Vol. 14, No. 7, 2020

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Nouvelles cohomologies de Weil en caractéristique positive

Joseph Ayoub

Vol. 14 (2020), No. 7, 1747–1790
Abstract

Soit K un corps valué de hauteur 1 et d’inégales caractéristiques (0,p), et soit k son corps résiduel. Dans cet article, nous construisons une nouvelle cohomologie de Weil pour les k-schémas de type fini à valeurs dans les AK-modules, avec AK une K-algèbre de « périodes abstraites p-adiques » qui admet une description explicite par générateurs et relations. Nous démontrons des théorèmes de comparaison reliant cette nouvelle cohomologie de Weil aux cohomologies de Weil classiques : la cohomologie rigide de Berthelot et les cohomologies -adiques, pour p. Nous énonçons également des conjectures sur l’anneau AK dont l’une d’elles entraîne l’indépendance de en cohomologie.

Let K be a valued field of height 1 and unequal characteristics (0,p), and let k be its residue field. In this article, we construct a new Weil cohomology for finite type k-schemes with values in AK-modules, where AK is a K-algebra of “p-adic abstract periods” admitting an explicit description by generators and relations. We establish comparison theorems relating this new Weil cohomology to the classical ones: Berthelot’s rigid cohomology and the -adic cohomologies, for p. We also state some conjectures on the ring AK. One of these conjectures implies the independence of in cohomology.

Keywords
cohomologie de Weil, motifs, motifs rigides, groupe de Galois motivique, indépendance de $\ell$
Mathematical Subject Classification 2010
Primary: 14F42
Milestones
Received: 21 December 2018
Revised: 17 December 2019
Accepted: 6 February 2020
Published: 18 August 2020
Authors
Joseph Ayoub
Institut für Mathematik
Universität Zürich
Switzerland
CNRS LAGA
Université Paris 13
France