the algebraic theory of p-adic cyclotomic
multiple zeta values. We will also see there that considering the iterates of the Frobenius, instead of
only the Frobenius itself, is necessary to formulate an explicit version of the algebraic theory of p-adic
cyclotomic multiple zeta values which is purely p-adic and not adelic. It will also find an application
in [Jarossay 2017], where we will see that we can construct a structure on πun,dR

1 (P1
\ {0, µpαN ,∞})
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which generalizes the crystalline Frobenius on πun,dR
1 (P1

\ {0, µN ,∞}) iterated α times. Considering
two parameters α̃0 and α̃ with α̃0 | α̃ and not just α̃ will also be useful in [Jarossay 2017] to shed light on
the computation of p-adic cyclotomic multiple zeta values.

1. Preliminaries

In this section we establish the framework of this paper. We review some definitions and properties about
the pro-unipotent fundamental groupoid of P1

\ {0, µN ,∞}, some results from [Jarossay 2015] and we
add to them a few new definitions and notations. Throughout this paper, N and N∗ will denote the set of
nonnegative and positive integers, respectively.

1A. The pro-unipotent fundamental groupoid of P1 \ {0, µN,∞}.

1A1. The de Rham realization. Let X be P1
\ {0, µN ,∞} over the p-adic field K , with the notations

of Section 0A. The de Rham pro-unipotent fundamental groupoid πun,dR
1 (X), in the sense of [Deligne

1989], is a groupoid in pro-affine schemes over X . Its base points are the points of X and the nonzero
tangent vectors at {0, µN ,∞} ⊂ P1, called tangential base-points. The groupoid structure is defined by
the morphisms πun,dR

1 (X K , z, y)×πun,dR
1 (X K , y, x)→ π

un,dR
1 (X K , z, x) for any base-points x, y, z. By

[loc. cit., Section 12.9], each πun,dR
1 (X, y, x) is canonically isomorphic to the spectrum of the shuffle

Hopf algebra OX,e0∪µN over the alphabet e0∪µN ={ex | x ∈ {0}∪µN (K )}. This isomorphism is compatible
with the groupoid structure.

Following [Deligne and Goncharov 2005], for any N -th root of unity ξ ∈ µN (K ), we denote by
5ξ,0 = π

un,dR
1 (X, E1ξ , E10). Let f 7→ f (ξ) be the isomorphism 51,0→5ξ,0 induced by the automorphism

x 7→ ξ x of X by functoriality of πun,dR
1 .

Let K 〈〈e0∪µN 〉〉 be the noncommutative K -algebra of formal power series over the noncommuting
variables ex , x ∈ {0∪µN (K )}. We will write an element f ∈ K 〈〈e0∪µN 〉〉 as f ((ex)x)= f ((ex)x∈{0}∪µN (K ))

or f (e0, (eξ )ξ ) = f (e0, (eξ )ξ ). The coefficient in f of a word w on the alphabet e0∪µN is denoted by
f [w]. This notation extends by linearity to linear combinations of words, and if for any n ≥ 0 wn is
a linear combination of words of weight n, we denote by f

[∑
∞

n=0wn
]
=
∑
∞

n=0 f [wn] if this series
converges. We have a canonical inclusion Spec(OX,e0∪µN )(K )⊂ K 〈〈e0∪µN 〉〉; namely, Spec(OX,e0∪µN )(K )
is the group of elements satisfying the shuffle equation: for all words w,w′, f [w] f [w′] = f [wXw′]

where X is the shuffle product of words on the alphabet e0∪µN .

1A2. Motivic Galois action and byproducts. The motivic version of πun
1 (P

1
\ {0, µN ,∞}) is constructed

in [Deligne and Goncharov 2005, Section 5].
Let Gω be the motivic Galois group associated with the Tannakian category of mixed Tate motives

over kN unramified at p prime to N , and with the canonical fiber functor ω. There is a semidirect product
decomposition Gω = Gm nUω where Uω is pro-unipotent.

One has an action of Gω on 51,0. Let V ω be the group of automorphisms defined in [Deligne and
Goncharov 2005, Section 5.10]. There is a morphism Uω

→ V ω sending the action of Uω on 51,0 to an
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action of V ω on 51,0. This action makes 51,0 a torsor under V ω. Thus one can consider the isomorphism
of schemes V ω

'51,0, v 7→ v(110) where 110 is the canonical de Rham path in the sense of [Deligne
1989, Section 12]. This isomorphism sends the action of V ω on 51,0 to the Ihara action [Deligne and
Goncharov 2005, Section 5.11], namely, the group law ◦∫1,0 on 51,0 defined by

g ◦∫1,0 f = g(e0, (eξ )ξ )× f (e0, (g(ξ)
−1

eξg(ξ))ξ ). (1-1)

The motivic Galois action of Gm on 51,0 is

τ : (λ, f ((ex)x)) 7→ f ((λex)x), (1-2)

i.e., λ acts by multiplying the term of weight n in f by λn , for all n ∈N. Let the collection of maps (τn)n∈N

be defined by the equality
∑

n∈N τn( f )λn
= τ(λ)( f ) for all λ. Namely, τn sends f =

∑
w word f [w]w to∑

w word, weight(w)=n f [w]w. These formulas also define an action on K 〈〈e0∪µN 〉〉 for which we will use
the same notations.

1A3. The crystalline realization. Let σ be the Frobenius automorphism of K . For α ∈ N∗, let X (pα) be
the pull back of X by σ iterated α times.

Let φ be the Frobenius of the crystalline pro-unipotent fundamental groupoid of P1
\ {0, µN ,∞}

[Deligne 1989, Sections 11 and 13.6]. It is a σ -linear isomorphism of groupoids πun,dR
1 (X (p)) ∼−→

π
un,dR
1 (X). For any α ∈N∗, the Frobenius iterated α times is φα = (σ α−1)∗φ ◦ · · · ◦σ ∗(φ) ◦φ. It is a σ α-

linear isomorphism of groupoids πun,dR
1 (X (pα)) ∼−→π

un,dR
1 (X). When α is divisible by o= log(p)/log(q),

then σ α = id, thus φα is K -linear in the usual sense, its source and target are the same, and it is equal to
φo iterated α/o times: we will write α = oα̃, and φoα̃ = φα̃o . We denote by φ−α = φ−1

α .
Let us now consider the Frobenius at base-points (1, 0) = (E11, E10): φα : 5

(pα)
1,0

∼
−→ 51,0 where

5
(pα)
1,0 = π

un,dR
1 (X (pα), E11, E10). The noncommutative generating series of p-adic cyclotomic multiple zeta

values are 8p,α = τ(pα)φα(1) ∈ 51,0(K ), and 8p,−α = φ−α(1) ∈ 5
(pα)
1,0 (K ). Let us denote again by

σ the map K 〈〈e0∪µN 〉〉 → K 〈〈e0∪µN 〉〉 defined by applying the Frobenius σ of K to each coefficient of a
formal power series. The formal properties of the Frobenius imply the following formulas:

τ(pα)φα : f ∈5(pα)
1,0 (K ) 7→8p,α ◦

∫1,0 σ−α( f ) ∈51,0(K ), (1-3)

φ−α : f ∈51,0(K ) 7→8p,−α ◦
∫1,0 τ(pα)σ α( f ) ∈5(pα)

1,0 (K ). (1-4)

One also has the other notion8KZ
q ∈51,0(K ) of a noncommutative generating series of p-adic cyclotomic

multiple zeta values, defined by the following equality:

φlog(q)/log(p)(8
KZ
q )=8KZ

q , (1-5)

where the existence and uniqueness of a fixed point of φlog(q)/log(p) in 51,0(K ) follows from the theory
of Coleman integration [Coleman 1982; Besser 2002; Vologodsky 2003]. Item (ii) of the notation below
will be justified by the results of Section 2.
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Notation 1A.1. (i) For any α̃ ∈ Z \ {0}, let 8q,α̃ =8p,log(q)/log(p)·α̃.

(ii) Let 8q,−∞ =8
KZ
q , and let 8q,∞ be the inverse of 8q,−∞ for the Ihara product ◦∫1,0 .

(iii) For α∈Z∪{±∞}\{0}, the p-adic cyclotomic multiple zeta values are the numbers ζq,α̃((ni )d; (ξi )d)=

(−1)d8q,α̃[e
nd−1
0 eξd · · · e

n1−1
0 eξ1] (and similarly for ζp,α and 8p,α.)

1A4. Around the adjoint action Ad(e1). We use the convention that the adjoint action Ad(·)(x) on 51,0

is f 7→ f −1x f (instead of the usual f 7→ f x f −1, due to our convention of reading the groupoid
multiplication from the right to the left). The adjoint Ihara action, defined in [Jarossay 2015], is the group
law on Ad51,0(e1) defined by

h ◦
∫1,0
Ad f = f (e0, (h(ξ))ξ ). (1-6)

Let 5̃1,0 be the subgroup scheme of51,0 defined by the equations f [e1]= f [e0]= 0 (see Section 1A1);
Ad(e1) induces an isomorphism of groups (5̃1,0(K ), ◦∫1,0) ∼−→ (Ad5̃1,0(K )(e1), ◦

∫1,0
Ad ).

By (1-1) and (1-2), one has a semidirect product Gm n 5̃1,0, which acts on 5̃1,0. Similarly, by (1-6)
and (1-2), one has a semidirect product Gm nAd5̃1,0

(e1), which acts on Ad5̃1,0
(e1). The map id×Ad(e1)

induces an isomorphism between these two group actions. For all f, g ∈51,0(K ), λ ∈ K ∗, n ∈ N, we
have

g ◦∫1,0 (τ (λ)( f ))=
∑
n∈N

λng ◦∫1,0 (τn f ). (1-7)

We have

τn+1 ◦Ad(e1)= Ad(e1) ◦ τn, (1-8)

Adg(e1) ◦
∫1,0
Ad

τ(λ)

λ
Ad f (e1)=

∑
n∈N

λn Adg(e1) ◦
∫1,0
Ad τn+1 Ad f (e1). (1-9)

1B. An ultrametric structure on the K-points of the de Rham pro-unipotent fundamental groupoid.
As reviewed in Section 1A, each 5y,x = π

un,dR
1 (P1

\ {0, µN ,∞}, y, x) is an affine scheme over K , and
we have a canonical embedding 5y,x(K )⊂ K 〈〈e0∪µN 〉〉. We consider now an enrichment of K 〈〈e0∪µN 〉〉

into a ultrametric complete normed K -algebra: we review facts from [Jarossay 2015], and we add a
few complements. In particular, in Section 1B3 we add a notion of contraction and we apply it to the
Frobenius at base-points (1, 0).

1B1. From affine schemes to ultrametric normed algebras over K . For n, d ∈N∗, let Wd∗,d(e0∪µN ), resp.
Wdn,d(e0∪µN ) the set of words on e0∪µN that are of depth d , resp. of weight n and depth d . Let 3 and D
be two formal variables.

Let K 〈〈e0∪µN 〉〉<∞ ⊂ K 〈〈e0∪µN 〉〉, be the subset of the elements f such that, for each d ∈ N∗, we
have supw∈Wd∗,d (e0∪µN )

| f [w]|p < ∞. We say that the elements of K 〈〈e0∪µN 〉〉<∞ are bounded. Let
K 〈〈e0∪µN 〉〉o(1) ⊂ K 〈〈e0∪µN 〉〉<∞ be the subset of the elements f such that, for each d ∈ N∗, we have
supw ∈Wdn,d(e0∪µN )| f [w]|p n→∞−−−→ 0. We say that the elements of K 〈〈e0∪µN 〉〉o(1) are summable.
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Let
N3,D : f ∈ K 〈〈e0∪µN 〉〉 7→

∑
(n,d)∈N2

( max
w∈Wdn,d (e0∪µN )

| f [w]|p)3n Dd
∈ R+[[3, D]],

and
ND : f ∈ K 〈〈e0∪µN 〉〉<∞ 7→

∑
d∈N

( sup
w∈Wd∗,d (e0∪µN )

| f [w]|p)Dd
∈ R+[[D]].

One can check that these definitions give structures of complete normed ultrametric K -algebra on
K 〈〈e0∪µN 〉〉, K 〈〈e0∪µN 〉〉<∞ and K 〈〈e0∪µN 〉〉o(1) [Jarossay 2015, Proposition 1.3.3].

1B2. Compatibility between the ultrametric structure and the usual algebraic operations. By [Jarossay
2015, Proposition 1.3.6], the Ihara product (1-1), the adjoint Ihara action (1-6), and the action τ (1-2) are
continuous relative to the topologies defined by N3,D and ND on 51,0(K ) and the p-adic topology on
K . And for all f, g ∈51,0(K ), λ ∈ K×, we have (by [Jarossay 2015, proof of Proposition 1.3.6])

N3,D(Ad f (e1))63DN3,D( f ), (1-10)

N3,D(g◦∫1,0 f )6N3,D(g)×N3,D( f ), (1-11)

N3,D(τ (λ)( f ))(3, D)=N3,D( f )(λ3, D). (1-12)

These equations imply similar equations with ND instead of N3,D by passing to supremums.
Let us add another compatibility, which concerns the maps τn defined in Section 1A2.

Lemma 1B.1. (i) For all n ∈ N∗, for all f ∈ K 〈〈e0∪µN 〉〉, we have N3,D(τn( f )) 6 N3,D( f ), and in
particular τn is a continuous linear map for the N3,D-topology.

(ii) K 〈〈e0∪µN 〉〉<∞ and K 〈〈e0∪µN 〉〉o(1) are stable by τn .

(iii) For all f, g ∈51,0(K ) and n ∈ N we have

N3,D(Ad
(g◦∫1,0τn( f ))(e1))63DN3,D(g)N3,D( f ). (1-13)

Proof. (i) and (ii) are clear from the definitions. (iii) follows from (1-10), (1-11) and (i). �

1B3. The weighted Ihara action and contraction mappings. We define a notion of contraction mappings
within the topological framework reviewed above. The exponent −1∫1,0 means the inverse for the Ihara
product (1-1).

Definition 1B.2. Let κ ∈ K ∗ with |κ|p < 1. We say that a map ψ :51,0(K )→51,0(K ) is a κ-contraction
(with respect to N3,D and ◦∫1,0) if, for all f1, f2 ∈51,0(K ), we have

N3,D(ψ( f2)
−1∫

1,0 ◦
∫1,0 ψ( f1))(3, D)6N3,D( f

−1∫
1,0

2 ◦
∫1,0 f1)(κ3, D). (1-14)

Indeed, let ψ : 51,0(K )→ 51,0(K ) be a contraction in the sense of Definition 1B.2. Then, by the
submultiplicativity of the Ihara product with respect to N3,D ((1-11)) and the fact that K 〈〈e0∪µN 〉〉 is
complete with respect to the distance defined by N3,D (Section 1B), a standard proof tells us that ψ
is continuous (with respect to N3,D) and has a unique fixed point, equal to fixψ = lima→∞ ψ

a( f ) for



1720 David Jarossay

all f ∈ 51,0(K ). Thus the contractions in the sense of Definition 1B.2 satisfy the usual properties of
contractions regarding fixed points.

Definition 1B.3. Let (λ, g) ∈Gm(K )×51,0(K ). We call weighted Ihara action by g with parameter λ
and we denote by (λ, g)◦∫1,0 the map

51,0(K )→51,0(K ), f 7→ (λ, g) ◦∫1,0 f = g ◦∫1,0 τ(λ)( f ).

We now relate the two previous definitions in the case where λ is small.

Proposition 1B.4. (i) Let (λ, g) ∈ Gm(K )×51,0(K ) such that |λ|p < 1. The map (λ, g)◦∫1,0 is a
λ-contraction. More precisely, the inequality (1-14) is an equality if κ = λ.

(ii) For all (λ, g) ∈ Gm(K )×51,0(K ), the Ihara action of g weighted by λ is an automorphism of the
scheme 51,0×Spec Q Spec K , whose inverse is

f 7→ τ(λ−1)(g−1∫1,0 ◦∫1,0 f ).

Proof. (i) We have

((λ, g) ◦∫1,0 ( f2))
−1∫

1,0 ◦
∫1,0 ((λ, g) ◦∫1,0 ( f1))= (g ◦∫1,0 τ(λ)( f2))

−1∫
1,0 g ◦∫1,0 τ(λ)( f1)

= τ(λ)( f2)
−1∫

1,0 ◦
∫1,0 g−1∫

1,0 ◦
∫1,0 g ◦∫1,0 τ(λ)( f1)

= τ(λ)( f2)
−1∫

1,0 ◦
∫1,0 τ(λ)( f1)

= τ(λ)(( f2)
−1∫

1,0 ◦
∫1,0 f1).

Thus

N3,D((λ, g) ◦∫1,0 ( f2))
−1∫

1,0 ◦
∫1,0 ((λ, g) ◦∫1,0 ( f1))(3, D)=N3,Dτ(λ)(( f2)

−1∫
1,0 ◦
∫1,0 f1)(3, D)

=N3,D(( f2)
−1∫

1,0 ◦
∫1,0 f1)(λ3, D)

by (1-12).

(ii) Follows from the definitions. �

Knowing that we have a family of contractions, we consider their fixed points and their iterations.

Definition 1B.5. Let (λ, g) 7→ fixλ,g be the fixed point map which sends (λ, g)∈ {z ∈ K | 0< |z|p < 1}×
51,0(K ) to the unique fixed point of the weighted Ihara action (λ, g)◦∫1,0 .

It follows from the definitions that the map fixλ : g 7→ fixλ,g is an automorphism of the scheme
51,0×Spec QSpec K , whose inverse is fix−1

λ : f 7→ f ◦∫1,0τ(λ)( f )−1∫1,0 . The fixed point map is characterized
by the equation

g(e0, (eξ )ξ )fixλ,g(λe0, λ(g−1
ξ eξgξ )ξ )= fixλ,g(e0, (eξ )ξ ). (1-15)

Note that the inversion for the Ihara product on 51,0(K ) is characterized by

g(e0, (eξ )ξ ).g
−1∫1,0 (e0, (g−1

ξ eξgξ )ξ )= 1.
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Definition 1B.6. Let a ∈ N∗. Let the map of iteration a times of the Ihara action weighted by λ,
iter
∫1,0
a,λ :51,0(K )→51,0(K ) be defined by g 7→ ga(◦∫1,0 ,λ) where

ga(◦∫1,0 ,λ)
= (λ, g) ◦∫1,0 · · · ◦

∫1,0 (λ, g)︸ ︷︷ ︸
a

◦
∫1,01= g ◦∫1,0 τ(λ)(g) ◦∫1,0 · · · ◦

∫1,0 τ(λa−1)(g). (1-16)

Thus ga(◦∫1,0 ,λ) is the unique element of 51,0(K ) such that we have, for all f ∈51,0(K ),

(λ, g) ◦∫1,0 · · · ◦
∫1,0 (λ, g)︸ ︷︷ ︸

a

◦
∫1,0 f = (λa, ga(◦∫1,0 ,λ)) ◦∫1,0 f.

The iteration map is expressed in terms of the usual de Rham multiplication on 51,0(K ) by

iter
∫1,0
a,λ (g)= g(e0, (eξ )ξ∈µN (K ))g(λe0, (λAdgξ (eξ ))ξ ) · · · g(λ

a−1e0, (λ
a−1 Adga−1

ξ
(eξ ))ξ ). (1-17)

1B4. Application to the Frobenius. We apply the previous paragraphs to study the iteration of Frobenius
at the base-points (1, 0) which we view as a map φ :5(p)

1,0(K )→51,0(K ).

Lemma 1B.7. The map φ− log(q)/log(p) : 51,0(K ) → 51,0(K ) is a (1/q)-contraction. If 5(p)
1,0(K ) is

identified to 51,0(K ) by the isomorphism defined by e0 7→ e0 and eξ (pα) 7→ eξ for all ξ ∈ µN (K ), the map
φ−1 :51,0(K )→5

(p)
1,0(K ) is a (1/p)-contraction.

Proof. This follows from the formula (1-3), from Proposition 1B.4 and from the fact that σ is an isometry
of K for the p-adic metric. �

In the rest of this paper, for simplicity, we will deal mostly with the iterations of φ− log(q)/log(p). This
is sufficient, knowing that, for any α ∈ N∗, writing the Euclidean division α = r + u log(q)/log(p), we
have φα = φu

log(q)/log(p) ◦φr .

1C. Prime weighted cyclotomic multiple harmonic sums. The numbers harqα ((ni )d; (ξi )d+1) will play
a central role; here, we formally explain how to study them.

1C1. The three frameworks of computation. Multiple polylogarithms are the solutions to the Knizhnik–
Zamolodchikov differential equation, which is the universal connection associated with πun,dR

1 (P1
\

{0, µN ,∞}) (in the sense of [Deligne 1989, Section 12]), and whose crystalline Frobenius structure is φ.
Their power series expansion at 0 is the following, which relates them to cyclotomic multiple harmonic

sums:

Li[(ni )d; (ξi )d ](z)=
∑

0<m1<···<md

(
ξ2
ξ1

)m1
· · ·
( z
ξd

)md

mn1
1 · · ·m

nd
d

. (1-18)

We proved in [Jarossay 2015, (0.3.7)] that prime weighted multiple harmonic sums are expressed in
the following way (where f 7→ f (ξ) is the natural map 51,0(K )→5ξ,0(K )):

harpα ((ni )d; (ξi )d+1)= (−1)d
∞∑

l=0

∑
ξ

ξ−pα Ad
8
(ξ)
p,α
(eξ )[el

0eξd+1end−1
0 eξd · · · e

n1−1
0 eξ1]. (1-19)
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We have a total of three ways to deal with prime weighted multiple harmonic sums, which makes three
frameworks for computations:

(i) Via their expression in terms of p-adic cyclotomic multiple zeta values (1-19).

(ii) Via their expression as coefficients of power series expansions of multiple polylogarithms (1-18).

(iii) Via their definition as elementary explicit iterated sums (0-2).

We will symbolize these three frameworks by, respectively, the notations
∫

1,0,
∫

and 6.
In [Jarossay 2015] we have expressed the “harmonic Frobenius” in the frameworks

∫
and 6 and we

have compared the two expressions. Here we are going to express the “iteration of the harmonic Frobenius”
in the frameworks

∫
1,0 and 6 and compare the two expressions. Keeping in mind the distinction between

these three frameworks
∫

1,0,
∫

and 6 will be essential in this paper and in subsequent ones. We note that
the frameworks 6 and

∫
make sense for all weighted cyclotomic multiple harmonic sums whereas the

framework
∫

1,0 makes sense only for the prime weighted cyclotomic multiple harmonic sums and follows
from a theorem.

1C2. The generalization to negative numbers of iterations of the Frobenius. The indices of p-adic
cyclotomic multiple zeta values, of the form ((ni )d; (ξi )d), are distinct from the indices of cyclotomic
weighted multiple harmonic sums (0-2), of the form ((ni )d; (ξi )d+1).

Definition 1C.1. A harmonic word over e0∪µN , is a tuple ((ni )d; (ξi )d+1), with d ∈ N∗ (ni )d ∈ (N
∗)d ,

(ξi )d+1 ∈ µN (K )d+1. We sometimes identify it with eξd+1end−1
0 eξd · · · e

n1−1
0 eξ1 . Let us denote by

Wdhar(e0∪µN ) the set of harmonic words over e0∪µN .

We now define, using (1-19), an analogue of multiple harmonic sums associated with negative numbers
of iterations of the Frobenius, and another analogue associated with the fixed point of the Frobenius. The
notation “har” that we are going to use is justified by [Jarossay 2014; 2016a; 2016b] and the notion of
“cyclotomic multiple harmonic values”. Below, f [1/(1− e0) ·w] =

∑
∞

l=0 f [el
0w].

Definition 1C.2. For any w = eξd+1end−1
0 eξd · · · e

n1−1
0 eξ1 = ((ni )d; (ξi )d+1) we call generalized prime

weighted multiple harmonic sums the following numbers:

(i) For any α ∈ N∗, let

harp,α(w)= harpα (w) and harp,−α(w)= (−1)d
∑
ξ

ξ−pα Ad
8
(ξ)
p,−α
(eξ )

[
1

1− e0
·w

]
.

(ii) For ε ∈ {±1}, let

harq,ε∞(w)= (−1)d
∑
ξ

ξ−1 Ad
8
(ξ)
q,ε∞

(eξ )
[

1
1− e0

·w

]
.

(iii) If pα = q α̃, with α̃ ∈ Z, we denote by harq,α̃ = harp,α.
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1C3. The noncommutative generating series. We now define generating series of prime weighted cyclo-
tomic multiple harmonic sums, the numbers (0-2) with m = pα.

We have defined in [Jarossay 2015] two variants of K 〈〈e0∪µN 〉〉
∫ adapted to multiple harmonic sums:

K 〈〈e0∪µN 〉〉
∫

har ⊂ K 〈〈e0∪µN 〉〉 the vector subspace of the elements f such that, for all words w on e0∪µN , the
sequence ( f [el

0w])l∈N is constant and f [w′e0] = 0 for all words w′; and K 〈〈e0∪µN 〉〉
6
har = K Wdhar(e0∪µN ).

Here is the third variant:

Definition 1C.3. (i) Let

K 〈〈e0∪µN 〉〉
∫1,0
har = { f ∈ K 〈〈e0∪µN 〉〉 | ∀l > 0,∀r > 0,∀w word on e0∪µN , f [el

0wer
0] = 0}.

(ii) Let

K 〈〈e0∪µN 〉〉
∫1,0
har,0 = { f ∈ K 〈〈e0∪µN 〉〉

∫1,0
har | ∀d ∈ N∗, ni ∈ N∗(16 i 6 d), ξi ∈ µN (K )(16 i 6 d + 1),

f [eξξd+1end−1
0 eξξd · · · e

n1−1
0 eξξ1] = ξ

−1 f [eξd+1end−1
0 eξξd · · · e

n1−1
0 eξ1]}.

The map f 7→
∑

w∈Wdhar(e0∪µN )
f [w]1/(1− e0) ·w clearly defines an isomorphism

K 〈〈e0∪µN 〉〉
∫1,0
har

∼
−→ K 〈〈e0∪µN 〉〉

∫

har

of topological K -vector spaces, with topology defined by ND. However, we denote K 〈〈e0∪µN 〉〉
∫1,0
har and

K 〈〈e0∪µN 〉〉
∫

har differently in order to keep in mind the important distinction between the frameworks∫
1,0,

∫
, 6.

Let us define the noncommutative generating series of the generalized prime weighted cyclotomic
multiple harmonic sums.

Definition 1C.4. For any α̃ ∈ Z∪ {±∞} \ {0}, let harq,α̃ =
∑

w∈Wdhar(e0∪µN )
harq,α̃(w)w ∈ K 〈〈e0∪µN 〉〉

∫1,0
har .

We note that, for α̃ ∈ N∗, we have harq,α̃ ∈ K 〈〈e0∪µN 〉〉
∫1,0
har,0, because we have, for all ξ ∈ µN (K ),

ξ−q α̃
= ξ−q

= ξ−1.

1D. The pro-unipotent harmonic actions and the harmonic Frobenius. We review definitions from
[Jarossay 2015] of the pro-unipotent harmonic actions ◦∫har and ◦6har, and the harmonic Frobeniuses
(τ (pα)φα)∫har and (τ (pα)φα)6har.

Let Ad5̃1,0(K )(e1)o(1) = Ad5̃1,0(K )(e1)∩ K 〈〈e0∪µN 〉〉o(1); by [Jarossay 2015, Proposition 1.3.5], it is a
subgroup of Ad5̃1,0(K )(e1) for the usual group structure of Spec(OX,e0∪µN ), and for the adjoint Ihara
product ◦

∫1,0
Ad ; it is a complete topological group with the topology defined by ND , for both group structures.

1D1. In the framework of integrals. We review definitions from [Jarossay 2015] which will be useful in
what follows.

Let K 〈〈e0∪µN 〉〉
lim
⊂ K 〈〈e0∪µN 〉〉 be the vector subspace consisting of the elements f ∈ K 〈〈e0∪µN 〉〉 such

that, for all words w on e0∪µN , the sequence ( f [el
0w])l∈N has a limit in K , and f [w′e0] = 0 for all

words w′. Let the map lim : K 〈〈e0∪µN 〉〉
lim
→ K 〈〈e0∪µN 〉〉

∫

har be defined by, for all words w over e0∪µN ,
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(lim f )[w] = liml→∞ f [el
0w]. The p-adic pro-unipotent harmonic action of integrals [Jarossay 2015,

Definition 2.2.2] is the map ◦∫har : Ad5̃1,0(K )o(1)(e1)× (K 〈〈e0∪µN 〉〉
∫

har)
N
→ (K 〈〈e0∪µN 〉〉

∫

har)
N defined by

(g, (hm)m∈N) 7→ g ◦∫har (hm)m∈N = (lim(hm(e0, (τ (m)(g(ξ))ξ )))m∈N)

The harmonic Frobenius of integrals [Jarossay 2015, Definition 2.3.5] is the map (τ (pα)φα)∫har :

(K 〈〈e0∪µN 〉〉
∫

har)
N
→ (K 〈〈e0∪µN 〉〉

∫

har)
N defined by

f 7→8−1
p,αe18p,α ◦

∫

har σ
α( f ).

1D2. In the framework of series. The p-adic pro-unipotent harmonic action of series [Jarossay 2015,
Proposition–Definition 4.3.1] is a counterpart of ◦∫har found in terms of series. It is a map

◦
6
har : K 〈〈e0∪µN 〉〉

6
har,o(1)× (K 〈〈e0∪µN 〉〉

6
har)

N
→ (K 〈〈e0∪µN 〉〉

6
har)

N

where K 〈〈e0∪µN 〉〉
6
har,o(1) is defined in [Jarossay 2015, Definition 4.1.3].

The harmonic Frobenius of series is

f 7→ harpα ◦
6
harσ

α( f ).

We proved in [Jarossay 2015] that the harmonic Frobenius of integrals and the harmonic Frobenius of
series are equal [loc. cit., (0.3.3) and (0.3.5)]. Thus, we see that the harmonic Frobenius is characterized by
8−1

p,αe18p,α or, equivalently, by harpα . This is why studying harpα is equivalent to studying the harmonic
Frobenius and, in the next sections, we will see harpα as a function of α, which amounts to studying the
harmonic Frobenius as a function of α.

Remark 1D.1. We can define natural analogues of all the structures which are at base-points (1, 0) and
which are mentioned in this Section 1, at base-points (0, ξ) for any ξ ∈ µN (K ), which are compatible
with the morphism (x 7→ ξ x)∗. All the results of this Section 1 have natural analogues at base-points
(0, ξ) for any ξ ∈ µN (K ). This will be used implicitly in the proofs of the next section.

2. Iteration of the harmonic Frobenius of integrals at (1, 0)

We prove (0-3) in Section 2A, and we prove (0-4) in Section 2B.

2A. The fixed point equation of the harmonic Frobenius of integrals at (1, 0).

2A1. The fixed point equation for the Frobenius of integrals. We express the iterated Frobenius at
base-points of (1, 0) as a function of the number of iterations.

Proposition 2A.1. (a) For all α̃ ∈ N∗, we have 8q,−∞ = fixq α̃0 ,8q,−α̃
i.e.,

8q,−α̃ ◦
∫1,0 τ(q α̃)8q,−∞ =8q,−∞, i.e., τ(q α̃)8q,∞ ◦

∫1,0 8q,α̃ =8q,∞.

(b) For the topology defined by ND on 51,0(K ) we have

8q,−α̃ α̃→∞
−−−→8q,−∞, and 8q,α̃ α̃→∞

−−−→8q,∞.
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(c) For any α̃ ∈ N∗, f ∈51,0(K ), g ∈5(pα)
1,0 (K ),

φ−α̃log(q)
log(p)

( f )=
∞∑

n=0

8q,∞ ◦
∫1,0 (τn(8q,−∞ ◦

∫1,0 f )).(q α̃)n,

φα̃log(q)
log(p)

(g)=
∞∑

n=0

8q,∞ ◦
∫1,0 (τn(8q,−∞ ◦

∫1,0 g)).(q α̃)n.

Proof. (a) (1-4) and (1-5) imply the first equation. (1-4) and (1-5) imply the second equation via
Notation 1A.1(ii).

(b) The first equation follows from Lemma 1B.7 and the discussion after Proposition 1B.4, and the
second equation is deduced from the first one by applying the inversion for ◦∫1,0 , knowing the structure of
topological group of (51,0(K ), ◦∫1,0) for ND . Alternatively, the two equations follow from (i), the fact
that τ(q α̃)8q,∞ α̃→∞

−−−→ 1, τ(q α̃)8q,−∞ α̃→∞
−−−→ 1 and that structure of topological group.

(c) Follows from (1-3), (1-4), in which we replace 8q,α̃ and 8q,−α̃ by their expressions given by (i), and
in which we express τ in terms of the maps τn defined in Section 1A2 just after (1-2). �

In particular, by Proposition 2B.1(i), the existence and uniqueness of a Frobenius-invariant path, which
follows from the theory of Coleman integration, is reproved and made more precise in the very particular
example of 51,0(K ).

2A2. Pro-unipotent harmonic action and harmonic Frobenius of integrals at (1, 0). We move from
discussing the Frobenius at (1, 0) to discussing the harmonic Frobenius of integrals, in the framework∫

1,0 in the sense of Section 1C1. In view of this result, we introduce new objects.

Definition 2A.2. Let K 〈〈e0∪µN 〉〉õ(1) ⊂ K 〈〈e0∪µN 〉〉 be the set of elements h such that all series of the type∑
∞

l=0 h[el
0eξd+1end−1

0 eξd · · · e
n1−1
0 eξ1], where d and the ni are positive integers and the ξi are N -th roots

of unity, are convergent in K . Let the summation map be S : K 〈〈e0∪µN 〉〉õ(1)→ K 〈〈e0∪µN 〉〉
∫1,0
har,0 defined by

h 7→
∑

ξ∈µN (K )

ξ−1
∑
d∈N∗

ξ1,...,ξd+1∈µN (K )
n1,...,nd∈N∗

h(ξ)
[

1
1− e0

eξd+1end−1
0 eξd · · · e

n1−1
0 eξ1

]
eξd+1end−1

0 eξd · · · e
n1−1
0 eξ1 .

We note that K 〈〈e0∪µN 〉〉õ(1) contains K 〈〈e0∪µN 〉〉o(1) defined in Section 1B. We now define a variant of
the pro-unipotent harmonic action of integrals ◦∫har. In the next statement, we denote by ◦

∫1,0
Ad the extension

of the adjoint Ihara product ◦
∫1,0
Ad into a map K 〈〈e0∪µN 〉〉× K 〈〈e0∪µN 〉〉 → K 〈〈e0∪µN 〉〉 defined again by the

formula of (1-6).

Definition 2A.3. Let the map

◦
∫1,0
har,0 : Ad5̃1,0(K )o(1)(e1)× K 〈〈e0∪µN 〉〉

∫1,0
har,0→ K 〈〈e0∪µN 〉〉

∫1,0
har,0
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be characterized by the commutativity of the diagram:

Ad5̃1,0(K )o(1)(e1)× K 〈〈e0∪µN 〉〉õ(1)

id×S
��

◦
∫1,0
Ad
// K 〈〈e0∪µN 〉〉õ(1)

S
��

Ad5̃1,0(K )o(1)(e1)× K 〈〈e0∪µN 〉〉
∫1,0
har

◦
∫1,0
har
// K 〈〈e0∪µN 〉〉

∫1,0
har

(2-1)

The pro-unipotent harmonic action of integrals at (1, 0) is the map

◦
∫1,0
har : Ad5̃1,0(K )o(1)(e1)× K 〈〈e0∪µN 〉〉

∫1,0
har → K 〈〈e0∪µN 〉〉

∫1,0
har

defined by the same formula as the one of ◦
∫1,0
har .

The basic properties of ◦
∫1,0
har are summarized in the next proposition.

Proposition 2A.4. (i) ◦
∫1,0
har is a well-defined group action of (Ad5̃1,0(K )o(1), ◦

∫1,0
Ad ) on K 〈〈e0∪µN 〉〉

∫1,0
har , con-

tinuous for the topology defined by ND .

(ii) The isomorphism K 〈〈e0∪µN 〉〉
∫1,0
har

∼
−→ K 〈〈e0∪µN 〉〉

∫

har, f 7→
∑

w∈Wdhar(e0∪µN )
f [w]1/(1−e0) ·w induces,

for all m ∈ N∗, a natural isomorphism of continuous group actions between the m-th term of ◦∫har,
namely (g, hm) 7→ lim(τ (m)(g) ◦

∫0,0
Ad hm), and the action (g, h) 7→ τ(m)g ◦

∫1,0
har h.

Proof. (i) For any g in Ad5̃1,0(K )(e1), and any word w, the map f 7→ S(g ◦
∫1,0
Ad f )[w] factors in a natural

way through the map f 7→ S f . This can be seen by writing the formula for the dual of ◦
∫1,0
Ad . The fact

that ◦
∫1,0
Ad sends Ad5̃1,0(K )o(1)(e1)× K 〈〈e0∪µN 〉〉õ(1) to K 〈〈e0∪µN 〉〉õ(1) follows from the shuffle equation for

elements of 5̃1,0(K )o(1) and from the formula for the dual of ◦
∫1,0
Ad . Finally, S is surjective: any h in

K 〈〈e0∪µN 〉〉
∫1,0
har,0 is equal to

S
( ∑
ξ1,...,ξd+1∈µN (K )

n1,...,nd∈N∗

h[eξd+1end−1
0 eξd · · · e

n1−1
0 eξ1]eξd+1end−1

0 eξd · · · e
n1−1
0 eξ1

)
.

This proves that ◦
∫1,0
har,0 is well-defined, and that one can write a formula for it, which is linear with respect

to the second argument; thus, ◦
∫1,0
har is well-defined.

Let g1, g2 ∈ Ad5̃1,0(K )o(1)(e1) and f ∈ K 〈〈e0∪µN 〉〉o(1); we have

g2 ◦
∫1,0
Ad (g1 ◦

∫1,0
Ad f )= (g2 ◦

∫1,0
Ad g1) ◦

∫1,0
Ad f.

Applying the map S and the commutativity of (2-1) gives

g2 ◦
∫1,0
har (S(g1 ◦

∫1,0
Ad f ))= (g2 ◦

∫1,0
Ad g1) ◦

∫1,0
har S( f ),

and applying again the commutativity of (2-1) we deduce

g2 ◦
∫1,0
har (g1 ◦

∫1,0
har S( f ))= (g2 ◦

∫1,0
Ad g1) ◦

∫1,0
har S( f ).

This proves that ◦
∫1,0
har is a group action.
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The map ◦
∫1,0
Ad is continuous and each sequence (wl)l∈N such that wl = el

0eξd+1end−1
0 eξd · · · e

n1−1
0 eξ1

for all l with eξd+1end−1
0 eξd · · · e

n1−1
0 eξ1 independent of l satisfies lim supl→∞ depth(wl) < +∞ and

weight(wl) l→∞−−−→ +∞; thus the map S is continuous. By the commutativity of (2-1), this implies
that ◦

∫1,0
har ◦ (id×S) is continuous. If a sequence (hu)u∈N in K 〈〈e0∪µN 〉〉

∫1,0
har tends to h ∈ K 〈〈e0∪µN 〉〉

∫1,0
har , we

can find a sequence ( fu)u∈N and f in K 〈〈e0∪µN 〉〉õ(1) such that hu = S fu for all u, h = f and fu→ f . We
deduce that ◦

∫1,0
har is continuous.

(ii) The relation between ◦
∫1,0
har and ◦∫har follows from the definitions of these two objects and the fol-

lowing property of ◦
∫1,0
Ad , which is itself a consequence of the formula for the dual of ◦

∫1,0
Ad : for all

h ∈ Ad5̃1,0(K )o(1)(e1) and g ∈ Ad5̃1,0(K )o(1)(e1), and for any word w over e0∪µN , we have

(g ◦
∫1,0
Ad h)

[
1

1− e0
w

]
= lim

l→∞
(g ◦
∫1,0
Ad Sh)[el

0w]. �

In the next example, the indices (n1) and (n1, n2) are harmonic words in the sense of Definition 1C.1.

Example 2A.5. If N = 1, the terms of depth one and two of g ◦
∫1,0
har h are given as follows:

(g ◦
∫1,0
har h)(n1)= h(n1)+ g

[
1

1− e0
e1en1−1

0 e1

]
,

(g ◦
∫1,0
har h)(n1, n2)= h(n1, n2)+ g

[
1

1− e0
e1en2−1

0 e1en1−1
0 e1

]
+

n1−1∑
r=0

g
[

1
1− e0

e1en2−1
0 e1er

0

]
h(n1− r)

+

n2−1∑
r=0

g[er
0e1en1−1

0 e1]h(n2− r).

We now deduce from Definition 2A.3 the counterpart of the harmonic Frobenius of integrals in the
framework

∫
1,0.

Definition 2A.6. For any α ∈ N∗ divisible by log(q)/log(p), let the harmonic Frobenius of integrals
at (1, 0), iterated α times, be the map (τ (pα)φα)

∫1,0
har : K 〈〈e0∪µN 〉〉

∫1,0
har → K 〈〈e0∪µN 〉〉

∫1,0
har defined by f 7→

Ad8p,α (e1) ◦
∫1,0
har f .

Corollary 2A.7. The isomorphism

K 〈〈e0∪µN 〉〉
∫1,0
har

∼
−→ K 〈〈e0∪µN 〉〉

∫

har, f 7→
∑

w∈Wdhar(e0∪µN )

f [w]
1

1− e0
w

induces, for all m ∈ N, an isomorphism of continuous maps between (τ (pα)φα)
∫1,0
har and the m = 1 term of

(τ (pα)φα)har.

Proof. Direct consequence of Proposition 2A.4 and the definitions of the two harmonic Frobeniuses. �
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2A3. Fixed point equation for the harmonic Frobenius. We can now deduce from Section 2A1, via
Section 2A2, an expression of the iterated harmonic Frobenius of integrals at (1, 0) as a function of its
number of iterations, whose coefficients are expressed in terms of the fixed point of the Frobenius at
(1, 0); this is (0-3).

By Proposition 2B.1, we have τ(q α̃)8q,∞◦
∫1,08q,α̃=8q,∞. By definition, the inverse of8q,∞ for ◦∫1,0

is8q,−∞ thus the inverse of τ(q α̃)(8q,∞) is τ(q α̃)(8q,−∞). Whence8q,α̃ = τ(q α̃)8q,−∞◦
∫1,08q,∞. By

applying Ad(e1), we deduce Ad8q,α̃ (e1) = τ(q α̃)Ad8q,−∞(e1) ◦
∫1,0
Ad Ad8q,∞(e1), whence S Ad8q,α̃ (e1) =

S(τ (q α̃)Ad8q,−∞(e1) ◦
∫1,0
Ad Ad8q,∞(e1)). By the commutative diagram in Definition 2A.3, this amounts

to S Ad8q,α̃ (e1)= τ(q α̃)Ad8q,−∞(e1) ◦
∫1,0
har S Ad8q,∞(e1)). By (1-19), we have S Ad8q,α̃ (e1)= harq,α̃ and

S Ad8q,∞(e1))= harq,∞. Whence (0-3).

Remark 2A.8. The power series expansion of any harq α̃ ((ni )d; (ξi )d+1) in terms of q α̃, given by (0-3)
have coefficients of degrees in {1, . . . ,min16i6d ni − 1} equal to 0. This follows from 8

(ξ)
q,−∞[e0] = 0

which implies Ad
8
(ξ)
q,−∞

(eξ )= eξ + terms of depth > 2, for all ξ ∈ µN (K ).

Example 2A.9. In depth one and two and for P1
\ {0, 1,∞}, we have

harq α̃ (n1)= harq∞(n1)+

∞∑
n=n1

(q α̃)n Ad8q,−∞(e1)[e
n−n1
0 e1en1−1

0 e1],

harq α̃ (n1, n2)= harq∞(n1, n2)+

∞∑
n=n1+n2

(q α̃)n Ad8q,−∞(e1)[e
n−n1−n2
0 e1en2−1

0 e1en1−1
0 e1]

+

n1−1∑
r1=0

∞∑
n=n2+r1

(q α̃)n Ad8q,−∞(e1)[e
n−n2−r1
0 e1en2−1

0 e1er1
0 ] harq∞(n1− r1)

+

n2−1∑
r2=0

(q α̃)n1+r2 Ad8q,−∞(e1)[er
0e1en1−1

0 e1] harq∞(n2− r2).

2B. Iteration equation of the harmonic Frobenius of integrals at (1, 0). We are now going to reexpress
the iterated harmonic Frobenius of integrals at (1, 0) as a function of the number of iterations, in a different
way, without involving the fixed point.

2B1. Iteration on the Frobenius at (1, 0). As in Section 2A2, the first step is to describe the iterated
Frobenius at base-points (1, 0) as a function of its number of iterations, this time without involving the
fixed point but, instead, the map of iteration of the weighted Ihara action (Definition 1B.6).

Proposition 2B.1. For all α̃0, α̃ ∈ N∗ such that α̃0 | α̃, we have

8q,α = iter
∫1,0

α̃/α̃0,q α̃0
(8q,α̃0) and 8q,α̃ =8q,−α̃

−1∫1,0 .

More generally, for all α ∈N∗, we have8p,−α =8p,−1 ◦
∫1,0 τ(λ)σ (8p,−1) · · · ◦

∫1,0 τ(λα−1)σ α−1(8p,−1)

and 8p,−α =8
−1∫1,0
p,α .

Proof. This follows from (1-3), (1-4), and Definition 1B.3. �

This generalizes a statement appearing in [Furusho 2007, proof of Proposition 3.1].
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Before continuing on the study of the iterated Frobenius, we remark that, by Proposition 2A.1 and
Proposition 2B.1 considering the coefficients of these noncommutative formal power series series,
one has equations relating the p-adic cyclotomic multiple zeta values ζp,α(w) and ζp,α′(w

′), for any
α, α′ ∈ Z∪ {±∞} \ {0}, as follows:

Corollary 2B.2. Let α ∈ Z∪ {±∞} \ {0}. For any n ∈ N∗, let Zp,α,n be the Q-vector space generated by
the numbers ζp,α(w) with w a word of weight n:

(1) For α ∈ N∗, Zp,α,n = σ
−α(Zp,1,n), and Zp,−α,n = σ

α(Zp,−1,n). If α ∈ Z \ {0} is such that p|α| is a
power of q then Zp,α,n =Zq,∞,n =Zq,−∞,n . In particular, the dimension of Zp,α,n is independent of
α ∈ Z∪ {±∞} \ {0}.

(2) N3,D(8p,α) is independent of α ∈ Z∪ {±∞} \ {0}.

Proof. For any positive integers n, d, let O
X,e0∪µN
n,d ⊂ OX,e0∪µN be the subspace generated by words of

weight n and depth d . Let

O2
n,6d =

∑
r>2

n1+···+nr=n
d1+···+dr6d

O
X,e0∪µN
n1,d1

X · · ·XO
X,e0∪µN
nr ,dr

.

Let λ ∈ K such that |λ|p < 1 and a ∈N∗. For each w word on e0∪µN , of weight n and depth d , by (1-15),
(1-16), (1-17) we have the following congruences, where the duals refer to the duality between OX,e0∪µN

and the points of the corresponding group scheme:

(1− λn)fix∨λ (w)≡ w mod O2
n,6d ,

iter
∫1,0
a,λ

∨

(w)≡
1− λan

1− λn w mod O2
n,6d ,

(−1∫1,0)
∨(w)≡−w mod O2

n,6d .

By induction on (n, d), this implies the following equalities, where Z(λ)O
X,e0∪µN
n,6d is the Z(λ)-module

generated by words of weight n and of depth 6 d:

fix∨λ (Z(λ)O
X,e0∪µN
n,6d )= iter∨a

◦
∫1,0 ,λ

(Z(λ)O
X,e0∪µN
n,6d )= (−1∫1,0)

∨(Z(λ)O
X,e0∪µN
n,6d )= Z(λ)O

X,e0∪µN
n,6d ,

and, that, for all g ∈5ξ,0(K ), we have

N3,D(fixλ,g)=N3,D(g
a
◦
∫1,0 ,λ)=N3,D(g

−1∫1,0 )=N3,D(g).

This implies the result via Proposition 2B.1 and Proposition 2B.1. �

A particular case of Corollary 2B.2(i) can be found in [Yamashita 2010, Proposition 3.10] and an
explicit example is given in [Furusho 2007, Example 2.10].

Remark 2B.3. The proof of Corollary 2B.2 indicates that the equations of Corollary 2B.2 are compatible
with the depth filtration and the bounds on valuations of pMZVµN ’s, which are two parameters in our
computation. This can be viewed as a prerequisite for the next paragraphs in which we show a kind of
compatibility between the iteration of the Frobenius and our computation of pMZVµN ’s.
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2B2. The iteration of the harmonic Frobenius. As in Section 2A2, we move from discussing the Frobenius
at (1, 0), in Section 2A2, to discussing the harmonic Frobenius. We first describe how the map iter

∫1,0
a,λ

depends on its parameters λ and a.

Definition 2B.4. For any d ∈ N∗, let τ∗,6d : K 〈〈e0∪µN 〉〉 → K 〈〈e0∪µN 〉〉 be the map which sends f =∑
w word f [w]w to

∑
w word, depth(w)6d f [w]w.

Proposition 2B.5. Let 3, 3̃, a be three formal variables. There exists a map

iter∫1,0(3, 3̃, a) : Ad5̃1,0(K )(e1)→ K 〈〈e0∪µN 〉〉[3̃, a](3), (2-2)

such that, for any f ∈ Ad5̃1,0(K )(e1), word w, a ∈ N∗ such that a > depth(w) and λ ∈ K \ {0} which is
not a root of unity, we have

iter
∫1,0
a,λ ( f )[w] = iter∫1,0(λ, λa, a)( f )[w].

Proof. With the assumptions of the statement, let d = depth(w); knowing that g[∅] = 1, dualizing the
multiplication of the a factors in (1-17) gives

iter
∫1,0
a,λ (g)[w]=

∑
06d ′6d

∑
06i1<···<id′6a−1

∑
wi1 6=∅,...,wid′

6=∅
wi1 ···wid′

=w

g(λi1−1e0, (λ
i1−1 Adg(ξ)i1−1(eξ ))ξ )[wi1]×· · ·

× g(λid′−1e0, (λ
i1−1 Adg(ξ)id′ −1(eξ ))ξ )[wid′

]. (2-3)

We have assumed that a > d; let us thus separate the indices i j 6 d and i j > d:∑
06d ′6d

∑
06i1<···<id′6a−1

=

∑
06d ′′6d ′6d

∑
06i1<···<id′′6d

∑
d<id′′+1<···<id′6a−1

.

This yields an expression of (2-3), as a K -linear combination indexed by {(d ′′, d ′) | 06 d ′′ 6 d ′ 6 d}×
{deconcatenations of w in d ′ nonempty subwords} which is independent of a but depends polynomially
of λ, and with coefficients as well independent of a and polynomial functions of λ, of the numbers∑
d<id′′<···<id′6a−1

g(λi1−1e0, (λ
id′′−1 Adg(ξ)id′′ −1(eξ ))ξ )[wid′′

]×· · ·×g(λid′−1e0, (λ
id′′−1 Adg(ξ)id′′ −1(eξ ))ξ )[wid′

].

(2-4)
Let ε(ξ) = g(ξ) − 1 and ε̃(ξ) = g(ξ)−1

− 1. For 0 6 i j 6 a − 1, we have (where τ∗,6d is defined in
Definition 2B.4)

τ∗,6d(Adg(ξ)i j−1(eξ ))=
∑

m j ,m′j∈N

m j6i j ,m′j6i j ,m j+m′j+16d

( i j

m j

)( i j

m′j

)
ε̃

m′j
ξ eξε

m j
ξ .

When i j > d , the collection of conditions {m j ,m′j ∈N,m j 6 i j ,m′j 6 i j ,m j +m′j +16 d} is equivalent
to {m j ,m′j ∈N,m j +m′j +16 d}; thus, dualizing in (2-4) each factor g(λi j−1e0, (λ

i j−1 Adg(ξ)i j−1(eξ ))ξ )
tells us that (2-4) is a linear combination, independent of a and λ, of sums

∑
d<id′′<···<id′6a−1

d ′∏
j=d ′′

(
i j

m j

)(
i j

m′j

)
λi j weight j ,
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where weight j ∈N∗ arises as the weight of a certain quotient sequence ofwi j , and
( i j

m j

)( i j
m′j

)
are polynomials

of i j .
Finally, any function of a of the form

∑
L6I1<···<Iδ6a−1

∏δ
j=1 Pj (I j )λ

I j C j with L , δ∈N∗, C1, . . . ,Cδ ∈
N∗ and P1, . . . , Pδ ∈ K [T ] polynomials, depends on a as a polynomial function of (a, λa): one can
reduce this statement to L = 0 by splitting an iterated sum over 06 I1 < · · ·< Iδ 6 a− 1 at L and by
induction on δ, then use, again by induction on δ that, for all deg j ∈ N∗, we have

deg j∑
I j=0

I δ
′

j λ
C j I j =

(
λC j

d
d(3C j )

)l(
λC j deg j − 1
3C j − 1

)
. �

Let us now define the map of iteration of the harmonic Frobenius of integrals at (1, 0), by using the
above iteration map and the summation map S of Definition 2A.2.

Definition 2B.6. Let iter
∫1,0
har (a, λ)= S ◦ iter∫1,0(λ, λa, a) : Ad5̃1,0(K )(e1)→ K 〈〈e0∪µN 〉〉

∫1,0
har .

We can now deduce from Section 2B1, and the previous proposition a second description of the iterated
harmonic Frobenius as a function of its number of iterations; this is (0-4).

By Proposition 2B.1, we have 8q,α̃ = iter
∫1,0
α̃/α̃0,q;α̃0

(8q,α̃0), thus by Proposition 2B.5, we have 8q,α̃ =

iter∫1,0(q α̃0, q α̃, α̃/α̃0)(8q,α̃0), whence S8q,α̃ = S iter∫1,0(q α̃0, q α̃, α̃/α̃0)(8q,α̃0). By Definition 2B.6, this
amounts to S8q,α̃ = iter

∫1,0
har (α̃/α̃0, q α̃)(8q,α̃0). Finally, by (1-19), we have S8q,α̃ = harq,α̃ . Whence (0-4).

3. Iteration of the harmonic Frobenius of series

In this section, we prove (0-5) and we discuss its meaning.

3A. Prime weighted multiple harmonic sums as functions of the number of iterations of the Frobenius.
In this section we study how harq α̃ ((ni )d; (ξi )d+1) depends on α̃.

The first step is to write a p-adic expression of harq α̃ ((ni )d; (ξi )d+1), obtained by considering the q α̃0-
adic expansion of the indices m1, . . . ,md of the domain of summation of harq α̃ ((ni )d; (ξi )d+1) as in (0-2).

Lemma 3A.1. We have, for any d ∈ N∗, positive integers ni (1 6 i 6 d), and N-th roots of unity ξi

(16 i 6 d + 1),

harq α̃ ((ni )d; (ξi )d+1)=∑
(li )d∈Nd

(vi )d ,(ui )d ,(ri )d∈Nd
×Nd
×{1,...,q α̃0−1}

ui6q α̃0(vi+1−vi−1)(q α̃0 ui+1+ri+1)−1 if vi<vi+1
ui6ui+1 if vi=vi+1 and ri<ri+1

ui6ui+1−1 if vi=vi+1 and ri>ri+1

q α̃0(vi−vi+1−1)(q α̃0 ui+ri )6ui+1 if vi>vi+1

(q α̃)
∑d

i=1 ni

(
1
ξd+1

)q α̃( d∏
j=1

(
ξ j+1

ξ j

)u j+r j(
−n j

l j

)(q α̃0u j )
l j

r l j+n j
j

)
. (3-1)
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Proof. Let (m1, . . . ,md) ∈ Nd such that 0 < m1 < · · · < md < q α̃. There is a unique way to write
mi = (q α̃0)vi (q α̃0ui + ri ) with vi ∈ N, ui ∈ N, ri ∈ {1, . . . , q α̃0 − 1}: for each (m1, . . . ,md) and each
i ∈ {1, . . . , d}, vi is the q α̃0-adic valuation of mi , and ui and ri are, respectively, the quotient and the
remainder of the Euclidean division of mi q−α̃0vi by q α̃0 .

We have, for any ξ ∈ µN (K ), ξ (q
α̃0 )vi (q α̃0 ui+ri ) = ξ (q

α̃0 ui+ri ) = ξ ui+ri , and we write

(q α̃0ui + ri )
−ni = r−ni

i

(
q α̃0ui

ri
+ 1

)−ni

=

∑
li∈N

(
−ni

li

)
(q α̃0ui )

li r−ni−li
i

for each i . This gives

(
1
ξd+1

)q α̃ d∏
i=1

(
ξi+1

ξi
)mi m−ni

i =

(
1
ξd+1

)q α̃ d∏
j=1

(∑
l j∈N

(
ξ j+1

ξ j

)u j+r j(
−n j

l j

)(q α̃0u j )
l j

r l j+n j
j

)
.

Let (vi )d ∈ {0, . . . , α̃/α̃0− 1}d , (ui )d ∈ {0, . . . , q α̃−α̃0 − 1}d , (ri )d ∈ {1, . . . , q α̃0 − 1}d such that, for
all i ∈ {1, . . . , d} we have 0< q α̃0vi (q α̃0ui + ri ) < q α̃. Then, for all i ∈ {1, . . . , d − 1},

q α̃0vi (q α̃0ui + ri ) < q α̃0vi+1(q α̃0ui+1+ ri+1)

⇔


ui 6 q α̃0(vi+1−vi−1)(q α̃0ui+1+ ri+1)− 1 if vi < vi+1,

ui 6 ui+1 if vi = vi+1, ri < ri+1,

ui 6 ui+1− 1 if vi = vi+1, ri > ri+1,

q α̃0(vi−vi+1−1)(q α̃0ui + ri )6 ui+1 if vi > vi+1.

(3-2)

This completes the proof. �

In the expression of harq α̃ ((ni )d; (ξi )d+1) of the Lemma 3A.1, we are going to sum over all the possible
values of the parameters ui and ri , in order to have an expression which depends only on the vi . In view
of that, let the numbers Bl

m(ξ) ∈ K , for l,m ∈ N such that 0 6 m 6 l + 1 and ξ ∈ µN (K ), defined by
the equation

∑n−1
n1=0 ξ

n1nl
1 = ξ

n ∑l+1
m=0 B

l
m(ξ)n

m for all n ∈ N (see [Jarossay 2019, Lemma 3.1.3]). We
denote by Bl

m = Bl
m(1). For l,m ∈ N2 such that 1 6 m 6 l + 1, we have Bl

m = 1/(l + 1)
(l+1

m

)
Bl+1−m

where B denotes Bernoulli numbers, and the others Bl
m are 0. For ξ ∈ µN (K ) \ {1}, n, l ∈ N∗, we

have Bl
m(ξ) ∈ Z[ξ, 1/ξ, 1/(ξ − 1)], and a formula for Bl

m(ξ) can be obtained by applying
(
T d

dT

)l to the
equation (T n

− 1)/(T − 1)=
∑n−1

n1=0 T n1 , where T is a formal variable.

Lemma 3A.2. Let w = ((ni )d; (ξi )d+1). We fix (li )d ∈ Nd and (vi )d ∈ {0, . . . , α̃/α̃0− 1}.
Let R be the ring generated by N-th roots of unity and numbers 1/(1− ξ) where ξ 6= 1 is a root of

unity. For any word w′ over e0∪µN , there exists a polynomial

Pw,w′,(li )d ,(vi )d ∈ R[(Q j, j+1)16i6d−1, (Bm,l,ξ )16l6l1+···+ld+d, 06m6l+1, ξ∈µN (K )]



Pro-unipotent harmonic actions and dynamical properties of p -adic cyclotomic multiple zeta values 1733

with degree at most l1 + · · · + ld + d in the variables Q j, j+1, and with total degree at most d in the
variables Bm,l,ξ , which is nonzero for finitely many w, and such that we have

∑
(ui )d∈Nd

(ri )d∈{1,...,q α̃0−1}
0<q α̃0v1 (q α̃0 u1+r1)<···<q α̃0vd (q α̃0 ud+rd )<q α̃

( d∏
j=1

(
ξ j+1

ξ j

)u j+r j (q α̃0)li+ni uli
i

r l j+n j
j

)

=

∑
w′ word on e0∪µN

Pw,w′,(li )d ,(vi )d

(
(q α̃0(|v j+1−v j |−1))16 j6d , (Bl

m(ξ))06m6
∑d

i=1 li+d+1
ξ∈µN (K )

)
harq α̃0 (w

′). (3-3)

Proof. If d = 1 we can apply the definition of the numbers Bl
m(ξ), ξ ∈ µN (K ) mentioned above.

If d > 1, let i ∈ {1, . . . , d} such that vi =min(v1, . . . , vd); we fix ui−1, ri−1 and ui+1, ri+1. By (3-2),
one has natural functions f1, f2, f3, f4 such that we can write∑
q α̃0vi−1 (q α̃0 ui−1+ri−1)<q α̃0vi (q α̃0 ui+ri )<q α̃0vi+1 (q α̃0 ui+1+ri+1)

=

∑
f1(ui−1,ri−1,ui+1,ri+1)6ui6 f2(ui−1,ri−1,ui+1,ri+1)

ri<ri+1

+

∑
f3(ui−1,ri−1,ui+1,ri+1)6ui6 f4(ui−1,ri−1,ui+1,ri+1)

ri>ri+1

.

Using that equality we can apply the result in depth 1 i.e., the definitions of the numbers Bl
m(ξ) to express

the sum ∑
q α̃0vi−1 (q α̃0 ui−1+ri−1)<q α̃0vi (q α̃0 ui+ri )<q α̃0vi+1 (q α̃0 ui+1+ri+1)

(
ξi+1

ξi

)ui+ri (q α̃0)li+ni uli
i

r li+ni
i

.

This gives an expression for the left-hand side of (3-3) as a sum over d − 1 variables ui and d − 1
variables ri , which is of a similar type. Continuing this procedure, we obtain an expression depending on
the ri via localized multiple harmonic sums, in the sense of [Jarossay 2015, Section 3.2]:

∑
0<r1<···<rd<q α̃0

(
ρ2
ρ1

)r1
· · ·
(
ρd+1
ρd

)rd
( 1
ρd+1

)q α̃0

r ñ1
1 · · · r

ñd
d

with a positive integer d , for any N -th roots of unity ρi (16 i 6 d+ 1), ñi ∈ Z (16 i 6 d) which are not
necessarily positive. This can be expressed in terms of q α̃0 and usual prime weighted multiple harmonic
sums harq α̃0 by the main result of [Jarossay 2015, Section 3.2]. When we obtain products of numbers
harq α̃0 (w), we can linearize that expression by using the quasishuffle relation of [Hoffman 2000]. �

In the expression of harq α̃ ((ni )d; (ξi )d+1) obtained by combining Lemmas 3A.1 and 3A.2, we are
going to sum over all the possible values of the parameters vi in Lemma 3A.2. In view of that, we need
another lemma.
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Lemma 3A.3. Let d,M ∈N∗; let A1, . . . , Ad ∈ R[T ] be polynomials, with R⊂Q, and T1, . . . , Td formal
variables. There exist coefficients Cδ1,...,δd (M) ∈ R[T ] such that we have

∑
06ṽ1<···<ṽd6M−1

d∏
i=1

T ṽi
i Ai (ṽi )=

∑
∀i,l1+···+li6deg(A1)+···+deg Ai
(U1,...,Ud )∈Q(T1,...,Td )

d such that
U1=T1

∀i∈{1,...,d−1},Ui+1∈{Ui Ti+1,−Ti+1}
δ1,...,δd>0

Cδ1,...,δd (M)
d∏

i=1

U δi
i

(Ui − 1)δi+1 .

Proof. (a) For any n ∈ N∗, m ∈ N, we have(
T
∂

∂T

)
T m

(T − 1)n
= m

T m

(T − 1)n
− n

T m+1

(T − 1)n+1 .

Thus, by induction on α, for all α ∈ N∗,(
T
∂

∂T

)α T m

(T − 1)n
=

α∑
l=0

(−n)(−n− 1) · · · (−n− l + 1)
T m+l

(T − 1)n+l .

Moreover we have ∑
06ṽ6W−1

T ṽ ṽα =

(
T
∂

∂T

)α( ∑
06ṽ6W−1

T ṽ

)
=

(
T
∂

∂T

)α(T ṽ
− 1

T − 1

)
.

Whence ∑
06ṽ6M−1

T vvα =

α∑
l=0

(−1)ll!
T l

(T − 1)l+1 (T
M
− 1).

This gives the result for d = 1 by linearity with respect to A1.

(b) Let us prove the result by induction on d . Assume that A1 =
∑deg A1

α1=0 uα1 ṽ
α1 with uα1 ∈Q. We have,

for all α1 ∈ {0, . . . , deg A1},∑
06ṽ1<···<ṽd6M−1

T ṽ1
1 ṽ

α1
1

d∏
i=2

T ṽi
i Ai (ṽi )

=

a1∑
l=0

(−1)ll!
1

(T1− 1)l+1

∑
06ṽ2<···<ṽd6M−1

(
(T1T2)

ṽ2

d∏
i=3

T ṽi
i Ai (ṽi )−

d∏
i=2

T ṽi
i Ai (ṽi )

)
.

Whence the result by induction and by linearity. �

Combining Lemmas 3A.1, 3A.2 and 3A.3 we can now sum over all the ui , ri and vi and write an
expression of harq α̃ ((ni )d; (ξi )d+1) as a function of α̃ as we wanted.

Proposition 3A.4. Let a harmonic word w = ((ni )d; (ξi )d+1). Let us fix (li )d ∈ Nd .
Let R be the ring of Lemma 3A.2. For every word w′ over e0∪µN , there exists a polynomial Pw,w′,(li )d ∈

R[Q̃, A, (Bm,l,ξ )16l6l1+···+ld+d, 16m6l+1, ξ∈µN (K )] with degree at most
∑d

i=1 li + d in Q̃, and with total



Pro-unipotent harmonic actions and dynamical properties of p -adic cyclotomic multiple zeta values 1735

degree at most d in the variables Bm,l,ξ , such that we have∑
(vi )d∈{1,...,q α̃0−1}

Pw,w′,(li )d ,(vi )d ((q
α̃0(|v j+1−v j |−1))16 j6d , (Bl

m(ξ))06m6
∑d

i=1 li+d+1, ξ∈µN (K )
)

= Pw,w′,(li )d

(
q α̃,

α̃

α̃0
, (Bl

m(ξ))06m6
∑d

i=1 li+d+1, ξ∈µN (K )

)
. (3-4)

Proof. The set {0, . . . , α̃/α̃0− 1}d admits a partition, which depends only on d, indexed by the set of
couples (E, σ ), where E is a partition of {1, . . . , d} and σ is a permutation of {1, . . . , ]E}, defined as
follows: for each (v1, . . . , vd) ∈ [0, k− 1]d , and each such (E, σ ), we say that (v1, . . . , vd) ∈ (E, σ ) if
and only if, for all, i , i ′, a

vi = vi ′ for i, i ′ ∈ Pσ(a),

vi < vi ′ for i ∈ Pσ(a), i ′ ∈ Pσ(a+1).

By the proof of Lemma 3A.2, the function (vi )d 7→ Pw,w′,(li )d ,(vi )d is constant on each term of that partition
(since ξq

= ξ for all ξ ∈µN (K ), we have ξq α̃0v
= ξ for all v ∈N∗). We split the left-hand side of (3-4) as∑

(vi )d∈{1,...,α̃/α̃0−1} =
∑

(E,σ )
∑

(vi )d∈(E,σ ) and we compute each subsum
∑

(vi )d∈(E,σ ). By multilinearity
we can assume that Pw,w′,(li )d ,(vi )d is a monomial in the q α̃0(|v j+1−v j−1|). Thus the subsum is a function of
the type ∑

06ṽ1<···<ṽd′6M−1

T ṽ1
i1
· · · T ṽr

ir
, (3-5)

applied to ṽi = vσ(i+1)− vσ(i)− 1 and Ti = q α̃0 , where d ′,M ∈ N∗, I = {i1, . . . , ir } ⊂ {1, . . . , d ′} with
i1 < · · · < ir , and Ti1, . . . , Tir formal variables. Moreover,

∑
i6i+1<···< j 1 is a polynomial function of

(i, j) with coefficients in Z. Thus we can express (3-5) by Lemma 3A.3. This provides the result. �

3B. The relation of iteration of the harmonic Frobenius of series. Using the result of Section 3A we
can now formalize the iteration of the harmonic Frobenius from the point of view of series. We refer to
K 〈〈e0∪µN 〉〉

6
har =

∏
w harmonic word K .w defined in [Jarossay 2015, Section 3].

Definition 3B.1. Let the map of iteration of the harmonic Frobenius of series be the map iter6har(3,3
a, a) :

K 〈〈e0∪µN 〉〉
6
har→ K [3,3a, a]〈〈e0∪µN 〉〉

6
har defined by, for any word w,

iter6har( f )[w] =
∑

w′ word on e0∪µN

Pw,w′,(li )d (3
a, a, (Bl

m(ξ))06m6
∑d

i=1 li+d+1, ξ∈µN (K )
) f [w′].

Let us now finish the proof of (0-5). By Lemmas 3A.1, 3A.2 and Proposition 3A.4, the only thing to
check is the convergence of the series, which are infinite sums over (li )d ∈ Nd . This follows from the
following facts:

(a) For any n ∈ N∗, it follows from pvp(n) 6 n that vp(1/n) > − log(n)/log(p); moreover, for any
n ∈ N∗, we have vp(Bn)>−1 (this is part of von Staudt–Clausen’s theorem). Thus for all l,m, we
have vp(Bl

m)>−1− log(l+ 1)/log(p), and, given that |ξ |p = |1− ξ |p = 1 for all ξ ∈ µN (K ) \ {1},
we have, for all l,m, and ξ ∈ µN (K ) \ {1}, vp(Bl

m(ξ))> 0.
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(b) If T1, T2 are formal variables and m ∈ N∗, we have (T m
1 − 1)/(T1 − 1)− (T m

2 − 1)/(T2 − 1) =
(T m

1 − T1)/(T1− 1)− (T m
2 − T2)/(T2− 1).

(c) For any z ∈ K such that vp(z) 6= 0, we have vp(1/(z− 1)) > 0 if vp(z) > 0, and vp(1/(z−1
− 1)) >

vp(z−1) if vp(z) < 0.

Remark 3B.2. Equation (0-5) is related to the formula harpαN = harpα ◦
6
har har(p

α)

N proved in [Jarossay
2015], where ◦6har is the pro-unipotent harmonic action of series introduced in [loc. cit., Section 4.3]:
restricting that equation to harm with m a power of p gives a functional equation satisfied by the map
α 7→ harpα , which expresses harpα+β in terms of harpα and har(p

α)

pβ .

Remark 3B.3. As in [Jarossay 2015], the computation which leads to the above result remains true
for the generalization of cyclotomic multiple harmonic sums obtained by replacing the factors 1/mni

i ,
16 i 6 d in (0-2) by, more generally, factors χi (mi ) where χi are locally analytic group endomorphisms
of the multiplicative group K ∗, which are analytic on disks of radius p−α.

Remark 3B.4. The main theorem gives formulas for p-adic cyclotomic multiple zeta values which
depend on an additional parameter, a number of iterations of the Frobenius different from the one
under consideration. Here is another way to obtain formulas with parameters. The computation of
regularized iterated integrals in [Jarossay 2019, Section 3] can be done by replacing the Euclidean
division by pα in N by the Euclidean division by pβ with β ≥ α. This gives, for example, ζp,α(n) =
pαn/(n − 1) lim|m|p→0 1/(pβm)

∑
0<m1<pβm, pα -m 1/mn

1 , and this gives formulas in which the prime
weighted multiple harmonic sums are replaced by the following generalization, where (l1, . . . , ld) ∈ Nd ,
I, I ′ ⊂ {1, . . . , d} and β:

pα
∑d

i=1 ni+β
∑d

i=1 li
∑

0=m0<m1<···<md<pβ
for j∈I, m j−1≡m j [pα]

for j∈I ′, m j≡0[pα]

(
ξ2
ξ1

)m1
· · ·
(
ξd+1
ξd

)md
( 1
ξd+1

)pβ

mn1+l1
1 · · ·mnd+ld

d

.

Example 3B.5. Let us consider the case of P1
\ {0, 1,∞} (N = 1), for which we have q = p, α̃ = α,

α̃0 = α0, and depth one and two. Equation (0-5) is, for all n ∈ N∗,

harpα (n)

=−

∑
l>0

(
−n
l

)
harpα0 (l+n)

l+1∑
u=1

Bl
u

1
1− pα0(u+n) −

∑
u>n+1

pαu 1
1− pα0u

∑
l>u−n−1

(
−n
l

)
harpα0 (l+n)Bl

u−n.

For all n1, n2 ∈ N∗, harpα (n1, n2) is the sum of the following terms, where the variables v1, v2 are
those defined in Lemma 3A.1 and where, for a set E , 1E means the characteristic function of E :



Pro-unipotent harmonic actions and dynamical properties of p -adic cyclotomic multiple zeta values 1737

• The term “v1 = v2”:

∑
u>1

l1,l2>0
l1+l2>u−1

pα(u+n1+n2)− 1
pα0(u+n1+n2)− 1

2∏
i=1

(
−ni

li

)
(Bl1,l2

u

2∏
i=1

harpα0 (ni + li )+Bl1+l2
u harpα0 (n1+ l1, n2+ l2)).

• The term “v1 < v2”:∑
M1,M2>−1

u,t>1

[
1t 6=u+n2

pα0(n2+u−t)− 1

(
pα(n1+n2+u)

− pα0(n1+n2+u)

pα0(n2+n1+u)− 1
−

pα(n1+t)
− pα0(n1+t)

pα0(n1+t)− 1

)
+ 1t=u+n2

(
αpα(n1+n2+u)

pα0(n1+n2+u)− 1
+

1− pα(n1+n2+u)

(pα0(n1+n2+u)− 1)2

)
BM1+t

t BM2+u
u

×

min(t,M2+u)∑
j=0

( t
j

)(
−n1

M1+t

)(
−n2

M2+u− j

)
harpα0 (n1+M1+ t) harpα0 (n2+M2+ u− t)

]
.

• The term “v1 > v2”: by the change of variable (m1,m2) 7→ (pα −m1, pα −m2), it is∑
0<m1<m2<pα
vp(n1)>vp(n2)

(pα)n1+n2

nn1
1 nn2

2
=

∑
l1,l2>0

0<n1<n2<pα
vp(n1)<vp(n2)

(
−n1

l1

)(
−n2

l2

)(pα)l1+l2+n1+n2

nn1
1 nn2

2
.

3C. Interpretation in terms of cyclotomic multiple harmonic sums viewed as functions of the upper
bound of their domain of summation. The main result above gives a description of harq α̃ as a function
of q α̃ (and α̃) regarded as a p-adic integer. Let us extend the question and consider the study of harm as a
function of m, for any m ∈ N∗ regarded as a p-adic integer. We are going to remove the factor mweight in
harm , i.e., consider the (nonweighted) cyclotomic multiple harmonic sums hm((ni )d; (ξi )d+1) of (0-2).

Intuitively, hm is a highly discontinuous function of m, but we have proved by the main theorem
that harq α̃ has a power series expansion in terms of q α̃. The goal of the next proposition is to write a
decomposition of hm in a way which explains the relation between these two phenomena, by using the
q-adic expansion of m, in order to clarify the dependence of harm in m.

Below we use the following definition: an increasing connected partition of a subset of N is a partition
of that set into sets Ji of consecutive integers, such that each element of Ji is less than each element of
Ji ′ when i < i ′.

Proposition 3C.1. (i) Let m ∈ N∗, and let its q-adic expansion be

m = ayd′
q yd′ + ayd′−1

q yd′−1 + · · ·+ ay1q y1,

with yd ′ > · · ·> y1, and ayd′
, . . . , ay1 ∈ {1, . . . , q − 1}. Let

ν j ′ = ayd′
q yd′ + · · ·+ ayd′− j ′+1

q yd′− j ′+1
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for j ′ ∈ {1, . . . , d ′}. We have

hm((ni )d; (ξi )d+1)=
∑

n={ν j ′′1
,...,ν j ′′

d′′
}⊂{ν1,...,νd′ }

 :n↪→{1,...,d} injective
J0q···qJd′={1,...,d}− (n), satisfying (∗)

d ′′∏
j ′′=1

1

ν
n (ν j ′′ )

j ′′

d ′∏
j ′=0

∑
l jmax

j ′
,...,l jmin

j ′
>0

( jmax
j ′∏

u= jmin
j ′

(
−nu

lu

))(d ′− j ′+1∑
l=d ′

ayl q
yl

)∑ jmax
j ′

u= jmin
j ′

lu

× hayd′− j ′
q

yd′− j ′ ((n j + l j ) j j ′,min< j< j j ′,max
; (ξ) jmin< j< jmax+1), (3-6)

where (∗) is that J0q · · ·q Jd ′ is an increasing connected partition of {1, . . . , d}−  (n), such that each
J (ν j ′′ )

q · · · q J (ν j ′′+1)−1, j ′′ = 1, . . . , d ′′, is an increasing connected partition of ({1, . . . , d}−  (n))∩
] (ν j ′′),  (ν j ′′+1)[.

(ii) Let n ∈ N∗, whose decomposition in base q is of the form aq y , with a ∈ {1, . . . , q − 1} and y ∈ N∗.
Let ν j ′ = j ′q y for j ′ ∈ {1, . . . , a− 1}. We have

haq y ((ni )d; (ξi )d+1)=
∑

n={ν j ′′1
,...,ν j ′′

d′′
}⊂{ν1,...,νd′ }

 :n↪→{1,...,d} injective
J0q···qJd′={1,...,d}− (n), satisfying (∗)

d ′′∏
j ′′=1

1

ν
n (ν j ′′ )

j ′′

d ′∏
j ′=0

∑
l jmax

j ′
,...,l jmin

j ′
>0

( jmax
j ′∏

u= jmin
j ′

(
−nu

lu

))

× ( j ′q y)

∑ jmax
j ′

u= jmin
j ′

lu

hq
yd′− j ′ ((n j j ′

+ l j j ′
) jmin< j ′< jmax; (ξ j j ′

) jmin< j ′< jmax+1). (3-7)

Proof. (i) and (ii) We apply the “formula of splitting” of multiple harmonic sums of [Jarossay 2015,
Section 3] at {ν1, . . . , νr }; this gives

hm((ni )d; (ξi )d+1)=
∑

n={ν j1 ,...,ν jd′′
}⊂{ν1,...,νd′ }

 :n↪→{1,...,d} injective
J0q···qJd′={1,...,d}\ (n), satisfying (∗)

d ′′∏
j ′′=1

1

n
n (ν j ′′ )

 (ν j ′′ )

d ′∏
j ′=0

hν j ′ ,ν j ′+1
(w|J j ′

)

and we express each factor hν j ′ ,ν j ′+1
(w|J j ′

) in terms of hν j ′+1−ν j ′
by the p-adic formula of shifting of

multiple harmonic sums of [Jarossay 2015, Section 4.1] writing J j ′ = [ jmin
j ′ , jmax

j ′ ]. �

Example 3C.2 (N = 1 and d = 1). For all n ∈ N∗, we have

hm(n)=
hayd′

+1(n)

(pyd′ )n
+

d ′−1∑
i=1

∑
l>0

hayi+1(n+ l)

(pyi )n+l

(
−n
l

)
(ayd′

pyd′ + · · ·+ ayi+1 pyi+1)l

+

∑
16 j6d ′

06a′y j
6ay j−1

∑
l>0

(
−n
l

)
hy j (n+ l)

( d ′∑
m= j+1

aym pym + a′j py j

)l

. (3-8)
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In the formulas of the proposition, there are terms which are analytic functions of a power of q by the
main theorem, and certain factors which are “polar” in function of the q-adic expansion of m. This sheds
light on the dependence of hm on m.

The reason why studying hm as a function of m is a natural comes from [Jarossay 2019], in which this
question appeared implicitly. We have studied the map sending m to the coefficient of degree m in the
power series expansion at 0 of the overconvergent p-adic multiple polylogarithm Li†p,α[w], for w any
word on e0∪µN . We have proved that it can be extended to a locally analytic map on Z

(N )
p = lim

←−−
Z/N puZ

[loc. cit., Section 3]. This map is a linear combination of multiple harmonic sums over the ring generated
by p-adic cyclotomic multiple zeta values. Thus we can interpret them as a “regularization” of multiple
harmonic sums. See also Appendix A of [loc. cit.].

4. Comparison between equations on integrals and equations on series

We prove (0-6) and we discuss more generally the comparison between integrals and series.

4A. Uniqueness of the expansion of harqα̃ as a function of α̃ and qα̃.

Proposition 4A.1. Let δ ∈ N∗, and a map S : N∗ ∩ [δ,+∞[ → K such that we have, for all a ∈
N∗ ∩ [δ,+∞[, S(a) =

∑
n∈N

∑M
m=0 cn,m(qa)nam , where M ∈ N∗, and (cl,m)06n, 06m6M ∈ K N×{0,...,M}

such that
∑

n∈N

∑M
m=0|cn,mqn

|p <∞. If S(a)= 0 for all a ∈ N∗ ∩ [δ,+∞[, then we have cn,m = 0 for
all (n,m) ∈ N×{0, . . . ,M}.

Proof. Let a0∈N∗∩[δ,+∞[ and u∈N. By taking a=a0+pu in the equation
∑

n∈N

∑M
m=0cn,m(qa)nam

=0
and by taking the limit u→∞, we get

∑M
m=0 c0,mam

0 = 0. Since this is true for infinitely many a0, we
get c0,m = 0 for all m. This implies that, for all a,

∑
n>1

M∑
m=0

cn,m(qa)nam
= qa

(∑
n>1

M∑
m=0

cn,m(qa)n−1am
)
= 0,

thus ∑
n∈N

M∑
m=0

cn+1,m(qa)nam
= 0.

Whence the result: by induction on n, we have a contradiction if there exists (n,m) such that cn,m 6= 0. �

Let us now prove (0-6). By [Jarossay 2019], we have 8q,α̃ ∈ K 〈〈e0∪µN 〉〉o(1) for any α̃ ∈ N∗. By
Corollary 2B.2, this implies that |8|q =

∑
w word on e0∪µN

supα̃∈Z∪{±∞}\{0}|8q,α̃[w]|pw is a well-defined
element of K 〈〈e0∪µN 〉〉o(1). We have a similar bound for the coefficients of the expansion of each harq,α̃[w]

obtained in Section 3C. Thus we can apply Proposition 4A.1 to the power series expansion of each
harq,α̃[w] in (0-3), (0-4), (0-5) to deduce that they are the same.

Example 4A.2. The term of depth one (d = 1), in the case of P1
\ {0, 1,∞} (i.e., in the case N = 1) for

which p = q, α̃ = α and α̃0 = α0, of the equations of the theorem is the following, respectively (with
BL+b

b = 1/(L + b+ 1)
(L+b+1

L

)
BL+1 for 16 b 6 L + 1):
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• The fixed point equation of the harmonic Frobenius of integrals at (1, 0) (equation (0-3)):

harpα (n)=
∞∑

b=1

(pα)b+n Ad8p,−∞(e1)[eb
0e1en−1

0 e1] +Ad8p,∞(e1)

[
1

1− e0
e1en−1

0 e1

]
. (4-1)

• The relation of iteration of the harmonic Frobenius of integrals at (1, 0) (equation (0-4)):

harpα (n)=
∞∑

b=1

(pα)n(pα0)b

pα0 − 1
Ad8p,α0

(e1)[eb
0e1en−1

0 e1] −
(pα)n

pα0 − 1
Ad8p,α0

(e1)

[
1

1− e0
e1en−1

0 e1

]
. (4-2)

• The relation of iteration of the harmonic Frobenius of series (0-5):

harpα (n)=
∞∑

b=1

pα(n+b)
− 1

pα0(n+b)− 1

∞∑
L=−1

BL+b
b harpα0 (n+ b+ L). (4-3)

• The comparison between these three expressions: (0-6)

(pα0)b

pα0 − 1
Ad8p,α0

(e1)[eb
0e1en−1

0 e1] = Ad8p,∞(e1)[eb
0e1en−1

0 e1]

=
1

pα0(n+b)− 1

∞∑
L=−1

BL+b
b harpα0 (n+ b+ L). (4-4)

Generalizing this example to higher depths gives a new way to compute p-adic cyclotomic multiple
zeta values.

4B. The map of comparison for all number of iterations. In [Jarossay 2015, Definition 5.1.3] we have
defined the map of comparison, from integrals to series, comp6 ∫ : K 〈〈e0∪µN 〉〉

N
o(1)→ K 〈〈e0∪µN 〉〉har,o(1), by

(comp6 ∫((gξ )ξ∈µN (K )))[eξd+1end−1
0 eξd · · · e

n1−1
0 eξ1]

= (−1)d
∑

ξ∈µN (K )

ξ−pαgξ

[
1

1− e0
eξd+1end−1

0 eξd · · · e
n1−1
0 eξ1

]
.

In the context of this paper, it is natural to define a variant of the map of comparison from integral
to series, which takes into account the properties of the iterated Frobenius viewed as a function of its
number of iterations, and which has the additional advantage of being injective.

Definition 4B.1. Let the map comp6 ∫iter : Ad5̃1,0(K )o(1)(e1) → (K 〈〈e0∪µN 〉〉
∫1,0
har )

qN∗

be defined by f 7→

(τ (q α̃)( f ) ◦
∫1,0
har comp6 ∫ f )α̃∈N∗ .

Equation (0-3) can be restated as

comp6 ∫iter (Ad8q,−∞(e1))= (harq,α̃)α∈N∗ .

The key property of comp6 ∫iter , which a priori does not hold for comp6 ∫, is the following:

Proposition 4B.2. comp6 ∫iter is injective.
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Proof. Let a word w = eξd+1end−1
0 eξd · · · e

n1−1
0 eξ1 . For n > weight(w), let us consider the coefficient

of (qa)n in comp6 ∫,iter( f )[w]. It is equal to f [en−(n1+···+nd )
0 eξd+1end−1

0 eξd · · · e
n1−1
0 eξ1] + terms of lower

depth, where the depth is the one of coefficients of f . This gives the result by an induction on the
depth. �

5. Iteration of the Frobenius on P1 \
⋃
ξ B(ξ, 1)

In the previous sections, we considered the Frobenius of πun,crys
1 (P1

\ {0, µN ,∞}) at base-points (1, 0)
and the harmonic Frobenius. We now consider the Frobenius of πun,crys

1 (P1
\ {0, µN ,∞}) on the affinoid

subspace U an
= P1,an

\
⋃
ξ N=1 B(ξ, 1) of P1,an over K , where B(ξ, 1) is the open ball of center ξ and

of radius 1. As in Section 2, we will have a fixed-point equation (Section 5A) and an iteration equation
(Section 5B). Additionally, we will have a third equation coming from the study of regularized iterated
integrals in [Jarossay 2019, Section 5.3].

5A. Fixed point equation. The fixed point equation of the Frobenius is known thanks to the theory of
Coleman integration. It amounts to the definition of p-adic multiple polylogarithms LiKZ

q as Coleman
integrals, in [Furusho 2004; 2007] for N = 1 and in [Yamashita 2010] for any N ; we have

φlog(q)/log(p)(LiKZ
q )= LiKZ

q . (5-1)

Restricted to U an, the fixed point equation amounts to the following equations [Jarossay 2019, Propo-
sition 2.1.3], they involve the overconvergent p-adic multiple polylogarithms Li†p,α[w] [Jarossay 2019,
Definition 1.2.5], which are overconvergent analytic functions on U an:

Li†p,α(z)= LiKZ
q (z)(pαe0, (pαeξ )ξ )LiKZ

q
(pα)

(z pα )(e0, (Ad
8
(ξ)
p,α
(eξ )ξ ))−1, (5-2)

Li†p,−α(z)= LiKZ
q
(pα)

(z pα )(e0, (eξ (pα))ξ )LiKZ
q (z)(pαe0, pα(Ad

8
(ξ pα )
p,−α

(eξ (pα))ξ ))
−1, (5-3)

where LiKZ
q
(pα)

is the analogue of LiKZ
q on X (pα) equal to the pull-back of X = (P1

\ {0, µN ,∞})/K by
σ α where σ is the Frobenius automorphism of K . When α is a multiple of log(q)/log(p), X (pα)

= X
and LiKZ

q
(pα)
= LiKZ

q , and when α = log(q)/log(p), (5-2), (5-3) are directly equivalent to (5-1).

Notation 5A.1. For any α̃ ∈ Z∪ {±∞} \ {0}, let Li†q,α̃ = Li†p,α and Li†q,−α̃ = Li†p,−α, with pα = q α̃.

The Frobenius on U an is characterized by the couple (Li†p,α,8p,α). We already know by Section 2 a
description of 8p,α as a function of α. If we combine it with (5-2), (5-3), we deduce a description of
Li†p,α as a function of α. This gives a description of the iterated Frobenius on U an as a function of its
number of iterations. We leave the details to the reader. One can also write an analogue for U an of the
notion of contraction mapping at base-points (1, 0) of Definition 1B.2 and of the fact that the Frobenius
at (1, 0) is a contraction of Lemma 1B.7.

Let us just consider the convergence of the iterated Frobenius towards the fixed point when the number
of iterations tends to∞, in the unit ball B(0, 1).
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Proposition 5A.2. For all z ∈ K such that |z|p < 1, we have, for the N3,D-topology,

τ(q−α̃)Li†q,α̃(z) α̃→∞
−−−→ LiKZ

q (z)(e0, (eξ )ξ ),

τ (q−α̃)Li†q,−α̃(z) α̃→∞
−−−→ LiKZ

q (z)(e0, (Ad
8
(ξ)
q,−∞

(eξ ))ξ ).

Moreover, these convergences are uniform on all the closed disks of center 0 and radius ρ < 1.

Proof. τ(q−α̃)Li†q,α̃(z) is the product of LiKZ
q (z)(e0, (eξ )ξ ) by

τ(q−α̃)LiKZ

p,X (q
α̃ )

K

(zq α̃ )(e0, (Ad
8
(ξ)

q,α̃
(eξ ))ξ )−1. (5-4)

The coefficient of (5-4) at a word w is of the form,

q−α̃weight(w)
∑

(w1,w2)

∞∑
m=0

hqαm(w1)
zq α̃m

(q α̃m)L
ζq,α(w2)

where L ∈N∗ and w1, w2 are in a finite set depending only on w, determined by the combinatorics of the
composition of noncommutative formal power series. For all m ∈N∗ we have−vp(m)>− log(m)/log(p).
Applying this to the mi in (0-2) we deduce

vp(harq α̃m(w))>−weight(w)
α̃ log(q)+ log(n)

log(p)
.

For all C,C ′ ∈ R+∗, and z ∈ K such that |z|p < 1, we have q α̃nvp(z)−C α̃−C ′ log(n)
α̃→∞
−−−→+∞ and

this convergence is uniform with respect to n. Indeed, let n0 be an integer such that for all n > n0, we
have C ′ log(n)6 1

2 nvp(z); then n0 is independent of α̃ and we have, for all n > n0,

q α̃nvp(z)−C α̃−C ′ log(n)>
q α̃n

2
vp(z)−C α̃.

Because of the bounds of valuations of cyclotomic p-adic multiple zeta values of [Jarossay 2019, Section 4],
the sequence (N3,D(8q,−α))α̃∈N∗ is bounded. Thus, τ(q−α̃)Li†q,α(z) converges to LiKZ

q (z). Moreover,
we can see that n0 can be chosen independently from z in a closed disk of center 0 and radius ρ < 1.

The proofs of the statements concerning τ(q−α̃)Li†q,−α(z) are similar. �

Remark 5A.3. The convergence in Proposition 5A.2 does not a priori extend to a uniform convergence
on U an. Indeed, otherwise, in fact, the map LiKZ

q would be rigid analytic on U an. By the main result
of Appendix A of [Jarossay 2019], this would imply that, for any word w, the multiple harmonic sums
functions m 7→ harm(w) restricted to classes of congruences modulo N should be continuous as a function
m ∈ N ⊂ lim

←−−
Z/N plZ. This seems to contradict the results of Section 3C. More generally, we expect

that the lack of regularity of the maps m 7→ harm(w) can be at least partially reflected in the mode of
convergence of the sequences Li†q,α̃[w] when α→∞.

Remark 5A.4. One can deduce a result similar to Proposition 5A.2 on the ball B(∞, 1) by applying the
automorphism z 7→ 1/z of P1

\ {0, µN ,∞} and the functoriality of πun,crys
1 .
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5B. Iteration equation. We now write an equation for the iteration of the Frobenius on the subspace
P1,an
\
⋃
ξ∈µN (K ) B(ξ, 1). We restrict the statement to positive numbers of iterations for simplicity, but

a similar result holds for negative numbers of iterations. If f (z) =
∑
∞

m=0 cmzm is a power series with
coefficients in K , let f (p

α)(z)=
∑
∞

m=0 σ
α(cm)zm where σ is the Frobenius automorphism of K .

Proposition 5B.1. For any, α0, α ∈ N∗ with α0 dividing α, we have

Li†p,α(e0, (eξ )ξ )= Li†p,α0
(e0, (eξ )ξ )Li†p,α0

(pα0 )
(e0, (Ad

8
(ξ)
p,α0
(eξ )ξ ) · · ·Li†p,α0

(pα/α0−1)
(e0, (Ad

8α−1
p,α0

(ξ)(eξ )ξ )).

Proof. The crystalline Frobenius of πun
1 (P

1
\ {0, µN ,∞}), restricted to the rigid analytic sections on

P1,an
\
⋃
ξ∈µN (K ) B(ξ, 1), is given, with the conventions of [Jarossay 2019], by the formula

τ(pα)φα : f (e0, (eξ )ξ )(z) 7→ Li†p,α(e0, (eξ )ξ )(z)× f (p
α)(z pα )(e0,Ad

8
(ξ)
p,α
(eξ )ξ ). (5-5)

This implies the result. �

5C. Another iteration equation via regularized iterated integrals. The computation of overconvergent
p-adic multiple polylogarithms in [Jarossay 2019], which was centered around a notion of regularization
of iterated integrals, gives us another point of view on how they depend on α. Below, for a power series
S ∈ K [[z]], we denote by S[zm

] the coefficient of zm in S for all m ∈ N. Again we restrict the statement
to positive numbers of iteration of the Frobenius for simplicity, but a similar statement holds for negative
number of iterations.

Proposition 5C.1. For any word w on e0∪µN and any m0 ∈ N, there exists a sequence

(c(l,ξ,n)[w](m0)) l∈N
ξ∈µN (K )

n∈N

of elements of K such that, for any α̃ ∈N such that q α̃ >m0 and m ∈N∗ satisfying |m−m0|p 6 q−α̃ , we
have

Li†q,α̃[w][z
m
] =

∞∑
n=0

(q α̃)n
(∑

l∈N

∑
ξ

c(l,ξ,n)[w](m0)ξ
−m(m−m0)

l
)
.

Proof. In [Jarossay 2019, Section 3], we have defined a notion of regularized iterated integrals attached
to any sequence of differential forms among pα dz

z , pαdz
z−ξ , ξ ∈ µN (K ), d(z pα )

z pα−ξ pα , ξ ∈ µN (K ). We have
computed these regularized iterated integrals by induction on the depth, and this gives us information
on how they depend on α. Namely, each regularized iterated integral is a rigid analytic function on
P1,an
\
⋃
ξ∈µN (K ) B(ξ, 1)which has a power series expansion

∑
∞

m=0 cmzm satisfying the following property:
for any m0 ∈ {0, . . . , pα − 1}, there exists a sequence (c(l,ξ)(m0)) l∈N

ξ∈µN (K )
of elements of K such that, for

all m ∈ N with |m−m0|p 6 p−α, we have cm =
∑
∞

l=0
∑

ξ c(l,ξ)(m0)ξ
−m(m−m0)

l .
In [Jarossay 2019, Appendix B], we have showed that the numbers c(l,ξ)(m0) have an expression

as certain sums of series involving multiple harmonic sums, and particularly prime weighted multiple
harmonic sums.
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In [Jarossay 2019, Section 4], we have showed an expression of each Li†p,α[w] as a linear combination
of regularized p-adic iterated integrals over the ring of p-adic cyclotomic multiple zeta values ζp,α(w

′).
Combining these facts with the results of Sections 1 and 2 on how ζq,α̃ and harq α̃ depend on α̃, we

deduce the result. �

Appendix: A Poisson bracket corresponding to the pro-unipotent harmonic action
of integrals at (1, 0)

We have seen that, by their definitions, the pro-unipotent harmonic actions (Section 1D and Definition 2A.3)
are connected to the Ihara product (1-1). However, often in the literature, what is used is not the Ihara
product but the corresponding Lie bracket, called the Ihara bracket, which is a Poisson bracket. In
this section we explain that the pro-unipotent harmonic action of integrals at (1, 0) (Definition 2A.3)
corresponds naturally to a Poisson Lie bracket.

A.1. The Ihara bracket and the adjoint analogue. Let V ω be the group of automorphisms defined in
[Deligne and Goncharov 2005, Section 5.10]. The Ihara bracket is the Lie bracket of Lie(V ω), regarded
via the isomorphism Lie(V ω) ' Lie(51,0), v 7→ v(150); namely, it is given by the following formula
[loc. cit, Section 5.12–5.13]:

{ f, g} = [ f, g] + D f (g)+ Dg( f ),

where D f is the derivation which sends e0 7→ 0 and eξ 7→ [ f (ξ), eξ ] for any ξ ∈ µN (K ). The Ihara
bracket is a Poisson bracket; namely it satisfies the equality { f g, h} = { f, h}g+ f {g, h}.

Let Ṽ ω be the preimage of 5̃1,0 by the isomorphism V ω ∼
−→51,0, v 7→ v(150).

We have defined in [Jarossay 2015, Definition 1.1.3] the adjoint Ihara product ((1-6)) and we have
proved in [loc. cit., Proposition 1.1.4] that Ad(e1) is an isomorphism of groups from (5̃1,0(K ), ◦∫1,0) ∼−→

(Ad5̃1,0(K )(e1), ◦
∫1,0
Ad ).

We have viewed Lie(Ṽ ω) as a subset of K 〈〈e0∪µN 〉〉 and we can again view Lie(AdṼ ω(e1)) as a subset
of K 〈〈e0∪µN 〉〉. The derivative of f 7→ f −1e1 f , the map f 7→ [e1, f ] is the isomorphism of Lie algebras
defined by Lie(Ṽ ω) ∼−→ Lie(AdṼ ω(e1)).

Proposition A.1.1. The Lie bracket of Lie(AdṼ ω(e1)) is { f, g}Ad = d f (g) − dg( f ) where d f is the
derivation sending e0 7→ 0, eξ 7→ f (ξ) for all ξ ∈ µN (K ).

Let the product .
∫1,0
Ad on Ad5̃1,0(K )(e1) be defined by (g−1e1g).

∫1,0
Ad ( f −1e1 f ) = (g f )−1e1(g f ), and its

Lie version be [g, e1].
∫1,0
Ad [ f, e1] = [g f, e1].

Then, { · , · }Ad is a Poisson bracket, namely, it satisfies {a.
∫1,0
Ad b, c} = {a, c}.

∫1,0
Ad b+ a.

∫1,0
Ad {b, c}.

Proof. Let us proceed as in the proof of Proposition 5.13 in [Deligne and Goncharov 2005]. We write
g = 1+ aε. When ε→ 0, we have (1+ aε) ◦

∫1,0
Ad f = f + εdg( f )+ O(ε2). Thus, the action of Lie(V ω)

on Ad(5̃1,0)(e1) by ◦
∫1,0
Ad is by g 7→ dg. This map is injective. By the injectivity of d, we only have to

show that [d f , dg] = dd f (g)−dg( f ). Since they are derivations, it is sufficient to prove that these two maps
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agree on e1, and this follows directly from their definitions. The fact that it is a Poisson bracket follows
from the isomorphism of Lie algebras Lie(Ṽ ω) ∼−→ Lie(AdṼ ω(e1)). �

Definition A.1.2. We call { · , · }Ad the adjoint Ihara bracket.

A.2. Harmonic analogue of the Ihara bracket. We also have defined in Definition 2A.3 the pro-
unipotent harmonic action of integrals at (1, 0), ◦

∫1,0
har , by pushing forward the adjoint Ihara action

by the map comp6 ∫ (see Section 4B), which amounts to the map S of Definition 2A.2. We are now
going to push-forward { · , · }Ad by a linear and injective version of the map S of Definition 2A.2. Below,
K [[3]]〈〈e0∪µN 〉〉

∫1,0
har is defined like K 〈〈e0∪µN 〉〉

∫1,0
har with coefficients in K [[3]] instead of K .

Definition A.2.1. (i) Let Sλ : K 〈〈e0∪µN 〉〉õ(1)→ K [[3]]〈〈e0∪µN 〉〉
∫1,0
har defined by

h 7→
∑
d∈N∗

ξ1,...,ξd+1∈µN (K )
n1,...,nd∈N∗

h
[

1
1−3e0

eξd+1end−1
0 eξd · · · e

n1−1
0 eξ1

]
eξd+1end−1

0 eξd · · · e
n1−1
0 eξ1 .

(ii) Let Lhar(K )= Sλ Lie AdṼ ω(K )(e1).

Proposition A.2.2. Lhar(K ) has a canonical Lie bracket { · , · }har defined by

{S3 f, S3g}har = S3({ f, g}Ad).

It is a Poisson bracket, i.e., we have {a.
∫1,0
har b, c} = {a, c}.

∫1,0
har b + a.

∫1,0
har {b, c}, where the product .

∫1,0
har is

defined by S3g.
∫1,0
har S3 f = S3(g.

∫1,0
Ad f ).

Proof. Similar to the proof of Proposition A.1.1. �

Definition A.2.3. We call { · , · }har the harmonic Ihara bracket.

Remark A.2.4. (i) The harmonic Ihara bracket { · , · }har corresponds to the group law ◦̃
∫1,0
har defined by

S3g◦̃
∫1,0
har S3 f = S3(g ◦

∫1,0
Ad f ). Because of the injectivity of S3g, the group law ◦̃

∫1,0
har can be thought of as

another version of the pro-unipotent harmonic action of integrals ◦
∫1,0
har of Definition 2A.3.

(ii) Another way to define a harmonic variant of the Ihara bracket would be to restrict to summable
points Ad5̃1,0

(K )o(1)(e1)⊂Ad5̃1,0
(K )o(1)(e1) and to use comp6 ∫iter , which is injective by Proposition 4B.2,

instead of comp6 ∫3 .
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