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This article has three goals: First, we generalize the result of Deuring and Serre on the characterization of
supersingular locus to all Shimura varieties given by totally indefinite quaternion algebras over totally
real number fields. Second, we generalize the result of Ribet on arithmetic level raising to such Shimura
varieties in the inert case. Third, as an application to number theory, we use the previous results to study
the Selmer group of certain triple product motive of an elliptic curve, in the context of the Bloch–Kato
conjecture.

1. Introduction 2059
2. Shimura varieties and moduli interpretations 2066
3. Goren–Oort cycles and supersingular locus 2080
4. Arithmetic level raising 2094
5. Selmer groups of triple product motives 2104
Acknowledgements 2118
References 2118

1. Introduction

The study of special loci of moduli spaces of abelian varieties starts from Deuring and Serre. Let N ≥ 4 be
an integer and p a prime not dividing N . Let Y0(N ) be the coarse moduli scheme over Z(p) parametrizing
elliptic curves with a cyclic subgroup of order N . Let Y0(N )ss

Fp
denote the supersingular locus of the

special fiber Y0(N )Fp , which is a closed subscheme of dimension zero. Deuring and Serre proved the
following deep result (see, for example [Serre 1996]) characterizing the supersingular locus:

Y0(N )ss
Fp
(Fac

p )
∼= B×\B̂×/R̂×. (1-1)

Here, B is the definition quaternion algebra over Q ramified at p, and R ⊆ B is any Eichler order of
level N . Moreover, the induced action of the Frobenius element on B×\B̂×/R̂× coincides with the Hecke
action given by the uniformizer of B⊗Q Qp.

One main application of the above result is to study congruence of modular forms. Let f = q +
a2q2
+ a3q3

+ · · · be a normalized cusp new form of level 00(N ) and weight 2. Let m f be the ideal of
the away-from-N p Hecke algebra generated by Tv − av for all primes v - N p. We assume that f is not

MSC2010: primary 14G35; secondary 11G05, 11R34.
Keywords: Hilbert modular varieties, supersingular locus, automorphic forms, level raising, Selmer groups.

2059

http://msp.org
http://msp.org/ant/
https://doi.org/10.2140/ant.2020.14-8
http://https://doi.org/10.2140/ant.2020.14.2059


2060 Yifeng Liu and Yichao Tian

dihedral. Take a sufficiently large prime `, not dividing N p(p2
− 1). Using the isomorphism (1-1) and

the Abel–Jacobi map (over Fp2), one can construct a map

0(B×\B̂×/R̂×, F`)/m f → H1(Fp2,H1(Y0(N )⊗ Fac
p , F`(1))/m f ) (1-2)

where 0(B×\B̂×/R̂×, F`) denotes the space of F`-valued functions on B×\B̂×/R̂×. [Ribet 1990] proved
that the map (1-2) is surjective. Note that the right-hand side is nonzero if and only if ` | a2

p − (p+ 1)2,
in which case the dimension is 1. From this, one can construct a normalized cusp new form g of level
00(N p) and weight 2 such that f ≡ g mod ` when ` | a2

p − (p+ 1)2.
This article has three goals: First, we generalize the result of Deuring and Serre to all Shimura varieties

given by totally indefinite quaternion algebras over totally real number fields. Second, we generalize
Ribet’s result to such Shimura varieties in the inert case. Third, as an application to number theory, we
use the previous results to study Selmer groups of certain triple product motives of elliptic curves, in the
context of the Bloch–Kato conjecture.

For the rest of Introduction, we denote F a totally real number field, and B a totally indefinite quaternion
algebra over F . Put G := ResF/Q B× as a reductive group over Q.

1A. Supersingular locus of Hilbert modular varieties. Let p be a rational prime that is unramified in F .
Denote by 6p the set of all places of F above p, and put gp := [Fp : Qp] for every p ∈ 6p. Assume
that B is unramified at all p ∈ 6p. Fix a maximal order OB in B. Let K p

⊆ G(A∞) be a neat open
compact subgroup in the sense of Definition 2.6. We have a coarse moduli scheme Sh(G, K p) over Z(p)

parametrizing abelian varieties with real multiplication by OB and K p-level structure (see Section 2E for
details). Its generic fiber is a Shimura variety; in particular, we have the following well-known complex
uniformization:

Sh(G, K p)(C)∼= G(Q)\(C−R)[F :Q]×G(A∞)/K p K p,

where K p is a hyperspecial maximal subgroup of G(Qp). The supersingular locus of Sh(G, K p), that
is, the maximal closed subset of Sh(G, K p)⊗ Fac

p on which the parametrized abelian variety (over Fac
p )

has supersingular p-divisible group, descends to Fp, denoted by Sh(G, K p)ss
Fp

. Our first result provides a
global description of the subscheme Sh(G, K p)ss

Fp
.

To state our theorem, we need to introduce another Shimura variety. Let B† be the quaternion
algebra over F , unique up to isomorphism, such that the Hasse invariants of B† and B differ exactly
at all archimedean places and all p ∈ 6p with gp odd. Similarly, put G†

:= ResF/Q(B†)× and identify
G†(A∞,p) with G(A∞,p). We put

Sh(G†, K p)(Fac
p ) := G†(Q)\G†(A∞)/K p K †

p,

where K †
p is a maximal open compact subgroup of G†(Qp). We denote by Sh(G†, K p)Fac

p
the correspond-

ing scheme over Fac
p , that is, copies of Spec Fac

p indexed by Sh(G†, K p)(Fac
p ).
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Theorem 1.1 (Theorem 3.13). Let h be the least common multiple of (1+ gp− 2bgp/2c)gp for p ∈6p.
We have1

Sh(G, K p)ss
Fp
⊗ Fph =

⋃
a∈B

W (a).

Here

• B is a set of cardinality
∏

p∈6p

( gp
bgp/2c

)
equipped with a natural action by Gal(Fph/Fp);

• the base change W (a)⊗ Fac
p is a

(∑
p∈6p
bgp/2c

)
-th iterated P1-fibration over Sh(G†, K p)Fac

p
, equi-

variant under prime-to-p Hecke correspondences.2

In particular, Sh(G, K p)ss
Fp

is proper and of equidimension
∑

p∈6p
bgp/2c.

If p is inert in F of degree 2 and B is the matrix algebra, then the result was first proved in [Bachmat
and Goren 1999]. If p is inert in F of degree 4 and B is the matrix algebra, then the result was due to Yu
[2003]. Assume that p is inert in F of even degree. Then the strata W (a) have already been constructed in
[Tian and Xiao 2019], and the authors proved there that, under certain genericity conditions on the Satake
parameters of a fixed automorphic cuspidal representation π , the cycles W (a) give all the π -isotypic Tate
cycles on Sh(G, K p)Fp .

Similarly, one can define the superspecial locus Sh(G, K p)
sp
Fp

of Sh(G, K p), that is, the maximal
closed subset of Sh(G, K p)⊗ Fac

p on which the parametrized abelian variety has superspecial p-divisible
group. It is a reduced scheme over Fp of dimension zero. We have the following result:

Theorem 1.2 (Theorem 3.16). Assume that gp is odd for every p ∈ 6p. For each a ∈ B as in the
previous theorem, W (a) contains the superspecial locus Sh(G, K p)

sp
Fp
⊗Fph , and the iterated P1-fibration

πa : W (a)⊗ Fac
p → Sh(G†, K p)Fac

p
induces an isomorphism

Sh(G, K p)
sp
Fac

p

∼
−→ Sh(G†, K p)Fac

p

compatible with prime-to-p Hecke correspondences.

In fact, Theorem 3.16(2) shows that the Fp2-scheme structure on Sh(G†, K p)Fac
p

induced from the
isomorphism in the above theorem is independent of a. In other words, we have a canonical Fp2-scheme
structure on Sh(G†, K p)Fac

p
, which we denote by Sh(G†, K p). Then it is easy to see that the iterated

P1-fibration πa descends to a morphism of Fph -schemes

πa : W (a)→ Sh(G†, K p)Fh
p
.

A main application of the global description of the supersingular locus is to study the level raising
phenomenon, as we will explain in the next section.

1The notation here is simplified. In fact, in the main text and particularly Theorem 3.13, B†, G†, B, a and W (a) are denoted
by BSmax , GSmax , B∅, a and W∅,∅(a), respectively.

2One should consider Sh(G†, K p)Fac
p

as the Fac
p -fiber of a Shimura variety attached to G†. However, it seems impossible to

define the correct Galois action on Sh(G†, K p)Fac
p

using the formalism of Deligne homomorphisms when gp is odd for at least
one p ∈6p . When gp is odd for all p ∈6p , we will define the correct Galois action by Gal(Fac

p /Fp) using superspecial locus.
See the discussion after Theorem 1.2.
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1B. Arithmetic level raising for Hilbert modular varieties. We suppose that g = [F : Q] is odd. Fix
an irreducible cuspidal automorphic representation 5 of GL2(AF ) of parallel weight 2 defined over a
number field E. Let B, G be as in the previous section; and let K be a neat open compact subgroup of
G(A∞). Then we have the Shimura variety Sh(G, K ) defined over Q. Let R be a finite set of places of F
away from which 5 is unramified and K is hyperspecial maximal.

Let p be a rational prime inert in F such that the unique prime p of F above p is not in R. Then
K = K p K p and Sh(G, K ) has a canonical integral model Sh(G, K p) over Z(p) as in the previous section.
We also choose a prime λ of E and put kλ :=OE/λ.

Let Z[TR
] (resp. Z[TR∪{p}

]) be the (abstract) spherical Hecke algebra of GL2,F away from R (resp.
R∪ {p}). Then 5 induces a homomorphism

φ5,λ : Z[TR
] →OE→ kλ

via Hecke eigenvalues. Put m := ker(φ5,λ|Z[TR∪{p}]).
The Hecke algebra Z[TR∪{p}

] acts on the (étale) cohomology group H•(Sh(G, K p)⊗ Fac
p , kλ). Let

0(B×Sh(G†, K p)(Fac
p ), ∗) be the abelian group of ∗-valued functions on B×Sh(G†, K p)(Fac

p ), which
admits the Hecke action of Z[TR∪{p}

] via the second factor. We have a Chow cycle class map

0(B×Sh(G†, K p)(Fac
p ),Z)→ CH(g+1)/2(Sh(G, K p)Fac

p
)

sending a function f on B × Sh(G†, K p)(Fac
p ) to the Chow class of

∑
a,s f (a, s)π−1

a (s), which is
Z[TR∪{p}

]-equivariant. We will show that under certain “large image” assumption on the mod-λ Galois
representation attached to 5, the above Chow cycle class map (eventually) induces the following Abel–
Jacobi map

0(B×Sh(G†, K p)(Fac
p ), kλ)/m→ H1(Fp2g ,Hg(Sh(G, K p)Fac

p
, kλ((g+ 1)/2))/m). (1-3)

See Section 4A for more details. The following theorem is what we call arithmetic level raising:

Theorem 1.3 (Theorem 4.7). Suppose that p is a λ-level raising prime in the sense of Definition 4.5. In
particular, we have the following equalities in kλ:

φ5,λ(Tp)
2
= (pg

+ 1)2, φ5,λ(Sp)= 1,

where Tp (resp. Sp) is the (spherical) Hecke operator at p represented by
( p

0
0
1

)
∈ GL2(Fp) (resp.( p

0
0
p

)
∈ GL2(Fp)). Then the map (1-3) is surjective.

As we will point out in Remarks 4.2 and 4.6, if there exist rational primes inert in F , and 5 is not
dihedral and not isomorphic to a twist by a character of any of its internal conjugates, then for all but
finitely many prime λ, there are infinitely many (with positive density) rational primes p that are λ-level
raising primes.

Suppose that the Jacquet–Langlands transfer of 5 to B exists, say 5B . If (5∞,pB )K p
has dimension 1

and there is no other automorphic representation of B×(AF ) (of parallel weight 2, unramified at p, and
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with nontrivial K p-invariant vectors) congruent to 5B modulo λ, then the target of (1-3) has dimension( g
(g−1)/2

)
over kλ.

Remark 1.4. In principle, our method can be applied to prove a theorem similar to Theorem 1.3 when
B is not necessarily totally indefinite but the “supersingular locus”, defined in an ad hoc way if B is
not totally indefinite, still appears in the near middle dimension. In fact, the proof of Theorem 1.3 will
be reduced to the case where B is indefinite at only one archimedean place (that is, the corresponding
Shimura variety Sh(B) is a curve). However, we decide not to pursue the most general scenario as that
would make the exposition much more complicated and technical. On the other hand, we would like
to point out that arithmetic level raising when 1 < dim Sh(B) < [F : Q] has arithmetic application as
well, for example, to bound the triple product Selmer group (see the next section) with respect to a cubic
extension F/F[ of totally real number fields with F[ 6=Q.

Let us explain the meaning of Theorem 1.3. Suppose that 5 admits Jacquet–Langlands transfer, say
5B , to B× such that 5K

B 6= {0}. Then the right-hand side of (1-3) is nonzero. In particular, under the
assumption of Theorem 1.3, the left-hand side of (1-3) is nonzero as well. One can then deduce that
there is an (algebraic) automorphic representation 5′ of G†(A) = (B†)×(AF ) (trivial at∞) such that
the associated Galois representations of 5′ and 5 with coefficient OE/λ are isomorphic. However, it
is obvious that 5′ cannot be the Jacquet–Langlands transfer of 5, as B† is ramified at p while 5 is
unramified at p. In this sense, Theorem 1.3 reveals certain level raising phenomenon. Moreover, this
theorem not only proves the existence of level raising, but also provides an explicit way to realize the
congruence relation behind the level raising through the Abel–Jacobi map (1-3). As this process involves
cycle classes and local Galois cohomology, we prefer to call Theorem 1.3 arithmetic level raising. This is
crucial for our later arithmetic application. Namely, we will use this arithmetic level raising theorem to
bound certain Selmer groups, as we will explain in the next section.

1C. Selmer group of triple product motive. In this section, we assume that g = [F : Q] = 3; in other
words, F is a totally real cubic number field.

Let E be an elliptic curve over F . We have the Q-motive ⊗ IndF
Q h1(E) (with coefficient Q) of rank 8,

which is the multiplicative induction of the F-motive h1(E) to Q. The cubic-triple product motive of E
is defined to be

M(E) := (⊗ IndF
Q h1(E))(2).

It is canonically polarized. For every prime p, the p-adic realization of M(E), denoted by M(E)p,
is a Galois representation of Q of dimension 8 with Qp-coefficients. In fact, up to a twist, it is the
multiplicative induction from F to Q of the rational p-adic Tate module of E .

Now we assume that E is modular. Then it gives rise to an irreducible cuspidal automorphic represen-
tation 5E of (ResF/Q GL2,F )(A)=GL2(AF ) with trivial central character. Denote by τ : L G→GL8(C)

the triple product L-homomorphism [Piatetski-Shapiro and Rallis 1987, Section 0], and L(s,5E , τ ) the
triple product L-function, which has a meromorphic extension to the complex plane by [Garrett 1987;
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Piatetski-Shapiro and Rallis 1987]. Moreover, we have a functional equation

L(s,5E , τ )= ε(5E , τ )C(5E , τ )
1/2−s L(1− s,5E , τ )

for some ε(5E , τ ) ∈ {±1} and positive integer C(5E , τ ). The global root number ε(5E , τ ) is the
product of local ones: ε(5E , τ ) =

∏
v ε(5E,v, τ ), where v runs over all places of Q. Here, we have

ε(5E,v, τ ) ∈ {±1} and that it equals 1 for all but finitely many v. Put

6(5E , τ ) := {v | ε(5E,v, τ )=−1}.

In particular, the set 6(5E , τ ) contains∞. We have L(s,M(E))= L
(
s+ 1

2 ,5E , τ
)
.

Now we assume that E satisfies Assumption 5.1. In particular, 6(5E , τ ) has odd cardinality. Let B[ be
the indefinite quaternion algebra over Q with the ramification set 6(5E , τ )−{∞}, and put B := B[⊗Q F .
Put G := ResF/Q B× as before. We will define neat open compact subgroups Kr ⊆ G(A), indexed by
certain integral ideals r of F . We have the Shimura threefold Sh(G, Kr) over Q. Put G[

:= (B[)× and let
K [
r ⊆ G[(A) be induced from Kr. Then we have the Shimura curve Sh(G[, K [

r ) over Q with a canonical
finite morphism to Sh(G, Kr). Using this 1-cycle, we obtain, under certain conditions, a cohomology
class

2p,r ∈ H1
f (Q,M(E)p)

⊕a(r),

where H1
f (Q,M(E)p) is the Bloch–Kato Selmer group (Definition 5.6) of the Galois representation

M(E)p (with coefficient Qp), and a(r) > 0 is some integer depending on r. See Section 5A for more
details of this construction. We have the following theorem on bounding the Bloch–Kato Selmer group
using the class 2p,r.

Theorem 1.5 (Theorem 5.7). Let E be a modular elliptic curve over F satisfying Assumption 5.1. For a
rational prime p, if there exists a perfect pair (p, r) such that 2p,r 6= 0, then we have

dimQp H1
f (Q,M(E)p)= 1.

See Definition 5.4 for the meaning of perfect pairs, and also Remark 5.8.

The above theorem is closely related to the Bloch–Kato conjecture. We refer readers to the Introduction
of [Liu 2016] for the background of this conjecture, especially how Theorem 1.5 can be compared to
the seminal work of Kolyvagin [1990] and the parallel result [Liu 2016, Theorem 1.5] for another triple
product case. In particular, we would like to point out that under the (conjectural) triple product version
of the Gross–Zagier formula and the Beilinson–Bloch conjecture on the injectivity of the Abel–Jacobi
map, the following two statements should be equivalent:

• L ′(0,M(E)) 6= 0 (note that L(0,M(E))= 0).

• There exists some r0 such that for every other r contained in r0, we have 2p,r 6= 0 as long as (p, r)
is a perfect pair.
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Assuming this, then Theorem 1.5 implies that if L ′(0,M(E)) 6= 0, that is, ords=0 L(s,M(E))= 1, then
dimQp H1

f (Q,M(E)p)= 1 for all but finitely many p. This is certainly evidence toward the Bloch–Kato
conjecture for the motive M(E).

At this point, it is not clear how the arithmetic level raising, Theorem 1.3, is related to Theorem 1.5.
We will briefly explain this in the next section.

1D. Structure and strategies. There are four sections in the main part. In short words, Section 2 is respon-
sible for the basics on Shimura varieties that we will use later; Section 3 is responsible for Theorems 1.1
and 1.2; Section 4 is responsible for Theorem 1.3; and Section 5 is responsible for Theorem 1.5.

In Section 2, we study certain Shimura varieties and their integral models attached to both unitary
groups of rank 2 and quaternion algebras, and compare them through Deligne’s recipe of connected
Shimura varieties. The reason we have to study unitary Shimura varieties is the following: In the proof
of Theorems 1.1, 1.2 and 1.3, we have to use an induction process to go through certain quaternionic
Shimura varieties associated to B that are not totally indefinite. Those Shimura varieties are not (coarse)
moduli spaces but we still want to carry the information from the moduli interpretation through the
induction process. Therefore, we use the technique of changing Shimura data by studying closely related
unitary Shimura varieties, which are of PEL-type. Such argument is coherent with [Tian and Xiao 2016]
in which the authors study Goren–Oort stratification on quaternionic Shimura varieties.

In Section 3, we first construct candidates for the supersingular locus in Theorem 1.1 via Goren–Oort
strata, which were studied in [Tian and Xiao 2016], and then prove that they exactly form the entire
supersingular locus, both through an induction argument. As we mentioned previously, during the
induction process, we need to compare quaternionic Shimura varieties to unitary ones. At last, we identify
and prove certain properties for the superspecial locus, in some special cases.

In Section 4, we state and prove the arithmetic level raising result. Using the nondegeneracy of certain
intersection matrices proved in [Tian and Xiao 2019], we can reduce Theorem 1.3 to establishing a similar
isomorphism on certain quaternionic Shimura curves. Then we use the well-known argument of Ribet
together with Ihara’s lemma in this context to establish such isomorphism on curves.

In Section 5, we focus on the number theoretical application of the arithmetic level raising established
in the previous section. The basic strategy to bound the Selmer group follows the same line as in
[Kolyvagin 1990; Liu 2016; 2019]. Namely, we construct a family of cohomology classes 2νp,r,` to serve
as annihilators of the Selmer group after quotient by the candidate class 2p,r in rank 1 case. In the case
considered here, those cohomology classes are indexed by an integer ν as the depth of congruence, and a
pair of rational primes `= (`, `′) that are “pν-level raising primes” (see Definition 5.10 for the precise
terminology and meaning). The key idea is to connect 2p,r and various 2νp,r,` through some objects in
the middle, that is, some mod-pν modular forms on a certain Shimura set. Following past literature, the
link between 2p,r and those mod-pν modular forms is called the second explicit reciprocity law; while
the link between 2νp,r,` and those mod-pν modular forms is called the first explicit reciprocity law. The
first law in this context has already been established by one of us in [Liu 2019]. To establish the second
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law, we use Theorem 1.3; namely, we have to compute the corresponding element in the left-hand side in
the isomorphism of Theorem 1.3 of the image of 2p,r in the right-hand side.

1E. Notation and conventions. The following list contains basic notation and conventions we fix through-
out the article. We will usually not recall them when we use, as most of them are common:

• Let 3 be an abelian group and S a finite set. We denote by |S| the cardinality of S and 0(S,3) the
abelian group of 3-valued functions on S.

• If a base is not specified in the tensor operation ⊗, then it is Z. For an abelian group A, put
Â := A⊗ (lim

←−−n Z/n). In particular, we have Ẑ=
∏

l Zl , where l runs over all rational primes. For a
fixed rational prime p, we put Ẑ(p) :=

∏
l 6=p Zl .

• We denote by A the ring of adèles over Q. For a set � of places of Q, we denote by A� the ring of
adèles away from �. For a number field F , we put A�

F := A�
⊗Q F . If �= {v1, . . . , vn} is a finite

set, we will also write Av1,...,vn for A�.

• For a field K , denote by K ac the algebraic closure of K and put GK :=Gal(K ac/K ). Denote by Qac

the algebraic closure of Q in C. When K is a subfield of Qac, we take GK to be Gal(Qac/K ) hence
a subgroup of GQ.

• For a number field K , we denote by OK the ring of integers in K . For every finite place v of OK ,
we denote by OK ,v the ring of integers of the completion of K at v.

• If K is a local field, then we denote by OK its ring of integers, IK ⊆ GK the inertia subgroup. If v is
a rational prime, then we simply write Gv for GQv

and Iv for IQv
.

• Let K be a local field, 3 a ring, and N a 3[GK ]-module. We have an exact sequence of 3-modules

0→ H1
unr(K , N )→ H1(K , N ) ∂

−→ H1
sing(K , N )→ 0,

where H1
unr(K , N ) is the submodule of unramified classes.

• Let 3 be a ring and N a 3[GQ]-module. For each prime power v, we have the localization map
locv : H1(Q, N )→ H1(Qv, N ) of 3-modules.

• Denote by P1 the projective line scheme over Z, and Gm = Spec Z[T, T−1
] the multiplicative group

scheme.

• Let X be a scheme. The cohomology group H•(X,−) will always be computed on the étale site
of X . If X is of finite type over a subfield of C, then H•(X (C),−) will be understood as the Betti
cohomology of the associated complex analytic space X (C).

2. Shimura varieties and moduli interpretations

In this section, we study certain Shimura varieties and their integral models attached to both unitary
groups of rank 2 and quaternion algebras, and compare them through Deligne’s recipe of connected
Shimura varieties.
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Let F be a totally real number field, and p ≥ 3 a rational prime unramified in F . Denote by 6∞ =
HomQ(F,C) the set of archimedean places of F , and 6p the set of p-adic places of F above p. We
fix throughout Sections 2 and 3 an isomorphism ιp : C ∼

−→Qac
p . Via ιp, we identify 6∞ with the set of

p-adic embeddings of F via ιp. For each p ∈6p, we put gp := [Fp :Qp] and denote by 6∞/p the subset
of p-adic embeddings that induce p, so that we have

6∞ =
∐
p∈6p

6∞/p.

Since p is unramified in F , the Frobenius, denoted by σ , acts as a cyclic permutation on each 6∞/p.
We fix also a totally indefinite quaternion algebra B over F such that B splits at all places of F above p.

2A. Quaternionic Shimura varieties. Let S be a subset of 6∞ ∪6p of even cardinality, and put S∞ :=
S∩6∞. For each p ∈ 6p, we put Sp := S∩ (6∞/p ∪ {p}) and S∞/p = S∩6∞/p. We suppose that Sp
satisfies the following assumptions.

Assumption 2.1. Take p ∈6p:

(1) If p ∈ S, then gp is odd and Sp =6∞/p ∪ {p}.

(2) If p /∈ S, then S∞/p is a disjoint union of chains of even cardinality under the Frobenius action on
6∞/p, that is, either Sp =6∞/p has even cardinality or there exist τ1, . . . , τr ∈6∞/p and integers
m1, . . . ,mr ≥ 1 such that

Sp =
r∐

i=1

{τi , σ
−1τi , . . . , σ

−2mi+1τi } (2-1)

and στi , σ
−2mi τi 6∈ Sp.

Let BS denote the quaternion algebra over F whose ramification set is the union of S with the
ramification set of B. We put GS := ResF/Q(B×S ). For S = ∅, we usually write G = G∅. Then GS is
isomorphic to G over Fv for every place v /∈ S, and we fix an isomorphism

GS(A
∞,p)∼= G(A∞,p).

Let T be a subset of S∞, and Tp = S∞/p ∩ T for each p ∈ 6p. Throughout this paper, we will always
assume that |Tp| = #Sp/2. Consider the Deligne homomorphism

hS,T : S(R)= C×→ GS(R)∼= GL2(R)
6∞−S∞ × (H×)T× (H×)S∞−T

x +
√
−1y 7→

((
x
−y

y
x

)6∞−S∞
, (x2
+ y2)T, 1S∞−T

)
where H denotes the Hamiltonian algebra over R. Then GS,T := (GS, hS,T) is a Shimura datum, whose
reflex field FS,T is the subfield of the Galois closure of F in C fixed by the subgroup stabilizing both S∞
and T. For instance, if S∞ =∅, then T=∅ and FS =Q. Let ℘ denote the p-adic place of FS,T via the
embedding FS,T ↪→ C ∼

−→Qac
p . By abuse of notation, we will often write G = G∅,∅ in what follows.
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In this article, we fix an open compact subgroup K p =
∏

p∈6p
Kp ⊆ GS(Qp)=

∏
p∈6p

(BS⊗F Fp)
×,

where

• Kp is a hyperspecial subgroup if p /∈ S, and

• Kp =O×Bp
is the unique maximal open compact subgroup of (BS⊗F Fp)

× if p ∈ S.

For a sufficiently small open compact subgroup K p
⊆ G(A∞,p) ∼= GS(A

∞,p), we have the Shimura
variety Sh(GS,T, K p) defined over FS whose C-points are given by

Sh(GS,T, K p)(C)= GS(Q)\(H
±)6∞−S∞ ×GS(A

∞)/K p K p

where K = K p K p ⊆ G(A∞), and H± = P1(C)−P1(R) is the union of upper and lower half-planes.
Note that the scheme Sh(GS,T, K p)Qac over Qac is independent of T, but different choices of T will give
rise to different actions of Gal(Qac/FS,T) on Sh(GS,T, K p)Qac .

When S∞=6∞, the action of 0FS,T :=Gal(Qac/FS,T) on the set Sh(GS,T, K p)(Qac) is given as follows.
Note that the Deligne homomorphism hS,T factors through the center TF = ResF/Q(Gm)⊆ GS, and the
action of 0FS,T factors thus through its maximal abelian quotient 0ab

FS,T
. Let µ : Gm,FS,T → TF ⊗Q FS,T be

the Hodge cocharacter (defined over the reflex field FS,T) associated with hS,T. Let Art : A
∞,×
FS,T
→ 0ab

FS,T

denote the Artin reciprocity map that sends uniformizers to geometric Frobenii. Then the action of Art(g)
on Sh(GS,T, K p)(Qac) is given by the multiplication by the image of g under the composite map

A
∞,×
FS,T

µ
−−→ TF (A

∞

FS,T
)= (F ⊗Q A∞FS,T

)×
NFS,T/Q
−−−→ A

∞,×
F ⊆ GS(A

∞).

If F̃ denotes the Galois closure of F in C, then the restriction of the action of 0FS,T to 0F̃ depends only
on #T.

We put Sh(GS,T) := lim
←−−K p Sh(GS,T, K p). Let Sh(GS,T)

◦ be the neutral geometric connected component
of Sh(GS,T)⊗FS Qac, that is, the one containing the image of point

(i6∞−S∞, 1) ∈ (H±)6∞−S∞ ×GS(A
∞).

Then Sh(GS,T)
◦
⊗Qac,ιp Qac

p descends to Qur
p , the maximal unramified extension of Qp in Qac

p . Moreover,
by Deligne’s construction [1979], ShK p(GS,T) can be recovered from the connected Shimura variety
Sh(GS,T)

◦ together with its Galois and Hecke actions (see [Tian and Xiao 2016, 2.11] for details in our
particular case).

2B. An auxiliary CM extension. Choose a CM extension E/F such that

• E/F is inert at every place of F where B is ramified,

• for p ∈6p, E/F is split (resp. inert) at p if gp is even (resp. if gp is odd).

Let 6E,∞ denote the set of complex embeddings of E , identified also with the set of p-embeddings of E
by composing with ιp. For τ̃ ∈6E,∞, we denote by τ̃ c the complex conjugation of τ̃ . For p ∈6p, we
denote by 6E,∞/p the subset of p-adic embeddings of E inducing p. Similarly, for a p-adic place q of E ,
we have the subset 6E,∞/q ⊆6E,∞ consisting of p-adic embeddings that induce q.
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Assumption 2.2. Consider a subset S̃∞ ⊆6E,∞ satisfying the following:

(1) For each p ∈6p, the natural restriction map 6E,∞/p→6∞/p induces a bijection S̃∞/p ∼−→ S∞/p,
where S̃∞/p = S̃∞ ∩6E,∞/p.

(2) For each p-adic place q of E above a p-adic place p of F , the cardinality of S̃∞/q is half of the
cardinality of the preimage of S∞/p in 6E,∞/q.

For instance, if p splits in E into two places q and qc and Sp is given by (2-1), then the subset

S̃∞/p =
r∐

i=1

{τ̃i , σ
−1τ̃ c

i , . . . , σ
−2mi+2τ̃i , σ

−2mi+1τ̃ c
i }

satisfies the requirement. Here, τ̃i ∈6E,∞/p denotes the lift of τi inducing the p-adic place q. The choice
of such a S̃∞ determines a collection of numbers sτ̃ ∈ {0, 1, 2} for τ̃ ∈6E,∞ by the following rules:

sτ̃ =


0 if τ̃ ∈ S̃∞,
2 if τ̃ c

∈ S̃∞,
1 otherwise.

Our assumption on S̃∞ implies that, for every prime q of E above p, the set {τ̃ ∈6E,∞/q | sτ̃ = 0} has
the same cardinality as {τ̃ ∈6E,∞/q | sτ̃ = 2}.

Put S̃ := (S, S̃∞) and TE := ResE/Q(Gm). Consider the Deligne homomorphism

hE,S̃,T : S(R)= C×→ TE(R)=
∏
τ∈6∞

(E ⊗F,τ R)× ∼= (C
×)S∞−T

× (C×)T× (C×)S
c
∞

z = x +
√
−1y 7→ ((z, . . . , z), (z−1, . . . , z−1), (1, . . . , 1)).

where, for each τ ∈ S∞, we identify E ⊗τ,F R with C via the embedding τ̃ : E ↪→ C with τ̃ ∈ S̃∞
lifting τ . We write TE,S̃,T = (TE , hE,S̃,T) and put KE,p := (OE ⊗Zp)

×
⊆ TE(Qp), the unique maximal

open compact subgroup of TE(Qp). For each open compact subgroup K p
E ⊆ TE(A

∞,p), we have the
zero-dimensional Shimura variety Sh(TE,S̃,T, KE) whose Qac-points are given by

Sh(TE,S̃,T, KE)(Q
ac)= E×\TE(A

∞)/K p
E KE,p.

2C. Unitary Shimura varieties. Put TF := ResF/Q(Gm,F ). Then the reduced norm on BS induces a
morphism of Q-algebraic groups

νS : GS→ TF .

Note that the center of GS is isomorphic to TF . Let G ′′
S̃,T

denote the quotient of GS× TE by TF via the
embedding

TF ↪→ GS× TE , z 7→ (z, z−1),

and let G ′
S̃

be the inverse image of Gm ⊆ TF under the norm map

Nm : G ′′S̃ = (GS× TE)/TF → TF , (g, t) 7→ νS(g)NmE/F (t).
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Here, the subscript S̃ is to emphasize that we will take the Deligne homomorphism h′′
S̃
: C×→ G ′′

S̃
(R)

induced by hS,T× hE,S̃,T, which is independent of T. Note that the image of h′′
S̃

lies in G ′
S̃
(R), and we

denote by h′
S̃
: C×→ G ′

S̃
(R) the induced map.

As for the quaternionic case, we fix the level at p of the Shimura varieties for G ′′
S̃

and G ′
S̃

as follows.
Let K ′′p ⊆ G ′′

S̃
(Qp) be the image of K p × KE,p, and put K ′p := K ′′p ∩G ′

S̃
(Qp). Note that K ′′p (resp. K ′p)

is not a maximal open compact subgroup of G ′′
S̃
(Qp) (resp. G ′

S̃
(Qp)), if S contains some p-adic place

p ∈6p. For sufficiently small open compact subgroups K ′′p ⊆ G ′′
S̃
(A∞,p) and K ′p ⊆ G ′

S̃
(A∞,p), we get

Shimura varieties with C-points given by

Sh(G ′′S̃, K ′′p)(C)= G ′′S̃(Q)\(H
±)6∞−S∞ ×G ′′S̃(A

∞)/K ′′p K ′′p,

Sh(G ′S̃, K ′p)(C)= G ′S̃(Q)\(H
±)6∞−S∞ ×G ′S̃(A

∞)/K ′p K ′p.

We put
Sh(G ′′S̃) := lim

←−−
K ′′p

Sh(G ′′S̃, K ′′p), Sh(G ′S̃)= lim
←−−
K ′p

Sh(G ′S̃, K ′p).

The common reflex field ES̃ of Sh(G ′
S̃
) and Sh(G ′′

S̃
) is a subfield of the Galois closure of E in C. The

isomorphism ιp : C ∼
−→Qac

p defines a p-adic embedding of ES̃ ↪→Qac
p , hence a p-adic place ℘̃ of ES̃. Then

ES̃ is unramified at ℘̃. Let Sh(G ′′
S̃
)◦ (resp. Sh(G ′

S̃
)◦) denote the neutral geometric connected component

of Sh(G ′′
S̃
)⊗ES̃

Qac (resp. Sh(G ′
S̃
)⊗ES̃

Qac). Then both Sh(G ′′
S̃
)◦⊗Qac,ιp Qac

p and Sh(G ′
S̃
)◦⊗Qac,ιp Qac

p can
be descended to Qur

p .
In summary, we have a diagram of morphisms of algebraic groups

GS← GS× TE → G ′′S̃ = (GS× TE)/TF ← G ′S̃

compatible with Deligne homomorphisms, such that the induced morphisms on the derived and adjoint
groups are isomorphisms. By Deligne’s theory of connected Shimura varieties (see [Tian and Xiao
2016, Corollary 2.17]), such a diagram induces canonical isomorphisms between the neutral geometric
connected components of the associated Shimura varieties:

Sh(GS,T)
◦ ∼
←− Sh(G ′′S̃)

◦ ∼
−→ Sh(G ′S̃)

◦. (2-2)

Since a Shimura variety can be recovered from its neutral connected component together with its Hecke
and Galois actions, one can transfer integral models of Sh(G ′

S̃
) to integral models of Sh(GS,T) (see [Tian

and Xiao 2016, Corollary 2.17]).

2D. Moduli interpretation for unitary Shimura varieties. Note that Sh(G ′
S̃
, K ′p) is a Shimura variety

of PEL-type. To simplify notation, let O℘̃ be the ring of integers of the completion of ES̃ at ℘̃. We recall
the integral model of Sh(G ′

S̃
, K ′p) over O℘̃ defined in [Tian and Xiao 2016] as follows.

Let K ′p ⊆ G ′
S̃
(A∞,p) be an open compact subgroup such that K ′p K ′p is neat (for PEL-type Shimura

data). We put DS := BS⊗F E , which is isomorphic to Mat2(E) by assumption on E . Denote by b 7→ b
the involution on DS given by the product of the canonical involution on BS and the complex conjugation
on E/F . Write E = F(

√
d) for some totally negative element d ∈ F that is a p-adic unit for every p ∈6p.
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We choose also an element δ ∈ D×S such that δ = δ as in [Tian and Xiao 2016, Lemma 3.8]. Then the
conjugation by δ−1 defines a new involution b 7→ b∗= δ−1bδ. Consider W = DS as a free left DS-module
of rank 1, equipped with an ∗-hermitian alternating pairing

ψ : W ×W →Q, ψ(x, y)= TrE/Q(Tr◦DS/E(
√
dx yδ)), (2-3)

where Tr◦DS/E denotes the reduced trace of DS/E . Then G ′
S̃

can be identified with the unitary similitude
group of (W, ψ).

We choose an order ODS ⊆ DS that is stable under ∗ and maximal at p, and an ODS-lattice L ⊆ W
such that ψ(L , L)⊆ Z and L ⊗Zp is self-dual under ψ . Assume that K ′p is a sufficiently small open
compact subgroup of G ′

S̃
(A∞,p) which stabilizes L ⊗ Ẑ(p).

Consider the moduli problem Sh(G ′
S̃
, K ′p) that associates to each locally noetherian O℘̃-scheme S the

set of isomorphism classes of tuples (A, ι, λ, αK ′p), where:

• A is an abelian scheme over S of dimension 4[F :Q].

• ι : ODS ↪→ EndS(A) is an embedding such that the induced action of ι(b) for b ∈OE on Lie(A/S)
has characteristic polynomial

det(T − ι(b)|Lie(A/S))=
∏

τ̃∈6E,∞

(x − τ̃ (b))2sτ̃ .

• λ : A→ A∨ is a polarization of A such that

– the Rosati involution defined by λ on EndS(A) induces the involution b 7→ b∗ on ODS ,
– if p /∈ S, λ induces an isomorphism of p-divisible groups A[p∞] ∼−→ A∨[p∞], and
– if p ∈ S, then (ker λ)[p∞] is a finite flat group scheme contained in A[p] of rank p4gp and the

cokernel of induced morphism λ∗ : HdR
1 (A/S)→ HdR

1 (A
∨/S) is a locally free module of rank

two over OS ⊗Zp OE/p. Here, HdR
1 (−/S) denotes the relative de Rham homology.

• αK ′p is a K ′p level structure on A, that is, a K ′p-orbit of ODS-linear isomorphisms of étale sheaves
α : L⊗Ẑ(p) ∼−→ T̂ p(A) such that the alternating pairing ψ : L⊗Ẑ(p)×L⊗Ẑ(p)→ Ẑ(p) is compatible
with the λ-Weil pairing on T̂ p(A) via some isomorphism Ẑ(p)∼= Ẑ(p)(1). Here, T̂ p(A)=

∏
l 6=p Tl(A)

denotes the product of prime-to-p Tate modules.

Remark 2.3. Sometimes it is convenient to formulate the moduli problem Sh(G ′
S̃
, K ′p) in terms of isogeny

classes of abelian varieties: one associates to each locally noetherian O℘̃-scheme S the equivalence classes
of tuples (A, ι, λ, αrat

K ′p), where

• (A, ι) is an abelian scheme up to prime-to-p isogeny of dimension 4[F :Q] equipped with an action
ODS satisfying the determinant conditions as above;

• λ is a polarization on A satisfying the condition as above;
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• αrat
K ′p is a rational K ′p-level structure on A, that is, a K ′p-orbit of ODS ⊗A∞,p-linear isomorphisms

of étale sheaves on S:

α : W ⊗Q A∞,p ∼
−→ V̂ p(A) := T̂ p(A)⊗Q

such that the pairing ψ on W ⊗Q A∞,p is compatible with the λ-Weil pairing on V̂ p(A) up to a
scalar in A∞,p,×.

For the equivalence of these two definitions, see [Lan 2013].

Theorem 2.4. The moduli problem Sh(G ′
S̃
, K ′p) is representable by a quasiprojective and smooth scheme

Sh(G ′
S̃
, K ′p) over O℘̃ such that

Sh(G ′S̃, K ′p)⊗O℘̃
ES̃,℘̃
∼= Sh(G ′S̃, K ′p)⊗ES̃

ES̃,℘̃ .

Moreover, the projective limit Sh(G ′
S̃
) := lim

←−−K ′p Sh(G ′
S̃
, K ′p) is an integral canonical model of Sh(G ′

S̃
)

over O℘̃ in the sense that Sh(G ′
S̃
) satisfies the following extension property over O℘̃ : if S is a smooth

scheme over O℘̃ , any morphism S⊗O℘̃
ES̃,℘̃→ Sh(G ′

S̃
) extends uniquely to a morphism S→ Sh(G ′

S̃
).

Proof. This follows from [Tian and Xiao 2016, 3.14, 3.19]. �

Let Zur
p be the ring of integers of Qur

p . The closure of Sh(G ′
S̃
)◦ in Sh(G ′

S̃
)⊗O℘̃

Zur
p , denote by Sh(G ′

S̃
)◦Zur

p
,

is a smooth integral canonical model of Sh(G ′
S̃
)◦ over Zur

p . By (2-2), this can also be regarded as an
integral canonical model of Sh(GS,T)

◦ over Zur
p . This induces a smooth integral canonical model Sh(GS,T)

of Sh(GS,T) over OFS,T,℘ by Deligne’s recipe (see [Tian and Xiao 2016, Corollary 2.17]). For any open
compact subgroup K p

⊆ GS(A
∞,p), we define Sh(GS,T, K p) as the quotient of Sh(GS,T) by K p. If K p

is sufficiently small, then Sh(GS,T, K p) is a quasiprojective smooth scheme over OFS,T,℘ , and it is an
integral model for Sh(GS,T, K p).

2E. Moduli interpretation for totally indefinite quaternionic Shimura varieties. When S = ∅, then
T=∅ and the Shimura variety Sh(G, K p) := Sh(G∅,∅, K p) has another moduli interpretation in terms of
abelian varieties with real multiplication by OB . Using this moduli interpretation, one can also construct
another integral model of Sh(G, K p). The aim of this part is to compare this integral canonical model of
Sh(G, K p) with Sh(G, K p) constructed in the previous subsection using unitary Shimura varieties.

We choose an element γ ∈ B× such that

• γ =−γ ;

• b 7→ b∗ := γ−1bγ is a positive involution;

• ν(γ ) is a p-adic unit for every p-adic place p of F , where ν : B×→ F× is the reduced norm map.

Put V := B viewed as a free left B-module of rank 1, and consider the alternating pairing

〈 · , · 〉F : V × V → F, 〈x, y〉F = Tr◦B/F (x yγ ),
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where Tr◦B/F is the reduced trace of B. Note that 〈bx, y〉F = 〈x, b∗y〉F for x, y ∈ V and b ∈ B. We let
G = B× act on V via g · v = vg−1 for g ∈ G and v ∈ V . One has an isomorphism

G ∼= AutB(V ).

Fix an order OB ⊆ B such that

• OB contains OF , and it is stable under ∗;

• OB ⊗Zp is a maximal order of B⊗Q Qp ∼= GL2(F ⊗Q Qp).

Let K p
⊆ G(A∞,p) be an open compact subgroup. Consider the moduli problem Sh(G, K p) that

associates to every Z(p)-scheme T the equivalence classes of tuples (A, ι, λ, αK p) where

• A is a projective abelian scheme over T up to prime-to-p isogeny;

• ι is a real multiplication by OB on A, that is, a ring homomorphism ι : OB→ End(A) satisfying

det(T − ι(b)|Lie(A))= NF/Q(N◦B/F (T − b)), b ∈OB,

where N◦B/F is the reduced norm of B/F ;

• λ is an F p,×
+ -orbit of OF -linear prime-to-p polarizations λ : A→ A∨ such that ι(b)∨ ◦λ= λ ◦ ι(b∗)

for all b ∈OB , where F p,×
+ ⊆ F× is the subgroup of totally positive elements that are p-adic units

for all p ∈6p;

• αK p is a K p-level structure on (A, ι), that is, αK p is a K p-orbit of B⊗Q A∞,p-linear isomorphisms
of étale sheaves on T :

α : V ⊗Q A∞,p ∼
−→ V̂ p(A).

Remark 2.5. By [Zink 1982, Lemma 3.8], there exists exactly one F p,×
+ orbit of prime-to-p polarizations

on A that induces the given positive involution ∗ on B. Hence, one may omit λ from the definition of the
moduli problem Sh(G, K p). This is the point of view in [Liu 2019]. Here, we choose to keep λ in order
to compare it with unitary Shimura varieties.

By [Zink 1982, page 27], one has a bijection

Sh(G, K p)(C)∼= G(Q)\(H±)6∞ ×G(A∞)/K p K p = Sh(G, K p)(C).

Note that an object (A, ι, λ, αK p) ∈ Sh(G, K p)(T ) admits automorphisms O×F ∩ K p, which is always
nontrivial if F 6= Q. Here, O×F is considered as a subgroup of G(A∞,p) via the diagonal embedding.
Thus, the moduli problem Sh(G, K p) can not be representable. However, Zink shows [1982, Satz 1.7]
that Sh(G, K p) admits a coarse moduli space Sh(G, K p), which is a projective scheme over Z(p). This
gives an integral model of the Shimura variety Sh(G, K p) over Z(p).

We recall briefly Zink’s construction of Sh(G, K p). Take (A, ι, λ, αK p) ∈ Sh(G, K p)(T ) for some
Z(p)-scheme T . Choose a polarization λ∈ λ, and an isomorphism α ∈ αK p . Then λ induces a Weil pairing

9̂λ
: V̂ p(A)× V̂ p(A)→ A∞,p(1),
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and there exists a unique F-linear alternating pairing

9̂λ
F : V̂ p(A)× V̂ p(A)→ A

∞,p
F (1)

such that 9̂λ
= TrF/Q ◦9̂

λ
F . We fix an isomorphism Z∼= Z(1), and view 〈 · , · 〉 as a pairing with values

in F(1). Then by [Zink 1982, 1.2], there exists an element c ∈ A
∞,p,×
F such that

9̂λ
F (α(x), α(y))= c〈x, y〉F , x, y ∈ V ⊗Q A∞,p.

The class of c in A
∞,p,×
F /ν(K p), denoted by c(A, ι, λ, αK p), is independent of the choice of α ∈ αK p . If

F×+ ⊆ F× is the subgroup of totally positive elements, then the image of c(A, ι, λ, αK p) in

A
∞,p,×
F /F p,×

+ ν(K p)∼= A
∞,×
F /F×

+
ν(K )

is independent of the choices of both λ and α.
We choose representatives c1, . . . , cr ∈A

∞,p,×
F /ν(K p) of the finite quotient A

∞,p,×
F /F p,×

+ ν(K p), and
consider the moduli problem S̃h(G, K p) that associates to every Zp-scheme T equivalence classes of
tuple (A, ι, λ, αK p), where

• (A, ι) is an abelian scheme over T up to prime-to-p isogeny equipped with real multiplication by OB ;

• λ : A→ A∨ is a prime-to-p polarization such that ι(b)∨ ◦ λ= λ ◦ ι(b∗) for all b ∈OB ;

• αK p is a K p-level structure on A such that c(A, ι, λ, αK p)= ci for some i = 1, . . . , r .

To study the representability of S̃h(G, K p), we need the following notion of neat subgroups.

Definition 2.6. Let R be the ramification set of B. For every gv ∈ (B⊗F Fv)× with v /∈ R, let 0gv denote
the subgroup of Fac,×

v generated by the eigenvalues of gv. Choose an embedding Qac ↪→ Fac
v . Then

(0gv ∩Qac)tor is the subgroup of 0gv consisting of roots of unity, and it is independent of the embedding
Qac ↪→ Fac

v .
Let � be a finite set of places of Q containing the archimedean place, and let �F be the set of places

of F above �. An element g ∈ G(A�) = (B ⊗Q A�)× is called neat if
⋂
v∈�F−R(0gv ∩Qac)tor

= {1}.
We say a subgroup U ⊆ G(A�) is neat if every element g = gRgR ∈ U with ν(gR) = 1 is neat. Here,
gR
∈ (B⊗F A

�F∪R
F )× (resp. gR ∈

∏
v∈R−�F

(B⊗F Fv)×) is the prime-to-R component (resp. R-component)
of g.

Assume from now on that K p
⊆ G(A∞,p) is neat. It is easy to see that each object of S̃h(G, K p)

has no nontrivial automorphisms. By a well-known result of Mumford, S̃h(G, K p) is representable by a
quasiprojective smooth scheme S̃h(G, K p) over Z(p). If B is a division algebra, then S̃h(G, K p) is even
projective over Z(p) (see [Zink 1982, Lemma 1.8]).

Let O×F,+ be the group of totally positive units of F . There is a natural action by O×F,+ ∩ ν(K
p) on

S̃h(G, K p) given by ξ · (A, ι, λ, αK p)= (A, ι, ξ · λ, αK p) for ξ ∈ O×F,+, and the quotient is the moduli
problem Sh(G, K p). Note that the subgroup (O×F ∩ K p)2 acts trivially on S̃h(G, K p). Here, O×F is
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considered as a subgroup in the center of G(A∞,p). Indeed, if ξ = η2 with η ∈ O×F ∩ K p, then the
multiplication by η on A defines an isomorphism (A, ι, λ, αK p) ∼−→ (A, ι, ξ · λ, αK p). Put

1K p := (O×F,+ ∩ ν(K
p))/(O×F ∩ K p)2.

Proposition 2.7. Assume that K p is neat. Let (A, ι, λ, αK p) be a T -valued point of Sh(G, K p). Then
the group of automorphisms of (A, ι, λ, αK p) is O×F ∩ K p. Here, O×F is viewed as a subgroup of G(A∞,p)
via the diagonal embedding.

Proof. This is a slight generalization of [Zink 1982, Korollar 3.3]. Take η ∈ EndOB (A)Q that preserves λ
and αK p . Then there exists ξ ∈ F+× such that ηη̂= ξ , where η̂ is the Rosati involution of η induced by λ.
By [Zink 1982, Satz 3.2], it is enough to show that η̂= η. Choose α ∈ αK p , which induces an embedding

(EndOB (A)⊗Q)×→ (EndB(V )⊗Q A∞,p)× ∼= G(A∞,p).

Then the image of η under this embedding lies in K p. Consider the endomorphism η2ξ−1
∈EndOB (A)⊗Q.

Its image in G(A∞,p) lies in K p and has reduced norm equal to 1. Since K p is neat, all the eigenvalues
of η2ξ−1 are 1. So η2ξ−1 must be trivial, hence η = η̂. �

Corollary 2.8. Assume that K p is neat. Then the action of 1K p on S̃h(G, K p) is free.

Proof. The same argument for [Zink 1982, Korollar 3.4] shows that it follows from the above proposition.
�

We put

Sh(G, K p) := S̃h(G, K p)/1K p , (2-4)

which exists as a quasiprojective smooth scheme over Z(p) by [SGA 1 2003, Exposé VIII, Corollaire 7.7].
Then Sh(G, K p) is the coarse moduli space of the moduli problem Sh(G, K p), and S̃h(G, K p) is a finite
étale cover of Sh(G, K p) with Galois group 1K p . For each i = 1, . . . , r , we denote by S̃hci

(G, K p)

the subscheme of S̃h(G, K p) consisting the tuples (A, ι, λ, αK p) with c(A, ι, λ, αK p) = ci . It is clear
that each S̃hci

(G, K p) is stable under the action of 1K p . Let Shci (G, K p)⊆ Sh(G, K p) be the image of
S̃hci

(G, K p) under the morphism (2-4). Note that each Shci (G, K p) is not necessarily defined over Z(p).
Actually, using the strong approximation theorem, one sees easily that Shci (G, K p)(C) is a connected
component of Sh(G, K p)(C).

Remark 2.9. Assume that K p is neat:

(1) Let (Ã, ι̃) be the universal abelian scheme with real multiplication by OB over S̃h(G, K p). Then Ã
is equipped with a natural descent data relative to the projection S̃h(G, K p)→ Sh(G, K p), since
the action of 1K p modifies only the polarization. By [SGA 1 2003, Exposé VIII, Corollaire 7.7], the
descent data on Ã is effective. This means that, even though Sh(G, K p) is not a fine moduli space,
there exists still a universal family A over Sh(G, K p). Moreover, by étale descent, ι̃ descends to a
real multiplication ι by OB on the universal family A over Sh(G, K p).
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(2) In general, 1K p is nontrivial. However, for any open compact subgroup K p
⊆G(A∞,p), there exists

a smaller open compact subgroup K ′p ⊆ K p such that 1K ′p is trivial.

We give an interpretation of S̃h(G, K p) in terms of Shimura varieties. Let G?
⊆ G be the preimage

of Gm,Q ⊆ TF = ResF/Q(Gm,F ) via the reduced norm map ν : G→ TF . The Deligne homomorphism
h∅ : S(R)= C×→ G(R) factors through G?(R), hence induces a map

hG? : S(R)→ G?(R).

We put K ?
p := G?(Qp)∩ K p, which will be the fixed level at p for Shimura varieties attached to G?. For

a sufficiently small open compact subgroup K ?p
⊆ G?(A∞,p), we have the associated Shimura variety

Sh(G?, K ?p) defined over Q, whose C-points are given by

Sh(G?, K ?p)(C)= G?(Q)\((H±)6∞ ×G?(A∞)/K ?p K ?
p).

Put Sh(G?) := lim
←−−K ?p Sh(G?, K ?p) as usual.

There is a natural action of A∞,p,× on A
∞,p,×
F /F p,×

+ ν(K p) by multiplication. Let c1, . . . , ch denote
the equivalence classes modulo F p,×

+ A∞,p,× of the chosen set {c1, . . . , cr } ⊆ A
∞,p,×
F /ν(K p). We may

and do assume that all the ci ’s in one equivalence class differ from each other by elements in A∞,p,×.
For each c ∈ {c1, . . . , ch}, we put

S̃hc
(G, K p) :=

∐
ci∈c

S̃hci
(G, K p)

and similarly Shc(G, K p)=
∐

ci∈c
Shci (G, K p).

Proposition 2.10. Suppose that K p
⊆ G(A∞,p) is a neat open compact subgroup. For every c ∈

{c1, . . . , ch}, there exists an element g p
∈ G(A∞,p) such that if K ?,p

c := G?
∩ g p K pg p,−1, then we have

an isomorphism of schemes over Q

S̃hc
(G, K p)⊗Z(p) Q ∼

−→ Sh(G?, K ?,p
c ).

Proof. Let X ∼= (H±)6∞ denote the set of conjugacy classes of hG? : S(R)→ G?(R). We fix a base
point (A0, ι0, λ0, αK p,0) ∈ S̃hc

(G, K p)(C). Put VQ(A0) := H1(A0(C),Q). We fix an isomorphism
η0 : VQ(A0)

∼
−→ V of left B-modules and a choice of α0 ∈ αK p . Then the composite map

(η0⊗ 1) ◦α0 : V ⊗Q A∞,p→ V̂ p(A0)∼= VQ(A0)⊗Q A∞,p→ V ⊗Q A∞,p

defines an element g p
∈ G(A∞,p). Now let (A, ι, λ, αK p) ∈ S̃hci

(G, K p)(C) be another point. There
exists also an isomorphism η : VQ(A) ∼−→ V as B-modules, and the Hodge structure on VQ(A)⊗Q R=

H1(A(C),R) defines an element x∞ ∈ X . By the definition of Shc(G, K p), there exists an element
α ∈ αK p such that the isomorphism

h p
:= (η⊗ 1) ◦α ◦α−1

0 (η0⊗ 1)−1
∈ G(A∞,p)
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preserves the alternating pairing 〈 · , · 〉F on V ⊗Q A∞,p up to a scalar in A∞,p,×. Such an element α is
unique up to right multiplication by elements in K p, and it follows that h p is well defined up to right
multiplication by elements of K ?,p

c := g p K pg p,−1
∩G?(A∞,p). Viewing h p as an element of G?(A∞)

with p-component equal to 1, then (A, ι, λ, αK p) 7→ [x∞, h p
] defines a map

f : S̃hc
(G, K p)(C)→ Sh(G?, K ?,p)(C)∼= G?(Q)\(X ×G?(A∞)/K ?,p

c K ?
p).

By the complex uniformization of abelian varieties, it is easy to see that f is bijective, and f descends to
an isomorphism of schemes over Q by the theory of canonical models. �

Remark 2.11. In general, there is no canonical choice for g p in the above proposition. Different choices
of g p will result in different K ?,p

c , which are conjugate to each other in G?(A∞,p). Consequently,
the corresponding Sh(G?, K ?,p

c ) are isomorphic to each other by the Hecke action of some elements
in G?(A∞,p). However, if c = ctri is the trivial equivalence class, g p has a canonical choice, namely
g p
= 1. In the sequel, we will always take g p

= 1 if c= ctri. Applying Proposition 2.10 to this case, one
obtains a moduli interpretation of Sh(G?, K ?,p) as well as an integral model Sh(G?, K ?,p) over Z(p) of
Sh(G?, K ?,p). Explicitly, the integral model Sh(G?, K ?,p) parametrizes equivalence classes of tuples
(A, ι, λ, αK ?,p), where (A, ι, λ) is the same data as in S̃h(G, K p), and αK ?,p is a K ?,p-level structure on
A, that is, an K ?,p-orbit of isomorphisms α : V ⊗A∞,p ∼

−→ V̂ p(A) such that 〈 · , · 〉F is compatible with
9̂λ

F up to a scalar in A∞,p,×.

Example 2.12. Fix a lattice 3⊆ V stable under OB such that 〈3,3〉F ⊆ d−1
F , where dF is the different

of F/Q, and that 3⊗Zp is self-dual under 〈 · , · 〉F .
Let M,N be two ideals of OF such that they are mutually coprime, both prime to p and the ramification

set R of B, and that N is contained in NOF for some integer N ≥ 4. Let K0,1(M,N)p be a subgroup
of γ ∈ G(A∞,p) such that there exists v ∈3 with γ v ∈ (OFv+M3)∩ (v+N3); put K0,1(M,N) :=

K0,1(M,N)p K p. Then K0,1(M,N)p is neat and ν(K0,1(M,N))= Ô×F . We have thus isomorphisms

A
∞,p,×
F /F p,×

+ ν(K0,1(M,N)p)∼= A
∞,×
F /F×

+
Ô×F ∼= Cl+(F),

where Cl+(F) is the strict ideal class group of F ; and the action of A∞,× on Cl+(F) is trivial. We
choose prime-to-p fractional ideals c1, . . . , ch that form a set of representatives of Cl+(F). Then for each
c ∈ {c1, . . . , ch}, the moduli scheme S̃hc

(G, K0,1(M,N)p) classifies tuples (A, ι, λ,CM, αN), where

• (A, ι) is a projective abelian scheme equipped with real multiplication by OB ;

• λ : A→ A∨ is an OF -linear polarization such that ι(b)∨ ◦λ= λ ◦ ι(b∗) for b ∈OB , and the induced
map of abelian fppf-sheaves

A∨ ∼
−→ A⊗OF c

is an isomorphism;

• CM is a finite flat subgroup scheme of A[M] that is OB-cyclic of order (NmM)2;
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• αN : (OF/N)
⊕2 ↪→ A[N] is an embedding of finite étale group schemes equivariant under the action

of OB ⊗OF OF/N∼= GL2(OF/N).

Let g p
c ∈ G(A∞,p) be such that the fractional ideal attached to the idèle ν(g p

c ) ∈ A
∞,p,×
F represents

the strict ideal class c. Put

K ?,p
ci
:= g p

c K0,1(M,N)pg p,−1
c ∩G?(A∞,p).

Then we have

S̃hc
(G, K0,1(M,N)p)⊗Q∼= Sh(G?, K ?,p

ci
).

More explicitly, if 0c
0,1(M,N) := G?(Q)+ ∩ K ?,p

c , where G?(Q)+ ⊆ G?(Q) is the subgroup of elements
with totally positive reduced norms, then

S̃hc
(G, K0,1(M,N)p)(C)∼= Sh(G?, K ?,p

c )(C)∼= 0
c
0,1(M,N)\(H+)6∞ .

In particular, S̃hc
(G, K0,1(M,N)p)⊗Q is geometrically connected for every c. In this case, one has

1K0,1(M,N)p =O×F,+/O
×,2
F,N, where O×F,N denotes the subgroup of ξ ∈O×F with ξ ≡ 1 mod N. It is clear

that the action of 1K0,1(M,N)p preserves S̃hc
(G, K0,1(M,N)p), and one obtains an isomorphism

Sh(G, K0,1(M,N)p)∼=

h∐
i=1

Shci (G, K0,1(M,N)p)

with Shci (G, K0,1(M,N)p) = S̃hci
(G, K0,1(M,N)p)/1K0,1(M,N)p . Since 1K0,1(M,N)p acts freely on

S̃h(G, K0,1(M,N)p), each Shci (G, K0,1(M,N)p) is a smooth quasiprojective scheme over Z(p).

2F. Comparison of quaternionic and unitary moduli problems. We now compare the integral model
Sh(G, K p) defined in (2-4) and the one constructed using the unitary Shimura variety Sh(G ′

S̃
, K ′p)

with S = ∅. Note that when S = ∅, there is only one choice for S̃, so we write simply G ′ for G ′
S̃
. By

the universal extension property of Sh(G) := lim
←−−K p Sh(G, K p), these two integral canonical models

are necessarily isomorphic. However, for later applications to the supersingular locus of Sh(G, K p)Fp ,
one needs a more explicit comparison between the universal family of abelian varieties over Sh(G) (as
in Remark 2.9(1)) with that over Sh(G ′). It suffices to compare the universal objects over the neutral
connected components via the isomorphism

Sh(G)◦Zur
p

∼
−→ Sh(G ′)◦Zur

p

induced by (2-2). Here, Sh(G)◦Zur
p

is defined similarly as Sh(G ′)◦Zur
p
; in other words, it is the closure of

Sh(G)◦ in Sh(G)⊗Zur
p .

The natural inclusion G? ↪→ G induces also an isomorphism of derived and adjoint groups, and is
compatible with Deligne homomorphisms. By Deligne’s theory of connected Shimura varieties, it induces
an isomorphism of neutral connected components Sh(G?)◦ ∼= Sh(G)◦. Therefore, we are reduced to
comparing the universal family over Sh(G?) and Sh(G ′).
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Recall that we have chosen an element γ ∈ B× to define the pairing 〈 · , · 〉F on V = B. We take the
symmetric element δ ∈ D×S in Section 2D to be δ = γ /(2

√
d). One has W = V ⊗F E , and

ψ(x ⊗ 1, y⊗ 1)= 〈x, y〉

for any x, y ∈ V . Put 〈 · , · 〉 := TrF/Q ◦〈 · , · 〉F . Then G? (resp. G ′) can be viewed as the similitude group
of (V, 〈 · , · 〉) (resp. (W, ψ) (2-3)); and there exists a natural injection G? ↪→ G compatible with Deligne
homomorphisms that induces isomorphisms on the associated derived and adjoint groups.

We take OD∅ =OB ⊗OF OE . Let K ?p
⊆ G?(A∞,p) and K ′p ⊆ G ′(A∞,p) be sufficiently small open

compact subgroups with K ?p
⊆ K ′p. To each point (A, ι, λ, αK ?,p) of Sh(G?, K ?,p) with values in a

Zp-scheme S, we attach the tuple (A′, ι′, λ′, αrat
K ′p), where

• A′ = A⊗OF OE ;

• ι′ : OD∅→ EndS(A′) is the action induced by ι;

• λ′ : A′→ A′∨ is the prime-to-p polarization given by

A′ = A⊗OF OE
λ⊗1
−−→ A∨⊗OF OE

1⊗i
−−→ A∨⊗OF d

−1
E/F
∼= A′∨,

where d−1
E/F is the inverse of the relative different of E/F and i : OE→ d−1

E/F is the natural inclusion;

• αrat
K ′p is a rational K ′p-level structure on A′ induced by αK ?,p by the compatibility of alternating

forms (V, 〈 · , · 〉) and (W, ψ). Here, we use the moduli interpretation of Sh(G ′, K ′p) in terms of
isogeny classes of abelian varieties (See Remark 2.3).

This defines a morphism
Sh(G?, K ?p)→ Sh(G ′, K ′p)

over Zp extending the morphism Sh(G?, K ′?p)⊗Q Qp → Sh(G ′, K ′p)⊗Q Qp. Taking the projective
limit on the prime-to-p levels, one gets a morphism of schemes over Zp

f : Sh(G?)→ Sh(G ′)

such that one has an isomorphism of abelian schemes

f ∗A′ ∼=A⊗OF OE ,

where A (resp. A′) is the universal abelian scheme over Sh(G?) (resp. over Sh(G ′
S̃
)). By the extension

property of the integral canonical model, the map f induces an isomorphism

f ◦ : Sh(G?)◦ ∼−→ Sh(G ′)◦

which extends the isomorphism Sh(G?)◦ ∼−→ Sh(G ′)◦ induced by the morphism of Shimura data on the
generic fibers. Thus the two universal families over Sh(G)◦ induced from Sh(G?) and Sh(G ′) respectively
are related by the relation

f ◦,∗(A′|Sh(G ′)◦)∼=A|Sh(G)◦ ⊗OF OE . (2-5)
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3. Goren–Oort cycles and supersingular locus

In this section, we study the supersingular locus and the superspecial locus of certain Shimura varieties
established in the previous section.

3A. Notation and conventions. Let k be a perfect field containing all the residue fields of the auxiliary
field E in Section 2B at p-adic places, and W (k) be the ring of Witt vectors. Then 6E,∞ is in natural
bijection with HomZ(OE ,W (k)), and we have a canonical decomposition

ODS ⊗Z W (k)∼=Mat2(OE ⊗Z W (k))=
⊕

τ̃∈6E,∞

M(W (k)).

Let S be a W (k)-scheme, and N a coherent OS ⊗ODS-module. Then one has a canonical decomposition

N =
⊕

τ̃∈6E,∞

Nτ̃ ,

where Nτ̃ is a left Mat2(OS)-module on which OE acts via the composite map OE
τ̃
−→W (k)→OS . We

also denote by N ◦
τ̃

the direct summand e · Nτ̃ with e =
(1

0
0
0

)
∈Mat2(OS), and we call M◦

τ̃
the reduced

τ̃ -component of M .
Let G be a p-divisible group over a k-scheme S. We say that G is supersingular if, for every geometric

point s of S, the Newton polygon of G ×S s has only slope 1
2 . An abelian variety A over S is called

supersingular if A[p∞] is a supersingular p-divisible group over S, or equivalently for every geometric
point s of S, A×S s is isogenous to a product of supersingular elliptic curves.

Consider a quaternionic Shimura variety Sh(GS,T, K p) of type considered in Section 2A, and let
Sh(G ′

S̃
, K ′p) be the associated unitary Shimura variety over O℘̃ as constructed in Section 2D for a certain

choice of auxiliary CM extension E/F . Let k0 be the smallest subfield of Fac
p containing all the residue

fields of characteristic p of E . Then we have k0 ∼= Fph with h equal to the least common multiple of
{(1+ gp− 2bgp/2c)gp | p ∈6p}. Put

Sh(G ′S̃, K ′p)k0 := Sh(G ′S̃, K ′p)⊗O℘̃
k0.

The universal abelian scheme over Sh(G ′
S̃
, K ′p)k0 is usually denoted by A′

S̃
.

3B. Hasse invariants. We recall first the definition of essential invariant on Sh(G ′
S̃
, K ′p)k0 defined in

[Tian and Xiao 2016, Section 4.4]. Let (A, ι, λ, αK ′p) be an S-valued point of Sh(G ′
S̃
, K ′p)k0 for some

k0-scheme S. Recall that HdR
1 (A/S) is the relative de Rham homology of A. Let ωA∨ be the module of

invariant differential 1-forms on A∨. Then for each τ̃ ∈6E,∞, HdR
1 (A/S)◦

τ̃
is a locally free OS-module

on S of rank 2, and one has a Hodge filtration

0→ ω◦A∨,τ̃ → HdR
1 (A/S)◦τ̃ → Lie(A/S)◦τ̃ → 0.

We defined, for each τ̃ ∈6E,∞, the essential Verschiebung

Ves,τ̃ : HdR
1 (A/S)◦τ̃ → HdR

1 (A
(p)/S)◦τ̃ ∼= HdR

1 (A/S)◦,(p)
σ−1τ̃

,
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to be the usual Verschiebung map if sσ−1τ̃ = 0 or 1, and to be the inverse of Frobenius if sτ̃ = 2. This is
possible since for sτ̃ = 2, the Frobenius map F : HdR

1 (A
(p)/S)◦

τ̃
→ HdR

1 (A/S)◦
τ̃

is an isomorphism. For
every integer n ≥ 1, we denote by

V n
es : HdR

1 (A/S)◦τ̃ → HdR
1 (A

(pn)/S)◦τ̃ ∼= HdR
1 (A/S)◦,(p

n)

σ−n τ̃

the n-th iteration of the essential Verschiebung.
Similarly, if S = Spec k is the spectrum of a perfect field k containing k0, then one can define the

essential Verschiebung
Ves : D̃(A)◦τ̃ → D̃(A)◦

σ−1τ̃
for all τ̃ ∈6E,∞,

as the usual Verschiebung on Dieudonné modules if sτ̃ = 0, 1 and as the inverse of the usual Frobenius if
sτ̃ = 2. Here, D̃(A) denote the covariant Dieudonné module of A[p∞]. This is a σ−1-semilinear map of
W (k)-modules. For any integer n ≥ 1, we denote also by

V n
es : D̃(A)

◦

τ̃ → D̃(A)◦σ−n τ̃

the n-th iteration of the essential Verschiebung.
Now return to a general base S over k0. For τ ∈6∞− S∞, let nτ = nτ (S) denote the smallest integer

n ≥ 1 such that σ−nτ ∈6∞− S∞. Assumption 2.1 implies that nτ is odd. Then for each τ̃ ∈6E,∞ with
sτ̃ = 1, or equivalently each τ̃ ∈6E,∞ lifting some τ ∈6∞− S∞, the restriction of V nτ

es to ω◦A∨,τ̃ defines
a map

h τ̃ (A) : ω◦A∨,τ̃ → ω
◦,(pnτ )

A∨,σ−nτ τ̃
∼= (ω

◦

A∨,σ−nτ τ̃ )
⊗pnτ

.

Applying this construction to the universal object, one gets a global section

h τ̃ ∈ 0(Sh(G ′S̃, K ′p)k0, (ω
◦

A′∨
S̃
,σ−nτ τ̃

)⊗pnτ
⊗ (ω◦A′∨

S̃
,τ̃
)⊗−1). (3-1)

called the τ -th partial Hasse invariant.

Proposition 3.1. Let x = (A, ι, λ, αK ′p) be an Fac
p -point of Sh(G ′

S̃
, K ′p)k0 , and p a p-adic place of F

such that S∞/p 6= 6∞/p. Assume that h τ̃ (A) 6= 0 for all τ̃ ∈ 6E,∞/p with sτ̃ = 1. Then the p-divisible
group A[p∞] is not supersingular.

Proof. The covariant Dieudonné module D̃(A) of A[p∞] is a free W (Fac
p )⊗Z ODS-module of rank 1.

Then the covariant Dieudonné module of A[p∞] is given by

D̃(A[p∞])=
⊕

τ̃∈6E,∞/p

D̃(A)◦,⊕2
τ̃

,

and there exists a canonical isomorphism

D̃(A)◦τ̃/pD̃(A)◦τ̃ ∼= HdR
1 (A/F

ac
p )
◦

τ̃ .

By assumption, for all τ̃ ∈6E,∞/p lifting some τ ∈6∞/p− S∞/p, the map

h τ̃ (A) : ω◦A∨,τ̃ → ω
◦,(pnτ )

A∨,σ−nτ τ̃
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is nonvanishing. Thus it is an isomorphism, as both the source and the target are one-dimensional
Fac

p -vector spaces. For each τ̃ ∈6E,∞/p lifting some τ ∈6∞/p− S∞/p, choose a basis eτ̃ for ω◦A∨,τ̃ , and
extend it to a basis (eτ̃ , fτ̃ ) of HdR

1 (A/F
ac
p )
◦

τ̃
. If we consider Ves as a σ−1-linear map on HdR

1 (A/F
ac
p )
◦

τ̃
,

then one has

V nτ
es (eτ̃ , fτ̃ )= (eσ−nτ τ̃ , fσ−nτ τ̃ )

(
u τ̃ 0
0 0

)
with u τ̃ ∈ Fac,×

p .
Let q be a p-adic place of E above p. By our choice of E , gq := [Eq :Qp] is always even no matter

whether p is split or inert in E . To prove the proposition, it suffices to show that the p-divisible group
A[q∞] is not supersingular. By composing the essential Verschiebung maps on all HdR

1 (A/S)◦
τ̃

with
τ̃ ∈6E,∞/q, we get

V gq
es (eτ̃ , fτ̃ )= (eτ̃ , fτ̃ )

(
a τ̃ 0
0 0

)
with a τ̃ ∈ Fac,×

p for all τ̃ ∈ 6E,∞/q with sτ̃ = 1. Now, note that V gq
es on HdR

1 (A/F
ac
p )
◦

τ̃
is nothing but the

reduction modulo p of the σ−gq-linear map

V gq/pm
: D̃(A)◦τ̃ → D̃(A)◦τ̃ ,

where m is the number of τ̃ ∈6E,∞/q with sτ̃ = 2. If (ẽτ̃ , f̃τ̃ ) is a lift of (eτ̃ , fτ̃ ) to a basis of D̃(A)◦
τ̃

over
W (Fac

p ), then V gq/pm on D̃(A)◦
τ̃

is given by

V gq

pm (ẽτ̃ , f̃τ̃ )= (ẽτ̃ , f̃τ̃ )
(

aτ̃ pbτ̃
pcτ̃ pdτ̃

)
for some aτ̃ ∈W (Fac

p )
× lifting a τ̃ and bτ̃ , cτ̃ , dτ̃ ∈W (Fac

p ). Put

L :=
⋂
n≥1

(
V gq

pm

)n

D̃(A)◦τ̃ .

It is easy to see that L is a W (Fac
p )-direct summand of D̃(A)◦

τ̃
of rank one, on which V gp/pm acts

bijectively. It follows that 1−m/gq is a slope of the p-divisible group A[q∞]. By our choice of the sτ̃
in Section 2B, the two sets {τ̃ ∈ 6E,∞/q | sτ̃ = 2} and {τ̃ ∈ 6E,∞/q | sτ̃ = 0} have the same cardinality,
hence 2m < gq, that is, 1−m/gq > 1

2 . Therefore, A[q∞] hence A[p∞], are not supersingular. �

3C. Goren–Oort divisors. For each τ ∈ 6∞ − S∞, let Sh(G ′
S̃
, K ′p)k0,τ be the closed subscheme of

Sh(G ′
S̃
, K ′p)k0 defined by the vanishing of h τ̃ for some τ̃ ∈ 6E,∞ lifting τ . By [Tian and Xiao 2016,

Lemma 4.5], h τ̃ vanishes at a point x of Sh(G ′
S̃
, K ′p)k0 if and only if h τ̃ c vanishes at x . In particular,

Sh(G ′
S̃
, K ′p)k0,τ does not depend on the choice of τ̃ lifting τ . We call Sh(G ′

S̃
, K ′p)k0,τ the τ -th Goren–

Oort divisor of Sh(G ′
S̃
, K ′p)k0 . For a nonempty subset 1⊆6∞− S∞, we put

Sh(G ′S̃, K ′p)k0,1 :=

⋂
τ∈1

Sh(G ′S̃, K ′p)k0,τ .
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According to [Tian and Xiao 2016, Proposition 4.7], Sh(G ′
S̃
, K ′p)k0,1 is a proper and smooth closed

subvariety of Sh(G ′
S̃
, K ′p)k0 of codimension #1; in other words, the union

⋃
τ∈6∞−S∞ Sh(G ′

S̃
, K ′p)k0,τ

is a strict normal crossing divisor of Sh(G ′
S̃
, K ′p)k0 .

In [Tian and Xiao 2016], we gave an explicit description of Sh(G ′
S̃
, K ′p)k0,τ in terms of another unitary

Shimura variety of type in Section 2D. To describe this, let p ∈6p denote the p-adic place induced by τ .
Set

Sτ =
{

S∪ {τ, σ−nτ τ } if 6∞/p 6= S∞/p ∪ {τ },
S∪ {τ, p} if 6∞/p = S∞/p ∪ {τ }.

(3-2)

We fix a lifting τ̃ ∈ 6E,∞ of τ , and take S̃τ,∞ to be S̃∞ ∪ {τ̃ , σ−nτ τ̃ c
} if 6∞/p 6= S∞/p ∪ {τ }, and to be

S̃∞ ∪ {τ̃ } if 6∞/p = S∞/p ∪ {τ }. This choice of S̃τ,∞ satisfies Assumption 2.2. We note that both DS and
DSτ are isomorphic to Mat2(E). We fix an isomorphism DS ∼= DSτ , and let ODSτ

denote the order of DSτ

corresponding to ODS under this isomorphism.

Proposition 3.2. Under the above notation, there exists a canonical projection

π ′τ : Sh(G ′S̃, K ′p)k0,τ → Sh(G ′S̃τ , K ′p)k0

where:

(1) If 6∞/p 6= S∞/p ∪ {τ }, then π ′τ is a P1-fibration over Sh(G ′
S̃τ
, K ′p)k0 such that the restriction of π ′τ

to Sh(G ′
S̃
, K ′p)k0,{τ,σ−nτ τ } is an isomorphism.

(2) If 6∞/p = S∞/p ∪ {τ }, then π ′τ is an isomorphism.

Moreover, π ′τ is equivariant under prime-to-p Hecke correspondences when K ′p varies, and there exists
a p-quasiisogeny

φ : A′S̃|Sh(G ′
S̃
,K ′p)k0,τ

→ π ′∗τ A′S̃τ

that is compatible with polarizations and K ′p-level structures on both sides, and that induces an isomor-
phism of relative de Rham homology groups

φ∗,τ : HdR
1 (A

′

S̃|Sh(G ′
S̃
,K ′p)k0,τ

/Sh(G ′S̃, K ′p)k0,τ )
◦

τ̃ ′
∼= HdR

1 (A
′

S̃τ
/Sh(G ′S̃τ , K ′p))◦τ̃ ′

for any τ̃ ′ ∈6E,∞/p lifting some τ ′ ∈6∞− Sτ,∞/p.

Proof. This is [Tian and Xiao 2016, Theorem 5.2]. �

Here, we are content with explaining the map π ′τ and the quasiisogeny φ on Fac
p -points. Take x =

(A, ιA, λA, αA) ∈ Sh(G ′
S̃
, K ′p)k0,τ (F

ac
p ). Denote by D̃(A)◦ =

⊕
τ̃ ′∈6E,∞

D̃(A)◦
τ̃ ′

the reduced covariant
Dieudonné module as usual. For each τ̃ ′ ∈6E,∞, define the essential Frobenius

Fes : D̃◦σ−1τ̃ ′
→ D̃◦τ̃ ′
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as the usual Frobenius map if s
τ̃ ′
= 1, 2 and as the inverse of Verschiebung map if sτ̃ ′ = 0. Consider a

W (Fac
p )-lattice M◦ =

⊕
τ̃ ′∈6E,∞

Mτ̃ ′ of D̃(A)◦[1/p] such that

M◦τ̃ ′ =


Fnτ−`

es D̃(A)◦
σ−nτ τ̃

if τ̃ ′ = σ−`τ̃ with 0≤ `≤ nτ − 1,
1
p Fnτ−`

es D̃(A)◦
σ−nτ τ̃ c if τ̃ ′ = σ−`τ̃ c with 0≤ `≤ nτ − 1 and 6∞/p 6= S∞/p ∪ {τ },

D̃(A)◦
τ̃ ′

otherwise.

Note that the condition h τ̃ (A) = 0 is equivalent to ω̃◦A∨,τ̃ = Fnτ
es (D̃(A)◦σ−nτ τ̃

), where ω̃◦A∨,τ̃ denotes the
preimage of ω◦A∨,τ̃ under the natural reduction map

D̃(A)◦τ̃ → D̃(A)◦τ̃/pD̃(A)◦τ̃ ∼= HdR
1 (A/F

ac
p )
◦

τ̃ .

Using this property, one checks easily that M◦ is a Dieudonné submodule of D̃(A)◦[1/p]. Put M :=M◦,⊕2

equipped with the natural action of ODS ⊗Zp ∼=Mat2(OE ⊗Zp). Then M corresponds to a p-divisible
group G equipped with an ODS-action and an ODS-linear isogeny φp : A[p∞] → G. Thus there exists an
abelian variety B over Fac

p with B[p∞] = G and a p-quasiisogeny φ : A→ B such that φp is obtained by
taking the p∞-torsion of φ. Moreover, by construction, it is easy to see that

dim Lie(B)◦τ̃ ′ =


dim(Lie(A)◦

τ̃ ′
) if τ̃ ′ 6= τ̃ , σ−nτ τ̃ ,

0 if τ̃ ′ = τ̃ , σ−nτ τ̃ c,

2 if τ̃ ′ = τ̃ c, σ−nτ τ̃ .

In other words, the OE -action on B satisfies Kottwitz’ condition for Sh(G ′
S̃τ
, K ′p). Moreover, λA and αA

induce an ODSτ
-linear prime-to-p polarization λB via the fixed isomorphism ODS 'ODSτ

and a K ′p-level
structure αB on B, respectively, such that (B, ιB, λB, αB) is an Fac

p -point of Sh(G S̃τ , K ′p). The resulting
map (A, ιA, λA, αA) 7→ (B, ιB, λB, αB) is nothing but π ′τ .

If 6∞/p 6= S∞/p ∪ {τ }, then σ−nτ τ 6= τ and we have D̃(B)◦
σ−nτ τ̃

= D̃(A)◦
σ−nτ τ̃

by construction. To
recover A from B, it suffices to “remember” the line ω◦A∨,σ−nτ τ̃

inside the two dimensional Fac
p -vector

space
D̃(A)◦σ−nτ τ̃/pD̃(A)◦σ−nτ τ̃ = D̃(B)◦σ−nτ τ̃/pD̃(B)◦σ−nτ τ̃ .

This means that the fiber of π ′τ over a point (B, ιB, λB, αB) ∈ Sh(G ′
S̃τ
, K ′p) is isomorphic to P1. On the

other hand, if 6∞/p = S∞/p ∪ {τ } then nτ = [Fp : Qp] is odd, one can completely recover A from B,
and thus π ′τ induces a bijection on closed points.3 The moreover part of the statement follows from the
construction of π ′τ .

3D. Periodic semimeanders. Following [Tian and Xiao 2019], we iterate the construction of Goren–Oort
divisors to produce some closed subvarieties called Goren–Oort cycles. To parametrize those cycles, one
need to recall some combinatorial data introduced in [loc. cit., Section 3.1].

For a prime p∈6p, put dp(S) := gp−#S∞/p. If there is no confusion, we write dp= dp(S) for simplicity.
Consider the cylinder C : x2

+ y2
= 1 in 3-dimensional Euclidean space, and let C0 be the section with

3To show that π ′τ is indeed an isomorphism, one has to check also that π ′τ induces isomorphisms of tangent spaces to each
closed point. This is the most technical part of [Tian and Xiao 2016]. For more details, see [loc. cit., Lemma 5.20].
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z = 0. We write 6∞/p = {τ0, . . . , τgp−1} such that τ j = στ j−1 for j ∈ Z/gpZ. For 0 ≤ j ≤ gp − 1,
we use τ j to label the point (cos 2π j/gp, sin 2π j/gp, 0) on C0. If τ j ∈ S∞/p, then we put a plus sign
at τ j ; otherwise, we put a node at τ j . We call such a picture the band associated to S∞/p. We often
draw the picture on the 2-dimensional xy-plane by thinking of x-axis modulo gp. We put the points
τ0, . . . , τgp−1 on the x-axis with coordinates x = 0, . . . , gp− 1 respectively. For example, if gp = 6 and
S∞/p = {τ1, τ3, τ4}, then we draw the band as

b b b
+ + + .

A periodic semimeander for S∞/p is a collection of curves (called arcs) that link two nodes of the
band for S∞/p, and straight lines (called semilines) that links a node to the infinity (that is, the direction
y→+∞ in the 2-dimensional picture) subject to the following conditions:

(1) All the arcs and semilines lie on the cylinder above the band (that is to have positive y-coordinate in
the 2-dimensional picture).

(2) Every node of the band for S∞/p is exactly one end point of an arc or a semiline.

(3) There are no intersection points among these arcs and semilines.

The number of arcs is denoted by r (so r ≤ dp/2), and the number of semilines dp − 2r is called the
defect of the periodic semimeander. Two periodic semimeanders are considered as the same if they can
be continuously deformed into each other while keeping the above three properties in the process. We
use B(S∞/p, r) denote the set of semimeanders for S∞/p with r arcs (up to continuous deformations).
For example, if gp = 7, r = 2, and S∞/p = {τ1, τ4}, then we have dp = 5 and

B(S∞/p, 2)=

 b b b b b+ + , b b b b b+ + , b b b b b+ + , b b b b b+ + , b b b b b+ + ,

b b b b b+ + , b b b b b+ + , b b b b b+ + , b b b b b+ + , b b b b b+ + .

It is easy to see that the cardinality of B(S∞/p, r) is
(dp

r

)
. In fact, the map that associates to each

element a ∈B(S∞/p, r) the set of right end points of arcs in a establishes a bijection between B(S∞/p, r)
and the subsets with cardinality r of the dp-nodes in the band of S∞/p.

3E. Goren–Oort cycles and supersingular locus. We fix a lifting τ̃ ∈6E,∞/p for each τ ∈6∞/p−S∞/p.
For a periodic semimeander a ∈B(S∞/p, r) with r ≥ 1, we put

Sa := S∪ {τ ∈6∞/p | τ is an end point of some arc in a}. (3-3)

For an arc δ in a, we use τ+δ and τ−δ to denote its right and left end points respectively. We take

S̃a,∞ = S̃∞ ∪ {τ̃+δ , τ̃
−,c
δ | δ is an arc of a}.

Here, τ̃+δ denotes the fixed lifting of τ+δ , and τ̃−,cδ the conjugate of the fixed lifting τ̃−δ of τ−δ . We fix an
isomorphism G ′

S̃a
(A∞)∼= G ′

S̃
(A∞), and consider K ′p as an open compact subgroup of G ′

S̃a
(A∞,p). We

may thus speak of the unitary Shimura variety Sh(G ′
S̃a
, K ′p).
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Following [Tian and Xiao 2019, Section 3.7], for every a∈B(S∞/p, r), we construct a closed subvariety
Z ′

S̃
(a) ⊆ Sh(G ′

S̃
, K ′p)k0 of codimension r , which is an r-th iterated P1-fibration over Sh(G ′

S̃a
, K ′p)k0 .

We proceed by induction on r ≥ 0. When r = 0, we put simply Z ′
S̃
(a) := Sh(G ′

S̃
, K ′p)k0 . Assume now

r ≥ 1. An arc in a is called basic, if it does not lie above any other arcs. Choose such a basic arc δ,
and put τ := τ+δ and τ− := τ−δ for simplicity. We note that τ− = σ−nτ τ . Consider the Goren–Oort
divisor Sh(G ′

S̃
, K ′p)k0,τ , and let π ′τ : Sh(G ′

S̃
, K ′p)k0,τ → Sh(G ′

S̃τ
, K ′p)k0 be the P1-fibration given by

Proposition 3.2. Let aδ ∈ B(Sa,∞/p, r − 1) be the periodic semimeander for Sa obtained from a by
replacing the nodes at τ, τ− with plus signs and removing the arc δ. For instance, if

b b b b b+ +
,

then Sa = S∪ {τ2, τ3, τ5, τ6}, and the arc δ connecting τ3 and τ5 is the unique basic arc in a, and

b b b+ ++ +

By the induction hypothesis, we have constructed a closed subvariety Z ′
S̃τ
(aδ) ⊆ Sh(G ′

S̃τ
, K ′p)k0 of

codimension r − 1. Then we define Z ′
S̃
(a) as the preimage of Z ′

S̃τ
(aδ) via π ′τ . We denote by

π ′a : Z ′S̃(a)→ Sh(G ′S̃a, K ′p)k0

the canonical projection. In summary, we have a diagram

Z ′
S̃
(a) �
�

//

π ′a

��

��

Sh(G ′
S̃
, K ′p)k0,τ

π ′τ

��

� � // Sh(G ′
S̃
, K ′p)k0

Z ′
S̃τ
(aδ)

π ′aδ
��

� � // Sh(G ′
S̃τ
, K ′p)k0

Sh(G ′
S̃a
, K ′p)k0

where the square is cartesian. By induction hypothesis, the morphism π ′aδ is an (r−1)-th iterated P1-
fibration. It follows that π ′a is an r -th iterated P1-fibration.

We explain the relationship between Goren–Oort cycles and the p-supersingular locus of Sh(G ′
S̃
, K ′p)k0 .

Take a∈B(S∞/p, bdp/2c). If dp is even, then we put W ′
S̃
(a) := Z ′

S̃
(a). If dp is odd, then we let τ(a)∈6∞/p

denote the end point of the unique semiline in a, and define W ′
S̃
(a) by the following Cartesian diagram:

W ′
S̃
(a) �
�

//

��

Z ′
S̃
(a)

π ′a
��

Sh(G ′
S̃a
, K ′p)k0,τ (a)

� � // Sh(G ′
S̃a
, K ′p)k0
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We put

S̃∗a :=
{

S̃a = (Sa, S̃a,∞) if dp is even,
(Sa ∪ {τ(a), p}, S̃a,∞ ∪ {τ̃ (a)}) if dp is odd.

(3-4)

Note that the underlying set S∗a of S̃∗a is independent of a ∈B(S∞/p, bdp/2c), namely all S∗a are equal to

S(p) :=
{

S∪6∞/p if dp is even,
S∪6∞/p ∪ {p} if dp is odd.

(3-5)

If dp is odd, then we have an isomorphism

Sh(G ′S̃a, K ′p)k0,τ (a)
∼= Sh(G ′S̃∗a, K ′p)k0

by Proposition 3.2. Thus, regardless of the parity of dp, one has a bdp/2c-th iterated P1-fibration
equivariant under prime-to-p Hecke correspondences:

π ′a|W ′S̃(a)
: W ′S̃(a)→ Sh(G ′S̃∗a, K ′p)k0 .

Theorem 3.3. Under the notation above, the union⋃
a∈B(S∞/p,bdp/2c)

W ′S̃(a)

is exactly the p-supersingular locus of Sh(G ′
S̃
, K ′p)k0 , that is, the maximal closed subset where the

universal p-divisible group A′
S̃
[p∞] is supersingular.

Proof. We proceed by induction on dp ≥ 0. If dp = 0, then B(S∞/p, 0) consists only of the trivial periodic
semimeander (that is, the one without any arcs or semilines). In this case, one has to show that the whole
Sh(G ′

S̃
, K ′p)k0 is p-supersingular. First, we have sτ̃ ∈ {0, 2} for all τ̃ ∈6E,∞/p, and Assumption 2.2(2)

implies that the number of τ̃ ∈ 6E,∞/p with sτ̃ = 2 equals exactly to the number of τ̃ ∈ 6E,∞/p with
sτ̃ = 0. Now consider a point x = (A, ι, λ, α) ∈ Sh(G ′

S̃
, K ′p)(Fac

p ). Then, for every τ̃ ∈ 6E,∞/p, the
2gp-th iterated essential Verschiebung

V 2gp
es =

V 2gp

pgp
: D̃(A)◦τ̃ → D̃(A)◦

σ−2gp τ̃
= D̃(A)◦τ̃

is bijective, no matter whether p is split or inert in E . It follows immediately that 1
2 is the only slope of

the Dieudonné module
⊕

τ̃∈6E,∞/p
D̃(A)τ̃ = D̃(A[p∞]), so that A[p∞] is supersingular.

Assume now dp ≥ 1. We prove first that the union
⋃

a∈B(S∞/p,bdp/2c) W ′
S̃
(a) is contained in the p-

supersingular locus of Sh(G ′
S̃
, K ′p)k0 . Fix a ∈B(S∞/p, bdp/2c). Then one has a projection

π ′a|W ′S̃(a)
: W ′S̃(a)→ Sh(G ′S̃a, K ′p)k0

and a p-quasiisogeny

φa : A′S̃|W ′S̃(a)→ π ′∗a A′S̃a
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by the construction of π ′a and Proposition 3.2. Note that dp(Sa)= 0, and by the discussion above, A′
S̃a
[p∞]

is supersingular over the entire Sh(G ′
S̃a
, K ′p)k0 . It follows that A′

S̃
[p∞] is supersingular over WS̃(a).

To complete the proof, it remains to show that if x ∈ Sh(G ′
S̃
, K ′p)(Fac

p ) is a p-supersingular point,
then x ∈W ′

S̃
(a)(Fac

p ) for some a ∈B(S∞/p, bdp/2c). By Proposition 3.1, there exists τ ∈6∞/p such that
x ∈Sh(G ′

S̃
, K ′p)k0,τ (F

ac
p ). Consider the P1-fibration π ′τ : Sh(G ′

S̃
, K ′p)k0,τ→Sh(G ′

S̃τ
, K ′p)k0 . Since A′

S̃,x
is p-quasiisogenous to A′

S̃τ ,π ′τ (x)
, we see that π ′τ (x) lies in the p-supersingular locus of Sh(G ′

S̃τ
, K ′p)k0 . By

the induction hypothesis, π ′τ (x)∈W ′
S̃τ
(b)(Fac

p ) for some periodic semimeander b∈B(Sτ,∞/p, bdp/2−1c).
Now let a be the periodic semimeander obtained from b by adjoining an arc δ connecting σ−nτ τ and τ so
that τ is the right end point of δ. Then a ∈B(S∞/p, bdp/2c), and δ is a basic arc of a such that b= aδ.
To finish the proof, it suffices to note that W ′

S̃
(a)= π ′−1

τ (W ′
S̃τ
(b)) by definition. �

Definition 3.4. We put
Sh(G ′S̃, K ′p)p−sp

k0
:= Sh(G ′S̃, K ′p)k0,6∞/p,

and call it the p-superspecial locus of Sh(G ′
S̃
, K ′p)k0 .

We have the following proposition that characterizes the p-superspecial locus.

Proposition 3.5. Let p ∈ 6p be such that dp is odd, and take a ∈ B(S∞/p, (dp − 1)/2). Then
Sh(G ′

S̃
, K ′p)p−sp

k0
is contained in W ′

S̃
(a), and the restriction of π ′a to Sh(G ′

S̃
, K ′p)p−sp

k0
induces an

isomorphism
Sh(G ′S̃, K ′p)p−sp

k0
∼
−→ Sh(G ′S̃∗a, K ′p)k0,

which is equivariant under prime-to-p Hecke correspondences.

Proof. We proceed by induction on dp ≥ 1. If dp = 1, then all the p-supersingular locus is p-superspecial,
and the p-supersingular locus consists of only one stratum W ′

S̃
(a). So the statement is clear.

Assume now dp > 1. Choose a basic arc δ of a. Let τ (resp. τ−) be the right (resp. left) node of δ, and
aδ be the semimeander obtained from a by removing the arc δ. Then one has a commutative diagram

W ′
S̃
(a) //

��

Z ′
S̃
(a) //

��

Sh(G ′
S̃
, K ′p)k0,τ

π ′τ

��

W ′
S̃τ
(aδ)

��

// Z ′
S̃τ
(aδ)

π ′aδ
��

// Sh(G ′
S̃τ
, K ′p)k0

Sh(G ′
S̃a
, K ′p)k0,τ (a)

//

∼=

��

Sh(G ′
S̃a
, K ′p)k0

Sh(G ′
S̃∗a
, K ′p)k0

where all the squares are cartesian; all horizontal maps are closed immersions; and all vertical arrows are
iterated P1-bundles. By the induction hypothesis, the p-superspecial locus Sh(G ′

S̃τ
, K ′p)p−sp

k0
is contained
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in W ′
S̃τ
(aδ) and the restriction of π ′aδ induces an isomorphism

Sh(G ′S̃τ , K ′p)p−sp
k0

∼
−→ Sh(G ′S̃∗a, K ′p)k0 . (3-6)

Now by Proposition 3.2, the restriction of π ′τ induces an isomorphism

Sh(G ′S̃, K ′p)k0,{τ,τ−}
∼
−→ Sh(G ′S̃τ , K ′p)k0

compatible with the construction of Goren–Oort divisors. Thus, π ′τ sends Sh(G ′
S̃
, K ′p)p−sp

k0
isomorphically

to Sh(G ′
S̃τ
, K ′p)p−sp

k0
. The statement now follows immediately by composing with the isomorphism (3-6).

�

3F. Total supersingular and superspecial loci. We will now study the total supersingular locus of
Sh(G ′

S̃
, K ′p)k0 , that is, the maximal closed subset where the universal p-divisible group A′

S̃
[p∞] is

supersingular. Put
BS := {a= (ap)p∈6p | ap ∈B(S∞/p, bdp/2c)},

and r :=
∑

p∈6p
bdp/2c. We attach to each a an r-dimensional closed subvariety W ′

S̃
(a) ⊆ ShK ′(G ′S̃)k0

as follows. We write 6p = {p1, . . . , pm}, that is, we choose an order for the elements of 6p. We put
S1 := Sap1

and S̃∗1 := S̃∗ap1
(see (3-4)); put inductively Si+1 := (Si )api+1

, S̃∗i+1 =
˜(Si )
∗
api+1

for 1≤ i ≤m−1;
and finally put Sa := Sm and S̃∗a := S̃∗m . For ap1 ∈B(S∞/p, bdp1/2c), we have constructed a bdp1/2c-th
iterated P1-fibration

π ′ap1
|W ′

S̃
(ap1 )
: W ′S̃(ap1)→ Sh(G ′S̃∗1 , K ′p)k0 .

Now, applying the construction to ap2 ∈ B(S∞/p2, bdp2/2c) and Sh(G ′
S̃∗1
, K ′p)k0 , we have a closed

subvariety W ′
S̃∗1
(ap2)⊆ Sh(G ′

S̃∗1
, K ′p)k0 of codimension ddp2/2e. We put

W ′S̃(ap1, ap2) := (π
′

ap1
)−1(W ′S̃∗1

(ap2)).

Then there exists a canonical projection

π ′ap1 ,ap2
: W ′S̃(ap1, ap2)

π ′ap1
|W ′

S̃
(ap1 ,ap2 )

−−−−−−−−→W ′S̃∗1
(ap2)

π ′ap2
|W ′

S̃∗1
(ap2 )

−−−−−−−−→ Sh(G ′S̃∗2 , K ′p)k0 .

Repeating this construction, we finally get a closed subvariety W ′
S̃
(a)⊆ Sh(G ′

S̃
, K ′p)k0 of codimension∑

p∈6ddp/2e together with a canonical projection

π ′a : W ′S̃(a)→ Sh(G ′S̃∗a, K ′p)k0 .

Note that the underlying set S∗a of S̃∗a is independent of a ∈BS, namely all of them are equal to

Smax :=6∞ ∪ {p ∈6p | gp := [Fp :Qp] is odd}. (3-7)

Thus Sh(G ′
S̃∗a
, K ′p)k0 is a Shimura variety of dimension 0, and π ′a is by construction an r-th iterated

P1-fibration over Sh(G ′
S̃∗a
, K ′p)k0 . We note that W ′

S̃
(a) does not depend on the order p1, . . . , pm of the

places of F above p.
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Theorem 3.6. The total supersingular locus of Sh(G ′
S̃
, K ′p)k0 is given by

Sh(G ′S̃, K ′p)ss
k0
:=

⋃
a∈BS

W ′S̃(a),

where each W ′
S̃
(a) is a

∑
p∈6p
bdp/2c-th iterated P1-fibration over some discrete Shimura variety

Sh(G ′
S̃∗a
, K ′p)k0 . In particular, Sh(G ′

S̃
, K ′p)ss

k0
is proper and of equidimension

∑
p∈6p
bdp/2c.

Proof. This follows immediately from Theorem 3.3 by induction on the number of p-adic places p ∈6p

such that dp 6= 0. �

Remark 3.7. It is clear that the total supersingular locus is the intersection of all p-supersingular loci for
p ∈6p. It follows that

W ′S̃(a)=
⋂
p∈6p

W ′S̃(ap),

and the intersection is transversal.

Similarly to Definition 3.4, we define the total superspecial locus of Sh(G ′
S̃
, K ′p)k0 as

Sh(G ′S̃, K ′p)sp
k0
:= Sh(G ′S̃, K ′p)k0,6∞ =

⋂
p∈6p

Sh(G ′S̃, K ′p)p−sp
k0

.

We have the following analogue of Proposition 3.5.

Proposition 3.8. Suppose that dp is odd for all p ∈ 6p. Then for each a ∈ BS, W ′
S̃
(a) contains

Sh(G ′
S̃
, K ′p)sp

k0
, and each geometric irreducible component of W ′

S̃
(a) contains exactly one point of

Sh(G ′
S̃
, K ′p)sp

k0
. In other words, the restriction of π ′a induces an isomorphism

Sh(G ′S̃, K ′p)sp
k0
∼
−→ Sh(G ′S̃∗a, K ′p)k0 .

Proof. This follows immediately from Proposition 3.5. �

3G. Applications to quaternionic Shimura varieties. Denote by Sh(GS,T, K p) the integral model of
Sh(GS,T, K p) over OFS,T,℘ induced by Sh(G ′

S̃
, K ′p). We assume that the residue field of OFS,T,℘ is

contained in k0 (e.g., S= T=∅), and put Sh(GS,T, K p)k0 := Sh(GS,T, K p)⊗OFS,T,℘
k0. As in [Tian and

Xiao 2016; 2019], the construction of Goren–Oort divisors can be transferred to Sh(GS,T, K p)k0 for a
sufficiently small open compact subgroup K p

⊆ GS(A
∞,p).

Consider first the connected Shimura variety Sh(GS,T)
◦

Fac
p
:= Sh(GS,T)

◦

Zur
p
⊗Zur

p
Fac

p . For each τ ∈6∞,
the Goren–Oort divisor Sh(G ′

S̃
)k0,τ = lim

←−−K ′p Sh(G ′
S̃
, K ′p)k0,τ induces a divisor Sh(G ′

S̃
)◦Fac

p ,τ
on Sh(G ′

S̃
)◦Fac

p
.

By the canonical isomorphism
Sh(GS,T)

◦

Fac
p
∼= Sh(G ′S̃)

◦

Fac
p

from Section 2F and Deligne’s recipe of recovering Sh(GS,T)Fac
p

from Sh(GS,T)
◦

Fac
p

[Tian and Xiao 2016,
Corollary 2.13], the divisor Sh(GS,T)

◦

Fac
p ,τ

induces a divisor Sh(GS,T)Fac
p ,τ

on Sh(GS,T)Fac
p

. By Galois
descent, one gets a divisor Sh(GS,T)k0,τ on Sh(GS,T)k0 , which is stable under prime-to-p Hecke action.
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Finally, we define the Goren–Oort divisors on Sh(GS,T, K p)k0 as the image of Goren–Oort divisors on
Sh(GS,T, K p)k0 via the natural projection Sh(GS,T)k0 → Sh(GS,T, K p)k0 .

Proposition 3.9. Take τ ∈ 6∞/p for some p ∈ 6p, and put Tτ := T∪ {τ }. There exists a morphism of
k0-schemes

πτ : Sh(GS,T, K p)k0,τ → Sh(GSτ ,Tτ , K p)k0,

where Sτ was defined in (3-2), such that

(1) it is compatible with π ′τ in Proposition 3.2 on neutral geometric connected components;

(2) it is an isomorphism if 6∞/p = S∞/p ∪ {τ }; and

(3) it is a P1-fibration.

Proof. This follows immediately from Proposition 3.2 and [Tian and Xiao 2019, Construction 2.12]. �

Now, the construction of Goren–Oort cycles can be transferred to the quaternionic Shimura variety
Sh(GS,T, K p)k0 . For a periodic semimeander a ∈B(S∞/p, bdp/2c), we construct inductively in the same
way as Z ′

S̃
(a) a closed k0-subvariety ZS,T(a)⊆ Sh(GS,T, K p)k0 such that there exists a bdp/2c-th iterated

P1-fibration

πa : ZS,T(a)→ Sh(GSa,Ta, K p)k0

according to Proposition 3.9, where Sa is defined in (3-3) and

Ta = T∪ {τ ∈6∞ | τ is the right end point of an arc in a}. (3-8)

We define similarly

WS,T(a)=

{
ZS,T(a) if dp is even,
π−1
a (Sh(GSa,Ta, K p)k0,τ (a)) if dp is odd,

(3-9)

where τ(a) ∈ 6∞/p is the end point of the unique semiline of a. Then πa induces a bdp/2c-th iterated
P1-fibration

πa|WS,T(a)Fac
p
: WS,T(a)Fac

p
→ Sh(GS(p),T∗a, K p)Fac

p

where S(p)= S∗a is defined in (3-5), and

T∗a =
{

Ta if dp is even,
Ta ∪ {τ(a)} if da is odd.

Of course, when dp is even, the morphism πa|WS,T(a)Fac
p

is simply the base change to Fac
p of πa.

Similarly, for a = (ap)p∈6p ∈ BS =
∏

p∈6p
B(S∞/p, bdp/2c), we can define a closed subvariety

WS,T(a)⊆ Sh(GS,T, K p)k0 of dimension r =
∑

p∈6p
bdp/2c together with an r -th iterated P1-fibration

πa : WS,T(a)Fac
p
→ Sh(GSmax,T∗a, K p)Fac

p
,

where Smax was defined in (3-7), and T∗a :=
⋃

p∈6p
T∗ap .
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Notation 3.10. In what follows, we will write the Fac
p -schemes Sh(GS,T, K p)⊗OFS,T,℘

Fac
p and the sets

Sh(GS,T, K p)(Fac
p ), which are independent of T, simply by Sh(GS, K p)Fac

p
and Sh(GS, K p)(Fac

p ), respec-
tively.

Then the target of πa is simply Sh(GSmax, K p)Fac
p

for every a ∈BS. In particular, the set of geometric
irreducible components of WS,T(a) is in bijection with Sh(GSmax, K p)(Fac

p ). Moreover, we have an
isomorphism

Sh(GSmax, K p)(Fac
p )
∼= B×Smax

\B̂×Smax
/K p

∏
p∈6p

K max
p ,

where K max
p is the unique maximal open compact subgroups of (BSmax ⊗F Fp)

× for each p ∈6p. Note
that BSmax splits (resp. ramifies) at p if gp is even (resp. odd).

3H. Totally indefinite quaternionic Shimura varieties. We consider the case S=∅ (hence T=∅), and
we write G = G∅ = G∅,∅ and G ′ = G ′∅̃ for simplicity as usual. Recall that Sh(G, K p) classifies tuples
(A, ι, λ, αK p) as defined in Section 2E. Even though it is only a coarse moduli space, there still exists a
universal abelian scheme A over Sh(G, K p) (See Remark 2.9(1)).

Definition 3.11. Put Sh(G, K p)Fp := Sh(G, K p)⊗ Fp:

(1) For each p∈6p, we define the p-supersingular locus of Sh(G, K p)Fp as the maximal reduced closed
subscheme of Sh(G, K p)Fp where the universal p-divisible group A[p∞] is supersingular.

(2) We define the total supersingular locus of Sh(G, K p)Fp as the intersection of the p-supersingular
locus for all p ∈6p.

Theorem 3.12. For p ∈6p, put gp := [Fp :Qp]. Then the p-supersingular locus of Sh(G, K p)Fp , after
base change to k0, is ⋃

a∈B(∅∞/p,bgp/2c)

W∅,∅(a),

where B(∅∞/p, bgp/2c) is the set of periodic semimeanders of gp-nodes and bgp/2c-arcs, and each
W∅,∅(a) is defined in (3-9) and W∅,∅(a)Fac

p
is a bgp/2c-th iterated P1-fibration over Sh(G∅(p), K p)Fac

p
.

Proof. According to the discussion of Section 2F, the definition of the p-supersingular locus of Sh(G,K p)Fp

using the universal family A coincides with the one induced from the p-supersingular locus of the unitary
Shimura variety Sh(G ′, K ′p)Fp . The statement then follows from Theorem 3.3. �

Theorem 3.13. Denote by Sh(G, K p)ss
Fp

the total supersingular locus of Sh(G, K p)Fp . Then we have

Sh(G, K p)ss
Fp
⊗ k0 =

⋃
a∈B∅

W∅,∅(a),

where B∅ is the set of tuples (ap)p∈6p with ap ∈ B(∅∞/p, bgp/2c). The base change W∅,∅(a)Fac
p

of
W∅,∅(a) to Fac

p is a
(∑

p∈6p
bgp/2c

)
-th iterated P1-fibration over Sh(GSmax, K p)Fac

p
, equivariant under

prime-to-p Hecke correspondences, where Smax was defined in (3-7). In particular, Sh(G, K p)ss
Fp

is
proper and of equidimension

∑
p∈6p
bgp/2c.
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Proof. This follows from Theorem 3.12 by induction on the number of p-adic places p ∈6p. �

Remark 3.14. The above theorem is known in the following cases:

(1) If p is inert in F of degree 2 and B is the matrix algebra, then the theorem was first proved in
[Bachmat and Goren 1999].

(2) If p is inert in F of degree 4 and B is the matrix algebra, then the results was due to [Yu 2003].

(3) Assume that p is inert in F of even degree. Then the strata W∅,∅(a) have already been constructed
in [Tian and Xiao 2019], and the authors proved there that, under certain genericity conditions on
the Satake parameters of a fixed automorphic cuspidal representation π , the cycles W∅,∅(a) give all
the π -isotypic Tate cycles on the quaternionic Shimura variety Sh(G, K p)Fp .

We define an action of GFp = Gal(Fac
p /Fp) on the set B∅ as follows. For each periodic semimeander

ap ∈B(∅∞/p, bgp/2c), let σ(ap) be the Frobenius translate of ap, that is, there is an arc in σ(ap) linking
two nodes x, y if and only if there is an arc in ap linking σ−1(x), σ−1(y). For a = (ap)p, we put
σ(a) := (σ (ap))p∈6p . It is clear that the subgroup Gal(Fac

p /k0) of Gal(Fac
p /Fp) stabilizes each a ∈B∅.

Then the action of Gal(Fac
p /Fp) on Sh(G, K p)ss

Fac
p

sends the stratum W∅,∅(a) to W∅,∅(σ (a)).

Definition 3.15. We define the superspecial locus of Sh(G, K p)Fp , denoted by Sh(G, K p)
sp
Fp

, to be the
maximal reduced closed subscheme S such that for any geometric point x→ S the abelian variety Ax is
superspecial, that is, Ax is isomorphic to a product of supersingular elliptic curves.

Using the universal family of abelian varieties A over Sh(G, K p), one can define, for each τ ∈6∞, a
partial Hasse invariant hτ on Sh(G, K p)k0 similarly to (3-1). We can also define the Goren–Oort divisor
Sh(G, K p)k0,τ of Sh(G, K p)k0 as being the vanishing locus of hτ . By the relation of universal abelian
schemes (2-5), this definition of Goren–Oort divisor coincides with the one defined by transferring to the
unitary Shimura variety Sh(G ′, K ′p)k0 . It is easy to see that

Sh(G, K p)
sp
Fp
⊗ k0 =

⋂
τ∈6∞

Sh(G, K p)k0,τ .

Theorem 3.16. Assume that gp is odd for every p ∈6p:

(1) For each a ∈B∅ as in Theorem 3.13, W∅,∅(a) contains the superspecial locus Sh(G, K p)
sp
Fp
⊗ k0,

and the morphism πa : W∅,∅(a)Fac
p
→ Sh(GSmax, K p)Fac

p
induces a bijection

Sh(G, K p)sp(Fac
p )

∼
−→ Sh(GSmax, K p)(Fac

p )' B×Smax
\B̂×max/K p

∏
p∈6p

K max
p

compatible with prime-to-p Hecke correspondences.

(2) For each p ∈ 6p, let 5p be a uniformizer of the quaternion division algebra BSmax ⊗F Fp. Let 5p

be the element of B̂×Smax
whose p-component is 5p for each p ∈ 6p and other components are 1.

Then under the bijection in (1), the action of the arithmetic Frobenius element σp ∈ Gal(Fac
p /Fp) on

Sh(G, K p)sp(Fac
p ) is induced by the right multiplication by 5−1

p on B̂×max.
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Proof. Statement (1) follows from Proposition 3.8.
To prove (2), we take a superspecial point x = (A, ι, λ, αK p) ∈ Sh(G, K p)sp(Fac

p ) as in Section 2E.
Then A is of the form A = C ⊗Z I, where C is a supersingular elliptic curve and I is a (left) fractional
ideal of OB . For each p ∈6p, we have an equality of p-divisible groups A[p∞] = C[p∞]⊗Zp Ip, and
hence an equality

D(A[p∞])= D(A[p∞])⊗Zp Ip

for the corresponding covariant Dieudonné modules. Let Bp be the unique quaternion division algebra
over Qp. Then we have End(C[p∞])⊗Zp Qp = Bp and

Bp⊗Qp Fp = Bmax⊗F Fp = EndOB (A[p
∞
])⊗Zp Qp.

Let 5 ∈ Bp denote a uniformizer of Bp, and we view it also as a uniformizer of Bmax ⊗F Fp.
Via p-Frobenius isogeny FC : C → C (p), D(C (p)

[p∞]) is identified with lattice 5−1D(C[p∞]) in
D(C[p∞])[1/p]. Since FA : A→ A(p) is induced from FC by tensoring with I, we see that FA allows us
to identify D(A(p)[p∞]) with the lattice 5−1D(A[p∞]) inside D(A[p∞])[1/p]. Since σp(x) is given by
A(p) together with the induced polarization and level structure, the description for σp on Sh(G, K p)sp(Fp)

follows. �

Note that the action of Gal(Fp/Fp) on Sh(GSmax, K p)(Fp) defined in Theorem 3.16(2) is independent
of a ∈B∅. In other words, we have a canonical Fp-scheme structure on Sh(GSmax, K p)Fac

p
, which we

denote by Sh(GSmax, K p).

Corollary 3.17. Assume that gp is odd for every p∈6p. For every a∈B∅, the morphism πa :W∅,∅(a)Fac
p
→

Sh(GSmax, K p)Fac
p

is equivariant under Gal(Fac
p /k0), hence it descends to a morphism of k0-schemes:

πa : W∅,∅(a)→ Sh(GSmax, K p)k0 .

Proof. This follows from the definition of underlying k0-structure on Sh(GSmax, K p)Fac
p

and the fact that
the inclusion Sh(G, K p)

sp
Fac

p
↪→W∅,∅(a)Fac

p
is equivariant under Gal(Fac

p /k0). �

4. Arithmetic level raising

In this section, we state and prove the arithmetic level raising result. We suppose that g = [F :Q] is odd.
Fix an irreducible cuspidal automorphic representation 5 of GL2(AF ) of parallel weight 2 defined over a
number field E.

4A. Statement of arithmetic level raising. Let B be a totally indefinite quaternion algebra over F , and
put G := ResF/Q B×. Let K be a neat open compact subgroup of G(A∞) (Definition 2.6) such that
(5∞)K

6= 0. We have the Shimura variety Sh(G, K ) defined over Q whose C-points are given by

Sh(G, K )(C)= G(Q)\(H±)6∞ ×G(A∞)/K .
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Let R be a finite set of places of F away from which K is hyperspecial maximal.4 Let TR be the Hecke
monoid away from R [Liu 2019, Notation 3.1] (that is, the commutative monoid generated by Tq, Sq, S−1

q

with the relation SqS−1
q = 1 for all primes q 6∈ R). Then 5 induces a homomorphism

φR
5 : Z[TR

] →OE

by its Hecke eigenvalues. For every prime λ of E, we have an attached Galois representation

ρ5,λ : GF = Gal(Fac/F)→ GL2(OEλ) (4-1)

which is unramified outside R∪ Rλ, where Rλ denotes the subset of all places of F with the same residue
characteristic as λ. The Galois representation ρ5,λ is normalized so that if σq denotes an arithmetic
Frobenius element at q for a place q /∈ R∪ Rλ, then the characteristic polynomial of ρ5,λ(σq) is given by

X2
−φR

5(Tq)X +NF/Q(q)φ
R
5(Sq).

Let mR
5,λ be the kernel of the composite map Z[TR

]
φ5
−→OE→OE/λ.

Assumption 4.1. Let ` be the underlying rational prime of λ. We propose the following assumptions
on λ:

(1) ` is coprime to 5, R, disc F , and the cardinality of F×\A∞,×F /(A
∞,×
F ∩ K ).

(2) `≥ g+ 2.

(3) The image of ρ5,λ := ρ5,λ mod λ contains a subgroup conjugate to SL2(F`).

(4) ρ5,λ satisfies the condition (LIInd ρ5,λ) in [Dimitrov 2005, Proposition 0.1].

(5) Hg(Sh(G, K )Qac,OE/λ)/m
R
5,λ has dimension 2g dim(5∞B )

K over OE/λ, where 5B is the automor-
phic representation of G(A) whose Jacquet–Langlands transfer to GL2(AF ) is 5.

Remark 4.2. We have the following remarks concerning Assumption 4.1:

(1) Assumption 4.1(3) is equivalent to saying that ρ5,λ is absolutely irreducible and that ` divides the
image of ρ5,λ.

(2) Assumption 4.1(3) (and the part ` 6= 5 in (1)) is used to guarantee Ihara’s lemma for Shimura curves
over totally real fields [Manning and Shotton 2019].

(3) If 5 is not dihedral (that is, not a theta series) and not isomorphic to a twist by a character of any of
its internal conjugates, then Assumption 4.1(3) and (4) hold for all but finitely many λ by [Dimitrov
2005, Proposition 0.1]. In particular, for such a 5, the entire Assumption 4.1 holds for all but finitely
many λ.

(4) In general, the dimension of Hg(Sh(G, K )Qac,OE/λ)/m
R
5,λ is at least 2g dimE(5

∞

B )
K over OE/λ.

4The meaning of R changes from here; in particular, it contains the ramification set of B, which it previously stood for.
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Let p be a rational prime inert in F , coprime to R∪{2, `}. Denote by p the unique prime of F above p.
To ease notation, we put

φ := φ
R∪{p}
5 : Z[TR∪{p}

] →OE, m :=m
R∪{p}
5,λ ⊆ Z[TR∪{p}

].

For a Z[TR∪{p}
]-module M , we denote by Mm its localization at m. Write K = K p K p where K p is a

hyperspecial maximal subgroup of G(Qp) as p 6∈ R. We have the integral model Sh(G, K p) over Zp

defined in Section 2E for the Shimura variety Sh(G, K p)= Sh(G, K ). Put B :=B(∅, (g− 1)/2), the
set of periodic semimeanders attached to S=∅ with g-nodes and (g−1)/2-arcs. We note that k0 defined
in Section 3A is Fp2g in the current case. Then Theorem 3.13 asserts that

Sh(G, K p)ss
Fp
⊗ Fp2g =

⋃
a∈B

W∅,∅(a),

where each W∅,∅(a) is equipped with a (g− 1)/2-th iterated P1-fibration

πa : W∅,∅(a)→ Sh(GSmax, K p)Fp2g .

Let
Sh(G, K p)

sp
Fp
⊆ Sh(G, K p)Fp

be the superspecial locus as in Definition 3.15. By Theorem 3.16, each W∅,∅(a) for a ∈ B contains
Sh(G, K p)

sp
Fp2g

, and the morphism πa induces an isomorphism

Sh(G, K p)
sp
Fp2g

∼
−→ Sh(GSmax, K p)Fp2g

which is equivariant under prime-to-p Hecke correspondences, and independent of a.
Consider the set B× Sh(GSmax, K p)(Fac

p ), equipped with the diagonal action by GFp . The Hecke
monoid TR∪{p} acts through the second factor. We have a Chow cycle class map

0(B×Sh(GSmax, K p)(Fac
p ),Z)→ CH(g+1)/2(Sh(G, K p)Fac

p
) (4-2)

sending a function f on B×Sh(GSmax, K p)(Fac
p ) to the Chow class of

∑
a,s f (a, s)π−1

a (s).

Lemma 4.3. The map (4-2) is equivariant under both TR∪{p} and GFp .

Proof. The equivariance of πa under prime-to-p Hecke correspondences follows from Theorem 3.16. The
equivariance under GFp follows from the definition of GFp -action on Sh(GSmax, K p)(Fac

p ). �

Lemma 4.4. Under the notation above, the following statements hold:

(1) There exists a canonical isomorphism

Hg(Sh(G, K p)Fac
p
,OEλ)m

∼
−→ Hg(Sh(G, K )Qac,OEλ)m

compatible with Galois actions. In particular, we have a canonical isomorphism

H1(Fph ,Hg(Sh(G, K p)Fac
p
,OE/λ((g+ 1)/2))m)∼= H1

unr(Qph ,Hg(Sh(G, K )Qac,OE/λ((g+ 1)/2))m)

for every integer h ≥ 1.
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(2) Suppose that ` satisfies Assumption 4.1. We have Hi (Sh(G, K p)Fac
p
,OEλ)m = 0 unless i = g.

(3) Suppose that ` satisfies Assumption 4.1. We have that Hg(Sh(G, K p)Fac
p
,OEλ)m is a finite free

OEλ-module.

Proof. By [Lan and Stroh 2018, Corollary 4.6], no matter whether the Shimura variety Sh(G, K p) is
proper over Z(p), the canonical maps

Hi (Sh(G, K p)Fac
p
,OEλ)

∼
−→ Hi (Sh(G, K p)Qac

p
,OEλ)

∼
←− Hi (Sh(G, K p)Qac,OEλ)

for all i ≥ 0 are isomorphisms compatible with Hecke and Galois actions. One gets thus Statement (1)
by localizing the Hecke action at m. Statements (2) and (3) follow from Assumption 4.1 and [Dimitrov
2005, Theorem 0.3]. We remark that although Dimitrov’s theorem is stated for Hilbert modular varieties,
the same argument there applies to our situation without change. �

To ease notation, put G′ := Gal(Fac
p /Fp2g ). Lemma 4.3 induces the following map

0(B×Sh(GSmax, K p)(Fac
p ),Z)G

′

→ CH(g+1)/2(Sh(G, K p)Fp2g ) (4-3)

which is equivariant under both TR∪{p} and Gal(Fp2g/Fp). On the other hand, one has a cycle class map

CH(g+1)/2(Sh(G, K p)Fp2g )→ Hg+1(Sh(G, K p)Fp2g ,OEλ((g+ 1)/2)).

However, by the Hochschild–Serre spectral sequence and Lemma 4.4(2), we have a canonical isomorphism

Hg+1(Sh(G, K p)Fp2g ,OEλ((g+ 1)/2))m ∼= H1(Fp2g ,Hg(Sh(G, K p)Fac
p
,OEλ((g+ 1)/2))m).

Therefore, composing with (the localization of) (4-3) and modulo λ, we obtain a morphism

8m : 0(B×Sh(GSmax, K p)(Fac
p ),OE/λ)

G′
m → H1(Fp2g ,Hg(Sh(G, K p)Fac

p
,OE/λ((g+ 1)/2))m), (4-4)

called the unramified level raising map at m. It is equivariant under the action of Gal(Fp2g/Fp).

Definition 4.5. We say that a rational prime p is a λ-level raising prime (with respect to 5, B, K , R) if

(L1) p is inert in F , and coprime to R∪ {2, `};

(L2) ` -
∏g

i=1(p
2gi
− 1);

(L3) φR
5(Tp)

2
≡ (pg

+ 1)2 mod λ and φR
5(Sp)≡ 1 mod λ.

Remark 4.6. We have the following remarks concerning level raising primes:

(1) By a similar argument of [Liu 2019, Lemma 4.11], one can show there are infinitely many λ-level
raising primes with positive density, as long as there exist rational primes inert in F and λ satisfies
Assumption 4.1.

(2) By the Eichler–Shimura congruence relation, Definition 4.5(L3) is equivalent to saying that ρ5,λ(σp)
is conjugate to ±

( 1
0

0
pg

)
.
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(3) By the Eichler–Shimura congruence relation and the Chebotarev’s density theorem, we know that
the canonical map

Hg(Sh(G, K )Qac,OE/λ)/m→ Hg(Sh(G, K )Qac,OE/λ)/m
R
5,λ

is an isomorphism of OE/λ[GQ]-modules.

Theorem 4.7 (arithmetic level raising). Let λ be a prime of OE satisfying Assumption 4.1, and p a λ-level
raising prime. Then G′ acts trivially on 0(B×Sh(GSmax, K p)(Fac

p ),OE/λ)m and the induced map

0(B×Sh(GSmax, K p)(Fac
p ),OE/λ)/m→ H1(Fp2g ,Hg(Sh(G, K p)Fac

p
,OE/λ((g+ 1)/2))/m) (4-5)

is surjective.

4B. Proof of arithmetic level raising. This section is devoted to the proof of Theorem 4.7. We assume
that we are not in the case where F =Q and B is the matrix algebra, since this is already known by Ribet.

For a ∈ B, denote τ(a) ∈ 6∞ the end point of the unique semiline in a. By the construction in
Section 3G, for each a ∈B, the stratum W∅,∅(a) fits into the following commutative diagram

W∅,∅(a)
� � //

��

Z∅,∅(a)
� � //

πa

��

Sh(G, K p)Fp2g

Sh(G∅a,∅′a, K p)Fp2g ,τ (a)

∼=

��

� � // Sh(G∅a,∅′a, K p)Fp2g

Sh(GSmax, K p)Fp2g ,

(4-6)

where the square is Cartesian. Here, ∅a is the set Sa defined by (3-3) with S=∅ and ∅′a is the subset
defined by (3-8) with T = ∅, and we used slightly different notations to avoid confusion. Note that
Sh(G∅a,∅a, K p) is a proper Shimura curve over OF,p (with F regarded as a subfield of Qac determined
by a), and Sh(G∅a,∅a, K p)Fp2g ,τ (a)

∼= Sh(GSmax, K p)Fp2g is exactly its supersingular locus in the sense of
[Carayol 1986, Section 6.7]. Similarly to (4-3), we have a Chow class map

0(Sh(GSmax, K p)(Fac
p ),Z)→ CH1(Sh(G∅a,∅′a, K p)Fac

p
),

which induces an unramified level raising map for the Shimura curve Sh(G∅a,∅′a, K p):

8m(a) : 0(Sh(GSmax, K p)(Fac
p ),OE/λ)

G′
m → H1(Fp2g ,H1(Sh(G∅a,∅′a, K p)Fac

p
,OE/λ(1))m). (4-7)

The following is an analogue of Theorem 4.7 for Shimura curves.

Proposition 4.8. Under the hypothesis of Theorem 4.7, the map 8m(a) is surjective.

To prove this proposition, we need some preparation. We fix an isomorphism G∅a(Qp)∼= GL2(Fp)

so that K p is identified with GL2(OFp). Let Iwp ⊆ K p be the standard upper triangular Iwahori sub-
group. Let Sh(G∅a, K p Iwp) be the Shimura curve attached to G∅a of level K p Iwp. By [Carayol
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1986], Sh(G∅a,∅′a, K p Iwp) admits an integral model Sh(G∅a,∅′a, K p Iwp) over OF,p with semistable
reduction. The special fiber Sh(G∅a,∅′a, K p Iwp)Fpg consists of two copies of Sh(G∅a,∅′a, K p Iwp)Fpg

cutting transversally at supersingular points. There are two natural degeneracy maps

π1, π2 : Sh(G∅a,∅′a, K p Iwp)→ Sh(G∅a,∅′a, K p)

whose restrictions to generic fibers are described as in [Tian and Xiao 2019, (2.14.1)]. We note the
following generalization of Ihara’s lemma to Shimura curves over totally real fields.

Lemma 4.9. Under the hypothesis of Theorem 4.7, the canonical map

π∗1 +π
∗

2 : H1(Sh(G∅a,∅′a, K p)Qac,OE/λ)
⊕2
m → H1(Sh(G∅a,∅′a, K p Iwp)Qac,OE/λ)m

is injective.

Proof. This follows from [Manning and Shotton 2019, Theorem 6.5], under Assumption 4.1(1) and (3). �

Proof of Proposition 4.8. To simplify notation, let us put X := Sh(G∅a,∅a, K p) viewed as a proper
smooth scheme over OF,p, denote the supersingular locus as

X ss
Fp2g
:= Sh(G∅a,∅′a, K p)Fp2g ,τa

∼= Sh(GSmax, K p)Fp2g ,

and put X0(p) := Sh(G∅a,∅a, K p Iwp). We put also kλ := OE/λ. Consider the canonical short exact
sequence

H0(XFac
p
, kλ)→ H0(X ss

Fac
p
, kλ)→ H1

c(X
ord
Fac

p
, kλ)→ H1(XFac

p
, kλ)→ 0

equivariant under the action of G(Fac
p /Fpg )×Z[TR∪{p}

], where Xord
Fac

p
:= XFac

p
− X ss

Fac
p

is the ordinary locus.
The first term vanishes after localizing at m by Assumption 4.1(3). Taking Galois cohomology Hi (Fp2g ,−),
one deduces a boundary map

8∗m(a) : H1(XFac
p
, kλ)G

′

m → H1(Fp2g ,H0(X ss
Fac

p
, kλ)m).

By the Poincaré duality and the duality of Galois cohomology over finite fields, it is easy to see that
8∗m(a) is identified with the dual map of 8m(a). Therefore, to finish the proof of Proposition 4.8, it
suffices to show that 8∗m(a) is injective.

Recall that X0(p)Fpg consists of two copies of XFpg . Let i1 : XFpg → X0(p)Fpg be the copy such that
π1 ◦ i1 is the identity, and i2 : XFpg → X0(p)Fpg be the one such that π2 ◦ i2 is the identity. Then π2 ◦ i1

is the Frobenius endomorphism of XFpg relative to Fpg composed with the Hecke action S(g−1)/2
p ; and

π1 ◦ i2 is the Frobenius endomorphism of XFpg relative to Fpg composed with the Hecke action S(g+1)/2
p .

Consider the normalization map

δ : X̃0(p)Fpg := XFpg

∐
XFpg

i1
∐

i2
−−−→ X0(p)Fpg .

Then one has an exact sequence of étale sheaves

0→ kλ→ δ∗kλ→ i ss
∗

kλ→ 0
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on X0(p)Fpg , where i ss
: X ss

Fpg→ X0(p)Fpg denotes the closed immersion of the singular locus of X0(p)Fpg ,
and the second map δ∗kλ→ i ss

∗
kλ is given as follows: If x ∈ X ss

Fpg (F
ac
p ) is a supersingular geometric point

with preimage δ−1(x)= (x1, x2) with x j ∈ i j (X (Fac
p )) for j = 1, 2, then (δ∗kλ)x = kλ,x1 ⊕ kλ,x2 → kλ,x

is given by (a, b) 7→ a− b. By the functoriality of cohomology, we get

0= H0(XFac
p
, kλ)m→ H0(X ss

Fac
p
, kλ)m→ H1(X0(p)Fac

p
, kλ)m

(i∗1 ,i
∗

2 )−−−→ H1(XFac
p
, kλ)⊕2

m → 0. (4-8)

Consider the map

π∗1 +π
∗

2 : H1(XFac
p
, kλ)⊕2

m → H1(X0(p)Fac
p
, kλ)m (4-9)

induced by the two degeneracy maps π1, π2 : X0(p)→ X . If Frp denotes the action on H1(XFac
p
, kλ)

induced by the Frobenius endomorphism of XFpg relative to Fpg , then Frp = σ−1
p and the composite map

θ : H1(XFac
p
, kλ)⊕2

m
π∗1+π

∗

2−−−→ H1(X0(p)Fac
p
, kλ)m

(i∗1 ,i
∗

2 )−−−→ H1(XFac
p
, kλ)⊕2

m

is given by the matrix (
1 Frp S(g−1)/2

p

Frp S(g+1)/2
p 1

)
.

By Definition 4.5(L3), the Hecke operator Sp acts trivially on H1(XFac
p
, kλ)m since the trivial action is

the only lifting of the trivial action modulo m by Assumption 4.1(1). We see that ker θ is identified with
the image of the injective morphism

H1(XFac
p
, kλ)

Fr2
p=1

m
(−Frp,Id)
−−−−−→ H1(XFac

p
, kλ)⊕2

m .

However, by Ihara’s Lemma 4.9 and the proper base change, the map π∗1 +π
∗

2 in (4-9) is injective. Thus,
it induces an injection

8∗ : H1(XFac
p
, kλ)

Fr2
p=1

m
∼= ker θ→ ker(i∗1 , i∗2 )∼= H0(X ss

Fac
p
, kλ)m.

To finish the proof of Proposition 4.8, it suffices to show the following claims:

(1) The action of Fr2
p on H0(X ss

Fac
p
, kλ)m is trivial so that the natural projection

H0(X ss
Fac

p
, kλ)m→ H1(Fp2g ,H0(X ss

Fac
p
, kλ)m)∼= H0(X ss

Fac
p
, kλ)m/(Fr2

p−1)

is an isomorphism.

(2) The morphism 8∗ is identified with 8∗m(a).

Claim (1) follows from Assumption 4.1(1), Definition 4.5(L3) and the observation that Fr2
p acts through

the Hecke translation by (1, . . . , 1, p, 1, . . .) ∈ A
∞,×
F where p is placed at the prime p.
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To prove Claim (2), consider the following commutative diagram:

H1
c(X

ord
Fac

p
, kλ)m //

π∗2−π
∗

1 Frp
��

H1(XFac
p
, kλ)

π∗2−π
∗

1 Frp
��

// 0

0 // H0(X ss
Fac

p
, kλ)m //

1

��

H1
c(X

ord
Fac

p
, kλ)⊕2

m
// H1(X0(p)Fac

p
, kλ)m //

(i∗1 ,i
∗

2 )

��

0

0 // H0(X ss
Fac

p
, kλ)⊕2

m
// H1

c(X
ord
Fac

p
, kλ)⊕2

m
// H1(XFac

p
, kλ)⊕2

m
// 0

where 1 is the diagonal map, and horizontal rows are exact. Then the coboundary isomorphism
ker(i∗1 , i∗2 )∼= H0(X ss

Fac
p
, kλ)m given by (4-8) coincides with

ker(i∗1 , i∗2 )
∼
−→ coker1 ∼

←− H0(X ss
Fac

p
, kλ)m,

where the first isomorphism is deduced from the commutative diagram above by the snake lemma, and
the second is induced by the injection H0(X ss

Fac
p
, kλ)m ↪→ H0(X ss

Fac
p
, kλ)⊕2

m to the second component.

Now take x ∈H1(XFac
p
, kλ)

Fr2
p=1

m
∼= ker θ , and let x̃ ∈H1

c(X
ord
Fac

p
, kλ)m be a lift of x that is fixed by Sp. This

is possible as the action of Sp on H1
c(X

ord
Fac

p
, kλ) is semisimple. Then π∗2 (x̃)−π

∗

1 Frp(x̃) ∈ H1
c(X

ord
Fac

p
, kλ)⊕2

is an element lifting π∗2 (x)−π
∗

1 Frp(x) ∈ ker(i∗1 , i∗2 ), and π∗2 (x̃)−π
∗

1 Frp(x̃) lies actually in the image of
H0(X ss

Fac
p
, kλ)⊕2

m . Note that

π∗2 (x̃)−π
∗

1 Frp(x̃)= (S−1
p Frp(x̃), x̃)− (Frp(x̃),Fr2

p(x̃))= (0, (1−Fr2
p)(x̃)).

Since8∗(x) is by definition the image of π∗2 (x̃)−π
∗

1 Frp(x̃) in coker1∼=H1(X ss
Fac

p
, kλ)m, we get8∗(x)=

(1−Fr2
p)(x̃). However, this is nothing but the image of x ∈H1(XFac

p
, kλ)G

′

m via the coboundary map 8∗m(a).
This finishes the proof of claim, hence also the proof of Proposition 4.8. �

Recall that we have, for each a ∈B, an algebraic correspondence

Sh(G∅a,∅′a, K p)Fp2g
πa
←− Z∅,∅(a)

ia
−→ Sh(G, K p)Fp2g .

Let 3 be OEλ , OE/λ or Qac
` . We define Gysa(3) to be the composite map

H1(Sh(G∅a,∅′a, K p)Fac
p
,3)m

π∗a−→ H1(W∅,∅(a)Fac
p
,3)m

Gysin
−−→ Hg(Sh(G, K p)Fac

p
,3((g− 1)/2))m,

where the first map is an isomorphism since πa is a (g−1)/2-th iterated P1-fibrations, and the second
map is the Gysin map induced by the closed immersion ia. Taking sum, we get a map

Gys(3) :=
∑
a

Gysa(3) :
⊕
a∈B

H1(Sh(G∅a,∅′a, K p)Fac
p
,3)m→ Hg(Sh(G, K p)Fac

p
,3((g− 1)/2))m.
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Proposition 4.10. Under the assumption of Theorem 4.7, we have that

(1) the map Gys(3) is injective for 3=OEλ,OE/λ,Qac
` ;

(2) the induced map

Gys(OE/λ)/m :
⊕
a∈B

H1(Sh(G∅a,∅′a, K p)Fac
p
,OE/λ)/m→ Hg(Sh(G, K p)Fac

p
,OE/λ((g− 1)/2))/m

is injective.

Before giving the proof of the proposition, we introduce some notation. Let Rm be the set of all
automorphic representations that contribute to Hg(Sh(G, K p)Fac

p
,3((g− 1)/2))m. Then it is the same as

the set of all automorphic representations that contribute to H1(Sh(G∅a,∅a, K p)Fac
p
,3)m for every a by

the Jacquet–Langlands correspondence. It is finite and contains 5. We may enlarge E such that every
automorphic representation 5′ ∈ Rm is defined over E. Fix an embedding Eλ ↪→Qac

` . Let α5′, β5′ ∈ Zac
`

be the eigenvalues of ρ5′,λ(σp), where Zac
` denotes the ring of integers of Qac

` . By Remark 4.6(2), we
may assume that α2

5′ and β2
5′ are respectively congruent to 1 and p2g (modulo the maximal ideal of Zac

` );
in particular, α5′/β5′ is not congruent to any i-th root of unity for 1≤ i ≤ 2g by Definition 4.5(L2).

Proof of Proposition 4.10. Following [Tian and Xiao 2019], we consider the composite map

Resa(3) : Hg(Sh(G, K p)Fac
p
,3)m

i∗a−→ Hg(W∅,∅(a)Fac
p
,3)m

πa!
−→ H1(Sh(G∅a,∅′a, K p),3)m

for each a ∈B, and put

Res(3) :=
⊕
a∈B

Resa(3) : Hg(Sh(G, K p)Fac
p
,3)m→

⊕
a∈B

H1(Sh(G∅a,∅′a, K p)Fac
p
,3)m.

To prove that Gys(3) is injective, it suffices to show that the composite map Res(3) ◦Gys(3), which is
an endomorphism of

⊕
a∈B H1(Sh(G∅a,∅′a, K p)Fac

p
,3)m, is injective.

It follows from Lemma 4.4 that

Hg(Sh(G, K p)Fac
p
,3)m = Hg(Sh(G, K p)Fac

p
,OEλ)m⊗OEλ

3, (4-10)

and it is a finite free 3-module. Note that we have

Hg(Sh(G, K p)Fac
p
,Qac

` )m =
⊕
5′∈Rm

Hg(Sh(G, K p)Fac
p
,Qac

` )[5
′∞
]

as modules over Z[TR∪{p}
]. Then it was shown in the proof of [Tian and Xiao 2019, Theorem 4.4(2)] that

on each 5′∞-isotypic component, det(Res(3) ◦Gys(3)) is equal to a power of

±p(g−1)/2·( g
(g−1)/2)[(α5′ −β5′)

2/(α5′β5′)]
tg,(g−1)/2

for 3=Qac
` , where tg,(g−1)/2 =

∑(g−1)/2−1
i=0

(g
i

)
. By (4-10), it is clear that the same formula also holds for

3=OEλ . Therefore, we see that det(Res(OEλ)◦Gys(OEλ)) is nonvanishing modulo λ by Definition 4.5(L2).
It follows that Res(3) ◦Gys(3) is an isomorphism for all choices of 3, hence Gys(3) is injective and
(1) follows.
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The above argument also implies (2). �

We can now finish the proof of Theorem 4.7. The assertion that G′ acts trivially on 0(B ×

Sh(GSmax, K p)(Fac
p ),OE/λ)m follows from Theorem 3.13(2) and Definition 4.5(L3). We focus now

on the surjectivity of 8m (4-4).
We write kλ =OE/λ for simplicity as before. Under the canonical isomorphism

0(B×Sh(GSmax, K p)(Fac
p ), kλ)m ∼=

⊕
a∈B

0(Sh(GSmax, K p)Fac
p
, kλ)m,

the map (4-5) is identified with the composite map

⊕
a∈B 0(Sh(GSmax, K p)Fac

p
, kλ)/m

⊕a8m(a)/m
//

8m/m ,,

⊕
a∈B H1(Fp2g ,H1(Sh(G∅a,∅′a, K p)Fac

p
, kλ(1)/m)

Gys
��

H1(Fp2g ,Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m),

where the vertical map Gys is simply H1(Fp2g , (Gys(kλ)/m)(1)). Here, we use the fact that the canonical
maps

H1(Fp2g ,H1(Sh(G∅a,∅′a, K p)Fac
p
, kλ(1))/m→ H1(Fp2g ,H1(Sh(G∅a,∅′a, K p)Fac

p
, kλ(1)/m)

H1(Fp2g ,Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2)))/m→ H1(Fp2g ,Hg(Sh(G, K p)Fac

p
, kλ((g+ 1)/2))/m)

are both isomorphisms since H2(Fp2g ,−) vanishes. By Proposition 4.8, the map⊕a8m(a)/m is surjective.
To prove that 8m/m is surjective, it suffices to show that so is Gys.

First, we have a description of H1(Sh(G∅a,∅′a, K p), kλ(1))/m in terms of ρ5,λ, which is the residue rep-
resentation of (4-1) as we recall. Since ρ5,λ is absolutely irreducible by Remark 4.2(1), the kλ[GF ]-module
H1(Sh(G∅a,∅a, K p)Qac, kλ(1))/m is isomorphic to r copies of ρ∨5,λ(1)∼= ρ5,λ with r ≥ dim(5∞B )

K by
[Boston et al. 1991] and the theory of old forms. By Remark 4.6(2), one has an isomorphism of
kλ[G′]-modules

ρ5,λ ∼= kλ⊕ kλ(1).

In particular, H1(Sh(G∅a,∅a, K p)Fac
p
, kλ(1))/m is the direct sum of the eigenspaces of σ 2

p with eigenval-
ues 1 and p2g both with multiplicity r .

By [Brylinski and Labesse 1984], Remarks 4.2(4) and 4.6(3) and the similar argument as above,
the (generalized) eigenvalues of σ 2

p on Hg(Sh(G, K p)Fac
p
,Qac

` ((g+ 1)/2))/m are pg(g+1)α−2i
5 β

−2(g−i)
5

with multiplicity
(g

i

)
dim(5∞B )

K . Note that pg(g+1)α−2i
5 β

−2(g−i)
5 has image pg(1+2i−g) in Fac

` , which are
distinct for different i under Definition 4.5(L2). For every µ ∈ kλ, let

(Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)σ

2
p≈µ ⊆ Hg(Sh(G, K p)Fac

p
, kλ((g+ 1)/2))/m
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denote the generalized eigenspace of σ 2
p with eigenvalue µ, that is, the maximal subspace annihilated by

(σ 2
p −µ)

`N
for N = 1, 2, . . .. Then by the base change property (4-10), one has a canonical decomposition

Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m=

g⊕
i=0

(Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)σ

2
p≈pg(1+2i−g)

,

where the i-th direct summand has dimension
(g

i

)
dim(5∞B )

K over kλ. The direct summand with σ 2
p ≈ 1

corresponds to the term with i = (g− 1)/2, and it has dimension
( g
(g−1)/2

)
dim(5∞B )

K . Note that

H1(Fp2g , (Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)σ

2
p≈pg(1+2i−g)

)= 0

for i 6= (g− 1)/2. It follows that the natural map

(Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)σ

2
p≈1
→ H1(Fp2g ,Hg(Sh(G, K p)Fac

p
, kλ((g+ 1)/2))/m) (4-11)

is surjective. One gets a commutative diagram:⊕
a∈B(H

1(Sh(G∅a,∅′a,K
p)Fac

p
, kλ(1))/m)σ

2
p=1

(Gys(kλ)/m)(1)∼=

��

∼=
//
⊕

a∈B H1(Fp2g ,H1(Sh(G∅a,∅′a,K
p)Fac

p
, kλ(1))/m)

Gys
��

(Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)σ

2
p≈1 (4-11)

// H1(Fp2g ,Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)

Here, (Gys(kλ)/m)(1) is injective by Proposition 4.10(2), and we deduce that it is an isomorphism for
dimension reasons. It follows immediately that Gys is surjective. This finishes the proof of Theorem 4.7.

5. Selmer groups of triple product motives

In this section, we study Selmer groups of certain triple product motives of elliptic curves in the context
of the Bloch–Kato conjecture, which can be viewed as an application of the level raising result established
in the previous section.

From now on, we fix a cubic totally real number field F , and let F̃ be the normal closure of F in C.

5A. Main theorem. Let E be an elliptic curve over F . We have the Q-motive ⊗ IndF
Q h1(E) (with

coefficient Q) of rank 8, which is the multiplicative induction of the F-motive h1(E) to Q. The cubic-
triple product motive of E is defined to be

M(E) := (⊗ IndF
Q h1(E))(2).

It is canonically polarized. For every prime p, the p-adic realization of M(E), denoted by M(E)p,
is a Galois representation of Q of dimension 8 with Qp-coefficients. In fact, up to a twist, it is the
multiplicative induction from F to Q of the rational p-adic Tate module of E .

Now we assume that E is modular. Then it gives rise to an irreducible cuspidal automorphic represen-
tation 5E of (ResF/Q GL2,F )(A) with trivial central character. In particular, the set 6(5E , τ ) defined in
Section 1C contains∞. We have L(s,M(E))= L

(
s+ 1

2 ,5E , τ
)

(again see Section 1C).
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Put 1[ :=6(5E , τ )−{∞}. Let 1 (resp. 1′, 1′′) be the set of primes of F above 1[ that is of degree
either 1 or 3 (resp. unramified of degree 2, ramified of degree 2). We write the conductor of E as cc′c′′c+

such that c (resp. c′, c′′, c+) has factors in 1 (resp. 1′, 1′′, elsewhere).

Assumption 5.1. We consider the following assumptions:

(E0) The cardinality of 6(5E , τ ) is odd and at least 3.

(E1) For every finite place w of F over some prime in 6(5E , τ ), the elliptic curve E has either good or
multiplicative reduction at w.

(E2) For distinct embeddings τ1, τ2 : F ↪→ F̃ , the F̃-elliptic curve E ⊗F,τ1 F̃ is not isogenous to any
(possibly trivial) quadratic twist of E ⊗F,τ2 F̃ .

Remark 5.2. Assumption 5.1(E0) implies that 1 is not empty. Assumption 5.1(E1) implies that E has
multiplicative reduction at w ∈1. Together, they imply that the geometric fiber E⊗F Fac does not admit
complex multiplication.

We now assume that E is modular and satisfies Assumption 5.1. Then Assumption 5.1(E1) implies
that cc′ is square-free, and c′′ =OF by [Liu 2019, Lemma 4.8]. We take an ideal r of OF contained in
Nc+ for some integer N ≥ 4 and coprime to 1[.

Assumption 5.1(E0) implies that 1 is a nonempty finite set of even cardinality. Let B be a quaternion
algebra over F , unique up to isomorphism, with ramification set 1, and O ⊆ B be an OF -maximal
order. Let r0 and r1 be two ideals of OF such that r0, r1 and 1 are mutually coprime. We recall the
definition of the Hilbert modular stack X (1)r0,r1 over Spec(Z[NF/Q(r0r1)

−1(disc F)−1
]) defined in [Liu

2019, Definition B.3]. For every Z[NF/Q(r0r1)
−1(disc F)−1

]-scheme T , X (1)r0,r1(T ) is the groupoid of
quadruples (A, ιA,CA, αA) where

• A is a projective abelian scheme over T ;

• ιA : O→ End(A) is an injective homomorphism satisfying

Tr(ιA(b)|Lie(A))= TrF/Q Tr◦B/F (b)

for all b ∈O;

• CA is an O-stable finite flat subgroup of A[r0] which is étale locally isomorphic to (OF/r0)
2 as

O/r0O ∼=M2(OF/r0)-modules;

• αA : (OF/r1)
2
T → A is an O-equivariant injective homomorphism of group schemes over T .

If r1 = OF , αA is trivial and we usually omit it from the notation. If r1 is contained in NOF for some
integer N ≥ 4, then X (1)r0,r1 is a scheme.

We put Xr := X (1)c′,r. Let D(r, c+) be the set of all ideals of OF containing r(c+)−1 as in [Liu 2019,
Notation A.5]. For every d ∈D(r, c+), we have the following composite map

δ̃d : Xr = X (1)c′,r→ X (1)c′r,OF
δd
−→ X (1)c′c+,OF (5-1)
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which is a finite étale morphism of Deligne–Mumford stacks, where δd is the degeneracy map defined as
follows. If (A, ιA,CA) is an object of X (1)c′r,OF (T ) for some Spec(Z[NF/Q(c

′r)−1 disc(F)−1
])-scheme

T , then its image by δd is given by the object (A′, ιA′,CA′), where

• A′ is the quotient A by the finite flat subgroup CA[d],

• ιA′ is the induced O-action on A′ from A,

• CA′ is the unique subgroup scheme of CA/CA[d] étale locally isomorphic to (OF/c
′c+)2.

See [Liu 2019, Section B.1] for more details.

Remark 5.3. The requirement that |6(5E , τ )| ≥ 3, that is, 1 6= ∅ is not essential. The reason we
require this is not to make the relevant Shimura variety Xr proper. In fact, it is used to obtain a refinement
(Proposition 5.13) of Theorem 4.7 so that the map (4-5) is also injective in order to deduce Lemma 5.18
which is needed for the first explicit reciprocity law back in [Liu 2019], through a trick using Jacquet–
Langlands correspondence. However, it is not clear to us what are optimal conditions for the map (4-5) to
be injective.

From now on, we fix an element w ∈ 1. Let B be the totally definite quaternion algebra over F ,
ramified exactly at 1 \ {w}. Put

Yr := B×\B̂×/K0,1(wc′, r)

where K0,1(wc′, r)⊆ B̂× is an open compact subgroup defined similarly as in Example 2.12.
For every ideal s contained in c+, we let R(s) be the union of primes dividing s and primes above 1[.

In particular, we have the homomorphism

φs := φ
R(s)
5E
: Z[TR(s)

] → Z

such that φs(Tq)= aq(E) and φs(Sq)= 1 for every prime q 6∈ R(s). Here we recall that TR is the Hecke
monoid away from R [Liu 2019, Notation 3.1].

Let p be a rational prime.5 Let ms
p be the kernel of the composite map Z[TR(s)

]
φs
−→ Z→ Fp. We also

have an induced Galois representation

ρ5E ,p : GF → GL(Tp(E))∼= GL2(Zp),

where Tp(E) is the p-adic Tate module of E . Put ρ5E ,p := ρ5E ,p mod p.

Definition 5.4 (perfect pair). We say that:

(1) p is generic if (IndQ
F ρ5E ,p)|GF̃

has the largest possible image, which is isomorphic to G(SL2(Fp)×

SL2(Fp)×SL2(Fp)).

(2) The pair (p, r) is s-clean, for an ideal s of OF contained in r, if:

(a) The space 0(Yr,Zp)/m
s
p has dimension |D(r, c+)| over Fp.

5The readers may notice that we switch the roles of p and ` (or λ) in Section 5 from Section 4. This is due to a different
convention in the study of Selmer groups.
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(b) H3(X (1)c′c+,OF ⊗Qac,Zp)/m
s
p has dimension 8 over Fp, and the canonical map⊕

d∈D(r,c+)

δ̃d
∗
: H3(Xr⊗Qac,Zp)/m

s
p→

⊕
d∈D(r,c+)

H3(X (1)c′c+,OF ⊗Qac,Zp)/m
s
p

is an isomorphism.

(3) The pair (p, r) is perfect if:

(a) p ≥ 11 and p 6= 13, 19.
(b) p is coprime to1[ and r·|(Z/r∩Z)×|·µ(r, c+)·|Cl(F)r|·disc F , where disc F is the discriminant

of F , Cl(F)r is the ray class group of F with respect to r, and

µ(r, c+)= NF/Q(r(c
+)−1)

∏
q

(
1+

1
NF/Q(q)

)
with q running through the prime ideals of OF dividing r but not c+.

(c) p is generic.
(d) It is r-clean.
(e) ρ5E ,p is ramified at w.

Remark 5.5. Note that the condition that p is generic implies that the condition (LIIndρ5E ,p
) in [Dimitrov

2005, Proposition 0.1] is satisfied. Consequently, H3(Xr⊗Qac,Zp)ms
p

is finite free over Zp for any ideal
s of OF containing r by [loc. cit., Theorem 0.3].

Let B[ be a quaternion algebra over Q, unique up to isomorphisms, with ramification set 1[ so that
B ∼= B[⊗Q F . We have similarly a moduli scheme X [

r := X (1[)Z,r∩Z attached to B[. Then we obtain a
canonical morphism

θ : X [
r → Xr

over Z[(r disc F)−1
] similar to [Liu 2019, (4.1.1)]. It is a finite morphism. Denote by 2p,r the image of

θ∗[X
[
r ⊗Q] ∈ CH2(Xr⊗Q) under the Abel–Jacobi map

AJp : CH2(Xr⊗Q)→ H1(Q,H3(Xr⊗Qac,Qp(2))/ kerφr).

By [loc. cit., Lemma 4.6], we have H1(Qv,M(E)p) = 0 for all primes v - p. Thus, we recall the
following definition.

Definition 5.6 [Bloch and Kato 1990; Liu 2019, Definition 4.7]. The Bloch–Kato Selmer group for the
representation M(E)p is the subspace H1

f (Q,M(E)p) consisting of classes s ∈ H1(Q,M(E)p) such that

locp(s) ∈ H1
f (Qp,M(E)p) := ker[H1(Qp,M(E)p)→ H1(Qp,M(E)p⊗Qp Bcris)].

Theorem 5.7. Let E be a modular elliptic curve over F satisfying Assumption 5.1. For a rational prime
p, if there exists a perfect pair (p, r) (Definition 5.4) such that 2p,r 6= 0, then

dimQp H1
f (Q,M(E)p)= 1.
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Remark 5.8. By an argument similar to [Liu 2019, Lemma 4.10], given an ideal r of OF contained in
Nc+ for some integer N ≥ 4 and coprime to 1[, there exists a finite set PE,r of rational primes such that
(p, r) is a perfect pair for every p 6∈ PE,r. An upper bound for PE,r can be computed effectively.

Remark 5.9. Assuming the (conjectural) triple product version of the Gross–Zagier formula and the
Beilinson–Bloch conjecture on the injectivity of the Abel–Jacobi map, the following two statements
should be equivalent:

• L ′(0,M(E)) 6= 0 (note that L(0,M(E))= 0 by Assumption 5.1(E0)).

• There exists some r0 such that for every other r contained in r0, we have 2p,r 6= 0 as long as (p, r)
is a perfect pair.

Here, we need to use (the proof of) [Liu 2019, Proposition 4.9]. Then Theorem 5.7 implies that if
L ′(0,M(E)) 6= 0, that is, ords=0 L(s,M(E)) = 1, then dimQp H1

f (Q,M(E)p) = 1 for all but finitely
many p.

5B. A refinement of arithmetic level raising. From now on, we fix a perfect pair (p, r) (Definition 5.4),
and put ms

:=ms
p for short.

Definition 5.10. Let ν ≥ 1 be an integer. We say that a prime ` is (pν, r)-admissible if:

(A1) ` is inert in F (with l= `OF ), unramified in F̃ , and coprime to R(r)∪ {2, p}.

(A2) (p, r) is rl-clean.

(A3) p -(`18
− 1)(`6

+ 1).

(A4) φr(Tl)≡ `
3
+ 1 mod pν .

Notation 5.11. For now on, we fix an integer ν ≥ 1 and put 3 := Z/pν . Let ρ : GF → GL(Nρ) be
the reduction of ρ5E ,p modulo pν , where Nρ = Tp(E) ⊗ 3. We have the multiplicatively induced
representation ρ] : GQ→ GL(N]

ρ) with N]
ρ = N⊗3

ρ .

Lemma 5.12. Let ` be a (pν, r)-admissible prime. Then the cohomology groups

H1
unr(Q`,H3(X (1)c′c+,OF ⊗Qac,3(2))/ kerφrl), H1

unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl)

are free 3-modules of ranks 1 and |D(r, c+)|, respectively.

Proof. By Definition 5.10(A2), Nakayama’s lemma and [Brylinski and Labesse 1984], we have isomor-
phisms of 3[GQ`

]-modules

H3(X (1)c′c+,OF ⊗Qac
` ,3(2))/ kerφrl ∼= N]

ρ(−1), H3(Xr⊗Qac
` ,3(2))/ kerφrl ∼= N]

ρ(−1)⊕|D(r,c
+)|.

If σl ∈ GF denotes an arithmetic Frobenius element at l, then ρ(σl) is conjugate to
( 1

0
0
`3

)
by

Definition 5.10(A4). Hence, the 3[GQ`
]-module N]

ρ(−1) is unramified and isomorphic to 3(−1)⊕
3⊕ R⊕3(1)⊕ R(1)⊕3(2), where R ∼= 3⊕2 is the rank 2 unramified representation of GQ`

with
the action of the arithmetic Frobenius σ` given by

( 0
1
−1
−1

)
. By Definition 5.10(A3), it follows that

H1
unr(Q`,N]

ρ(−1))∼= H1
unr(Q`,3), which is free of rank 1 over 3. �
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Let ` be a (pν, r)-admissible prime. Then Xr⊗Z(`) is canonically isomorphic to Sh(G, K0,1(c
′, r)`)

with G = ResF/Q B× considered in Section 2E (See Remark 2.5 on the issue of polarizations and
Example 2.12 for the open compact subgroup K0,1(c

′, r)), and X [
r ⊗Z(`) is canonically isomorphic to

Sh(G[, K0,1(Z, r∩Z)`)with G[
= (B[)×. Put Xr :=Xr⊗F`. As before, we denote by X sp

r the superspecial
locus of Xr. By Theorem 3.16, we may identify X sp

r (F
ac
` ) with Sh(GSmax, K0,1(c

′, r)`)(Fac
` ).

The following proposition is a refinement of Theorem 4.7 in our situation.

Proposition 5.13. Let ` be a (pν, r)-admissible prime. Then the level raising map

0(B× X sp
r (F

ac
` ),3)/ kerφrl→ H1(F`6,H3(Xr⊗ Fac

` ,3(2))/ kerφrl) (5-2)

defined similarly as (4-5) is an isomorphism.

Proof. In the proof of Lemma 5.12, we have seen that, as a 3[GF`]-module, H3(Xr⊗ Fac
` ,3(2))/ kerφrl

is isomorphic to |D(r, c+)|-copies of

N]
ρ(−1)∼=3(−1)⊕3⊕R⊕3(1)⊕R(1)⊕3(2).

We get thus an isomorphism of 3[Gal(F`6/F`)]-modules

H1(F`6,H3(Xr⊗ Fac
` ,3(2))/ kerφrl)∼= H1(F`6,3⊕R)⊕|D(r,c

+)| ∼= (3⊕R)⊕|D(r,c
+)|, (5-3)

which is free of rank 3|D(r, c+)| over 3. By Theorem 4.7 and Nakayama’s lemma, the map (5-2) is
surjective. Thus it suffices to show that 0(X sp

r (F
ac
` ),3)/ kerφrl is a free 3-module of rank |D(r, c+)|.

By Nakayama’s lemma, it suffices to show that 0(X sp
r (F

ac
` ), Fp)/m

rl has dimension |D(r, c+)| over Fp.
Recall that so far, we have three quaternion algebras over F in the story: B ramified at 6∞∪1\{w}, B

ramified at 1, and BSmax ramified at 6∞∪{l}∪1. Now we let B ′ be the fourth quaternion algebra over F
ramified at 6∪{l}∪1\{w} where 6 is a fixed subset of 6∞ of cardinality 2. Let C be the corresponding
proper Shimura curve over F (with the embedding into Qac given by the unique element in 6∞ \6) of
the similarly defined level K0,1(wc′, r). As in Step 4 of the proof of [Liu 2019, Proposition 3.32], C has
a natural strictly semistable model at l. The corresponding weight spectral sequence provides us with a
canonical isomorphism

0(Yr,Zp)/m
rl
' H1

sing(Q`6,H1(C ⊗Qac,Zp)/m
rl)

as in the proof of [Liu 2019, Proposition 3.32]. By Definition 5.10(A2), H1
sing(Q`6,H1(C⊗Qac,Zp)/m

rl)

has dimension |D(r, c+)|. By [Boston et al. 1991], we conclude that H1(C ⊗Qac,Zp)/m
rl is isomorphic

to ρ⊕|D(r,c
+)|

5E ,p as an Fp[GF ]-module. In particular, H1(C ⊗Qac,Zp)/m
rl has dimension 2|D(r, c+)|.

Now consider the semistable reduction of C at w. Let C0 be the proper Shimura curve over F associated
to B ′ of the level K0,1(c

′, r). Then H1(C0⊗Qac,Zp)/m
rl
= 0 by Definition 5.4(3e). Therefore, we have

a canonical isomorphism

H1(Iw,H1(C ⊗Qac,Zp)/m
rl)' 0(X sp

r (F
ac
` ), Fp)/m

rl
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from the weight spectral sequence, as the supersingular set of C at w is also X sp
r (F

ac
` ). Therefore,

0(X sp
r (F

ac
` ), Fp)/m

rl has dimension |D(r, c+)|. The proposition follows. �

5C. Second explicit reciprocity law. Let ` be a (pν, r)-admissible prime, and l = `OF . Recall that
6∞ denotes the set of archimedean places of F . For every ideal s of OF coprime to 1 ∪ {l}, let
S`,s := S(6∞∪1∪{l})s be the set of isomorphism classes of oriented OF -Eichler orders of discriminant
6∞∪1∪{l} and level s (see [Liu 2019, Definition A.1]). It has an action by GF` such that the arithmetic
Frobenius σ` acts by switching the orientation at l.

Lemma 5.14. There is a canonical isomorphism X sp
r (F

ac
` )/Cl(F)r ∼= S`,c′r. Moreover, the induced action

of GF` on S`,c′r factors through Gal(F`2/F`) and is given by the map op` switching the orientation at l.

Proof. It is a special case of [loc. cit., Proposition A.13(1)]. �

Denote by ψ : X sp
r (F

ac
` )→ S`,c′r the canonical projection from the above lemma.

Lemma 5.15. The canonical map

ψ∗ : 0(S`,c′r,3)/ kerφrl→ 0(X sp
r (F

ac
` ),3)/ kerφrl

is an isomorphism.

Proof. It follows similarly to [loc. cit., Lemma 3.24]. �

Proposition 5.16. Under the notation above, the following statements hold:

(1) The action of op` on 0(S`,c′r,3)/ kerφrl is trivial.

(2) There exists a unique isomorphism 8 such that the following diagram is commutative, where the
lower left vertical arrow is the diagonal map:

0(S`,c′r,3)/ kerφrl 8
//

ψ∗

��

H1
unr(Q`,H3(Xr⊗Qac,3(2)/ kerφrl)

∼=

��

0(X sp
r (F

ac
` ),3)/ kerφrl

��

H1
unr(Q`6,H3(Xr⊗Qac,3(2)/ kerφrl))Gal(Q

`6/Q`)
� _

��

0(B× X sp
r (F

ac
` ),3)/ kerφrl

(5-2)
// H1

unr(Q`6,H3(Xr⊗Qac,3(2)/ kerφrl))

Proof. Consider the action of Gal(Q`6/Q`) on both sides of the isomorphism

0(B×S`,c′r,3)/ kerφrl ψ∗
−→ 0(B× X sp

r (F
ac
` ),3)/ kerφrl→ H1(F`6,H3(Xr⊗ Fac

` ,3(2))/ kerφrl).

By (5-3), we obtain an isomorphism

(0(S`,c′r,3)/ kerφrl)op`=1 ∼= H1
unr(Q`,H3(Xr⊗Qac,3(2)/ kerφrl).
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By Lemma 5.12, H1
unr(Q`,H3(Xr⊗Qac,3(2)/ kerφrl) is a free 3-module of rank |D(r, c+)|. Therefore,

the inclusion
(0(S`,c′r,3)/ kerφrl)op`=1

⊆ 0(S`,c′r,3)/ kerφrl

is an isomorphism as both sides are free 3-module of rank |D(r, c+)|. Thus both (1) and (2) follow. �

Denote by 2νp,r the image of θ∗[X
[
r ⊗Q] ∈ CH2(Xr⊗Q) under the Abel–Jacobi map

AJp : CH2(Xr⊗Q)→ H1(Q,H3(Xr⊗Qac,3(2))/ kerφrl).

For any ideal s⊆OF , let S[`,s = S({∞}∪1[ ∪ {`})s∩Z denote the set of isomorphism classes of oriented
Z-Eichler orders of discriminant {∞}∪1[ ∪ {`} and level s∩Z [Liu 2019, Definition A.1]. We have a
natural map given by extension of scalars

ϑ : S[`,r→ S`,c′r. (5-4)

We have a bilinear pairing ( · , · ) : 0(S`,c′r,Z)× 0(S`,c′r,Z)→ Z defined by the formula ( f1, f2) =∑
h∈S`,c′r f1(h) f2(h). It induces a perfect pairing

( · , · ) : 0(S`,c′r,3)/ kerφrl×0(S`,c′r,3)[kerφrl] →3.

Theorem 5.17 (second explicit reciprocity law). Let ` be an (pν, r)-admissible prime. Then loc`(2νp,r)
lies in H1

unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl), and we have

(8−1 loc`2νp,r, f )=
|(Z/r∩Z)×|

(`− 1)2|Cl(F)r|
·

∑
x∈S[`,r

f (ϑ(x))

for every f ∈ 0(S`,c′r,3)[kerφrl]. Here, 8 is the isomorphism in Proposition 5.16.

We note that (`− 1)2|Cl(F)r| is invertible in 3.

Proof. The fact that 2νp,r is unramified follows from the fact that both Xr and X
[
r have good reduction at `.

Recall that Xr=Xr⊗F`. Similarly, we put X [
r :=X [

r⊗F`. Then we have the morphism θ : X [
r→ Xr over F`.

Let 2 be the image of θ∗[X
[
r] ∈ CH2(Xr) in the Galois cohomology H1(F`,H3(Xr⊗ Fac

` ,3(2)/ kerφrl)
defined similarly as for 2νp,r. Then under the canonical identification

H1(F`,H3(Xr⊗ Fac
` ,3(2))/ kerφrl)∼= H1

unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl),

2 coincides with loc`2νp,r.
From Proposition 5.13, we have an isomorphism

0(B× X sp
r (F

ac
` ),3)/ kerφrl =

⊕
a∈B

0(X sp
r (F

ac
` ),3)/ kerφrl ∼=−→ H1(F`6,H3(Xr⊗ Fac

` ,3(2))/ kerφrl).

For each a ∈B, we denote by

9a : H1(F`6,H3(Xr⊗ Fac
` ,3(2))/ kerφrl)→ 0(X sp

r (F
ac
` ),3)/ kerφrl
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the map obtained by taking the inverse of the previous isomorphism followed by the canonical projection
to the direct summand indexed by a. By a similar proof to [Liu 2019, Proposition 4.3], we have the
following commutative diagram:

X [,sp
r (Fac

` )
θ
//

ψ[

��

X sp
r (F

ac
` )

ψ

��

S[`,r
ϑ

// S`,c′r

where ψ[ is obtained similarly as ψ , but for X [
r . Therefore, the theorem will follow if we can show that

for every f ∈ 0(X sp
r (F

ac
` ),3)[kerφrl], we have

(9a2, f )=
1

(`− 1)2
∑

x∈X [,sp
r (Fac

` )

f (θ(x)) (5-5)

since ψ is of degree |Cl(F)r| by Lemma 5.14 and similarly ψ[ is of degree |(Z/r∩Z)×|.
For every a ∈B, we have the following commutative diagram as (4-6):

W∅,∅(a)
� � //

��

Z∅,∅(a)
� � ia

//

πa

��

Sh(G)F
`6
∼= Xr⊗ F`6

X sp
r ⊗ F`6

∼=
// Sh(GSmax)F`6

� � ja
// Sh(G∅a,∅a)F`6

where the square is Cartesian. Here, we omit the away-from-` level structure K0,1(c
′, r)` in the notation.

However, in this case, Z∅,∅(a) coincides with the Goren–Oort divisor Sh(G)F
`6 ,τ (a)

for some τ(a) ∈6∞
determined by a. Thus it is easy to see that the (scheme-theoretical) intersection 0θ ∩ pr∗2 Z∅,∅(a) is
contained in X [,sp

r × X sp
r , where 0θ ⊆ X [

r × Xr is the graph of θ and pr2 : X [
r × Xr→ Xr is the canonical

projection. More precisely, it is the graph of the restricted morphism θ : X [,sp
r → X sp

r . Therefore, we have

πa∗i∗aθ∗[X
[
r] = θa∗[X

[,sp
r ⊗ F`6] (5-6)

in CH1(Sh(G∅a,∅a)F`6 ), where θa is the composite morphism

X [,sp
r ⊗ F`6

θ
−→ X sp

r ⊗ F`6 ∼= Sh(GSmax)F`6
ja
−→ Sh(G∅a,∅a)F`6 .

Recall that we have two morphisms

Gysa = ia! ◦π∗a : H1(Sh(G∅a,∅a)Fac
`
,3(1))/ kerφrl→ H3(Xr⊗ Fac

` ,3(2))/ kerφrl,

Resa = πa! ◦ i∗a : H3(Xr⊗ Fac
` ,3(2))/ kerφrl→ H1(Sh(G∅a,∅a)Fac

`
,3(1))/ kerφrl.

We write B= {a1, a2, a3} with ai−1 = σ(ai ) for all i viewed as elements in Z/3Z, where σ(ai ) means
the translate of ai by the Frobenius as defined just above Definition 3.15. By [Tian and Xiao 2019,



Supersingular locus of Hilbert modular varieties, arithmetic level raising and Selmer groups 2113

Theorem 4.3] and the proof of [loc. cit., Theorem 4.4], the intersection matrix (Resai ◦Gysa j
)1≤i, j≤3 is

given by −2` `η−1
1 `η3

`η1 −2` `η−1
2

`η−1
3 `η2 −2`

 ,
where

ηi : H1(Sh(G∅ai ,∅ai
)Fac
`
,3(1))/ kerφrl→ H1(Sh(G∅ai+1 ,∅ai+1

)Fac
`
,3(1))/ kerφrl

is a certain normalized link morphism introduced in [loc. cit., Section 2.25] which commutes with
the Galois action and such that the product ηi+2ηi+1ηi for i ∈ Z/3Z is the endomorphism on
H1(Sh(G∅ai ,∅ai

)Fac
`
,3(1))/ kerφrl given as follows. Let σ` ∈ GF` denotes an arithmetic Frobenius

element. By [Brylinski and Labesse 1984] and Definition 5.10(A4), one has a decomposition of
3[GF

`3
]-modules

H1(Sh(G∅ai ,∅ai
)Fac
`
,3(1))/ kerφrl =M1

i ⊕M`3

i ,

where each Mλ
i for λ= 1, `3 is a finite free 3-module on which the action of σ 3

` −λ is nilpotent. Then the
action of ηi+2ηi+1ηi on M1

i (respectively on M`3

i ) is the multiplication by `−3 (respectively `3). Since the
roles of ai are symmetric, H1(Sh(G∅ai ,∅ai

)Fac
`
,3(1))/ kerφrl for i = 1, 2, 3 must be isomorphic. Thus,

we can identify Mλ
i with λ = 1, `3 for different i and write it commonly as Mλ in such a way that the

morphisms ηi are identified with the same endomorphism η on M1
⊕M`3

, where η acts by `−1 on M1

and by ` on M`3
, respectively. With these identification, the intersection matrix writes as

(Resai ◦Gysa j
)1≤i, j≤3 = `

−2 η−1 η

η −2 η−1

η−1 η −2

 . (5-7)

Note also the isomorphism H1(F`6,H1(Sh(G∅ai ,∅ai
)Fac
`
,3(1))/ kerφrl)∼= H1(F`6,M1) on which η acts

by the scalar `−1.
By the proof of Theorem 4.7 in Section 4B, we have a commutative diagram

H1(F`6,H3(Xr⊗ Fac
` ,3(2))/ kerφrl)

9ai
��

H1(F`6,H1(Sh(G∅ai ,∅ai
)Fac
`
,3(1))/ kerφrl))

Gysai
oo

0(X sp
r (F

ac
` ),3)/ kerφrl 0(Sh(GSmax)(F

ac
` ),3)/ kerφrl

∼=
oo

8ai

OO

where the bottom isomorphism is the one induced by the identification X sp
r ⊗ F`6 ∼= Sh(GSmax)F`6 , and

8ai is the map induced from (4-7). We claim that 8ai is an isomorphism. Indeed, by Proposition 4.8 and
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Nakayama’s lemma, 8ai is surjective. On the other hand, we have a commutative diagram

⊕3
i=1 0(Sh(GSmax)(F

ac
` ),3)/ kerφrl

⊕i8ai
//

(5-2) ,,

⊕3
i=1 H1(F`6,H1(Sh(G∅ai ,∅ai

)Fac
`
,3(1))/ kerφrl))∑

i Gysai
��

H1(F`6,H3(Xr⊗ Fac
` ,3(2))/ kerφrl)

where the composite map is an isomorphism by Proposition 5.13. It follows that each 8ai is injective,
hence an isomorphism.

Now, we have 2=
∑3

i=1 Gysai
◦8ai ◦9ai (2) and

8−1
a1
◦Resa1 2= `(−29a1(2)+ `9a2(2)+ `

−19a3(2))= (`− 1)29a1(2)

by (5-7). Here, the last equality uses 9a1(2)=9a2(2)=9a3(2) by symmetry. On the other hand, by
(5-6), we have

8−1
a ◦Resa2= θ∗1[

for all a ∈B, where 1[ is the characteristic function on X [,sp
r (Fac

` ). Thus (5-5) follows immediately, and
the theorem is proved. �

The following lemma will be needed in the next section.

Lemma 5.18. When s= rl, the map⊕
d∈D(r,c+)

δd
∗
: 0(S`,c′r,3)/ kerφs→

⊕
d∈D(r,c+)

0(S`,c′c+,3)/ kerφs

is an isomorphism of free 3-modules of rank |D(r, c+)|.

Proof. The idea of proof is similar to [Liu 2019, Lemma 3.33]. Recall that we have morphisms δ̃d in
(5-1) for each d ∈D(r, c+). As usual, we put δ̃ := δ̃OF . Form the following pullback square

X d
r

ε
//

εd

��

Xr

δ̃d

��

Xr
δ̃
// X (1)c′c+,OF

of schemes over Z(`), where all morphisms are finite étale. The scheme X d
r has a natural action by TR(rl)

under which the above diagram is equivariant. By an argument similar to [loc. cit., Lemma 3.33], we
obtain a commutative diagram

0(S`,c′r,3)/ kerφrl 8
//

|(OF/r)
×
|·δ∗◦δd∗

��

H1
unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl)

εd∗◦ε
∗

��

0(S`,c′r,3)/ kerφrl 8
// H1

unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl)

(5-8)
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where 8 is the isomorphism in Proposition 5.16. By proper base change, the endomorphism εd
∗
◦ ε∗ of

H3(Xr⊗Qac,3(2)) coincides with the composite map

H3(Xr⊗Qac,3(2)) δ̃d∗−→ H3(X (1)c′c+,OF ⊗Qac,3(2)) δ̃∗
−→ H3(Xr⊗Qac,3(2)).

Definition 5.10(A2) and Proposition 5.16(1) imply that the image of

εd
∗
◦ ε∗ : H1

unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl)→ H1
unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl)

is a free 3-module of rank 1. Here, we use the fact that δ̃∗ is injective, as p -µ(r, c+) in Definition 5.4(3b).
By the commutative diagram (5-8), we know that the image of

δ∗ ◦ δd
∗
: 0(S`,c′r,3)/ kerφrl→ 0(S`,c′r,3)/ kerφrl

is a free 3-module of rank 1. Since δd
∗

is surjective and δ∗ is injective, 0(S`,c′c+,3)/ kerφrl is a free
3-module of rank 1. Similarly, we may deduce that the map⊕

d∈D(r,c+)

δd
∗
: 0(S`,c′r,3)/ kerφrl→

⊕
d∈D(r,c+)

0(S`,c′c+,3)/ kerφrl (5-9)

is injective. However, since the source of (5-9) a free 3-module of rank |D(r, c+)| by Proposition 5.16,
the map (5-9) has to be an isomorphism. The lemma follows. �

Remark 5.19. Note that since the images of kerφrl in both End3(0(S`,c′r,3)) and End3(0(S`,c′c+,3))
are finite sets, it follows by Chebotarev’s density theorem that for all but finitely many primes l′ of F , the
conclusion of Lemma 5.18 also holds for s= rll′.

5D. First explicit reciprocity law. We keep the notation in Section 5C. Let `= (`, `′) be a pair of distinct
(pν, r)-admissible primes (Definition 5.10) such that Lemma 5.18 holds for s= rll′, where l′ := `′OF

(see Remark 5.19).
Put Xr,` := X (1 ∪ {l, l′})c′,r and X [

r,` := X (1[ ∪ {`, `′})Z,r∩Z (in the notation of [Liu 2019, Defini-
tion B.1]), as schemes over Z(`′). Then we obtain a canonical morphism

θ` : X
[
r,`→ Xr,`. (5-10)

Denote by 2νp,r,` the image of θ`∗[X
[
r,`⊗Q] ∈ CH2(Xr,`⊗Q) under the Abel–Jacobi map

AJp : CH2(Xr,`⊗Q)→ H1(Q,H3(Xr,`⊗Qac,3(2))/ kerφrll
′

).

Theorem 5.20 (first explicit reciprocity law). Let `= (`, `′) be as above:

(1) There is a canonical decomposition of the 3[GQ]-module

H3(Xr,`⊗Qac,3(2))/ kerφrll
′

=

⊕
d∈D(r,c+)

M0

where M0 is isomorphic to N]
ρ(−1) (Notation 5.11) as a 3[GQ]-module.
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(2) There is a canonical isomorphism

H1
sing(Q`′,H3(Xr,`⊗Qac,3(2))/ kerφrll

′

)∼= 0(S`,c′r,3)/ kerφrl,

under which we have

(∂ loc`′ 2νp,r,`, f )= (`′+ 1) ·
|(Z/r∩Z)×|

|Cl(F)r|
·

∑
x∈S[`,r

f (ϑ(x))

for every f ∈ 0(S`,c′r,3)[kerφrl].

Proof. We will use results from [Liu 2019, Sections 3 and 4]. Put ∇[ :=1[ ∪ {∞, `} as in the setup of
[loc. cit., Section 4.1]. By Lemma 5.18, (ρ, c′c+, c′, r) is a perfect quadruple in the sense of [loc. cit.,
Definition 3.2], satisfying [loc. cit., Assumption 4.1]. Moreover, `′ is a cubic-level raising prime for
(ρ, c′c+, c′, r) in the sense of [loc. cit., Definition 3.3].

Note that the morphism (5-10) is nothing but θ : X (`′)[r → X (`′)c′,r in [loc. cit., (4.1.1)]; and the
map (5-4) is nothing but ϑ : S[r → Sc′r in [loc. cit., (4.1.2)]. Therefore, (1) follows from [loc. cit.,
Theorem 3.5(2)]; and (2) follows from [loc. cit., Theorems 3.5(3) and 4.5]. �

5E. Proof of main theorem. Recall that we have the multiplicatively induced representation N]
ρ and the

Z/pν[GQ]-module M0 as in Theorem 5.20. We have a GQ-equivariant pairing

N]
ρ(−1)×M0→ Z/pν(1)

which induces, for every prime power v, a local Tate pairing

〈 · , · 〉v : H1(Qv,N]
ρ(−1))×H1(Qv,M0)→ H2(Qv,Z/pν(1))' Z/pν .

For s ∈ H1(Q,N]
ρ(−1)) and r ∈ H1(Q,M0), we will write 〈s, r〉v rather than 〈locv(s), locv(r)〉v.

Proof of Theorem 5.7. We assume that 2p,r is nonzero. Regard 2p,r as an element in H1
f (Q,H3(Xr⊗

Qac,Zp(2))/ kerφr), which is not torsion. By [Brylinski and Labesse 1984] and the assumption that
(p, r) is r-clean (Definition 5.4), we know that Np := H3(X (1)c′c+,OF ⊗Qac,Zp(2))/ kerφr is a GQ-
stable lattice in M(E)p; and there exists some d ∈ D(r, c+) such that δd

∗
2p,r ∈ H1

f (Q,Np) is not
torsion. Here, H1

f (Q,Np) is by definition of the preimage of H1
f (Q,M(E)p) under the natural map

H1(Q,Np)→ H1(Q,M(E)p). We fix such an element d. Let ν0 ≥ 0 be the largest integer such that
δd
∗
2p,r ∈ pν0H1

f (Q,Np).
We prove by contradiction, hence assume dimQp H1

f (Q,M(E)p) ≥ 2. In what follows, we fix a
sufficiently large integer ν as before, and will give a lower bound on ν for which a contradiction emerges
at the end of proof.

By [Liu 2016, Lemma 5.9], we may find a free Z/pν-submodule S of H1
f (Q,N]

ρ(−1)) of rank 2 with a
basis {s, s ′} such that pν0s= δd

∗
2νp,r. By the same discussion in [Liu 2019, Section 4.3 (after Lemma 4.12)],

we have tower of fields LS/L/Q contained in Qac. Let � be the (finite) set of rational primes that are
either ramified in LS or not coprime to 1 or r disc F . Put ν� :=max{νv | v ∈�} where νv is in [loc. cit.,
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Lemma 4.12(2)]. We choose a prime `0 6∈� such that `0 is (pν, r)-admissible (Definition 5.10), which is
possible by [loc. cit., Lemma 4.11]. Let γ ∈ Gal(L/Q) be the image of Frobw0 under ρ](−1) (the image
of ρ](−1) has been identified with Gal(L/Q)), where w0 is some prime of L above `0. Then γ has order
coprime to p; and (N]

ρ(−1))〈γ 〉 is a free Z/pν-module of rank 1.
By [loc. cit., Lemma 4.16] and (the argument for) [loc. cit., Lemma 4.11], we may choose two

(�, γ )-admissible places (in the sense of [loc. cit., Definition 4.15]) w,w′ of L such that

(1) 9w(s ′)= 0, 9w(s)= t , 9w′(s ′)= t ′ with t, t ′ ∈ (N]
ρ(−1))〈γ 〉 that are not divisible by p;

(2) the underlying prime ` of w and the underlying prime `′ of w′ are distinct (pν, r)-admissible primes,
such that Lemma 5.18 holds for s= rll′ (see Remark 5.19).

Put ` := (`, `′). Then there are elements 2νp,r,` ∈H1(Q,H3(Xr,`⊗Qac,3(2))/ kerφrll
′

) from Section 5D,
and δd

∗
2νp,r,` ∈ H1(Q,M0). We have

(3) locv 2νp,r,` ∈ H1
unr(Qv,M0) for a prime v 6∈�∪ {p, `, `′}, by [Liu 2016, Lemma 3.4];

(4) locp 2
ν
p,r,` ∈ H1

f (Qp,M0), by [Nekovář 2000, Theorem 3.1(ii)].

By [Liu 2019, Lemma 4.6] and [Liu 2016, Lemma 3.4], we have locv(s ′) ∈ H1
unr(Qv,N]

ρ(−1)) for every
prime v 6∈�∪{p, `, `′}. By [Liu 2016, Definition 4.6, Remark 4.7], we have locp(s ′)∈H1

f (Qv,N]
ρ(−1)).

Then by [Liu 2019, Lemma 4.12(2,3,5)] and (3), (4) above, we have

pν−ν� |
∑

v 6∈{`,`′}

〈s ′,2νp,r,`〉v. (5-11)

Since 9w(s ′)= 0 by (1), we also have

〈s ′,2νp,r,`〉` = 0. (5-12)

Let φ0 be a generator of 0(S`,c′c+,Z/pν)[kerφrll
′

] which is a free Z/pν-module of rank 1. Then by
the choice of s, w in (1), and Theorem 5.17, we have∑

S[`,r

φ0(δ
d(ϑ(x))) ∈ pν0Z/pν − pν0+1Z/pν .

By the choice of w′ in (1) and Theorem 5.20, we have

〈s ′,2νp,r,`〉`′ ∈ pν0Z/pν − pν0+1Z/pν . (5-13)

Here, we have used the fact that p is coprime to |(Z/r∩Z)×|, |Cl(F)r|, (`− 1), and `′+ 1.
Take ν ∈ Z such that ν > ν0+ ν�. Then the combination of (5-11), (5-12) and (5-13) contradicts with

the following well-known fact: ∑
v

〈s ′,2νp,r,`〉v = 0

due to the global class field theory and the fact that p is odd, where the sum is taken over all primes v.
Theorem 5.7 is proved. �
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