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This article has three goals: First, we generalize the result of Deuring and Serre on the characterization of
supersingular locus to all Shimura varieties given by totally indefinite quaternion algebras over totally
real number fields. Second, we generalize the result of Ribet on arithmetic level raising to such Shimura
varieties in the inert case. Third, as an application to number theory, we use the previous results to study
the Selmer group of certain triple product motive of an elliptic curve, in the context of the Bloch—Kato

conjecture.
1. Introduction 2059
2. Shimura varieties and moduli interpretations 2066
3. Goren—Oort cycles and supersingular locus 2080
4. Arithmetic level raising 2094
5. Selmer groups of triple product motives 2104
Acknowledgements 2118
References 2118

1. Introduction

The study of special loci of moduli spaces of abelian varieties starts from Deuring and Serre. Let N >4 be
an integer and p a prime not dividing N. Let Yo(N) be the coarse moduli scheme over Z,,) parametrizing
elliptic curves with a cyclic subgroup of order N. Let Yo(N )Esp denote the supersingular locus of the
special fiber Yo(N)g,, which is a closed subscheme of dimension zero. Deuring and Serre proved the
following deep result (see, for example [Serre 1996]) characterizing the supersingular locus:

Yo(N)E (i) = B*\B*/R*. (1-1)

Here, B is the definition quaternion algebra over Q2 ramified at p, and R C B is any Eichler order of
level N. Moreover, the induced action of the Frobenius element on B* \é x/ R* coincides with the Hecke
action given by the uniformizer of B ®¢q Q,,.

One main application of the above result is to study congruence of modular forms. Let f =g +
a2q2 + a3q3 + - -- be a normalized cusp new form of level I'g(N) and weight 2. Let m; be the ideal of
the away-from-Np Hecke algebra generated by T, — a, for all primes v{ Np. We assume that f is not
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dihedral. Take a sufficiently large prime £, not dividing Np(p? — 1). Using the isomorphism (1-1) and
the Abel-Jacobi map (over [ ,2), one can construct a map

D(B*\B*/R*,Fp)/ms — H'(F 2, H' (Yo(N) @ F, Fo (1)) /m ) (1-2)

where I'(B* \é x/ R X, [F¢) denotes the space of [F;-valued functions on B* \é x/ R*. [Ribet 1990] proved
that the map (1-2) is surjective. Note that the right-hand side is nonzero if and only if £ [a) — (p + 1)?,
in which case the dimension is 1. From this, one can construct a normalized cusp new form g of level
['o(Np) and weight 2 such that f = g mod £ when ¢ |a§, —(p+ D2

This article has three goals: First, we generalize the result of Deuring and Serre to all Shimura varieties
given by totally indefinite quaternion algebras over totally real number fields. Second, we generalize
Ribet’s result to such Shimura varieties in the inert case. Third, as an application to number theory, we
use the previous results to study Selmer groups of certain triple product motives of elliptic curves, in the
context of the Bloch—-Kato conjecture.

For the rest of Introduction, we denote F a totally real number field, and B a fotally indefinite quaternion
algebra over F. Put G :=Resp/g B* as a reductive group over Q.

1A. Supersingular locus of Hilbert modular varieties. Let p be a rational prime that is unramified in F'.
Denote by X, the set of all places of F above p, and put g, := [F}, : Q,] for every p € ¥,. Assume
that B is unramified at all p € X,,. Fix a maximal order Op in B. Let K” € G(A*) be a neat open
compact subgroup in the sense of Definition 2.6. We have a coarse moduli scheme Sh(G, K7) over Z,)
parametrizing abelian varieties with real multiplication by Op and K ?-level structure (see Section 2E for
details). Its generic fiber is a Shimura variety; in particular, we have the following well-known complex
uniformization:

Sh(G, K7)(C) = G(@)\(C — R x G(A®)/KP K,

where K, is a hyperspecial maximal subgroup of G(Q,). The supersingular locus of Sh(G, K”), that
is, the maximal closed subset of Sh(G, K”) ® [} on which the parametrized abelian variety (over [)
has supersingular p-divisible group, descends to [, denoted by Sh(G, K” )Esp. Our first result provides a
global description of the subscheme Sh(G, K” )fé.

To state our theorem, we need to introduce another Shimura variety. Let BT be the quaternion
algebra over F, unique up to isomorphism, such that the Hasse invariants of B and B differ exactly
at all archimedean places and all p € ¥, with g, odd. Similarly, put G':=Resr /a(B 7)* and identify
GT(A>-P) with G(A>P). We put

Sh(G', K")(F%) := GT(@\G'(A®)/K K],

where K ; is a maximal open compact subgroup of G'(Q »). We denote by Sh(GT, K7 ) the correspond-
ing scheme over [77, that is, copies of Spec 7 indexed by Sh(G', K? Y(ED.
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Theorem 1.1 (Theorem 3.13). Let h be the least common multiple of (1 + gy —2|8p/21)8p forp € X),.
We have'
Sh(G, K")p @F =] W),
acB

Here

» B is a set of cardinality ]_[p ez, ( equipped with a natural action by Gal(F /T p);

g
Lgp;ZJ)
* the base change W (a) @ F is a (Zpez,, |_gp/2j)-th iterated P'-fibration over Sh(G?, KP)pae, equi-

variant under prime-to-p Hecke correspondences.”

In particular, Sh(G, Kp)ﬁFi is proper and of equidimension Zp@:p Lgp/2].

If p isinert in F of degree 2 and B is the matrix algebra, then the result was first proved in [Bachmat
and Goren 1999]. If p is inert in F of degree 4 and B is the matrix algebra, then the result was due to Yu
[2003]. Assume that p is inert in F of even degree. Then the strata W (a) have already been constructed in
[Tian and Xiao 2019], and the authors proved there that, under certain genericity conditions on the Satake
parameters of a fixed automorphic cuspidal representation 7, the cycles W (a) give all the w-isotypic Tate
cycles on Sh(G, K")[pp.

Similarly, one can define the superspecial locus Sh(G, K? )?; of Sh(G, K?), that is, the maximal
closed subset of Sh(G, K”) ® [} on which the parametrized abelian variety has superspecial p-divisible
group. It is a reduced scheme over [, of dimension zero. We have the following result:

Theorem 1.2 (Theorem 3.16). Assume that gy, is odd for every p € X,. For each a € ‘B as in the
previous theorem, W (a) contains the superspecial locus Sh(G, K? )?Ff; ®F ,n, and the iterated P!-fibration
Tq: W) ® I]:*;,C — Sh(G', K p)[Fac induces an isomorphism

Sh(G, K”)[Fac = Sh(G", K”)ps

compatible with prime-to-p Hecke correspondences.

In fact, Theorem 3.16(2) shows that the [ .-scheme structure on Sh(G', K p)[]:;t)c induced from the
isomorphism in the above theorem is independent of a. In other words, we have a canonical [ 2-scheme
structure on Sh(G', K P)[F%c, which we denote by Sh(GT, K?). Then it is easy to see that the iterated
P!-fibration 7, descends to a morphism of F ph-schemes

7q: W(a) — Sh(GT, KP)g.

A main application of the global description of the supersingular locus is to study the level raising
phenomenon, as we will explain in the next section.

IThe notation here is simplified. In fact, in the main text and particularly Theorem 3.13, BT, G', B, a and W (a) are denoted
by Bsaxs GSmax» Do, a and Wy o (a), respectively.

20ne should consider Sh(GT, K P )|Fac as the [F"ﬂlC fiber of a Shimura variety attached to GT. However, it seems impossible to
define the correct Galois action on Sh(GJr KP )[F‘;?c using the formalism of Deligne homomorphisms when gy is odd for at least
one p € Xp. When gp is odd for all p € X, we will define the correct Galois action by Gal([Fac /Fp) using superspecial locus.
See the discussion after Theorem 1.2.
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1B. Arithmetic level raising for Hilbert modular varieties. We suppose that g = [F : Q] is odd. Fix
an irreducible cuspidal automorphic representation IT of GL,(Af) of parallel weight 2 defined over a
number field E. Let B, G be as in the previous section; and let K be a neat open compact subgroup of
G (A™). Then we have the Shimura variety Sh(G, K) defined over Q). Let R be a finite set of places of F
away from which IT is unramified and K is hyperspecial maximal.

Let p be a rational prime inert in F such that the unique prime p of F above p is not in R. Then
K = K? K, and Sh(G, K) has a canonical integral model Sh(G, K”) over Z,) as in the previous section.
We also choose a prime A of E and put &, := O/A.

Let Z[T®] (resp. Z[TRYP}H]) be the (abstract) spherical Hecke algebra of GL, r away from R (resp.
RU {p}). Then IT induces a homomorphism

érs: Z[TH — O — ky,

via Hecke eigenvalues. Put m := ker(¢m ;.| ziyruim).

The Hecke algebra Z[ TRV} acts on the (étale) cohomology group H*(Sh(G, K?) ® F¥°, k;). Let
I'(B x Sh(GT, K”)([Ff‘n"), %) be the abelian group of s-valued functions on 8 x Sh(G, K”)([F;’f), which
admits the Hecke action of Z[T*YP}] via the second factor. We have a Chow cycle class map

(B x Sh(G', KP)(F¥), Z) - CH¢*V/(Sh(G, K”)p)

sending a function f on B x Sh(G', KP?) () to the Chow class of Zu,s f(a, s)ncfl(s), which is
Z[ TRV ]-equivariant. We will show that under certain “large image” assumption on the mod-A Galois
representation attached to I, the above Chow cycle class map (eventually) induces the following Abel—
Jacobi map

LB x Sh(G', KP)(F), k) /m — H' (F e, HE SW(G, KP)pe, ki (g + 1)/2)/m). (1-3)
See Section 4A for more details. The following theorem is what we call arithmetic level raising:

Theorem 1.3 (Theorem 4.7). Suppose that p is a A-level raising prime in the sense of Definition 4.5. In

particular, we have the following equalities in k;:

o (Tp)> = (P + 1), ¢na(Sy) =1,

where Ty, (resp. Sy) is the (spherical) Hecke operator at p represented by (6’ (1)) € GLy(Fp) (resp.
(‘8 g) € GL,(Fy)). Then the map (1-3) is surjective.

As we will point out in Remarks 4.2 and 4.6, if there exist rational primes inert in F, and IT is not
dihedral and not isomorphic to a twist by a character of any of its internal conjugates, then for all but
finitely many prime A, there are infinitely many (with positive density) rational primes p that are A-level
raising primes.

2 P)K? has dimension 1

Suppose that the Jacquet-Langlands transfer of IT to B exists, say I1p. If (IT
and there is no other automorphic representation of B> (Ar) (of parallel weight 2, unramified at p, and
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with nontrivial K?-invariant vectors) congruent to I1g modulo A, then the target of (1-3) has dimension
((g—gl)/Z) over k;,.

Remark 1.4. In principle, our method can be applied to prove a theorem similar to Theorem 1.3 when
B is not necessarily totally indefinite but the “supersingular locus”, defined in an ad hoc way if B is
not totally indefinite, still appears in the near middle dimension. In fact, the proof of Theorem 1.3 will
be reduced to the case where B is indefinite at only one archimedean place (that is, the corresponding
Shimura variety Sh(B) is a curve). However, we decide not to pursue the most general scenario as that
would make the exposition much more complicated and technical. On the other hand, we would like
to point out that arithmetic level raising when 1 < dim Sh(B) < [F : Q] has arithmetic application as
well, for example, to bound the triple product Selmer group (see the next section) with respect to a cubic
extension F/F” of totally real number fields with F* # Q.

Let us explain the meaning of Theorem 1.3. Suppose that IT admits Jacquet-Langlands transfer, say
I1p, to B> such that Hg # {0}. Then the right-hand side of (1-3) is nonzero. In particular, under the
assumption of Theorem 1.3, the left-hand side of (1-3) is nonzero as well. One can then deduce that
there is an (algebraic) automorphic representation IT" of G'(A) = (B")*(Af) (trivial at co) such that
the associated Galois representations of IT" and IT with coefficient Of /A are isomorphic. However, it
is obvious that IT" cannot be the Jacquet-Langlands transfer of I1, as B is ramified at p while IT is
unramified at p. In this sense, Theorem 1.3 reveals certain level raising phenomenon. Moreover, this
theorem not only proves the existence of level raising, but also provides an explicit way to realize the
congruence relation behind the level raising through the Abel-Jacobi map (1-3). As this process involves
cycle classes and local Galois cohomology, we prefer to call Theorem 1.3 arithmetic level raising. This is
crucial for our later arithmetic application. Namely, we will use this arithmetic level raising theorem to
bound certain Selmer groups, as we will explain in the next section.

1C. Selmer group of triple product motive. In this section, we assume that g = [F : Q] = 3; in other
words, F is a totally real cubic number field.

Let E be an elliptic curve over F'. We have the ()-motive ® Indg h'(E) (with coefficient @) of rank 8,
which is the multiplicative induction of the F-motive h!(E) to Q. The cubic-triple product motive of E
is defined to be

M(E) := (® Ind§, h' (E))(2).

It is canonically polarized. For every prime p, the p-adic realization of M(E), denoted by M(E),
is a Galois representation of @ of dimension 8 with Q,-coefficients. In fact, up to a twist, it is the
multiplicative induction from F to @ of the rational p-adic Tate module of E.

Now we assume that £ is modular. Then it gives rise to an irreducible cuspidal automorphic represen-
tation ITg of (Resr/q GLo, r)(A) = GL,(Af) with trivial central character. Denote by 7 : LG — GLg(C)
the triple product L-homomorphism [Piatetski-Shapiro and Rallis 1987, Section 0], and L(s, [1g, t) the
triple product L-function, which has a meromorphic extension to the complex plane by [Garrett 1987;
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Piatetski-Shapiro and Rallis 1987]. Moreover, we have a functional equation
L(s. Mg, 1) = (Mg, 1)C(Mg, 1) *7L(1 =5, Mg, 7)

for some e(Ilg, v) € {£1} and positive integer C(I1g, 7). The global root number e€(I1g, t) is the
product of local ones: €(ITg, ) =[], €(Tlg v, 7), where v runs over all places of Q. Here, we have
€(ITg,y, T) € {£1} and that it equals 1 for all but finitely many v. Put

Y(Mg, v) :={v|elg,y, 1) =—1}.

In particular, the set X (I1g, 7) contains co. We have L(s, M(E)) = L(s + %, Mg, ‘L').

Now we assume that E satisfies Assumption 5.1. In particular, X (I1g, 7) has odd cardinality. Let B’ be
the indefinite quaternion algebra over Q with the ramification set X (I1g, t) — {oo}, and put B := B’ ®qF.
Put G :=Resp/g B* as before. We will define neat open compact subgroups K. € G(A), indexed by
certain integral ideals t of F. We have the Shimura threefold Sh(G, K;) over Q. Put G” := (B")* and let
Kf C G"(A) be induced from K. Then we have the Shimura curve Sh(G”, Kf ) over Q with a canonical
finite morphism to Sh(G, K,). Using this 1-cycle, we obtain, under certain conditions, a cohomology
class

®p.c € Hp(Q, M(E) ),

where H; (Q, M(E) ) is the Bloch—Kato Selmer group (Definition 5.6) of the Galois representation
M(E), (with coefficient Q,), and a(r) > 0 is some integer depending on t. See Section SA for more
details of this construction. We have the following theorem on bounding the Bloch—Kato Selmer group
using the class © ..

Theorem 1.5 (Theorem 5.7). Let E be a modular elliptic curve over F satisfying Assumption 5.1. For a
rational prime p, if there exists a perfect pair (p, v) such that ®, . # 0, then we have

dimg, H}(Q, M(E),) = 1.
See Definition 5.4 for the meaning of perfect pairs, and also Remark 5.8.

The above theorem is closely related to the Bloch—Kato conjecture. We refer readers to the Introduction
of [Liu 2016] for the background of this conjecture, especially how Theorem 1.5 can be compared to
the seminal work of Kolyvagin [1990] and the parallel result [Liu 2016, Theorem 1.5] for another triple
product case. In particular, we would like to point out that under the (conjectural) triple product version
of the Gross—Zagier formula and the Beilinson—Bloch conjecture on the injectivity of the Abel-Jacobi
map, the following two statements should be equivalent:

e L'(0, M(E)) # 0 (note that L(0, M(E)) = 0).

o There exists some vy such that for every other v contained in to, we have ®, . # 0 as long as (p, t)
is a perfect pair.
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Assuming this, then Theorem 1.5 implies that if L'(0, M(E)) # 0, that is, ordg—o L(s, M(E)) = 1, then
dimg, H} (Q, M(E),) =1 for all but finitely many p. This is certainly evidence toward the Bloch-Kato
conjecture for the motive M(E).

At this point, it is not clear how the arithmetic level raising, Theorem 1.3, is related to Theorem 1.5.
We will briefly explain this in the next section.

1D. Structure and strategies. There are four sections in the main part. In short words, Section 2 is respon-
sible for the basics on Shimura varieties that we will use later; Section 3 is responsible for Theorems 1.1
and 1.2; Section 4 is responsible for Theorem 1.3; and Section 5 is responsible for Theorem 1.5.

In Section 2, we study certain Shimura varieties and their integral models attached to both unitary
groups of rank 2 and quaternion algebras, and compare them through Deligne’s recipe of connected
Shimura varieties. The reason we have to study unitary Shimura varieties is the following: In the proof
of Theorems 1.1, 1.2 and 1.3, we have to use an induction process to go through certain quaternionic
Shimura varieties associated to B that are not totally indefinite. Those Shimura varieties are not (coarse)
moduli spaces but we still want to carry the information from the moduli interpretation through the
induction process. Therefore, we use the technique of changing Shimura data by studying closely related
unitary Shimura varieties, which are of PEL-type. Such argument is coherent with [Tian and Xiao 2016]
in which the authors study Goren—Oort stratification on quaternionic Shimura varieties.

In Section 3, we first construct candidates for the supersingular locus in Theorem 1.1 via Goren—QOort
strata, which were studied in [Tian and Xiao 2016], and then prove that they exactly form the entire
supersingular locus, both through an induction argument. As we mentioned previously, during the
induction process, we need to compare quaternionic Shimura varieties to unitary ones. At last, we identify
and prove certain properties for the superspecial locus, in some special cases.

In Section 4, we state and prove the arithmetic level raising result. Using the nondegeneracy of certain
intersection matrices proved in [Tian and Xiao 2019], we can reduce Theorem 1.3 to establishing a similar
isomorphism on certain quaternionic Shimura curves. Then we use the well-known argument of Ribet
together with Thara’s lemma in this context to establish such isomorphism on curves.

In Section 5, we focus on the number theoretical application of the arithmetic level raising established
in the previous section. The basic strategy to bound the Selmer group follows the same line as in
[Kolyvagin 1990; Liu 2016; 2019]. Namely, we construct a family of cohomology classes G)‘;,’t’ ¢ to serve
as annihilators of the Selmer group after quotient by the candidate class ®, . in rank 1 case. In the case
considered here, those cohomology classes are indexed by an integer v as the depth of congruence, and a
pair of rational primes ¢ = (¢, £) that are “p"-level raising primes” (see Definition 5.10 for the precise
terminology and meaning). The key idea is to connect ®, . and various @;’r’ ¢ through some objects in
the middle, that is, some mod-p"” modular forms on a certain Shimura set. Following past literature, the
link between ®, . and those mod-p" modular forms is called the second explicit reciprocity law; while
the link between ®;’t’ ¢ and those mod-p” modular forms is called the first explicit reciprocity law. The
first law in this context has already been established by one of us in [Liu 2019]. To establish the second



2066 Yifeng Liu and Yichao Tian

law, we use Theorem 1.3; namely, we have to compute the corresponding element in the left-hand side in
the isomorphism of Theorem 1.3 of the image of ®,, . in the right-hand side.

1E. Notation and conventions. The following list contains basic notation and conventions we fix through-
out the article. We will usually not recall them when we use, as most of them are common:

e Let A be an abelian group and S a finite set. We denote by |S| the cardinality of S and I'(S, A) the
abelian group of A-valued functions on S.

« If a base is not specified in the tensor operation ®, then it is Z. For an abelian group A, put
A=A® (lim, Z/n). In particular, we have 7= [1, Z;, where [ runs over all rational primes. For a
fixed rational prime p, we put 7P = I AR

« We denote by A the ring of adeles over Q. For a set (] of places of @, we denote by A" the ring of
adeles away from [J. For a number field F', we put AE =AYQq F. If 0= {vy, ..., v,} is a finite
set, we will also write AVt for AF,

« For a field K, denote by K?® the algebraic closure of K and put G := Gal(K?/K). Denote by Q*°
the algebraic closure of @ in C. When K is a subfield of Q*, we take Gk to be Gal(Q*/K) hence
a subgroup of Gg.

» For a number field K, we denote by O the ring of integers in K. For every finite place v of Ok,
we denote by Ok , the ring of integers of the completion of K at v.

o If K is alocal field, then we denote by Oy its ring of integers, Ix € Gg the inertia subgroup. If v is
a rational prime, then we simply write G, for Gg, and I, for Ig,.

e Let K be alocal field, A aring, and N a A[Gg]-module. We have an exact sequence of A-modules

0— H. (K,N)— H'(K,N) - H. (K,N)— 0,

unr sing

where H!

unr (K, N) is the submodule of unramified classes.

e Let A be aring and N a A[Gg]-module. For each prime power v, we have the localization map
loc,: HY(Q, N) - H(Q,, N) of A-modules.
 Denote by P! the projective line scheme over Z, and G,, = Spec Z|[T, T the multiplicative group

scheme.

e Let X be a scheme. The cohomology group H*(X, —) will always be computed on the étale site
of X. If X is of finite type over a subfield of C, then H*(X (C), —) will be understood as the Betti
cohomology of the associated complex analytic space X (C).

2. Shimura varieties and moduli interpretations

In this section, we study certain Shimura varieties and their integral models attached to both unitary
groups of rank 2 and quaternion algebras, and compare them through Deligne’s recipe of connected
Shimura varieties.
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Let F be a totally real number field, and p > 3 a rational prime unramified in F. Denote by X, =
Homg(F, C) the set of archimedean places of F, and X, the set of p-adic places of F' above p. We
fix throughout Sections 2 and 3 an isomorphism ¢,,: C = Q7. Via ¢, we identify o, with the set of
p-adic embeddings of F via ¢,. For each p € X, we put g, :=[F}, : Q,] and denote by X/, the subset
of p-adic embeddings that induce p, so that we have

Zoo = || Zoosp:
pe):p

Since p is unramified in F, the Frobenius, denoted by o, acts as a cyclic permutation on each X p.
We fix also a totally indefinite quaternion algebra B over F' such that B splits at all places of F above p.

2A. Quaternionic Shimura varieties. Let S be a subset of X, U X, of even cardinality, and put Sy, :=
SN Xx. Foreach p € £, we put Sy := SN (Zo/p U {p}) and Seo/p = SN Xoo/p. We suppose that Sy,
satisfies the following assumptions.

Assumption 2.1. Take p € Z:
(1) If p €8, then gy is odd and Sy, = X /p U {p].

(2) If p ¢ S, then S is a disjoint union of chains of even cardinality under the Frobenius action on

Yoo/p, that is, either S, = X /p has even cardinality or there exist 7y, ..., T, € Yoy and integers
mi,...,m, > 1 such that
-
Sp:]_[{T,',O’_l‘(i,...,O’_zmi+]‘fi} (2—1)
i=1

and o1, 0 Mg & Sp.

Let Bs denote the quaternion algebra over F whose ramification set is the union of S with the
ramification set of B. We put Gs := Res F/@(BSX). For S = @, we usually write G = Gg. Then Gg is
isomorphic to G over F, for every place v ¢ S, and we fix an isomorphism

Gs(A%P) = G(A™P),

Let T be a subset of Sy, and Ty, = S /p N T for each p € X,,. Throughout this paper, we will always
assume that |Ty| = #S;,/2. Consider the Deligne homomorphism

hst: S(R) = C* — Gs(R) = GLy(R)¥* 5% x (H*)T x (H*)S=~T
Yoo—Swo
r+V-lye ((_xy)y) NCE SR 1S°°—T)

where H denotes the Hamiltonian algebra over R. Then Gg 1 := (Gs, hs 1) is @ Shimura datum, whose
reflex field Fg 1 is the subfield of the Galois closure of F in C fixed by the subgroup stabilizing both So,
and T. For instance, if Soo = &, then T = @ and Fs = Q. Let g denote the p-adic place of Fg r via the
embedding Fs 1t — C —— @?f. By abuse of notation, we will often write G = G & in what follows.
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In this article, we fix an open compact subgroup K, = HpeE,, K, € Gs(Qp) = Hpe):p (Bs ®F Fp)™,
where

K, is a hyperspecial subgroup if p ¢ S, and
e Ky = O;p is the unique maximal open compact subgroup of (Bs ® r Fy)™ if p € S.

For a sufficiently small open compact subgroup K? C G(A*®P) = Gg(A°P), we have the Shimura
variety Sh(Gs 1, K”) defined over Fs whose C-points are given by

Sh(Gs 1, K?)(C) = Gs(@\(HF) ™5 x Gs(A®) /KK,

where K = KK, € G(A*™), and $H* = PY(C) — P'(R) is the union of upper and lower half-planes.
Note that the scheme Sh(Gs 1, K¥)ga over Q*¢ is independent of T, but different choices of T will give
rise to different actions of Gal(Q*/Fs 1) on Sh(Gs 1, K?)gee.

When So = X, the action of I' ;. := Gal(Q*/ Fg 1) on the set Sh(Gg t, K?)(Q%) is given as follows.
Note that the Deligne homomorphism hg t factors through the center Tr = Resr,q(G,,) € Gs, and the
action of I' g . factors thus through its maximal abelian quotient F}Z‘T. Let w: G, rsr — Tr ®q Fs,t be
the Hodge cocharacter (defined over the reflex field Fs 1) associated with hg . Let Art: A;‘;’: — F}';T
denote the Artin reciprocity map that sends uniformizers to geometric Frobenii. Then the action of Art(g)
on Sh(Gs 1, K?)(Q) is given by the multiplication by the image of g under the composite map

N
AR o Tr(AR ) = (FRg AR ) =215 AP C G5(A™).

If F denotes the Galois closure of F in C, then the restriction of the action of I Fsr to I'z depends only
on #T.

We put Sh(Gs 1) :=lim, Sh(Gs 1, K?). Let Sh(Gs 1)° be the neutral geometric connected component
of Sh(Gs 1) ®F, Q%, that is, the one containing the image of point

(=75 1) € (HF) 5= x Gg(A™).

Then Sh(Gs 1)° ®qxe,., @‘;f descends to @‘;,r, the maximal unramified extension of @, in @i‘f. Moreover,
by Deligne’s construction [1979], Shg,(Gs 1) can be recovered from the connected Shimura variety
Sh(Gs,1)° together with its Galois and Hecke actions (see [Tian and Xiao 2016, 2.11] for details in our
particular case).

2B. An auxiliary CM extension. Choose a CM extension E/F such that
o E/F isinert at every place of F where B is ramified,
o forp € X, E/F is split (resp. inert) at p if g, is even (resp. if g, is odd).

Let X g « denote the set of complex embeddings of E, identified also with the set of p-embeddings of E
by composing with ¢,,. For T € X «, we denote by 7¢ the complex conjugation of 7. For p € X, we
denote by X p the subset of p-adic embeddings of E inducing p. Similarly, for a p-adic place q of E,
we have the subset X ~/q © T oo consisting of p-adic embeddings that induce q.
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Assumption 2.2. Consider a subset Sy, € X o satisfying the following:

(1) For each p € ¥, the natural restriction map T oo/p —> Zoo/p induces a bijection Soo/p —> Soo/p,
where §oo/p =S, N YE co/p-

(2) For each p-adic place q of E above a p-adic place p of F, the cardinality of Sy, /q 1s half of the

cardinality of the preimage of Sqo/p in L oo/q-

For instance, if p splits in E into two places q and q° and S, is given by (2-1), then the subset
r
Sesp = | [(E o750, ... o2 RE o2 g
i=1

satisfies the requirement. Here, 7; € X /p denotes the lift of 7; inducing the p-adic place q. The choice
of such a S, determines a collection of numbers sz € {0, 1,2} for T € g o by the following rules:

0 if 7 €Sy,

s =12 if 7€ €Sy,

1 otherwise.
Our assumption on S, implies that, for every prime q of E above p, the set {T € T o /q | 57 =0} has
the same cardinality as {T € X o/q | 57 = 2}.

Put S := (S, So) and Tg := Resg /0(G,,). Consider the Deligne homomorphism
hpgr: SR =C* - Te®) = [] (E®F:R)* = (€)% x (C) x (C*)%

TEX

z=x+v—1ly—>(Z,...,2, ...z, A,..., D).

where, for each 7 € Sy, we identify £ ®; r R with C via the embedding 7: £ — C with T € Seo
lifting 7. We write T 5 1 = (Tg, hg 5 1) and put K¢, := (Og ®Z,)* € Tp(Q)), the unique maximal
open compact subgroup of T¢(Q),). For each open compact subgroup K Ep C Tg(A*P), we have the
zero-dimensional Shimura variety Sh(7}, 5 1, Kg) whose Q*-points are given by

Sh(Tg 5.1, KE)(@Q*) = EX\Tg(A®) /K KE .

2C. Unitary Shimura varieties. Put Ty := Resr;o(Gy, r). Then the reduced norm on Bg induces a
morphism of Q-algebraic groups
vs: Gg — TF.
Note that the center of Gg is isomorphic to Tr. Let Gg’T denote the quotient of Gs x Tg by Tr via the
embedding
Tr — GsxTg, z+> (227D,

and let Gé be the inverse image of G,, € Tr under the norm map

Nm: Gy = (Gs x Tg)/Tr — Tr, (g, 1) > vs(g) Nmg,F(1).



2070 Yifeng Liu and Yichao Tian

Here, the subscript S is to emphasize that we will take the Deligne homomorphism hg :C* — Gg([R{)
induced by hs 1 X hp 5 1, which is independent of T. Note that the image of hg lies in G’é (R), and we
denote by hé: C* — G’é([R{) the induced map.

As for the quaternionic case, we fix the level at p of the Shimura varieties for Gg and Gfg as follows.
Let K, C Gg(@p) be the image of K, x Kf, p, and put K}, := KN Gé(@p). Note that K} (resp. K,)
is not a maximal open compact subgroup of Gg(@ p) (resp. Gé(@ p)), if S contains some p-adic place
p € X,,. For sufficiently small open compact subgroups K7 C Gg(&“”p) and K'P C G%(A“”I’), we get
Shimura varieties with C-points given by

Sh(Gg, K"")(C) = GE@\HF) 75> x G{(A®) /K"K,

Sh(G}, K'7)(€) = GL@\(H5) ™% x G{(A)/K K],
We put

Sh(Gg) = 1<iLnSh(Gg, K'"P), Sh(G/g) = @Sh(Gé, K'P).

K''p K'r

The common reflex field Eg of Sh(G/g) and Sh(Gg) is a subfield of the Galois closure of E in C. The
isomorphism ¢, : C — Q7 defines a p-adic embedding of Eg < @7, hence a p-adic place o of E5. Then
Eg is unramified at ©. Let Sh(G’g’)0 (resp. Sh(Gé)c’) denote the neutral geometric connected component
of Sh(Gg) ®E, Q (resp. Sh(G/é) ® g, @*). Then both Sh(Gg)o ®qu,, @Y and Sh(Gé)O ®qs,, QY can
be descended to QY.

In summary, we have a diagram of morphisms of algebraic groups

GS<—GS><TE—>G/§/=(GS><TE)/TF<—G/§

compatible with Deligne homomorphisms, such that the induced morphisms on the derived and adjoint
groups are isomorphisms. By Deligne’s theory of connected Shimura varieties (see [Tian and Xiao
2016, Corollary 2.17]), such a diagram induces canonical isomorphisms between the neutral geometric
connected components of the associated Shimura varieties:

Sh(Gs 1)° <— Sh(Gg)° - Sh(G%)O. (2-2)

Since a Shimura variety can be recovered from its neutral connected component together with its Hecke
and Galois actions, one can transfer integral models of Sh(Gé) to integral models of Sh(Gs 1) (see [Tian
and Xiao 2016, Corollary 2.17]).

2D. Moduli interpretation for unitary Shimura varieties. Note that Sh(G/é, K'P) is a Shimura variety
of PEL-type. To simplify notation, let Og be the ring of integers of the completion of Ez at &. We recall
the integral model of Sh(G%, K'?) over Og defined in [Tian and Xiao 2016] as follows.

Let K'? € GL(A*F) be an open compact subgroup such that K7 K, is neat (for PEL-type Shimura
data). We put Ds := Bs ® ¢ E, which is isomorphic to Mat, (E) by assumption on E. Denote by b — b
the involution on Dg given by the product of the canonical involution on Bg and the complex conjugation
on E/F. Write E = F (/) for some totally negative element d € F that is a p-adic unit for every p € p-
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We choose also an element § € Dg' such that 8 =8 as in [Tian and Xiao 2016, Lemma 3.8]. Then the
conjugation by 8! defines a new involution b — b* = §~'b8. Consider W = Dy as a free left Ds-module
of rank 1, equipped with an x-hermitian alternating pairing

Y WxW—Q, Y, y) =TT (Voxys)), (2-3)

where Tr, - denotes the reduced trace of Ds/E. Then G can be identified with the unitary similitude
group of (W, ).

We choose an order Op; € Dsg that is stable under * and maximal at p, and an Op,-lattice L C W
such that (L, L) € Z and L ® Z,, is self-dual under y. Assume that K'” is a sufficiently small open
compact subgroup of Gé (A>-P) which stabilizes L @ 2.

Consider the moduli problem S_h(G/é, K'P) that associates to each locally noetherian Og-scheme S the
set of isomorphism classes of tuples (A, ¢, A, @g»), where:

e A is an abelian scheme over S of dimension 4[F : Q].

e 1: Opy — Endg(A) is an embedding such that the induced action of ¢(b) for b € Of on Lie(A/S)
has characteristic polynomial

det(T —u(b)| Lie(A/S)) = 1_[ (x — T(b))*.

‘EGEE,OO

e A: A— AY is a polarization of A such that

— the Rosati involution defined by A on Endg(A) induces the involution b — b* on Op,,

— if p ¢ S, A induces an isomorphism of p-divisible groups A[p>®] => AY[p°°], and

— if p € S, then (ker A)[p°°] is a finite flat group scheme contained in A[p] of rank p4gP and the
cokernel of induced morphism A,.: H{R(A/S) — H{R(AY/S) is a locally free module of rank
two over Os ®z, O /p. Here, H?R(— /S) denotes the relative de Rham homology.

e agr is a K'? level structure on A, that is, a K'7-orbit of Op,-linear isomorphisms of étale sheaves
a: LQZP) =5 TP(A) such that the alternating pairing ¥ : L QILP X LRZP — 71 is compatible
with the A-Weil pairing on ff’(A) via some isomorphism 7 =7 (1). Here, f”(A) = ]_[l?ﬁp T;(A)
denotes the product of prime-to-p Tate modules.

Remark 2.3. Sometimes it is convenient to formulate the moduli problem S_h(Gé, K'P) in terms of isogeny
classes of abelian varieties: one associates to each locally noetherian Og-scheme S the equivalence classes

of tuples (A, t, A, &'%,), where

e (A, 1) is an abelian scheme up to prime-to- p isogeny of dimension 4[F : Q] equipped with an action
Op, satisfying the determinant conditions as above;

A is a polarization on A satisfying the condition as above;
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a'y, is a rational K'P-level structure on A, that is, a K'P-orbit of Op, ® A>P-linear isomorphisms

of étale sheaves on S:
a: WRA®P =5 VP(A):=TP(A) @0

such that the pairing ¥ on W ®g A°? is compatible with the A-Weil pairing on VP(A) up to a
scalar in A% P-*,

For the equivalence of these two definitions, see [Lan 2013].

Theorem 2.4. The moduli problem S_h(Gé, K'P) is representable by a quasiprojective and smooth scheme
Sh(Gé, K'?) over Og such that

Sh(Gg. K') @0, Es ; = Sh(Gg, K'7) @, Es 5.

Moreover, the projective limit Sh(G’g) = lim, Sh(G’g, K'P) is an integral canonical model of Sh(Gé)
over Og in the sense that Sh(G’S) satisfies the following extension property over Og: if S is a smooth
scheme over O, any morphism S ®o,, Eg 5 — Sh(G/é) extends uniquely to a morphism S — Sh(Gfg).

Proof. This follows from [Tian and Xiao 2016, 3.14, 3.19]. O

Let Z\} be the ring of integers of Q). The closure of Sh(Gé)O in Sh(G’é) ®o,;Z},, denote by Sh(G’é)%y,
is a smooth integral canonical model of Sh(G/g)O over Z‘I‘,r. By (2-2), this can also be regarded as an
integral canonical model of Sh(Gg 1)° over Z‘I‘f. This induces a smooth integral canonical model Sh(Gs 1)
of Sh(Gs,1) over OF, ., by Deligne’s recipe (see [Tian and Xiao 2016, Corollary 2.17]). For any open
compact subgroup K” C Gg(A°?), we define Sh(Gs 1, K?) as the quotient of Sh(Ggs 1) by K”. If K?
is sufficiently small, then Sh(Gs 1, K?) is a quasiprojective smooth scheme over OF; . ,, and it is an

integral model for Sh(Gg 1, K7).

2E. Moduli interpretation for totally indefinite quaternionic Shimura varieties. When S = &, then
T = @ and the Shimura variety Sh(G, K?) :=Sh(Gg &, K?) has another moduli interpretation in terms of
abelian varieties with real multiplication by Og. Using this moduli interpretation, one can also construct
another integral model of Sh(G, K”). The aim of this part is to compare this integral canonical model of
Sh(G, K?) with Sh(G, K?) constructed in the previous subsection using unitary Shimura varieties.

We choose an element y € B* such that

e b b* =y~ by is a positive involution;
e v(y) is a p-adic unit for every p-adic place p of F, where v: B* — F* is the reduced norm map.

Put V := B viewed as a free left B-module of rank 1, and consider the alternating pairing

('7'>F:VXV_)F’ (an>F:Tr%/F(x)_’V),



Supersingular locus of Hilbert modular varieties, arithmetic level raising and Selmer groups 2073

where Tr"B/F is the reduced trace of B. Note that (bx, y)p = (x,b*y)r forx, y € V and b € B. We let
G=B*actonV viag-v=uvg~! for g € G and v € V. One has an isomorphism

G = Autg (V).
Fix an order Op C B such that
e Op contains O, and it is stable under *;
e Op®Z, is a maximal order of B ®¢g Q, = GLy(F ®q Q),).

Let K? € G(A®?) be an open compact subgroup. Consider the moduli problem Sh(G, K”) that
associates to every Z,)-scheme T the equivalence classes of tuples (A, ¢, X, @xr) where

e A is a projective abelian scheme over 7 up to prime-to-p isogeny;

« ¢ is a real multiplication by Op on A, that is, a ring homomorphism ¢: Op — End(A) satisfying
det(T —¢(b)| Lie(A)) = Np@(Ng, (T — b)), b€ Op,
where N /F is the reduced norm of B/ F;

e Aisan F f " _orbit of Op-linear prime-to-p polarizations A: A — A" such that (b)Y oL = Ao t(b*)
for all b € Op, where F. f’x C F* is the subgroup of totally positive elements that are p-adic units
forall p € X

e 0gr is a KP-level structure on (A, t), that is, &g is a K?-orbit of B ®g A°?-linear isomorphisms
of étale sheaves on T':
a: V@gAXP =5 VP(A).

Remark 2.5. By [Zink 1982, Lemma 3.8], there exists exactly one F f ** orbit of prime-to- p polarizations
on A that induces the given positive involution s on B. Hence, one may omit A from the definition of the
moduli problem Sh(G, K?). This is the point of view in [Liu 2019]. Here, we choose to keep X in order
to compare it with unitary Shimura varieties.

By [Zink 1982, page 27], one has a bijection
Sh(G, K”)(C) = G(@)\(H)* x G(A®)/KP K, = Sh(G, K?)(C).

Note that an object (A, ¢, A, @x») € Sh(G, K?)(T) admits automorphisms Op N K?, which is always
nontrivial if F # Q. Here, Oy, is considered as a subgroup of G(A*?) via the diagonal embedding.
Thus, the moduli problem Sh(G, K?) can not be representable. However, Zink shows [1982, Satz 1.7]
that Sh(G, K?) admits a coarse moduli space Sh(G, K*), which is a projective scheme over Z ). This
gives an integral model of the Shimura variety Sh(G, K?) over Z ).

We recall briefly Zink’s construction of Sh(G, K?). Take (A, ¢, A, @x») € Sh(G, K?)(T) for some
Z(py-scheme T'. Choose a polarization A € X, and an isomorphism « € @g». Then A induces a Weil pairing

U*: VP(A) x VP(A) — AP (1),
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and there exists a unique F-linear alternating pairing
Ul VP(A) x VP(A) — AP (1)

such that ¥* = Trr/q o\ifﬁ. We fix an isomorphism Z = Z(1), and view (-, - ) as a pairing with values
in F(1). Then by [Zink 1982, 1.2], there exists an element ¢ € A;O’p "™ such that

Uh(@(x), a(y)) =clx, y)r,  x,y€V@gA®P.

The class of ¢ in A;O’p’x/v(Kp), denoted by c(A, ¢, A, @gr), is independent of the choice of o € &g r. If
F C F* is the subgroup of totally positive elements, then the image of c¢(A, ¢, A, @k») in

AZ P FE 0(KP) = AP JFEv(K)

is independent of the choices of both A and «.

We choose representatives cy, . . ., ¢, € A7 "7 /u(KP) of the finite quotient Ay /FI"*v(K ), and
consider the moduli problem SEI(G, K?) that associates to every Z,-scheme T equivalence classes of
tuple (A, ¢, A, dgr), Where

e (A, 1) is an abelian scheme over T up to prime-to-p isogeny equipped with real multiplication by Op;
e A: A— AY is a prime-to-p polarization such that ¢(b)¥ o A = A o 1(b*) for all b € Op;

e 0gr 1s a KP-level structure on A such that c(A, t, A, dgr) =c; forsomei=1,...,r.
To study the representability of SI](G, K7), we need the following notion of neat subgroups.

Definition 2.6. Let R be the ramification set of B. For every g, € (B ®F F,)™ with v ¢ R, let I',, denote
the subgroup of F:“* generated by the eigenvalues of g,. Choose an embedding Q* < Fi°. Then
(Tg, N Q™)™ is the subgroup of I'y, consisting of roots of unity, and it is independent of the embedding
Q* — Fj°.

Let [J be a finite set of places of @ containing the archimedean place, and let [z be the set of places
of F above [J. An element g € G(A”) = (B ®g A™)* is called neat if (), , _5(Tg, N Q™)' = {1}.
We say a subgroup U € G(AP) is neat if every element g = gtgg € U with v(g*) = 1 is neat. Here,
st e (B®r AEF UR) X (resp. gr € ]_[UE%DF (B®F Fy)™) is the prime-to-R component (resp. R-component)
of g.

Assume from now on that K? C G(A®-P) is neat. It is easy to see that each object of SEl(G, KP)
has no nontrivial automorphisms. By a well-known result of Mumford, SE](G, K?) is representable by a
quasiprojective smooth scheme §f1(G, K?) over Zp). If B is a division algebra, then §fl(G, KP) is even
projective over Z(,) (see [Zink 1982, Lemma 1.8]).

Let (9; . be the group of totally positive units of F'. There is a natural action by (9; +NV(K?) on
§ﬁ(G, KP)givenby & - (A, t, A, agr) = (A, 1,E- A, agr) for & € O;,w and the quotient is the moduli
problem Sh(G, K?). Note that the subgroup (O; N KP)? acts trivially on §f1(G, K7). Here, O; is
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considered as a subgroup in the center of G(A* ). Indeed, if & = n?> with 5 Oy N K7, then the
multiplication by n on A defines an isomorphism (A, ¢, A, &gr) —> (A, (,E - A, &gr). Put

Agr = (05 . NV(KP)/(OFNKP).

Proposition 2.7. Assume that K? is neat. Let (A, t, X, @gr) be a T-valued point of Sh(G, K?). Then
the group of automorphisms of (A, 1, A, @ k») is OpNKP. Here, Oy. is viewed as a subgroup of G (A>P)
via the diagonal embedding.

Proof. This is a slight generalization of [Zink 1982, Korollar 3.3]. Take n € Endp, (A)q that preserves A
and @ . Then there exists & € F,.* such that n7) = £, where ) is the Rosati involution of 7 induced by A.
By [Zink 1982, Satz 3.2], it is enough to show that 7} = 1. Choose « € &g », which induces an embedding

(Endp, (A) @ @) — (Endp(V) @g A®P)* = G(A>P).

Then the image of 7 under this embedding lies in K 7. Consider the endomorphism 7%£ ! € Endp, (A) @ Q.
Its image in G(A°>?) lies in K? and has reduced norm equal to 1. Since K7 is neat, all the eigenvalues
of n?£€~! are 1. So n?£~! must be trivial, hence n = 7. (I

Corollary 2.8. Assume that K? is neat. Then the action of Agr on §fl(G, K?) is free.

Proof. The same argument for [Zink 1982, Korollar 3.4] shows that it follows from the above proposition.
O

We put
Sh(G, K?) :=Sh(G, K?)/Ak», (2-4)

which exists as a quasiprojective smooth scheme over Z,y by [SGA 1 2003, Exposé VIII, Corollaire 7.7].
Then Sh(G, K?) is the coarse moduli space of the moduli problem Sh(G, K?), and §ﬁ(G, KP) is a finite
étale cover of Sh(G, K?) with Galois group Ag». For eachi =1, ..., r, we denote by Sh* (G, KP)
the subscheme of §fl(G, K?) consisting the tuples (A, ¢, A, @gr) with c(A, ¢, A, dgr) = ¢;. It is clear
that each Sh* (G, KP) is stable under the action of Agp. Let Sh“ (G, K?) C Sh(G, K?) be the image of
Sh“ (G, K?) under the morphism (2-4). Note that each Sh“ (G, K?) is not necessarily defined over Z,).
Actually, using the strong approximation theorem, one sees easily that Sh“ (G, K?)(C) is a connected
component of Sh(G, K?)(C).

Remark 2.9. Assume that K7 is neat:

(1) Let (:ZLT) be the universal abelian scheme with real multiplication by Opg over STI(G, K7). Then A
is equipped with a natural descent data relative to the projection §f1(G, K?) — Sh(G, K?), since
the action of A g, modifies only the polarization. By [SGA 1 2003, Exposé VIII, Corollaire 7.7], the
descent data on A is effective. This means that, even though Sh(G, K?) is not a fine moduli space,
there exists still a universal family A over Sh(G, K?). Moreover, by étale descent, T descends to a
real multiplication ¢ by Op on the universal family .4 over Sh(G, K 7).
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(2) In general, Ak, is nontrivial. However, for any open compact subgroup K? € G(A°?), there exists
a smaller open compact subgroup K'? C K? such that Ag» is trivial.

We give an interpretation of §fl(G, K?) in terms of Shimura varieties. Let G* C G be the preimage
of G;y,0 € Tr = Resr/o(Gy,, ) via the reduced norm map v: G — Tf. The Deligne homomorphism
hg: S(R) = C* — G(R) factors through G*(R), hence induces a map

hg: S(R) - G*(R).

We put K7 := G*(Q,) N K, which will be the fixed level at p for Shimura varieties attached to G*. For
a sufficiently small open compact subgroup K*” € G*(A*?), we have the associated Shimura variety
Sh(G*, K*?) defined over (O, whose C-points are given by

Sh(G*, K*")(C) = G*(@\((5H)™ x G*(A®)/K*K?).

Put Sh(G*) :=lim,, Sh(G*, K*7) as usual.

There is a natural action of A°:?:* on A;O’p X /F f T V(KP) by multiplication. Let ¢y, ..., ¢; denote
the equivalence classes modulo FZ"*A%-P-X of the chosen set {cy, ..., ¢,} CAZ 7 /v(KP). We may
and do assume that all the ¢;’s in one equivalence class differ from each other by elements in A%,
For each ¢ € {cy, ..., ¢4}, we put

Sh'(G, K?) := ]_[éTf"(G, KP)

CiEC

and similarly Sh*(G, K?) =]]. .. Sh“ (G, K?).

Ci€C

Proposition 2.10. Suppose that K? C G(A°>P) is a neat open compact subgroup. For every ¢ €
{c1, ..., cn), there exists an element gP € G(A™P) such that if KI'P := G* N gP KPgP =, then we have

an isomorphism of schemes over Q
Sh'(G, KP) ®z,, @ => Sh(G*, K'P).

Proof. Let X = ($%)¥> denote the set of conjugacy classes of ig-: S(R) — G*(R). We fix a base
point (Ao, to, Ao, Xkr.0) € glc(G, K?)(C). Put Vg(Ag) := Hi(Ap(C), Q). We fix an isomorphism
no: Va(Ag) — V of left B-modules and a choice of ag € & g». Then the composite map

Mo ® Doag: VRgA®P? — VP(Ag) = Vo(Ag) ®g AP — V ®g A%

defines an element g” € G(A>?). Now let (A, , A, @gr) € éTlc’(G, K?)(C) be another point. There
exists also an isomorphism 1: Vg(A) — V as B-modules, and the Hodge structure on Vg(A) ®g R =
H;(A(C), R) defines an element xo, € X. By the definition of Sh°(G, K?), there exists an element
a € oy such that the isomorphism

h:=m®oaoa; (@1~ € GA®P)
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preserves the alternating pairing (-, - ) on V ®g A°>? up to a scalar in A>”*. Such an element « is
unique up to right multiplication by elements in K7, and it follows that #” is well defined up to right
multiplication by elements of K;*¥ := gP K” g” 1N G*(A>®P). Viewing h” as an element of G*(A>)

with p-component equal to 1, then (A, ¢, A, &gr) = [Xs0, #”] defines a map
f: STIC(G, K?)(C) — Sh(G*, K*")(C) = G*(Q)\(X x G*(Aoo)/Kc*’pK;).

By the complex uniformization of abelian varieties, it is easy to see that f is bijective, and f descends to
an isomorphism of schemes over Q by the theory of canonical models. U

Remark 2.11. In general, there is no canonical choice for g” in the above proposition. Different choices
of gP will result in different K;"”, which are conjugate to each other in G*(A>”). Consequently,
the corresponding Sh(G*, K{"”) are isomorphic to each other by the Hecke action of some elements
in G*(A®-P). However, if ¢ = ¢t is the trivial equivalence class, g” has a canonical choice, namely

g? = 1. In the sequel, we will always take g” = 1 if ¢ = ¢

. Applying Proposition 2.10 to this case, one
obtains a moduli interpretation of Sh(G*, K*'?) as well as an integral model Sh(G*, K*?) over Z,) of
Sh(G*, K*?). Explicitly, the integral model Sh(G*, K*?) parametrizes equivalence classes of tuples
(A, 1, A, 0g~r), Wwhere (A, 1, 1) is the same data as in §ﬁ(G, KP), and ag+pr is a K*P-level structure on
A, that is, an K*'?-orbit of isomorphisms «: V ® A% = VP(A) such that (-, - ) r is compatible with

\IJ’} up to a scalar in A% 7>,

Example 2.12. Fix a lattice A C V stable under Op such that (A, A)r C D;], where 0 is the different
of F/Q, and that A ® Z,, is self-dual under (-, -)F.

Let 901, 91 be two ideals of OF such that they are mutually coprime, both prime to p and the ramification
set R of B, and that 91 is contained in NOFf for some integer N > 4. Let Ko (90, DN)? be a subgroup
of y € G(A®>P) such that there exists v € A with yv € (Opv +IMA) N (v +NA); put Ko (0N, N) :=
Ko, 1 (N, MP K ,. Then Ko 1 (M, N)? is neat and v(Ko 1 (N, N)) = /@; We have thus isomorphisms

AP JED (Ko, (D, MP) = AT F1 05 = CIF(F),

where CIT(F) is the strict ideal class group of F; and the action of A®* on CI*(F) is trivial. We
choose prime-to-p fractional ideals ¢y, . . ., ¢, that form a set of representatives of CI"(F). Then for each
cef{cy,...,cy}, the moduli scheme éTlc(G, Ko 1 (01, M)P) classifies tuples (A, ¢, A, Con, o), Where

» (A, ) is a projective abelian scheme equipped with real multiplication by Op;

e A: A— AV is an Op-linear polarization such that ((b)" o A = A o t(b*) for b € Op, and the induced
map of abelian fppf-sheaves

AY =5 A®o, ¢
is an isomorphism;

o Cyy is a finite flat subgroup scheme of A[)1] that is Opg-cyclic of order (Nm m)?;
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o am: (Op/MP? < A[N] is an embedding of finite étale group schemes equivariant under the action
of Op @0, Or /M= GL2(Op/MN).

Let g/ € G(A™P) be such that the fractional ideal attached to the idele v(g?) € A7 represents
the strict ideal class ¢. Put

K2P =gl Ko (M, MPgl 1 NG*(A™P).

Then we have
Sh*(G. Ko.1 (M. M?) ® Q = Sh(G*, K7).

More explicitly, if F(‘)’ L ON,N) =G (@)L NK P where G*(Q)4+ € G*(Q) is the subgroup of elements
with totally positive reduced norms, then

Sh'(G, Ko,1 (M, MP)(C) = Sh(G*, KFP)(C) = g (M, M\(HH) ™.

In particular, éTlc(G, Ko.1 (91, 91)P) ® Q is geometrically connected for every c. In this case, one has
Ako omoyr = OF L/ O;”gt, where O o, denotes the subgroup of £ € Oy with & =1 mod M. It is clear
that the action of A, m,on» preserves §f1c(G, Ko,1 (1, 91)P), and one obtains an isomorphism

h

Sh(G. Ko,1 (M, M)P) = | [Sh (G, Ko, (M. M?)

i=1
with Sh“ (G, Ko 1 (9, 9)P) = Sh* (G, Ko, 1 (M, NP)/ Ak, omonr. Since Ak, omone acts freely on
§fl(G, Ko,1(O, DV)P), each Sh (G, Ko 1 (I, 91)?) is a smooth quasiprojective scheme over Z ).

2F. Comparison of quaternionic and unitary moduli problems. We now compare the integral model
Sh(G, K?) defined in (2-4) and the one constructed using the unitary Shimura variety Sh(Gé, K'P)
with S = @. Note that when S = &, there is only one choice for §, so we write simply G’ for G’é. By
the universal extension property of Sh(G) := lim,, Sh(G, K7”), these two integral canonical models
are necessarily isomorphic. However, for later applications to the supersingular locus of Sh(G, K”)g,,,
one needs a more explicit comparison between the universal family of abelian varieties over Sh(G) (as
in Remark 2.9(1)) with that over Sh(G’). It suffices to compare the universal objects over the neutral
connected components via the isomorphism

Sh(G)3y = Sh(G')3

induced by (2-2). Here, Sh(G)%l;r is defined similarly as Sh(G’ )%%,; in other words, it is the closure of
Sh(G)? in Sh(G) ® Z};.

The natural inclusion G* < G induces also an isomorphism of derived and adjoint groups, and is
compatible with Deligne homomorphisms. By Deligne’s theory of connected Shimura varieties, it induces
an isomorphism of neutral connected components Sh(G*)° = Sh(G)°. Therefore, we are reduced to
comparing the universal family over Sh(G*) and Sh(G").
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Recall that we have chosen an element y € B* to define the pairing (-, - ) on V = B. We take the
symmetric element § € Dg in Section 2D to be § = y/ (2v/0). One has W =V ®r E, and

Y1, y®1) =(x,y)

forany x,ye V. Put (-,-) :=Trpgo(-,-)r. Then G* (resp. G’) can be viewed as the similitude group
of (V,(-,-)) (resp. (W, ¥) (2-3)); and there exists a natural injection G* < G compatible with Deligne
homomorphisms that induces isomorphisms on the associated derived and adjoint groups.

We take Op, = Op ®p, Of. Let K*’ € G*(A*>?) and K'? C G'(A*?) be sufficiently small open
compact subgroups with K*? C K'P. To each point (A, ¢, A, @g+r) of Sh(G*, K*7) with values in a
Z ,-scheme S, we attach the tuple (A", /', A, @'%,), where

« A'=A®o; OF;
e (/1 Op, — Endgs(A’) is the action induced by ¢;
o )1 A”— A" is the prime-to-p polarization given by

A'= Ao, Op 225 AY ®o, Op ~25 A ®o, 05, = A",

where 0, } 18 the inverse of the relative different of £/F andi: O — 0 }  1s the natural inclusion;

a'y), is a rational K'P-level structure on A’ induced by @g~» by the compatibility of alternating

forms (V, (-, -)) and (W, ). Here, we use the moduli interpretation of Sh(G’, K'?) in terms of
isogeny classes of abelian varieties (See Remark 2.3).

This defines a morphism

Sh(G*, K*?) — Sh(G’, K'?)

over Z, extending the morphism Sh(G*, K*?) ®q Q, — Sh(G’, K'?) ®g Q,. Taking the projective
limit on the prime-to-p levels, one gets a morphism of schemes over Z,,

f: Sh(G*) — Sh(G")
such that one has an isomorphism of abelian schemes
[fFAZA®o, OF,

where A (resp. A') is the universal abelian scheme over Sh(G*) (resp. over Sh(G’g)). By the extension
property of the integral canonical model, the map f induces an isomorphism

f°: Sh(G*)° => Sh(G")°

~

which extends the isomorphism Sh(G*)° = Sh(G’)° induced by the morphism of Shimura data on the
generic fibers. Thus the two universal families over Sh(G)® induced from Sh(G*) and Sh(G’) respectively
are related by the relation

SO (Alsneye) = Alshcy oy OF. (2-5)
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3. Goren-Oort cycles and supersingular locus

In this section, we study the supersingular locus and the superspecial locus of certain Shimura varieties
established in the previous section.

3A. Notation and conventions. Let k be a perfect field containing all the residue fields of the auxiliary
field E in Section 2B at p-adic places, and W (k) be the ring of Witt vectors. Then X g  is in natural
bijection with Homz(Og, W (k)), and we have a canonical decomposition

Op, ®z W (k) = Maty(Op @z W(k) = P MW (k).

fEZE_oo

Let S be a W (k)-scheme, and N a coherent Og ® Op,-module. Then one has a canonical decomposition

where N; is a left Mat, (Og)-module on which Of acts via the composite map O N W(k) — Og. We
also denote by N the direct summand ¢ - Nz with ¢ = ((1) 8) € Mat;(Os), and we call M? the reduced
T-component of M.

Let G be a p-divisible group over a k-scheme S. We say that G is supersingular if, for every geometric
point s of S, the Newton polygon of G x5 5 has only slope % An abelian variety A over S is called
supersingular if A[p®] is a supersingular p-divisible group over S, or equivalently for every geometric
point s of S, A xg s is isogenous to a product of supersingular elliptic curves.

Consider a quaternionic Shimura variety Sh(Gs 1, K”) of type considered in Section 2A, and let
Sh(G/é, K'P) be the associated unitary Shimura variety over Og as constructed in Section 2D for a certain
choice of auxiliary CM extension E/F. Let ko be the smallest subfield of [}’ containing all the residue
fields of characteristic p of E. Then we have ko = [F,» with h equal to the least common multiple of

{(1+gp —218p/2)8p | p € Z)}. Put
Sh(G}, K'")x, :=Sh(G}, K'7) ®0o,, ko.
The universal abelian scheme over Sh(G}, K'P)y, is usually denoted by A%.

3B. Hasse invariants. We recall first the definition of essential invariant on Sh(G’é, K'P)y, defined in
[Tian and Xiao 2016, Section 4.4]. Let (A, ¢, A, @g») be an S-valued point of Sh(G/s, K'P)y, for some
ko-scheme S. Recall that H‘liR(A /S) is the relative de Rham homology of A. Let w4v be the module of
invariant differential 1-forms on AY. Then for each 7 € £ o, H{X(A/S5)? is a locally free Og-module
on § of rank 2, and one has a Hodge filtration

0— wyv; > H?R(A/S)CTZ — Lie(A/S); — 0.
We defined, for each T € Xk o, the essential Verschiebung

Ves.z: HIR(A/85)2 — HIR(A®)/85)2 = HIR(A/5)>P)

o1’
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to be the usual Verschiebung map if s,-1; =0 or 1, and to be the inverse of Frobenius if s; = 2. This is
possible since for s; = 2, the Frobenius map F: H‘l1R (A(p)/S)§ — H‘llR (A/S)3 is an isomorphism. For
every integer n > 1, we denote by

Vi HR(A/9)2 > HR AP /9)2 =HR (a/9); 0

ot
the n-th iteration of the essential Verschiebung.
Similarly, if S = Speck is the spectrum of a perfect field k£ containing kg, then one can define the
essential Verschiebung
Ves: D(A)? — D(A)S_,. forall T € Tg oo,

as the usual Verschiebung on Dieudonné modules if s; = 0, 1 and as the inverse of the usual Frobenius if
sz = 2. Here, D(A) denote the covariant Dieudonné module of A[ p™®]. This is a o ~!-semilinear map of
W (k)-modules. For any integer n > 1, we denote also by

VI D(A)2 — D(A)S .

the n-th iteration of the essential Verschiebung.

Now return to a general base S over ky. For T € X, — S, let n; = n;(S) denote the smallest integer
n > 1 such that 0 ™"7 € ¥, — So. Assumption 2.1 implies that n; is odd. Then for each T € X g o with
sz = 1, or equivalently each T € X o lifting some 7 € X, — S, the restriction of Vi to wzv’f defines
a map
p"T

. 0,(p"T) ~
hz(A): w:;v’f T WAV gy = (wi\/’g—nrf)

Applying this construction to the universal object, one gets a global section
hi € T(Sh(GY, K"y, (0% 5ne )" ® (@ D&, (3-1)
s’ s’
called the t-th partial Hasse invariant.

Proposition 3.1. Let x = (A, (, A, agw) be an Fi-point of Sh(Gé, K'P),, and p a p-adic place of F
such that Seojp # Lioosp. Assume that hz(A) # 0 for all T € X g oojp with sz = 1. Then the p-divisible

group A[p®°] is not supersingular.

Proof. The covariant Dieudonné module D(A) of Al p™] is a free W([F;C) ®z Ops-module of rank 1.
Then the covariant Dieudonné module of A[p°°] is given by

DAR®N= P DA,
‘EEEE’OQ/;,

and there exists a canonical isomorphism
D(A)3/pD(A); =HR(A/F)S.
By assumption, for all T € Xg oy lifting some 7 € Xoo/p — Soo/p, the map

0,(p"7)

hi(A): &fy ; — WA gz
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is nonvanishing. Thus it is an isomorphism, as both the source and the target are one-dimensional
[F‘;f-vector spaces. For each T € X« lifting some T € ooy — Sooyp, choose a basis ez for v, -, and
extend it to a basis (ez, f;) of HI®(A/ F5)2. If we consider Ve as a o~ !-linear map on HIR(A/ F4)2,

then one has

uz 0
Ves (€7, fz) = (e, fonr) (OT 0)
with uz € Fj>.
Let q be a p-adic place of E above p. By our choice of E, g, :=[E, : Q,] is always even no matter
whether p is split or inert in E. To prove the proposition, it suffices to show that the p-divisible group
A[q®°] is not supersingular. By composing the essential Verschiebung maps on all H‘liR(A /8)3 with

T € X[, 00/q> WE get

Vel (ez, fz) = (ez, f3) (i; 8)

with a; € [F‘I’,"’X for all T € Xg o/q With sz = 1. Now, note that V&S on H?R(A/[Fj‘f)‘f’ is nothing but the
reduction modulo p of the o ~%4-linear map

Ve /p™: D(A)2 — D(A)2,

where m is the number of T € X g o /q With s; =2. If (ez, f;) is a lift of (ez, f3) to a basis of f)(A);i over
W(F), then V& /p™ on f)(A); is given by

Véa - -~ = az pbf)

@z, f2) = (Cz, f-

PGNOEICHD (pcf i
for some a; € W(I]:?f)X lifting a; and bz, ¢z, d; € W([F‘}‘f). Put

L:= ﬂ(‘;j) D(A)2.

n>1

It is easy to see that L is a W([Fi‘f)—direct summand of @(A);Z of rank one, on which V& /p™ acts
bijectively. It follows that 1 —m/g, is a slope of the p-divisible group A[q*°]. By our choice of the s;
in Section 2B, the two sets {T € X oo/q | 57 =2} and {T € X g o0/q | 57 = 0} have the same cardinality,
hence 2m < gg, thatis, 1 —m/gq > % Therefore, A[q®] hence A[p°°], are not supersingular. [l

3C. Goren-Oort divisors. For each 1 € Y5, — Ss, let Sh(Gé, K'P)i,.z be the closed subscheme of
Sh(Gé, K'P)y, defined by the vanishing of 4; for some T € X  lifting 7. By [Tian and Xiao 2016,
Lemma 4.5], h; vanishes at a point x of Sh(G’g, K'P)y, if and only if hzc vanishes at x. In particular,
Sh(G/é, K'P),.- does not depend on the choice of 7 lifting 7. We call Sh(G’g, K'P)ko.z the t-th Goren—
Oort divisor of Sh(G’é, K'P)y,. For a nonempty subset A € Yoo — Soo, We put

Sh(G. K')io.n = | Sh(G}. K'P ).z

TeA
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According to [Tian and Xiao 2016, Proposition 4.7], Sh(Gfg, K'P)k.a is a proper and smooth closed

subvariety of Sh(G’g, K'P)y, of codimension #A; in other words, the union _J Sh(G%, K'P)i,.«

TEX5—S0o
is a strict normal crossing divisor of Sh(Gé, K'P)p,-

In [Tian and Xiao 2016], we gave an explicit description of Sh(Gé, K'P)y,.r in terms of another unitary
Shimura variety of type in Section 2D. To describe this, let p € X, denote the p-adic place induced by 7.
Set

SU{t,o " if X S Uf{r},
r={ {r.o™" 1} if Toojp # Sooyp U (T} (3-2)

sU{z, p} if Too/p = Soosp U LT}

We fix a lifting 7 € g o Of 7, and take S; o 10 be Soo U{T, 07" T} if Tog/p 7 Seoyp U {7}, and to be
Seo U{F}if Yoo/p = Soo/p U{t}. This choice of é,,oo satisfies Assumption 2.2. We note that both Dg and
Ds, are isomorphic to Mat, (E). We fix an isomorphism Dg = Ds_, and let Op;_ denote the order of Ds,
corresponding to Op, under this isomorphism.

Proposition 3.2. Under the above notation, there exists a canonical projection
7. Sh(G%, K'P)gy.r — Sh(G'g K"k
where:

(1) If Boop # Socyp Uit} then ) is a P'-fibration over Sh(G’gr, K'P), such that the restriction of m..

10 Sh(G%, K'P)iy.(z.c-n 7} IS an isomorphism.

(2) If Zoojp = Sooyp U (T}, then m. is an isomorphism.

Moreover, . is equivariant under prime-to-p Hecke correspondences when K'P varies, and there exists

a p-quasiisogeny
. ! /% 7/
¢ Aglshay Ky, = Tr Ag,

that is compatible with polarizations and K'P-level structures on both sides, and that induces an isomor-
phism of relative de Rham homology groups

5.0 0 HIS (ASlsnay k), / SN(GE, K g, 0)% ZHR (AL /Sh(GS , K'P))2,
forany T € X oy lifting some v’ € oo — St 00 /p-
Proof. This is [Tian and Xiao 2016, Theorem 5.2]. O

Here, we are content with explaining the map 7, and the quasiisogeny ¢ on [ -points. Take x =
(A, tp, Ap,ap) € Sh(Gé, K’P)ko,,([F;‘f). Denote by D(A)° = ®f/€2Eoc f)(A)‘f’, the reduced covariant
Dieudonné module as usual. For each T’ € T o, define the essential Frobenius

. N0 ~o
Feo: D21 — D2,
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as the usual Frobenius map if s> = 1, 2 and as the inverse of Verschiebung map if sz = 0. Consider a
W (F5)-lattice M° = D Mz of D(A)°[1/p] such that

f/EEEY

Fl:=*D(A)? ift =0T with0<f<n,—1,

—nr .E

Mg = S F DA e T =02 with 0 <€ < n — 1 and Togyp # Soopp U {1},
D(A)2 otherwise.

Note that the condition /7 (A) = 0 is equivalent to @5, . = Fy (f)(A)g
preimage of ®, . under the natural reduction map

), where cbjw ; denotes the

—nt ‘L~'

D(A)? — D(A)/pD(A) = HN(A/F)3.

Using this property, one checks easily that M° is a Dieudonné submodule of D(A)°[1/p]. Put M := M°®?
equipped with the natural action of Op, ® Z, = Matx (O ® Z,,). Then M corresponds to a p-divisible
group G equipped with an Op-action and an Op,-linear isogeny ¢, : A[p>] — G. Thus there exists an
abelian variety B over F;7 with B[p*°] = G and a p-quasiisogeny ¢: A — B such that ¢, is obtained by
taking the p°°-torsion of ¢. Moreover, by construction, it is easy to see that
dim(Lie(A)$) if T/ #7,07" 7T,
dimLie(B)$, = {0 ift'=17,07"7¢,
2 ift'=1%07""1.
In other words, the Og-action on B satisfies Kottwitz’ condition for Sh(G/gr, K'P). Moreover, A4 and oy
induce an Op_-linear prime-to-p polarization Ap via the fixed isomorphism Op, >~ Op,_and a K 'P_level
structure o on B, respectively, such that (B, (5, Ap, &p) is an [F;‘f—point of Sh(Ggr, K’P). The resulting
map (A, ta, Aa, @a) — (B, g, Ap, &p) is nothing but 7.
If Yoo/p # Soojp U (T}, then 07" 1 # 7 and we have f)(B)fT
recover A from B, it suffices to “remember” the line .,

=D(A)?
- inside the two dimensional [F;‘f—vector

—_ “n,; Dy construction. To

—nr

space
D(A)anrf/pD(A)gfnrf = D(B);fnrf/pD(B)gfnrf-

This means that the fiber of 7z, over a point (B, tp, Ap, &p) € Sh(Géz, K'P) is isomorphic to P'. On the
other hand, if Y/, = Soo/p U {7} then n, = [F, : Q,] is odd, one can completely recover A from B,
and thus ] induces a bijection on closed points.> The moreover part of the statement follows from the
construction of 7.

3D. Periodic semimeanders. Following [Tian and Xiao 2019], we iterate the construction of Goren—Oort
divisors to produce some closed subvarieties called Goren—Oort cycles. To parametrize those cycles, one
need to recall some combinatorial data introduced in [loc. cit., Section 3.1].

For a prime p € X, put dy,(S) := gy —#S0p. If there is no confusion, we write dj, = d,, (S) for simplicity.
Consider the cylinder C: x2 4+ y? = 1 in 3-dimensional Euclidean space, and let Cy be the section with

3To show that 7} is indeed an isomorphism, one has to check also that 7. induces isomorphisms of tangent spaces to each
closed point. This is the most technical part of [Tian and Xiao 2016]. For more details, see [loc. cit., Lemma 5.20].
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z=0. We write Toojp = {70, ..., Tg,—1} such that 7; = ot;_; for j € Z/gyZ. For 0 < j < g, — 1,
we use 7; to label the point (cos 27 /gy, sin27j/gp, 0) on Co. If 7; € S/, then we put a plus sign
at 7;; otherwise, we put a node at ;. We call such a picture the band associated to Su/p. We often
draw the picture on the 2-dimensional xy-plane by thinking of x-axis modulo g,. We put the points
70, - - -, Tg,—1 On the x-axis with coordinates x =0, ..., g, — 1 respectively. For example, if g, = 6 and
Soo/p = {71, T3, T4}, then we draw the band as

e +e++e0,

A periodic semimeander for Sy is a collection of curves (called arcs) that link two nodes of the
band for S./p, and straight lines (called semilines) that links a node to the infinity (that is, the direction
y — 400 in the 2-dimensional picture) subject to the following conditions:

(1) All the arcs and semilines lie on the cylinder above the band (that is to have positive y-coordinate in
the 2-dimensional picture).

(2) Every node of the band for S is exactly one end point of an arc or a semiline.
(3) There are no intersection points among these arcs and semilines.

The number of arcs is denoted by r (so r < d,/2), and the number of semilines d, — 2r is called the
defect of the periodic semimeander. Two periodic semimeanders are considered as the same if they can
be continuously deformed into each other while keeping the above three properties in the process. We
use B(Sxp, 1) denote the set of semimeanders for S/, with r arcs (up to continuous deformations).
For example, if g, =7, r =2, and Sy = {71, 74}, then we have d, = 5 and

B 2 Lacax e Dliasialdlamanl
N VAN VAN IS VPN §

It is easy to see that the cardinality of B(Sxe/p, 1) is (dr*’). In fact, the map that associates to each
element a € B(Sxp, ) the set of right end points of arcs in a establishes a bijection between B (Seo/p, 1)
and the subsets with cardinality r of the d,-nodes in the band of S /.

3E. Goren—Qort cycles and supersingular locus. We fix a lifting T € X /p for each 7 € Lo /p —Soo/p-
For a periodic semimeander a € B(Sx/p, 1) with r > 1, we put

Sa:=8U{1 € Xogp | T is an end point of some arc in a}. (3-3)
For an arc § in a, we use r;“ and 75 to denote its right and left end points respectively. We take
Sa.00 = Seo U{Z;, T; | 8 is an arc of a}.

Here, f; denotes the fixed lifting of r[;“ ,and 7; ' the conjugate of the fixed lifting ;" of ;. We fix an
isomorphism G/g (A®) = G/é (A®°), and consider K'? as an open compact subgroup of Gé (A%-P), We
may thus speak of the unitary Shimura variety Sh(G’§ , K'P).
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Following [Tian and Xiao 2019, Section 3.7], for every a € *B(Sx/p, '), We construct a closed subvariety
Z’g(a) C Sh(G’g, K'P)y, of codimension r, which is an r-th iterated P!-fibration over Sh(Géu, K'P),-
We proceed by induction on > 0. When r = 0, we put simply Zé(a) = Sh(G’é, K'P)k,- Assume now
r > 1. An arc in a is called basic, if it does not lie above any other arcs. Choose such a basic arc §,
and put 7 := ‘E[;r and 7~ := 15 for simplicity. We note that 7~ = o "**7. Consider the Goren—Oort
divisor Sh(Gfg, K'P)k.z» and let 7. Sh(G’g, K'P)kr = Sh(Gér, K'P);, be the P!-fibration given by
Proposition 3.2. Let as € B(Sg,00/p, ¥ — 1) be the periodic semimeander for S, obtained from a by
replacing the nodes at 7, T~ with plus signs and removing the arc §. For instance, if

VNN

then S, = SU {1, 13, 75, T4}, and the arc § connecting 73 and ts is the unique basic arc in a, and

LD

By the induction hypothesis, we have constructed a closed subvariety Zé (as) € Sh(Gé , K'P)y, of
codimension r — 1. Then we define Z/g (a) as the preimage of Zé (as) via w,. We denote by

T Zé(a) — Sh(G’éu, K"k,
the canonical projection. In summary, we have a diagram

Z{(a)———— Sh(G}, K'P),.c —— Sh(G}, K'P)y,

L

7 | 2} (a5)———— Sh(G} . K'P),,

’
lnaa

Sh(G} , K"},

where the square is cartesian. By induction hypothesis, the morphism 7, is an (r—1)-th iterated Pl-
fibration. It follows that 7 is an r-th iterated P!-fibration.

We explain the relationship between Goren—Oort cycles and the p-supersingular locus of Sh(G’g, K'P),-
Take a € B(Soo)p, Ldp/2]). If dy is even, then we put Wé’ (a):= Z’g(a). If dy, is odd, then we let T(a) € Yoo/
denote the end point of the unique semiline in a, and define Wé(a) by the following Cartesian diagram:

AGE 0

| !

Sh(G , K"}k e Sh(G} , K"y
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We put

a-

& . {éa = (Sa, Sa.00) if d, is even, (3-4)

" (8. U{r(a). p}. Sao ULE(@)})  if dp is odd.
Note that the underlying set S} of S is independent of a € B(Sxc/p, [dy/2]), namely all S¥ are equal to

SUXo/p if d,, is even,

o (3-5)
SUXwp Ulp} if d, is odd.

S(p) := {
If d,, is odd, then we have an isomorphism

Sh(Gg . K)o (@ = Sh(Gg,, K™)i,
by Proposition 3.2. Thus, regardless of the parity of dj,, one has a |d,/2]-th iterated P!-fibration
equivariant under prime-to-p Hecke correspondences:

Talwy@ : Wa(a) > Sh(Géﬁ, K'P),-

Theorem 3.3. Under the notation above, the union

U we

GE%(SQQ/p s Ldp /ZJ)

is exactly the p-supersingular locus of Sh(Gé, K'P),, that is, the maximal closed subset where the

universal p-divisible group A/S [p°°] is supersingular.

Proof. We proceed by induction on dj, > 0. If dy, = 0, then 25(Sp, 0) consists only of the trivial periodic
semimeander (that is, the one without any arcs or semilines). In this case, one has to show that the whole
Sh(G/é, K'P)y, is p-supersingular. First, we have s; € {0, 2} for all T € X g »/p, and Assumption 2.2(2)
implies that the number of 7 € X «/p With sz = 2 equals exactly to the number of T € X o With
sz = 0. Now consider a point x = (A, (, A, ) € Sh(G/g, K’P)(F;‘f). Then, for every T € Xg /p, the
2gp-th iterated essential Verschiebung

2gp VZgP . A o ~ o ~ o
Vet = = DU > DAY, g = DA);
is bijective, no matter whether p is split or inert in E. It follows immediately that % is the only slope of
the Dieudonné module P D(A); = D(A[p™)), so that A[p™] is supersingular.

. , . . .
Assume now d, > 1. We prove first that the union Uae&B(sm/p,Ldp 2)) Wé(a) is contained in the p-

'L:EEEYDC/‘J
supersingular locus of Sh(G’g, K'P)y,. Fix a € B(Sao/p, Ldp/2]). Then one has a projection
T[l/llwé/(a)l Wé(ﬂ) — Sh(G/éa’ K/p)ko

and a p-quasiisogeny

Y 1% Al
¢a. A§|W§’(u) —)T[a Aén
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by the construction of 7r; and Proposition 3.2. Note that dj, (S,) =0, and by the discussion above, A/éu [p>°]
is supersingular over the entire Sh(G’éu, K'P)y,. It follows that A’é [p°°] is supersingular over Wg(a).

To complete the proof, it remains to show that if x € Sh(G’é, K’ P)(F5) is a p-supersingular point,
then x € Wé(a)([F?;c) for some a € B(Sx/p, [dp/2]). By Proposition 3.1, there exists T € X /p such that
X € Sh(Gé, K'P)iy. (F5). Consider the P!-fibration 7, : Sh(G/é, K'P)ior — Sh(Gng, K'P)i,- Since A/é,x

is p-quasiisogenous to A% we see that 77 (x) lies in the p-supersingular locus of Sh(GY , K'7)i,. By

0,7 (x)’
the induction hypothesis, . (x) € Wé (b)(F%5) for some periodic semimeander b € B (St o0/p, Ldp/2—1]).
Now let a be the periodic semimeander obtained from b by adjoining an arc § connecting o "<t and t so
that 7 is the right end point of . Then a € B (S /p, [dp/2]), and § is a basic arc of a such that b = a;.

To finish the proof, it suffices to note that Wé(a) = nfl(Wé (b)) by definition. O

Definition 3.4. We put
Sh(Gy, K'7)i ™ := Sh(Gy, K'")kg 5.0y

and call it the p-superspecial locus of Sh(G%, K'P)y,.

We have the following proposition that characterizes the p-superspecial locus.

Proposition 3.5. Let p € X, be such that dy is odd, and take a € B(Seosp, (dy — 1)/2). Then
Sh(Gé, K“”)E;Sp is contained in Wé(a), and the restriction of w, to Sh(G/é, K’p)Z;Sp induces an
isomorphism

Sh(Gg, K'7)y, " = Sh(Gg, . K.

5
which is equivariant under prime-to-p Hecke correspondences.
Proof. We proceed by induction on dy, > 1. If d, = 1, then all the p-supersingular locus is p-superspecial,
and the p-supersingular locus consists of only one stratum Wé(a). So the statement is clear.

Assume now d, > 1. Choose a basic arc § of a. Let T (resp. 77) be the right (resp. left) node of §, and
as be the semimeander obtained from a by removing the arc §. Then one has a commutative diagram

W (a) ZL(a) ——— Sh(G}. K'P)j «

Lk

¢ (a5) —————— Z{ (as) —— Sh(G} , K'P),

|
Sh(G , K"y v(@) — Sh(Gg , K"y,

~

Sh(G},. K'P),

where all the squares are cartesian; all horizontal maps are closed immersions; and all vertical arrows are
iterated P'-bundles. By the induction hypothesis, the p-superspecial locus Sh(G/é ,K'?P )EO_SP is contained
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in Wé (as) and the restriction of nés induces an isomorphism
Sh(G} . K'")} " = Sh(G}.. K'")y,. (3-6)
Now by Proposition 3.2, the restriction of 7, induces an isomorphism

Sh(G{"v K/p)kOs{f,Ti} ;> Sh(G{"Tv K/p)k()

compatible with the construction of Goren—Oort divisors. Thus, ] sends Sh(G%, K'? )zO_Sp isomorphically
to Sh(G/g , K'P ),’EO_SP. The statement now follows immediately by composing with the isomorphism (3-6).
O

3F. Total supersingular and superspecial loci. We will now study the total supersingular locus of
Sh(Gé, K'P)i,, that is, the maximal closed subset where the universal p-divisible group A/g [p™] is
supersingular. Put

Bs :={a = (ap)pezx, | ap € B(Soosp, Ldp/2D)},

and r := ZpeE,, ldy/2]. We attach to each a an r-dimensional closed subvariety W;(a) € Shg'(G)x,
as follows. We write ¥, = {p1, ..., P}, that is, we choose an order for the elements of X,. We put
S} :=Sg,, and St = §§p1 (see 53—4));~put inductively S; 41 := (S)a,_, » St = (éi)ij. forl <i<m-—1;
and finally put S, :=S,, and S} :=S;,. For a,, € B(Seo/p, |dp,/2]), we have constructed a |dy, /2]-th
iterated P! -fibration 7

nc’lpl W) W(ap,) — Sh(GéT, K'P)g,-
/

Now, applying the construction to ay, € B(Seo/p,, ldp,/2]) and Sh(GS*,
1

subvariety Wé’f (ap,) € Sh(GéT’ K'P)y, of codimension [dy,/27. We put

K'P);,, we have a closed

-1
Wi(ap,, ap,) = (ﬂg‘m) (WéT(am)).
Then there exists a canonical projection

’
n“PZ |Wé* (apy)

ﬂl;pl ‘Wﬁ(ap ap,)
1°9P2 / !/ /
L, W (ap,) ——— > SB(GY,, K,

/ Ny 124
ap,apy ° Wg(am ’ apz)

Repeating this construction, we finally get a closed subvariety Wé’(g) C Sh(G%, K'?)y, of codimension
> pex [dp/2] together with a canonical projection

my: Wila) — Sh(G’gg, K'P),.
Note that the underlying set S7 of §Z is independent of a € Bg, namely all of them are equal to
Smax = ZooU{p e X, | gp :=[F, : Qp] is odd}. (3-7)

Thus Sh(G/g*, K'P)y, is a Shimura variety of dimension 0, and rré is by construction an r-th iterated
P!_fibration over Sh(G},, K'P)x,- We note that W/(a) does not depend on the order pi, ..., p, of the
places of F above p. ’
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Theorem 3.6. The total supersingular locus of Sh(G’g, K'P), is given by

Sh(Gy, K" = | W@,

aeBs

where each Wg’(g) is a Zp@:p ldyp/2]-th iterated P!-fibration over some discrete Shimura variety
Sh(G/,

* 9
54

K'P)k,- In particular, Sh(G/g, K’l’)‘,if) is proper and of equidimension Zpezl, ldy/2].

Proof. This follows immediately from Theorem 3.3 by induction on the number of p-adic places p € X,
such that dy, # 0. ([

Remark 3.7. It is clear that the total supersingular locus is the intersection of all p-supersingular loci for
p € X,. It follows that
W) = (] W(ap),
peX,

and the intersection is transversal.

Similarly to Definition 3.4, we define the total superspecial locus of Sh(Gé, K'P)y, as

Sh(G/g, K/p)zﬁ — Sh(Gi, K/p)ko,Eoo — m Sh(GC’ K/p)]lzo—sp.
pe),

We have the following analogue of Proposition 3.5.

Proposition 3.8. Suppose that dy, is odd for all p € X,. Then for each a € Bg, Wg’(g) contains
Sh(G/é, K ’p)‘,iﬁ, and each geometric irreducible component of Wg’(g) contains exactly one point of

Sh(G%, K/p),ip. In other words, the restriction of w|; induces an isomorphism
0 ¢
Sh(G§, K'P);? = Sh(GY,, K'P)y,.
Proof. This follows immediately from Proposition 3.5. ]

3G. Applications to quaternionic Shimura varieties. Denote by Sh(Gs 1, K”) the integral model of
Sh(Gsg 1, K?) over Op.,  induced by Sh(G/g, K'P). We assume that the residue field of O, is
contained in ko (e.g., S =T = o), and put Sh(Gg 1, K?), := Sh(Ggs 1, K?) Q0rs 1.5 ko. As in [Tian and
Xiao 2016; 2019], the construction of Goren—Oort divisors can be transferred to Sh(Gg r, K?)y, for a
sufficiently small open compact subgroup K” C Gg(A*7),

Consider first the connected Shimura variety Sh(GS,T)ﬁF’%c = Sh(Gs’T)%;r ®zu [F‘}‘f. For each T € X,
the Goren—Qort divisor Sh(G/g)ko,, =lim,, Sh(G}, K'P),. induces a divisor Sh(G%)%}c,r on Sh(G/g)E.;C.
By the canonical isomorphism

K'P

Sh(GS,T)ﬁF)f;)c = Sh(G%)Ei;f

from Section 2F and Deligne’s recipe of recovering Sh(GS,T)[F;c from Sh(Gsg, 1), [Tian and Xiao 2016,
P
Corollary 2.13], the divisor Sh(Gg 1)f. , induces a divisor Sh(Gs’T)[F«;c,T on Sh(G&T)[Fe;)C. By Galois
P’
descent, one gets a divisor Sh(Gs 1)k, on Sh(Gs 1), which is stable under prime-to-p Hecke action.
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Finally, we define the Goren—Oort divisors on Sh(Gs 1, K”)y, as the image of Goren—Oort divisors on
Sh(Gs 1, K?)y, via the natural projection Sh(Gg 1)r, = Sh(Gs 1, K?)g,.

Proposition 3.9. Take v € X for some p € X, and put T, := TU {t}. There exists a morphism of
ko-schemes
7r: Sh(Gs 1, KP)iy.r = Sh(Gs, 1,, KP)i,,

where S; was defined in (3-2), such that
(1) it is compatible with 7t in Proposition 3.2 on neutral geometric connected components;
(2) itis an isomorphism if Yoo /p = Soo/p U {T}; and
(3) it is a P'-fibration.
Proof. This follows immediately from Proposition 3.2 and [Tian and Xiao 2019, Construction 2.12]. [J

Now, the construction of Goren—Oort cycles can be transferred to the quaternionic Shimura variety
Sh(Gs 1, K?)y,. For a periodic semimeander a € B(Sx/p, [dy/2]), we construct inductively in the same
way as Z’é (a) a closed ko-subvariety Zg t(a) € Sh(Gs, 1, K? )i, such that there exists a |d),/2]-th iterated
P!-fibration

7o Zsr(a) = Sh(Gs, 1., K”)i,

according to Proposition 3.9, where S, is defined in (3-3) and

Ta=TU{t € X | T is the right end point of an arc in a}. (3-8)
We define similarly
Zs () if d,, is even,
Ws 1(a) = { " T (3-9)
T, (Sh(GSa,Tu, Kp)k07r(a)) if dp 1S Odd,

where 7(a) € X/ is the end point of the unique semiline of a. Then 7, induces a |d),/2]-th iterated
P!-fibration

7Ta|Ws.T(a)[;e;)c : Wsr(@)re = Sh(Gsp),1z Kp)[F;;C
where S(p) = S is defined in (3-5), and

« | Ta if d,, is even,
* | TaU{t(a)} ifd, is odd.

Of course, when dj, is even, the morphism ”a|Ws,T(a)[Fa;,c is simply the base change to [F‘;)C of m,.
Similarly, for a = (Clp)pezp € Bg = Hpe):p B(Soo/p» Ldp/2]), we can define a closed subvariety
Ws t(a) € Sh(Gs 1, K?)i, of dimension r = Zp ez, |dy/2] together with an r-th iterated P!-fibration

7a: Wsr(@pwe — Sh(Gs,,, 1z, KP)pee,

where S,.x was defined in (3-7), and T; = Upe):,, sz.
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Notation 3.10. In what follows, we will write the I]:‘I‘,C—schemes Sh(Gs. 1, K?) ®Org 1.5 [Ff}‘,c and the sets
Sh(Gs 1, Kf’)([Fj*f), which are independent of T, simply by Sh(Gs, KI’)[F%C and Sh(Gg, K”)([Fj‘f), respec-
tively.

Then the target of 74 is simply Sh(Gsg, ., K? D for every a € *Bs. In particular, the set of geometric
irreducible components of Ws t(a) is in bijection with Sh(Gs,, , K P)(F;‘,C). Moreover, we have an
isomorphism

Sh(Gsmax’ Kp)([F;c) g BSXrnax\BS)jnax/Kp 1_[ K;nax’
pex,
where K™ is the unique maximal open compact subgroups of (Bs,,, ®r F)* for each p € X,. Note
that Bg,, splits (resp. ramifies) at p if gy, is even (resp. odd).

3H. Totally indefinite quaternionic Shimura varieties. We consider the case S = @ (hence T = @), and
we write G = Gy =Gy p and G' = G% for simplicity as usual. Recall that Sh(G, K?) classifies tuples
(A, t, A, &gr) as defined in Section 2E. Even though it is only a coarse moduli space, there still exists a
universal abelian scheme A over Sh(G, K?) (See Remark 2.9(1)).

Definition 3.11. Put Sh(G, K”)¢, :=Sh(G, K?) Q[ :

(1) Foreach p € X, we define the p-supersingular locus of Sh(G, K*)g, as the maximal reduced closed
subscheme of Sh(G, K?)f, where the universal p-divisible group A[p°] is supersingular.

(2) We define the total supersingular locus of Sh(G, K?)g, as the intersection of the p-supersingular
locus forallp € .

Theorem 3.12. For p € X, put g, :=[F, : Q, . Then the p-supersingular locus of Sh(G, K?)
base change to ky, is

after

P’

U Wg z(a),

a€B(Doo/p, L8p/2])
where B(Doosp, 18p/2]) is the set of periodic semimeanders of gy-nodes and | g,/2]-arcs, and each
Wg o (a) is defined in (3-9) and Wg,@(a)ﬂiic is a | gp/2|-th iterated P!-fibration over Sh(G (), KP)[Fapc.
Proof. According to the discussion of Section 2F, the definition of the p-supersingular locus of Sh(G, K7)g,
using the universal family .4 coincides with the one induced from the p-supersingular locus of the unitary

Shimura variety Sh(G’, K'P ), The statement then follows from Theorem 3.3. U
Theorem 3.13. Denote by Sh(G, K? )fFi the total supersingular locus of Sh(G, K?)g,. Then we have

Sh(G, Kp)”sfp ko= U Wa,z(a),
aeBy
where By is the set of tuples (ap)pex, with ay € B(Dooyp, L8p/2]). The base change W@,@(a)F;c of
Wz z(a) to [F?f is a (Zpezp Lgp/2j)-th iterated P'-fibration over Sh(Gs,,,. . Kp)[p;’c, equivariant under
prime-to-p Hecke correspondences, where Syax was defined in (3-7). In particular, Sh(G, K? )ﬁ is
proper and of equidimension Zp@:p Lgp/2].
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Proof. This follows from Theorem 3.12 by induction on the number of p-adic places p € Z,. U
Remark 3.14. The above theorem is known in the following cases:

(1) If p is inert in F of degree 2 and B is the matrix algebra, then the theorem was first proved in
[Bachmat and Goren 1999].

(2) If p isinertin F of degree 4 and B is the matrix algebra, then the results was due to [Yu 2003].

(3) Assume that p is inert in F of even degree. Then the strata Wy 5 (a) have already been constructed
in [Tian and Xiao 2019], and the authors proved there that, under certain genericity conditions on
the Satake parameters of a fixed automorphic cuspidal representation 7, the cycles Wy & (a) give all
the w-isotypic Tate cycles on the quaternionic Shimura variety Sh(G, K 7).

We define an action of G[Fp = Gal([Fj‘,C /Fp) on the set B4 as follows. For each periodic semimeander
ap € B(Dooyp, L&p/2]), let o (ay) be the Frobenius translate of ay, that is, there is an arc in o (ap) linking
two nodes x, y if and only if there is an arc in a, linking o '(x),o0~!(y). Fora= (ap)p, we put
o(a) := (o (ap))pex,. It is clear that the subgroup Gal([F?f/ko) of Gal([F?f/[Fp) stabilizes each a € Bg.
Then the action of Gal([Fj;C /Fp) on Sh(G, K? );iaf sends the stratum Wy g(a) to Wy 5(o(a)).

Definition 3.15. We define the superspecial locus of Sh(G, K?),, denoted by Sh(G, KP)[?;, to be the
maximal reduced closed subscheme § such that for any geometric point X — S the abelian variety Ay is
superspecial, that is, Az is isomorphic to a product of supersingular elliptic curves.

Using the universal family of abelian varieties A over Sh(G, K?), one can define, for each 7 € X, a
partial Hasse invariant 4, on Sh(G, K?);, similarly to (3-1). We can also define the Goren—Oort divisor
Sh(G, K?), - of Sh(G, K”);, as being the vanishing locus of /,. By the relation of universal abelian
schemes (2-5), this definition of Goren—Oort divisor coincides with the one defined by transferring to the
unitary Shimura variety Sh(G’, K'P);,. It is easy to see that

Sh(G, k") @ko= (7] Sh(G, K )y.c-

TE€EY o

Theorem 3.16. Assume that g, is odd for every p € X:
(1) Foreach a € By as in Theorem 3.13, Wy o (a) contains the superspecial locus Sh(G, Kp)?; ® ko,
and the morphism my: Wy (a) Fac —> Sh(Gs, ., K? )[Fe;)c induces a bijection

Sh(G, K?)P(F%) => Sh(Gs,,,. K")(F%) ~ B \B, /K" ]_[ Ky

Smax max
pex,

compatible with prime-to-p Hecke correspondences.

(2) Foreachyp € ¥, let 1, be a uniformizer of the quaternion division algebra Bs,, ®f F,. Let 11,
be the element of égm whose p-component is Iy for each p € X, and other components are 1.
Then under the bijection in (1), the action of the arithmetic Frobenius element o, € Gal(l]:j‘[‘,C /Fp) on
Sh(G, K?)*(Fyy) is induced by the right multiplication by l:[;l on B

max*
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Proof. Statement (1) follows from Proposition 3.8.

To prove (2), we take a superspecial point x = (A, ¢, A, @g») € Sh(G, K”)Sp([F;‘f) as in Section 2E.
Then A is of the form A = C ®z Z, where C is a supersingular elliptic curve and Z is a (left) fractional
ideal of Op. For each p € ¥, we have an equality of p-divisible groups A[p>°] = C[p*°] ®z, Ly, and
hence an equality

D(A[p™]) = D(A[p™]) ®z, L,

for the corresponding covariant Dieudonné modules. Let B, be the unique quaternion division algebra
over @,. Then we have End(C[p™]) ®z, Q, = B), and

Bp ®@p Fp = Bmax ®F Fp = EndOB (A[poo]) ®Zp @p-

Let IT € B, denote a uniformizer of B,, and we view it also as a uniformizer of Bn.x ®F Fj.
Via p-Frobenius isogeny F¢ : C — Cc? DECP[p™)]) is identified with lattice IT~'D(C[p™>]) in
D(C[p>®DI[1/p]. Since F4 : A — AP is induced from Fc by tensoring with Z, we see that F, allows us
to identify D(AP [p>]) with the lattice [T 'D(A[p>]) inside D(A[p>°])[1/p]. Since o,(x) is given by
AP) together with the induced polarization and level structure, the description for o, on Sh(G, K P)SP(F »)
follows. [l

Note that the action of Gal(F »/Fp) on Sh(Gg, ., K? NG p) defined in Theorem 3.16(2) is independent
of a € Bg. In other words, we have a canonical [ ,-scheme structure on Sh(Gg,, , K P)[F;c, which we
denote by Sh(Gs,_. , K?).

max ’

Corollary 3.17. Assume that g, is odd for every p € Z,,. For every a € By, the morphism wq: Wy & (a) Fac —>
Sh(Gs,,,., K? )[F;v is equivariant under Gal([F?,c / ko), hence it descends to a morphism of ko-schemes:

7g: Wa () > Sh(Gs,,,, K7)i,
Proof. This follows from the definition of underlying ko-structure on Sh(Gsg,, , K” )|]:?}c and the fact that
the inclusion Sh(G, KP)h. < Wy 5(a) pe is equivariant under Gal(Fiy / ko). O
14
4. Arithmetic level raising

In this section, we state and prove the arithmetic level raising result. We suppose that g = [F : Q] is odd.
Fix an irreducible cuspidal automorphic representation IT of GL,(AF) of parallel weight 2 defined over a
number field E.

4A. Statement of arithmetic level raising. Let B be a totally indefinite quaternion algebra over F, and
put G := Resp/g B*. Let K be a neat open compact subgroup of G(A™) (Definition 2.6) such that
(TT>®)X £ 0. We have the Shimura variety Sh(G, K) defined over Q whose C-points are given by

Sh(G, K)(C) = G(@\(H)* x G(A™)/K.
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Let R be a finite set of places of F away from which K is hyperspecial maximal.* Let T® be the Hecke
monoid away from R [Liu 2019, Notation 3.1] (that is, the commutative monoid generated by Ty, S, Sq_l
with the relation Squ_1 =1 for all primes q ¢ R). Then IT induces a homomorphism

o ZITM — O
by its Hecke eigenvalues. For every prime A of E, we have an attached Galois representation
pn,.: Gp = Gal(F*/F) — GL2(OF,) 41

which is unramified outside R UR,, where R, denotes the subset of all places of F with the same residue
characteristic as A. The Galois representation pry ; is normalized so that if oy denotes an arithmetic
Frobenius element at q for a place q ¢ R UR,;, then the characteristic polynomial of pr 3 (o) is given by

X? — R (T)X +Nrja (@) (Sy).-
Let mRn’ ,, be the kernel of the composite map Z[T?] LLN O — Og/A.

Assumption 4.1. Let ¢ be the underlying rational prime of L. We propose the following assumptions
on A:

(1) ¢ is coprime to 5, R, disc F, and the cardinality of F>*\AZX" " /(A7 N K).

2) L=>g+2.

(3) The image of pr1, := pm,» mod A contains a subgroup conjugate to SL;(F,).

(4) pn,» satisfies the condition (LI 5y ;) in [Dimitrov 2005, Proposition 0.1].

(5) H8(Sh(G, K)qge, O[E/)‘)/mRH,A has dimension 28 dim(l‘[%")K over Og/A, where I1p is the automor-
phic representation of G (A) whose Jacquet-Langlands transfer to GL,(Af) is IT.

Remark 4.2. We have the following remarks concerning Assumption 4.1:

(1) Assumption 4.1(3) is equivalent to saying that ppy ; is absolutely irreducible and that € divides the
image of oy 5.

(2) Assumption 4.1(3) (and the part £ #~ 5 in (1)) is used to guarantee Ihara’s lemma for Shimura curves
over totally real fields [Manning and Shotton 2019].

(3) If IT is not dihedral (that is, not a theta series) and not isomorphic to a twist by a character of any of
its internal conjugates, then Assumption 4.1(3) and (4) hold for all but finitely many A by [Dimitrov
2005, Proposition 0.1]. In particular, for such a IT, the entire Assumption 4.1 holds for all but finitely
many A.

(4) In general, the dimension of H8 (Sh(G, K)gsc, O[E/k)/m%’)\ is at least 28 dimE(H%O)K over Og/A.

4The meaning of R changes from here; in particular, it contains the ramification set of B, which it previously stood for.
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Let p be a rational prime inert in F, coprime to RU{2, £}. Denote by p the unique prime of F' above p.
To ease notation, we put

¢ — ¢2U{P}: Z[—IIRU{P}] — O, m:= mRIL[L{ip} C Z[TRU{p}]

For a Z[TR%}]-module M, we denote by M, its localization at m. Write K = K,K” where K, is a
hyperspecial maximal subgroup of G(Q) as p ¢ R. We have the integral model Sh(G, K?) over Z,,
defined in Section 2E for the Shimura variety Sh(G, K”) = Sh(G, K). Put 8 :=B(2, (g — 1)/2), the
set of periodic semimeanders attached to S = & with g-nodes and (g—1)/2-arcs. We note that ko defined
in Section 3A is [ 2% in the current case. Then Theorem 3.13 asserts that

Sh(G, K")p ®F e = ) Wa5(0),
ac’B

where each Wy (a) is equipped with a (g — 1)/2-th iterated P!-fibration
Tq: W@,@(a) - Sh(GSmaxv Kp)ﬂ:ng .
Let
Sh(G, K")i’ < Sh(G, K")y,

be the superspecial locus as in Definition 3.15. By Theorem 3.16, each Wy & (a) for a € ‘B contains
Sh(G, K? )?Fp 2 and the morphism 7, induces an isomorphism
P

Sh(G, k"), > Sh(Gs,,. K ) ,,
%8 P

which is equivariant under prime-to- p Hecke correspondences, and independent of a.
Consider the set B x Sh(Gs,,,., K?)(Fy), equipped with the diagonal action by Gg,. The Hecke
monoid TRV} acts through the second factor. We have a Chow cycle class map

max ’

(B x Sh(Gs,,, K")(F), Z) > CH¢*V/2(Sh(G, K”)g) (4-2)
sending a function f on B x Sh(Gs,__, KI’)([F?JC) to the Chow class of ZM f(a, S)JTa_l (s).
Lemma 4.3. The map (4-2) is equivariant under both T*%} and G .

Proof. The equivariance of 7, under prime-to-p Hecke correspondences follows from Theorem 3.16. The
equivariance under Gy, follows from the definition of G -action on Sh(Gs,,,, K?)(F)). ]

Lemma 4.4. Under the notation above, the following statements hold:

(1) There exists a canonical isomorphism
HE (Sh(G, K”)[Fz;,c, O, )m —> H®(Sh(G, K)ge, O, )m
compatible with Galois actions. In particular, we have a canonical isomorphism
H' (F i, H (Sh(G, KP)pe, Op/A((8 + 1)/2))m) = Hyy (Qn, HE (SK(G, K)se, O/A((g +1)/2))m)

for every integer h > 1.
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(2) Suppose that £ satisfies Assumption 4.1. We have H' (Sh(G, K”)[F;c, OF,)m =Ounlessi = g.

(3) Suppose that € satisfies Assumption 4.1. We have that H8 (Sh(G, K”)[F;c, OF, ) Is a finite free
Ok, -module.

Proof. By [Lan and Stroh 2018, Corollary 4.6], no matter whether the Shimura variety Sh(G, K?) is
proper over Zp), the canonical maps

H'(Sh(G, K”)gs, Op,) => H'(Sh(G, K?)qs, Og,) <= H'(Sh(G, K”)qu, OF,)

for all i > 0 are isomorphisms compatible with Hecke and Galois actions. One gets thus Statement (1)
by localizing the Hecke action at m. Statements (2) and (3) follow from Assumption 4.1 and [Dimitrov
2005, Theorem 0.3]. We remark that although Dimitrov’s theorem is stated for Hilbert modular varieties,
the same argument there applies to our situation without change. U

To ease notation, put G’ := Gal(F}; /[ 2¢). Lemma 4.3 induces the following map
['(B x Sh(Gs,,,, K")(F), )9 — CHED2(Sh(G, KP)g ,,) (4-3)
which is equivariant under both TR} and Gal(F p2¢/Fp). On the other hand, one has a cycle class map
CHE*D2(Sh(G, K") ,,) — HETH(Sh(G, KP)r . OF, (g +1)/2)).
However, by the Hochschild—Serre spectral sequence and Lemma 4.4(2), we have a canonical isomorphism
H8*! (Sh(G, K o Or, (8 +1)/2))m = H' (F ¢, H¥ (Sh(G, K?)gse, OF, (8 +1)/2))m)-

Therefore, composing with (the localization of) (4-3) and modulo XA, we obtain a morphism

O : [(B x Sh(Gs,,,,. KP)(FX), Op/0)G — H'(F e, HE(Sh(G, KP)pae, Op/A((g +1)/2))m). (4-4)
called the unramified level raising map at m. It is equivariant under the action of Gal([F 2 /F ).

Definition 4.5. We say that a rational prime p is a A-level raising prime (with respect to I1, B, K, R) if
(L1) pisinertin F, and coprime to RU {2, £};
(L2) ¢TI, (% =Dy
(L3) ¢%(Ty)? = (p¥ + 1)* mod A and ¢%(Sy) =1 mod A.
Remark 4.6. We have the following remarks concerning level raising primes:
(1) By a similar argument of [Liu 2019, Lemma 4.11], one can show there are infinitely many A-level

raising primes with positive density, as long as there exist rational primes inert in F' and A satisfies
Assumption 4.1.

(2) By the Eichler-Shimura congruence relation, Definition 4.5(L3) is equivalent to saying that pr ; (op)

is conjugate to :I:((l) [?g)
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(3) By the Eichler—-Shimura congruence relation and the Chebotarev’s density theorem, we know that
the canonical map

H#(Sh(G, K)qs, Og/4)/m — HE (Sh(G, K)qs, O /) /mTy ;
is an isomorphism of Of/A[Gg]-modules.

Theorem 4.7 (arithmetic level raising). Let A be a prime of O satisfying Assumption 4.1, and p a \-level
raising prime. Then G’ acts trivially on ' (B x Sh(Gs, ., K? )([F;lf), O¢/)M)m and the induced map

(B x Sh(Gs,,,, K")(F¥), O/A) /m — H' (F 2, H* (Sh(G, KP)gse, O/M((g +1)/2))/m)  (4-5)

is surjective.

4B. Proof of arithmetic level raising. This section is devoted to the proof of Theorem 4.7. We assume
that we are not in the case where F' = Q and B is the matrix algebra, since this is already known by Ribet.

For a € ‘B, denote 7(a) € X the end point of the unique semiline in a. By the construction in
Section 3G, for each a € ‘B, the stratum Wy g(a) fits into the following commutative diagram

Wz z(a)¢ Zz,5(a)——— Sh(G, Kp)[szg
-
Sh(Gg, o, K”)[szg,r(a);> Sh(Gg, o, K”)[szg (4-6)

Sh(GSmax ’ Kp)ﬂ:ng ’

where the square is Cartesian. Here, @, is the set S, defined by (3-3) with S = @ and @, is the subset

defined by (3-8) with T = &, and we used slightly different notations to avoid confusion. Note that

Sh(Gg,,z,, K?) is a proper Shimura curve over O , (with F regarded as a subfield of Q% determined

by a), and Sh(G g, o, K”)r ,, r(a) =Sh(Gs,,,, K”)r ,, is exactly its supersingular locus in the sense of
P P

[Carayol 1986, Section 6.7]. Similarly to (4-3), we have a Chow class map

['(Sh(Gs,,,. K?)(F¥), Z) > CH'(Sh(G g, o, K)rse),
which induces an unramified level raising map for the Shimura curve Sh(G g, o/, K?):
®n(a): I'(Sh(Gg,,, K”)([F*;f), O[E/)‘)S‘, — Hl([szg, Hl(Sh(G@a,g/u, K”)[F?)c, Oe/2(D)m). &7
The following is an analogue of Theorem 4.7 for Shimura curves.

Proposition 4.8. Under the hypothesis of Theorem 4.7, the map ®y,(a) is surjective.

To prove this proposition, we need some preparation. We fix an isomorphism G4, (Q,) = GLo(F})
so that K, is identified with GL2(OF,). Let Iw, € K, be the standard upper triangular Iwahori sub-
group. Let Sh(Gg,, K?Iw),) be the Shimura curve attached to G, of level K”Iw,. By [Carayol
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1986], Sh(Gg,,z,, K” Iw)) admits an integral model Sh(G@m%, K?1w,) over OF , with semistable
reduction. The special fiber Sh(Gy,, o, K P Iw p)[ppg consists of two copies of Sh(Gy,, o, K P 1w p)[ppg
cutting transversally at supersingular points. There are two natural degeneracy maps

1, 7T Sh(Ggu’@;, KP IWp) —> Sh(Gga’@{l, KP)

whose restrictions to generic fibers are described as in [Tian and Xiao 2019, (2.14.1)]. We note the
following generalization of Ihara’s lemma to Shimura curves over totally real fields.

Lemma 4.9. Under the hypothesis of Theorem 4.7, the canonical map
i + 73t H (Sh(G, 0 KM, O/3)3" — H' (Sh(Go, 0, K7 IWp)as, Of/Mm
is injective.
Proof. This follows from [Manning and Shotton 2019, Theorem 6.5], under Assumption 4.1(1) and (3). J

Proof of Proposition 4.8. To simplify notation, let us put X := Sh(Gg,_ o,, K”) viewed as a proper
smooth scheme over OF p,, denote the supersingular locus as

Xﬂs:iﬂg = Sh(G@a,Qfﬁ, Kp)ﬂ:ng’fa ; Sh(GSmax’ Kp)ﬂ:ng ’

and put Xo(p) :=Sh(Gg, z,, K”Iw,). We put also k, := O/A. Consider the canonical short exact
sequence
H' (X, ko) — HO(XPe, ko) — Ho(XR, k) — H (X, k) — 0

equivariant under the action of G(PIC [Fpe) X Z[TRYPH, where X ﬁgg? =X Fac — XP is the ordinary locus.
p
The first term vanishes after localizing at m by Assumption 4.1(3). Taklng Ga101s cohomology H' (F p2e, —),

one deduces a boundary map
() H' (Xre, )iy — H' (F e, OO, K-

By the Poincaré duality and the duality of Galois cohomology over finite fields, it is easy to see that
&7 (a) is identified with the dual map of &, (a). Therefore, to finish the proof of Proposition 4.8, it
suffices to show that ®7 (a) is injective.

Recall that Xo(p)[]: . consists of two copies of X[F o Letip: Xf s Xo(p)[[: be the copy such that
7y oy is the identity, and i>: Xf e > Xo(p)r ” be the one such that w5 o iy is the identity. Then m) o i

bz, ; and
S(g+1)/2.

is the Frobenius endomorphism of Xf , relative to F,s composed with the Hecke action S‘(,g
my o iy is the Frobenius endomorphism of X , relative to F,s composed with the Hecke action

Consider the normalization map
8: Xo(pe,e = Xr,o | [ Xe,e 12 Xo(p), .
Then one has an exact sequence of étale sheaves

0— k)L — &,JC)L —> l:sk)L — 0
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on Xo(p)r 08> where i : XSS — Xo(p)r - denotes the closed immersion of the singular locus of Xo(p)r vy
and the second map 8.k;, —> zsskk is given as follows: If x € Xp° . (F) is a supersingular geometric point
with preimage ! (x) = (x1, x2) with xXj € z](X([FaC)) for j = 1 2, then (8.xkn)x = kj v, Bk x, = ki x
is given by (a, b) — a — b. By the functoriality of cohomology, we get

0=H(Xry, kp)m — HOXG, k)m = H' (Xo(Plegs, ko) 225 H (X, k)S2 - 0. (4-8)

Consider the map

7+ my s H (X, k) — H (Xo(p)rs, k) (4-9)

induced by the two degeneracy maps 7y, m2: Xo(p) — X. If Fr, denotes the action on H'(X s k)
induced by the Frobenius endomorphism of Xy , relative to [, then Frp, = ap_l and the composite map

6: H' (Xp, k)& T2 HY (Xo(p)rse, ki) T2 HY (Xpue, k)2

I
Frp SH072 1 '

By Definition 4.5(L3), the Hecke operator Sy, acts trivially on H'(X e, k;)m since the trivial action is

is given by the matrix

the only lifting of the trivial action modulo m by Assumption 4.1(1). We see that ker 6 is identified with

the image of the injective morphism

(— Frp,1d)

H' (Xrg k) H' (Xpy, k)32

However, by Ihara’s Lemma 4.9 and the proper base change, the map 7| + 75 in (4-9) is injective. Thus,

it induces an injection
* 1 Ff§=1 ~ k eky ~ 170/ vSS
o*: H (X|]:?)c, k)m =ker0 — ker(i|, iy) = H (Xpac, k3)m.
4
To finish the proof of Proposition 4.8, it suffices to show the following claims:
(1) The action of Fr on HO(X3S Facs kj)m 1s trivial so that the natural projection
HO (X8, ki)m — H' (F e, HOXPe, k)m) Z HO (X, ki) (Fry —1)

is an isomorphism.

(2) The morphism ®* is identified with ®} (a).

Claim (1) follows from Assumption 4.1(1), Definition 4.5(L.3) and the observation that Frﬁ acts through
the Hecke translation by (1,...,1, p,1,...) € AOFO’X where p is placed at the prime p.
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To prove Claim (2), consider the following commutative diagram:
HL (X, k)m ——— H' (Xpge. k) ——— 0
Jni‘—ﬂ,* Fry, ny—n; Fry
0 —— HOXEy, kidm —— HEXPE, k)& —— H (Xo(prg. kiJm —— O

IA

0 —— HO(X, k)32 —— H}.(Xﬁg%?, k)22 —— H' (Xpse, k) S* —— 0

@i1.i3)

where A is the diagonal map, and horizontal rows are exact. Then the coboundary isomorphism
ker(if, i) = HO(XE?;C, k))m given by (4-8) coincides with
P

ker(i}, i) = coker A <= HO(X%, k3)m,
p

where the first isomorphism is deduced from the commutative diagram above by the snake lemma, and
the second is induced by the injection HO(X pacs K )m <> HO(X Facs k,\)ﬁz to the second component.
V4 14

Fr2=1 - . . .
Now take x € H! (X[F%C, k)m' Z=ker0,andletx € Hg (XﬁF’ﬁéi, k;)m be a lift of x that is fixed by Sy. This
14
is possible as the action of S, on H! (Xg?, k;) is semisimple. Then 7} (x) — 7| Frp(x) € H! (Xg?, k;)®?
P P
is an element lifting 77} (x) — 7] Fry(x) € ker(i}, i), and 75 (X) — 7] Fry (%) lies actually in the image of
HO(X;%, k;)E2. Note that

3 (%) — 7} Fry(8) = (S, Frp (%), X) — (Fry (), Frp (%)) = (0, (1 — Fry) (X)).

Since ®*(x) is by definition the image of 7 (X) —7r{ Frp(X) in coker A = H! (X;%C, ky)m, we get O*(x) =
(1 —Frg)(i). However, this is nothing but the image of x € H! (X e, k;)S' via the coboundary map @ (a).
This finishes the proof of claim, hence also the proof of Proposition 4.8. O

Recall that we have, for each a € B, an algebraic correspondence
Sh(Go, o, KP)s o, < Z5.0(a) => Sh(G, KP)s ,,
Let A be O, , Og/A or Q7. We define Gys (A) to be the composite map
H!'(Sh(Go,.0,. KP)ps. Mm 75 H' (Wo o (@, A 2 HESK(G, K)pse. A(g — 1)/2))m.

where the first map is an isomorphism since 7, is a (g—1)/2-th iterated P'-fibrations, and the second
map is the Gysin map induced by the closed immersion i,. Taking sum, we get a map

Gys(A) := Y Gys,(A): @D H'(Sh(Go, o KP)sie, A)m — HE(Sh(G, KP)pse, A((g — 1)/2))m.
a aeB
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Proposition 4.10. Under the assumption of Theorem 4.7, we have that
(1) the map Gys(A) is injective for A = O, , Og/ 1, Q};
(2) the induced map

Gys(O¢/1)/m: DH(SK(Go, o, KP)pse. Op/A)/m — HE(Sh(G, K P)pse, Og/A((g — 1)/2))/m
ae’B
is injective.

Before giving the proof of the proposition, we introduce some notation. Let R, be the set of all
automorphic representations that contribute to H8 (Sh(G, K? )F;c, A((g —1)/2))m. Then it is the same as
the set of all automorphic representations that contribute to H' (Sh(Gg, z,. K? )[p;c, A)m for every a by
the Jacquet-Langlands correspondence. It is finite and contains I1. We may enlarge E such that every
automorphic representation I1" € Ry, is defined over E. Fix an embedding E;, — Q¥°. Let ary, frv € Z5°
be the eigenvalues of pry ) (0}), where Zi° denotes the ring of integers of Q%°. By Remark 4.6(2), we
may assume that ozlz_[, and ,81%1, are respectively congruent to 1 and p*¢ (modulo the maximal ideal of 7¥);
in particular, ary /B is not congruent to any i-th root of unity for 1 <i <2g by Definition 4.5(L2).

Proof of Proposition 4.10. Following [Tian and Xiao 2019], we consider the composite map
Resq(A): HE(Sh(G, KP)pse, A > HE (W o ()55, A 22> H' (Sh(G o, 27, K7). M)
for each a € ‘B, and put
Res(A) := @ Resq(A): HE(Sh(G, KP)pse, A)m — PH'(Sh(Go, 0, KP)gie, M.
acB aeB
To prove that Gys(A) is injective, it suffices to show that the composite map Res(A) o Gys(A), which is

an endomorphism of g H' (Sh(Gg, .o, Kp)[Fgf, A)m, 1s injective.
It follows from Lemma 4.4 that

Hé (Sh(G, Kp)ﬂ:?]c, A)m = H8(Sh(G, K”)[F?)c, O, )m R0y, A, (4-10)
and it is a finite free A-module. Note that we have
HE(Sh(G, KP)pe, @) = P HE(Sh(G, KP)pe, Q) [TT™]
IMeRm

as modules over Z[T®%!]. Then it was shown in the proof of [Tian and Xiao 2019, Theorem 4.4(2)] that
on each IT"*°-isotypic component, det(Res(A) o Gys(A)) is equal to a power of

p® V2 ) (o — B/ (e B Yeehe

for A = Q¥°, where 1, (,—1)2 = ZE;OI)/ 21 (¢). By (4-10), it is clear that the same formula also holds for

i
A = O, . Therefore, we see that det(Res(Of, ) oGys(Ok, )) is nonvanishing modulo A by Definition 4.5(L2).
It follows that Res(A) o Gys(A) is an isomorphism for all choices of A, hence Gys(A) is injective and

(1) follows.
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The above argument also implies (2). U

We can now finish the proof of Theorem 4.7. The assertion that G’ acts trivially on I'(5 x
Sh(Gs,,.. K P)(H:?,C), Of/A)m follows from Theorem 3.13(2) and Definition 4.5(L.3). We focus now
on the surjectivity of &, (4-4).

We write k) = O/ for simplicity as before. Under the canonical isomorphism

(B x Sh(Gs,,.. KP)(F%), ki)m = ED T (Sh(Gs,,» K )sse, ki),
aeB

the map (4-5) is identified with the composite map

BaPm(a)/m
Due T (Sh(Gs,,, KP)pe, k) /m ———— Dy H' (F 2, H' (Sh(G g, 07, KV, ki (1) /m)

x} les

H' (F ¢, HS (Sh(G, K P, ki (g +1)/2)) /m),

where the vertical map Gys is simply H! (F 2> (Gys(ky)/m)(1)). Here, we use the fact that the canonical

maps

H'(F 2, H' (Sh(G 5, 2, K", ki (1)) /m — H' (F o, H' (SW(G 5, o7, KP s, Ky (1) /m)
H' (F ¢, H¥ (Sh(G, K?)gse, ki (g +1)/2)))/m — H' (F e, H¥ (Sh(G, K ), ki (g +1)/2)) /m)

are both isomorphisms since H?(F 2, —) vanishes. By Proposition 4.8, the map @, ®m (a)/m is surjective.
To prove that &, /m is surjective, it suffices to show that so is Gys.

First, we have a description of H'(Sh(G 2.2, K 7), k(1)) /m in terms of pr 5, which is the residue rep-
resentation of (4-1) as we recall. Since ppy ; is absolutely irreducible by Remark 4.2(1), the k) [GFr]-module
Hl(Sh(G@a,@u, KP)qgue, k; (1)) /m is isomorphic to r copies of ﬁﬁ’k(l) = pr. withr > dim(l'[%o)K by
[Boston et al. 1991] and the theory of old forms. By Remark 4.6(2), one has an isomorphism of
k3 [G']-modules

o =k, ®ky(1).

In particular, H'(Sh(G Za2q> K? )[F;;c, k; (1))/m is the direct sum of the eigenspaces of opz with eigenval-
ues 1 and p?¢ both with multiplicity r.

By [Brylinski and Labesse 1984], Remarks 4.2(4) and 4.6(3) and the similar argument as above,
the (generalized) eigenvalues of opz on H8(Sh(G, K”)[p;’c, Q¥ ((g+1)/2))/m are pg(g“)ozﬁﬁﬂﬁz(g_i)
with multiplicity (%) dim(IT°)X. Note that p8@+Dap* B2 has image p#1+%9) in F3¢, which are

distinct for different i under Definition 4.5(L2). For every u € k;, let

(H#(Sh(G, K?)pe, ks (g + 1)/2))/m)*~* C H¥ (Sh(G, KP)pe, kp((g +1)/2)) /m
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denote the generalized eigenspace of %2 with eigenvalue p, that is, the maximal subspace annihilated by
(O’p2 — M)ZN for N =1, 2, .... Then by the base change property (4-10), one has a canonical decomposition

pg<1+2i —-8)

g
2
H¢ (Sh(G, K")rse, ki ((g +1)/2))/m = @D HE (Sh(G, K ), ko ((g +1)/2)) /m) %™ :
i=0
where the i-th direct summand has dimension () dim(I13°)X over k;. The direct summand with ap2 ~ 1
corresponds to the term with i = (g — 1)/2, and it has dimension ((g—g]) /2) dim(l'[%o)K . Note that

ng(1+2[—8)

H' (F 2e, (HE(Sh(G. K?)ps, ki (g + 1)/2))/m) )=0

for i # (g — 1)/2. It follows that the natural map
(HE(S(G, K ), ki (g + 1)/2))/m)7~" — HI(F e, HE(SW(G, KP)pae, k3 (g + 1)/2))/m) - (4-11)

is surjective. One gets a commutative diagram:
0 o=
P H' (G o, o, K V)i, kn (1)) /m)% =" —— @ H'(F e, H'(Sh(G g, o, K ), k(1)) /m)

El(GyS(k,\)/m)(l) chs

@

(HE(Sh(G. KP)ps. ki (g + 1)/2) /m)°s ™~ HU(E o, HES(G, K e, k(g + 1)/2))/m)

Here, (Gys(k;)/m)(1) is injective by Proposition 4.10(2), and we deduce that it is an isomorphism for
dimension reasons. It follows immediately that Gys is surjective. This finishes the proof of Theorem 4.7.

5. Selmer groups of triple product motives

In this section, we study Selmer groups of certain triple product motives of elliptic curves in the context
of the Bloch—Kato conjecture, which can be viewed as an application of the level raising result established
in the previous section.

From now on, we fix a cubic totally real number field F, and let F be the normal closure of F in C.

5A. Main theorem. Let E be an elliptic curve over F. We have the (Q-motive ®Indg h!'(E) (with
coefficient Q@) of rank 8, which is the multiplicative induction of the F-motive h'(E) to Q. The cubic-
triple product motive of E is defined to be

M(E) := (® Ind§ h' (E))(2).

It is canonically polarized. For every prime p, the p-adic realization of M(E), denoted by M(E),
is a Galois representation of (QQ of dimension 8 with @Q,-coefficients. In fact, up to a twist, it is the
multiplicative induction from F to Q of the rational p-adic Tate module of E.

Now we assume that £ is modular. Then it gives rise to an irreducible cuspidal automorphic represen-
tation ITg of (Resr,q GLy r)(A) with trivial central character. In particular, the set £(I1g, 7) defined in
Section 1C contains co. We have L(s, M(E)) = L(s + %, IMg, r) (again see Section 1C).
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Put A" := X (Tg, 1) — {oo}. Let A (resp. A, A”) be the set of primes of F above A that is of degree
either 1 or 3 (resp. unramified of degree 2, ramified of degree 2). We write the conductor of E as c¢¢’¢”¢t
such that ¢ (resp. ¢, ¢”, ¢T) has factors in A (resp. A/, A”, elsewhere).

Assumption 5.1. We consider the following assumptions:
(EO) The cardinality of X(I1g, t) is odd and at least 3.

(E1) For every finite place w of F over some prime in X (I1g, ), the elliptic curve E has either good or
multiplicative reduction at w.

(E2) For distinct embeddings 11, 75: F — F , the F -elliptic curve E QF F is not isogenous to any
(possibly trivial) quadratic twist of E QF 1, F.

Remark 5.2. Assumption 5.1(EO) implies that A is not empty. Assumption 5.1(E1) implies that E has
multiplicative reduction at w € A. Together, they imply that the geometric fiber £ ® p F* does not admit
complex multiplication.

We now assume that E is modular and satisfies Assumption 5.1. Then Assumption 5.1(E1) implies
that c¢’ is square-free, and ¢’ = O by [Liu 2019, Lemma 4.8]. We take an ideal v of O contained in
N¢™ for some integer N > 4 and coprime to A”.

Assumption 5.1(E0O) implies that A is a nonempty finite set of even cardinality. Let B be a quaternion
algebra over F, unique up to isomorphism, with ramification set A, and © € B be an Op-maximal
order. Let vo and v; be two ideals of Of such that tg, v; and A are mutually coprime. We recall the
definition of the Hilbert modular stack X'(A)y, «, over Spec(Z[NFr/q(tot y~!(disc F)~!]) defined in [Liu
2019, Definition B.3]. For every Z[Nf g (tot;) ! (disc F)~']-scheme T, X'(A)y,.r, (T) is the groupoid of
quadruples (A, t4, C4, a4) where

« A is a projective abelian scheme over T;
e 14: O — End(A) is an injective homomorphism satisfying
Tr(ta(b)| Lie(A)) = Trrq Try, p(b)
for all b € O;

e Cy4 is an O-stable finite flat subgroup of A[ty] which is étale locally isomorphic to (Of /tg)? as
O/to0O = M3 (OF /tp)-modules;
e ays: (Of/ t1)2T — A is an O-equivariant injective homomorphism of group schemes over 7.
If vty = Op, a4 is trivial and we usually omit it from the notation. If t; is contained in N Of for some
integer N > 4, then X'(A)y, ¢, 1S a scheme.
We put X; := X (A)¢r. Let D(x, ¢) be the set of all ideals of O containing t(¢t)~! as in [Liu 2019,
Notation A.5]. For every 0 € D(t, ¢t), we have the following composite map

B X =X(A)er = X(A)erop 2> X (Ao o (5-1)
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which is a finite étale morphism of Deligne-Mumford stacks, where §° is the degeneracy map defined as
follows. If (A, t4, C4) is an object of X'(A)¢ 0, (T) for some Spec(Z[NF/q;p(c’t)_1 disc(F)~!])-scheme
T, then its image by 8° is given by the object (A’, 14/, C4’), where

» A’ is the quotient A by the finite flat subgroup C[?],

e 14 is the induced O-action on A’ from A,

o Cyu is the unique subgroup scheme of C,/C4[0] étale locally isomorphic to (O /¢’ ¢t)2.
See [Liu 2019, Section B.1] for more details.

Remark 5.3. The requirement that |X(I1g, )| > 3, that is, A # & is not essential. The reason we
require this is not to make the relevant Shimura variety X, proper. In fact, it is used to obtain a refinement
(Proposition 5.13) of Theorem 4.7 so that the map (4-5) is also injective in order to deduce Lemma 5.18
which is needed for the first explicit reciprocity law back in [Liu 2019], through a trick using Jacquet—
Langlands correspondence. However, it is not clear to us what are optimal conditions for the map (4-5) to
be injective.

From now on, we fix an element tv € A. Let B be the totally definite quaternion algebra over F,
ramified exactly at A \ {wo}. Put
Ve i= B*\B*/Kq,1 (¢, v)

where Ko j(toc’, v) C B* is an open compact subgroup defined similarly as in Example 2.12.
For every ideal s contained in ¢*, we let R(s) be the union of primes dividing s and primes above A’.
In particular, we have the homomorphism

¢* = gn Z[TM] > Z

such that ¢°(Ty) = aq(E) and ¢*(Sy) = 1 for every prime q ¢ R(s). Here we recall that T® is the Hecke
monoid away from R [Liu 2019, Notation 3.1].

Let p be a rational prime.5 Let mf, be the kernel of the composite map Z[TRE)] ¢—> Z — F,. We also
have an induced Galois representation

prg,p: Gr = GL(T,(E)) = GLa(Z)),
where T, (E) is the p-adic Tate module of E. Put pri, , := pn,,, mod p.

Definition 5.4 (perfect pair). We say that:

(1) pis generic if (Ind‘% P11, p)lG; has the largest possible image, which is isomorphic to G(SLy ([ ) x
SLy(F,) x SLa(F))).

(2) The pair (p, v) is s-clean, for an ideal s of O contained in v, if:
(a) The space I'(Dk, Z)) /m; has dimension |D(t, ¢7)| over F -

SThe readers may notice that we switch the roles of p and £ (or A) in Section 5 from Section 4. This is due to a different
convention in the study of Selmer groups.
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(b) H3(X(A)eer .0, ®Q*, 7 p)/m, has dimension 8 over [, and the canonical map
P & H@ea . z,)/m > P H@X(A)wo, ®Q°,Z,)/m,
0€D(r,ct) €D (x,ct)
is an isomorphism.
(3) The pair (p, v) is perfect if:
(@) p>11and p #13,19.

(b) p is coprime to A’ and t-| (Z)xNZ)*|-u(x, ¢T)-|CI(F),|-disc F, where disc F is the discriminant
of F, CI(F), is the ray class group of F' with respect to ¢, and

1
R
u(r, ¢ Fjat(c’) )1:[( +NF/Q(Q)

with q running through the prime ideals of O dividing t but not ¢*.
(c) p is generic.
(d) Itis v-clean.
(€) prig,p is ramified at 1.

Remark 5.5. Note that the condition that p is generic implies that the condition (LIIndﬁH p) in [Dimitrov
E>

2005, Proposition 0.1] is satisfied. Consequently, H? (X, ® Q*, Z pms is finite free over Z,, for any ideal

s of OF containing v by [loc. cit., Theorem 0.3].

Let B be a quaternion algebra over @, unique up to isomorphisms, with ramification set A’ so that
B = B’ ®g F. We have similarly a moduli scheme Xy := X (A”)7 7 attached to B”. Then we obtain a
canonical morphism
0: Xf — X,

over Z[(tdisc F)~'] similar to [Liu 2019, (4.1.1)]. It is a finite morphism. Denote by ®, . the image of
9*[th ® Q] € CH?(X, ® Q) under the Abel-Jacobi map

AJ,: CH*(X, ® Q) — H'(Q, H? (X, ® @, Q,(2))/ ker ¢").

By [loc. cit., Lemma 4.6], we have H'(Q,, M(E),) = 0 for all primes v{p. Thus, we recall the
following definition.

Definition 5.6 [Bloch and Kato 1990; Liu 2019, Definition 4.7]. The Bloch—Kato Selmer group for the
representation M(E) , is the subspace H} (Q, M(E) ) consisting of classes s € H' (Q, M(E) p) such that

loc,(s) € Hy(Qp, M(E)) :=ker[H'(Q,, M(E) ) > H'(Q,, M(E) , ®g, Beris)]-

Theorem 5.7. Let E be a modular elliptic curve over F satisfying Assumption 5.1. For a rational prime
D, if there exists a perfect pair (p, v) (Definition 5.4) such that ® , . # 0, then

dimg, H}(Q, M(E) ) = 1.
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Remark 5.8. By an argument similar to [Liu 2019, Lemma 4.10], given an ideal v of O contained in
Nc™ for some integer N > 4 and coprime to A, there exists a finite set Pg . of rational primes such that
(p, v) is a perfect pair for every p & Pr.. An upper bound for Pg . can be computed effectively.

Remark 5.9. Assuming the (conjectural) triple product version of the Gross—Zagier formula and the
Beilinson—Bloch conjecture on the injectivity of the Abel-Jacobi map, the following two statements

should be equivalent:
e L'(0, M(E)) # 0 (note that L(0, M(E)) = 0 by Assumption 5.1(E0)).

o There exists some to such that for every other v contained in tp, we have ®, . # 0 as long as (p, t)
is a perfect pair.

Here, we need to use (the proof of) [Liu 2019, Proposition 4.9]. Then Theorem 5.7 implies that if
L'(0, M(E)) # 0, that is, ords=o L(s, M(E)) = 1, then dimg, H}'(@, M(E),) = 1 for all but finitely
many p.

5B. A refinement of arithmetic level raising. From now on, we fix a perfect pair (p, v) (Definition 5.4),
and put m® := m’, for short.

Definition 5.10. Let v > 1 be an integer. We say that a prime ¢ is (p", v)-admissible if:

(A1) £isinertin F' (with [ = £OF), unramified in F, and coprime to R(r) U {2, p}.

(A2) (p,v)is tl-clean.

(A3) pt(!® —1)(® +1).

(A4) ¢%(T) =£3+1 mod p".

Notation 5.11. For now on, we fix an integer v > 1 and put A :=Z/p". Let p: Gr — GL(N,) be
the reduction of prj, , modulo p where N, = T,,(E) ® A. We have the multiplicatively induced
representation p¥: Gg — GL(N ) with N, = N§3.

Lemma 5.12. Let £ be a (p”, v)-admissible prime. Then the cohomology groups
Hyne (@, B (X (A)eer,0, ® O, A(2)/ ker ™), Hip(Qp, H (X ® O, A(2))/ ker ¢™)

are free A-modules of ranks 1 and | D (x, ¢*)|, respectively.

Proof. By Definition 5.10(A2), Nakayama’s lemma and [Brylinski and Labesse 1984], we have isomor-
phisms of A[Gg,]-modules

H (X (A)eer 0, @ QF, AQ2)/ker¢™ N2 (—1), H' (X, @0, A(2))/ker¢™ = N (—=1)@PCHI,

If oy € Gp denotes an arithmetic Frobenius element at [, then p(oy) is conjugate to ( (1) £3) by
Definition 5.10(A4). Hence, the A[Gg,]-module Nf)(—l) is unramified and isomorphic to A(—1) &
A®RD® A ®R() ® A(2), where R = A®? is the rank 2 unramified representation of Gg, with
the action of the arithmetic Frobenius o, given by (0 *i) By Definition 5.10(A3), it follows that

um(@g, Nﬁ (-1 = um(@g, A), which is free of rank 1 over A. O
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Let £ be a (p", v)-admissible prime. Then X, ® Zy) is canonically isomorphic to Sh(G, K (¢, 98]
with G = Resp/g B* considered in Section 2E (See Remark 2.5 on the issue of polarizations and
Example 2.12 for the open compact subgroup Ky 1(¢/, t)), and /’\.’f ® Z ¢y is canonically isomorphic to
Sh(G”, Ko1(Z, tNZ)%) with G” = (B")*. Put X, := X, ®[F,. As before, we denote by X:p the superspecial
locus of X;. By Theorem 3.16, we may identify X;" (F¥) with Sh(Gs,,.. Ko,1(¢’, ©)*)(F¥).

The following proposition is a refinement of Theorem 4.7 in our situation.

Proposition 5.13. Let ¢ be a (p”, v)-admissible prime. Then the level raising map
(B x X:P(F), A)/ ker ¢ — H! (Fys, H} (X, ® F¥, A(2))/ ker ™) (5-2)
defined similarly as (4-5) is an isomorphism.

Proof. In the proof of Lemma 5.12, we have seen that, as a A[Gg,]-module, H} (X, ® F¥°, A(2))/ ker ¢™
is isomorphic to |D(t, ¢*)|-copies of

N (-DZA-D@®ABRDA() SR B AQ).
We get thus an isomorphism of A[Gal(Fs/F¢)]-modules
H' (Fpo, B (X ® FF, A2)/ ker¢™) ZH' (Fis, A@R)PPCN = (A @ R)®IPE (5-3)

which is free of rank 3|D(t, ¢*)| over A. By Theorem 4.7 and Nakayama’s lemma, the map (5-2) is
surjective. Thus it suffices to show that F(X:p([FZ‘C), A)/ker ¢ is a free A-module of rank |D(x, ¢*)|.
By Nakayama’s lemma, it suffices to show that F(Xip(ﬂzzc), Fp)/ m* has dimension |D (¢, ¢7)| over F -

Recall that so far, we have three quaternion algebras over F in the story: B ramified at X U A\ {tv}, B
ramified at A, and Bs,_, ramified at £, U{[}UA. Now we let B be the fourth quaternion algebra over F
ramified at ¥ U {[}U A\ {to} where X is a fixed subset of X, of cardinality 2. Let C be the corresponding
proper Shimura curve over F' (with the embedding into Q% given by the unique element in ¥, \ ) of
the similarly defined level K ; (toc’, t). As in Step 4 of the proof of [Liu 2019, Proposition 3.32], C has
a natural strictly semistable model at [. The corresponding weight spectral sequence provides us with a
canonical isomorphism

I, Z,)/m" ~H!

sing

(@, H(C ®Q*, Z,) /m")

as in the proof of [Liu 2019, Proposition 3.32]. By Definition 5.10(A2), H! (Qys, H'(C @ Q%, Zp)/m‘[)

sin
has dimension |D(t, ¢*)|. By [Boston et al. 1991], we conclude that H!' (C <gX) Q*, Zp) /m* is isomorphic
to ﬁﬁ'}fs’ml as an [ ,[Gr]-module. In particular, H'(C @ Q%, Zp)/mt[ has dimension 2|D(t, ¢)].
Now consider the semistable reduction of C at tv. Let Cy be the proper Shimura curve over F associated
to B’ of the level K¢ 1(c/, t). Then H' (Co ® Q*, Zp)/mt[ = 0 by Definition 5.4(3e). Therefore, we have

a canonical isomorphism

H' (I, H'(C ® ©@*, Z,)) /m™) 2= T (X;P (F&), F,) /m"
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from the weight spectral sequence, as the supersingular set of C at tv is also Xip([Fﬁc). Therefore,
rx.? (9, Fp) /m* has dimension |D(t, ¢*)|. The proposition follows. O

5C. Second explicit reciprocity law. Let £ be a (p”, v)-admissible prime, and [ = £Op. Recall that
Yo denotes the set of archimedean places of F. For every ideal s of O coprime to A U {[}, let
St 1 =8(Xoo UAU{I}), be the set of isomorphism classes of oriented O g-Eichler orders of discriminant
Yoo UAU{[} and level s (see [Liu 2019, Definition A.1]). It has an action by Gg, such that the arithmetic
Frobenius oy acts by switching the orientation at [.

Lemma 5.14. There is a canonical isomorphism X:p(ﬂzi}c)/ CI(F), = Sp,o. Moreover, the induced action
of Gr, on S; ¢« factors through Gal(F,2 /) and is given by the map op, switching the orientation at .

Proof. 1t is a special case of [loc. cit., Proposition A.13(1)]. (I
Denote by ¥ : X;" (F¥) — Sy ¢ the canonical projection from the above lemma.
Lemma 5.15. The canonical map
¥ T(Se.ee, A)/ ker ¢ — T(XF (F2), A)/ ker ¢
is an isomorphism.
Proof. 1t follows similarly to [loc. cit., Lemma 3.24]. U
Proposition 5.16. Under the notation above, the following statements hold:

(1) The action of op, on I'(Sg, v, A)/ ker ¢ is trivial.

(2) There exists a unique isomorphism ® such that the following diagram is commutative, where the

lower left vertical arrow is the diagonal map:

[(Spoe, A)/ kerg? —— 2 S HL (@, H3(X, ® Q%, A(2)/ ker ¢t

unr

lw* F

T(XP(FE), A)/ ker ¢ (Qps, HY (X ® @™, A(2)/ ker ¢™)) T Qus/Q0)

l (5-2)

(B x X (FX), A)/ ker ™' —————— HL(Qps, H3 (X, @ Q%, A(2)/ ker ¢™))

unr

unr

Proof. Consider the action of Gal(Q;s/Q;) on both sides of the isomorphism
T'(B x Sp.oe, A)/ ker g™ L5 T(B x XP(F), A)/ ker ¢ — H' (Fys, H (X, ® FX, A(2))/ ker ¢™).
By (5-3), we obtain an isomorphism

(T (Se,ev, A)/ ker ™)Pe=! = H! (Qp, H (X, ® @™, A(2)/ ker ™).
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By Lemma 5.12, H! (Q,, H}(X, ® Q*, A(2)/ ker ¢") is a free A-module of rank |D(r, ¢*)|. Therefore,

unr
the inclusion

(T(St.ces M)/ ker g™)Pe=! C T(Sp. e, A)/ Ker ¢
is an isomorphism as both sides are free A-module of rank |D(t, ¢™)|. Thus both (1) and (2) follow. [J
Denote by ®;’t the image of 9*[th ® Q] € CH?(X, ® Q) under the Abel-Jacobi map

AJ,: CH*(X, ® Q) — H'(Q, H* (X, ® @, A(2))/ ker ™).

For any ideal s C Op, let Sz . = S({oo} U A’ U {£})snz denote the set of isomorphism classes of oriented
Z-Eichler orders of discriminant {oo} U A” U {¢} and level s N Z [Liu 2019, Definition A.1]. We have a
natural map given by extension of scalars

918, — Seer. (5-4)

We have a bilinear pairing (-, -): I'(Se,¢c, Z) X I'(Sp,ec, Z) — Z defined by the formula (fi, f2) =
D ohe Spu f1(h) fo(h). It induces a perfect pairing

(-, ) D(Spees A)/ ker g™ x T(S.ew, A)lker¢™] — A.
Theorem 5.17 (second explicit reciprocity law). Let £ be an (p", v)-admissible prime. Then loc, (@}’,’t)
lies in H' (Q, H3 (X, ® @, A(2))/ ker ¢*), and we have

((Z/xNZ)~|
€ — 1)?|CI(F):

(® loc, @;’t, )= (

- > f@&)

)CESLt

for every f € I'(Sp, e, A)[ker ¢%). Here, ® is the isomorphism in Proposition 5.16.
We note that (¢ — 1)%|CL(F).| is invertible in A.

Proof. The fact that ©,  is unramified follows from the fact that both X, and .’{E have good reduction at £.
Recall that X, = X, ®F,. Similarly, we put XE = Xf@Fg. Then we have the morphism 6 : XE — X, over [Fy.
Let © be the image of 6,[X;] € CH2(X,) in the Galois cohomology H' (F, H3 (X, ® Fa¢, A(2)/ ker ¢™)
defined similarly as for ®) . Then under the canonical identification

H' (F, B (X ® F°, A(2))/ ker ¢™) = Hy (Qe, H (X, ® @, A(2))/ ker ™),

© coincides with locg @;’t.
From Proposition 5.13, we have an isomorphism

(B x X;P(FX), A)/ ker g™ = @ T(XF(FE), A)/ ker ¢ => H (Fys, H (X, @ F2, A(2))/ ker ¢™).
aeB

For each a € ‘B, we denote by

Wy H (Fps, H3 (X, ® F, A(2))/ ker ™) — T(X;P(FX), A)/ ker ¢*!
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the map obtained by taking the inverse of the previous isomorphism followed by the canonical projection
to the direct summand indexed by a. By a similar proof to [Liu 2019, Proposition 4.3], we have the
following commutative diagram:

XU (R — XP(FS)

)

b 9
Sg’t ” Sﬁ,c’t

where v is obtained similarly as v, but for XE. Therefore, the theorem will follow if we can show that
for every f € F(Xip(ﬂzzc), A)[ker ¢*], we have

> FOw) (5-5)

xeXyP(Fe)

— 1
(Va®, f) = =12

since v is of degree |CI1(F),| by Lemma 5.14 and similarly " is of degree |(Z/tNZ)*|.
For every a € B, we have the following commutative diagram as (4-6):

Wo,0(0) ———— Zo () Sh(G)f , = X, ® Fyo

= ja
X @ Fps — Sh(Gs,,,)F —— Sh(Gg, 2,5 ¢

where the square is Cartesian. Here, we omit the away-from-£ level structure K¢ 1(c, t)* in the notation.
However, in this case, Z4 z(a) coincides with the Goren—Oort divisor Sh(G)[Flw(a) for some 7(a) € L
determined by a. Thus it is easy to see that the (scheme-theoretical) intersection I'y N pr; Zg o (a) is

contained in XE’Sp x XP, where 'y C Xf x X, is the graph of 6 and pr,: XE x X. — X, is the canonical

projection. More precisely, it is the graph of the restricted morphism 8: X;"*" — X:P. Therefore, we have

Tasif0u[X)] = 00 [ X0 @ Fo] (5-6)
in CH!(Sh(G Das ga)[Fm), where 6, is the composite morphism
XUP @ Fs > X @ Fro = Sh(Gs,, )r, 2= Sh(G oy 0,)F -

Recall that we have two morphisms

Gys, =iaom}: H (Sh(Gy, z,)re, A1)/ ker¢™ — H? (X ® F°, A(2))/ ker g™,
Resq = 7 0if: H (X: @ F}°, A(2))/ ker¢™ — H'(Sh(G g, .0, )5, A(1))/ ker ™.

We write 8 = {ay, ap, a3} with a;_; = o (a;) for all i viewed as elements in Z/3Z, where o (a;) means
the translate of a; by the Frobenius as defined just above Definition 3.15. By [Tian and Xiao 2019,
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Theorem 4.3] and the proof of [loc. cit., Theorem 4.4], the intersection matrix (Resg, o Gysai) 1<i,j<3 18

given by
20 eyt ey
ey =20 ey,
oyt ey =20
where

ni: H'(Sh(Gg, o, )re, A1)/ ker ¢ — H'(S(Gp, o, e, A()/ker¢”

is a certain normalized link morphism introduced in [loc. cit., Section 2.25] which commutes with
the Galois action and such that the product n;4on;+1n; for i € Z/3Z is the endomorphism on
Hl(Sh(Ggai’gai)ﬂ?’zC, A(1))/ ker¢t[ given as follows. Let oy, € G, denotes an arithmetic Frobenius
element. By [Brylinski and Labesse 1984] and Definition 5.10(A4), one has a decomposition of
A [G[FZ3 ]-modules

3
H'(Sh(Ggo, o, )rx. A(D)/ ker¢™ =M] @M;

where each Mlk for A =1, £3 is a finite free A-module on which the action of 023 — X is nilpotent. Then the
action of 1, 421;+11; on Mi1 (respectively on Mf3) is the multiplication by £73 (respectively £3). Since the
roles of a; are symmetric, Hl(Sh(Ggai,gai) ac, A(1))/ ker ¢ fori = 1,2, 3 must be isomorphic. Thus,
we can identify Mf with A = 1, £3 for different i and write it commonly as M” in such a way that the
morphisms 7; are identified with the same endomorphism 7 on M! @ M?, where n acts by £~! on M!
and by ¢ on ME3, respectively. With these identification, the intersection matrix writes as

-2 77"
(Resq 0 Gysy )i<ijss=€| n =2 n7']. (5-7)
' on =2

Note also the isomorphism H' (Fys, Hl(Sh(G@ai’@ai)[F?c, A(1))/ker ¢*) = H! (Fs6, M!) on which 7 acts
by the scalar £~
By the proof of Theorem 4.7 in Section 4B, we have a commutative diagram

Gys,,
H! (Fpo, B2 (X, @ I, A(2))/ ker @) — H! (Fy, H! (Sh(Gg, 2, e, A1)/ ker¢™))

o o]

(X (FX), A)/ ker ¢ = I'(Sh(Gs,,, ) (F%), A)/ ker ¢*

where the bottom isomorphism is the one induced by the identification X’ ® [, = Sh(Gs,,, )r 4, and

6

@, is the map induced from (4-7). We claim that @, is an isomorphism. Indeed, by Proposition 4.8 and
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Nakayama’s lemma, @, is surjective. On the other hand, we have a commutative diagram

®; P,
@;_; T(Sh(Gs,, ) (), A)/ker¢™ — @7 H'(Fo, H(Sh(Go, o, I, A(1))/ ker ¢™))

\ lz, Gysu-
(5-2) '

H! (Fs6, H3 (X, ® F&, A(2))/ ker ¢*")

where the composite map is an isomorphism by Proposition 5.13. It follows that each ®,, is injective,
hence an isomorphism.
Now, we have ® = 37 Gys,, 0P, 0 Wy, (©) and

@, oResq, © = £(—2Wq, (O) + LW, (O) + £ ¥4, (0)) = (£ — 1)* g, (0)

by (5-7). Here, the last equality uses Wy, (®) = \Daz((:)) =Y, (®) by symmetry. On the other hand, by
(5-6), we have
@' oRes, ©® = 6,1

for all a € B, where 1” is the characteristic function on X E’Sp([F‘Z}C). Thus (5-5) follows immediately, and
the theorem is proved. O

The following lemma will be needed in the next section.

Lemma 5.18. When s = ¢l, the map
P 82 T(Suer. A/ kerg® > P T(Speer. A)/ kerg®

€D (r,ct) €D(r,ct)
is an isomorphism of free A-modules of rank |9 (t, ¢*)|.

Proof. The idea of proof is similar to [Liu 2019, Lemma 3.33]. Recall that we have morphisms §° in
(5-1) for each @ € D(x, ¢*). As usual, we put § := 7. Form the following pullback square

xR — X

3
Xo —— X(A)c’c+,(9p
of schemes over Z ), where all morphisms are finite étale. The scheme X? has a natural action by T
under which the above diagram is equivariant. By an argument similar to [loc. cit., Lemma 3.33], we
obtain a commutative diagram

I(Sp.ev. A)/ ker g™ —2 HL (@, H3 (X, ® @, A(2))/ ker ¢™)

unr

(OF/V)X|'5*O5EJ lsfog* (5-8)

[(Se.ev. A)/ ker ¢ —2— HY (@, HY (X, @ @, A(2))/ ker ¢

unr
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0

where @ is the isomorphism in Proposition 5.16. By proper base change, the endomorphism ¢ o * of

H3 (X, ® Q*, A(2)) coincides with the composite map
HP (X, ® @, AQ)) 25 B (X (A)eer 0, ® Q. AQR) 2> H (X ® 0%, A(2)).
Definition 5.10(A2) and Proposition 5.16(1) imply that the image of

e20e*: Hyp (Qe, H (X ® Q%, A(2))/ ker ™) — H, (Q, H (X, ® Q% A(2))/ ker ¢™)

unr

is a free A-module of rank 1. Here, we use the fact that §* is injective, as p{u(t, ¢) in Definition 5.4(3b).
By the commutative diagram (5-8), we know that the image of

8% 08%: T'(Sp.evs A)/ ker @™ — T'(Sp.cre, A)/ ker @™

is a free A-module of rank 1. Since 82 is surjective and 6* is injective, I' (S ¢+, A)/ ker ¢ is a free
A-module of rank 1. Similarly, we may deduce that the map

P 82D Seee. M)/ kerg” > P T(Seeer, A)/ ker g™ (5-9)

€D(r,ct) €D (r,ct)

is injective. However, since the source of (5-9) a free A-module of rank |D(t, ¢*)| by Proposition 5.16,
the map (5-9) has to be an isomorphism. The lemma follows. U

Remark 5.19. Note that since the images of ker ¢ in both End (T (Se.ces A)) and Endp (I'(Sy e+, A))
are finite sets, it follows by Chebotarev’s density theorem that for all but finitely many primes I of F, the
conclusion of Lemma 5.18 also holds for s = ¢Il’.

5D. First explicit reciprocity law. We keep the notation in Section 5C. Let £ = (£, £') be a pair of distinct
(p¥, v)-admissible primes (Definition 5.10) such that Lemma 5.18 holds for s = t[l’, where I := ¢'OF
(see Remark 5.19).

Put X,y == X(AU{[,'})¢ and th,g = X (A" UL, €'})z.nz (in the notation of [Liu 2019, Defini-
tion B.1]), as schemes over Z . Then we obtain a canonical morphism

O Xy — Xy (5-10)
Denote by ®;’t’ ¢ the image of 915*[)(2 ¢ ® Q] € CH? (X:,¢ ® Q) under the Abel-Jacobi map
AJ,: CHX (X, ® Q@) — H'(Q, H3 (X, ® @, A(2))/ ker ™).
Theorem 5.20 (first explicit reciprocity law). Let £ = (£, £') be as above:
(1) There is a canonical decomposition of the A|Ggl-module

H (X ® Q% AQ)/ ker¢™ = D M
€D (x,ct)

where My is isomorphic to Nf, (=1) (Notation 5.11) as a A|Gg]-module.
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(2) There is a canonical isomorphism
Hpe (Qer, H (X ® @, A(2))/ Ker ¢™') = T(Sp e, A)/ Ker ¢,

under which we have

y o l@rnnX
(@locy O} 4. f)=('+ 1) =G 0= Z F@ ()

for every f € I'(Sg v, A)lker oM.

Proof. We will use results from [Liu 2019, Sections 3 and 4]. Put VP’ := AP U {00, ¢} as in the setup of
[loc. cit., Section 4.1]. By Lemma 5.18, (p, ¢’ct, ¢/, v) is a perfect quadruple in the sense of [loc. cit.,
Definition 3.2], satisfying [loc. cit., Assumption 4.1]. Moreover, £’ is a cubic-level raising prime for
(p, dcT, ¢, v) in the sense of [loc. cit., Definition 3.3].

Note that the morphism (5-10) is nothing but 6: A’(E’)z — X)) in [loc. cit., (4.1.1)]; and the
map (5-4) is nothing but ¥ : Sb — Sy in [loc. cit., (4.1.2)]. Therefore, (1) follows from [loc. cit.,
Theorem 3.5(2)]; and (2) follows from [loc. cit., Theorems 3.5(3) and 4.5]. O

5E. Proof of main theorem. Recall that we have the multiplicatively induced representation Nf, and the
7/ p’|Gg]-module M as in Theorem 5.20. We have a Gg-equivariant pairing

NE(=1) x Mg — Z/p"(1)
which induces, for every prime power v, a local Tate pairing
(-, )v: H'(@y, N (1)) x H'(@,, Mg) = H*(@,, Z/p" (1)) =~ Z/p".
For s € H'(Q, N5 (—1)) and r € H'(Q, My), we will write (s, r), rather than (loc, (s), 10¢,(r)),.

Proof of Theorem 5.7. We assume that ®, . is nonzero. Regard ®, . as an element in H;(@, H3 (X, ®
Q?*, Z,(2))/ ker ¢*), which is not torsion. By [Brylinski and Labesse 1984] and the assumption that
(p,v) is v-clean (Definition 5.4), we know that N, := H3(X(A)c/c+,op ® Q%*,7Z,(2))/ ker¢* is a Gg-
stable lattice in M(E),; and there exists some 0 € D(r, ¢™) such that 82@ pe € H}(@, N,) is not
torsion. Here, H} (Q, N,) is by definition of the preimage of H# (Q, M(E),) under the natural map
H'(Q, N,) — H'(Q, M(E) »). We fix such an element 0. Let vy > O be the largest integer such that
820, € pH}(Q,N)).

We prove by contradiction, hence assume dim@p Hlf(@, M(E),) = 2. In what follows, we fix a
sufficiently large integer v as before, and will give a lower bound on v for which a contradiction emerges
at the end of proof.

By [Liu 2016, Lemma 5.9], we may find a free Z/ p*-submodule S of H! (@ NIi (—1)) of rank 2 with a
basis {s, s’} such that p*0s = 8$®;J. By the same discussion in [Liu 2019, Sectlon 4.3 (after Lemma 4.12)],
we have tower of fields Ls/L/Q contained in Q. Let [] be the (finite) set of rational primes that are
either ramified in Lg or not coprime to A or tdisc F. Put vg := max{v, | v € U} where v, is in [loc. cit.,
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Lemma 4.12(2)]. We choose a prime £o ¢ [ such that £, is (p", v)-admissible (Definition 5.10), which is
possible by [loc. cit., Lemma 4.11]. Let y € Gal(L/Q) be the image of Frob,,, under p*(—1) (the image
of p?(—1) has been identified with Gal(LL/Q)), where wy is some prime of L above £y. Then y has order
coprime to p; and (N%(—l))(y> is a free Z/p”-module of rank 1.

By [loc. cit.,, Lemma 4.16] and (the argument for) [loc. cit.,, Lemma 4.11], we may choose two
(O, y)-admissible places (in the sense of [loc. cit., Definition 4.15]) w, w’ of L such that

(1) (s =0,¥,(s)=t, ¥ (s) =1t witht,¢ € (Nfé(—l))“’> that are not divisible by p;

(2) the underlying prime £ of w and the underlying prime ¢’ of w’ are distinct (p”, v)-admissible primes,
such that Lemma 5.18 holds for s = ¢[l’ (see Remark 5.19).

Put £ := (¢, £'). Then there are elements @;’M eH'(Q,H? (X ®0Q*, A(2))/ ker ¢™") from Section 5D,
and 8707 , € H'(Q, Myp). We have

(3) loc, ®;,t,€ eH! (Q,,My) for a prime v ¢ DU {p, £, £'}, by [Liu 2016, Lemma 3.4];

unr

4) loc, @;’t’ /€ H} (Qp, My), by [Nekovar 2000, Theorem 3.1(ii)].
By [Liu 2019, Lemma 4.6] and [Liu 2016, Lemma 3.4], we have loc,(s’) € H! (Q,, Nf,(—l)) for every

unr

prime v ¢ OU{p, £, £'}. By [Liu 2016, Definition 4.6, Remark 4.7], we have loc,(s") € H} (Q,, Nf)(—l)).
Then by [Liu 2019, Lemma 4.12(2,3,5)] and (3), (4) above, we have

PR DL O (5-11)
V(e
Since Wy, (s") = 0 by (1), we also have

(s, 0 )e=0. (5-12)

Let ¢ be a generator of ['(Sy, ¢+, Z/p")[ker ™" ] which is a free Z/p”-module of rank 1. Then by
the choice of 5, w in (1), and Theorem 5.17, we have

> b0 @))€ pZ/p* — p* 7/ p".
Sp

By the choice of w’ in (1) and Theorem 5.20, we have

(s, O e €pZ/p’—pPt'Z/p". (5-13)

Here, we have used the fact that p is coprime to [(Z/tNZ)*|, |CI(F).|, (¢ — 1), and £’ + 1.
4 P

Take v € Z such that v > vy + v. Then the combination of (5-11), (5-12) and (5-13) contradicts with
the following well-known fact:
D s 00 =0

v
due to the global class field theory and the fact that p is odd, where the sum is taken over all primes v.
Theorem 5.7 is proved. U
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