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p-adic cyclotomic multiple zeta values depend on the choice of a number of iterations of the crystalline
Frobenius of the pro-unipotent fundamental groupoid of P' \ {0, iy, 0c}. In this paper we study how
the iterated Frobenius depends on the number of iterations, in relation with the computation of p-adic
cyclotomic multiple zeta values in terms of cyclotomic multiple harmonic sums. This provides new results
on that computation and the definition of a new pro-unipotent harmonic action.
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0. Introduction

0A. p-adic cyclotomic multiple zeta values, computation and iteration of the Frobenius. Cyclotomic
multiple zeta values are the following iterated integrals: for any positive integers, d and n; (1 <i <d)
and roots of unity & (1 <i <d), such that (ng, ;) # (1, 1),

J (' dt n L dn
¢((ni)a; Ei)a) = (—1) , (0-1)
t,=0 In —€n J1,_1=0 n=0f1 — €1
nd—l n|—]
d —N— —N—
where n = Ziz] n;and (¢,,...,€1)=(0,...,0,1,...,0,...,0,1). We choose N such that the ¢; are

N-th roots of unity. Let p be a prime number prime to N. p-adic cyclotomic multiple zeta values are
defined as p-adic analogues of the above iterated integrals. They are elements of the extension K of
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Q, generated by a primitive N-th root of unity. There are two types of p-adic cyclotomic multiple zeta
values; both of the notions rely on the Frobenius of the crystalline pro-unipotent fundamental groupoid of
P\ {0, ;uy, oo} at the base-points Io and 1 1, as follows (see Section 1A3 for details):

(i) Numbers {fz((ni)d; (&)4) € K defined by Coleman integration i.e., by using a Frobenius-invariant
path [Furusho 2004; 2007; Yamashita 2010] (here, ¢ is the cardinality of the residue field of K).

(i1) For each o € Z\ {0}, numbers ¢, o ((n;)q; (§;)a) € K defined by the image by Frobenius iterated o
times of the canonical path in the de Rham fundamental groupoid of P! \ {0, uy, oo} ([Jarossay
2019, Section 1] and, for particular values of «, [ Yamashita 2010; Deligne and Goncharov 2005;
Unver 2004; 2016]).

p-adic cyclotomic multiple zeta values can be considered as canonical coefficients of the Frobenius,
and conversely one can recover the Frobenius by knowing only p-adic cyclotomic multiple zeta values.
Cyclotomic multiple harmonic sums are the following numbers:
S\t (Eexr)ta 1 \m
(51) ( §a ) (Sdﬂ)

ny ng
ml ...md

ho((n)as EDay) = Y (0-2)

O<my<--<mg<m
In the complex case we have ¢ ((n;)q; (§i)a) =limy— 00 i (1) a; ((§i)a, 1)). Similarly it is possible to
compute p-adic cyclotomic multiple zeta values in terms of cyclotomic multiple harmonic sums [Jarossay
2015], thanks to a big combinatorial simplification proved by the main result of [Jarossay 2019]. (Two
cases,« = —1, N=1and « = —1, d > 2, are handled in [Unver 2015] and [Unver 2016], respectively,
through a different computation that does not use the simplification of [Jarossay 2019]; those results are
more complicated and seem difficult to use.) In this paper we are going to study the following question:
how does the iterated Frobenius depend on its number of iterations? More specifically, we are going to
connect this question and the framework of [Jarossay 2015].

0B. Principles of the study. Most of the time, we are not going to consider directly the Frobenius but,
instead, the harmonic Frobenius, defined in [Jarossay 2015, Definition 2.3.5], (we will reproduce it in
Section 1D). It is a variant of the Frobenius which is much simpler and more natural from the point of
view of multiple harmonic sums, and computing it suffices to compute the Frobenius.

Whereas the Frobenius is an isomorphism of bundles with connection, the harmonic Frobenius is a
map on a space which contains the noncommutative generating series of weighted multiple harmonic
sums har,, ((n;)a; (E)a1) =m™ " hy ((n)a; (Eas1)-

We will use the fact that the harmonic Frobenius can be expressed in two ways:

(a) One “in terms of integrals”, i.e., in which the coefficients of the harmonic Frobenius are expressed in

terms of p-adic cyclotomic multiple zeta values, which are integrals and which we want to compute.

(b) Another one “in terms of series”, in which the coefficients of the harmonic Frobenius are certain
sums of series expressed in terms of the numbers har e ((n;)4; (§;)a+1), which are explicit.
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In [Jarossay 2015], by writing these two expressions and observing that they are equal, we get an
expression for p-adic cyclotomic multiple zeta values in terms of the numbers har e ((n;)4; (§;)a+1) and
vice-versa. We are going to do something similar here, not for the harmonic Frobenius but for the study of
the numbers harqa ((ny)a; (&)a+1), as functions of & € N*. Since the harmonic Frobenius can be expressed
in terms of these numbers, this will directly provide a study of the iterated harmonic Frobenius in terms
of its number of iterations.

After some preliminaries (Section 1) we will do this study in terms of integrals (Section 2), in terms
of series (Section 3), and we will use the fact that these two ways give the same result (Section 4). In
Section 5 we will go back from the harmonic Frobenius to the Frobenius.

Moreover, we will keep track of the motivic structure underlying this framework. Indeed, p-adic
cyclotomic multiple zeta values are reductions of p-adic periods [Yamashita 2010], and there is a motivic
Galois action on the pro-unipotent fundamental groupoid of P!\ {0, ux, oo} [Deligne and Goncharov
2005, Section 5].

The Frobenius is expressed by means of the Ihara action (1-1), which is the image of the motivic Galois
action by a certain morphism (see Section 1A3). In [Jarossay 2015], the passage from the Frobenius
to the harmonic Frobenius lifts to a passage from the Ihara action to an operation which we called the
pro-unipotent harmonic action of integrals, and we also find a pro-unipotent harmonic action of series
(see Section 1D). The interest of pro-unipotent harmonic actions is that, being byproducts of the motivic
Galois action, they retain certain properties of motivic Galois actions; and having a computation which
keeps track of the motivic Galois action is key for us. The pro-unipotent harmonic actions are the main
objects in our papers [Jarossay 2014; 2016a; 2016b] in which we show the compatibility between our
computation and the motivic Galois theory of p-adic cyclotomic multiple zeta values.

Establishing the definition of pro-unipotent harmonic actions requires enriching the pro-unipotent
fundamental groupoid, which is a groupoid in affine schemes over P! \ {0, iy, oo} by turning it into a
groupoid in ultrametric complete normed algebras [Jarossay 2015, Section 1].

0C. A few definitions. The study will require new definitions. First, we will define an ad hoc notion
of contraction mapping (Definition 1B.2). We will show that the Frobenius at base-points (Tl, To) is a
contraction in our ad hoc sense. This will shed light on the dynamics of the Frobenius which has a unique
fixed point. Thus, the ultrametric framework established in [Jarossay 2015] will be crucial here because
in this framework we will introduce a notion of contraction mapping and we will see that the Frobenius is
a contraction. Keeping track of the motivic structures will also require new definitions.

We will study har,a as a function of @ “in terms of integrals” (Section 2) by viewing har s via their
expression in terms of p-adic cyclotomic multiple zeta values proved in the main theorem of [Jarossay
2015]. This will be done in two different ways, corresponding to the two types of p-adic cyclotomic
multiple zeta values evoked in Section 0A:

(i) A way involving the fixed point of the Frobenius and the numbers quZ. It will lead us to introduce a
/10 (Definition 2A.3), which is a variant of

pro-unipotent harmonic action of integrals at (1, 0), o},
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the notion introduced in [Jarossay 2015]. Another point of view on this object will be explained in
the Appendix.

(ii) A way involving the numbers ¢ o,. It will lead us to introduce a map itfzrﬂElr (a, A) of iteration of the
harmonic Frobenius of integrals at (1, 0), (A and a are formal variables which represent respectively
g% and @/ay) (Definition 3B.1).

In the study of harq& as a function of & in terms of series (Section 3), we do not have an analogue of
the fixed point and the study will lead us to introduce a map of iteration of the harmonic Frobenius of
series iterEar(a, A) (Definition 3B.1).

Finally, in Section 4, we will relate Sections 2 and 3 by defining a map of comparison between series
and integrals, which will be injective thanks to the results of Sections 2 and 3.

As in [Jarossay 2015] these definitions enable us to express the computation not number by number,
but as a new structure on the pro-unipotent fundamental group, which is more efficient. Indeed, this
structure retains certain features of the motivic Galois theory of periods, which will be crucial in our
subsequent papers [Jarossay 2014; 2016a; 2016b] in which we will relate the motivic Galois theory of
p-adic cyclotomic multiple zeta values to our formulas.

OD. Results. The main result consists of three equations to express har s as a function of «, and the
comparison between them.

The first two equations (proved in Section 2), in which the harmonic Frobenius is thought of in terms
of integrals, correspond to (i) and (ii) above. The first one (0-3) involves the fixed-point of the Frobenius
and will be called the fixed point equation of the harmonic Frobenius of integrals at (1, 0); the second one
(0-4) will be the iteration equation of the harmonic Frobenius of integrals at (1, 0).

Finally, the third equation (0-5) (proved in Section 3), in which the harmonic Frobenius is thought of
in terms of series, will be the iteration equation of the harmonic Frobenius of integrals at (1, 0).

In (0-4) and (0-5) the dependence of harqa in & is via a power series in K [[q&]][&] and in (0-3) it is via
a power series in K[[¢“]]. We are going to see that these expansions are equal (0-6); in particular, the
coefficients of (q&)O&m for m > 1 will vanish.

In the statement below, for any & € ZU {£o00} \ {0}, ®, s is the generating series of the numbers ¢, 5
and ;o = d>qKZ is the generating series of the numbers §(}<Z (Notation 1A.1), har, , is a generating
series of generalized prime weighted cyclotomic multiple harmonic sums (Definition 1C.2), and 7 is
defined in (1-2).

Theorem. Let @y, @ € N* such that oy | a:

(1) (integrals) The pro-unipotent harmonic action of integrals at (1, 0), denoted by o}{;‘ro, is a continuous

group action, and we have

ar

har, 3 = r(q&)(d>q_’1_ooe1d>q,,oo) oﬁ"o har, _o . (0-3)
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The map of iteration of the Frobenius of integrals at (1, 0), denoted by iterﬁi‘ro, satisfies, at words
w = ((n;)a; (§i)a+1) such that a/ay > d,

. o 5 _
har, (w) = 1ter£;‘r° <&—O, qa°> (qu,}ioel ®, 5,)(w). (0-4)

(ii) (series) The map of iteration of the Frobenius of series, denoted by iter}?ar, satisfies

har, 5 = iterEar((%, q5‘°) (harg g,). (0-5)

(iii) (comparison between integrals and series) We have the following equalities of formal power series

with formal variables a and A:

_ S/ . _ .
t(A)(CDQ’l,OOe]CDq,_oo) oh;‘ro har, o = 1ter£ar(a, A)(CI)q1 e1®,.q,) = 1ter§ar(a, A)(hary 5,).  (0-6)

.o

The first terms of the equations of the theorem are written in Example 4A.2.

In Section 5, we deduce a similar result for the iteration of the Frobenius on the affinoid analytic
subspace P1:an \ U5 cun (k) B, 1) of Pl.an /K knowing that the fixed-point equation of the Frobenius is
already given by Coleman integration. One of these equations uses the regularization of p-adic iterated
integrals studied in [Jarossay 2019]. In the Appendix, we explain that the pro-unipotent harmonic action
of integrals in (1, 0) corresponds to a certain Poisson bracket.

The main result provides a natural way to compute the fixed point &, _ i.e., p-adic cyclotomic
multiple zeta values in the sense of Coleman integration. Indeed, we see that the fixed point of the
Frobenius &, _, € I1;o(K) appears naturally as a way to express the coefficients of the iteration
equations, and that these iteration equations can be understood in terms of explicit sums of series. This
gives a way to compute Coleman integration without directly doing Coleman integration.

The main result also allows us to replace the map of comparison from integrals to series defined in
[Jarossay 2015] by a map which has the advantage of being injective.

From a dynamical point of view, the main result gives an asymptotic expansion at infinite order of the
convergence of the iterated (harmonic) Frobenius towards its fixed point. More precise information would
follow from nonvanishing results or results on the valuation of p-adic cyclotomic multiple zeta values, or
of certain infinite sums of them. This gives a correspondence between certain arithmetical properties of
p-adic cyclotomic multiple zeta values and dynamical properties of the Frobenius. A correspondence
between dynamical properties of the Frobenius and analytic properties of cyclotomic multiple harmonic

sums is also deduced in Section 5.
J10

The pro-unipotent harmonic action oy

which is defined in this paper will be central in our next
papers [Jarossay 2014; 2016a; 2016b] on the explicit version of the algebraic theory of p-adic cyclotomic
multiple zeta values. We will also see there that considering the iterates of the Frobenius, instead of
only the Frobenius itself, is necessary to formulate an explicit version of the algebraic theory of p-adic
cyclotomic multiple zeta values which is purely p-adic and not adelic. It will also find an application

in [Jarossay 2017], where we will see that we can construct a structure on Jr;m’dR(I]J’1 \ {0, pan, 0o})
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which generalizes the crystalline Frobenius on 7 ndR (! \ {0, uy, 0o}) iterated o times. Considering

two parameters &g and & with & | @ and not just & will also be useful in [Jarossay 2017] to shed light on
the computation of p-adic cyclotomic multiple zeta values.

1. Preliminaries

In this section we establish the framework of this paper. We review some definitions and properties about
the pro-unipotent fundamental groupoid of P!\ {0, iy, o0}, some results from [Jarossay 2015] and we
add to them a few new definitions and notations. Throughout this paper, N and N* will denote the set of
nonnegative and positive integers, respectively.

1A. The pro-unipotent fundamental groupoid of P! \ {0, uy, 00}

1A1. The de Rham realization. Let X be P!\ {0, uy, oo} over the p-adic field K, with the notations
of Section OA. The de Rham pro-unipotent fundamental groupoid rrim’dR(X ), in the sense of [Deligne
1989], is a groupoid in pro-affine schemes over X. Its base points are the points of X and the nonzero
tangent vectors at {0, uy, oo} C P!, called tangential base-points. The groupoid structure is defined by

the morphisms y'rlun’dR(XK, 7, y) X J'r]”“’dR(XK, y,X) — rrlun’dR(XK, z, x) for any base-points x, y, z. By

[loc. cit., Section 12.9], each nf n’dR(X , ¥, x) is canonically isomorphic to the spectrum of the shuffle
Hopf algebra O""-“%un over the alphabet eguy,,, = {ex | x € {0}Uuy (K)}. This isomorphism is compatible
with the groupoid structure.

Following [Deligne and Goncharov 2005], for any N-th root of unity & € uy(K), we denote by
Mg o= yrlun’dR(X, Tg, io). Let f — f@) be the isomorphism IT; o — Il¢ o induced by the automorphism
x = &x of X by functoriality of 7™ X,

Let K {eoup,) be the noncommutative K-algebra of formal power series over the noncommuting
variables ey, x € {0Uuy (K)}. We will write an element f € K {equpy ) as f((ex)x) = f((ex)xefoyuuyk))
or f(eo, (eg)s) = f(eo, (eg)e). The coefficient in f of a word w on the alphabet egy,, is denoted by
fIw]. This notation extends by linearity to linear combinations of words, and if for any n > 0 w,, is
a linear combination of words of weight n, we denote by f [ZZO:O wn] = Z;O:o flw,] if this series
converges. We have a canonical inclusion Spec(O™-“uv)(K) C K {eouyy ); namely, Spec(O"-40uny ) (K)
is the group of elements satisfying the shuffle equation: for all words w, w’, flw]f[w'] = flwIllw']
where 111 is the shuffle product of words on the alphabet egy,,, .

1A2. Motivic Galois action and byproducts. The motivic version of ni‘“(ﬂj’l \ {0, un, oo}) is constructed
in [Deligne and Goncharov 2005, Section 5].

Let G® be the motivic Galois group associated with the Tannakian category of mixed Tate motives
over ky unramified at p prime to N, and with the canonical fiber functor w. There is a semidirect product
decomposition G, = G, x U, where U, is pro-unipotent.

One has an action of G® on I1; 9. Let V be the group of automorphisms defined in [Deligne and
Goncharov 2005, Section 5.10]. There is a morphism U® — V© sending the action of U® on Il o to an
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action of V on Iy o. This action makes ITj o a torsor under V®. Thus one can consider the isomorphism
of schemes V¢ >~ I1; o, v = v(;19) where 11p is the canonical de Rham path in the sense of [Deligne
1989, Section 12]. This isomorphism sends the action of V* on I1; g to the Ihara action [Deligne and
Goncharov 2005, Section 5.11], namely, the group law o/10 on IT; o defined by

gof“) f — g(€0, (ef,f)é) X f(eO’ (g(g)_legg@))g) (1-1)

The motivic Galois action of G, on IT; ¢ is

T (A, f(ex))) = f((hex)r), (1-2)

i.e., A acts by multiplying the term of weight n in f by A", for all n € N.. Let the collection of maps (,,),en
be defined by the equality ), T, (f)A" = (1) (f) for all A. Namely, 7, sends f =), ...q flwlw to
dow word, weight(w)=n Sflw]w. These formulas also define an action on K {equ,., ) for which we will use

neN

the same notations.

1A3. The crystalline realization. Let o be the Frobenius automorphism of K. For « € N*, let X ") be
the pull back of X by o iterated o times.

Let ¢ be the Frobenius of the crystalline pro-unipotent fundamental groupoid of P!\ {0, 1y, 00}
[Deligne 1989, Sections 11 and 13.6]. It is a o-linear isomorphism of groupoids nf“’dR(X Py =
n}m’dR(X). For any « € N*, the Frobenius iterated o times is ¢ = (6% )*¢po---00*(¢p) 0 . It is a o%-
linear isomorphism of groupoids nim’dR(X(”a)) = n}ln’dR(X). When « is divisible by o =log(p)/log(q),
then 0% =id, thus ¢, is K-linear in the usual sense, its source and target are the same, and it is equal to
¢, iterated o//0 times: we will write @ = o, and ¢,g = ¢g‘. We denote by ¢_, = ¢, L

Let us now consider the Frobenius at base-points (1,0) = (Tl, TO): bo : H(lf’ g )~ 11,0 where
I'IY' g ) = Ty ndR (x (r) L, Io). The noncommutative generating series of p-adic cyclotomic multiple zeta
values are @, , = 1(p*)Py (1) € 11 o(K), and @, o = ¢p_o(1) € Hi{’g)(l(). Let us denote again by
o the map K {eouuy ) — K {eouuy) defined by applying the Frobenius o of K to each coefficient of a
formal power series. The formal properties of the Frobenius imply the following formulas:

T(p)a [ €YY (K) > 0 0/1007(f) € M1 o(K), (1-3)
$-a: fEMo(K) > @p_qo 0 (p)o®(f) € NV (K). (1-4)

One also has the other notion CDqKZ € IT; 0(K) of a noncommutative generating series of p-adic cyclotomic
multiple zeta values, defined by the following equality:

KZ KZ
Prog(q)tog(p) (Pg™) = D7, (1-5)

where the existence and uniqueness of a fixed point of @iog(g)/10g(p) 10 I11,0(K) follows from the theory
of Coleman integration [Coleman 1982; Besser 2002; Vologodsky 2003]. Item (ii) of the notation below
will be justified by the results of Section 2.
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Notation 1A.1. (i) For any @ € Z\ {0}, let qu,& = qu,log(q)/log(p)-&-
(i) Let @y o = CDEZ, and let ®, , be the inverse of ®, _, for the Ihara product ol10,

(iii) For o € ZU{x00}\{0}, the p-adic cyclotomic multiple zeta values are the numbers ¢, g ((n;)a; (§i)a) =
(—l)dCIDq,&[egd_legd e egl_legl] (and similarly for ¢, o and ®, .)

1A4. Around the adjoint action Ad(e1). We use the convention that the adjoint action Ad.)(x) on ITj o
is f — f~!xf (instead of the usual f — fxf~!, due to our convention of reading the groupoid
multiplication from the right to the left). The adjoint Ihara action, defined in [Jarossay 2015], is the group
law on Adp, ,(e1) defined by

hol f = fleo, (h®)e). (1-6)

Let I1 1,0 be the subgroup scheme of I1; o defined by the equations f[e;]= f[eg] =0 (see Section 1A1);
Ad(e;) induces an isomorphism of groups (1:11‘0(1(), of10) = (Adﬁ.,o(K)(el)’ OQdO)'

By (1-1) and (1-2), one has a semidirect product G,, x 1:11’0, which acts on 1:11’0. Similarly, by (1-6)
and (1-2), one has a semidirect product G, x Adl:[w (e1), which acts on Adﬁl,o (e1). The map id x Ad(e;)
induces an isomorphism between these two group actions. For all f, g € IT1; o(K), A € K*, n e N, we

have
g0 () =) 1'goo (z,f). (1-7)
neN
We have
Tut10Ad(er) = Ad(e)) 0 T,, (1-8)
A
Adg(er) oy ? Adg(er) =) A" Adg(er) N0 7,01 Ad(er). (1-9)
neN

1B. An ultrametric structure on the K-points of the de Rham pro-unipotent fundamental groupoid.
As reviewed in Section 1A, each I, , = Jr]”n’dR([P’l \ {0, un, o0}, ¥, x) is an affine scheme over K, and
we have a canonical embedding I1, ,(K) C K {eouy, ). We consider now an enrichment of K {egu, )
into a ultrametric complete normed K-algebra: we review facts from [Jarossay 2015], and we add a
few complements. In particular, in Section 1B3 we add a notion of contraction and we apply it to the

Frobenius at base-points (1, 0).

1B1. From affine schemes to ultrametric normed algebras over K. For n,d € N*, let Wd, 4(eoup, ), Tesp.
Wd, 4(eouuy) the set of words on egy,, that are of depth d, resp. of weight n and depth d. Let A and D
be two formal variables.

Let K {eouuy)<oco C K {eouuy ), be the subset of the elements f such that, for each d € N*, we
have sup,,cwq, d(eouuN)| flw]l, < oo. We say that the elements of K (e ) <co are bounded. Let
K {eoupuy Yoy C K {eouuy ) <o be the subset of the elements f such that, for each d € N*, we have
sup w € Wd,, a(eoupy)| f[wllp —=z> 0. We say that the elements of K {eouy.y )o(1) are summable.
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Let
Nap:feK(eouu)> Y. ( max |flw]l,)A"D? € Ry[A, DI,

ndyene VW dnd(€oony
and
Np 1 f e K{eouuy)<oo = Z( sup | fTwll,)D? € Ry [D].

deN wer*,d(é’OuMN)

One can check that these definitions give structures of complete normed ultrametric K-algebra on
K {eoupy > K {eoupy ) <oo and K {eoupy Yo(1y [Jarossay 2015, Proposition 1.3.3].

1B2. Compatibility between the ultrametric structure and the usual algebraic operations. By [Jarossay
2015, Proposition 1.3.6], the Thara product (1-1), the adjoint Ihara action (1-6), and the action t (1-2) are
continuous relative to the topologies defined by N p and Np on I1; (K ) and the p-adic topology on
K. And for all f, g € IT; o(K), A € K*, we have (by [Jarossay 2015, proof of Proposition 1.3.6])

Na.p(Ads(e)) < ADNa p(f), (1-10)
Na.p(go!0 f) < Na.p(g) x Na.p(f), (1-11)
Na.p@G) (A, D) =N p(f)AA, D). (1-12)

These equations imply similar equations with A instead of A/, p by passing to supremums.
Let us add another compatibility, which concerns the maps t,, defined in Section 1A2.

Lemma 1B.1. (i) For all n € N*, for all f € K {eguuy), we have Nx p(t,(f)) < Na p(f), and in
particular t, is a continuous linear map for the N'n p-topology.

(1) K {eousuy ) <oo and K {eoupy Vo) are stable by T,.
(iii) Forall f, g € 11 0(K) and n € N we have

Na,p(Ad o104, () (€D)) < ADNA, p(Na,p(f). (1-13)
Proof. (i) and (ii) are clear from the definitions. (iii) follows from (1-10), (1-11) and (i). O

1B3. The weighted lhara action and contraction mappings. We define a notion of contraction mappings
within the topological framework reviewed above. The exponent —1, ; means the inverse for the Ihara
product (1-1).

Definition 1B.2. Let x € K* with |«|, < 1. We say that a map v : [Ty o(K) — ITj o(K) is a k-contraction
(with respect to Ax p and ofl‘O) if, for all f1, f» € 11 o(K), we have

Nao @ (£ 10 o/10 g (£1)) (A, DY < Nap(f; "™ o/19 fi) kA, D). (1-14)

Indeed, let v : T1; o(K) — I1; ¢(K) be a contraction in the sense of Definition 1B.2. Then, by the
submultiplicativity of the Thara product with respect to A'a p ((1-11)) and the fact that K {equy, ) is
complete with respect to the distance defined by M p (Section 1B), a standard proof tells us that v
is continuous (with respect to M4 p) and has a unique fixed point, equal to fixy = lim,_, o ¥*(f) for
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all f € Il 0(K). Thus the contractions in the sense of Definition 1B.2 satisfy the usual properties of
contractions regarding fixed points.
Definition 1B.3. Let (1, g) € G,,(K) x ITj ¢(K). We call weighted Ihara action by g with parameter A
and we denote by (A, g)o/1.0 the map
Mio(K) = Mio(K), [ Gg)olio f=goltor()(f).
We now relate the two previous definitions in the case where A is small.

Proposition 1B.4. (i) Let (A, g) € G, (K) x I1yo(K) such that |A|, < 1. The map (A, g)of'vO is a
A-contraction. More precisely, the inequality (1-14) is an equality if k = A.

(i) Forall (A, g) € Gy (K) x I11,0(K), the Thara action of g weighted by ) is an automorphism of the
scheme T11 o Xspec @ Spec K, whose inverse is
fret0T(g o oo ),
Proof. (i) We have

(L, g) 010 (fo)) 10 0710 (0, g) o/ (£1)) = (g /10 T (f2)) rog o/ 10 T (1)
=t (W) (fr) o 010 g7 o 010 g 1o T (M) (1)
=7()(f) ool T ()

=70)((fo) o ol1o ).
Thus

Nap((h, 8) 010 (£2))” 110 6/10 (1, ) o190 (fi))(A, D) = Na, pT(W)((f) 110 0/ fi)(A, D)
= Nan((f) o o0 fi)(A, D)
by (1-12).
(i1) Follows from the definitions. O
Knowing that we have a family of contractions, we consider their fixed points and their iterations.

Definition 1B.5. Let (1, g) — fix; , be the fixed point map which sends (A, g) e {z€ K |0 < |z], < 1} X
I1; o(K) to the unique fixed point of the weighted Thara action (1, g)o/1..

It follows from the definitions that the map fix; : g — fix; , is an automorphism of the scheme
IT},0 X spec @Spec K, whose inverse is ﬁx;l e fofl«Ot(A) (f)_lfho. The fixed point map is characterized
by the equation

g(ep, (eg)e) fixy ¢ (Leo, )»(gglesgs)g) = fix; ¢ (eo, (€s)s). (1-15)

Note that the inversion for the Ihara product on IT; ¢(K) is characterized by

g(eo. (es)e).8~ 110 (eo, (g5 'ecge)e) = 1.



Pro-unipotent harmonic actions and dynamical properties of p-adic cyclotomic multiple zeta values 1721

Definition 1B.6. Let a € N*. Let the map of iteration a times of the Thara action weighted by A,

iterijf : T11,0(K) — T1,0(K) be defined by g > g“("fl'o’” where

ga(ofl,O,A) =, g) oJ1o. .. ol10 ) ol10] = g oJ10 (M) (g) of1o. .. ol10 ‘[()»ail)(g). (1-16)

a

Thus g“("fl'o’x) is the unique element of IT; o(K) such that we have, for all f e I o(K),

(A, g)ol1o ... olto(n, g)ol1o f = (19, ga(ofl,o,)»)) of1o £,

a

The iteration map is expressed in terms of the usual de Rham multiplication on IT; ¢(K) by

iteri,l;\o(g) = g(eo, (e8)seun k) (heg, (A Adg, (eg))g) - - - (A e, (147! Adgg—l (e£))e). (1-17)
1B4. Application to the Frobenius. We apply the previous paragraphs to study the iteration of Frobenius
at the base-points (1, 0) which we view as a map ¢ : Hgfﬁ(l{) — I11,0(K).

Lemma 1B.7. The map ¢_10g(q)/108(p) : 11,0(K) — Iy o(K) is a (1/q)-contraction. If H%(K) is
identified to I} o(K) by the isomorphism defined by eg +— eo and ez« > eg for all § € pun(K), the map
¢—1: 111 o(K) = H(I{’(;(K) is a (1/p)-contraction.

Proof. This follows from the formula (1-3), from Proposition 1B.4 and from the fact that o is an isometry
of K for the p-adic metric. O

In the rest of this paper, for simplicity, we will deal mostly with the iterations of ¢_ 1og(¢)/10g(p)- This
is sufficient, knowing that, for any o € N*, writing the Euclidean division « = r + u log(g) /log(p), we

have ¢, = ¢1L:)g(q)/10g(l7) °¢r.

1C. Prime weighted cyclotomic multiple harmonic sums. The numbers harg« ((n;)4; (§;)q+1) will play
a central role; here, we formally explain how to study them.

1C1. The three frameworks of computation. Multiple polylogarithms are the solutions to the Knizhnik—
Zamolodchikov differential equation, which is the universal connection associated with Jrlun’dR(l]J’1 \
{0, un, oo}) (in the sense of [Deligne 1989, Section 12]), and whose crystalline Frobenius structure is ¢.

Their power series expansion at O is the following, which relates them to cyclotomic multiple harmonic
sums:

Er\m1 7z \Md
Liln)a: Ead@ = Y. &) (5_) . (1-18)
O<mi<--<my My --ny

We proved in [Jarossay 2015, (0.3.7)] that prime weighted multiple harmonic sums are expressed in
the following way (where f — £© is the natural map I o(K) — Ig o(K)):

o0

harye ((11)a: (E)a1) = (=1 Y)Y €77 Adge (eo)lepes, ep' e, ¢~ leel.  (1-19)
=0 ¢
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We have a total of three ways to deal with prime weighted multiple harmonic sums, which makes three

frameworks for computations:

(1) Via their expression in terms of p-adic cyclotomic multiple zeta values (1-19).
(ii) Via their expression as coefficients of power series expansions of multiple polylogarithms (1-18).

(iii) Via their definition as elementary explicit iterated sums (0-2).

We will symbolize these three frameworks by, respectively, the notations || 1.0° [ and X.

In [Jarossay 2015] we have expressed the “harmonic Frobenius™ in the frameworks [ and ¥ and we
have compared the two expressions. Here we are going to express the “iteration of the harmonic Frobenius”
in the frameworks | 1,0 and X and compare the two expressions. Keeping in mind the distinction between
these three frameworks | 100 [ and X will be essential in this paper and in subsequent ones. We note that
the frameworks ¥ and | make sense for all weighted cyclotomic multiple harmonic sums whereas the
framework | 1.0 makes sense only for the prime weighted cyclotomic multiple harmonic sums and follows

from a theorem.

1C2. The generalization to negative numbers of iterations of the Frobenius. The indices of p-adic
cyclotomic multiple zeta values, of the form ((;)4; (§i)q), are distinct from the indices of cyclotomic
weighted multiple harmonic sums (0-2), of the form ((n;)4; (§;)a+1).

Definition 1C.1. A harmonic word over egu,, is a tuple ((n;)a; (§))a+1), withd € N* (n;)4 € (N*)4,
(EDar1 € un(K)4T. We sometimes identify it with egdﬂeg"_legd . -‘681_18&. Let us denote by
Wdhar(eoupy) the set of harmonic words over eguyy, .

We now define, using (1-19), an analogue of multiple harmonic sums associated with negative numbers
of iterations of the Frobenius, and another analogue associated with the fixed point of the Frobenius. The
notation “har” that we are going to use is justified by [Jarossay 2014; 2016a; 2016b] and the notion of
“cyclotomic multiple harmonic values”. Below, f[1/(1 —ep) - w] = Z?io f [eéw].

Definition 1C.2. For any w = egd+legd_legd o eglfleg, = ((n;)a; (€)g+1) we call generalized prime

weighted multiple harmonic sums the following numbers:

(1) For any o € N*, let

p 1
har, o (w) =har,e(w) and har, _,(w) = (—=1)? Z &7°F Adfbf_la (ez) |:1——€0 . wi|.
§

(i) For € € {£1}, let

1
hatg oo (w) = (=D Y 67" Adye) “9[1 “eo w]'
§

(iii) If p* = ¢%, with & € Z, we denote by har, ; = har), 4.
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1C3. The noncommutative generating series. We now define generating series of prime weighted cyclo-
tomic multiple harmonic sums, the numbers (0-2) with m = p“.
We have defined in [Jarossay 2015] two variants of K {equ., )/ adapted to multiple harmonic sums:

K {eouuy ))ﬁar C K {eoupy ) the vector subspace of the elements f* such that, for all words w on eg,., , the

z — KWdhar(eOU;LN)‘

sequence (f[ef)w])leN is constant and f[w’eg] = 0 for all words w’; and K {eouyy )y

Here is the third variant:

Definition 1C.3. (i) Let
K((eOUMN))ﬂé’rO ={f € K{eouuy) | Yl > 0,Vr >0, Yw word on equ,. , f[ef)we(r)] = 0}.
(i1) Let

K (ouun Dl = (f € K (eouun Dl 1¥d € N*, n; e N*(1 < i < d), & € un(K)(1 <i <d+ 1),
-1 - — -1 —
Flece, ep' lece, e eze 1 =& flee,, ep' ece, el eg, 1)

The map f +— Zwerhar(eowN) flw]1/(1 —ep) - w clearly defines an isomorphism

S ~
K (€00yy )ini® = K (€oupn Mo

of topological K -vector spaces, with topology defined by Np. However, we denote K (egu,, N))i;’ro and
K {eoupy ))ﬂar differently in order to keep in mind the important distinction between the frameworks
for S22

Let us define the noncommutative generating series of the generalized prime weighted cyclotomic
multiple harmonic sums.

J10
har *

Definition 1C.4. For any & € ZU {£o00} \ {0}, let har, 5 = ) har, & (w)w € K {eoupy )

weWdhar (eOU/LN )

We note that, for & € N*, we have har, ; € K«eOUMN»ﬁ;:r?O’ because we have, for all £ € uy(K),

g =g =g,

1D. The pro-unipotent harmonic actions and the harmonic Frobenius. We review definitions from
S

1 and oZ  and the harmonic Frobeniuses

[Jarossay 2015] of the pro-unipotent harmonic actions o
(T(P*)P*)pqe and ((p))E,.

Let AdfIl O(K)(el)(,(l) = Adﬁ. O(K)(el) N K {eousy Yo(1); by [Jarossay 2015, Proposition 1.3.5], it is a
subgroup of Adg, (g (e1) for the usual group structure of Spec(O"-uny ), and for the adjoint Thara

product oQ&O; it is a complete topological group with the topology defined by A'p, for both group structures.

1D1. In the framework of integrals. We review definitions from [Jarossay 2015] which will be useful in
what follows.
Let K {eoup N))“m C K {eoupy ) be the vector subspace consisting of the elements f € K {epu,, ) such

that, for all words w on egy,,, the sequence (f [ef)w])leN has a limit in K, and f[w’eg] = 0 for all
J

words w’. Let the map lim : K {eouyy )™ — K (€oupy Virar

be defined by, for all words w over egu, ,
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(Iim f)[w] = limj— o f[ eow] The p-adic pro-unipotent harmonic action of integrals [Jarossay 2015,
Definition 2.2.2] is the map ohar Adm o (K <1>(€1) X (K«eOUuN»har)N — (K«EOUMN»haI)N defined by
(& (hm)men) > & Ofye (rdmens = (im(ln (0, (T(m)(*)))men)

The harmonic Frobenius of integrals [Jarossay 2015, Definition 2.3.5] is the map (r(p"‘)¢‘)‘)'£,c1r :

(K (e0uyun Mia)™ = (K (€oupy Vi) defined by
@ he1®, 00, 0% (f).
1D2. In the framework of series. The p-adic pro-unipotent harmonic action of series [Jarossay 2015,
Proposition—Definition 4.3.1] is a counterpart of oﬁar found in terms of series. It is a map
Ohar * K (€ounn Mar.o(t) X (K (€0upun Inar)” = (K (€0upin V)

where K {equyy ))Ear’o(l) is defined in [Jarossay 2015, Definition 4.1.3].

The harmonic Frobenius of series is

f > harpe o 0 (f).

We proved in [Jarossay 2015] that the harmonic Frobenius of integrals and the harmonic Frobenius of
series are equal [loc. cit., (0.3.3) and (0.3.5)]. Thus, we see that the harmonic Frobenius is characterized by
d>;’1ael ®,  or, equivalently, by har,«. This is why studying har ,« is equivalent to studying the harmonic
Frobenius and, in the next sections, we will see har,« as a function of «, which amounts to studying the
harmonic Frobenius as a function of «.

Remark 1D.1. We can define natural analogues of all the structures which are at base-points (1, 0) and
which are mentioned in this Section 1, at base-points (0, &) for any & € uy (K), which are compatible
with the morphism (x — &x),. All the results of this Section 1 have natural analogues at base-points
(0, &) for any & € uy(K). This will be used implicitly in the proofs of the next section.

2. Iteration of the harmonic Frobenius of integrals at (1, 0)
We prove (0-3) in Section 2A, and we prove (0-4) in Section 2B.

2A. The fixed point equation of the harmonic Frobenius of integrals at (1, 0).

2A1. The fixed point equation for the Frobenius of integrals. We express the iterated Frobenius at
base-points of (1, 0) as a function of the number of iterations.

Proposition 2A.1. (a) For all @ € N*, we have @, _ = ﬁxq&()":[)q e,
q)q,—& of1o T(qd)q)q,—oo = ch,—oo, ie., T(qd)q)q,oo ol1o q)q,& = cI)q,oo-
(b) For the topology defined by Np on T1; o(K) we have

Dy == Dy 00, and Oy5 == Dy 0.

q, a—o0
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(c) Forany & e N*, f € I o(K), g € 1Y (K),

¢1og(q) (f) = Z CD 00 ol10 ('cn(q:oq’_oo ol10 f)).(q&)",

log(p) n=0

Plsiy) (8) = Zcbqooofwm(% 00010 2)).(¢%)".

log(p) =0

Proof. (a) (1-4) and (1-5) imply the first equation. (1-4) and (1-5) imply the second equation via
Notation 1A.1(i1).

(b) The first equation follows from Lemma 1B.7 and the discussion after Proposition 1B.4, and the
second equation is deduced from the first one by applying the inversion for o/1.0, knowing the structure of
topological group of (ITy o(K), o/1.0) for Np. Alternatively, the two equations follow from (i), the fact

that 7:(41‘5‘)CI>,,,OO —= b (g% )@y, —00 75> 1 and that structure of topological group.

(c) Follows from (1-3), (1-4), in which we replace ®, ; and ®, _; by their expressions given by (i), and
in which we express 7 in terms of the maps 7,, defined in Section 1A2 just after (1-2). U

In particular, by Proposition 2B.1(i), the existence and uniqueness of a Frobenius-invariant path, which
follows from the theory of Coleman integration, is reproved and made more precise in the very particular
example of I o(K).

2A2. Pro-unipotent harmonic action and harmonic Frobenius of integrals at (1,0). We move from
discussing the Frobenius at (1, 0) to discussing the harmonic Frobenius of integrals, in the framework
/; | o 1n the sense of Section 1C1. In view of this result, we introduce new objects.

Definition 2A.2. Let K {(eouuy ) 5y C K {eoupy ) be the set of elements £ such that all series of the type
Yoo hlebes,. e’ _legd e 171651 ], where d and the n; are positive integers and the &; are N-th roots
of unity, are convergent in K. Let the summation map be S : K {egu,, vom = K{eoun N))har o defined by

1
-1 -1 —1 —1 1
hi— Z § Z K |:1 — e e§d+1egd €gy 86!1 eE|:|e§d+1e(r)ld eg, egl €g -

Eeun(K) deN*
&1seenbar1€nN (K)
ny,..., ndeN*

We note that K {eouu ) ;1) contains K ((eOUMN))(,(l) defined in Section 1B. We now deﬁne a variant of
the pro-unipotent harmonic action of integrals ohar In the next statement, we denote by o the extension
of the adjoint Thara product o id into a map K {equyy ) X K {eouuy ) = K {eouuy) deﬁned again by the
formula of (1-6).

Definition 2A.3. Let the map

J J10 S
ohzlerO Adnl 0(K)o(1) (e1) x K {eoupy »harO — K {eoupy »hzlirOO
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be characterized by the commutativity of the diagram:

/1,0
Oad
Adnl o(K), (1)(61) X K«eOU,uN»o(]) —— K«eOUMN»g(l)

lid xS f ls 2-1)

S ar S
Adgt, ke (€)X K (€00 it K (eospn N

The pro-unipotent harmonic action of integrals at (1, 0) is the map

J J10 J
Ohéro Adnl 0(K)o (1)(31) X K«eOUuN» - K«eOUuN))h;f

J10

defined by the same formula as the one of o} ..

The basic properties of oh 9 are summarized in the next proposition.

Proposition 2A.4. (i) oh;’r" is a well-defined group action of (Adg k). . - oQ&O) on K {eouy N))ﬁ;‘ro, con-
tinuous for the topology defined by Np.
.. . . J10
(i) The isomorphism K«eOUMN»har —> K {eoupuy ))har, f ZWEWdhar(eouuN) flw]l/(1—ep) - w mduces
for all m € N*, a natural lsomorphlsm of continuous group actions between the m-th term of ohar,
namely (g, hy,) — lim(z (m)(g) oA%O hy), and the action (g, h) — t(m)g of1 ° h.

J10

Proof. (i) For any g in Adp of Lo(k)(€1), and any word w, the map f > S(g 0,4 f)[w] factors in a natural

way through the map f — S f. This can be seen by writing the formula for the dual of oildo The fact
that oﬁldo sends Adg, | ) (e1) X K (€oupuy ) o7r to K {eouny ) o7, follows from the shuffle equation for
elements of l'I1 0(K)o(1) and from the formula for the dual of of Finally, S is surjective: any A in

J10
K {€0upuy Vparo 1 €qual to

-1 -1 -1 -1
S( Z h[eédHESd eEd"'egl 651]e§¢1+168d eé‘d"'egl eSl)'

This proves that ohaI o 1 well-defined, and that one can write a formula for it, which is linear with respect
to the second argument; thus, Oiaro is well-defined.
Let g1, 82 € Adg (), (e1) and f € K {eouyuyDoq1y: We have

82 OfAlélo (81 oflof) (&2 OAd 81) Oflo

Applying the map S and the commutativity of (2-1) gives

820010 (S(g1 04 £)) = (g20% g1) ot S(f),

and applying again the commutativity of (2-1) we deduce

220010 (g1 0l S(£)) = (8204 g1) 0110 S(f).

This proves that oh % is a group action.
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1—1
3

The map ojA'dO is continuous and each sequence (wy);cn such that w; = eée;d +]e8" _legd . -e(')’
for all [ with eg, +leg"’_leg = ‘-eg'_legl independent of [ satisfies limsup,_, ., depth(w;) < 400 and
weight(w;) 5> +00; thus the map S is continuous. By the commutativity of (2-1), this implies
that 01{;}0 o (id x S) is continuous. If a sequence (/1) en in K {eou, N))ﬁ;‘ro tends to h € K (eoupuy ))ﬂ;'ro, we

can find a sequence (f;,),en and f in K«eOUMN»J(T) such that h, = Sf,, forallu, h = f and f, —> f. We
deduce that oﬁé’r‘) is continuous.

(i1) The relation between oﬂl‘o and oﬂ o Tollows from the definitions of these two objects and the fol-

ar
lowing property of OQ&O’ which is itself a consequence of the formula for the dual of oildoz for all
he Adl:Il o (K)ot (e1) and g € Adﬁl o (K)ot (e1), and for any word w over egyy,, , we have

J10 1 T J10 l
(g ong h)|:—1 _eow:| _lgr&(g Oag Sh)leqw]. O

In the next example, the indices (n;) and (n;, ny) are harmonic words in the sense of Definition 1C.1.

Example 2A.5. If N = 1, the terms of depth one and two of g o{l;’ro h are given as follows:

> 1 n—
(g Oljlelli‘o h)Y(ny) = h(ny) —i—g[l Oeleol 1e1:|,

ni—1
J10 _ np—1 ni—1 1 ny—1 r
(8 Opar M) (11, n2) = h(ny, n2) +g[1 _eoeleo eie 61} + ; g[l _eoeleo eleoj|h(nl —r)
np—1
+ > glegerey " erlh(ng —r).
r=0

We now deduce from Definition 2A.3 the counterpart of the harmonic Frobenius of integrals in the
framework [ ;.

Definition 2A.6. For any « € N* divisible by log(q)/log(p), let the harmonic Frobenius of integrals

at (1,0), iterated @ times, be the map (T (p¥)do)i? : K (eouun I = K (eovyuy )i defined by f -
Adg,  (e1) il f.

p.a har

Corollary 2A.7. The isomorphism

Jio ~ 1
K (eonu ' = Kleoou Vi [ Do flwl——w
WEWdnar(eouyy ) 0

induces, for all m € N, an isomorphism of continuous maps between (7 ( p“)qba)}jl;’ro and the m = 1 term of

(‘f (pa)¢a)har-

Proof. Direct consequence of Proposition 2A.4 and the definitions of the two harmonic Frobeniuses. [
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2A3. Fixed point equation for the harmonic Frobenius. We can now deduce from Section 2A1, via
Section 2A2, an expression of the iterated harmonic Frobenius of integrals at (1, 0) as a function of its
number of iterations, whose coefficients are expressed in terms of the fixed point of the Frobenius at
(1, 0); this is (0-3).

By Proposition 2B.1, we have 7(q%)®y, 000/10®, 5 = @, oo. By definition, the inverse of @, « for o/1.0
is &, _ oo thus the inverse ofr(q&)(dDQ 00) 18 f(q&)(cbq —0). Whence @, 5 = r(q&)éq,,oo of10 ®, . By
applying Ad(e;), we deduce Adq:. se1) = r(q"‘) Adq>q (e oil do Ad<1>q,oo (e1), whence S Adq:.q_& (e1) =
S (r(q"‘) Adg, . (e1) o Ad Adq; (61)) By the commutative diagram in Definition 2A.3, this amounts
to S Adg, ;(e1) = 7(g%) Ado, Oo(el) of SAdq> ~(€1)). By (1-19), we have S Adg, ,(e1) = har, 5 and
S Adg, . (e1)) = hary . Whence (0- 3).

Remark 2A.8. The power series expansion of any har a ((ni)a; (§i)a+1) in terms of q& given by (0-3)
have coefficients of degrees in {1, ..., minjgj<sn; — 1} equal to 0. This follows from QD(S) woleo] =0

which implies Ad (eg) = ez + terms of depth > 2, for all § € uy(K).

&)
'<I>qy_OO

Example 2A.9. In depth one and two and for P!\ {0, 1, oo}, we have

o0
har,e () = harg~(n1) + Y _ (¢%)" Ado, . (e)[e) "ereyey].

n=n\

o0
hara(n1, ny) = harge(ny, n2) + Z @*)" Ado,_(e)ley " erey erey " er]

n=ni+np
ni— 1

—i—Z Z ()" Ado, . (e1)leg ™~ ”elegz_lelegl]harqoo(nl—rl)
=0 n=ny+r
2 1n2_1

+ Z (g%)m" Ade, _, (e])[e(r)e]egl*le]]harqoo (ny —ra).
ra=0

2B. Iteration equation of the harmonic Frobenius of integrals at (1, 0). We are now going to reexpress
the iterated harmonic Frobenius of integrals at (1, 0) as a function of the number of iterations, in a different
way, without involving the fixed point.

2B1. Iteration on the Frobenius at (1,0). As in Section 2A2, the first step is to describe the iterated
Frobenius at base-points (1, 0) as a function of its number of iterations, this time without involving the
fixed point but, instead, the map of iteration of the weighted Ihara action (Definition 1B.6).
Proposition 2B.1. For all ay, @ € N* such that ay | @, we have

Can_lterflO (@gq) and Dy =D, 5 o,

More generally, for all @ € N*, we have ®, _, =P, _; ol10 T(A)o (P 1) -~ of10 r()\“_l)aa_l(cbp,_l)
and ®, =, f“).
Proof. This follows from (1-3), (1-4), and Definition 1B.3. U

This generalizes a statement appearing in [Furusho 2007, proof of Proposition 3.1].
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Before continuing on the study of the iterated Frobenius, we remark that, by Proposition 2A.1 and
Proposition 2B.1 considering the coefficients of these noncommutative formal power series series,
one has equations relating the p-adic cyclotomic multiple zeta values ¢, o(w) and ¢, o (w’), for any
a,a’ € ZU{£oo}\ {0}, as follows:

Corollary 2B.2. Let o € ZU {00} \ {0}. For any n € N*, let Z, , ,, be the Q-vector space generated by
the numbers &), o (w) with w a word of weight n:

(1) Fora eN*, 2, 40 =0"%(Zp10), and Zp —qn = 0%(Zp -1 n)- If & € Z\ {0} is such that p' is a

power of q then Z,, 4 n = 24 00.n = 2Z4,—oo,n- In particular, the dimension of Z,, o, is independent of

@ € ZU{£00}\ {0}.
(2) Na,p(®,.o) is independent of « € Z U {£o0} \ {0}.

e T, eoup
Proof. For any positive integers n, d, let O, deou‘ N c ©M-@uuy be the subspace generated by words of
weight n and depth d. Let
2 . HLeUUMN HLeOUMN
Or =Y O, g ™. .mo, .
r=2
ny+-+n,=n

Let A € K such that |A|, < 1 and a € N*. For each w word on egy,,, , of weight n and depth d, by (1-15),
(1-16), (1-17) we have the following congruences, where the duals refer to the duality between O™ ¢0uy

and the points of the corresponding group scheme:

(1 =" fix} (w) = w mod OZ _,,

TP et 2
iter,y (w) = T mod O, .
(—17,,)Y (W) =—w mod OF _,.

By induction on (n, d), this implies the following equalities, where Z(A)(’),If ggu“’v is the Z(A)-module
generated by words of weight n and of depth < d:

\V4 H—LeOUuN . \V4 Hl,eOUuN . Vi H—[»eOUp.N _ ULGOUMN
fix; (z0)Op<g ") =1t o 200 Onca ) = (=1110)" @0 Opca ™) =2000n<a

and, that, for all g € I1g o(K), we have

Na,p(fixs,g) = Na,p(g* ") = Na,p(g~10) = Na,p(g).
This implies the result via Proposition 2B.1 and Proposition 2B.1. O

A particular case of Corollary 2B.2(i) can be found in [Yamashita 2010, Proposition 3.10] and an
explicit example is given in [Furusho 2007, Example 2.10].

Remark 2B.3. The proof of Corollary 2B.2 indicates that the equations of Corollary 2B.2 are compatible
with the depth filtration and the bounds on valuations of pMZV . y’s, which are two parameters in our
computation. This can be viewed as a prerequisite for the next paragraphs in which we show a kind of
compatibility between the iteration of the Frobenius and our computation of pMZVuy’s.
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2B2. The iteration of the harmonic Frobenius. As in Section 2A2, we move from discussing the Frobenius
at (1, 0), in Section 2A2, to discussing the harmonic Frobenius. We first describe how the map iteri' f
depends on its parameters A and a.

Definition 2B.4. For any d € N*, let 7, <4 : K{eouuy) — K{eouuy) be the map which sends f =
Zw word f[w]w to Zw word, depth(w)<d f[w]w

Proposition 2B.5. Let A, 1~\, a be three formal variables. There exists a map
iter\0(A, A, @) : Adg (k) (e1) = K (eouu A, al(A), (2-2)

such that, for any f € Adﬁl 0(K)(el), word w, a € N* such that a > depth(w) and A € K \ {0} which is
not a root of unity, we have

iter! ' (f)[w] = iter 9 (4, %, @) (f)[w].

Proof. With the assumptions of the statement, let d = depth(w); knowing that g[@] = 1, dualizing the

multiplication of the a factors in (1-17) gives
ter, Y@wl= Y. Y Do s e T Adge (ee)e)wy I x -

0<d'<d 0<iy <-<ig<a—1w; #0,..., widﬁé@
Wiy -+ Wiy =W

x g (W e, (W17 Ad i1 (eg))e) [wi, 1. (2-3)

We have assumed that a > d; let us thus separate the indices i; < d and i; > d:
0<d'<d 0<ij<-<ig<a—1  0<d"<d'<d 0<iy<--<ign<d d<ign | <-<ig<a—1

This yields an expression of (2-3), as a K-linear combination indexed by {(d”,d") |0 < d” < d' <d} x
{deconcatenations of w in d’ nonempty subwords} which is independent of a but depends polynomially
of X, and with coefficients as well independent of a and polynomial functions of A, of the numbers

Z g()\'il _leo’ ()“id”_l Adg(é)id”71 (eg))f)[wid//] XX g()\'id,_leoy ()"id”_l Adg(é)id//fl (eg))é')[wld/]

d<ign<--<ig<a—1

(2-4)
Lete® =g® —1and é® = g®~ ' 1. Forog j <a—1, we have (where 7, <4 is defined in
Definition 2B.4)
i I M
Teca(Ad 11 (eg)) = Z <mf)< J )es eer.
mj, m eN J
When i; > d, the collection of conditions Tm %fgé’ ?Kd C<ij,m; +m +1 < d} is equivalent

to {m, mj eN,m; —I—mj + 1 < d}; thus, duahzlng in (2 4) each factor g(Ali i~leg, ()J -1 Adg(é),fl (e£))e)
tells us that (2-4) is a linear combination, independent of a and X, of sums

5 A

d<ign<--<ig<a—1 j=d"
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where weight ; € N* arises as the weight of a certain quotient sequence of w;;, and ( };’1) (nl;/, ) are polynomials

of ij.
Finally, any function of a of the form ZL<11<~~<15<11—1 Hizl P; (Ij)klfcf withL,8eN* Cy,...,Cs€
N* and Py, ..., Ps € K[T] polynomials, depends on a as a polynomial function of (a, A*): one can

reduce this statement to L = 0 by splitting an iterated sumover 0 < I} < --- < Is <a—1 at L and by
induction on §, then use, again by induction on § that, for all deg ;€ N*, we have

deg;

l Cjdeg; _
Y 1560 = (262 ) 0
= d(AC) AC —1
=

Let us now define the map of iteration of the harmonic Frobenius of integrals at (1, 0), by using the

above iteration map and the summation map S of Definition 2A.2.

Definition 2B.6. Let iter,’(a, 4) = S oiter/10(1, 2%, a) : Adgy | 5, (e1) = K (eouyuy i

har

We can now deduce from Section 2B1, and the previous proposition a second description of the iterated
harmonic Frobenius as a function of its number of iterations; this is (0-4).

By Proposition 2B.1, we have ®, ; = iterél/'go’q -5, (Pg.d)- thus by Proposition 2B.5, we have @ 5 =
iter/10 (g%, g%, &/a&0)(®,.4,), Whence S®, 5 = Siter/10(q%, g%, & /&) (P, 5,)- By Definition 2B.6, this

amounts to S®, 5 = iterﬁé‘ro (@ /a0, ¢%)(P,.4,)- Finally, by (1-19), we have S®, ; = har, 5. Whence (0-4).

3. Iteration of the harmonic Frobenius of series

In this section, we prove (0-5) and we discuss its meaning.

3A. Prime weighted multiple harmonic sums as functions of the number of iterations of the Frobenius.
In this section we study how harqa ((n;)a; (§1)a+1) depends on @.

The first step is to write a p-adic expression of harqa ((nj)a; (§i)d+1), obtained by considering the g“°-
adic expansion of the indices my, . .., my of the domain of summation of harqa ((ni)a; (€i)a+1) as in (0-2).

Lemma 3A.1. We have, for any d € N*, positive integers n; (1 < i < d), and N-th roots of unity &;
(I<i<d+1),

har s ((ni)a; (§i)a+1) =

a

d . ujtr; G0, \l;
() (7)) e
1 .

S e ()
Ed+1 , ;

ES _ j=
(vg)d,(ui)d,(ri)dﬁNdXNdX{1,~~~,q"0—1}
uigqao(vi+17Lyi71.>(qaoili+l+ri+l)_1 if Ui <Vit1
Ui Uiy I Ui=vip1 and ri <riy
uiujy1—1ifvi=viyy and ri2riyy
an (v —v: 11 —1 & o
g% V17D (g0 +r) Sujgy if Vi> Vi
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Proof. Let (my,...,my) € N? such that 0 < mj < -+- <my < q&. There is a unique way to write
mi = (g%)% (g%u; +r;) with v; e N, u; € N, r; € {1,..., g% — 1}: for each (my, ..., my) and each
i €{l,...,d}, v is the g*-adic valuation of m;, and u; and r; are, respectively, the quotient and the

remainder of the Euclidean division of m;q %% by ¢%.
We have, for any £ € uy(K), £@*0)" @ 0uitr) — g@*0uitr) — guitri and we write

0 —n; —n; qéoui o —n; & I .—ni=l;
(q%ui+r)™" =r, n< +1) ZZ( lil)(q%”i) r"

T

liGN
for each i. This gives
& d

R T AR TR g\ —n (g%u )l
(a) [TegHmm, -(52) }]1(1;(&—,.) (o) )

1

Let (vi)g € {0, ..., a/do— 1}, (ui)g €{0,..., g% % — 1} (g €{l,..., g% — 1} such that, for
alli €{1,...,d} we have 0 < g%V (q%u; +r;) < q®. Then, foralli e {l,...,d—1},

g%V (g% u; +17) < g%V (@¥uiy +rig1)

up < q@oWm=vi=D(g@y, ) =1 if vy < v,

Uj < Uit if vi = viy1, ri <rigr, (3-2)
wp <ujpp—1 ifv; =viq1, 1 2 rig1,
gD (g%u; 4 1) iy if v; > V4.

This completes the proof. O

In the expression of har a ((ni)a; (§i)a+1) of the Lemma 3A.1, we are going to sum over all the possible
values of the parameters u; and r;, in order to have an expression which depends only on the v;. In view
of that, let the numbers Bfn(é) e K, forl,meNsuchthat 0 <m </+1 and § € uy(K), defined by
the equation ZZ:O gmnh = gn Y BL (€)™ for all n € N (see [Jarossay 2019, Lemma 3.1.3]). We
denote by B, = B.,(1). For I,m € N? such that 1 <m <[+ 1, we have B, = 1/(+ (1) Biii_m
where B denotes Bernoulli numbers, and the others Bfn are 0. For & € uy(K)\ {1}, n,l € N*, we
have Bfn (&)ez|&E, 1/€,1/(& — 1)], and a formula for B,’n (&) can be obtained by applying (T d%)l to the
equation (T" - 1)/(T — 1) = ZZI;IO T™, where T is a formal variable.

Lemma 3A.2. Let w = ((n;)a; (&)as1). We fix (1)q € N and (v)q € {0, ..., &/ag—1}.
Let R be the ring generated by N -th roots of unity and numbers 1/(1 — &) where & #£ 1 is a root of

unity. For any word w' over ey, , there exists a polynomial

Py w' (), (i)a € RICQj jr1)1<i<d—1> (B 1 ) 1<I<l ++g+d, 0<m<I+1, ey (K)]
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with degree at most lj + --- + 14 + d in the variables Q; j i1, and with total degree at most d in the

variables By, ; ¢, which is nonzero for finitely many w, and such that we have

d r aonl+n: L
> o ()T
il S] r;j"rﬂj

@;)geN?
) ) (ri)a<fl,..., qfo—l}_ .
0<q%0¥1 (g0 u 4ry)<--<q%Vd (g0 uy+ry)<q®

= Z Powr (). () ((q&0(|vj+l—vj|—l))1<j<d7 (B ENocmeyd li+d+1) har,q, (). (3-3)

w’ word on euy.y §eun(K)

Proof. If d = 1 we can apply the definition of the numbers B/, (¢), & € uy (K) mentioned above.
Ifd>1leti e{l,...,d}suchthat v; =min(vy, ..., vg); we fix u;_1,r;i—1 and u;41, riy1. By (3-2),
one has natural functions fi, f>, f3, f4 such that we can write

2

q%0vi=1(q%0u; _y+r;_1)<q%0¥ (q%0u;+r;) <q 0%+ (g0 u; 1 +rit1)

- Y - Y

Sr@i—r, iy, T ) S K 2 Ui iU, i) 31— W1 i) S S fa (Ui — 1 T -1 Ui T 1)
ri<rFi+1 ri2Tiql

Using that equality we can apply the result in depth 1 i.e., the definitions of the numbers B! (£) to express

Z Ei—}—l ui+r; (q&0)1i+niu§i
. r?i-i-ni '

o . v v . v o . ) l
g OVi=1(q0u;_1+ri—1) <q0% (q*0u;+r;) <q“0Vi+1 (q*0u;t1+rit1) !

the sum

This gives an expression for the left-hand side of (3-3) as a sum over d — 1 variables u; and d — 1
variables r;, which is of a similar type. Continuing this procedure, we obtain an expression depending on
the r; via localized multiple harmonic sums, in the sense of [Jarossay 2015, Section 3.2]:

&
5 ()" () (55)"
i

r pia
O<ri<--<rg<q®0 1 d

with a positive integer d, for any N-th roots of unity p; (1 <i <d+1),n; € Z (1 <i <d) which are not
necessarily positive. This can be expressed in terms of g% and usual prime weighted multiple harmonic
sums har s, by the main result of [Jarossay 2015, Section 3.2]. When we obtain products of numbers
har,q, (w), we can linearize that expression by using the quasishuffle relation of [Hoffman 2000]. g

In the expression of harq& ((ni)a; (§i)d+1) obtained by combining Lemmas 3A.1 and 3A.2, we are
going to sum over all the possible values of the parameters v; in Lemma 3A.2. In view of that, we need
another lemma.
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Lemma3A.3. Letd, M eN*;let Ay, ..., Ay € R[T] be polynomials, with R C Q, and Ty, . . ., T, formal

variables. There exist coefficients Cs, .. s,(M) € R[T] such that we have

.....

a d Ul
> [T7"4aiG) = > Cs,...., sd(M)EW'

0<V < <pg<M—1i=1 Vi, li+---+1i<deg(A|)+--+deg A;
U1,..,U)eQ(T,...,Ty)? such that

=T
Vie{l,...d=1} Ui €{U; Ti1,—Ti11}
81,...,8420

Proof. (a) For any n € N*, m € N, we have

9 Tm Tm Tm—',—l
T— =m —n .
( aT) T -1 (T -1y (T -

Thus, by induction on «, for all & € N*,

9 [od Tm o Tm-H

=0

Moreover we have

Whence

0<p<M -1 1=0
This gives the result for d = 1 by linearity with respect to Aj.

(b) Let us prove the result by induction on d. Assume that A| = Zdegg] Ug, 0 with uy, € Q. We have,

forall ¢y € {0, ...,deg A},
~ d ~
Y n A
i=2

0LV < <Vg<M—1
d d
Z( 1>l' )1+1 > (<T1T2>“2Hn”fA,-(ﬁ,o—]'[T,-”fA,-(ﬁi)).
i=3 i=2

0<Vy < <Vg<M—1
Whence the result by induction and by linearity. (|

Combining Lemmas 3A.1, 3A.2 and 3A.3 we can now sum over all the u;, r; and v; and write an
expression of har e ((n;)a; (§i)a+1) as a function of @ as we wanted.

Proposition 3A.4. Let a harmonic word w = ((n;)a; (€)as1)- Let us fix (I;)qg € N,
Let R be the ring of Lemma 3A.2. For every word w' over eyyy,,, there exists a polynomial Py, . ,), €
R[O, A, (B 1N <I<l ++lg+d, 1<m<I+1, Eeuy (k)] With degree at most 2?21 li +d in Q, and with total
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degree at most d in the variables B,, | ¢, such that we have

o
) P14 00a (@ T D) i, (B (E)gamesd prvart, sepn k)
()aefl,....q%0 —1}

- a .
= Pw,w’,(l,')(/ (q"‘, &_07 (Bm(S))O<m<Zil=l Li4d+1, gEMN(K))' (3-4)

Proof. The set {0, ..., &/ — 1}¢ admits a partition, which depends only on d, indexed by the set of
couples (E, o), where E is a partition of {1, ..., d} and o is a permutation of {1, ..., fE}, defined as
follows: for each (vy, ..., vy) €[0,k — 114, and each such (E,o0), we say that (vy,...,vg) € (E, 0) if
and only if, for all, i, i’, a

V; = vy for i, i/ € Pg(a),

v; < vy fori e Po'(a), i/ (S Po'(a+1).

By the proof of Lemma 3A.2, the function (v;)q > Py, w’, (1), (v;)s 15 cOnstant on each term of that partition
(since €9 =& for all £ € uy(K), we have Sqaou =& for all v € N*). We split the left-hand side of (3-4) as

D oaelloifio—1) = 2(E.0) 2(ui)ge(E.c) @Nd WE compute each subsum . , (x.)- By multilinearity
we can assume that Py, (1.),.(v;), 15 @ monomial in the g% (Vi+1=Vi=1D_ Thus the subsum is a function of

the type
2. LT (3-5)
0V <<V <M—1
applied to U; = vy (i+1) — Vo) — 1 and T; = g%, where d’, M e N*, [ ={iy,...,i,} C{l,...,d'} with
iy <---<ipand Tj, ..., T; formal variables. Moreover, ) ;; _.._; | is a polynomial function of

(i, j) with coefficients in Z. Thus we can express (3-5) by Lemma 3A.3. This provides the result.  [J

3B. The relation of iteration of the harmonic Frobenius of series. Using the result of Section 3A we
can now formalize the iteration of the harmonic Frobenius from the point of view of series. We refer to
K {eoup N))Ear = [ Iw harmonic word K -w defined in [Jarossay 2015, Section 3].

Definition 3B.1. Let the map of iteration of the harmonic Frobenius of series be the map iterZ (A, A%, a):
K (eoupy Vi — KA, A%, al{eoupuy )i, defined by, for any word w,

har har

terie (NIl = Y Puwrana A @ BLEocpeyt g, eepmi) FT0]
w’ word on equy
Let us now finish the proof of (0-5). By Lemmas 3A.1, 3A.2 and Proposition 3A.4, the only thing to
check is the convergence of the series, which are infinite sums over (/;)4 € N¢. This follows from the
following facts:

(a) For any n € N*, it follows from p'»™ < n that v,(1/n) > —log(n)/log(p); moreover, for any
n € N*, we have v, (B,) > —1 (this is part of von Staudt—Clausen’s theorem). Thus for all /, m, we
have vp(B,ln) > —1—1log(l +1)/log(p), and, given that ||, = |1 —&|, =1forall § € uy(K)\ {1},
we have, for all /, m, and & € uy(K) \ {1}, v, (B, (&)) > 0.
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(b) If T, T are formal variables and m € N*, we have (7{" — 1)/(T; — 1) — (I} = 1)/(T> — 1) =
T =T/ -1 — (" —T) /(T - 1).

(c) For any z € K such that v, (z) # 0, we have v,(1/(z—1)) > 0if v,(z) > 0, and v, (1/(z"! = 1)) >
v,z if v,(2) < 0.

Remark 3B.2. Equation (0-5) is related to the formula har ,«n = har e oh -~ har(” ) proved in [Jarossay
2015], where oEar is the pro-unipotent harmonic action of series introduced in [loc. cit., Section 4.3]:
restricting that equation to har,, with m a power of p gives a functional equation satisfied by the map

o > har e, which expresses har peth in terms of har,« and har;p ),

Remark 3B.3. As in [Jarossay 2015], the computation which leads to the above result remains true
for the generalization of cyclotomic multiple harmonic sums obtained by replacing the factors 1/m",
1 <i <d in (0-2) by, more generally, factors x; (m;) where y; are locally analytic group endomorphisms
of the multiplicative group K*, which are analytic on disks of radius p~“

Remark 3B.4. The main theorem gives formulas for p-adic cyclotomic multiple zeta values which
depend on an additional parameter, a number of iterations of the Frobenius different from the one
under consideration. Here is another way to obtain formulas with parameters. The computation of
regularized iterated integrals in [Jarossay 2019, Section 3] can be done by replacing the Euclidean
division by p® in N by the Euclidean division by p? with g > «. This gives, for example, {paln) =
p*"/(n — 1) limyy|,—o0 1/(pPm) 20<m1<pﬁm’ pim 1/m?7, and this gives formulas in which the prime
weighted multiple harmonic sums are replaced by the following generalization, where (1, ..., l;) € N¢,
I,I'c{l,...,d} and B:

B
()" () ()

d d
pa i mitB il E
mnH-ll . ‘mnde
O=mo<mi<--<mg<pP 1 d
for jel, mj_1=m;[p*]

for jel’, m;=0[p*]

Example 3B.5. Let us consider the case of P!\ {0, 1, oo} (N = 1), for which we have qg=p,a=a,
&y = o, and depth one and two. Equation (0-5) is, for all n € N*,

har e (n)
n I+1 n
- - [
== Z( l ) harpao (l + I’l) Z B cxo(u+n) Z P otou Z ( l ) harpao (l T I’l)Bu_n
>0 uzn+1 [>u—n—1

For all ny, ny € N*, har,«(n1, ns) is the sum of the following terms, where the variables vy, v, are
those defined in Lemma 3A.1 and where, for a set E, 1z means the characteristic function of E:
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e The term “vi = vy”:

pa(u+n1+nz)_1 2 —n; o 2 -
2 PG nz) 1“( l; >(Bu1’2Hharp%(”i+li)+3ul+2hafp“0(n1+llvn2+lz))-
- 1
>1 i=1 =1
111,41220 l l
Li+h>u—1

e The term “v; < vy”:

Z ll#u+n2 pa(n1+n2+u) _ pao(n1+n2+u) B pa(n1+t) _ pa()("l‘H)
pao(nz—i-u—z) —1 p“O("2+nl+M) -1 pao(n1+t) -1

My, My>—1

u,rzl o(ny+ny+u)

N ap N 1— pa(n1+n2+u) BMl-HBMz-Hl
t=u-ny pao(”1+n2+”) -1 (pao(n1+n2+u) _ 1)2 t u

min(t, Ma+u)

t —n —ny
X 2(:) <j)(M1+t>(M2—|—u—j>harp‘m(nl + M, + 1) harpeo (np + M +u —t)].
J:

e The term “v; > v,”: by the change of variable (m, my) — (p* —my, p* —my), itis

(pa)n1+nz —ny1\ [/ —ny (pa)ll+lz+n1+n2
0<m1§2<p'1 n?‘ngz zléo < h )( 15 ) }1'1“;1'212 )
vp(n1)>vp(n2) O<ny<ny<p®
vp(n1)<vp(n2)
3C. Interpretation in terms of cyclotomic multiple harmonic sums viewed as functions of the upper
bound of their domain of summation. The main result above gives a description of har: as a function
of ¢* (and @) regarded as a p-adic integer. Let us extend the question and consider the study of har,, as a
function of m, for any m € N* regarded as a p-adic integer. We are going to remove the factor m™<€" in
har,,, i.e., consider the (nonweighted) cyclotomic multiple harmonic sums b, ((n;)q; (§;)a+1) of (0-2).
Intuitively, b, is a highly discontinuous function of m, but we have proved by the main theorem
that har,c has a power series expansion in terms of g%. The goal of the next proposition is to write a
decomposition of b, in a way which explains the relation between these two phenomena, by using the
g-adic expansion of m, in order to clarify the dependence of har,, in m.
Below we use the following definition: an increasing connected partition of a subset of N is a partition
of that set into sets J; of consecutive integers, such that each element of J; is less than each element of

Jiwheni <i’.

Proposition 3C.1. (i) Let m € N*, and let its g-adic expansion be
m=ay,,q" +ay, ¢+ +ay,q",

with yg > -+ > yi,and ay,, ...,ay €{l,...,q —1}. Let

. — Ya - Yd'—j'+1
v]/ - a)’d’q + + ayd’—j’-H q !
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for j €{l,...,d'}. We have

d//
B (1) (Ei)as1) = 3 I1 n,wl_[ >
N = LT I R TR el

Jm—{1,....d} injective
Jo---LJy={1,....d}—j (n), satisfying ()

j;t}ax d/_j/_,’_l Z/j/ 1,
( 1—[ (—nu)> < Z y/) u:j;_r,‘ln
avy,q
i
y= jmin Ly I=d’'

/

j
X bayd - O i <i <y et 8 jnin<j<jmact1)s (3-6)

where (x) is that Jo U - - - 1 Jy is an increasing connected partition of {1, ..., d}— j(n), such that each

Sy e L0, -1, j"=1,...,d", is an increasing connected partition of ({1, ...,d} — j(n)) N

17jn), jjrp)l

(ii) Let n € N*, whose decomposition in base q is of the form aq”, witha € {1, ...,q — 1} and y € N*,

Letvj = j'q” for j' € {l,...,a—1}. We have

d// maX
g ((11)a: (E)as1) = 3 [T H > 1_[
n:{vji/ ..... vj‘/i///}c{vl,...,vd/} ” =1 U i —01 ;‘nax ,,,,, L ;nln)o u= ]mm

m—{1,...,d} injective
JoU---IJ y={1,...,d}—j (), satisfying (x)

;max
J
i

Zu: ;min U
x(J'q”) T by (1) juin< <t ) jmin< i <jms+ 1)+ BT
Proof. (i) and (ii) We apply the “formula of splitting” of multiple harmonic sums of [Jarossay 2015,

Section 3] at {vi, ..., v, }; this gives

d//

b ((i)ai (E)as1) = > [T+ H Buyvy W15,

n:{ujl """ de//}c{vlv-"vvd’} J’=1 n](l) i) Jj'=0
Jm—{l,....d} injective
Jo---LJ yr=(1,...,d}\j (n), satisfying ()

and we express each factor h,,j,,,,j, " (w] Jj,) in terms of h"j’ vy by the p-adic formula of shifting of
+min maX]. I:l

multiple harmonic sums of [Jarossay 2015, Section 4.1] writing J;» = [ I

Example 3C.2 (N =1 and d = 1). For all n € N*, we have

b“y ' 1(n) p, []a\ (n+1) )
b () = (:7;’:’)” Z Z I—:z)n-ﬁ-l ( I >(a)/d’pyd/ +-- +a}’i+1pyl+l)l

=1 1>0
' I
+ Z Z(;")hy,(wrl)( Z aympmera;pyj)_ (3-8)

1<j<d’ 120 m=j+1
0<da), . <ay.—1
Yj Yj
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In the formulas of the proposition, there are terms which are analytic functions of a power of g by the
main theorem, and certain factors which are “polar” in function of the g-adic expansion of m. This sheds
light on the dependence of b, on m.

The reason why studying b, as a function of m is a natural comes from [Jarossay 2019], in which this
question appeared implicitly. We have studied the map sending m to the coefficient of degree m in the
power series expansion at O of the overconvergent p-adic multiple polylogarithm Li;’ Llwl, for w any
word on eqyy,,. We have proved that it can be extended to a locally analytic map on ZE,N) =lmZ/Np"Z
[loc. cit., Section 3]. This map is a linear combination of multiple harmonic sums over the ring generated
by p-adic cyclotomic multiple zeta values. Thus we can interpret them as a “regularization” of multiple
harmonic sums. See also Appendix A of [loc. cit.].

4. Comparison between equations on integrals and equations on series
We prove (0-6) and we discuss more generally the comparison between integrals and series.

4A. Uniqueness of the expansion of har . as a function of & and q°.

Proposition 4A.1. Let § € N*, and a map S : N* N [§, +oo[ — K such that we have, for all a €
N*N[§, +oof, S(a) = ZneN ZZIZO Cnm(q®)"a™, where M € N*, and (c1.m)o<n. 0<m<m € K Nx{0..... M}
such that ), Znﬂfzolcn,mqﬂp < o00. If S(a) =0 for all a € N* N [8, +00[, then we have ¢, ,, = 0 for
all (n,m) e N x {0, ..., M}.

Proof. Letag e N*N[§, +oo[ and u € N. By taking a =ay+ p" in the equation ZneNZrA::Oann (g")"a™=0
and by taking the limit 4 — oo, we get ZZ:O co,may = 0. Since this is true for infinitely many ao, we
get co ,, = 0 for all m. This implies that, for all a,

M M
Z Z Cn,m(qa)nam = Cla (Z Z Cn,m (qa)nlam> =0,

n>1 m=0 n=1m=0

M
D> curim@"a™ =0.

neN m=0

thus

Whence the result: by induction on n, we have a contradiction if there exists (n, m) such that ¢, ,, 0. U

Let us now prove (0-6). By [Jarossay 2019], we have ®, 5 € K {eouuy ho(1) for any & € N*. By
Corollary 2B.2, this implies that ||, = Y, word on ety SUPzezUf+oo) (0} | Pg.alw]lpw is a well-defined
element of K {eguyy )oc1)- We have a similar bound for the coefficients of the expansion of each har, z[w]
obtained in Section 3C. Thus we can apply Proposition 4A.1 to the power series expansion of each
har, z[w] in (0-3), (0-4), (0-5) to deduce that they are the same.

Example 4A.2. The term of depth one (d = 1), in the case of P\ {0, 1, 0o} (i.e., in the case N = 1) for
which p = ¢, ® = @ and &y = «y, of the equations of the theorem is the following, respectively (with
BEY = 1/(L+b+ D) ("B for 1 <b< L+ 1):
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» The fixed point equation of the harmonic Frobenius of integrals at (1, 0) (equation (0-3)):

o0

_ 1 _

harpe (n) = Y _(p)"*" Adg, _, (er)eferc] 161]+Ad¢m(el)|:1_eoe1eg le1:|. (4-1)
b=1

 The relation of iteration of the harmonic Frobenius of integrals at (1, 0) (equation (0-4)):

[e.¢]
(p*)" (p*)” S (p*)" 1 1
harpa(n):;WAd%_ao(el)[eoeleg el]—pao_lAdq,m(el) l—eoeleg er|. (4-2)

o The relation of iteration of the harmonic Frobenius of series (0-5):

S a(n+b) _ 1 S

P 1 _Z_l BE har o (n +b + L). (4-3)

har e (n) = e 1
p I

b=1

» The comparison between these three expressions: (0-6)

(p™)” o L
pr—1 Adg,, (enlegerey e1] = Ade,  (e1)egerey ei]
1 o
:W Z BE ™ har e (n + b+ L). (4-4)
L=—1

Generalizing this example to higher depths gives a new way to compute p-adic cyclotomic multiple
zeta values.

4B. The map of comparison for all number of iterations. In [Jarossay 2015, Definition 5.1.3] we have
defined the map of comparison, from integrals to series, compE I K {eoupn ) (1)\’(1) — K {eouyy Mhar,o(1), BY

ni—1

—1
(comp™/ ((ge)eepuy k) lez, €0 ee, - ep' e ]

1

d —pY -1 -1

=0 ) S”gs[ﬁemeg" e e esl]-
seun(K) 0

In the context of this paper, it is natural to define a variant of the map of comparison from integral
to series, which takes into account the properties of the iterated Frobenius viewed as a function of its
number of iterations, and which has the additional advantage of being injective.

Definition 4B.1. Let the map compfe{ : Adg, (K)ot (e1) = (K{eouuy ))‘l{;-r‘))qN* be defined by [ +—
(v (@) (f) oy comp®/ faen.
Equation (0-3) can be restated as
compje; (Ada, .. (e1)) = (hary &)aen:.
The key property of compfe{ , which a priori does not hold for comp®/, is the following:

Proposition 4B.2. compife‘rf is injective.
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Proof. Let a word w = eg,, e, _1e§d x '681_1€§1. For n > weight(w), let us consider the coefficient

of (g%)" in comp® /T ( £)[w]. It is equal to f[eg_(”ﬁ"'m”’)egdﬂeg"flegd . 66“_1351] + terms of lower
depth, where the depth is the one of coefficients of f. This gives the result by an induction on the
depth. U

5. Iteration of the Frobenius on P!\ |J £ B(,1)

In the previous sections, we considered the Frobenius of nfn’crys(lpl \ {0, uy, co}) at base-points (1, 0)
and the harmonic Frobenius. We now consider the Frobenius of nf S (PI {0, uy, 0o}) on the affinoid

subspace U = Plan\ U§N=1 B(&, 1) of P over K, where B(£, 1) is the open ball of center & and
of radius 1. As in Section 2, we will have a fixed-point equation (Section 5A) and an iteration equation
(Section 5B). Additionally, we will have a third equation coming from the study of regularized iterated
integrals in [Jarossay 2019, Section 5.3].

SA. Fixed point equation. The fixed point equation of the Frobenius is known thanks to the theory of
Coleman integration. It amounts to the definition of p-adic multiple polylogarithms Lif;z as Coleman
integrals, in [Furusho 2004; 2007] for N = 1 and in [ Yamashita 2010] for any N; we have

Prog(q)tog(p) (LiL7) = Lit~ . (5-1)
q q

Restricted to U?", the fixed point equation amounts to the following equations [Jarossay 2019, Propo-
sition 2.1.3], they involve the overconvergent p-adic multiple polylogarithms Li;a[w] [Jarossay 2019,
Definition 1.2.5], which are overconvergent analytic functions on U*":

Lif () = L) (pe0, (pe) LIk (27" (eo, (Adge (e)e) ™", (5-2)

.+ RVAVA) o . _
Lij, —a(2) = Lif”" ") €0, (g0 )e) Lif*(2)(p®eo, p*(Ad o, (egi)s) ™ (5-3)
p.—a

where Ligz(pa) is the analogue of Lif;Z on X7*) equal to the pull-back of X = (P'\ {0, uy, o0})/K by
o where o is the Frobenius automorphism of K. When « is a multiple of log(g)/log(p), X#") = X
and Li{;z(p )= Li{:z, and when o =log(q)/log(p), (5-2), (5-3) are directly equivalent to (5-1).

o p,—a>

Notation 5A.1. For any & € Z U {#00} \ {0}, let Lijl ;=Li} , and Li; __=Lil __, with p* = ¢°.

T

p.ar Pp.a). We already know by Section 2 a
description of &, , as a function of «. If we combine it with (5-2), (5-3), we deduce a description of

The Frobenius on U?" is characterized by the couple (Li

Li;’a as a function of «. This gives a description of the iterated Frobenius on U*" as a function of its
number of iterations. We leave the details to the reader. One can also write an analogue for U*" of the
notion of contraction mapping at base-points (1, 0) of Definition 1B.2 and of the fact that the Frobenius
at (1, 0) is a contraction of Lemma 1B.7.

Let us just consider the convergence of the iterated Frobenius towards the fixed point when the number
of iterations tends to oo, in the unit ball B(0, 1).
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Proposition 5A.2. Forall z € K such that |z|, < 1, we have, for the N p-topology,

T(q ) Li] ;(2) 555> Lik“(2)(eo. (ee)e),

_L_(q—ot) Ll (Z) m) L1 (Z)(€0 (Ad(b(é) (63’:))5)

Moreover, these convergences are uniform on all the closed disks of center 0 and radius p < 1.

Proof. T(q™%) L1 - (z) is the product of L1KZ(z)(eo (eg)g) by
—ay 1 :KZ @ -1
(g )Llp,xﬁfa)(zq )(eo, (Ad@f; (e£))e) . (5-4)

The coefficient of (5-4) at a word w is of the form,

g & weight(w) Z Z Bgem (W )L {q,a(wz)

(wi,w2) m=0
where L € N* and wy, w; are in a finite set depending only on w, determined by the combinatorics of the

composition of noncommutative formal power series. For all m € N* we have —v,(m) > —log(m)/log(p).
Applying this to the m; in (0-2) we deduce

alog(g) +log(n)

vp(harge,, (w)) = — weight(w) log(p)

For all C, C’ € R™, and z € K such that |z|, < 1, we have q&nvp(z) —Ca —C'log(n) =z> +oc and
this convergence is uniform with respect to n. Indeed, let ny be an integer such that for all n = ng, we
have C’log(n) < nv »(2); then ng is independent of & and we have, for all n > ny,

o

n -
612 v,y(2) — Ca.

q%nv,(z) — Ca — C'log(n) >

Because of the bounds of valuations of cyclotomic p-adic multiple zeta values of [Jarossay 2019, Section 4],

the sequence (NMa, p(Py,—«))aen+ is bounded. Thus, t(q_&) Li; «(2) converges to LquZ(z). Moreover,

we can see that ng can be chosen independently from z in a closed disk of center O and radius p < 1.
The proofs of the statements concerning 7 (g —) Li;,a (z) are similar. U

Remark 5A.3. The convergence in Proposition 5A.2 does not a priori extend to a uniform convergence
on U?. Indeed, otherwise, in fact, the map LifjZ would be rigid analytic on U?". By the main result
of Appendix A of [Jarossay 2019], this would imply that, for any word w, the multiple harmonic sums
functions m +— har,, (w) restricted to classes of congruences modulo N should be continuous as a function
meN ClimZ/N p!Z. This seems to contradict the results of Section 3C. More generally, we expect
that the lack of regularity of the maps m +— har,, (w) can be at least partially reflected in the mode of
convergence of the sequences Li;d[w] when o — 00.

Remark 5A.4. One can deduce a result similar to Proposition 5A.2 on the ball B(co, 1) by applying the

automorphism z > 1/z of P\ {0, 1y, 0o} and the functoriality of ;"""
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5B. Iteration equation. We now write an equation for the iteration of the Frobenius on the subspace
plany US cun (k) B(§, 1). We restrict the statement to positive numbers of iterations for simplicity, but
a similar result holds for negative numbers of iterations. If f(z) =Y _,cnz™ is a power series with
coefficients in K, let fP")(z) = Y 0 0%(cm)Z™ where o is the Frobenius automorphism of K.

Proposition 5B.1. For any, oy, @ € N* with ag dividing o, we have
. . 4 (p20) o (preoTh
Li} o (€0, (e6)¢) = Li, o (e0. (€))L}, o " (e0. (Adgey (e)e) -+ Lijy oy " (e, (Ad g1 61(e6)e)).

Proof. The crystalline Frobenius of 71{”‘([!3’1 \ {0, un, 0o}), restricted to the rigid analytic sections on
plany USGMN(K) B(&, 1), is given, with the conventions of [Jarossay 2019], by the formula

(PP 1 f(eo. (e)e)(@) = Lif, 4 (o, (ee)e) (@) x f (") (eo. Adge) (ee)e). (5-5)

This implies the result. 0

SC. Another iteration equation via regularized iterated integrals. The computation of overconvergent
p-adic multiple polylogarithms in [Jarossay 2019], which was centered around a notion of regularization
of iterated integrals, gives us another point of view on how they depend on «. Below, for a power series
S € K[z]l, we denote by S[z"] the coefficient of z" in S for all m € N. Again we restrict the statement
to positive numbers of iteration of the Frobenius for simplicity, but a similar statement holds for negative
number of iterations.

Proposition SC.1. For any word w on eguy, and any mo € N, there exists a sequence

("5 [w](me))  ren
Eeun(K)
neN

of elements of K such that, for any & € N such that ¢* > mg and m € N* satisfying |m — my| P g% we

Lij,,&[w][zm] — Z(q&)n (Z Z C(I,E,n)[w](mo)gfm (m — mO)l> )
n=0

leN &

have

Proof. In [Jarossay 2019, Section 3], we have defined a notion of regularized iterated integrals attached

to any sequence of differential forms among p“%, ’; afl;, & e un(K), foa(z_p F 3“’ & € uny(K). We have

computed these regularized iterated integrals by induction on the depth, and this gives us information

on how they depend on «. Namely, each regularized iterated integral is a rigid analytic function on
PLam\|J ey (k) B(&, 1) which has a power series expansion Yoo cm2™ satisfying the following property:
for any mq € {0, ..., p* — 1}, there exists a sequence (c*¥)(mg)) ey of elements of K such that, for
all m € N with [m —my|, < p~®, we have ¢,, = Y o > c(l’é)(nfg)[gg)”(m —my)'.

In [Jarossay 2019, Appendix B], we have showed that the numbers ¢¥) (m¢) have an expression
as certain sums of series involving multiple harmonic sums, and particularly prime weighted multiple
harmonic sums.
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In [Jarossay 2019, Section 4], we have showed an expression of each Li;ya[w] as a linear combination
of regularized p-adic iterated integrals over the ring of p-adic cyclotomic multiple zeta values £, o (w’).
Combining these facts with the results of Sections 1 and 2 on how ¢, 5 and har,« depend on &, we
deduce the result. U

Appendix: A Poisson bracket corresponding to the pro-unipotent harmonic action
of integrals at (1, 0)

We have seen that, by their definitions, the pro-unipotent harmonic actions (Section 1D and Definition 2A.3)
are connected to the Thara product (1-1). However, often in the literature, what is used is not the Ihara
product but the corresponding Lie bracket, called the Thara bracket, which is a Poisson bracket. In
this section we explain that the pro-unipotent harmonic action of integrals at (1, 0) (Definition 2A.3)
corresponds naturally to a Poisson Lie bracket.

A.1. The Ihara bracket and the adjoint analogue. 1Let V* be the group of automorphisms defined in
[Deligne and Goncharov 2005, Section 5.10]. The Ihara bracket is the Lie bracket of Lie(V®), regarded
via the isomorphism Lie(V®) >~ Lie(I1 p), v — v(1I1p); namely, it is given by the following formula
[loc. cit, Section 5.12-5.13]:

{f.8}=1Lf 81+ Dys(g)+ Ds(f),

where Dy is the derivation which sends e¢p — 0 and ez — [ f &, e¢] for any & € un(K). The Ihara
bracket is a Poisson bracket; namely it satisfies the equality {fg, h} ={f, h}g + f{g, h}.

Let V© be the preimage of 1:11,0 by the isomorphism V® = I1; o, v = v(1I1p).

We have defined in [Jarossay 2015, Definition 1.1.3] the adjoint Ihara product ((1-6)) and we have
proved in [loc. cit., Proposition 1.1.4] that Ad(e;) is an isomorphism of groups from (I:Il,o(l( ), of10) =
(Adg, (1) ong)-

We have viewed Lie(V“’) as a subset of K {eouy, ) and we can again view Lie(Ady. (e1)) as a subset
of K {eouyy ). The derivative of f +— f ~ley f, the map f + [e;, f]is the isomorphism of Lie algebras
defined by Lie(V®) = Lie(Ady. (e1)).

Proposition A.1.1. The Lie bracket of Lie(Ady.(e1)) is {f, glaa = dy(g) — dg(f) where dy is the
derivation sending ey — 0, ez —> f© forall € € puy(K).

Let the product .{,‘1(’10 on Adﬁl,O(K)(el) be defined by (g_lelg).‘/il(’io(f_lelf) = (gf) ei(gf), and its
Lie version be (g, el].fAl(’jo[f, eill=1gf el

Then, { -, - Yaq is a Poisson bracket, namely, it satisfies {a.}ilc’iob, c} ={a, c}.‘/Q(’iOb + a.‘il(’io{b, c}.

Proof. Let us proceed as in the proof of Proposition 5.13 in [Deligne and Goncharov 2005]. We write
g = 1+ae. When € — 0, we have (1 + ae) ofAl('i0 f = f+ed,(f)+ O(e?). Thus, the action of Lie(V®)
on Ad(l:h,o)(el) by ojA'dO is by g > d,. This map is injective. By the injectivity of d, we only have to
show that [dy, d,] = dgy 1(g)—dg (f)- Since they are derivations, it is sufficient to prove that these two maps
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agree on e, and this follows directly from their definitions. The fact that it is a Poisson bracket follows
from the isomorphism of Lie algebras Lie( ‘7“’) — Lie(Ady.(e1)). O

Definition A.1.2. We call {-, - } o4 the adjoint Ihara bracket.

A.2. Harmonic analogue of the Thara bracket. We also have defined in Definition 2A.3 the pro-
unipotent harmonic action of integrals at (1, 0), oﬂé’f, by pushing forward the adjoint Ihara action
by the map comp/ (see Section 4B), which amounts to the map S of Definition 2A.2. We are now
going to push-forward { -, - } a4 by a linear and injective version of the map S of Definition 2A.2. Below,
KTAT(eouuy )it is defined like K (equp, )i with coefficients in K[[A] instead of K.

har

Definition A.2.1. (i) Let S, : K {eouuy ) o) = K IIA]]((eOU,LN)){;;‘rO defined by

1 n
a—1 ni—1 ng—1 ni—1
h— § , h €ei1€) €5t €y €y €5 €y Cgycct€y g
1— Ae()
deN*
&1,-nbdr1€unN (K)
Nlyeeny ndeN*

(i) Let Lpar(K) = S Lie Ady. g (e1).

Proposition A.2.2. L,.(K) has a canonical Lie bracket { -, - }nar defined by

{Saf, Saghhar = Sa({f, glad)-

I90p ¢y ={a, ¢} + a.

*har

J10

har 1D, ¢}, where the product 'if;laio is

It is a Poisson bracket, i.e., we have {a
defined by Spg. 1 Sx f = Sx (g3 £).
Proof. Similar to the proof of Proposition A.1.1. U
Definition A.2.3. We call {-, - }1ar the harmonic Ihara bracket.

Remark A.2.4. (i) The harmonic Ihara bracket { -, - }p,r corresponds to the group law 6&0 defined by
S g6ﬁi’r° Saf=3Sa(g o/fxlc’lo f). Because of the injectivity of S, g, the group law Sﬂé’ro can be thought of as

another version of the pro-unipotent harmonic action of integrals o'kfl;'ro of Definition 2A.3.

(i1)) Another way to define a harmonic variant of the Ihara bracket would be to restrict to summable
points Adl:Il . (K)oy(er) C AdlzIl o (K)o(1y(e1) and to use compfe{, which is injective by Proposition 4B.2,

instead of compf !
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