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Toroidal orbifolds, destackification,
and Kummer blowings up

Dan Abramovich, Michael Temkin and Jarostaw Wtodarczyk
With an appendix by David Rydh

We show that any toroidal DM stack X with finite diagonalizable inertia possesses a maximal toroidal
coarsening X s such that the morphism X — X, is logarithmically smooth.

Further, we use torification results of Abramovich and Temkin (2017) to construct a destackification
functor, a variant of the main result of Bergh (2017), on the category of such toroidal stacks X. Namely, we
associate to X a sequence of blowings up of toroidal stacks Fyx 1Y — X such that Y., coincides with the
usual coarse moduli space Y. In particular, this provides a toroidal resolution of the algebraic space X;.

Both X and F are functorial with respect to strict inertia preserving morphisms X’ — X.

Finally, we use coarsening morphisms to introduce a class of nonrepresentable birational modifications
of toroidal stacks called Kummer blowings up.

These modifications, as well as our version of destackification, are used in our work on functorial
toroidal resolution of singularities.
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1. Introduction

We study the birational geometry of toroidal orbifolds, aiming towards applications in resolution of
singularities and semistable reduction, as initiated in our paper [Abramovich et al. 2020].

Throughout this paper a noetherian logarithmically regular logarithmic DM stack X will be referred
to as a toroidal DM stack, and if its inertia is finite and diagonalizable then we say that X is a foroidal
orbifold. Finally, X is called simple if its inertia groups I, act trivially on the sharpened stalks M of the

This research is supported by BSF grant 2014365.
MSC2010: primary 14A20; secondary 14E05, 14E15.
Keywords: algebraic stacks, toroidal geometry, logarithmic schemes, birational geometry, resolution of singularities.
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logarithmic structure. The coarse moduli space is denoted Xs. For such objects we prove the following
destackification result:

Theorem 1 (see Theorem 4.1.5). Let C be the category of simple toroidal orbifolds. Then to any object X
in C one can associate a destackifying blowing up of toroidal stacks Fx : X' — X along a nowhere zero
ideal Iy and a coarse destackifying blowing up ]-'?( : Xo = Xcs along a nowhere zero ideal Jx so that

(1) Xo = (X')¢s and X inherits from X' a logarithmic structure making it a toroidal algebraic space

such that the morphism X' — X is logarithmically smooth,

(1) the blowings up are compatible with any surjective logarithmically smooth inert morphism f:Y — X
from C:

Ixoy=1y, JX(’)chzjy, Y/=X,XX Y, Y(;:X(/)XXCS ch-
Moreover, the last two isomorphisms hold even without assuming that f is surjective.

In addition, we remove the assumption on the triviality of the inertia action in Theorem 4.1.4. In this
case, destackification is achieved by a sequence of blowings up, which is only compatible with strict
inert morphisms.

The theorem above is a variant of the main result of [Bergh 2017]. It is tuned for different purposes and
uses different methods. First, we restrict to diagonalizable inertia. In this case, Theorem 4.1.5 generalizes
the main result of [Bergh 2017] in that we allow arbitrary toroidal singularities. Our method is also
different from Bergh’s, in that we use the torific ideal of [Abramovich and Temkin 2017] which produces
the destackification result in one step. Unlike Bergh’s result we do not describe the destackification in
terms of a sequence of well-controlled operations such as blowings up and root stacks. In particular,
applications to factorization of birational maps must use [Bergh 2017] rather than our theorems.

Our study of destackification requires understanding the degree to which one may remove stack
structure while keeping logarithmic smoothness. For this purpose we introduce and study the properties
of coarsening morphisms of Deligne—-Mumford stacks in general in Section 2. A full classification of
Deligne—-Mumford coarsenings and in particular their existence, generalizing the Keel-Mori theorem,
is a question we believe is of independence interest. This task, as well as a discussion of key cases, is
provided in Appendix A written by David Rydh.

We then specialize to toroidal stacks in Section 3. We associate to a toroidal Deligne-Mumford stack X
its fotal toroidal coarsening X, whose existence follows from Appendix A, and prove:

Theorem 2 (see Theorem 3.4.7). Let C be the 2-category of toroidal orbifolds and let X be an object of C.
Then

(i) the total toroidal coarsening X — Xcs exists;

(ii) for any geometric point x — X, we have (Ix,x..)x = G, where (Ix/x,.)x is the relative stabilizer

and G C G the maximal subgroup of inertia acting toroidally;
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(iii) any logarithmically flat morphism h : Y — X in C induces a morphism hics : Yies = Xics With a

2-commutative diagram

Y =2 Y,

AT

X — Xies
ox

and the pair (hys, @) is unique in the 2-categorical sense;

(iv) assume in addition that Y is simple and h is logarithmically smooth and inert. Then the diagram
in (iii) is 2-cartesian.

We emphasize that in this paper the theorem above is only used in Theorems 4.1.4 and 4.1.5, and
only tangentially. Our original treatment of Theorem 3 below used toroidal coarsenings, but our current
formalism requires a relative coarsening over BG,.

Apart from destackification, our treatment of coarsening morphisms figures in our study of a collection
of nonrepresentable birational modifications which is essential in our work [Abramovich et al. 2020]
on resolution of singularities. This is detailed in Section 5, which is mostly independent of Sections 3
and 4. We define in Section 5.4.1 the notion of a permissible Kummer center I on a toroidal scheme,
and in Section 5.4.4 we define its blowing up [Bl;(X)] — X, which is in general a toroidal DM stack.
Furthermore, in Section 5.5 we extend these notions to the case when X itself is a toroidal DM stack.
The key properties of Kummer blowings up are as follows:

Theorem 3 (see Theorems 5.4.5 and 5.4.16, Lemmas 5.4.21, 5.4.19 and 5.4.18, and Section 5.5). Let X
be a toroidal DM stack and let I be a permissible Kummer ideal on X with the associated Kummer
blowing up f :[Bl;(X)] — X. Then
(1) (V(I)-modification) f is proper and an isomorphism over X ~\. V (I);
(i) (principalization property) f~'(I) is an invertible ideal,;
(iii) (universal property) f is the universal morphism of toroidal DM stacks h : Z — X such that h='(I)
is an invertible ideal,
(iv) (orbifold property) the relative inertia Ijg,(x))/ x is finite diagonalizable, and it acts trivially on the
monoids M .. If X is a simple toroidal orbifold then [Bl;(X)] is a simple toroidal orbifold as well,
(v) (functoriality) let f:Y — X be a logarithmically smooth morphism of toroidal orbifolds and J = I Oy.
Then [Bl;(Y)] = [Bl; (X)] x x Y, where the product is taken in the category of fs logarithmic stacks;
(vi) (coarse blowing up) assume Z — X is a strict closed logarithmic subscheme. Let Z' — Z be the
strict transform (i.e., the closure of Z ~. V(1) in [Bl;(X)]). Set J, = I"' N Ox. Then the relative
coarse moduli space Zés/X is the blowing up of Z along the saturated ideal ((J,)™)"' Oy for large
enough n and m;
(vii) (strict transform) assume further in (vi) that J = 1Oy is a permissible Kummer ideal on Z. Then
the morphism Z' — Z factors through a unique isomorphism Z' = [Bl;(Z)].
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Remark 4. We expect some of our statements to apply in greater generality: it is natural to allow X to be
an Artin stack, where the stabilizer at any x € X acts discretely on the monoid M, and where the kernel
of this action is linearly reductive. With this generality, permissible Kummer centers (Section 5.4.1) may
have index d divisible by the characteristic of the residue field at x.

2. Coarsening morphisms and inertia
2.1. Inertia stack.

2.1.1. Basic properties of inertia. Recall that the inertia stack Ix,y of a morphism f : X — Y of Artin
stacks is the second diagonal stack Ix,y = X X xx,x X, where both structure arrows X — X xy X are
the diagonal. It is a representable group object over X.

The absolute inertia stack of X is Iy = Ix,7. Recall that by [Stacks, Tag 04Z6]

IX/y:IX X[YX. (1)

In other words, Ix;y = Ker(Ix — f*(ly)), where f*(Iy) = Iy xy X.

In fact, the inertia stack is a group functor in the following sense: given a morphism f: X — Y a
natural morphism / : Ix — Iy arises, and the induced morphism 7y — f*(Iy) is a homomorphism. In
addition, the inertia functor is defined as a 2-limit and hence it respects 2-limits, including fiber products.
So, given T = X x 7 Y with projections f : T — X, g: T — Y and h: T — Z, one has that

Ixw,y =Ix X1, Iy = f*(Ix) Xp=1,) & (Iy). )
Similar facts hold for relative inertia over a fixed stack S.

2.1.2. Inert morphisms. We say that a morphism f : X — Y is inert or inertia-preserving if it respects
the inertia in the sense that Iy = f*(Iy). In particular, Ix,y = X and hence f is representable (see
[Stacks, Tag 04SZ] for the absolute case, the relative case follows easily). Inert morphisms are preserved
by base changes. Finally, inert morphisms have no nontrivial automorphisms.

2.1.3. Inert groupoids. In general, one runs into 2-categorical issues when trying to define groupoids in
stacks or their quotients. This is addressed, using the theory of higher stacks and their truncations, in
[Harper 2017, Definition 3.10, Proposition 3.11], where groupoids with representable projection arrows
are considered. We sketch the situation here in the case of inert groupoids, suppressing the specification
of a number of 2-arrows that the theory of higher stacks provides. The treatment here is thus a restatement
of [Stacks, Tag 044U] in the situation of inert groupoids. By an inert groupoid in stacks we mean a usual
datum (p;2: X1 = Xo, m, i, 8) as in [Stacks, Tag 0231], where X; are stacks and all morphisms are inert.

Let f : Xo — Y be a morphism. An isomorphism ¢ : f o py — f o p> is said to satisfy the cocycle
condition on

T2

X=X X py, X0, p1 X1 = X

if m)¢p o nip =m*¢.


http://stacks.math.columbia.edu/tag/04Z6
http://stacks.math.columbia.edu/tag/04SZ
http://stacks.math.columbia.edu/tag/044U
http://stacks.math.columbia.edu/tag/0231
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Lemma 2.1.4. Assume that p 3 : X1 = Xo is a smooth inert groupoid in Artin stacks. Then there exists a
representable smooth morphism of stacks q : Xo — X such that X1 = Xo X x X, with a 2-isomorphism
q o p1 — q o py satisfying the cocycle condition on X,, and moreover

(1) X is the quotient [Xo/X1] in the sense that any morphism f : Xo — Y with a 2-isomorphism
f op1— fo posatisfying the cocycle condition on X, are induced by q from a morphism X — Y,
which is unique up to a unique 2-isomorphism;

(2) if Z — X is a morphism from an algebraic space, inducing a smooth inert groupoid in algebraic
spaces pfz 121 = Zo, then [ Zy/Z1] — Z is an isomorphism;

(3) if Y1 = Yy is another inert groupoid with quotient Y, and a given smooth morphism Xy — Y extends
to a cartesian morphism of groupoids, then there is a smooth morphism X — Y, unique up to unique

isomorphism, with X; = Y; xy X.

Sketch of proof. Let U — X be a smooth covering by a scheme and set
R=U X Xo.p1 X1 X p2,Xo U.

Since inert morphisms are representable, R is an algebraic space and we obtain a smooth groupoid R 2 U in
algebraic spaces. So the quotient X = [U/R] is an Artin stack, and a (mostly 1-categorical) diagram chase
shows that X is as required and satisfies (1) and (2). The existence of a morphism X — Y in part (3) follows
from (1), and its properties follow from (2) by taking compatible smooth covers Zy — X and Zy — Y. [J

2.1.5. Inertia of special types. We say that a stack X has finite inertia if the morphism Iy — X is finite,
and we say that X has diagonalizable inertia if the geometric fibers of Ix — X are diagonalizable groups.
For example, both conditions are satisfied when X admits an étale inert covering of the form [Z/G] — X,
where Z is a separated scheme acted on by a finite diagonalizable group G.

2.2. Coarse spaces.

2.2.1. Coarse moduli spaces and their basic properties. Recall that by the Keel-Mori theorem, a stack X
with finite inertia possesses a coarse moduli space X; see [Keel and Mori 1997] and more generally
[Rydh 2013, pp. 630-631]. Rydh’s treatment removes all but necessary assumptions; here the morphism

m: X — X is a separated universal homeomorphism with 7,.Ox = Ox_ , but cannot be assumed proper

unless X is of finite type over a scheme.

In the sequel, we will say that X is the coarse space of X and X — X is the fotal coarsening
morphism of X. Recall that for any flat morphism of algebraic spaces Z — X, the base change morphism
Y = X xx, Z — Z is a total coarsening morphism and the projection ¥ — X is flat and inert. As a
partial converse, a morphism ¥ — X which is either inert and étale [Rydh 2013, Theorem 6.10], or inert

and flat with X tame [Rydh 2020] is the base change of /¢ : Yes = Xcs.

2.2.2. The universal property. The coarse space of X is initial among morphisms X — Z to algebraic
spaces, and we will extend this, under appropriate assumptions, to morphisms X — Z of stacks. We say that
an inertia map Iy — I is trivial if it factors through the unit Z — 1. This happens if and only if I'x,7 = I'x.
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Theorem 2.2.3. Assume that ¢ : X — Z is a morphism of Artin stacks and the inertia of X is finite.

(1) Assume either X is tame or Z is a Deligne—Mumford stack. Then the inertia map Iy : Ix — Iz is
trivial if and only if ¢ factors through the coarse space f : X — Xs: there exists W : X — Z and a
2-isomorphism a : ¢ = ¥ o f.

(ii) A factorization in (i) is unique in the sense of 2-categories: if ' and o form another such datum

then there exists a unique 2-isomorphism W = ' making the whole diagram 2-commutative.

Proof. If ¢ factors through f then /4 factors through the inertia /x_, which is trivial. Conversely, assume
that Iy is trivial.

e Assume Z is Deligne-Mumford. Choose an étale covering of Z by a scheme Zg and set Z; = Zyx z Z
and X; = X Xz Z;, as in the left part of following diagram, which is cartesian:

||

|

Z+—X

Since Iz, and I, are trivial, equations (1) and (2) imply that Iy, = Ix X x X;, and we obtain that the
étale surjective morphisms X; — X are inert.

It follows that each X; has finite inertia, in particular, coarse spaces Y; = (X;)¢s are defined as in
the right-hand side of the diagram above.

Since the arrows X; — Xy are both étale and inert, [Rydh 2013, Theorem 6.10] applies (with
W — X there replaced by X; — Xo). Thus the left-hand diagram above is cartesian and the
morphisms Y} — Y are étale. Now Y| =2 Yy is an étale groupoid with quotient X 5. Fori =0, 1 the
map X; — Z; factors through Y; uniquely, and the induced morphism of groupoids

Y1 =Yo) — (Z1 = Zo)

gives rise to the unique morphism v : X.; — Z as required.

o Assume instead X is tame. The same argument as in the Deligne—-Mumford case above holds,
replacing the reference [Rydh 2013] with [Rydh 2020]. Here we present another argument valid
when both X and Z are tame. By [Abramovich et al. 2011, Theorem 3.1] the morphism X — Z
factors through its relative coarse moduli space X5/ z, hence it suffices to replace Z by X7 and
show that X7 — X is an isomorphism. The problem is local in the étale topology of X, hence
we may assume X = [V/G] with V a scheme and G finite linearly reductive, in which case the
result follows from [Abramovich et al. 2011, Proposition 3.6].
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For (ii), consider a diagram

X— Xes —_—2Z
,lp/
with isomorphisms « : ¢ => Yo f, &’ : ¢ => ¥’ o f. Given a presentation Zy — Z, the isomorphisms «, o’
provide a commutative base change diagram

(Xes)o  vo
XO/ T

\ ~ f
(Xcs)6 Yo

Since (X¢s)o, (Xes)( — X are flat, both Xo — (Xcs)o, (Xcs)q, are coarse moduli spaces, giving a unique
(Xes)o — (XCS)6 making the diagram commutative. The same holds with Z, replaced by Z; = Zg x z Zo,
providing a unique isomorphism of ¥ with v". O
Remark 2.2.4. We note that further results are provided in [Abramovich and Temkin 2018; Romagny
et al. 2018; Rydh 2020]. Part (i) does not hold without restrictions; see the example in Section A.2.3.

2.3. General coarsening morphisms.

2.3.1. Coarsening morphisms. We say that a morphism of stacks w : X — Y is a coarsening morphism
if the inertia Iy, y is finite and for any flat morphism Z — Y with Z an algebraic space the base change
X Xy Z — Z is a total coarsening morphism as discussed in Section 2.2. It follows, see Lemma 2.3.4,
that these are separated universal homeomorphisms with 7,0y = Oy. It is easy to see that coarsening
morphisms are preserved by composition and arbitrary flat base change, not necessarily representable. In
addition, being a coarsening morphism is a flat-local property on the target. In fact, one can show that
this is the smallest class of morphisms containing total coarsening morphisms and closed under flat base

changes and descent.

Remark 2.3.2. We use a new terminology and definition, but the object is not new. We refer to
[Abramovich et al. 2011, Section 3] for the definition of relative coarse moduli space Xs/s of a morphism
of stacks X — S with finite relative inertia. It is easy to see that X — X/g is a coarsening morphism
and, conversely, for every coarsening morphism X — Y one has that ¥ = X/y.

2.3.3. Basic properties. In view of Remark 2.3.2, the following lemma is essentially covered by
[Abramovich et al. 2011, Theorem 3.2], but we provide a proof for completeness.

Lemma 2.3.4. Let X be an Artin stack with finite inertia and let f : X — Y be a coarsening morphism.
Then

(i) there exists a unique morphism g : Y — X5 such that g o f is isomorphic to the total coarsening
morphism h : X — Xs;

(1) f is a separated universal homeomorphism;

(iii) Ye5 = X, L.e., g is the total coarsening morphism.
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Proof. (i) Choose an atlas Y| = Yy of Y and set X; = Y; xy X. Then Y; = (X;).s and hence the composed
morphisms X; — X — X factor uniquely through morphisms g; : ¥; — Xs. The uniqueness implies
that g; coincides with both pullbacks of gg, hence f descends to a morphism g : ¥ — X5, which is unique.

(i) Continuing with the notation above, since the projections f; : X; — Y; are total coarsening morphisms
(Section 2.2.1), they are separated universal homeomorphisms, and hence the same is true for f by descent.

(iii)) We should prove that a morphism Y — 7T with T an algebraic space factors uniquely through X.
The composed morphism X — Y — T factors through X uniquely, hence the morphisms X; - X — T
factor through Xs. Since Y; = (X;)¢s we obtain that the morphisms ¥; — T factor through X in a
compatible way, and hence they descend to a morphism ¥ — X through which ¥ — T factors. ]

2.3.5. The universal property. Similarly to coarse spaces, with appropriate assumptions, coarsening
morphisms can be described by a universal property.

Theorem 2.3.6. Let ¢ : X — Z be a morphism of Artin stacks and let f : X — Y be a coarsening

morphism.

(i) Assume either X is tame or Z is a Deligne—Mumford stack. Then the following conditions are
equivalent:
(a) @ factors through f.
(b) Iy : Ix — ¢*(I7) factors through I : Ix — f*(Iy).
(c) The map Ix;y — ¢*1z is trivial.
(d) Ix/y € Ixyz.

(i1) A factoring of ¢ through f in (i) is unique in the 2-categorical sense (see Theorem 2.2.3(i1)). In other
words, f is a 2-categorical epimorphism.

(ii1) In particular, the 2-category of coarsening morphisms of X is equivalent to a partially ordered set

and the total coarsening morphism h is its final object.

Proof. The implications (a)=>(b)=>(c)<>(d) in (i) follow from the definitions and the base change property
of inertia, see (1) in Section 2.1.1. So assume that the map Ix,y — Iz is trivial and let us prove (a).
Consider a smooth covering of Y by a scheme Yy and set Y| = Yy xy Yp and X; = Y; xx Y. Since
Ix, = Ix xp, Iy, and Iy, is trivial, we obtain that Iy, is the pullback of Ix,y, and hence the morphisms
Ix, — Iz are trivial. By Theorem 2.2.3, the morphisms X; — Z factor through ¥; = (X;)¢s uniquely. We
obtain a morphism of groupoids (Y1 =2 Yp) — Z, which gives rise to a required morphism ¥ — Z.

In the same way, part (ii) reduces to Theorem 2.2.3(ii) using that the question is smooth-local on Y.
Part (iii) follows from part (ii). U
Remark 2.3.7. The implication (c)=>(b) in the theorem is nontrivial. Informally, it indicates that f*(Iy) =
Ix/Ix,y. (To prove that this is indeed a group scheme quotient we should have tested it with all group
schemes over X, while (b) only uses group schemes which are a pullback of some 17.)

Note that again the example in Section A.2.3 shows that part (i) does not hold without appropriate
assumptions.
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Remark 2.3.8. A full classification of Deligne-Mumford coarsenings, as well as a discussion of key
cases, is provided in Appendix A.

3. Toroidal stacks and moduli spaces

3.1. Toroidal schemes.

3.1.1. References. We adopt the terminology of [Abramovich and Temkin 2017] concerning toroidal
schemes and their morphisms with the only difference that we replace Zariski fine and saturated logarithmic
structures by the étale fine and saturated logarithmic structures. In other words, in this paper we extend
the class of toroidal schemes so that it contains “toroidal embeddings with self-intersections” in the
terminology of [Kempf et al. 1973].

Note that when Kato [1994] introduced logarithmically regular logarithmic schemes, he worked with
Zariski logarithmic schemes for simplicity. However, étale locally any fine logarithmic scheme is a Zariski
logarithmic scheme, and this allows to easily extend all results about logarithmic regularity to general fs
logarithmic schemes; see [Niziot 2006].

We will make use of Kummer logarithmically étale morphisms; see [Niziot 2008] and Section 5.3.5.

3.1.2. Toroidal schemes. Now, let us recall the main points quickly. In this paper, a toroidal scheme X
is a logarithmically regular logarithmic scheme (X, My) in the sense of [Niziot 2006]. Alternatively,
one can represent X by a pair (X, U), where the open subscheme U is the locus where the logarithmic
structure is trivial. One reconstructs the monoid by My = Ox, Ni (Of]ﬂ), where i : U < X is the open
immersion. Usually, we will denote a toroidal scheme X or (X, U).

3.1.3. Fans. Recall that the logarithmic stratum X (n) of a logarithmic scheme (X, Mx) consists of all
points x € X with rank(]l71 ») = n. Here and in the sequel we use the convention that M, denotes M
for a geometric point ¥ — X over x. In particular, M, is defined up to an automorphism, but its rank
is well defined.

If X is a toroidal scheme then, by logarithmic regularity, each stratum X (n) is regular of pure
codimension n. By the fan of a toroidal scheme X we mean the set Fan(X) of all generic points of the
logarithmic strata of X. Also, let n : X — Fan(X) denote the contraction map sending a point x to the
generic point of the connected component of the logarithmic stratum containing x.

3.1.4. Morphisms. A morphism of toroidal schemes (Y, V) — (X, U) is a morphism of the associated
logarithmic schemes. Equivalently one can describe it as a morphism f : Y — X such that f(V) C U.
Logarithmically smooth morphisms form an important class of morphisms (called toroidal morphisms in
[Abramovich and Temkin 2017]). Strict morphisms form another important class: these are the morphisms
that induce an isomorphism f* My = My.

3.2. Toroidal actions.

3.2.1. Definitions. A diagonalizable group G is a Z-flat group scheme of the form D for a finitely
generated group L; see [Abramovich and Temkin 2018, Section 3.2]. An action of G on a scheme X is
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relatively affine if there is a scheme Z and an affine G-invariant morphism X — Z; see [Abramovich and
Temkin 2018, Section 5.1]. This will be a running assumption throughout. It implies the existence of
schemes of fixed points and a good inertia stratification. We also assume that X is toroidal and G acts on it
in the sense of [Abramovich and Temkin 2017, Section 3.1]: p*Myx => m*My, where p,m : X x G =3 X
are the projection and the action morphisms, but in this paper My is an étale sheaf. In particular
G (x) € Gy. The action is simple at a point x € X if the stabilizer G, acts trivially on M, and the action
is toroidal at x if it is simple at x and G, = G(»). Note that the latter happens if and only if G, acts
trivially on the connected component of the logarithmic stratum through x; see [Abramovich and Temkin
2017, Sections 3.1.4, 3.1.7].

Remark 3.2.2. (i) By [Abramovich and Temkin 2017, Corollary 3.2.18], the set of points x € X, at
which the action is toroidal or simple, is open.

(i1) Let us temporary say that the action is quasitoroidal at x is Gy = Gy(x). This notion is not so

meaningful due to the following examples:

(1) The openness property fails for quasitoroidality. For example, let G = Z/2Z act on X =
Spec(k[x, y]) by switching the coordinates. Then the action is quasitoroidal at the origin, but it
is not quasitoroidal at other points of the line X, which is given by x = y. Note that this action is
not simple at the origin, so the example is consistent with the openness result for the toroidal locus.

(2) Let G = Z/AZ with a generator g act on X = Spec(k[x, y]) by gx =y and gy = —x. Then the
action is quasitoroidal everywhere but is not simple at the origin.

(iii) We note, as in Remark 4 of the introduction, that while the restrictions imposed here are sufficient
for the immediate applications we have in mind, we expect some of our statements to hold in greater
and more natural generality.

3.2.3. The groups G'". Let G i1, be the subgroup of G that stabilizes M,.. By the toroidal stabilizer
at x we mean the subgroup G = G (x) N G ;. of the stabilizer G,. Thus G}" is the maximal subgroup
of G, that acts toroidally at x.

Lemma 3.2.4. If a diagonalizable group G acts in a relatively affine manner on a toroidal scheme X then
any point x € X possesses a neighborhood X' such that G** N\ G = G for any point x" € X'.

Proof. Let X’ be obtained by removing from X the Zariski closures of all points & € Fan(X) which are not
generizations of x. Thus, 1(x’) is a generization of n(x) for any x’ € X’. Note that M,» = M () since M x

is locally constant along logarithmic strata. Therefore G'*" = G\, and it suffices to deal with the case

n(x'y

when x, x" € Fan(X). Then x specializes to x and our claim reduces to the check that Gz NGy =G .

Since any cospecialization ¢ : M, — M is surjective, G i1, NGy S Gj; . Conversely, we need to show
GMX/ C GMX_ N

Let F C M, be a face associated to the closed stratum Y = {x’} and cospecialization ¢, so that

M, = M,/F and ¢ is the quotient homomorphism. The normalization Y™ of Y is itself toroidal, having

characteristic monoid F at a point x™" over x (and trivial monoid at the generic point x”). Since G j; ,
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fixes x” it acts trivially on ¥Y"°" and hence on F. Since Gj; , also acts trivially on M, = M,/F it acts
trivially on M, as needed. (Il

3.2.5. The quotients. Toroidal stabilizers can also be characterized in terms of the quotient morphisms.
To obtain a nice picture we restrict to étale groups.

Lemma 3.2.6. Assume that an étale diagonalizable group G acts in a relatively affine manner on a
toroidal scheme (X, U) and x € X is a point. Then G*™" is the maximal subgroup H of the stabilizer G,
such that if g : X — X/ H is the quotient morphism then the pair (X/H, U/H) is toroidal at q(x) and
the morphism (X, U) — (X/H, U/ H) is Kummer logarithmically étale at x.

Proof. If H C G, that is H acts toroidally at x, then the quotient is as asserted by [Abramovich and
Temkin 2017, Theorem 3.3.12]. Conversely, assume that H is such that g is Kummer logarithmically
étale at x. Then M ¢(x) contains nM, for a large enough 7, and since H acts trivially on M g(x)» it acts
trivially on M. So the action of H is simple in a neighborhood of x. Let C be the connected component
of the logarithmic stratum containing x. If H ¢ G, then the induced morphism C — ¢(C) is ramified
at x because 7 is the generic point of C. But we assumed that g is logarithmically étale, and hence
C — q(C) is étale at x. This shows that H € G,,, and hence H € G, N GMX = G, as required. O

X

3.2.7. Functoriality. Assume that toroidal schemes X and Y are provided with relatively affine actions
of diagonalizable groups G and H, respectively, A : H — G is a homomorphism, and f :Y — X is a
A-equivariant morphism. We want to study when the toroidal inertia groups are functorial in the sense that
H;,Or — k‘l(G;"r) for any y € Y with x = f(y). By [Abramovich and Temkin 2017, Lemma 3.1.6(1)],
strict morphisms respect simplicity of the action. The toroidal property is more subtle: the functoriality
of toroidal inertia may fail even for surjective fix-point reflecting strict morphisms.

Example 3.2.8. Let X = Spec(k[x, y]) with the toroidal structure (x) and G = Z /27 acting by the sign
both on x and y. Then the action is not toroidal at the origin O, so Gt)((),ro = 1. Let Y be the x-axis
Spec(k[x]) with the toroidal structure (x). Then Y embeds G-equivariantly into X, but the action is toroidal
on Y and hence Gt),"’ro = G is not mapped into G‘)‘(”ro. Furthermore, if Xg = X \ {O} then Xo [[Y — X
is a surjective fix-point reflecting strict morphism which is not functorial for the toroidal inertia.

Remark 3.2.9. As this example shows, the statement in [Abramovich and Temkin 2017, Lemma 3.1.9(ii)]
needs to be corrected to read “and the converse is true if f is éfale and surjective”, and the proof should
read “Hence (ii) follows from (i), Lemma 3.1.6(i) and étale descent”. This does not affect other results of
that paper, since only the direct implication was used.

The problem in Example 3.2.8 is that O is in the fan of Y but not in the fan of X, and the stabilizer
drops at nx (0O). To avoid such examples we will restrict to logarithmically flat morphisms.

Lemma 3.2.10. Assume that f : Y — X is a logarithmically flat morphism of toroidal schemes. Then for
any point y € Y with x = f(y) one has that f(ny(y)) = nx(x). In particular, f(Fan(Y)) C Fan(X).
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Proof. It suffices to prove that each connected component C of a logarithmic stratum on Y goes to the
same logarithmic stratum X (n), and the induced morphism f : C — X (n) is flat. The claim is étale
local, hence we can assume that f splits into a composition of a strict flat morphism ¥ — X p[Q] and
the projection Xp[Q] — X, where P — Q and Xp[Q] = X Xspec(z{p)) Spec(Z[Q]). The first case is
clear, and in the second case the maps of the strata are easily seen to be flat. (Il

Lemma 3.2.11. Let f : Y — X be a A-equivariant morphism as in Section 3.2.7, and let y € Y be a point
with x = f(y) and the induced homomorphism X, : H, — G, such that f is logarithmically flat at y.
Then

(i) Ay (HS") € G

(i1) if, in addition, f is fix-point reflecting and either f is strict at y, or the action of H is simple at y,
then Ly : H" = G'.

Proof. Claim (i) follows from the following two observations: by logarithmic flatness M, C M y so the
inclusion )“y(HM,) C GMX holds, and the inclusion A, (H,(,)) € G () holds because f(n(y)) =n(x) by
Lemma 3.2.10.

In part (ii), strictness or simplicity assumption implies that H i, —> Gj;, . It remains to note that
H, ) = Gy because f(ny(y)) =nx(x) by Lemma 3.2.10 and f is fix-point reflecting. (I

3.2.12. Toroidal inertia. For the sake of completeness we note that the groups G'™" glue to a foroidal
inertia group scheme 1" over the G-scheme X. Namely, if & denotes the Zariski closure of ¢ then

= |J Gxe
eeFan(X)
is a subgroup of G x X, which is obviously contained in /y. Since G is discrete there is no ambiguity about
the scheme structure: G x X =[] gec X and Ix = 11 gec X8, where X# is the closed subscheme fixed
by g. The functoriality results of Lemma 3.2.11 extend to the toroidal inertia schemes in the obvious way.

3.3. Toroidal stacks. Using descent, the notions of toroidal schemes and morphisms can easily be
extended to Artin stacks; see [Olsson 2003, Section 5]. We will stick to the case of DM stacks, since only
they show up in our applications. A minor advantage of this restriction is that one can work with the étale
topology instead of the lisse-étale topology.

3.3.1. Logarithmic structures on stacks. By a logarithmic structure on an DM stack X we mean a sheaf
of monoids My on the étale site X¢ and a homomorphism oy : My — Oy, inducing an isomorphism
My = Ox, . Xf pra: X1 = Xo is an atlas of X then giving a logarithmic structure M is equivalent to
giving compatible logarithmic structures My, in the sense that p, 'm x, = Mx, fori =1, 2. We say that
(X, M) is fine, saturated, etc., if (Xo, Mx,) is so. We use here that these properties of My, are étale
local on Xy, and hence are independent of the choice of the atlas.
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3.3.2. Logarithmic stacks and atlases. By a logarithmic stack (X, Mx) we mean a stack provided with a
logarithmic structure. In this case, for any smooth atlas X1 = X of X we provide X( and X; with the
pullbacks of My and say that (X, Mx,) = (X0, Mx,) is an atlas of (X, Mx). Indeed, ax : Mx — Ox,
is uniquely determined by this datum.

3.3.3. Toroidal stacks. A logarithmic stack (X, Mx) is logarithmically regular or toroidal if it admits an
atlas such that (X¢, My, ) is toroidal. In this case any atlas is toroidal because logarithmic regularity is a
smooth-local property; see [Gabber and Ramero 2004, Proposition 12.5.46].

Furthermore, the triviality loci U; € X; of M, are compatible with respect to the strict morphisms pj 2,
hence Uy descends to an open substack i : U < X that we call the triviality locus of M. Furthermore,
when (X, My) is logarithmically regular, U determines the logarithmic structure by Mx = Ox,, ﬂi*((’)ﬁét)
because the same formulas reconstruct My,. In the sequel, we will often view toroidal stacks as pairs
(X, U). Again, a morphism (Y, V) — (X, U) of toroidal stacks is nothing else but a morphism f :Y — X
of stacks such that V < f~1(U).

3.4. Total toroidal coarsening. Let (X, U) be a toroidal DM stack.

3.4.1. Toroidal coarsening morphisms. Let f : X — Y be a coarsening morphism and V < Y the open
substack corresponding to the open subset f(|U]|). We say that f : X — Y is foroidal if the pair (Y, V)
is a toroidal stack, and the morphism (X, U) — (¥, V) is Kummer logarithmically étale. If it exists,
the final object of the category of toroidal coarsening morphisms of X will be called the toral toroidal
coarsening of X and denoted ¢y : X — Xics.

Our next goal is to construct Xcs. By Theorem A.1.3, ¢x is determined by the geometric points of its
inertia, so our plan is as follows. First, we will extend the notion of toroidal stabilizers from Section 3.2.3
to geometric points of stacks, and then we will use them to construct ¢x so that, indeed, (14, ). is the
toroidal stabilizer of x. In this context, Iy, is the generalization to toroidal stacks of the toroidal inertia
I¥" from Section 3.2.12.

3.4.2. Toroidal inertia. Let Z = X ;. By [Abramovich and Vistoli 2002, Lemma 2.2.3], a geometric point
x — X possesses an étale neighborhood X' = X x 7 Z' of the form [X (/G ], in particular X" — X is
inert. Pulling back the toroidal structure of X we obtain a G -equivariant toroidal structure on X, 6 and we
take G‘)‘(’g’x to be the maximal subgroup of G, acting toroidally along x. By the following lemma, we can
denote this group simply G'*". It will be called the toroidal stabilizer at x. Note also that M x , = M X}
and hence we obtain an action of G, on M,. We say that X is simple if for any point x — X the group G,
acts on M, trivially.

The toroidal stabilizer is related to the previous paragraph: by Lemma 3.2.6 a coarsening morphism
f: X — Y is toroidal if and only if Ker(Gy — G f(x)) C G¥"

tor
X(.x
the choices of neighborhood X' and quotient presentation X' = [X(/ G ].

Lemma 3.4.3. With the above notation, the group G and the action of G on My are independent of
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Proof. Given a finer étale neighborhood Z” — Z’ of the image of x in Z, set X" = X xz Z” and

X = X{ xx X". In particular, X" = [X/G.]. It suffices to check that Gt;(’,r’x = Gt)(()(’:’,x

change of a morphism of algebraic spaces, the morphism X” — X’ is inert, and it follows that the

. Being a base
strict étale G -equivariant morphism X — X, is inert. Therefore, Gt;()f .= Gt;(’f, .. by [Abramovich and
0 0"
Temkin 2017, Lemma 3.1.9(ii)] and Remark 3.2.9. Also, it is clear that My, =Mxy  as G -sets.
It remains to consider two different presentations X' = [X6 /Gx] > [X g /G,] over the same étale
Z' — Z. Write Y = X, x x» X(}, so that X" >~ [Y /(G x G,)]. One checks that Y — X{ and ¥ — X{j are

inert. Lemma 3.2.11 implies Gt;g,r = Gg‘(’f, .» giving the result. ]
0’ 0’

Functoriality properties from Lemma 3.2.11 extend to stacks straightforwardly.

Lemma 3.4.4. Let f : Y — X be a morphism of toroidal stacks, and y — Y a point with x = f(y) and

the induced homomorphism A, : G, — G.

(i) If f is étale, strict and inert, then Ay : GY" = G,

(i) If f is logarithmically flat at y, then Ay(thor) C G If, in addition, f is inert and Y is simple at y,
then &y : GV = G~

Proof. It Yo — X is a Ay-equivariant morphism of affine schemes inducing f : Y =[Yy/G,] - X =
[X0/G,] then the toroidal stabilizers equal to the toroidal stabilizers of the actions of G, and G on Y
and X, respectively. In this case, (i) follows from [Abramovich and Temkin 2017, Lemma 3.1.9(ii)] and
Remark 3.2.9, and (ii) follows from Lemma 3.2.11.

The general case is reduced to this by local work on the coarse moduli spaces: first we base change
both stacks with respect to an étale morphism Z’ — X, such that we can present X =[Xy/G]. Then
we replace Y further by an appropriate étale neighborhood of y induced from an étale neighborhood of its
image in Y, so that we can present Y =[Yy/G,]. Now the G -torsors associated to ¥ — BG, — BG,
and Y — X — BG, agree on the residual gerbe BG, C Y, so that after further inert localization of Y
they agree on Y. This provides a A-equivariant morphism Yy — X as needed. ]

3.4.5. Toroidal orbifolds. In the sequel, by a foroidal orbifold we mean a toroidal DM stack X with finite
diagonalizable inertia (but note Remarks 4 and 3.2.2(iii)). We allow the generic stabilizer to be nontrivial.

3.4.6. The construction. Now we can construct the total toroidal coarsening.

Theorem 3.4.7. Let C be the 2-category of toroidal orbifolds with the subcategory C of simple objects.
Then

(i) for any object X of C, the total toroidal coarsening X exists;

(ii) for any geometric point x — X, we have (Ix,x..)x = G, where (Ix/x,.)x is the relative stabilizer

and G the toroidal inertia group;
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(iii) any logarithmically flat morphism h : Y — X in C induces a morphism hics : Yies = Xics With a
2-commutative diagram

Yy - v,

17T

X — Xies
ox

/

tes» @) is another such pair then there

and the pair (hs, @) is unique in the 2-categorical sense: if (h

/

exists a unique 2-isomorphism hj

= hys making the whole diagram 2-commutative;

(iv) assume that h is logarithmically smooth and inert, and Y is simple. Then the diagram in (iii) is

2-cartesian.
The present proof of (i) and (ii) was suggested by David Rydh.

Proof. We first show that there is an open and closed subgroup I¥" C Ix with fibers G'".

Fix x and write G = G,. By [Abramovich and Vistoli 2002, Lemma 2.3.3] there is a neighborhood
Zy — Z := X and a G-scheme Wy with isomorphism X¢ :=[Wy/G] ~ X Xz Zy. By Lemma 3.4.3
we may replace X by Xo. Since |Xo| = |Zo|, by Lemma 3.2.4 we can shrink Zj so that Gi" = G**" N G,,
for any w € Wj. Since G C G are discrete groups this defines an open and closed subgroup I¥" C Ix.

Theorem A.1.3 provides a coarsening morphism X — X satisfying (i), (ii).

To prove (iii) we should prove that the morphism Y — X factors through Y uniquely. So, by
Theorem 2.3.6 we should prove that Iy,y, is mapped to zero in Iy, . We claim that, moreover, the map
Iy — Ix takes Iyy,, to Ix,x,,. It suffices to check this on the geometric points, since the inertia are
étale for DM stacks. But the latter is covered by Lemma 3.4.4(ii).

Let us prove (iv). Let Q denote the square diagram from (iii). Choose an étale covering f : Z — X
with Z a scheme. It suffices to show that the base change square f*(Q) := Q x x,, Z is 2-cartesian. For any
point y — Y with x = A(y) we have that G}* = G by Lemma 3.4.4(ii). Hence Iy, (y) = Ipy(x), and we
obtain that the morphism /A is inert. It follows that Z x x, , Yics 1s an algebraic space. Thus, the morphisms
f*(¢x) and f*(¢y) are coarsening morphisms whose targets are algebraic spaces, and hence both are
usual coarse spaces. We can now apply Lemma B.2.6 to conclude that the square f*(Q) is 2-cartesian. [

4. Destackification
4.1. The main result.

4.1.1. Blowings up of toroidal stacks. We say that a morphism f : (X', U") — (X, U) of toroidal
stacks is the blowing up along a closed substack Z < X if f : X’ — X is a blowing up along Z and
U' = f~Y(U)~ f~Y(Z). For example, a blowing up of toroidal schemes is a blowing up of usual schemes
f : X" — X such that the toroidal divisor X’ \ U’ of (X', U’) is the union of the preimage of the toroidal
divisor of (X, U) and the exceptional divisor of f. We use the same definition for normalized blowings up.
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4.1.2. Torification. Our destackification results are based on and can be viewed as stack-theoretic en-
hancements of torification theorems of [Abramovich and Temkin 2017]. In Appendix B we recall these
results and slightly upgrade them according to the needs of this paper.

4.1.3. Destackification theorem. Let us first formulate our main results on destackification. Their proof
will occupy the rest of Section 4. Using the torification functors 7 and T we will construct two
destackification functors: F and F. The former one has stronger functoriality properties, but only applies
to toroidal stacks with inertia acting simply.

Theorem 4.1.4. Let C be the category of toroidal orbifolds.

(i) For any object X of C there exists a sequence of birational blowings up of toroidal stacks Fx
X, — -+ — X such that (X)) s = (X)) cs.

(i) In addition, one can choose F compatible with surjective smooth strict inert morphisms f : X' — X
from C in the sense that for any such f the sequence Fyx is the pullback of Fx. Compatibility on the
level of morphisms holds even without assuming that f is surjective.

Theorem 4.1.5. Let C be the category of simple toroidal orbifolds. Then to any object X in C one can
associate a birational blowing up of toroidal stacks Fx : X1 — X along an ideal Ix and a blowing up
]-'2 : Xo = X along an ideal Jx so that

(1) XDes = (X1)es = Xos
(i) if f : X' — X is a surjective logarithmically smooth inert morphism in C, then Fx: and ]-"?(, are the
pullbacks of Fx and FY, respectively. Compatibility on the level of morphisms holds even without

assuming that f is surjective.

For the sake of completeness, we note that claim (ii) of the two theorems is also satisfied for strict
morphisms f which are strongly equivariant in the sense that f : X’ — X is the pullback of fos: X[ — Xcs.
For these versions of Theorem 4.1.4(ii) (resp. Theorem 4.1.5(ii)) the proof is the same, but the reference
to Corollary B.2.7 should be replaced by a reference to Theorem B.2.2 (resp. Theorem B.2.4). In both
cases birationality follows from Proposition B.1.4.

4.2. The proof. We will work with Theorem 4.1.5 for concreteness. The proof of Theorem 4.1.4 is similar
and involves less details; the main difference is that one should use Theorem B.2.2 as the torification input
instead of Corollary B.2.7. (Recall that smooth inert morphisms are strongly equivariant by [Abramovich
and Temkin 2018, Theorem 1.3.1(i1)(b)].)

We will construct the functor F by showing that the torification functor 7 descends to stacks. This
will be done in two stages: first we will establish its descent to global quotients [W/G] and then will use
étale descent with respect to inert morphisms.

4.2.1. Step 1: the global quotient case. We will first prove the theorem for the subcategory C’ of C
whose objects X are of the form [W/G], where G is an étale diagonalizable group acting on a toroidal

quasiaffine scheme W.
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Since the blowing up and the center of TV’V’G are G-equivariant, they descend to X. Namely, there exists
a unique blowing up of toroidal stacks Fx w : X1 — X whose pullback to W is TV/V,G : W, — W. Since
[W/G]es = W/ G, we simply set ]:?(’W = Tv’ﬁ - We claim that these Fx,w and ]:?(’W are independent of
the choice of the covering W.

Suppose that X = [W’/G’] is another such representation. Note that X = [W”/G"], where W =
W xx W and G” = G x G, and it suffices to compare the blowings up induced from W and W”. In this
case the projection W” — W is inert and A-equivariant for the projection A : G” — G, and hence Ty ¢
and T’(),,’G,, are the pullbacks of 7y,  and 7y ‘39’ ¢ by Corollary B.2.7. It follows that Fx w = Fx,w~ and
f?{,w = ]-'?(,W,,, and in the sequel we can safely write Fx and ]-'9(

The properties of F and F° are checked similarly, so we will only discuss F. The action of G on W
is toroidal, hence G, = Gfgr for any w € Wj. Since X| = [W]/G], the definition of toroidal stabilizers
in Section 3.4.2 implies that G, = G for any geometric point x — X;. Therefore, (X )wcs = (X1)cs
by Theorem 3.4.7. Assume that f : X’ — X is a logarithmically smooth inert morphism in C’. Choose
presentations X = [W/G] and X’ = [W’'/G']. Replacing the latter presentation by [W' xx W/G x G'],
we can assume that there is a homomorphism A : G’ — G such that f lifts to a A-equivariant morphism
h:W’— W. Since f is inert, the same is true for 4, and Ty, ;; and 7y ¢ are compatible by Corollary B.2.7.
By the definition of F on C’, we obtain that Fy and Fx’ are compatible too.

4.2.2. Step 2: inert étale descent. Assume now that X is an arbitrary toroidal orbifold. By [Abramovich
and Vistoli 2002, Lemma 2.2.3], the coarse moduli space Z = X5 possesses an étale covering

1
z=|[z-z
i=1

such that each Z; is affine and each X; = X xz Z; lies in C’, say X; = [W;/G;]. Note that X' = ]_U:l X;
is also in C', for example, X' = W'/G' for W' = [ [;(X; x [[;,; G;) and G’ = [[; G;. Furthermore,
X" =X"xx X'is also in C’ since X" = [W"/G"] for W' = W' xx W and G” = G’ x G'. (Although
Ix — X is finite, X does not have to be separated, so W” can be quasiaffine even though we started with
an affine W)

By Section 4.2.1 F was defined for X" and X” and Fy~ is the pullback of Fx- with respect to either of
the projections X” = X'. By étale descent, Fy is the pullback of a blowing up Fx x : X1 — X of the
toroidal stack X. In the same fashion, the blowings up F¥, and 73, of Z’ and Z" = Z' x 7 Z' descend to
a blowing up }"?(’X, : Z1 — Z, and by descent (X1)cs = Z1. Independence of the covering X' — X is
proved as usual: given another such covering one passes to their fiber product, which is also a global
quotient of a quasiaffine scheme, and then uses that F is compatible with inert morphisms.

We have now constructed Fx and fg for an arbitrary object of C. Their properties are established by
étale descent via a covering f : X’ — X as above. For example, for any geometric point x — X choose
a lifting x" — X/l. Then G, = G, because f is inert, and hence f : X/1 — X, is inert too. In addition,
G = G by Lemma 3.4.4(i), and G = G'" by Step 1. Thus, G, = G, and hence (X|)ics = (X1)cs-
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5. Kummer blowings up

5.1. Permissible centers.

5.1.1. Toroidal subschemes. Let X be a toroidal scheme. We say that a closed subscheme Y of X is
toroidal if (Y, Mx|y) is toroidal. Thus toroidal closed subschemes correspond to strict closed immersions
of toroidal schemes. We stress that this differs from the terminology of [Abramovich and Temkin 2017,
§2.3.12], in that toroidal subschemes are not defined by monomial ideals. Rather, they are locally described
as follows:

Lemma 5.1.2. Let X be a toroidal scheme and Y a closed subscheme of X. Then Y underlies a toroidal

subscheme if and only if locally at any point 'y € Y there exist elements t, ..., t, € Ox , restricting
to regular parameters on the stratum X (d) of X through y, and m < n such that Y = V(t,...,t,)
locally at y.

Elements t1, ..., t, € Ox,, as in the statement will be called regular coordinates.

Proof. The inverse implication follows from the formal-local description of toroidal schemes; see [Kato
1994, Theorem 3.2]. Assume that Y is toroidal and let us construct required coordinates at y. We can
assume that X and Y are local with closed point y. Let d be the rank of M. y= My, y.and letn and n —m
be the dimensions of the closed logarithmic strata X (d) and Y (d). Since X (d) and Y (d) are regular,
Ox(a),y possesses a regular family of parameters 7{, ..., 7, such that V(z{, ..., t,) = Y (d). Lift them to
coordinates 71, ..., f, € Ox, y. Since Y (d) = X (d) xx Y, we can also achieve that 7y, ..., 1, vanishon Y.
The scheme V (1, ..., t,) is integral (even toroidal) by the inverse implication, and dim(X) =d +n and
dim(Y) = d +n — m, hence the closed immersion ¥ <— V (¢, ..., t,) is an isomorphism. [

5.1.3. Permissible centers. Let X be a toroidal scheme. An ideal J C Oy is monomial if it is the image of
a monoid ideal in M. A closed subscheme Z = Specy (Ox /1) is called a permissible center if locally at
any point z € Z it is the intersection of a toroidal subscheme and a monomial subscheme, that is, there exists
a regular family of parameters 71, ..., #, and a monomial ideal J such that I = (¢{,...,#, J) for [l <n.

5.1.4. Playing with the toroidal structure. A standard method used in toroidal geometry is to en-
large/decrease the toroidal structure by adding/removing components to/from X \ U. For example,
see [Abramovich and Temkin 2017, §§3.4, 3.5]. We will use this method, and here is a first step.

Lemma 5.1.5. Assume that (X, U) is a local toroidal scheme, C is the closed logarithmic stratum and
1, ..., ty aregular family of parameters of Oc x. Let W be obtained from U by removing the divisors
V(t),...,V(t;), where 0 <l <n. Then (X, W) is toroidal and M(X,W),x = M(X,U),x o N.

Proof. The equality of the monoids is clear. Since the intersection of C with V (#1, ..., ;) is regular of

codimension / we obtain that (X, W) is toroidal at x and hence toroidal. O

Corollary 5.1.6. Assume that (X, U) is a toroidal scheme and Z — X is a permissible center. Then
locally on X one can enlarge the toroidal structure of X so that Z is a monomial subscheme of the new
toroidal scheme (X, W).
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Proof. Locally at x € X the center is given by (¢1, ..., t;, J), where J is monomial. Set W = U\Uf:1 V()
and use Lemma 5.1.5. ]

5.1.7. Functoriality. Permissible centers are respected by logarithmically smooth morphisms.

Lemma 5.1.8. Assume that f : Y — X is a logarithmically smooth morphism of toroidal schemes and
Z — X is a permissible center (resp. a toroidal subscheme). Then Z x x Y is a permissible center (resp.
a toroidal subscheme) in Y.

Proof. Note that f induces smooth morphisms between logarithmic strata of ¥ and X. It follows that
if #1, ..., t, are regular coordinates at x € X then their pullbacks form a part of a family of regular
coordinates at a point y € f~!'(x). In view of Lemma 5.1.2, this implies the claim about toroidal
subschemes. Since pullback of a monomial subscheme is obviously monomial, we also obtain the claim
about permissible centers. ]

5.2. Permissible blowings up.

5.2.1. The model case. We will prove that permissible centers give rise to normalized blowings up of
toroidal schemes in the sense of Section 4.1.1. This can be done very explicitly in the model case
when X = A}, = Spec(B[M, 11, ..., t,]), where B is an arbitrary regular ring, M is a toric monoid, and
I=(t,...,t,,my,...,m;) for m; € M. For the sake of illustration we consider this case separately. Let
X’ = BI;(X)"" be the normalized blowing up of X along /. We have two types of charts:

(1) The t;-chart is A'ji,_l = Spec(B[N, t1/t;, ..., t,/t;]), where N is the saturation of the submonoid of
M @ Zt; generated by M, t; and the elements m; —1;, ..., m, —t;. In particular, for any point x’ of
the chart with image x € X one has that rk(M /) < rk(M,) + 1. The monoid N is still sharp.

(2) The m j-chartis A", = Spec(B[P, t1/mj, ..., t,/m;]), where P is the saturation of the submonoid
of M&P generated by M and the elements m; —m, ..., m, —m;. In particular, the rank does not
increase on this chart: rk(M ) < rk(M,) for any point x’ sitting over x € X. The monoid P need
not be sharp.

5.2.2. The general case. One can deal with the general case similarly by reducing to formal charts, but
this is slightly technical, especially in the mixed characteristic case. A faster way is to play with the
toroidal structure, reducing to the known properties of toroidal blowings up.

Lemma 5.2.3. Assume that (X, U) is a toroidal scheme and f : X' — X is the normalized blowing up
along a permissible center Z < X, and set U' = f~Y(U ~. Z). Then (X', U') is a toroidal scheme and

hence f underlies a normalized blowing up of toroidal schemes.

Proof. The question is étale local on X, so we can assume that X = Spec(A) is a strictly henselian scheme
with closed point x. Then Z =V (¢, ..., t;,my, ..., m,), where m; are monomials and #, ..., 1, is a
family of regular parameters of the logarithmic stratum through x. Set W = U ~ Uf;l V(#). Then
(X, W) is toroidal by Lemma 5.1.5 and Z is a monomial subscheme of (X, W). Set W/ = YW 2).
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Then (X', W) is toroidal and the toroidal blowing up (X', W’) — (X, W) is logarithmically smooth; see
[Niziot 2006, Section 4] for proofs or [Abramovich and Temkin 2017, Lemma 4.3.3] for a summary.
Furthermore, X’ \ U’ is obtained from X’ \. W’ by removing the strict transforms D; of D; = V (t;), so
we should prove that this operation preserves the toroidal property. By [Abramovich and Temkin 2017,
Theorem 2.3.15] it suffices to prove that each D is a Cartier divisor.

Now choose y € {t1,...,t,my,...,m,} and let us study the situation on the y-chart X/y. We claim
that the inclusion D] x;, = V(ti/y) is an equality and hence D; is Cartier, as required. If y = #; there is
nothing to prove, so assume that y # ;. It suffices to show that V (; /y) is integral. So, for any x" € X /y
it suffices to prove that M, splits as Q & (t; — y)N. To compute M, we recall that toroidal blowings
up are base changes of toric blowings up of the charts. In particular, X’ — X is the base change of the
blowing up of Spec(Z[M, t1, ..., t;]) along the ideal generated by (¢, ..., #,my,...,m,). The latter
was computed in Section 5.2.1, and we saw that, indeed, its charts are of the form Spec(Z[Q, ¢;/y]). U

5.2.4. Functoriality. Inthe sequel, by a permissible blowing up we mean the normalized blowing up along
a permissible center. To simplify the notation, we will omit the normalization and will simply write Bl; (X)
or Blz(X). Naturally, permissible blowings up are compatible with logarithmically smooth morphisms.

Lemma 5.2.5. Let X be a toroidal scheme and let Z — X be a permissible center. Then for any
logarithmically smooth morphisms [ : Y — X of toroidal schemes, the pullback T = Z xx Y is a
permissible center and Blp (Y) = Blz(X) xx Y in the category of fs logarithmic schemes.

Proof. We know that T is permissible by Lemma 5.1.8. The problem is local on X hence we can assume
that X is local. As in the proof of Lemma 5.2.3, Z=V(ty, ..., t;, my, ..., m,) and Z becomes monomial
once we replace U = X(0) by U' = U ~ Ule V (¢;). Since the pullbacks of ¢ form a subfamily of a
regular family at any point of f~!(x), we also have that V' =Y (0) ~ Ule F~Y(V(#;)) defines a toroidal
structure and 7' is monomial on (Y, V'). We omit the easy check that the morphism (Y, V') — (X, U’) is
logarithmically smooth. The lemma now follows from the fact that toroidal blowings up are compatible
with logarithmically smooth morphisms; see [Niziot 2006, Corollary 4.8]. (I

5.3. Kummer ideals. Let X be a logarithmic scheme. In [Abramovich et al. 2020] we also use a
generalization of permissible blowings up that we are going to define now. Informally speaking, we will
blow up “ideals” of the form (¢, ..., t,, mi/d, e m}/d). Our next aim is to formalize such objects, and

the main task is to define “ideals” (m'/%).

5.3.1. Ideals 1''/4). First, let us describe the best approximation to extracting roots on the logarithmic
scheme itself. For any monomial ideal 7 and d > 1 let 111/4] denote the monomial ideal J generated by
monomials m with m¢ € I. Recall that monomial ideals are in a one-to-one correspondence with the ideals
of My. If I corresponds to J C M x then [11/4] corresponds to (1/d)J N Myx. So, extracting the root is a
purely monomial operation, and hence it is compatible with strict morphisms f : ¥ — X in the sense that

(o apta = p=ralray,
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Remark 5.3.2. It may happen that I is invertible but 71!/¢! is not. On the level of monoids this can be
constructed as follows: take M C N? given by (x, y) with x + y € 3Z and I = (3, 3) + M. Then 11/3] is
generated by (1, 2) and (2, 1) and it is not principal.

5.3.3. Kummer monomials. By a Kummer monomial on a logarithmic scheme X we mean a formal

expression m /¢

1/d

where m is a monomial on X and d > 1 is an integer which is invertible on X. In order
to view m'/¢ as an actual function we should work locally with respect to a certain log-étale topology.
For example, X [m'/4] := (X ®km] k[m1/4])% is the universal fs logarithmic scheme over X on which

m!/? is defined, and X[m'/?] — X is logarithmically étale by our assumption on d.

Remark 5.3.4. One can also consider roots with a noninvertible d but then the morphism X[m'/4] — X
is only logarithmically syntomic, i.e., logarithmically flat and Ici. We prefer to exclude such cases because
we will later consider only toroidal schemes, and logarithmic regularity is not local with respect to the
log-syntomic topology.

5.3.5. Kummer topology. In order to define operations on different monomials one has to pass to larger
covers of X, and there are two ways to do this uniformly. The first one is to consider the pro-finite
coverings and work with structure sheaves on nonnoetherian schemes; see [Talpo and Vistoli 2018].
Another possibility is to work with the structure sheaf of a topology generated by finite coverings. The
two approaches are equivalent. We adopt the second one using the Kummer logarithmically étale topology
defined by Niziot [2008]. For brevity, it will be called the Kummer topology.

Recall that a logarithmically étale morphism f : Y — X is called Kummer if for any point y € ¥ with
x = f(y) the homomorphism M® > M f,p is injective with finite cokernel, and M y 1s the saturation of
M, in M3P. Setting surjective Kummer morphisms to be coverings, we obtain a Kummer topology on the
category of fs logarithmic schemes. The site of Kummer logarithmic schemes over X will be denoted Xyg;.
The following lemma shows that when working with the Kummer topology it suffices to consider two
special types of coverings. The proof is simple, and we refer to [Niziot 2008, Corollary 2.17] for details.

Lemma 5.3.6. The topology of Xy is generated by two types of coverings: strict étale morphisms Z — Y
and morphisms of the form Y[m'/4] — Y, with d invertible in Oy.

5.3.7. The structure sheaf. The rule Y +— I'(Oy) defines a presheaf of rings Oy, on Xyg.
Lemma 5.3.8. The presheaf Ox,,, is a sheaf.

Proof. A more general claim is proved in [Niziot 2008, Proposition 2.18]. Let us outline a simple argument
that works in our case. It suffices to check the sheaf condition for the two coverings from Lemma 5.3.6.
The first case is clear since Oy, is a sheaf. In the second case we note that us actson Y’ =Y [m'/4] and
Y is the quotient, in particular, Oy (Y")*¢ = Oy (Y). The saturated fiber product Y” = (Y’ xy Y")%* equals
ua x Y’ and hence the equalizer of Oy (Y") = Oy (Y") equals Oy (Y’)"4, that is, Oy satisfies the sheaf
condition with respect to the covering Y’ — Y. ]
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5.3.9. Kummer ideals. By a Kummer ideal we mean an ideal I € Oy, which is coherent in the following
sense: there exists a Kummer covering ¥ — X and a coherent ideal Iy C Oy such that Iy, is generated
by Iy in the sense that I'(Z, I) =I'(Z, IyOyz) for any Kummer morphism Z — Y.

Example 5.3.10. (i) If /x is a monomial ideal on X let / be the associated ideal on Xy¢ and for Y
Kummer over X let Iy denote restrictions of I onto Y. Given d > 1 define J = I'/¢ by Jy = (Iy)t/d1,
Note that the projections p;, of Z = (Y xx Y)* onto Y are strict. Hence pi_l(Jy) =Jzfori=1,2,
and we obtain that the pullbacks are naturally isomorphic, that is, J is an ideal in Oy, . Moreover, J
is coherent because one can construct a covering ¥ — X such that Iy = J{Z and then J; = JyOy for
any Kummer morphism Z — Y. For example, choose an étale covering |_J; X; — X such that the ideals

I|x, = ({m;;}) are globally generated by monomials, let ¥; = (X; [ml.ll/d, ml.lz/d, D™ andtake Y =1, ¥;.

(i1)) One can produce more ideals using addition and multiplication, ideals coming from Oy, and
Kummer ideals from (i). For example, if #; € I'(Ox) and m; are global monomials then the ideal
J=({,..., t,, m}/d, R ml/d) is a well-defined coherent Kummer ideal, as well as its powers JL
Remark 5.3.11. (i) It is essential that we are working with saturated logarithmic schemes and the
Kummer topology. For example, if X = Spec(k[¢]) and Xg denotes the small flat site of X then by the
usual flat descent Oy, is a sheaf in which any coherent ideal comes from a coherent ideal of Ox. In
particular, the ideal tOy, is not a square. This happens for the following reason: although (¢) = (y?)
on the double covering ¥ = Spec(k[y]) — X with y? = ¢, the fiber product Z = ¥ xx Y equals to
Spec(k[y1, yz]/(yl2 - y%)) and the two pullbacks of (y) to Z are different: (y;) # (y2). In other words,
the root (y) = 4/(t) is not unique locally on X and hence does not give rise to an ideal.

(ii) The sheaf Oy, also has noncoherent ideals. For example, for X = Spec(k[m]) the maximal monomial
ideal "5, (m'/). In fact, it is not even quasicoherent because it is not generated by an ideal on a
Kummer étale cover of X.

5.4. Blowings up of permissible Kummer ideals. This section provides the key construction of a Kummer
blowing up of a toroidal scheme. It was pointed out by David Rydh that Kummer blowings up have an
elegant construction using stack-theoretic Proj constructions and specifically stack-theoretic blowings
up. Rydh’s forthcoming foundational paper on these notions will simplify this entire section significantly.

5.4.1. Permissible Kummer centers. We restrict our consideration to toroidal schemes. Permissible
centers extend to Kummer ideals straightforwardly: we say that a Kummer ideal / on a toroidal scheme X
is permissible if it is generated by the ideal of a toroidal subscheme and a monomial Kummer ideal.
In other words, for any geometric point x — X one has that Iz = (¢, ..., f,, m}/d, R m}/d), where
t, ..., 1, is a part of a regular sequence of parameters, and m1, ..., m, are monomials. We impose the
additional assumption that d is invertible on X, which is sufficient for our characteristic 0 applications
but not optimal; see Remark 4. By V (/) we denote the set of points of X where [ is not the unit ideal; it

is a closed subset of X.
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5.4.2. Kummer blowings up: global quotient case. Let I be a permissible Kummer center on X. The
idea of defining Bl; (X) is to blow up a sufficiently fine Kummer covering of X and then descend it to a
modification of X.

Assume first that there exists a G-Galois Kummer covering ¥ — X such that / is generated by Iy.
Note that X = Y /G. Locally, Iy is generated by monomials and elements coming from /. Since G acts
by characters on monomials and preserves elements coming from /, the ideal Iy and the blowing up
Y'=Bl;, (Y) — Y are G-equivariant. Moreover, using these generators we see that the blowing up Y is
covered by G-equivariant affine charts. In particular, the algebraic space Y’/ G is a scheme, which we
denote X/, and X/, — X is a W-modification, where W = X ~\ V(I). Here a W-modification X, — X
is a modification restricting to the identity over the dense open W C X.

Note that X/, is the coarse space [Y’/ G of the stack quotient [Y'/G]. We will show that X' depends
only on X and /, but it may happen that X with the quotient logarithmic structure is not toroidal: see
Section 5.4.6 below for a general explanation and Example 5.4.12(ii) for a concrete example. On the
other hand, [Y’/G] is too close to Y’: the morphism Y’ — [Y’/G] is étale hence [Y'/G] is toroidal, but
it is ramified over the same points of X/ over which Y is ramified, and hence depends on the choice of
the covering Y — X. Finally, we would like to ensure that the exceptional divisor E on [Y’/G] remains
Cartier, in other words, we would like the morphism [Y'/G] — BG,, corresponding to the line bundle
O(E) to descend to our modification. For these reasons the main player in the sequel will be the relative
coarsening [Y'/Glcs/ G, (see Section 2.3 and Remark 2.3.2). In particular, we will see that it is toroidal
and independent of the choice of the covering ¥ — X.

Lemma 5.4.3. With the above notation, the X -stack X' =[Y'/Glcs/Ba,, and its coarse space X, =Y'/G

depend on X and I only, but not on the Kummer covering Y — X.

Proof. 1t suffices to deal with X', since X/ is obtained from it. We should prove that if Z — X is
another Kummer covering with Galois group H and Z' = Bl;,(Z) then [Z'/H]cs/G,, = X' The family
of Kummer coverings is filtered, hence it suffices to consider the case when Z dominates Y. In this case,
Z/K =Y where K is a subgroup of H with H/K = G.

Since Iz = Iy Oz, the charts of both Bly, (¥Y') and Bl;, (Z) can be given by the same elements. It follows
that Z’' — Y factors through a finite morphism Z’ — Y”. Since Y’ is normal, this implies that Z’'/K =Y’, and
we obtain a coarsening morphism /4 : [Z'/H] — [Y’/G]. Clearly, the exceptional divisor on [Z’/H] is the
pullback of the exceptional divisor on [Y’/G]. Therefore the morphism [Z'/H] — BG,, factors through
the morphism [Y'/G] — BG,,, and this implies that [Z"/H]¢s/pG,, = [Y'/Glcs/BG,,» as required. O

5.4.4. Kummer blowings up: the general case. In the general case, the Kummer blowing up of X along /
is defined by gluing. Namely, X has an étale covering LIX; — X such that [; = [|x, is generated by
global functions and roots of global monomials, and then each X; has a G;-Kummer Galois covering
Y; — X, such that J; = Iy, generates /|y,. By Lemma 5.4.3 the stack Xl/. = [Bl,,(Y;)/Gilcs/BG,, and its
coarse space (le)CS =Bl (Y;)/ G, depend on X; and I, only.
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Over X;; := X; xx X the stacks (le ) X and (X }) Xx,; are isomorphic by Lemma 5.4.3. Indeed the
isomorphism over X is unique: the stacks are birational, normal, separated and Deligne-Mumford;
hence [Fantechi et al. 2010, Proposition A.1] applies. This implies that X glue uniquely over the
intersections X;;. Thus, we obtain morphisms X’ — X and X, — X depending only on X and /. We
say that X[, := Bl;(X) is the coarse Kummer blowing up of X along I and X' = [Bl;(X)] is the Kummer

blowing up of X along I. Here are two basic properties of this operation.

Theorem 5.4.5. Assume that (X, U) is a toroidal scheme and I is a permissible Kummer center, and let
W =X~ V{U). Then

(1) f:[Bl;(X)] —» X and Bl;(X) — X are W-modifications of X;
(i) ([Bl;(X)1, f~Y(U)) is a simple toroidal orbifold.

Proof. The claims are local on X, so we can assume that X possesses a G-Galois Kummer covering Y
such that Iy generates /|y,,. Then [Bl;, (Y)/G] is proper over X and the preimage of W is dense, and
hence the same is true for the partial coarse spaces [Bl;(X)] and Bl; (X). Furthermore, the constructions
are compatible with localizations and /|w = 1, hence both are W-modifications of X.

The fact that ([Bl;(X)], f ~1(U)) is a toroidal orbifold is shown in Lemma 5.4.7 below, using the
explicit charts described in Section 5.4.6. Its simplicity follows from the observation that G acts simply
on Y, and hence it also acts simply on Bly, (¥). O

5.4.6. Charts of Kummer blowings up. Next, let us describe explicit charts of Kummer blowings up.

Assume that X = Spec(A) and I = (¢4, ..., t,, mi/d, e m}/d) is a permissible Kummer ideal, where
(t1,...,t,) defines a toroidal subscheme and m; are global monomials. Then X’ = [B1;(X)] is of the
form [Bl;(Y)/G]lcs/BG,,» Where
1/d
B:A®Z[m1 ..... m]Z[ml/ 7"'am}/d]’

Y = Spec(B*"), G = (nq)", and J = I Oy. Note that Bl;(Y) is covered by the charts

Yy’ = Spec(Blt], ..., th, u}, ..., u. ™),
1/d 1/dy ./ ’ 1/d /s
where y € {ry,....t,,m'"", ..., m,"}, t; =1;/y and u; =m; /y. Hence X’ is covered by the charts
X, =1Y;/Gles/B6,,-

Let us describe X 3 locally at the image of a point g € Yy/. The stabilizer G is the inertia group of
LY. y/ /G1] at the image of ¢. Hence the morphism [Y; /Gl — BG,, induces a homomorphism G, — G,,,
whose kernel G,/pg,, is the relative stabilizer of [Y}’, /G] over G, at the image of ¢. In particular,
X /y = [(Yy’ /Gq/86,)/(G/ G486, )] locally at the image of g. To complete the picture it remains to
observe that the relative stabilizer G, g, is the subgroup of G, acting trivially on y, that is, G, acts
on y through its image in G,,. To show this explicitly consider two cases:
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(1) The #;-chart. Since G acts trivially on #; we have that G, 3G, = G, and hence X ; =Y ; /G is a scheme.

(2) The m;/d—chart. In this case, G,4/pg,, contains G, N [LZ[_I and G,/ G4/BG, = M, Where e is the
minimal divisor of d such that m; € ./\/lf/ ¢, where x € X is the image of g; in particular, G, acts
through p. on the image of ml.l/d in M.

Lemma 5.4.7. Keep the above notation. Then the group G, ,pe,, acts toroidally at q. In particular, the
coarsening [Y'/G] — [Bl;(X)] is toroidal and [Bl;(X)] = [Y'/Glcs/G,, = [Y'/ Glics/BG,,-

Proof. The regular coordinates on Y; are of the form tl.’ =1;/y. Since G4/ pg,, acts trivially on #; and y, it
acts trivially on #/. Thus, its action at ¢ is toroidal. O

We will not need the following remark, so its justification is left to the interested reader.

Remark 5.4.8. (i) The whole group G, can act nontrivially on ml1 /_charts, see Example 5.4.12(ii) below.
So, one may wonder what is the maximal toroidal coarsening [Y’/G]s. By the above lemma, we have a
natural morphism f : [Bl;(X)] — [Y’/GJics. It turns out that in the nonmonomial case (i.e., there exists
at least one regular parameter #;), f is an isomorphism. On the other hand, in the monomial case the
action of the whole G, is automatically toroidal, and hence [Y'/Glics =Y’/ G. In this case, f can be a
nontrivial coarsening; see Example 5.4.12(i).

(ii) In an early version of the paper, we defined [Bl;(X)] to be equal to [Y'/Glis. This definition
possesses worse functorial properties and often required to distinguish the monomial and nonmonomial
cases. It seems that the new definition is the “right” one.

5.4.9. The coarse blowing up. The coarse blowing up can be computed directly.

Lemma 5.4.10. Assume given a toroidal affine scheme X = Spec(A) with a positive number e € dZ and

a Kummer ideal I = (t1, ..., 1t,, m}/d, R m}/d). Then Bl; (X) is the normalized blowing up of X along
either of the following ideals: J. = (t{, ..., t;, mf/d, R mf/d), fe =71°N0Og.
Proof. Set Y = Spec(B) with B = A[mi/d, el m}/d]. It suffices to check that Bly, (Y) is finite over

both Bl,, (X) and Blj (X). Indeed, in this case Bl;(X) = Bly, (Y)/ny is a finite modification of both
Bl,,(X)"" and BI (X )P°r "and since the latter are normal we are done.

We will check the finiteness on charts. Let y € {rq, ..., t,, mi/d, R m}/d} and x = y°. It suffices to
show that B[/ /y] is finite over both A[J./x] and A[J:/x]. But this is clear because B[[/y] is integral
over both B[J.B/x] and B[JNeB/x]. O

5.4.11. Examples. Let us consider two basic examples of Kummer blowings up.

Example 5.4.12. (i) Let X = Spec(k[r]) with the logarithmic structure given by m, and let / = (/).
Then [Bl;(X)] = [Spec(k[x '/ ) /1q] has stabilizer u, at the origin.

(i1) Let X = Spec(k[t, m]) with the logarithmic structure given by m, and let I = (z, xl/2). By
Lemma 5.4.10, the coarse blow up X/, = Bl;(X) coincides with Bl;(X)"", where J = (t%, 7). In
fact, Bl;(X) is already normal and covered by two charts: (X/)cs = Spec(k[t, 7, t?/m]) and (X5)es =
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Spec(k[t, T/ t2]). The chart (X é)cs is regular, but the chart (X i)cs has an orbifold singularity Ox at the
origin. Moreover, the natural logarithmic structure on (X/)., is generated by 7 only, and (X ) is not
toroidal with this logarithmic structure. (Though (X/)s can be made toroidal by increasing the toroidal
structure, for example, by adding the divisor (¢).)

Now let us consider the finer stack-theoretic picture. The Kummer blowing up X’ = [BI;(X)] can be
computed using the Kummer covering ¥ = Spec(k[¢, w!/2]) with G = p,. This can be done directly, but
for the sake of comparison we will first compute X" = [Y’/G]ics, where Y = Bl ; ;1/2)(Y). Cover Y’ by
two charts: Y| = Spec(k[t/m'/?, £'/?]) and Y, = Spec(k[t, 7'/2/¢]). Then X” is covered by the charts
X! =[Y!/Glics. The action of G on Y} is toroidal, and hence X} =Y;/G = (X})¢s. The action of G at the
origin Oy of Y] is not toroidal because G acts via the nontrivial character on both parameters. Therefore
the stabilizer at the image Ox» € X” of Oy is G. In particular, the coarse moduli space X" — X/ is
an isomorphism over X/  ~\ {Ox: }, and the preimage of Oy;_is the point Ox~ with a nontrivial stack
structure. Furthermore, it is easy to see that the exceptional divisor is Cartier on X”, and hence the
morphism X’ — X" admits a section. Thus, X" = X" is the cone orbifold.

5.4.13. Enlarging the toroidal structure. As in the proof of Lemma 5.2.3, enlarging the toroidal structure
any Kummer blowing up can be made into a logarithmically smooth morphism.

Lemma 54.14. Let X = (X, U) be a toroidal scheme, I be a permissible Kummer ideal on X and
[ X' =[Bl;(X)] = X be the associated Kummer blowing up. Assume that X1 = (X, Uy) is a toroidal
scheme obtained by enlarging the toroidal structure so that I is monomial on X (see Corollary 5.1.6).
Then X| = (X', Ff~YUY)) is a toroidal orbifold and the morphism X'| — X is logarithmically smooth.

Proof. The claim is local on X, hence we can assume that there exists a G-Galois Kummer covering
Y — X such that J = IOy is a permissible ideal. Let Y' = Bl;(Y) and let Y| and Y} be the toroidal
schemes with the toroidal structure induced from U;. Since J is monomial on Y;, we have that Y{ — Y;
is a toroidal blowing up. By Section 5.4.6 the action of G on Y] is toroidal (it acts trivially on all regular
coordinates). Therefore, any subgroup H C G acts toroidally and hence the morphism Y{/H — X is
logarithmically smooth. It follows that for any coarsening 7' of [Y{/G] the morphism 7 — Y1 /G = X is
logarithmically smooth. It remains to recall that, by definition, X’ is a coarsening of [Y’'/G], namely the
relative coarse space with respect to the morphism [Y'/G] — BG,, induced by the exceptional divisor. [J

5.4.15. The universal property. Kummer blowings up can be characterized by a universal property which
extends the classical characterization of blowings up.

Theorem 5.4.16. Let X be a toroidal scheme and let I be a permissible Kummer ideal with the associated
Kummer blowing up f : [Bl;(X)] — X. Then f_l(I) is an invertible ideal and f is the universal
morphism of toroidal DM stacks h : Z — X such that h~'(I) is an invertible ideal.

Proof. All claims are local on X, so we can use the description of charts from Section 5.4.6: choosing
a G-Galois Kummer covering ¥ — X, such that Iy is an ordinary ideal, and setting Y' = Bl;, (Y)
we have that [Bl;(X)] =[Y'/G]es /BG,,- Now, the first claim is obtained by unraveling the definition of
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X'":=[BI;(X)]. Indeed, the exceptional divisor on Y’, and hence also on Y’/ G, is Cartier. Furthermore, the
induced morphism [Y’'/G] — BG,, factors through X', that is the exceptional divisor on X' is also Cartier.

Now, let us check the universal property. So, assume that /2 : Z — X is such that 2~ (1) is an invertible
ideal, and let us show that it factors through [Bl;(X)] uniquely up to a unique 2-isomorphism. Set
T =Z xx Y as an fs logarithmic scheme. From the factorization 7 — Z — X, the pullback of / to T
is an invertible Kummer ideal. From the factorization 7T — Y — X, the pullback of I to T is the usual
ideal Iy Or. Therefore Iy Or is an invertible ideal, and by the universal property of blowings up, 7 — Y
factors through a morphism T’ 14 Y’ =Bl;, (Y) in a unique way. The exceptional divisors on 7" and Y’
are compatible, hence induce compatible morphisms to BG,.

Note that 7 — Z is Kummer étale with Galois group G = u; equal to the Galois group of ¥ — X.
Taking the stack quotient by G, the exceptional divisors remain Cartier, hence morphisms [7/G] —
[Y'/G]— BG,, arise. Passing to the relative coarse moduli spaces yields a morphism [T/ Glcs/BaG,, = X
It remains to recall that the exceptional divisor on Z = T/ G is already Cartier, hence [T/ Glcs/pe,, = Z
and we obtain the required morphism Z — X'. (]

5.4.17. Strict transforms. By a classical observation, the universal property of blowings up implies that
if X’ — X is the blowing up along an ideal I then the strict transform Z’ of a closed subscheme Z < X
is the blowing up of Z along /Oz. The same reasoning applies to Kummer blowings up as well.

Lemma 5.4.18. Assume that X is a toroidal scheme, Z — X is a closed toroidal subscheme, and I C Ox
is a permissible Kummer ideal whose restriction J = 107z is a permissible Kummer ideal on Z. Let
X' — X be the Kummer blowing up along I and let Z' be the strict transform of Z (i.e., the closure of
Z~ V(1) in X'). Then the morphism Z' — Z factors through a unique isomorphism Z' = [Bl;(Z)].

Proof. On the one hand, since Z' — X factors through X', the ideal 1Oz = JOy is invertible. So,
Z' — Z factors through a morphism % : Z' — Y = [Bl;(Z)] by Theorem 5.4.16. On the other hand,
J Oy is an invertible ideal, and since JOy = IOy, we obtain by Theorem 5.4.16 that the morphism
Y — X factors through X’. Furthermore, ¥ — X factors through Z’ because Z ~ V(J) is dense in Y.
This provides a morphism Y — Z’, which is easily seen to be the inverse of & by the uniqueness of the
factorization in Theorem 5.4.16. U

Since Kummer blowings up were only defined for toroidal schemes, we cannot extend the above
theorem to the case when Z is an arbitrary closed logarithmic subscheme of X. However, in this case we
can at least describe the strict transform on the level of the coarse space.

Lemma 5.4.19. Assume that X is a toroidal scheme, Z — X is a strict closed logarithmic subscheme,
and I C Oy is a permissible Kummer ideal. Let X' — X be the Kummer blowing up along I and let
7' — Z be the strict transform. Set J, = I"* N Ox. Then Z| is the blowing up of Z along ((J,)™)""O

for large enough n and m.

Proof. The claim is local on X, hence by Lemma 5.4.14 we can enlarge the logarithmic structure on X
making / monomial. Recall that by Lemma 5.4.10, X/, — X is the normalized blowing up along J,, for
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a large enough n. Clearly J, is monomial, hence by [Abramovich and Temkin 2017, Corollary 5.3.6]
X, — X is the blowing up along ((J,,)™)"°" for a large enough m. Note that Z/, is the closed subscheme
of X, coinciding with the image of Z’. It follows that Z/ is the strict transform of Z and hence it is the
blowing along ((J,)™)"°"Oz by the usual theory of strict transforms. ]

5.4.20. Functoriality. The universal property can also be used to show that, as most other constructions
of this paper, Kummer blowings up are compatible with logarithmically smooth morphisms.

Lemma 5.4.21. Let f : Y — X be a logarithmically smooth morphisms of toroidal schemes, I a
permissible Kummer center on X, and J = f~'(I). Then [Bl;(Y)] = [B1;(X)] x x Y, where the product
is taken in the category of fs logarithmic schemes.

Proof. Recall that J is permissible by Lemma 5.2.5. Set X’ = [BI;(X)] and Y’ = [Bl;(Y)]. Since
JOy: = IOy, the morphism Y’ — X factors through X’ by Theorem 5.4.16, and we obtain a morphism
Y’ — X' xx Y. Conversely, since X' x x Y is logarithmically smooth over X', the pullback of the invertible
ideal 1Oy to X' xx Y is also invertible. The latter coincides with the pullback of J to X’ xx Y, and
using Theorem 5.4.16 again we obtain a morphism X’ x x ¥ — Y. It follows from the uniqueness of the
factorizations that these two morphisms are inverse, implying the lemma. U

5.5. Kummer blowings up of stacks. It is also desirable to work with compositions of Kummer blowings
up. For example, such sequences will be our main tool in constructing logarithmic desingularization in
[Abramovich et al. 2020]. For this one should at least extend the construction to the case when X itself is
a toroidal orbifold. We will see that, in fact, everything works fine when X is a toroidal DM stack.

5.5.1. Kummer ideals. The Kummer topology naturally extends to logarithmic stacks, giving rise to the
notion of Kummer ideals. Permissibility of Kummer ideals is an étale-local notion and hence it extends to
toroidal DM stacks too. Also, Lemma 5.2.3, which concerns usual coherent ideals, generalizes as follows:

A permissible blowing up of a toroidal DM stack (resp. simple toroidal orbifold) is again a
toroidal DM stack (resp. simple toroidal orbifold).

To combine the two notions and form the Kummer blowing up of a toroidal DM stack we must check
that 2-categorical issues do not arise.

5.5.2. Kummer blowings up. Assume now that X is a toroidal DM stack and 7 is a permissible Kummer
ideal on Xy Find a strict étale covering of X by a toroidal scheme X and set X; = Xg X x Xo. The pull-
back /; of I to X; is a permissible Kummer ideal, and we set Y; = [Bl;, (X;)]. Since [X; = X/] is an étale
groupoid whose projections and the multiplication morphism are strict, we obtain by Lemma 5.4.21 that
Y1 =2 Yy is an étale groupoid of stacks whose projections are strict and inert. By Lemma 2.1.4 the quotient
Y =[Yy/Y1] exists as a toroidal DM stack and satisfies ¥; = X; xx Y. We call Y the Kummer blowing
up of X along I and denote it [Bl; (X)] := Y. A straightforward verification using Lemma 5.4.21 shows:
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(1) The X-stack Y = [Bl;(X)] is independent of the presentation X = [Xo/X] and depends only on
X and I. The uniqueness of Y is understood up to an isomorphism of X-stacks, which is unique
up to a unique 2-isomorphism, again by [Fantechi et al. 2010, Proposition A.1]. If X is simple then
Y is simple.

(2) If f: X' — X is alogarithmically smooth morphism and I’ = f~!(I) then [Bl;/(X")]=[Bl1; (X)]x x X,
the product taken in the fs category.

5.5.3. Proof of Theorem 3. If X is a toroidal scheme, then parts (i) and (iv) were proved in Theorem 5.4.5,
parts (ii) and (iii) in Theorem 5.4.16, part (v) in Lemma 5.4.21, part (vi) in Lemma 5.4.19, and part (vii)
in Lemma 5.4.18. In general, part (v) holds by (2) above, and this allows to reduce all other claims to the
case of schemes. Namely, choose a strict étale covering f : X’ — X of X by a toroidal scheme X', set
I' = f~1(I), and consider the Kummer blowing up Y’ = [Bl;/(X’)]. Then Y’ =Y x x X’, and all assertions
for Y — X follow from the case of Y’ — X' by étale descent. For example, Iy, x xx X' = Iy x = Iy’ is
finite diagonalizable and acts trivially on the monoids My=M f(x')» hence the same is true for Iy, x.

Appendix A: Existence of coarsenings
by David Rydh

A.1. Classification of Deligne—Mumford coarsenings.

A.1.1. The category of coarsenings. Recall that a coarsening is a morphism f : X — Y of Artin stacks
such that Y is the coarse space of X relative to Y (Section 2.3.1). Equivalently, for any flat morphism
Y’ — Y from an algebraic space Y’, the base change f’: X’ — Y’ is a coarse space. Equivalently, f is a
universal homeomorphism with finite diagonal and f.Ox = Oy.

A priori, coarsenings f : X — Y of a fixed Artin stack X constitute a 2-category Cx where a 1-morphism
from f1: X — Y to fo: X = Y, is a I-morphism 4 : Y| — Y, together with a 2-morphism « : o f1 = f>;
and a 2-morphism (A1, «;) = (hy, ®p) is a 2-morphism y : h; = hj such that oy o y = «;. The
2-category Cy is, however, always equivalent to a partially ordered set (Theorem 2.3.6(iii)). The initial
object of Cy is idy. If X has finite inertia, then the final object of Cy is the usual coarse space, or fotal
coarsening, f : X — X (Section 2.2.1).

A.1.2. The main theorem. Let C)I?M C Cx denote the full 2-subcategory of DM-coarsenings, that is,
coarsenings X — Y with Y a Deligne-Mumford stack. The purpose of this appendix is to prove the
following classification result for DM-coarsenings.

Theorem A.1.3. Let X be an Artin stack with finite inertia. The 2-category C)]?M is equivalent to the
partially ordered set of open and closed subgroups N C Ix. A DM-coarsening X — Y corresponds to the
subgroup Ix,y C Ix.

A morphism ¢ : X — Z, with Z Deligne—-Mumford, factors uniquely through a given DM-coarsening
f:X — Y if and only if the induced map on inertia Ix,y — ¢* 1 is trivial (Theorem 2.3.6(i)). It follows
that the map (X — Y) — Ix/y is injective on DM-coarsenings.
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If f: X — Y is a DM-coarsening, then Iy — Y is finite and unramified so the unit section of Iy is
an open and closed immersion. Since Ix,;y =ker(Ix — f*Iy) it follows that I,y C Ix is an open and
closed subgroup.

It remains to prove that every open and closed subgroup N of Ix gives rise to a DM-coarsening. Note
that any subgroup N C Iy is necessarily normal: if T is a scheme, £ : T — X is a morphism and s is
a section of £*Ix — T, then s corresponds to a 2-morphism u : £ = £ and the induced isomorphism
£*N — £*N is conjugation by s (see the discussion in [Abramovich et al. 2008, Appendix A] right before
Theorem A.1). The final object, corresponding to N = Iy, is the total coarsening morphism X — X.
Theorem A.1.3 is thus a generalization of the Keel-Mori theorem on the existence of total coarsenings.

A.1.4. Etale neighborhoods with desired inertia. The key step in the proof of the Keel-Mori theorem
is the existence of a suitable étale neighborhood /& : W — X; see [Keel and Mori 1997, §4; Rydh 2013,
Proposition 6.11]. Specifically, 4 should be inert, that is, Iy = h*Ix, and W should admit a finite flat
presentation by a scheme (this is the basic case where we know how to construct a coarse space). We
give the following variant of this result.

Proposition A.1.5. Let X be an Artin stack with finite inertia and let N C Ix be an open and closed
subgroup. Then there is a representable, separated, étale and surjective morphism h : W — X such that

Iy = h*N as subgroups of h*Ix.

Proof. Let p: U — X be a locally quasifinite flat presentation [Rydh 2011, Theorem 7.1] (or [Stacks,
Tag 04NO] if X is not quasiseparated). Note that p is separated. The relative Hilbert functor Hilb(U/ X) —
X is thus representable, separated and locally of finite presentation. Indeed, if 7" is a scheme and 7 — X
is a morphism, then U x x T is an algebraic space, separated and locally of finite presentation over 7, and
hence sois Hilb(U/ X) x x T =Hilb(U x x T/ T), by Artin’s representability theorem [1969, Corollary 6.2].

Let W C Hilb(U/X) be the open substack parametrizing open and closed subschemes along the
fibers, namely, the restriction of the universal closed subscheme to W’ is open in Hilb(U/X) x x U. Let
h' : W — X be the structure map. It is representable, separated, étale and surjective, but allows for
all possible open and closed subgroups of inertia. Over W’ we have two open and closed subgroups
Iy C h™*Ix and h*N C h'*Ix. The locus W C W’ where these coincide is open since h*Ix — W' is
closed. It remains to verify that 4 : W — X is surjective which can be done on points.

Let x : Speck — X be a point with k algebraically closed. Then the stabilizer G, acts freely on the
finite k-scheme x*U. Let Z C x*U be an open and closed subscheme such that x*N acts set-theoretically
transitively on Z, that is, Z is the preimage of a connected component of x*U /x*N. Then the stabilizer
of [Z] in W is x*N so [Z] is a point in W lifting x. O

As in [Rydh 2013, Proposition 6.11], by construction the stacks W and W' admit finite flat presentations
by AF-schemes.

A.1.6. Proof of Theorem A.1.3. Two Deligne-Mumford coarsenings f; : X — Y; with the same subgroups
Ix,y, are uniquely isomorphic by Theorem 2.3.6. Given an open and closed subgroup N C I, take an
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étale neighborhood 4 : W — X as in Proposition A.1.5. Note that Iw,w = Iw Xy Iw = Iw xx W, hence
the étale projections W xxy W — W are inert. It follows from [Rydh 2013, Theorem 6.10] that the two
induced maps (W x x W).s — W, are also étale morphisms and give rise to an étale groupoid. The quotient
stack Y thus admits a morphism X — Y and, tautologically, W = X xy W and h*Ix,y = Iw = h*N.
The morphism X — Y is thus a Deligne-Mumford coarsening with Ix,y = N.

A.2. Examples of coarsenings.

A.2.1. Characteristic zero. In characteristic zero, every stack with finite inertia is Deligne-Mumford
and Theorem A.1.3 gives a full classification of all coarsenings.

A.2.2. Tame Deligne—Mumford stacks. If X is tame and Deligne-Mumford, then every coarsening is
Deligne-Mumford. This is an immediate consequence of Theorem 2.3.6(i). Thus we obtain a full
classification of all coarsenings in this case as well.

A.2.3. Wild Deligne—Mumford stacks. When X is Deligne—Mumford but not tame, then there may exist
coarsenings that are not Deligne—Mumford. The following example is given in [Romagny et al. 2018, §4.5].

Let U =Spec e, x]/(eZ) andlet G=7/pZ actviat.(e,x) = (€, x+te). Let X =[U/G]. Thereis a
p-torsion line bundle £ on X corresponding to the trivial line bundle Oy -e on U with action t.e = (14-t€)e.
The classifying map ¢ : X — B, induces a trivial map Iy — u, on inertia. Nevertheless, ¢ does not
factor through the coarse space f: X — X. If we let Z = X, B,y then X — Z is a coarsening that is
not Deligne-Mumford and Ix,7 = Ix.

A.2.4. Tame Artin stacks. When X is tame, then its coarsenings correspond to subgroups of inertia by
Theorem 2.3.6(i). These subgroups are closed but not necessarily open as in the following example.

Let U = SpeclFp[x] and let G = pop = up X Z/2Z act on U via t.x = tx. Let X = [U/G] and
Y =[V/n,] where V = Spec[, [x2] and the action is 7.x2 = t2x2. The inertia stack of X is trivial except
for a puy), over the origin. The natural map f : X — Y is a coarsening and the closed subgroup Ix,y C Ix
is not open: it is trivial except for a Z/2Z over the origin.

A.2.5. Initial DM-coarsening. There is always an initial DM-coarsening of X corresponding to the
intersection of all open and closed subgroups of Iy. This initial DM-coarsening need not commute with
restrictions to open substacks though. The reason is that the identity component (Ix)° need not be open.
For example, this happens if X = BG where G is a 1-parameter deformation of Z/pZ to ., in mixed
characteristic p or from Z/pZ to &, in equal characteristic p. One can, however, show that (/ ¥)? is open
and closed if X is a tame Artin stack in equal characteristic.

A.2.6. Rigidifications. When X is any Artin stack and N C Ix is a flat subgroup, then there is a
rigidification f : X — X [/ N [Abramovich et al. 2008, Appendix A]. This is a coarsening that also is
an fppf-gerbe. It has the universal property that for any Artin stack Z, a morphism ¢ : X — Z factors
through f if and only if the induced map N — ¢*I is trivial. The universal property does not require Z
to be Deligne-Mumford or X to be tame.
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Appendix B: Torification
B.1. The torification functors.

B.1.1. The general case. Let W be a toroidal scheme acted on by a diagonalizable group G in a relatively
affine way. For example, any action of G on a quasiaffine scheme is relatively affine. The main results of
[Abramovich and Temkin 2017] establish a so-called torification %W,G : W — W, which is a composition
of two G-equivariant morphisms of toroidal schemes: the barycentric subdivision and the normalized
blowing up of a so-called torifying ideal, see [op. cit., Theorem 4.6.5], such that the action on W' is
toroidal. The barycentric subdivision is naturally a composition of blowings up, see [op. cit., §4.1.2]. The
resulting sequence of normalized blowings up is compatible with strict strongly G-equivariant morphisms
f: W' — W in the sense that %W/,Gf is the contracted pullback of %w,g, ie., f *(%W,G) with all empty
blowings up removed. Furthermore, it is shown in [op. cit., Theorem 5.4.5] that the normalized blowing
up of a torifying ideal Iy can also be realized as a blowing up of another ideal I, in particular, 7~'W,G is
a projective modification even when W is not ge and it is not obvious a priori that normalizations are
finite. However, the resulting realization of W' — W as a sequence of blowings up, that we denote
7~'/W’G, is only compatible with surjective morphisms f : W' — W as above.

B.1.2. Simple actions. If the action is simple then slightly stronger results are available; see [Abramovich
and Temkin 2017, Theorems 4.6.3 and 5.4.2]. In particular, torification is achieved by a single G-
equivariant normalized blowing up Ty, : W' — W, and the quotient morphism TV?, G Wr)G—-W)G
has a natural structure of a normalized blowing up. This is compatible with strict strongly G-equivariant
morphisms f : W — W. In addition, both morphisms can be enhanced to blowings up, that we denote
TV’V’G and Tv/19, - This involves the choice of a large enough threshold n —their centers are obtained
from the centers of 7w ¢ and Tv?,’G by raising them to the n-th powers and applying the integral closure
operation. As a result, T‘,/V’G and TV/VO, ¢ are only compatible with surjective morphisms.

B.1.3. Birationality. In [Abramovich and Temkin 2017, Theorems 4.6.3, 4.6.5, 5.4.2, and 5.4.5] it
was shown that the torification functors used here are birational modifications only under a technical
assumption that the action is full. For the purpose of this article we note the following:

Proposition B.1.4. Assume G is finite. Then the torification morphisms are birational.

Proof. For a point w € W write n(w) for the generic point specializing to w — it is unique since W is
normal. The subset U; C W where the logarithmic structure is trivial and the subset Uy C W where
G, = Gy ) are both open, invariant, and dense, hence the same is true for U = Uy N U,. Since G is
finite the strict embedding U < W is strongly equivariant, hence the torific ideal restricts to Oy and the

torification morphisms are trivial on U. ]

We note that, when G is infinite, some assumption on the action is necessary: the standard action of
G,, on Al has o, = {1}, which cannot be balanced since Z_; = 0.
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B.2. Stronger functoriality. Using the methods of [Abramovich and Temkin 2018] one can easily show
that the functors 7 and 7 possess stronger functoriality properties than asserted there. Let us discuss
this strengthening.

B.2.1. A-equivariance. We start with an aspect that holds for both algorithms. Recall that a G-morphism
[+ W' — W is strongly equivariant if f is the base change of the GIT quotient f / G. Some criteria of
strong equivariance and related properties can be found in [Abramovich and Temkin 2018, Theorem 1.3.1
and Lemma 5.6.2; Rydh 2020]. More generally, assume that G" acts on W/, G acts on W, and f is
A-equivariant for a homomorphism A : G’ — G. We say that f is strongly A-equivariant if it is fix-point
reflecting and the G-morphism

W x%G=W xG)/G — W

is strongly equivariant. Recall that the fixed-point reflecting condition means that f induces an isomor-
phism G, = G () for any x € W', and hence G’ acts freely on W' x G.

Theorem B.2.2. Assume that toroidal schemes W and W' are provided with relatively affine actions of
diagonalizable groups G and G', respectively. Further assume that ) : G' — G is a homomorphism, and
f: W' — W is a strict and strongly \-equivariant morphism. Then 7~‘W/,G/ is the contracted pullback of
7~—W,G- In addition, T, 1 g IS the contracted pullback of %W,G if f is surjective.

Proof. This happens because T is defined in terms of local combinatorial data (M, Gy, 0y), see
[Abramovich and Temkin 2017, Section 3.6.8], and the latter only depends on G, rather than on the
entire G. .

B.2.3. Weakening the strictness assumption. A finer observation is that the strictness assumption is not
so essential for the functoriality of 7. For comparison, note that T is constructed using barycentric subdi-
visions which depend on the monoids M, hence it is not functorial with respect to nonstrict morphisms.

Theorem B.2.4. Assume that toroidal schemes W and W' are provided with relatively affine and simple
actions of diagonalizable groups G and G’, respectively, ). : G' — G is a homomorphism, and f - W' — W
is a strongly A-equivariant morphism. Further assume that for any point x' € W' with x = f(x') the
restriction fs: S — S of f to the logarithmic strata through x' and x is strongly A-equivariant. Then the
normalized blowings up Ty ¢ and TO,’G/ are the pullbacks of Tw ¢ and TV?/,G’ respectively. If f is also
surjective, then the same is true for the blowings up Ty, s TJ&G, and Ty, s TV/‘?’G.

Proof. Note that a reference to [Abramovich and Temkin 2017, Lemma 4.2.13(ii)] is the only place in
the proof of [op. cit., Theorem 4.6.3], where one uses the assumption that f is strict. The lemma asserts
that f respects the reduced signatures: f*(o,) = o,. Recall that the latter are defined as the multisets of
nontrivial characters through which G, acts on the cotangent spaces to S and S’ at x and x/, respectively.
But we assume that fg is strongly G,-equivariant, hence f*(o,) = o, by [op. cit., Lemma 3.6.4], and
we avoid the use of [op. cit., Lemma 4.2.13(ii)]. [l

B.2.5. Logarithmically smooth morphisms. The assumption that f : W' — W is strong can be omitted
when f is logarithmically smooth. For this we need the following instance of Luna’s fundamental lemma.
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Lemma B.2.6. Assume that Y and X are toroidal schemes provided with relatively affine actions of étale
diagonalizable groups, the action on Y is simple, A : H — G is a homomorphism, and f : Y — X isa
logarithmically smooth \-equivariant inert morphism. Then f is strongly \-equivariant.

Proof. Replacing Y by Y x# G we can assume that G = H. In addition, it suffices to work locally on
Y / G and X // G, hence we can assume that these schemes are local and f is surjective. Since f is
logarithmically smooth and inert, simplicity of the action on Y implies that the action on X is simple too.

In addition, let G denote the stabilizer of the closed orbits of ¥ and X. Then r/ G is strongly
G/ G- equlvanant because G/ G acts freelyon Y // G and X / G. Therefore, it suffices to prove | that f is
strongly G- -equivariant, and replacing G by G and localizing again, we can assume that G = G.

Note that if f is strict, then it is a smooth morphism and the claim was proved in Luna’s lemma
[Abramovich and Temkin 2018, Theorem 1.3.1(2b)]. We will deduce the lemma from this particular
case. In particular, using this claim we can replace X and Y by their equivariant étale covers, hence by
[Abramovich and Temkin 2017, Proposition 3.2.10(i); Illusie and Temkin 2014, Proposition 1.2] we can
assume that there exist an equivariant chart P — Q, X — Ap, Y — A of f, where Ay, = Spec(Z[M])
and the actions are trivial on P and Q. Then the morphism g : Yp[Q] =Y x4, Ag — Y is strong as both
g and g / G are pullbacks of Ap — Ap. In addition, Y — Yp[Q] is strict and hence smooth. It remains to
observe that Y — Yp[ Q] is also fix-points preserving, and hence it is strongly smooth by the above case. [

As an application we obtain:

Corollary B.2.7. Assume that toroidal schemes W and W’ are provided with relatively affine and simple
actions of étale diagonalizable groups G and G', respectively, A : G' — G is a homomorphism, and
f: W' — W is alogarithmically smooth, fix-point reflecting, A-equivariant morphism. Then the normalized
blowings up Ty ¢ and TO’,G’ are the pullbacks of Tw.¢ and Tv?/,G’ respectively. If f is also surjective,
then the same is true for the blowings up Ty, ¢, TV’S,, ¢ and Ty 6, T‘%,Q, G

Proof. Since f is strongly equivariant by Lemma B.2.6, the claim will follow from Theorem B.2.4 once we
prove that the induced morphisms fs: S — S between the logarithmic strata are strongly equivariant. Since
[s is logarithmically smooth, fs is smooth. Clearly, fs is fix-point reflecting. Since the groups are finite,
all orbits are special and hence fs is inert [Abramovich and Temkin 2018, §5.1.8 and §5.5.3]. Thus, fs
is strongly equivariant (even strongly smooth) by [Abramovich and Temkin 2018, Theorem 1.1.3(ii)]. U
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Auslander correspondence for triangulated categories

Norihiro Hanihara

We give analogues of the Auslander correspondence for two classes of triangulated categories satisfying
certain finiteness conditions. The first class is triangulated categories with additive generators and we
consider their endomorphism algebras as the Auslander algebras. For the second one, we introduce the
notion of [1]-additive generators and consider their graded endomorphism algebras as the Auslander
algebras. We give a homological characterization of the Auslander algebras for each class. Along the
way, we also show that the algebraic triangle structures on the homotopy categories are unique up to
equivalence.

1. Introduction

The main concern in representation theory of algebras is to understand the module categories. Among
such categories, those with finitely many indecomposable objects, or equivalently the representation-finite
algebras, are most fundamental. Let us recall the following famous theorem due to Auslander [1971]:

Theorem 1.1 (Auslander correspondence). There exists a bijection between the set of Morita equivalence
classes of finite dimensional algebras A of finite representation type and the set of Morita equivalence

classes of finite dimensional algebras I such that gl.dimI" <2 and dom. dim " > 2.

This theorem states that a categorical property (=representation-finiteness) of mod A can be charac-
terized by homological invariants (=gl. dim and dom. dim) of I", called the Auslander algebra of mod A.
There are many results of this type giving the relationships between categorical properties of those
appearing naturally in representation theory, and homological properties of their “Auslander algebras”,
for example, [Ilyama 2005; 2007; Enomoto 2018].

The aim of this paper is to find an analogue of these results for triangulated categories [Neeman 2001].
Let k be an arbitrary field and 7 be a k-linear, Hom-finite, idempotent-complete triangulated category.
We consider two kinds of finiteness conditions on triangulated categories.

The first one is a direct analogue of representation-finiteness: 7 is finite, that is, 7 has finitely many
indecomposable objects up to isomorphism. In this case, 7 has an additive generator M. We call End(M)
the Auslander algebra of T, which is uniquely determined by 7 up to Morita equivalence. The first main
result of this paper is the following homological characterization of the Auslander algebras of triangulated
categories. We say that a finite dimensional algebra A is twisted n-periodic if it is self-injective and there
mported by JSPS KAKENHI Grant Number JP19J21165.
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exists an automorphism « of A such that Q" ~ (—),, as functors on mod A. We refer to Corollary 2.2 for

equivalent characterizations.

Theorem 1.2. Let k be a perfect field. The following are equivalent for a basic finite dimensional
k-algebra A:

(1) A is the Auslander algebra of a k-linear, Hom-finite, idempotent-complete triangulated category
which is finite.

(2) A is twisted 3-periodic.

This result shows a close connection between periodic algebras [Erdmann and Skowronski 2008] and
triangulated categories. Our proof depends on Amiot’s result (Proposition 3.2). This is a complement of
Heller’s classical observation [1968, 16.4] which gives a parametrization of pretriangle structures on a
pretriangulated category 7~ in terms of isomorphisms 3 ~ [—1] on mod 7. Later practice of this property
of the third syzygy in representation theory can be seen in [Auslander and Reiten 1996; Yoshino 2005;
Amiot 2007; Iyama and Oppermann 2013].

Moreover, with some additional assumptions on 7, we give a bijection between finite triangulated
categories and certain algebras, which is a more precise form of the above theorem; see Theorem 3.4.
Furthermore, after submitting this article, a similar result by Muro [2020] appeared. His main result
enables us to state Theorem 3.4 with less additional assumptions; see Remark 3.5.

The second finiteness condition is the following:

(S1) There is an object M € T such that 7 = add{M|[n] | n € Z}.
(82) Forany X, Y € T, Homy(X, Y[n]) = 0 holds for almost all n.

If these conditions are satisfied, we say 7T is [1]-finite and call M as in (S1) a [1]-additive generator.
For example, the bounded derived categories of representation-finite hereditary algebras are [1]-finite,
and additive generators for module categories are [1]-additive generators for the derived categories. There
are various studies on [1]-finite triangulated categories, for example [Rouquier 2008; Xiao and Zhu 2005;
Amiot 2007]. Note that [1]-finite triangulated categories have infinitely many indecomposable objects
unless 7 = 0.

For a [1]-finite triangulated category 7 with a [1]-additive generator M, we call

C = @ Homy(M, M(n))
neZ

the [1]-Auslander algebra of T, which is naturally a Z-graded algebra and is uniquely determined by 7
up to graded Morita equivalence. Thanks to our condition (S2), C is finite dimensional. To study it, we
prepare some results on “graded projectivization” in Section 4 (see Proposition 4.2). Such constructions
of graded algebras appear naturally in various contexts [Artin and Zhang 1994; Asashiba 2017].

Our second main result is the Auslander correspondence for [1]-finite triangulated categories. To state
it, we have to restrict to a nice class of triangulated categories called algebraic. Recall that they are
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the stable categories of Frobenius categories [Happel 1988, 1.2.6]. Algebraic triangulated categories
are enhanced by differential graded categories [Keller 2006], and play a central role in tilting theory
[Angeleri Hiigel et al. 2007].

Now we can formulate the following second main result of this paper in terms of algebraic triangulated
categories and graded algebras. We say that a finite dimensional Z-graded algebra A is (a)-twisted
n-periodic if it is self-injective and there exists a graded automorphism « of A such that P, >~ P for all
P € projZ A and " =~ (—)4(a) as functors on mod? A. We refer to Corollary 2.4 for equivalent conditions.

Theorem 1.3. Let k be an algebraically closed field. There exists a bijection between the following:

(1) The set of triangle equivalence classes of k-linear, Hom-finite, idempotent-complete, algebraic

triangulated categories T which are [1]-finite.

(2) The graded Morita equivalence classes (see Definition 4.3) of finite dimensional graded k-algebra C
which are (—1)-twisted 3-periodic.

(3) A disjoint union of Dynkin diagrams of type A, D, and E.
The correspondences are given as follows:
o From (1) to (2): Taking the [1]-Auslander algebra of T.
o From (1) to (3): Taking the tree type of the AR-quiver of T.
e From (2) to (1): C — proj’C.
e From (3) to (1): Q +— k(ZQ), where k(Z Q) is the mesh category associated with 7 Q.
Moreover, we have the following explicit descriptions of (1) and (2) in the above theorem.

Theorem 1.4 (Theorem 5.3, Proposition 6.1). The classes (1) and (2) in Theorem 1.3 are the same as (1)
and (2'), respectively:

(1) The set of triangle equivalence classes of the bounded derived categories D*(mod k Q) of the path
algebra k Q for a disjoint union Q of Dynkin quivers of type A, D, and E.

(2") The orbit algebras k(Z Q)/[1] for a disjoint union Q of Dynkin quivers of type A, D, and E.

Compared to Theorem 1.2, Theorem 1.3 is more strict in the point that the Auslander algebras C
correspond bijectively to the triangulated categories. This can be done by the classification of [1]-finite
triangulated categories as is stated in (1”). These results suggest that [1]-finite triangulated categories are
easier than finite ones in controlling their triangle structures as well as their additive structures.

Our classification is deduced from the following uniqueness of the triangle structures on the homotopy
categories, which is somehow surprising; compare [Keller 2018].

Theorem 1.5 (Theorem 5.1). Let A be a ring such that K®(proj A) is a Krull-Schmidt category and A
does not have a semisimple ring summand, and let C be an algebraic triangulated category. If C and

KP(proj A) are equivalent as additive categories, then they are equivalent as triangulated categories.
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For example, K®(proj A) is Krull-Schmidt if A is a module-finite algebra over a complete Noetherian
local ring. We actually see that the possible triangle structure on a given Krull-Schmidt additive category
is unique in the sense that the suspensions and the mapping cones are uniquely determined as objects, see
Proposition 5.5 for details.

As an application of our classification Theorem 1.4 of [1]-finite triangulated categories, we recover the
main result of [Chen et al. 2008] stating that any finite dimensional algebra over an algebraically closed
field with derived dimension 0 is piecewise hereditary of Dynkin type.

We also apply Theorem 1.4 to Cohen—Macaulay representation theory. A rich source of [1]-finite
triangulated categories is given by CM-finite Iwanaga—Gorenstein algebras [Curtis and Reiner 1981; 1987;
Leuschke and Wiegand 2012; Simson 1992; Yoshino 1990], for example, simple singularities and trivial
extension algebras of representation-finite hereditary algebras. We consequently obtain the following
result, which states that CMZ A is triangle equivalent to the derived category of a Dynkin quiver under
some mild assumptions.

Corollary 1.6 (Theorem 7.3). Let k be an algebraically closed field and A = @nzo A, be a positively
graded CM-finite Iwanaga—Gorenstein algebra such that each A, is finite dimensional over k and A
has finite global dimension. Then, the stable category CMZ A is [1]-finite and therefore, it is triangle
equivalent to D®(mod k Q) for a disjoint union Q of some Dynkin quivers of type A, D, and E.

This partially recovers [Kajiura et al. 2007; Buchweitz et al. 2020, 2.2] in a quite different way. Note
that our result is more general, but less explicit in the sense that Corollary 1.6 does not give the type of Q
from given A.

As this application suggests, our classification shows that the “easiest” triangulated categories are very
likely to be the derived category of Dynkin quivers, and provides a completely different method (from a
direct construction of tilting objects) of giving a triangle equivalence for such categories.

Notations and conventions. We denote by k a field. For a category C, we denote by Hom¢(—, —) or
simply C(—, —) the Hom-spaces between the objects and by J¢(—, — ) the Jacobson radical of C. A
C-module is a contravariant functor from C to the category of abelian groups. A C-module M is finitely
presented if there is an exact sequence

C(—,X)—»C(—,Y)>M—0

for some X, Y € C. We denote by mod C the category of finitely presented C-modules. If C is graded by
a group G, the category of finitely presented graded functor is denoted by mod®C, and its projectives
by proj®C. The morphism space in mod®C is denoted by Hom¢(—, —)o or C(—, — )o. The category
mod®C is endowed with the grade shift functor (g) for each g € G, defined by M(g) = M as an ungraded
module and (M (g)(X)), = (M X)g, for each X € C.

Similarly, for a k-algebra A, the Jacobson radical of A is denoted by J4. A module over A means a
finitely generated right module. We denote by mod A (resp. proj A) the category of (projective) A-modules.
If A is graded, the category of graded (projective) A-modules is denoted by mod® A (resp. proj® A).
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2. Periodicity of syzygies

Let A be a k-algebra. We denote by A¢ the enveloping algebra A°® ®; A and by Q24 (resp. Q4¢) the
syzygy, that is, the kernel of the projective cover in mod A (resp. mod A€). In this section, we generalize
for our purpose the result of Green, Snashall and Solberg [Green et al. 2003] which relates the periodicity
of syzygy of simple A-modules and that of A considered as a bimodule over itself. The following theorem
and its proof is a graded and twisted version of [loc. cit., 1.4].

Theorem 2.1. Let G be an abelian group and A be a finite dimensional, ring-indecomposable, non-
semisimple G-graded k-algebra. Assume that Jo = J4, ® (@i#o A;) and that A/ Jy is separable over k.

Then, the following are equivalent for a € G and n > 0:
(1) Q1 (A/Ja) > A/Ja(a) in mod® A.

(2) A is self-injective and there exists a graded algebra automorphism a of A such that Q" >~ (—)4(a)

as functors on mod® A.

(3) There exists a graded algebra automorphism o of A such that Q. (A) >~ 1Ay (a) in mod® A€.

Proof. By the original case, we have that A is self-injective under the assumption (3). Then the implication
(3) = (2) follows. Also, (2) = (1) is clear.

It remains to prove (1) implies (3). Note that by our assumption on J4, it is graded and any simple
object in mod® A is simple in mod A. Assume (1) holds and set B = Q4. (A). This is a projective
A-module on each side.

Step I: S ®a B is simple for all graded simple (right) A-modules S.

Let S be a graded simple A-module. Then, applying S ® 4 — to the minimal projective resolution
P: - —> P N P,_ = --- — Py of Ain mod®A¢ yields the minimal projective resolution of
S in mod®A. Indeed, since A/Jy4 is separable over k, we have Jqe = J4 ®r A + A ®¢ J4. Then,
Imd; C Pi_1Jae = J4Pi_1 + Pi_1J4 by the minimality of P and therefore, Im(S ®d;) C S®4 Pi_1Ja
by S ®4 JaPi—1 = 0. This shows S ® 4 P is minimal. Therefore we have S ® 4 B =~ Q' (5), which is
simple by assumption (1).

It follows by induction that the exact functor — ® 4 B preserves length.

Step 2: B ~ A(a) in mod% A.

Consider the exact sequence 0 — J4 — A — A/J4 — 0 in mod®A. Applying — ®, B yields
B — A/Jas(a) — 0. This shows that the module B contains A/J4(a) in its top. But since B is a
projective (right) A-module having the same length as A by the remark following Step 1, we see that
B~ A(a) in mod® A.

Step 3. There exists a graded algebra automorphism « of A such that ', (A) >~ Ay (a).

By Step 2, there exists a graded algebra endomorphism « of A such that B >~ 4 A;(a) in mod® A°.
Indeed, fix an isomorphism ¢: A(a) — B in modC A, put x = ¢(1), and set a(u) = ¢~ (ux) for u € A.
Then, « is of degree 0, since x and ¢ are, and it is easily checked that « is an algebra endomorphism
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and that ¢: 4 A1(a) — B is an isomorphism in mod® A°. Now we show that « is an isomorphism. Let
I be the kernel of «. Since B ~ 4 A is a projective left A-module, the inclusion / C A in mod® A stays
injective by applying — ®4 4 A. But since the map I ® 4 4 A — 4 A is zero, we have I ®4 A =0, and we
conclude that 7 = 0 by the remark following Step 1.

This finishes the proof of (1) = (3). O

We need the following two particular cases. The first one, which we will use in Section 3 is the following
result for G = {1}, where the special case “Q"(S) ~ S for all simples” is [Green et al. 2003, 1.4].

Corollary 2.2. Let A be a ring-indecomposable, nonsemisimple finite dimensional k-algebra such that
A/ J 4 is separable over k. Then, the following are equivalent for n > 0:

(1) QY(A/Ja) = A/ Js.

(2) A is self-injective and there exists an automorphism o of A such that Q" >~ (=), as functors on
mod A.

(3) There exists an automorphism o of A such that Q".(A) >~ 1A, in mod A®.
We name such algebras as follows:

Definition 2.3. A finite dimensional algebra is twisted n-periodic if it is a direct product of simple
algebras or algebras satisfying the equivalent conditions in Corollary 2.2.

The second one is the following for G = Z and the permutation of simples is the identity, which will
be used in Section 6.

Corollary 2.4. Let A be a finite dimensional, ring-indecomposable, nonsemisimple 7-graded k-algebra
such that A/ J 4 is separable over k. Then, the following are equivalent for a € Z and n > 0:

(1) Q1(S) = S(a)in modZAfor any simple objects in modZ A.
(2) A is self-injective and there exists a graded algebra automorphism « of A such that Q" >~ (—)q(a)
as functors on mod?A and P, ~ P in mod? A for all P € proj” A.
(3) There exists a graded algebra automorphism « of A such that Q".(A) ~ 1 Aq(a) in mod? A® and
P, ~ P in mod? A for all P € proj” A.
Similarly, we name these algebras as follows:

Definition 2.5. A finite dimensional graded algebra is (a)-twisted n-periodic if it is a direct product of
simple algebras or algebras satisfying the equivalent conditions in Corollary 2.4.

3. Auslander correspondence

We now prove the first main result Theorem 1.2 of this paper, which gives a homological characterization
of the Auslander algebras of finite triangulated categories.

First, we give the properties of the endomorphism algebra of a basic additive generator for a finite
triangulated category, proving Theorem 1.2(1) = (2).
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Proposition 3.1. Let T be a k-linear, Hom-finite idempotent-complete triangulated category. Assume T
has an additive generator M. Take M to be basic and set C = Endy(M). Let a be the automorphism of C
induced by [11; precisely, fix an isomorphism a: M — M[1] and define a by a(f) =a~' o f[1]oa for
f € End(M). Then, C is a finite dimensional algebra which is twisted 3-periodic.

Proof. Since mod 7 >~ mod C and mod 7 is a Frobeniuis category (see [Krause 2007, 4.2]), C is self-
injective. Also, since the triangles in 7 yield projective resolutions of C-modules, the third syzygy is
induced by the automorphism «, that is, we have 3 ~ (=), on mod C. Then C is twisted 3-periodic by
Corollary 2.2. O

For the converse implication, we need the following result due to Amiot, which allows one to introduce
a triangle structure on the category of projectives in a Frobenius category.

Proposition 3.2 [Amiot 2007, 8.1]. Let P be an idempotent complete k-linear category such that the
functor category mod P is naturally a Frobenius category. Let S be an autoequivalence of P and extend

this to mod P — mod P. Assume there exists an exact sequence of exact functors from mod P to mod P
O—>1—>XO—>X1—>X2—>S—>(),

where X' take values in P = proj P. Then, P has a structure of a triangulated category with suspension S.
The triangles are ones isomorphic to X°M — X'M — X>M — SX°M for M € mod P.

Combining this with Corollary 2.2, we can prove Theorem 1.2(2) = (1). Let us summarize the proof
below.

Proof of Theorem 1.2. (1) = (2) is Proposition 3.1.

(2) = (1) Since A is self-injective, Q> permutes the simples, so by Corollary 2.2, there exists an exact
sequence
0>A—>P > Pl P25 A, >0

of (A, A)-bimodules, with P’s projective and « is an automorphism of A. Then, we can apply
Proposition 3.2 for P = proj A, S = — ®4 Ay, and X =—®4 P O

Applying a recent result of Keller [2018], we can formulate Theorem 1.2 in terms of bijection between
triangulated categories and algebras under some assumptions on triangulated categories. Let us recall the
relevant definitions. Let 7 be a k-linear triangulated category with Auslander—Reiten triangles, and I" its
AR-quiver. Then I'" together with the AR-translation T forms a translation quiver. For each pair of vertices
x,y €I, we denote by {x — y} the set of arrows from x to y. Fix a bijection o : {y — x} = {rx — y},
and define m, =)
generated by {m, | x e I'}.

y 0 (a)a which is a morphism in the path category kI". Let / be the ideal of kT’

ac{y—>x

Definition 3.3 [Riedtmann 1980; Happel 1988]. In the above setting, we call the category kI" /I the mesh
category of the translation quiver I'. We say that 7 is standard if it is k-linearly equivalent its mesh
category of the AR-quiver.
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We have the following version of Theorem 1.2 under the standardness of 7.
Theorem 3.4. Let k be an algebraically closed field. Then, there exists a bijection between the following:

(1) The set of triangle equivalence classes of k-linear, Hom-finite, idempotent-complete triangulated

categories which are finite, algebraic, and standard.

(2) The set of isomorphism classes of finite dimensional mesh algebras over k.

The correspondence from (1) to (2) is given by taking the basic Auslander algebra, and from (2) to (1) by
taking the category of projective modules.

Proof. We first check that each map is well-defined.

Let 7 be a triangulated category as in (1). Then, the standardness of 7 implies that its basic Auslander
algebra is a mesh algebra.

Suppose next that A is a finite dimensional mesh algebra. We want to show that proj A has the unique
structure of an algebraic triangulated category up to equivalence. Since the third syzygy of simple
A-modules are simple, 7 = proj A has a structure of a triangulated category by Theorem 1.2. Also, this is
standard since A is a mesh algebra. We claim that proj A admits a triangle structure which is algebraic.
Since T is a finite, standard triangulated category, there exists a Dynkin quiver Q, a k-linear automorphism
F of DP’(mod kQ), and a k-linear equivalence D®(mod kQ)/F ~ proj A [Riedtmann 1980]. As in the
proof of [Keller 2018], F is isomorphic to — ®,fQ X for some (kQ, kQ)-bimodule complex X. Then
by [Keller 2005], D*(mod kQ)/F admits an algebraic triangle structure as a triangulated orbit category,
hence so does proj A. This finishes the proof of the claim. Now, this algebraic triangle structure is unique
up to equivalence by the main result of [Keller 2018]. This shows the well-definedness.

It is clear that these maps are mutually inverse. ([

>

Remark 3.5. One can show that using the main result of [Muro 2020], the assumption “standardness’
can be dropped.

4. Graded projectivization

In this section, we formulate the method of realizing certain additive categories, which we call G-finite
additive categories on which a group G acts with some finiteness conditions, as the category of graded
projective modules over a G-graded algebra. This generalizes the classical “projectivization” [Auslander
et al. 1995, I1.2], which realizes a finite additive category as the category of projectives over an algebra.

Let A be an additive category with an action of a group G. Precisely, an automorphism F, of A
is given for each g € G so that Fg;, = Fj, o F, for all g, h € G. Then the action of G extends to an
automorphism of mod A by FeM =M o F g_l. For example, the action on the representable functors is
FoA(—, X) = A(—, F,X).

Recall that the orbit category .4/ G has the same objects as .4 and the morphism space

(A/G)(X,Y) = AKX, FY)

geCG
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and the composition boa of a € T(X, FgY) and b € T(Y, F,Z) is given by b oa = F,(b)a, where the
right hand side is the composition in A. Then, A/ G is naturally a G-graded category whose degree g
partis A(X, FgY).

Proposition 4.1. Let A be an additive category with an action of a group G. Consider the orbit category
C = A/G. Then, the following assertions hold:

(1) The Yoneda embedding A — projCC is fully faithful. It is an equivalence if A is idempotent-complete.

(2) There exists an equivalence mod A ~ mod®C such that the action of F ¢ on mod A corresponds to the

grade shift (g) on mod®C, that is, we have the following commutative diagram of functors:

mod A ——— modS¢C

A e

mod A ——— modS¢C

Proof. (1) We have the Yoneda lemma for graded functors: Hom_ 6. (C(—, X), M) = (M X)y. It follows
that the Yoneda embedding .A — proj®C is fully faithful. Also, if .4 is idempotent-complete, the projectives
in mod“(C are representable, and therefore the Yoneda embedding is dense.

(2) It is clear that the functor in (1) induces an equivalence mod A ~ mod®C. Also, the degree h part
of the functor C(—, FyX) is A(—, F; F,X) = A(—, Fg; X), which is equal to the same degree part of
C(—, X)(g). Thus we have the commutative diagram. U

Now we impose the following finiteness conditions on the G-action:

(G1) There is M € A such that A =add{F,M | g € G}.
(G2) Forany X,Y € A, Hom4(X, F,Y) =0 for almost all g € G.

If these conditions are satisfied, we say that an additive category .4 with an action of G is G-finite. If A
is a G-finite additive category, we say M € A as in (G1) is a G-additive generator. If G is generated by
a single element F, we use the term F-finite for G-finiteness, and F-additive generator for G-additive
generator. Note that if G is the trivial group, G-finiteness is nothing but finiteness, and a G-additive
generator is an additive generator.

Let us reformulate Proposition 4.1 in terms of the graded endomorphism algebra below. Note that this
generalizes the classical “projectivization” for finite additive categories, which is the case G is trivial, to
“graded projectivization” for G-finite categories. Although this is rather formal, it will be useful in the
sequel.

Proposition 4.2. Let A be a k-linear, Hom-finite, idempotent-complete category with an action of G,
which is G-finite. Let M € A be a G-additive generator and set C = End 4,G(M). Then, the following

assertions hold:
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(1) C is a finite dimensional G-graded algebra.

(2) The functor A — proj°C, X — &b Hom 4(M, F¢ X) is an equivalence.

geG
(3) There exists an equivalence mod A ~ mod® C such that the action of g on mod A corresponds to the
grade shift (g) on mod®C.

Proof. (1) C is finite dimensional by (G2).

(2) Since we have an equivalence proj® A/ G — proj® C by substituting M, the assertion follows from
Proposition 4.1(1).

(3) This is the same as Proposition 4.1(2). O

Definition 4.3. G-Graded rings A and B are graded Morita equivalent if there is an equivalence mod® A ~
mod® B which commutes with grade shift functors (g) for all g € G.

Let us note the following remark.
Proposition 4.4. Assume (G1) is satisfied and set C = End 4,6 (M).
(1) The ungraded algebra C does not depend on the choice of M up to Morita equivalence.
(2) The graded algebra C does not depend on the choice of M up to graded Morita equivalence.

Proof. (1) Since C is the endomorphism algebra of an additive generator of the category A/ G, the
assertion follows.

(2) This follows from Proposition 4.2(3). O
As a direct application of this graded projectivization, we present as an example the following graded
version of the Auslander correspondence. For simplicity, we consider Z-graded algebras. A graded

algebra A is representation-finite if mod? A has finitely many indecomposables up to grade shift. This is
equivalent to the representation-finiteness of the ungraded algebra A [Gordon and Green 1982].

Proposition 4.5. There exists a bijection between the following:

(1) The set of graded Morita equivalence classes of finite dimensional 7Z-graded algebras A of finite
representation type.
(2) The set of graded Morita equivalence classes of finite dimensional 7-graded algebras T" with
gl.dimI' <2 <dom.dimT.
The correspondence is given as follows:
e From (1) to (2): T = Endpa(M) = P
mod? A.

e From (2) to (1): A = Endr(Q) = P, ., Homr(Q, Q(n))o for a (1)-additive generator Q for the
category of graded projective-injective I'-modules.

Homp (M, M (n))o for a (1)-additive generator M for

nez

Proof. Note that I" (resp. A) does not depend on the choice of M (resp. Q) by Proposition 4.4(2). The
rest of the proof follows by the same argument as in Theorem 1.1; see [Auslander et al. 1995, VI.5]. [J
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Notice that this correspondence A <> I' is the same as the ungraded case, thus it is a refinement of
Theorem 1.1 on how much grading A or I have up to graded Morita equivalence.

5. Uniqueness of triangle structures

The aim of this section is to prove some results which state the uniqueness of triangle structures on certain
additive categories. We say that an additive category C has a unique algebraic triangle structure up to
equivalence if C; = (C, [1], A) and C; = (C, [1], A') are algebraic triangle structures on C, then there
exists a triangle equivalence F: C; — C, such that F(X) >~ X in C for all X €C.

The following is the main result of this section.

Theorem 5.1. Let A be a ring with no simple ring summands such that K®(proj A) is Krull-Schmidt.
Then, the additive category KP(proj A) has a unique algebraic triangle structure up to equivalence.

We give applications of Theorem 5.1. For a quiver Q, let ZQ be the associated infinite translation
quiver [Assem et al. 2006; Happel 1988], and let k(Z Q) be its mesh category [Happel 1988].

Corollary 5.2. Let Q be a disjoint union of Dynkin quivers which does not contain A. Then, the mesh
category k(Z Q) has a unique algebraic triangle structure up to equivalence.

As a consequence, we have the classification of [1]-finite algebraic triangulated categories.

Theorem 5.3. Let k be an algebraically closed field. Any [1]-finite algebraic triangulated category over k
is triangle equivalent to the bounded derived category D°(mod k Q) of the path algebra kQ for a disjoint
union Q of Dynkin quivers of type A, D, and E.

Now we start the preparations for the proofs of the above results. Recall that an additive category is
Krull-Schmidt if any object is a finite direct sum of objects whose endomorphism rings are local. This is
the case if the category is idempotent-complete and Hom-finite over a complete Noetherian local ring.
A Krull-Schmidt category C is purely nonsemisimple if for each X € C, Jo(—, X) #0 or Jo(X, —) #0
holds. Note that these conditions are equivalent if C is triangulated.

First we observe that the suspension and the terms appearing in triangles in a triangulated category are
determined by its additive structure under some Krull-Schmidt assumptions. Recall from [Auslander
et al. 1995, 1.2] that a morphism f: X — Y in a Krull-Schmidt category is right minimal if for any direct
summand X’ of X, the restriction f|x’ is nonzero. We dually define left minimality.

Lemma 5.4. Let C be a Krull-Schmidt additive category. Assume C has a structure of a triangulated
category. Let f: X — Y be a right minimal morphism in J¢:

(1) The mapping cone of f is the minimal weak cokernel of f.

(2) X[1] is the minimal weak cokernel of the minimal weak cokernel of f.

Proof. Complete f to a triangle X Ty s,z x [1].
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(1) We have to show that g is the minimal weak cokernel of f. We only have to show the left minimality
of g. If this is not the case, then # has a summand W ¥, W for a common nonzero summand W of Z
and X[1]. This contradicts the right minimality of f.

(2) We want to show that 4 is the minimal weak cokernel of g. Again, we only have to show the left
minimality of 4. If this is not the case, then f[1] has a summand V LN V for a common nonzero
summand V of X[1] and Y[1]. This contradicts f € Jo(X,Y). U

We deduce that the possible triangle structures on a given purely nonsemisimple Krull-Schmidt additive
category is roughly unique in the following sense. We denote by conex (f) the mapping cone of f in a
triangle structure A.

Proposition 5.5. Let C be a purely nonsemisimple Krull-Schmidt additive category. If (C, [1], A) and
(C, [11, A') are triangle structures on C, then we have the following:

(1) X[1] 2~ X[1Y for all objects X € C.
(2) conen(f) = conen’(f) in C for all morphisms f inC.
Proof. (1) Let X € C be an indecomposable object. Since C is purely nonsemisimple, there exists a

nonzero morphism f: X — Y in Je. Then, f is a right minimal radical map, and hence the assertion
follows from Lemma 5.4(2).

(2) Let f: X — Y be an arbitrary morphism in C. By removing the summands isomorphic to W LN W,
which does not affect the mapping cone, we may assume f € Je. Then, f has a decomposition
X1PX, U0y with right minimal f; € J and the mapping cone of f is the direct sum of that of f; and
X3[1]. Now the mapping cone of fj is determined by Lemma 5.4(1) and since C is purely nonsemisimple,
[1] is determined by the additive structure by (1). This proves the assertion. Ol

For Theorem 5.1, we need the following result of Keller on algebraic triangulated categories.

Proposition 5.6 [Keller 1994, 4.3]. Let T be an algebraic triangulated category and T € T be a tilting
object. Then, there exists a triangle equivalence T ~ K®(proj Ends(T)).

Note that we have the following observation, which will be crucial for the proof.

Lemma 5.7. Let C be a purely nonsemisimple Krull-Schmidt additive category. Assume C; = (C, [1], A)
and C, = (C, [171, A') are triangle structures on C. Then, an object T € C is a tilting object in Cy if and
only if it is a tilting object in C;.

Proof. Indeed, we have Ci (T, T[n]) = Co(T, T[n]’) by Proposition 5.5(1), which shows that the vanishing
of extensions does not depend on the triangle structure. Also, by Proposition 5.5(2), T generates C; if
and only if T generates C,. This shows the assertion. (I

Now we are ready to prove our results.
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Proof of Theorem 5.1. Let C be the underlying additive category of K = K®(proj A). Assume C is
triangulated. We show that C is triangle equivalent to K by finding a tilting object whose endomorphism
ring is A. Note that C = K is purely nonsemisimple and Krull-Schmidt by our assumption on A. Let
T € C be the object corresponding to A € K. Then, T is a tilting object by Lemma 5.7 and clearly
End¢(T) = A. By our assumption that C is algebraic, we deduce that C is triangle equivalent to C by
Proposition 5.6. U

For the proof of Corollary 5.2, let us recall the following standardness theorem of Riedtmann.

Proposition 5.8 [Riedtmann 1980]. Let k be a field and T be a k-linear, Hom-finite idempotent-complete
triangulated category whose AR-quiver is Z Q for some acyclic quiver Q. Assume the endomorphism
algebra of an indecomposable object of T is k. Then, T is k-linearly equivalent to the mesh category
k(ZQ).

A well known application of this result is an equivalence KP(proj k Q) ~ k(Z Q) for a Dynkin quiver Q
[Happel 1988, 1.5.6].

Proof of Corollary 5.2. Since k(Z Q) ~ KP(proj k Q) as additive categories, Theorem 5.1 gives the result.
O

A k-linear triangulated category 7T is locally finite [Xiao and Zhu 2005] if for each indecomposable
X € T, we have ZY:mdecA dim; Hom+(X, Y) < co. This condition is equivalent to its dual [loc. cit.].
Clearly, our [1]-finite triangulated categories are locally finite. The classification of [1]-finite triangulated
category depends on the following result.

Proposition 5.9 [Xiao and Zhu 2005, 2.3.5]. Let k be an algebraically closed field and T be a locally
finite triangulated category which does not contain a nonzero finite triangulated subcategory. Then, the
AR-quiver of T is ZQ for a disjoint union Q of Dynkin quivers of type A, D, and E.

Proof of Theorem 5.3. The AR-quiver of a [1]-finite triangulated category is ZQ for some Dynkin quiver
QO by Proposition 5.9. Moreover, it is equivalent to k(ZQ) by Proposition 5.8. Thus Corollary 5.2
applies. U

We end this section by noting the following lemma, which we use later. This lemma states in particular,
that for mesh categories, the suspension is unique up to isomorphism of functors

Lemma 5.10. Let Q be a Dynkin quiver and o be an automorphism of the mesh category k(Z Q) such
that aX >~ X for all X € k(ZQ). Then, o is isomorphic as functors to the identity functor.

Proof. Since Q is Dynkin, we can inductively construct a natural isomorphism between « and id. ([l

6. [1]-Auslander correspondence

In this section, we prove the second main result, Theorem 1.3, of this paper. In the first subsection, we
give the correspondence from triangulated categories to algebras, and the converse one in the second
subsection. We will prove the main theorem in the final subsection.
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6A. From triangulated categories to algebras. We apply the graded projectivization prepared in Section 4
to triangulated categories. Let 7 be a k-linear, Hom-finite, idempotent-complete triangulated category.
Consider the action on T of G = Z, generated by the suspension [1]. Then, the G-finiteness in this case
are:

(S1) There is M € T such that 7 = add{M|[n] | n € Z}.
(82) For any X, Y € T, Hom7(X, Y[n]) =0 for almost all n.

According to the terminology in Section 4, we say 7T is [1]-finite, and call M as in (S1) a [1]-additive
generator.
The following proposition gives the correspondence from triangulated categories to algebras.

Proposition 6.1. Let T be a k-linear, Hom-finite, idempotent-complete, triangulated category which is
[1]-finite. Let M € T be a [1]-additive generator and set C = Endr[1)(M). Then, C is a finite-dimensional
graded self-injective algebra such that Q3L ~ L(—1) for any graded C-module L.

Proof. C is finite dimensional by (S2). Also, since mod 7 =~ mod?C by Proposition 4.2(2) and mod T~
is Frobenius, C is self-injective. It remains to show the statement on the third syzygy. Let L be a
graded C-module and let Q — R — L — 0 be a projective presentation of L in mod?C. Take the
map X — Y in T corresponding to Q — R and complete it to a triangle W — X — Y — W[1]. Put
P7; =@,y Hom7(M, Z[n]) for each Z € T. This is the graded projective C-module corresponding to
Z. Note that Pz[;j = Pz(1), where (1) is the grade shift functor on mod?C. The triangle above yields an
exact sequence Px(—1) - Py(—1) > Py — Px — Py — Pw(1). Since Px = Q and Py = R, we see
that Q°L >~ L(—1). O

Example 6.2. Let Q be a Dynkin quiver and 7 = D°(mod kQ). Let M be an additive generator for
mod kQ. Then, M is a [1]-additive generator for 7 and we have C = Endyo(M) @& Ext,lcQ(M, M). The
degree O part of C is the Auslander algebra of mod kQ.

Let Q' be another Dynkin quiver with the same underlying graph A as Q. Since kQ and kQ’ are
derived equivalent, we have D®(mod kQ’) = 7. Similarly as above, an additive generator M’ for mod k Q’
is a [1]-additive generator for 7. The corresponding graded algebra C’ is Endyo/(M") & Ext,lQ,(M M),
with the Auslander algebra of mod kQ’ in the degree O part.

By Proposition 4.4, C and C’ are isomorphic as ungraded algebras (but not as graded algebras). In this
way, C 2~ C’ contains the Auslander algebras of module categories over A for any orientation of A.

Let us give a more specific example.
Example 6.3. Let Q be the following Dynkin quiver of type A3, and 7 be its derived category D®(mod k Q).

a < b «c.
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Then, the AR-quiver of 7 is as follows:

4[1]

/\/\/ \/\2[1]w <~ A

O
X A ANy
\/K /‘ \ /f \‘ / 1[1] 3[1] N
where 1, ..., 6 denotes the objects from mod kQ. Take M = @?:1 M;, where M; is the indecomposable
k Q-module corresponding to the vertex i. Then, C = Endyo(M) @ Ext,lcQ(M , M). It is easily verified
that C is presented by the quiver ZA3/[1] and the mesh relations. The quiver of C looks as follows:

where the vertices with the same number are identified, with mesh relations along the dotted lines. The
arrows 1 — 5 and 2 — 6 have degree 1 and all the others have degree 0.
Now, let Q' be the quiver obtained by reflecting Q at vertex a:

a— b <c.

Fix an equivalence D’(modk Q") ~ D’(modk Q) so that M’ = M, @ - - - ® Mg @ M;[1] is an additive
generator for modkQ’. Then, C’ = Endyo'(M') ® Ext}(Q/(M’, M) is presented by the same quiver with
relations as C, with arrows 2 — 1 and 2 — 6 having degree 1 and all the others degree 0. Thus C ~ C’
as ungraded algebras but not as graded algebras.

Nevertheless, C and C’ are graded Morita equivalent. Here we give a direct equivalence mod?C —
mod?C’. Let ¢; be the idempotent of C corresponding to M; (1 <i <6) andset P =e2C @ --- B esC B
e1C(1). Then, we have End¢(P) >~ C’ as graded algebras and Hom¢ (P, —) gives a desired equivalence.

6B. From algebras to triangulated categories. We can give the converse correspondence as in Section 3.
Setting @ = —1 in the following proposition gives the result.

Proposition 6.4. Let A be a finite dimensional graded algebra such that A/ Jy is separable over k and
Q3S ~ S(a) for any graded simple module S. Then, proj” A has a structure of a triangulated category. If
k is algebraically closed and a # 0, then the suspension is isomorphic to (—a) and the algebraic triangle

structure on proj’ A is unique up to equivalence.

Proof. By Corollary 2.4, A is self-injective and there exists an exact sequence
0>A—>P > pl> p> 1Ag(—a) —> 0

in mod?A¢, where P’,i =0, 1,2 are projectives, and « is a graded algebra automorphism of A such
that P, ~ P for all P € proj’A. Then, we can apply Proposition 3.2 for P = proj’A, X' = — @, P!
and S = (—)o(—a) to see that proj”A is triangulated with suspension (—),(—a). Now assume k is
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algebraically closed and a # 0. Since we have Hom,, iz 4 (X, Y (—na)) = 0 for almost all n € Z for each
X, Y € proj? A, the triangulated category proj” A is [1]-finite, and therefore, it is equivalent to the mesh
category k(Z Q) for some Dynkin diagram Q by Propositions 5.9 and 5.8. Then, by changing the triangle
structure if necessary, proj” A has a structure of an algebraic triangulated category, which is unique up to

equivalence by Corollary 5.2. Also, (—)y(—a) and (—a) are isomorphic as functors by Lemma 5.10. [J

6C. Proof of Theorem 1.3. Combining the previous results, we can now prove the second main result
of this paper.

Proof of Theorem 1.3. For M as in (1), C is as stated in (2) by Proposition 6.1. Also, the graded
Morita equivalence class of C does not depend on the choice of M by Proposition 4.4. This shows the
well-definedness of (1) to (2).

For the map from (2) to (1), it is well-defined since projZC has the unique structure of an algebraic
triangulated category up to equivalence by Proposition 6.4.

It is easily checked that these maps are mutually inverse.

The bijection between (1) and (3) is Proposition 5.9 and Theorem 5.3. O

Remark 6.5. The algebra C in Theorem 1.3 satisfies [3] ~ (1) as functors on MZC by Proposition 6.1.

7. Applications to Cohen—Macaulay modules

Applying our classification in Theorem 5.3 of [1]-finite triangulated categories, we show that the stable
categories CMZ A of some CM-finite Iwanaga—Gorenstein algebras, in particular, of (commutative) graded
simple singularities are triangle equivalent to the derived categories of Dynkin quivers.

A Noetherian algebra A is Iwanaga—Gorenstein if idy A = idper A < 00. A typical example of
Iwanaga—Gorenstein algebra is given by commutative Gorenstein rings of finite Krull dimension. For an
Iwanaga—Gorenstein algebra A, we have the category

CM A = {X € mod A | Ext}, (X, A) =0 for all i > 0}

of Cohen—Macaulay A-modules. It is naturally a Frobenius category and we have a triangulated category
CMA.

Now consider the case A is graded: let A =&p,,-
that each A, is finite dimensional over a field k. If A s a graded Iwanaga—Gorenstein algebra, we

A, is a positively graded Noetherian algebra such

similarly have the category
CMZA = {X € mod?A | Ext) (X, A) =0 for all i > 0}

of graded Cohen-Macaulay modules. It is again Frobenius and hence the stable category CM? A is trian-
gulated. A graded Iwanaga—Gorenstein algebra is CM-finite if CMZ A has finitely many indecomposable
objects up to grade shift.

We now show that CM-finite Iwanaga—Gorenstein algebras give a large class of examples of [1]-finite
triangulated categories.
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Proposition 7.1. Let A be a positively graded CM-finite Iwanaga—Gorenstein algebra with gl. dim Ag <
oo. Then, the triangulated category CMZ A is [1]-finite.

To prove this, we need an observation for general Noetherian algebras, which is motivated by [Ya-
maura 2013, 3.5]. Let us fix some notations. We denote by Exti\( —, —)o the Ext groups on modZA.
Note that for M, N € mod? A, the Ext groups on mod A are graded k-vector spaces: Exti\(M ,N) =
@nez Exti\ (M, N(n))o, (i >0). For each M € modZ A and n € Z, we denote by M, the A-submodule
of M consisting of components of degree > n.

Lemma 7.2. Let A be a positively graded Noetherian algebra with gl.dim Ag < oco. Then, for any
X, Y € mod? A, we have Homa (X, Q"Y)o = 0 for sufficiently large n.

Proof. Take a minimal graded projective resolution of Y: --- — P, - Py - Pp— Y — 0. We will
show that for each i € Z, P, = (P,)>; holds for n >> 0. For this, it suffices to show that P, = (P,)> for
Y =Y>0. Note that the degree 0 part of the minimal projective resolution of Y yields a Ag-projective
resolution of Yy. By our assumption that gl. dim Ay < oo, we have (P,)o = 0, hence (P,)>; = P, for
sufficiently large n. Now, we have Hom (X, A(—n))o = Homu (X, A)_, =0 for n > 0. Indeed, this is
certainly true if X is projective. For general X, take a surjection P — X from a projective module P.
Then we have an injection Hom (X, A) < Homy (P, A) and our assertion follows from the case X is
projective. Therefore, we conclude that Homy (X, P,)o = 0, thus Hom (X, Q"*t1Y)y =0 for sufficiently
large n. (Il

Proof of Proposition 7.1. We verify the conditions (S1) and (S2) found in Section 6A.

First we show (S2): Hom, (X, 2"Y)o = 0 for almost all n for each X, Y € CMZ(A). The case n > 0
is done in Lemma 7.2, so it remains to prove the case n < 0. Since A is CM-finite, CMZ A has the AR
duality, and we have D Hom(X, 2"Y)o >~ Hom(Y, Q"1 X)o, hence the assertion follows from the case
of n > 0.

Next we show (S1): CMZA has only finitely many indecomposables up to suspension. Since A is of
finite CM type, there exists 0 # n € Z such that Q"X =~ X up to grade shift for any indecomposable
X € CMZA. By (S2), Q"X and X are not actually isomorphic in CM?A. Therefore, CMZ A has only
finitely many indecomposables up to 2", in particular up to Q7'

These assertions show that C_I\/IZA is [1]-finite. O

As an application of Theorem 5.3, we immediately obtain the following result.

Theorem 7.3. Let k be algebraically closed and let A = @nzo A, is a positively graded Iwanaga—
Gorenstein algebra such that each A, is finite dimensional over k. Suppose A is CM-finite and
gl. dim A < oo. Then, the AR-quiver of CMZ A is ZA for a disjoint union A of some Dynkin diagrams of
type A, D and E. Moreover, CM? A is triangle equivalent to D®(mod k Q) for any orientation Q of A.

Proof. The statement for the AR-quiver follows from Propositions 7.1 and 5.9. The triangle equivalence
follows from Proposition 7.1 and Theorem 5.3. ]
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A well-known class of commutative Gorenstein rings of finite representation type is given by simple
singularities. Here we assume that & is algebraically closed of characteristic 0. Then, they are classified up
to isomorphism by the Dynkin diagrams for each d = dim A and have the form k[x, y, z2, ..., z41/(f)
with
(A f=x?+y" 43+t =),

(Dy) f=x"y+y" "+ 4tz (n=4),

(Ee) f=x>+y*+25+ - +23,

(E7) f=x*+xy*+253+- 42,

(Eg) f=x+Y +23+ - +25

see [Leuschke and Wiegand 2012, Chapter 9]. We admit any grading on A so that each variable and f
are homogeneous of positive degrees. Then, A is CM-finite (in the graded sense) since its completion

A at the maximal ideal A is CM-finite, that is, CM A has only finitely many indecomposable objects
[Yoshino 1990, Chapter 15].

Corollary 7.4. Let k be an algebraically closed field of characteristic zero and A =k[x,y,22,...,24]/(f)
with f one of the above. Give a grading on A so that each variable and f are homogeneous of positive
degrees. Then, the stable category CM? A is triangle equivalent to the derived category D (mod k Q) of
the path algebra k Q of a disjoint union Q of Dynkin quivers.

We give several more examples. First we consider the case A is finite dimensional.

Example 7.5. Let
A=Ay =k[x]/(x")

with deg x = 1. Then, A is a finite dimensional self-injective algebra. In this case we have CMZ A =mod”A.
It is of finite representation type with indecomposable A-modules A; (1 <i <n), and Ag = k has finite
global dimension. We can easily compute its AR-quiver (for n = 4) to be

Az(—=1) Az As(1)
NSNS NN o . ya
o Ax(=2)  Ax(=1) Ao(1)
N AR A N e
- o A(=2)  A(=D) Ay A (1) I

where the top of A; is in degree 0. We see that the AR-quiver of mod” A is ZA,_;. Consequently, we
have a triangle equivalence mod? A ~ D®(mod k Q) for a quiver Q of type A, _;.

The next one is a finite dimensional Iwanaga—Gorenstein algebra.
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Example 7.6. Let A be the algebra presented by the following quiver with relations:

1 2 3 da= fc, eb=gd,
c)[ N d)[ y e)[ ax =yg,
4 5 6 ¢cx=0,xd=0, xf=0, dy=0, by=0, ye=0,
f 8

with deg x = deg y = 1 and all other arrows having degree 0. Then, it is an Iwanaga—Gorenstein algebra
of dimension 1. (In fact, this is the 3-preprojective algebra [Ilyama and Oppermann 2013] of its degree O
part.) We can compute the AR-quiver of mod? A to be the following:

SN SN

’ / N
53 6
*> Hlﬁ — *>4224) — %, — 3 %sss%s 2—)5]

< N N \/\/\/\
/ Y/\/\/\/ \/

Here, each module is graded so that its top is concentrated in degree 0, or equivalently, its lowest degree is

at 0. We then compute the category CMZ A to be the circled modules and it is verified that the AR-quiver
of CMZA is

5 3
2 1 ()

\1 /\Z/IN 3«‘ \/\ /

6
5 : 4.2 5 m

We see that this is ZA, and consequently CMZ A ~ DP(mod k Q) for a quiver Q of type Aj.

We consider as a final example a Gorenstein order: let R = k[xy, ..., x4] be a polynomial ring. A
Noetherian R-algebra A is an R-order if it is projective as an R-module. An R-order A is Gorenstein
if Homg (A, R) is projective as a A-module. In this case, Cohen—Macaulay A-modules are A-modules
which are projective as R-modules.

Example 7.7. Let R = k[x] be a graded polynomial ring with deg x = 1 and let

R R
A=(h 7):

This is a Gorenstein R-order of dimension 1. Its indecomposable CM modules up to grade shift are given
by the row vectors M; = ((xi ) R) for 0 <i < n, and My and M, are the projectives. We define the
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gradings on the M; so that their top (0 k) is in degree 0. Then, the AR-quiver of CM? A (for n = 4) is
computed to be

. My(=1) e
\ / NS N / NS
......................... My(—1) e v My (1) o

\ VAN / \ /
............. Mo(—1) s My s My (1) o
NSNS N S /
- Mz(—1) )7 E— Mi(1) i @

./\/\/\/\_

where the upgoing arrows are natural inclusions, the downgoing arrows are the multiplications by x,
and the dotted lines indicate the AR-translations. By deleting the projective vertices, we see that the
AR-quiver of CMZ A is ZA,,_1, and consequently CM? A ~ DP(mod k Q) for a quiver Q of type A,_i.
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This article has three goals: First, we generalize the result of Deuring and Serre on the characterization of
supersingular locus to all Shimura varieties given by totally indefinite quaternion algebras over totally
real number fields. Second, we generalize the result of Ribet on arithmetic level raising to such Shimura
varieties in the inert case. Third, as an application to number theory, we use the previous results to study
the Selmer group of certain triple product motive of an elliptic curve, in the context of the Bloch—Kato
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1. Introduction

The study of special loci of moduli spaces of abelian varieties starts from Deuring and Serre. Let N >4 be
an integer and p a prime not dividing N. Let Yo(N) be the coarse moduli scheme over Z,,) parametrizing
elliptic curves with a cyclic subgroup of order N. Let Yo(N )Esp denote the supersingular locus of the
special fiber Yo(N)g,, which is a closed subscheme of dimension zero. Deuring and Serre proved the
following deep result (see, for example [Serre 1996]) characterizing the supersingular locus:

Yo(N)E (i) = B*\B*/R*. (1-1)

Here, B is the definition quaternion algebra over Q2 ramified at p, and R C B is any Eichler order of
level N. Moreover, the induced action of the Frobenius element on B* \é x/ R* coincides with the Hecke
action given by the uniformizer of B ®¢q Q,,.

One main application of the above result is to study congruence of modular forms. Let f =g +
a2q2 + a3q3 + - -- be a normalized cusp new form of level I'g(N) and weight 2. Let m; be the ideal of
the away-from-Np Hecke algebra generated by T, — a, for all primes v{ Np. We assume that f is not

MSC2010: primary 14G35; secondary 11G0S, 11R34.
Keywords: Hilbert modular varieties, supersingular locus, automorphic forms, level raising, Selmer groups.
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dihedral. Take a sufficiently large prime £, not dividing Np(p? — 1). Using the isomorphism (1-1) and
the Abel-Jacobi map (over [ ,2), one can construct a map

D(B*\B*/R*,Fp)/ms — H'(F 2, H' (Yo(N) @ F, Fo (1)) /m ) (1-2)

where I'(B* \é x/ R X, [F¢) denotes the space of [F;-valued functions on B* \é x/ R*. [Ribet 1990] proved
that the map (1-2) is surjective. Note that the right-hand side is nonzero if and only if £ [a) — (p + 1)?,
in which case the dimension is 1. From this, one can construct a normalized cusp new form g of level
['o(Np) and weight 2 such that f = g mod £ when ¢ |a§, —(p+ D2

This article has three goals: First, we generalize the result of Deuring and Serre to all Shimura varieties
given by totally indefinite quaternion algebras over totally real number fields. Second, we generalize
Ribet’s result to such Shimura varieties in the inert case. Third, as an application to number theory, we
use the previous results to study Selmer groups of certain triple product motives of elliptic curves, in the
context of the Bloch—-Kato conjecture.

For the rest of Introduction, we denote F a totally real number field, and B a fotally indefinite quaternion
algebra over F. Put G :=Resp/g B* as a reductive group over Q.

1A. Supersingular locus of Hilbert modular varieties. Let p be a rational prime that is unramified in F'.
Denote by X, the set of all places of F above p, and put g, := [F}, : Q,] for every p € ¥,. Assume
that B is unramified at all p € X,,. Fix a maximal order Op in B. Let K” € G(A*) be a neat open
compact subgroup in the sense of Definition 2.6. We have a coarse moduli scheme Sh(G, K7) over Z,)
parametrizing abelian varieties with real multiplication by Op and K ?-level structure (see Section 2E for
details). Its generic fiber is a Shimura variety; in particular, we have the following well-known complex
uniformization:

Sh(G, K7)(C) = G(@)\(C — R x G(A®)/KP K,

where K, is a hyperspecial maximal subgroup of G(Q,). The supersingular locus of Sh(G, K”), that
is, the maximal closed subset of Sh(G, K”) ® [} on which the parametrized abelian variety (over [)
has supersingular p-divisible group, descends to [, denoted by Sh(G, K” )Esp. Our first result provides a
global description of the subscheme Sh(G, K” )fé.

To state our theorem, we need to introduce another Shimura variety. Let BT be the quaternion
algebra over F, unique up to isomorphism, such that the Hasse invariants of B and B differ exactly
at all archimedean places and all p € ¥, with g, odd. Similarly, put G':=Resr /a(B 7)* and identify
GT(A>-P) with G(A>P). We put

Sh(G', K")(F%) := GT(@\G'(A®)/K K],

where K ; is a maximal open compact subgroup of G'(Q »). We denote by Sh(GT, K7 ) the correspond-
ing scheme over [77, that is, copies of Spec 7 indexed by Sh(G', K? Y(ED.
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Theorem 1.1 (Theorem 3.13). Let h be the least common multiple of (1 + gy —2|8p/21)8p forp € X),.
We have'
Sh(G, K")p @F =] W),
acB

Here

» B is a set of cardinality ]_[p ez, ( equipped with a natural action by Gal(F /T p);

g
Lgp;ZJ)
* the base change W (a) @ F is a (Zpez,, |_gp/2j)-th iterated P'-fibration over Sh(G?, KP)pae, equi-

variant under prime-to-p Hecke correspondences.”

In particular, Sh(G, Kp)ﬁFi is proper and of equidimension Zp@:p Lgp/2].

If p isinert in F of degree 2 and B is the matrix algebra, then the result was first proved in [Bachmat
and Goren 1999]. If p is inert in F of degree 4 and B is the matrix algebra, then the result was due to Yu
[2003]. Assume that p is inert in F of even degree. Then the strata W (a) have already been constructed in
[Tian and Xiao 2019], and the authors proved there that, under certain genericity conditions on the Satake
parameters of a fixed automorphic cuspidal representation 7, the cycles W (a) give all the w-isotypic Tate
cycles on Sh(G, K")[pp.

Similarly, one can define the superspecial locus Sh(G, K? )?; of Sh(G, K?), that is, the maximal
closed subset of Sh(G, K”) ® [} on which the parametrized abelian variety has superspecial p-divisible
group. It is a reduced scheme over [, of dimension zero. We have the following result:

Theorem 1.2 (Theorem 3.16). Assume that gy, is odd for every p € X,. For each a € ‘B as in the
previous theorem, W (a) contains the superspecial locus Sh(G, K? )?Ff; ®F ,n, and the iterated P!-fibration
Tq: W) ® I]:*;,C — Sh(G', K p)[Fac induces an isomorphism

Sh(G, K”)[Fac = Sh(G", K”)ps

compatible with prime-to-p Hecke correspondences.

In fact, Theorem 3.16(2) shows that the [ .-scheme structure on Sh(G', K p)[]:;t)c induced from the
isomorphism in the above theorem is independent of a. In other words, we have a canonical [ 2-scheme
structure on Sh(G', K P)[F%c, which we denote by Sh(GT, K?). Then it is easy to see that the iterated
P!-fibration 7, descends to a morphism of F ph-schemes

7q: W(a) — Sh(GT, KP)g.

A main application of the global description of the supersingular locus is to study the level raising
phenomenon, as we will explain in the next section.

IThe notation here is simplified. In fact, in the main text and particularly Theorem 3.13, BT, G', B, a and W (a) are denoted
by Bsaxs GSmax» Do, a and Wy o (a), respectively.

20ne should consider Sh(GT, K P )|Fac as the [F"ﬂlC fiber of a Shimura variety attached to GT. However, it seems impossible to
define the correct Galois action on Sh(GJr KP )[F‘;?c using the formalism of Deligne homomorphisms when gy is odd for at least
one p € Xp. When gp is odd for all p € X, we will define the correct Galois action by Gal([Fac /Fp) using superspecial locus.
See the discussion after Theorem 1.2.
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1B. Arithmetic level raising for Hilbert modular varieties. We suppose that g = [F : Q] is odd. Fix
an irreducible cuspidal automorphic representation IT of GL,(Af) of parallel weight 2 defined over a
number field E. Let B, G be as in the previous section; and let K be a neat open compact subgroup of
G (A™). Then we have the Shimura variety Sh(G, K) defined over Q). Let R be a finite set of places of F
away from which IT is unramified and K is hyperspecial maximal.

Let p be a rational prime inert in F such that the unique prime p of F above p is not in R. Then
K = K? K, and Sh(G, K) has a canonical integral model Sh(G, K”) over Z,) as in the previous section.
We also choose a prime A of E and put &, := O/A.

Let Z[T®] (resp. Z[TRYP}H]) be the (abstract) spherical Hecke algebra of GL, r away from R (resp.
RU {p}). Then IT induces a homomorphism

érs: Z[TH — O — ky,

via Hecke eigenvalues. Put m := ker(¢m ;.| ziyruim).

The Hecke algebra Z[ TRV} acts on the (étale) cohomology group H*(Sh(G, K?) ® F¥°, k;). Let
I'(B x Sh(GT, K”)([Ff‘n"), %) be the abelian group of s-valued functions on 8 x Sh(G, K”)([F;’f), which
admits the Hecke action of Z[T*YP}] via the second factor. We have a Chow cycle class map

(B x Sh(G', KP)(F¥), Z) - CH¢*V/(Sh(G, K”)p)

sending a function f on B x Sh(G', KP?) () to the Chow class of Zu,s f(a, s)ncfl(s), which is
Z[ TRV ]-equivariant. We will show that under certain “large image” assumption on the mod-A Galois
representation attached to I, the above Chow cycle class map (eventually) induces the following Abel—
Jacobi map

LB x Sh(G', KP)(F), k) /m — H' (F e, HE SW(G, KP)pe, ki (g + 1)/2)/m). (1-3)
See Section 4A for more details. The following theorem is what we call arithmetic level raising:

Theorem 1.3 (Theorem 4.7). Suppose that p is a A-level raising prime in the sense of Definition 4.5. In

particular, we have the following equalities in k;:

o (Tp)> = (P + 1), ¢na(Sy) =1,

where Ty, (resp. Sy) is the (spherical) Hecke operator at p represented by (6’ (1)) € GLy(Fp) (resp.
(‘8 g) € GL,(Fy)). Then the map (1-3) is surjective.

As we will point out in Remarks 4.2 and 4.6, if there exist rational primes inert in F, and IT is not
dihedral and not isomorphic to a twist by a character of any of its internal conjugates, then for all but
finitely many prime A, there are infinitely many (with positive density) rational primes p that are A-level
raising primes.

2 P)K? has dimension 1

Suppose that the Jacquet-Langlands transfer of IT to B exists, say I1p. If (IT
and there is no other automorphic representation of B> (Ar) (of parallel weight 2, unramified at p, and
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with nontrivial K?-invariant vectors) congruent to I1g modulo A, then the target of (1-3) has dimension
((g—gl)/Z) over k;,.

Remark 1.4. In principle, our method can be applied to prove a theorem similar to Theorem 1.3 when
B is not necessarily totally indefinite but the “supersingular locus”, defined in an ad hoc way if B is
not totally indefinite, still appears in the near middle dimension. In fact, the proof of Theorem 1.3 will
be reduced to the case where B is indefinite at only one archimedean place (that is, the corresponding
Shimura variety Sh(B) is a curve). However, we decide not to pursue the most general scenario as that
would make the exposition much more complicated and technical. On the other hand, we would like
to point out that arithmetic level raising when 1 < dim Sh(B) < [F : Q] has arithmetic application as
well, for example, to bound the triple product Selmer group (see the next section) with respect to a cubic
extension F/F” of totally real number fields with F* # Q.

Let us explain the meaning of Theorem 1.3. Suppose that IT admits Jacquet-Langlands transfer, say
I1p, to B> such that Hg # {0}. Then the right-hand side of (1-3) is nonzero. In particular, under the
assumption of Theorem 1.3, the left-hand side of (1-3) is nonzero as well. One can then deduce that
there is an (algebraic) automorphic representation IT" of G'(A) = (B")*(Af) (trivial at co) such that
the associated Galois representations of IT" and IT with coefficient Of /A are isomorphic. However, it
is obvious that IT" cannot be the Jacquet-Langlands transfer of I1, as B is ramified at p while IT is
unramified at p. In this sense, Theorem 1.3 reveals certain level raising phenomenon. Moreover, this
theorem not only proves the existence of level raising, but also provides an explicit way to realize the
congruence relation behind the level raising through the Abel-Jacobi map (1-3). As this process involves
cycle classes and local Galois cohomology, we prefer to call Theorem 1.3 arithmetic level raising. This is
crucial for our later arithmetic application. Namely, we will use this arithmetic level raising theorem to
bound certain Selmer groups, as we will explain in the next section.

1C. Selmer group of triple product motive. In this section, we assume that g = [F : Q] = 3; in other
words, F is a totally real cubic number field.

Let E be an elliptic curve over F'. We have the ()-motive ® Indg h'(E) (with coefficient @) of rank 8,
which is the multiplicative induction of the F-motive h!(E) to Q. The cubic-triple product motive of E
is defined to be

M(E) := (® Ind§, h' (E))(2).

It is canonically polarized. For every prime p, the p-adic realization of M(E), denoted by M(E),
is a Galois representation of @ of dimension 8 with Q,-coefficients. In fact, up to a twist, it is the
multiplicative induction from F to @ of the rational p-adic Tate module of E.

Now we assume that £ is modular. Then it gives rise to an irreducible cuspidal automorphic represen-
tation ITg of (Resr/q GLo, r)(A) = GL,(Af) with trivial central character. Denote by 7 : LG — GLg(C)
the triple product L-homomorphism [Piatetski-Shapiro and Rallis 1987, Section 0], and L(s, [1g, t) the
triple product L-function, which has a meromorphic extension to the complex plane by [Garrett 1987;
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Piatetski-Shapiro and Rallis 1987]. Moreover, we have a functional equation
L(s. Mg, 1) = (Mg, 1)C(Mg, 1) *7L(1 =5, Mg, 7)

for some e(Ilg, v) € {£1} and positive integer C(I1g, 7). The global root number e€(I1g, t) is the
product of local ones: €(ITg, ) =[], €(Tlg v, 7), where v runs over all places of Q. Here, we have
€(ITg,y, T) € {£1} and that it equals 1 for all but finitely many v. Put

Y(Mg, v) :={v|elg,y, 1) =—1}.

In particular, the set X (I1g, 7) contains co. We have L(s, M(E)) = L(s + %, Mg, ‘L').

Now we assume that E satisfies Assumption 5.1. In particular, X (I1g, 7) has odd cardinality. Let B’ be
the indefinite quaternion algebra over Q with the ramification set X (I1g, t) — {oo}, and put B := B’ ®qF.
Put G :=Resp/g B* as before. We will define neat open compact subgroups K. € G(A), indexed by
certain integral ideals t of F. We have the Shimura threefold Sh(G, K;) over Q. Put G” := (B")* and let
Kf C G"(A) be induced from K. Then we have the Shimura curve Sh(G”, Kf ) over Q with a canonical
finite morphism to Sh(G, K,). Using this 1-cycle, we obtain, under certain conditions, a cohomology
class

®p.c € Hp(Q, M(E) ),

where H; (Q, M(E) ) is the Bloch—Kato Selmer group (Definition 5.6) of the Galois representation
M(E), (with coefficient Q,), and a(r) > 0 is some integer depending on t. See Section SA for more
details of this construction. We have the following theorem on bounding the Bloch—Kato Selmer group
using the class © ..

Theorem 1.5 (Theorem 5.7). Let E be a modular elliptic curve over F satisfying Assumption 5.1. For a
rational prime p, if there exists a perfect pair (p, v) such that ®, . # 0, then we have

dimg, H}(Q, M(E),) = 1.
See Definition 5.4 for the meaning of perfect pairs, and also Remark 5.8.

The above theorem is closely related to the Bloch—Kato conjecture. We refer readers to the Introduction
of [Liu 2016] for the background of this conjecture, especially how Theorem 1.5 can be compared to
the seminal work of Kolyvagin [1990] and the parallel result [Liu 2016, Theorem 1.5] for another triple
product case. In particular, we would like to point out that under the (conjectural) triple product version
of the Gross—Zagier formula and the Beilinson—Bloch conjecture on the injectivity of the Abel-Jacobi
map, the following two statements should be equivalent:

e L'(0, M(E)) # 0 (note that L(0, M(E)) = 0).

o There exists some vy such that for every other v contained in to, we have ®, . # 0 as long as (p, t)
is a perfect pair.
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Assuming this, then Theorem 1.5 implies that if L'(0, M(E)) # 0, that is, ordg—o L(s, M(E)) = 1, then
dimg, H} (Q, M(E),) =1 for all but finitely many p. This is certainly evidence toward the Bloch-Kato
conjecture for the motive M(E).

At this point, it is not clear how the arithmetic level raising, Theorem 1.3, is related to Theorem 1.5.
We will briefly explain this in the next section.

1D. Structure and strategies. There are four sections in the main part. In short words, Section 2 is respon-
sible for the basics on Shimura varieties that we will use later; Section 3 is responsible for Theorems 1.1
and 1.2; Section 4 is responsible for Theorem 1.3; and Section 5 is responsible for Theorem 1.5.

In Section 2, we study certain Shimura varieties and their integral models attached to both unitary
groups of rank 2 and quaternion algebras, and compare them through Deligne’s recipe of connected
Shimura varieties. The reason we have to study unitary Shimura varieties is the following: In the proof
of Theorems 1.1, 1.2 and 1.3, we have to use an induction process to go through certain quaternionic
Shimura varieties associated to B that are not totally indefinite. Those Shimura varieties are not (coarse)
moduli spaces but we still want to carry the information from the moduli interpretation through the
induction process. Therefore, we use the technique of changing Shimura data by studying closely related
unitary Shimura varieties, which are of PEL-type. Such argument is coherent with [Tian and Xiao 2016]
in which the authors study Goren—Oort stratification on quaternionic Shimura varieties.

In Section 3, we first construct candidates for the supersingular locus in Theorem 1.1 via Goren—QOort
strata, which were studied in [Tian and Xiao 2016], and then prove that they exactly form the entire
supersingular locus, both through an induction argument. As we mentioned previously, during the
induction process, we need to compare quaternionic Shimura varieties to unitary ones. At last, we identify
and prove certain properties for the superspecial locus, in some special cases.

In Section 4, we state and prove the arithmetic level raising result. Using the nondegeneracy of certain
intersection matrices proved in [Tian and Xiao 2019], we can reduce Theorem 1.3 to establishing a similar
isomorphism on certain quaternionic Shimura curves. Then we use the well-known argument of Ribet
together with Thara’s lemma in this context to establish such isomorphism on curves.

In Section 5, we focus on the number theoretical application of the arithmetic level raising established
in the previous section. The basic strategy to bound the Selmer group follows the same line as in
[Kolyvagin 1990; Liu 2016; 2019]. Namely, we construct a family of cohomology classes G)‘;,’t’ ¢ to serve
as annihilators of the Selmer group after quotient by the candidate class ®, . in rank 1 case. In the case
considered here, those cohomology classes are indexed by an integer v as the depth of congruence, and a
pair of rational primes ¢ = (¢, £) that are “p"-level raising primes” (see Definition 5.10 for the precise
terminology and meaning). The key idea is to connect ®, . and various @;’r’ ¢ through some objects in
the middle, that is, some mod-p"” modular forms on a certain Shimura set. Following past literature, the
link between ®, . and those mod-p" modular forms is called the second explicit reciprocity law; while
the link between ®;’t’ ¢ and those mod-p” modular forms is called the first explicit reciprocity law. The
first law in this context has already been established by one of us in [Liu 2019]. To establish the second
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law, we use Theorem 1.3; namely, we have to compute the corresponding element in the left-hand side in
the isomorphism of Theorem 1.3 of the image of ®,, . in the right-hand side.

1E. Notation and conventions. The following list contains basic notation and conventions we fix through-
out the article. We will usually not recall them when we use, as most of them are common:

e Let A be an abelian group and S a finite set. We denote by |S| the cardinality of S and I'(S, A) the
abelian group of A-valued functions on S.

« If a base is not specified in the tensor operation ®, then it is Z. For an abelian group A, put
A=A® (lim, Z/n). In particular, we have 7= [1, Z;, where [ runs over all rational primes. For a
fixed rational prime p, we put 7P = I AR

« We denote by A the ring of adeles over Q. For a set (] of places of @, we denote by A" the ring of
adeles away from [J. For a number field F', we put AE =AYQq F. If 0= {vy, ..., v,} is a finite
set, we will also write AVt for AF,

« For a field K, denote by K?® the algebraic closure of K and put G := Gal(K?/K). Denote by Q*°
the algebraic closure of @ in C. When K is a subfield of Q*, we take Gk to be Gal(Q*/K) hence
a subgroup of Gg.

» For a number field K, we denote by O the ring of integers in K. For every finite place v of Ok,
we denote by Ok , the ring of integers of the completion of K at v.

o If K is alocal field, then we denote by Oy its ring of integers, Ix € Gg the inertia subgroup. If v is
a rational prime, then we simply write G, for Gg, and I, for Ig,.

e Let K be alocal field, A aring, and N a A[Gg]-module. We have an exact sequence of A-modules

0— H. (K,N)— H'(K,N) - H. (K,N)— 0,

unr sing

where H!

unr (K, N) is the submodule of unramified classes.

e Let A be aring and N a A[Gg]-module. For each prime power v, we have the localization map
loc,: HY(Q, N) - H(Q,, N) of A-modules.
 Denote by P! the projective line scheme over Z, and G,, = Spec Z|[T, T the multiplicative group

scheme.

e Let X be a scheme. The cohomology group H*(X, —) will always be computed on the étale site
of X. If X is of finite type over a subfield of C, then H*(X (C), —) will be understood as the Betti
cohomology of the associated complex analytic space X (C).

2. Shimura varieties and moduli interpretations

In this section, we study certain Shimura varieties and their integral models attached to both unitary
groups of rank 2 and quaternion algebras, and compare them through Deligne’s recipe of connected
Shimura varieties.
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Let F be a totally real number field, and p > 3 a rational prime unramified in F. Denote by X, =
Homg(F, C) the set of archimedean places of F, and X, the set of p-adic places of F' above p. We
fix throughout Sections 2 and 3 an isomorphism ¢,,: C = Q7. Via ¢, we identify o, with the set of
p-adic embeddings of F via ¢,. For each p € X, we put g, :=[F}, : Q,] and denote by X/, the subset
of p-adic embeddings that induce p, so that we have

Zoo = || Zoosp:
pe):p

Since p is unramified in F, the Frobenius, denoted by o, acts as a cyclic permutation on each X p.
We fix also a totally indefinite quaternion algebra B over F' such that B splits at all places of F above p.

2A. Quaternionic Shimura varieties. Let S be a subset of X, U X, of even cardinality, and put Sy, :=
SN Xx. Foreach p € £, we put Sy := SN (Zo/p U {p}) and Seo/p = SN Xoo/p. We suppose that Sy,
satisfies the following assumptions.

Assumption 2.1. Take p € Z:
(1) If p €8, then gy is odd and Sy, = X /p U {p].

(2) If p ¢ S, then S is a disjoint union of chains of even cardinality under the Frobenius action on

Yoo/p, that is, either S, = X /p has even cardinality or there exist 7y, ..., T, € Yoy and integers
mi,...,m, > 1 such that
-
Sp:]_[{T,',O’_l‘(i,...,O’_zmi+]‘fi} (2—1)
i=1

and o1, 0 Mg & Sp.

Let Bs denote the quaternion algebra over F whose ramification set is the union of S with the
ramification set of B. We put Gs := Res F/@(BSX). For S = @, we usually write G = Gg. Then Gg is
isomorphic to G over F, for every place v ¢ S, and we fix an isomorphism

Gs(A%P) = G(A™P),

Let T be a subset of Sy, and Ty, = S /p N T for each p € X,,. Throughout this paper, we will always
assume that |Ty| = #S;,/2. Consider the Deligne homomorphism

hst: S(R) = C* — Gs(R) = GLy(R)¥* 5% x (H*)T x (H*)S=~T
Yoo—Swo
r+V-lye ((_xy)y) NCE SR 1S°°—T)

where H denotes the Hamiltonian algebra over R. Then Gg 1 := (Gs, hs 1) is @ Shimura datum, whose
reflex field Fg 1 is the subfield of the Galois closure of F in C fixed by the subgroup stabilizing both So,
and T. For instance, if Soo = &, then T = @ and Fs = Q. Let g denote the p-adic place of Fg r via the
embedding Fs 1t — C —— @?f. By abuse of notation, we will often write G = G & in what follows.
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In this article, we fix an open compact subgroup K, = HpeE,, K, € Gs(Qp) = Hpe):p (Bs ®F Fp)™,
where

K, is a hyperspecial subgroup if p ¢ S, and
e Ky = O;p is the unique maximal open compact subgroup of (Bs ® r Fy)™ if p € S.

For a sufficiently small open compact subgroup K? C G(A*®P) = Gg(A°P), we have the Shimura
variety Sh(Gs 1, K”) defined over Fs whose C-points are given by

Sh(Gs 1, K?)(C) = Gs(@\(HF) ™5 x Gs(A®) /KK,

where K = KK, € G(A*™), and $H* = PY(C) — P'(R) is the union of upper and lower half-planes.
Note that the scheme Sh(Gs 1, K¥)ga over Q*¢ is independent of T, but different choices of T will give
rise to different actions of Gal(Q*/Fs 1) on Sh(Gs 1, K?)gee.

When So = X, the action of I' ;. := Gal(Q*/ Fg 1) on the set Sh(Gg t, K?)(Q%) is given as follows.
Note that the Deligne homomorphism hg t factors through the center Tr = Resr,q(G,,) € Gs, and the
action of I' g . factors thus through its maximal abelian quotient F}Z‘T. Let w: G, rsr — Tr ®q Fs,t be
the Hodge cocharacter (defined over the reflex field Fs 1) associated with hg . Let Art: A;‘;’: — F}';T
denote the Artin reciprocity map that sends uniformizers to geometric Frobenii. Then the action of Art(g)
on Sh(Gs 1, K?)(Q) is given by the multiplication by the image of g under the composite map

N
AR o Tr(AR ) = (FRg AR ) =215 AP C G5(A™).

If F denotes the Galois closure of F in C, then the restriction of the action of I Fsr to I'z depends only
on #T.

We put Sh(Gs 1) :=lim, Sh(Gs 1, K?). Let Sh(Gs 1)° be the neutral geometric connected component
of Sh(Gs 1) ®F, Q%, that is, the one containing the image of point

(=75 1) € (HF) 5= x Gg(A™).

Then Sh(Gs 1)° ®qxe,., @‘;f descends to @‘;,r, the maximal unramified extension of @, in @i‘f. Moreover,
by Deligne’s construction [1979], Shg,(Gs 1) can be recovered from the connected Shimura variety
Sh(Gs,1)° together with its Galois and Hecke actions (see [Tian and Xiao 2016, 2.11] for details in our
particular case).

2B. An auxiliary CM extension. Choose a CM extension E/F such that
o E/F isinert at every place of F where B is ramified,
o forp € X, E/F is split (resp. inert) at p if g, is even (resp. if g, is odd).

Let X g « denote the set of complex embeddings of E, identified also with the set of p-embeddings of E
by composing with ¢,,. For T € X «, we denote by 7¢ the complex conjugation of 7. For p € X, we
denote by X p the subset of p-adic embeddings of E inducing p. Similarly, for a p-adic place q of E,
we have the subset X ~/q © T oo consisting of p-adic embeddings that induce q.
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Assumption 2.2. Consider a subset Sy, € X o satisfying the following:

(1) For each p € ¥, the natural restriction map T oo/p —> Zoo/p induces a bijection Soo/p —> Soo/p,
where §oo/p =S, N YE co/p-

(2) For each p-adic place q of E above a p-adic place p of F, the cardinality of Sy, /q 1s half of the

cardinality of the preimage of Sqo/p in L oo/q-

For instance, if p splits in E into two places q and q° and S, is given by (2-1), then the subset
r
Sesp = | [(E o750, ... o2 RE o2 g
i=1

satisfies the requirement. Here, 7; € X /p denotes the lift of 7; inducing the p-adic place q. The choice
of such a S, determines a collection of numbers sz € {0, 1,2} for T € g o by the following rules:

0 if 7 €Sy,

s =12 if 7€ €Sy,

1 otherwise.
Our assumption on S, implies that, for every prime q of E above p, the set {T € T o /q | 57 =0} has
the same cardinality as {T € X o/q | 57 = 2}.

Put S := (S, So) and Tg := Resg /0(G,,). Consider the Deligne homomorphism
hpgr: SR =C* - Te®) = [] (E®F:R)* = (€)% x (C) x (C*)%

TEX

z=x+v—1ly—>(Z,...,2, ...z, A,..., D).

where, for each 7 € Sy, we identify £ ®; r R with C via the embedding 7: £ — C with T € Seo
lifting 7. We write T 5 1 = (Tg, hg 5 1) and put K¢, := (Og ®Z,)* € Tp(Q)), the unique maximal
open compact subgroup of T¢(Q),). For each open compact subgroup K Ep C Tg(A*P), we have the
zero-dimensional Shimura variety Sh(7}, 5 1, Kg) whose Q*-points are given by

Sh(Tg 5.1, KE)(@Q*) = EX\Tg(A®) /K KE .

2C. Unitary Shimura varieties. Put Ty := Resr;o(Gy, r). Then the reduced norm on Bg induces a
morphism of Q-algebraic groups
vs: Gg — TF.
Note that the center of Gg is isomorphic to Tr. Let Gg’T denote the quotient of Gs x Tg by Tr via the
embedding
Tr — GsxTg, z+> (227D,

and let Gé be the inverse image of G,, € Tr under the norm map

Nm: Gy = (Gs x Tg)/Tr — Tr, (g, 1) > vs(g) Nmg,F(1).
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Here, the subscript S is to emphasize that we will take the Deligne homomorphism hg :C* — Gg([R{)
induced by hs 1 X hp 5 1, which is independent of T. Note that the image of hg lies in G’é (R), and we
denote by hé: C* — G’é([R{) the induced map.

As for the quaternionic case, we fix the level at p of the Shimura varieties for Gg and Gfg as follows.
Let K, C Gg(@p) be the image of K, x Kf, p, and put K}, := KN Gé(@p). Note that K} (resp. K,)
is not a maximal open compact subgroup of Gg(@ p) (resp. Gé(@ p)), if S contains some p-adic place
p € X,,. For sufficiently small open compact subgroups K7 C Gg(&“”p) and K'P C G%(A“”I’), we get
Shimura varieties with C-points given by

Sh(Gg, K"")(C) = GE@\HF) 75> x G{(A®) /K"K,

Sh(G}, K'7)(€) = GL@\(H5) ™% x G{(A)/K K],
We put

Sh(Gg) = 1<iLnSh(Gg, K'"P), Sh(G/g) = @Sh(Gé, K'P).

K''p K'r

The common reflex field Eg of Sh(G/g) and Sh(Gg) is a subfield of the Galois closure of E in C. The
isomorphism ¢, : C — Q7 defines a p-adic embedding of Eg < @7, hence a p-adic place o of E5. Then
Eg is unramified at ©. Let Sh(G’g’)0 (resp. Sh(Gé)c’) denote the neutral geometric connected component
of Sh(Gg) ®E, Q (resp. Sh(G/é) ® g, @*). Then both Sh(Gg)o ®qu,, @Y and Sh(Gé)O ®qs,, QY can
be descended to QY.

In summary, we have a diagram of morphisms of algebraic groups

GS<—GS><TE—>G/§/=(GS><TE)/TF<—G/§

compatible with Deligne homomorphisms, such that the induced morphisms on the derived and adjoint
groups are isomorphisms. By Deligne’s theory of connected Shimura varieties (see [Tian and Xiao
2016, Corollary 2.17]), such a diagram induces canonical isomorphisms between the neutral geometric
connected components of the associated Shimura varieties:

Sh(Gs 1)° <— Sh(Gg)° - Sh(G%)O. (2-2)

Since a Shimura variety can be recovered from its neutral connected component together with its Hecke
and Galois actions, one can transfer integral models of Sh(Gé) to integral models of Sh(Gs 1) (see [Tian
and Xiao 2016, Corollary 2.17]).

2D. Moduli interpretation for unitary Shimura varieties. Note that Sh(G/é, K'P) is a Shimura variety
of PEL-type. To simplify notation, let Og be the ring of integers of the completion of Ez at &. We recall
the integral model of Sh(G%, K'?) over Og defined in [Tian and Xiao 2016] as follows.

Let K'? € GL(A*F) be an open compact subgroup such that K7 K, is neat (for PEL-type Shimura
data). We put Ds := Bs ® ¢ E, which is isomorphic to Mat, (E) by assumption on E. Denote by b — b
the involution on Dg given by the product of the canonical involution on Bg and the complex conjugation
on E/F. Write E = F (/) for some totally negative element d € F that is a p-adic unit for every p € p-
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We choose also an element § € Dg' such that 8 =8 as in [Tian and Xiao 2016, Lemma 3.8]. Then the
conjugation by 8! defines a new involution b — b* = §~'b8. Consider W = Dy as a free left Ds-module
of rank 1, equipped with an x-hermitian alternating pairing

Y WxW—Q, Y, y) =TT (Voxys)), (2-3)

where Tr, - denotes the reduced trace of Ds/E. Then G can be identified with the unitary similitude
group of (W, ).

We choose an order Op; € Dsg that is stable under * and maximal at p, and an Op,-lattice L C W
such that (L, L) € Z and L ® Z,, is self-dual under y. Assume that K'” is a sufficiently small open
compact subgroup of Gé (A>-P) which stabilizes L @ 2.

Consider the moduli problem S_h(G/é, K'P) that associates to each locally noetherian Og-scheme S the
set of isomorphism classes of tuples (A, ¢, A, @g»), where:

e A is an abelian scheme over S of dimension 4[F : Q].

e 1: Opy — Endg(A) is an embedding such that the induced action of ¢(b) for b € Of on Lie(A/S)
has characteristic polynomial

det(T —u(b)| Lie(A/S)) = 1_[ (x — T(b))*.

‘EGEE,OO

e A: A— AY is a polarization of A such that

— the Rosati involution defined by A on Endg(A) induces the involution b — b* on Op,,

— if p ¢ S, A induces an isomorphism of p-divisible groups A[p>®] => AY[p°°], and

— if p € S, then (ker A)[p°°] is a finite flat group scheme contained in A[p] of rank p4gP and the
cokernel of induced morphism A,.: H{R(A/S) — H{R(AY/S) is a locally free module of rank
two over Os ®z, O /p. Here, H?R(— /S) denotes the relative de Rham homology.

e agr is a K'? level structure on A, that is, a K'7-orbit of Op,-linear isomorphisms of étale sheaves
a: LQZP) =5 TP(A) such that the alternating pairing ¥ : L QILP X LRZP — 71 is compatible
with the A-Weil pairing on ff’(A) via some isomorphism 7 =7 (1). Here, f”(A) = ]_[l?ﬁp T;(A)
denotes the product of prime-to-p Tate modules.

Remark 2.3. Sometimes it is convenient to formulate the moduli problem S_h(Gé, K'P) in terms of isogeny
classes of abelian varieties: one associates to each locally noetherian Og-scheme S the equivalence classes

of tuples (A, t, A, &'%,), where

e (A, 1) is an abelian scheme up to prime-to- p isogeny of dimension 4[F : Q] equipped with an action
Op, satisfying the determinant conditions as above;

A is a polarization on A satisfying the condition as above;
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a'y, is a rational K'P-level structure on A, that is, a K'P-orbit of Op, ® A>P-linear isomorphisms

of étale sheaves on S:
a: WRA®P =5 VP(A):=TP(A) @0

such that the pairing ¥ on W ®g A°? is compatible with the A-Weil pairing on VP(A) up to a
scalar in A% P-*,

For the equivalence of these two definitions, see [Lan 2013].

Theorem 2.4. The moduli problem S_h(Gé, K'P) is representable by a quasiprojective and smooth scheme
Sh(Gé, K'?) over Og such that

Sh(Gg. K') @0, Es ; = Sh(Gg, K'7) @, Es 5.

Moreover, the projective limit Sh(G’g) = lim, Sh(G’g, K'P) is an integral canonical model of Sh(Gé)
over Og in the sense that Sh(G’S) satisfies the following extension property over Og: if S is a smooth
scheme over O, any morphism S ®o,, Eg 5 — Sh(G/é) extends uniquely to a morphism S — Sh(Gfg).

Proof. This follows from [Tian and Xiao 2016, 3.14, 3.19]. O

Let Z\} be the ring of integers of Q). The closure of Sh(Gé)O in Sh(G’é) ®o,;Z},, denote by Sh(G’é)%y,
is a smooth integral canonical model of Sh(G/g)O over Z‘I‘,r. By (2-2), this can also be regarded as an
integral canonical model of Sh(Gg 1)° over Z‘I‘f. This induces a smooth integral canonical model Sh(Gs 1)
of Sh(Gs,1) over OF, ., by Deligne’s recipe (see [Tian and Xiao 2016, Corollary 2.17]). For any open
compact subgroup K” C Gg(A°?), we define Sh(Gs 1, K?) as the quotient of Sh(Ggs 1) by K”. If K?
is sufficiently small, then Sh(Gs 1, K?) is a quasiprojective smooth scheme over OF; . ,, and it is an

integral model for Sh(Gg 1, K7).

2E. Moduli interpretation for totally indefinite quaternionic Shimura varieties. When S = &, then
T = @ and the Shimura variety Sh(G, K?) :=Sh(Gg &, K?) has another moduli interpretation in terms of
abelian varieties with real multiplication by Og. Using this moduli interpretation, one can also construct
another integral model of Sh(G, K”). The aim of this part is to compare this integral canonical model of
Sh(G, K?) with Sh(G, K?) constructed in the previous subsection using unitary Shimura varieties.

We choose an element y € B* such that

e b b* =y~ by is a positive involution;
e v(y) is a p-adic unit for every p-adic place p of F, where v: B* — F* is the reduced norm map.

Put V := B viewed as a free left B-module of rank 1, and consider the alternating pairing

('7'>F:VXV_)F’ (an>F:Tr%/F(x)_’V),
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where Tr"B/F is the reduced trace of B. Note that (bx, y)p = (x,b*y)r forx, y € V and b € B. We let
G=B*actonV viag-v=uvg~! for g € G and v € V. One has an isomorphism

G = Autg (V).
Fix an order Op C B such that
e Op contains O, and it is stable under *;
e Op®Z, is a maximal order of B ®¢g Q, = GLy(F ®q Q),).

Let K? € G(A®?) be an open compact subgroup. Consider the moduli problem Sh(G, K”) that
associates to every Z,)-scheme T the equivalence classes of tuples (A, ¢, X, @xr) where

e A is a projective abelian scheme over 7 up to prime-to-p isogeny;

« ¢ is a real multiplication by Op on A, that is, a ring homomorphism ¢: Op — End(A) satisfying
det(T —¢(b)| Lie(A)) = Np@(Ng, (T — b)), b€ Op,
where N /F is the reduced norm of B/ F;

e Aisan F f " _orbit of Op-linear prime-to-p polarizations A: A — A" such that (b)Y oL = Ao t(b*)
for all b € Op, where F. f’x C F* is the subgroup of totally positive elements that are p-adic units
forall p € X

e 0gr is a KP-level structure on (A, t), that is, &g is a K?-orbit of B ®g A°?-linear isomorphisms
of étale sheaves on T':
a: V@gAXP =5 VP(A).

Remark 2.5. By [Zink 1982, Lemma 3.8], there exists exactly one F f ** orbit of prime-to- p polarizations
on A that induces the given positive involution s on B. Hence, one may omit A from the definition of the
moduli problem Sh(G, K?). This is the point of view in [Liu 2019]. Here, we choose to keep X in order
to compare it with unitary Shimura varieties.

By [Zink 1982, page 27], one has a bijection
Sh(G, K”)(C) = G(@)\(H)* x G(A®)/KP K, = Sh(G, K?)(C).

Note that an object (A, ¢, A, @x») € Sh(G, K?)(T) admits automorphisms Op N K?, which is always
nontrivial if F # Q. Here, Oy, is considered as a subgroup of G(A*?) via the diagonal embedding.
Thus, the moduli problem Sh(G, K?) can not be representable. However, Zink shows [1982, Satz 1.7]
that Sh(G, K?) admits a coarse moduli space Sh(G, K*), which is a projective scheme over Z ). This
gives an integral model of the Shimura variety Sh(G, K?) over Z ).

We recall briefly Zink’s construction of Sh(G, K?). Take (A, ¢, A, @x») € Sh(G, K?)(T) for some
Z(py-scheme T'. Choose a polarization A € X, and an isomorphism « € @g». Then A induces a Weil pairing

U*: VP(A) x VP(A) — AP (1),
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and there exists a unique F-linear alternating pairing
Ul VP(A) x VP(A) — AP (1)

such that ¥* = Trr/q o\ifﬁ. We fix an isomorphism Z = Z(1), and view (-, - ) as a pairing with values
in F(1). Then by [Zink 1982, 1.2], there exists an element ¢ € A;O’p "™ such that

Uh(@(x), a(y)) =clx, y)r,  x,y€V@gA®P.

The class of ¢ in A;O’p’x/v(Kp), denoted by c(A, ¢, A, @gr), is independent of the choice of o € &g r. If
F C F* is the subgroup of totally positive elements, then the image of c¢(A, ¢, A, @k») in

AZ P FE 0(KP) = AP JFEv(K)

is independent of the choices of both A and «.

We choose representatives cy, . . ., ¢, € A7 "7 /u(KP) of the finite quotient Ay /FI"*v(K ), and
consider the moduli problem SEI(G, K?) that associates to every Z,-scheme T equivalence classes of
tuple (A, ¢, A, dgr), Where

e (A, 1) is an abelian scheme over T up to prime-to-p isogeny equipped with real multiplication by Op;
e A: A— AY is a prime-to-p polarization such that ¢(b)¥ o A = A o 1(b*) for all b € Op;

e 0gr 1s a KP-level structure on A such that c(A, t, A, dgr) =c; forsomei=1,...,r.
To study the representability of SI](G, K7), we need the following notion of neat subgroups.

Definition 2.6. Let R be the ramification set of B. For every g, € (B ®F F,)™ with v ¢ R, let I',, denote
the subgroup of F:“* generated by the eigenvalues of g,. Choose an embedding Q* < Fi°. Then
(Tg, N Q™)™ is the subgroup of I'y, consisting of roots of unity, and it is independent of the embedding
Q* — Fj°.

Let [J be a finite set of places of @ containing the archimedean place, and let [z be the set of places
of F above [J. An element g € G(A”) = (B ®g A™)* is called neat if (), , _5(Tg, N Q™)' = {1}.
We say a subgroup U € G(AP) is neat if every element g = gtgg € U with v(g*) = 1 is neat. Here,
st e (B®r AEF UR) X (resp. gr € ]_[UE%DF (B®F Fy)™) is the prime-to-R component (resp. R-component)
of g.

Assume from now on that K? C G(A®-P) is neat. It is easy to see that each object of SEl(G, KP)
has no nontrivial automorphisms. By a well-known result of Mumford, SE](G, K?) is representable by a
quasiprojective smooth scheme §f1(G, K?) over Zp). If B is a division algebra, then §fl(G, KP) is even
projective over Z(,) (see [Zink 1982, Lemma 1.8]).

Let (9; . be the group of totally positive units of F'. There is a natural action by (9; +NV(K?) on
§ﬁ(G, KP)givenby & - (A, t, A, agr) = (A, 1,E- A, agr) for & € O;,w and the quotient is the moduli
problem Sh(G, K?). Note that the subgroup (O; N KP)? acts trivially on §f1(G, K7). Here, O; is
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considered as a subgroup in the center of G(A* ). Indeed, if & = n?> with 5 Oy N K7, then the
multiplication by n on A defines an isomorphism (A, ¢, A, &gr) —> (A, (,E - A, &gr). Put

Agr = (05 . NV(KP)/(OFNKP).

Proposition 2.7. Assume that K? is neat. Let (A, t, X, @gr) be a T-valued point of Sh(G, K?). Then
the group of automorphisms of (A, 1, A, @ k») is OpNKP. Here, Oy. is viewed as a subgroup of G (A>P)
via the diagonal embedding.

Proof. This is a slight generalization of [Zink 1982, Korollar 3.3]. Take n € Endp, (A)q that preserves A
and @ . Then there exists & € F,.* such that n7) = £, where ) is the Rosati involution of 7 induced by A.
By [Zink 1982, Satz 3.2], it is enough to show that 7} = 1. Choose « € &g », which induces an embedding

(Endp, (A) @ @) — (Endp(V) @g A®P)* = G(A>P).

Then the image of 7 under this embedding lies in K 7. Consider the endomorphism 7%£ ! € Endp, (A) @ Q.
Its image in G(A°>?) lies in K? and has reduced norm equal to 1. Since K7 is neat, all the eigenvalues
of n?£€~! are 1. So n?£~! must be trivial, hence n = 7. (I

Corollary 2.8. Assume that K? is neat. Then the action of Agr on §fl(G, K?) is free.

Proof. The same argument for [Zink 1982, Korollar 3.4] shows that it follows from the above proposition.
O

We put
Sh(G, K?) :=Sh(G, K?)/Ak», (2-4)

which exists as a quasiprojective smooth scheme over Z,y by [SGA 1 2003, Exposé VIII, Corollaire 7.7].
Then Sh(G, K?) is the coarse moduli space of the moduli problem Sh(G, K?), and §ﬁ(G, KP) is a finite
étale cover of Sh(G, K?) with Galois group Ag». For eachi =1, ..., r, we denote by Sh* (G, KP)
the subscheme of §fl(G, K?) consisting the tuples (A, ¢, A, @gr) with c(A, ¢, A, dgr) = ¢;. It is clear
that each Sh* (G, KP) is stable under the action of Agp. Let Sh“ (G, K?) C Sh(G, K?) be the image of
Sh“ (G, K?) under the morphism (2-4). Note that each Sh“ (G, K?) is not necessarily defined over Z,).
Actually, using the strong approximation theorem, one sees easily that Sh“ (G, K?)(C) is a connected
component of Sh(G, K?)(C).

Remark 2.9. Assume that K7 is neat:

(1) Let (:ZLT) be the universal abelian scheme with real multiplication by Opg over STI(G, K7). Then A
is equipped with a natural descent data relative to the projection §f1(G, K?) — Sh(G, K?), since
the action of A g, modifies only the polarization. By [SGA 1 2003, Exposé VIII, Corollaire 7.7], the
descent data on A is effective. This means that, even though Sh(G, K?) is not a fine moduli space,
there exists still a universal family A over Sh(G, K?). Moreover, by étale descent, T descends to a
real multiplication ¢ by Op on the universal family .4 over Sh(G, K 7).
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(2) In general, Ak, is nontrivial. However, for any open compact subgroup K? € G(A°?), there exists
a smaller open compact subgroup K'? C K? such that Ag» is trivial.

We give an interpretation of §fl(G, K?) in terms of Shimura varieties. Let G* C G be the preimage
of G;y,0 € Tr = Resr/o(Gy,, ) via the reduced norm map v: G — Tf. The Deligne homomorphism
hg: S(R) = C* — G(R) factors through G*(R), hence induces a map

hg: S(R) - G*(R).

We put K7 := G*(Q,) N K, which will be the fixed level at p for Shimura varieties attached to G*. For
a sufficiently small open compact subgroup K*” € G*(A*?), we have the associated Shimura variety
Sh(G*, K*?) defined over (O, whose C-points are given by

Sh(G*, K*")(C) = G*(@\((5H)™ x G*(A®)/K*K?).

Put Sh(G*) :=lim,, Sh(G*, K*7) as usual.

There is a natural action of A°:?:* on A;O’p X /F f T V(KP) by multiplication. Let ¢y, ..., ¢; denote
the equivalence classes modulo FZ"*A%-P-X of the chosen set {cy, ..., ¢,} CAZ 7 /v(KP). We may
and do assume that all the ¢;’s in one equivalence class differ from each other by elements in A%,
For each ¢ € {cy, ..., ¢4}, we put

Sh'(G, K?) := ]_[éTf"(G, KP)

CiEC

and similarly Sh*(G, K?) =]]. .. Sh“ (G, K?).

Ci€C

Proposition 2.10. Suppose that K? C G(A°>P) is a neat open compact subgroup. For every ¢ €
{c1, ..., cn), there exists an element gP € G(A™P) such that if KI'P := G* N gP KPgP =, then we have

an isomorphism of schemes over Q
Sh'(G, KP) ®z,, @ => Sh(G*, K'P).

Proof. Let X = ($%)¥> denote the set of conjugacy classes of ig-: S(R) — G*(R). We fix a base
point (Ao, to, Ao, Xkr.0) € glc(G, K?)(C). Put Vg(Ag) := Hi(Ap(C), Q). We fix an isomorphism
no: Va(Ag) — V of left B-modules and a choice of ag € & g». Then the composite map

Mo ® Doag: VRgA®P? — VP(Ag) = Vo(Ag) ®g AP — V ®g A%

defines an element g” € G(A>?). Now let (A, , A, @gr) € éTlc’(G, K?)(C) be another point. There
exists also an isomorphism 1: Vg(A) — V as B-modules, and the Hodge structure on Vg(A) ®g R =
H;(A(C), R) defines an element xo, € X. By the definition of Sh°(G, K?), there exists an element
a € oy such that the isomorphism

h:=m®oaoa; (@1~ € GA®P)
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preserves the alternating pairing (-, - ) on V ®g A°>? up to a scalar in A>”*. Such an element « is
unique up to right multiplication by elements in K7, and it follows that #” is well defined up to right
multiplication by elements of K;*¥ := gP K” g” 1N G*(A>®P). Viewing h” as an element of G*(A>)

with p-component equal to 1, then (A, ¢, A, &gr) = [Xs0, #”] defines a map
f: STIC(G, K?)(C) — Sh(G*, K*")(C) = G*(Q)\(X x G*(Aoo)/Kc*’pK;).

By the complex uniformization of abelian varieties, it is easy to see that f is bijective, and f descends to
an isomorphism of schemes over Q by the theory of canonical models. U

Remark 2.11. In general, there is no canonical choice for g” in the above proposition. Different choices
of gP will result in different K;"”, which are conjugate to each other in G*(A>”). Consequently,
the corresponding Sh(G*, K{"”) are isomorphic to each other by the Hecke action of some elements
in G*(A®-P). However, if ¢ = ¢t is the trivial equivalence class, g” has a canonical choice, namely

g? = 1. In the sequel, we will always take g” = 1 if ¢ = ¢

. Applying Proposition 2.10 to this case, one
obtains a moduli interpretation of Sh(G*, K*'?) as well as an integral model Sh(G*, K*?) over Z,) of
Sh(G*, K*?). Explicitly, the integral model Sh(G*, K*?) parametrizes equivalence classes of tuples
(A, 1, A, 0g~r), Wwhere (A, 1, 1) is the same data as in §ﬁ(G, KP), and ag+pr is a K*P-level structure on
A, that is, an K*'?-orbit of isomorphisms «: V ® A% = VP(A) such that (-, - ) r is compatible with

\IJ’} up to a scalar in A% 7>,

Example 2.12. Fix a lattice A C V stable under Op such that (A, A)r C D;], where 0 is the different
of F/Q, and that A ® Z,, is self-dual under (-, -)F.

Let 901, 91 be two ideals of OF such that they are mutually coprime, both prime to p and the ramification
set R of B, and that 91 is contained in NOFf for some integer N > 4. Let Ko (90, DN)? be a subgroup
of y € G(A®>P) such that there exists v € A with yv € (Opv +IMA) N (v +NA); put Ko (0N, N) :=
Ko, 1 (N, MP K ,. Then Ko 1 (M, N)? is neat and v(Ko 1 (N, N)) = /@; We have thus isomorphisms

AP JED (Ko, (D, MP) = AT F1 05 = CIF(F),

where CIT(F) is the strict ideal class group of F; and the action of A®* on CI*(F) is trivial. We
choose prime-to-p fractional ideals ¢y, . . ., ¢, that form a set of representatives of CI"(F). Then for each
cef{cy,...,cy}, the moduli scheme éTlc(G, Ko 1 (01, M)P) classifies tuples (A, ¢, A, Con, o), Where

» (A, ) is a projective abelian scheme equipped with real multiplication by Op;

e A: A— AV is an Op-linear polarization such that ((b)" o A = A o t(b*) for b € Op, and the induced
map of abelian fppf-sheaves

AY =5 A®o, ¢
is an isomorphism;

o Cyy is a finite flat subgroup scheme of A[)1] that is Opg-cyclic of order (Nm m)?;
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o am: (Op/MP? < A[N] is an embedding of finite étale group schemes equivariant under the action
of Op @0, Or /M= GL2(Op/MN).

Let g/ € G(A™P) be such that the fractional ideal attached to the idele v(g?) € A7 represents
the strict ideal class ¢. Put

K2P =gl Ko (M, MPgl 1 NG*(A™P).

Then we have
Sh*(G. Ko.1 (M. M?) ® Q = Sh(G*, K7).

More explicitly, if F(‘)’ L ON,N) =G (@)L NK P where G*(Q)4+ € G*(Q) is the subgroup of elements
with totally positive reduced norms, then

Sh'(G, Ko,1 (M, MP)(C) = Sh(G*, KFP)(C) = g (M, M\(HH) ™.

In particular, éTlc(G, Ko.1 (91, 91)P) ® Q is geometrically connected for every c. In this case, one has
Ako omoyr = OF L/ O;”gt, where O o, denotes the subgroup of £ € Oy with & =1 mod M. It is clear
that the action of A, m,on» preserves §f1c(G, Ko,1 (1, 91)P), and one obtains an isomorphism

h

Sh(G. Ko,1 (M, M)P) = | [Sh (G, Ko, (M. M?)

i=1
with Sh“ (G, Ko 1 (9, 9)P) = Sh* (G, Ko, 1 (M, NP)/ Ak, omonr. Since Ak, omone acts freely on
§fl(G, Ko,1(O, DV)P), each Sh (G, Ko 1 (I, 91)?) is a smooth quasiprojective scheme over Z ).

2F. Comparison of quaternionic and unitary moduli problems. We now compare the integral model
Sh(G, K?) defined in (2-4) and the one constructed using the unitary Shimura variety Sh(Gé, K'P)
with S = @. Note that when S = &, there is only one choice for §, so we write simply G’ for G’é. By
the universal extension property of Sh(G) := lim,, Sh(G, K7”), these two integral canonical models
are necessarily isomorphic. However, for later applications to the supersingular locus of Sh(G, K”)g,,,
one needs a more explicit comparison between the universal family of abelian varieties over Sh(G) (as
in Remark 2.9(1)) with that over Sh(G’). It suffices to compare the universal objects over the neutral
connected components via the isomorphism

Sh(G)3y = Sh(G')3

induced by (2-2). Here, Sh(G)%l;r is defined similarly as Sh(G’ )%%,; in other words, it is the closure of
Sh(G)? in Sh(G) ® Z};.

The natural inclusion G* < G induces also an isomorphism of derived and adjoint groups, and is
compatible with Deligne homomorphisms. By Deligne’s theory of connected Shimura varieties, it induces
an isomorphism of neutral connected components Sh(G*)° = Sh(G)°. Therefore, we are reduced to
comparing the universal family over Sh(G*) and Sh(G").
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Recall that we have chosen an element y € B* to define the pairing (-, - ) on V = B. We take the
symmetric element § € Dg in Section 2D to be § = y/ (2v/0). One has W =V ®r E, and

Y1, y®1) =(x,y)

forany x,ye V. Put (-,-) :=Trpgo(-,-)r. Then G* (resp. G’) can be viewed as the similitude group
of (V,(-,-)) (resp. (W, ¥) (2-3)); and there exists a natural injection G* < G compatible with Deligne
homomorphisms that induces isomorphisms on the associated derived and adjoint groups.

We take Op, = Op ®p, Of. Let K*’ € G*(A*>?) and K'? C G'(A*?) be sufficiently small open
compact subgroups with K*? C K'P. To each point (A, ¢, A, @g+r) of Sh(G*, K*7) with values in a
Z ,-scheme S, we attach the tuple (A", /', A, @'%,), where

« A'=A®o; OF;
e (/1 Op, — Endgs(A’) is the action induced by ¢;
o )1 A”— A" is the prime-to-p polarization given by

A'= Ao, Op 225 AY ®o, Op ~25 A ®o, 05, = A",

where 0, } 18 the inverse of the relative different of £/F andi: O — 0 }  1s the natural inclusion;

a'y), is a rational K'P-level structure on A’ induced by @g~» by the compatibility of alternating

forms (V, (-, -)) and (W, ). Here, we use the moduli interpretation of Sh(G’, K'?) in terms of
isogeny classes of abelian varieties (See Remark 2.3).

This defines a morphism

Sh(G*, K*?) — Sh(G’, K'?)

over Z, extending the morphism Sh(G*, K*?) ®q Q, — Sh(G’, K'?) ®g Q,. Taking the projective
limit on the prime-to-p levels, one gets a morphism of schemes over Z,,

f: Sh(G*) — Sh(G")
such that one has an isomorphism of abelian schemes
[fFAZA®o, OF,

where A (resp. A') is the universal abelian scheme over Sh(G*) (resp. over Sh(G’g)). By the extension
property of the integral canonical model, the map f induces an isomorphism

f°: Sh(G*)° => Sh(G")°

~

which extends the isomorphism Sh(G*)° = Sh(G’)° induced by the morphism of Shimura data on the
generic fibers. Thus the two universal families over Sh(G)® induced from Sh(G*) and Sh(G’) respectively
are related by the relation

SO (Alsneye) = Alshcy oy OF. (2-5)
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3. Goren-Oort cycles and supersingular locus

In this section, we study the supersingular locus and the superspecial locus of certain Shimura varieties
established in the previous section.

3A. Notation and conventions. Let k be a perfect field containing all the residue fields of the auxiliary
field E in Section 2B at p-adic places, and W (k) be the ring of Witt vectors. Then X g  is in natural
bijection with Homz(Og, W (k)), and we have a canonical decomposition

Op, ®z W (k) = Maty(Op @z W(k) = P MW (k).

fEZE_oo

Let S be a W (k)-scheme, and N a coherent Og ® Op,-module. Then one has a canonical decomposition

where N; is a left Mat, (Og)-module on which Of acts via the composite map O N W(k) — Og. We
also denote by N the direct summand ¢ - Nz with ¢ = ((1) 8) € Mat;(Os), and we call M? the reduced
T-component of M.

Let G be a p-divisible group over a k-scheme S. We say that G is supersingular if, for every geometric
point s of S, the Newton polygon of G x5 5 has only slope % An abelian variety A over S is called
supersingular if A[p®] is a supersingular p-divisible group over S, or equivalently for every geometric
point s of S, A xg s is isogenous to a product of supersingular elliptic curves.

Consider a quaternionic Shimura variety Sh(Gs 1, K”) of type considered in Section 2A, and let
Sh(G/é, K'P) be the associated unitary Shimura variety over Og as constructed in Section 2D for a certain
choice of auxiliary CM extension E/F. Let ko be the smallest subfield of [}’ containing all the residue
fields of characteristic p of E. Then we have ko = [F,» with h equal to the least common multiple of

{(1+gp —218p/2)8p | p € Z)}. Put
Sh(G}, K'")x, :=Sh(G}, K'7) ®0o,, ko.
The universal abelian scheme over Sh(G}, K'P)y, is usually denoted by A%.

3B. Hasse invariants. We recall first the definition of essential invariant on Sh(G’é, K'P)y, defined in
[Tian and Xiao 2016, Section 4.4]. Let (A, ¢, A, @g») be an S-valued point of Sh(G/s, K'P)y, for some
ko-scheme S. Recall that H‘liR(A /S) is the relative de Rham homology of A. Let w4v be the module of
invariant differential 1-forms on AY. Then for each 7 € £ o, H{X(A/S5)? is a locally free Og-module
on § of rank 2, and one has a Hodge filtration

0— wyv; > H?R(A/S)CTZ — Lie(A/S); — 0.
We defined, for each T € Xk o, the essential Verschiebung

Ves.z: HIR(A/85)2 — HIR(A®)/85)2 = HIR(A/5)>P)

o1’
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to be the usual Verschiebung map if s,-1; =0 or 1, and to be the inverse of Frobenius if s; = 2. This is
possible since for s; = 2, the Frobenius map F: H‘l1R (A(p)/S)§ — H‘llR (A/S)3 is an isomorphism. For
every integer n > 1, we denote by

Vi HR(A/9)2 > HR AP /9)2 =HR (a/9); 0

ot
the n-th iteration of the essential Verschiebung.
Similarly, if S = Speck is the spectrum of a perfect field k£ containing kg, then one can define the
essential Verschiebung
Ves: D(A)? — D(A)S_,. forall T € Tg oo,

as the usual Verschiebung on Dieudonné modules if s; = 0, 1 and as the inverse of the usual Frobenius if
sz = 2. Here, D(A) denote the covariant Dieudonné module of A[ p™®]. This is a o ~!-semilinear map of
W (k)-modules. For any integer n > 1, we denote also by

VI D(A)2 — D(A)S .

the n-th iteration of the essential Verschiebung.

Now return to a general base S over ky. For T € X, — S, let n; = n;(S) denote the smallest integer
n > 1 such that 0 ™"7 € ¥, — So. Assumption 2.1 implies that n; is odd. Then for each T € X g o with
sz = 1, or equivalently each T € X o lifting some 7 € X, — S, the restriction of Vi to wzv’f defines
a map
p"T

. 0,(p"T) ~
hz(A): w:;v’f T WAV gy = (wi\/’g—nrf)

Applying this construction to the universal object, one gets a global section
hi € T(Sh(GY, K"y, (0% 5ne )" ® (@ D&, (3-1)
s’ s’
called the t-th partial Hasse invariant.

Proposition 3.1. Let x = (A, (, A, agw) be an Fi-point of Sh(Gé, K'P),, and p a p-adic place of F
such that Seojp # Lioosp. Assume that hz(A) # 0 for all T € X g oojp with sz = 1. Then the p-divisible

group A[p®°] is not supersingular.

Proof. The covariant Dieudonné module D(A) of Al p™] is a free W([F;C) ®z Ops-module of rank 1.
Then the covariant Dieudonné module of A[p°°] is given by

DAR®N= P DA,
‘EEEE’OQ/;,

and there exists a canonical isomorphism
D(A)3/pD(A); =HR(A/F)S.
By assumption, for all T € Xg oy lifting some 7 € Xoo/p — Soo/p, the map

0,(p"7)

hi(A): &fy ; — WA gz
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is nonvanishing. Thus it is an isomorphism, as both the source and the target are one-dimensional
[F‘;f-vector spaces. For each T € X« lifting some T € ooy — Sooyp, choose a basis ez for v, -, and
extend it to a basis (ez, f;) of HI®(A/ F5)2. If we consider Ve as a o~ !-linear map on HIR(A/ F4)2,

then one has

uz 0
Ves (€7, fz) = (e, fonr) (OT 0)
with uz € Fj>.
Let q be a p-adic place of E above p. By our choice of E, g, :=[E, : Q,] is always even no matter
whether p is split or inert in E. To prove the proposition, it suffices to show that the p-divisible group
A[q®°] is not supersingular. By composing the essential Verschiebung maps on all H‘liR(A /8)3 with

T € X[, 00/q> WE get

Vel (ez, fz) = (ez, f3) (i; 8)

with a; € [F‘I’,"’X for all T € Xg o/q With sz = 1. Now, note that V&S on H?R(A/[Fj‘f)‘f’ is nothing but the
reduction modulo p of the o ~%4-linear map

Ve /p™: D(A)2 — D(A)2,

where m is the number of T € X g o /q With s; =2. If (ez, f;) is a lift of (ez, f3) to a basis of f)(A);i over
W(F), then V& /p™ on f)(A); is given by

Véa - -~ = az pbf)

@z, f2) = (Cz, f-

PGNOEICHD (pcf i
for some a; € W(I]:?f)X lifting a; and bz, ¢z, d; € W([F‘}‘f). Put

L:= ﬂ(‘;j) D(A)2.

n>1

It is easy to see that L is a W([Fi‘f)—direct summand of @(A);Z of rank one, on which V& /p™ acts
bijectively. It follows that 1 —m/g, is a slope of the p-divisible group A[q*°]. By our choice of the s;
in Section 2B, the two sets {T € X oo/q | 57 =2} and {T € X g o0/q | 57 = 0} have the same cardinality,
hence 2m < gg, thatis, 1 —m/gq > % Therefore, A[q®] hence A[p°°], are not supersingular. [l

3C. Goren-Oort divisors. For each 1 € Y5, — Ss, let Sh(Gé, K'P)i,.z be the closed subscheme of
Sh(Gé, K'P)y, defined by the vanishing of 4; for some T € X  lifting 7. By [Tian and Xiao 2016,
Lemma 4.5], h; vanishes at a point x of Sh(G’g, K'P)y, if and only if hzc vanishes at x. In particular,
Sh(G/é, K'P),.- does not depend on the choice of 7 lifting 7. We call Sh(G’g, K'P)ko.z the t-th Goren—
Oort divisor of Sh(G’é, K'P)y,. For a nonempty subset A € Yoo — Soo, We put

Sh(G. K')io.n = | Sh(G}. K'P ).z

TeA
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According to [Tian and Xiao 2016, Proposition 4.7], Sh(Gfg, K'P)k.a is a proper and smooth closed

subvariety of Sh(G’g, K'P)y, of codimension #A; in other words, the union _J Sh(G%, K'P)i,.«

TEX5—S0o
is a strict normal crossing divisor of Sh(Gé, K'P)p,-

In [Tian and Xiao 2016], we gave an explicit description of Sh(Gé, K'P)y,.r in terms of another unitary
Shimura variety of type in Section 2D. To describe this, let p € X, denote the p-adic place induced by 7.
Set

SU{t,o " if X S Uf{r},
r={ {r.o™" 1} if Toojp # Sooyp U (T} (3-2)

sU{z, p} if Too/p = Soosp U LT}

We fix a lifting 7 € g o Of 7, and take S; o 10 be Soo U{T, 07" T} if Tog/p 7 Seoyp U {7}, and to be
Seo U{F}if Yoo/p = Soo/p U{t}. This choice of é,,oo satisfies Assumption 2.2. We note that both Dg and
Ds, are isomorphic to Mat, (E). We fix an isomorphism Dg = Ds_, and let Op;_ denote the order of Ds,
corresponding to Op, under this isomorphism.

Proposition 3.2. Under the above notation, there exists a canonical projection
7. Sh(G%, K'P)gy.r — Sh(G'g K"k
where:

(1) If Boop # Socyp Uit} then ) is a P'-fibration over Sh(G’gr, K'P), such that the restriction of m..

10 Sh(G%, K'P)iy.(z.c-n 7} IS an isomorphism.

(2) If Zoojp = Sooyp U (T}, then m. is an isomorphism.

Moreover, . is equivariant under prime-to-p Hecke correspondences when K'P varies, and there exists

a p-quasiisogeny
. ! /% 7/
¢ Aglshay Ky, = Tr Ag,

that is compatible with polarizations and K'P-level structures on both sides, and that induces an isomor-
phism of relative de Rham homology groups

5.0 0 HIS (ASlsnay k), / SN(GE, K g, 0)% ZHR (AL /Sh(GS , K'P))2,
forany T € X oy lifting some v’ € oo — St 00 /p-
Proof. This is [Tian and Xiao 2016, Theorem 5.2]. O

Here, we are content with explaining the map 7, and the quasiisogeny ¢ on [ -points. Take x =
(A, tp, Ap,ap) € Sh(Gé, K’P)ko,,([F;‘f). Denote by D(A)° = ®f/€2Eoc f)(A)‘f’, the reduced covariant
Dieudonné module as usual. For each T’ € T o, define the essential Frobenius

. N0 ~o
Feo: D21 — D2,
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as the usual Frobenius map if s> = 1, 2 and as the inverse of Verschiebung map if sz = 0. Consider a
W (F5)-lattice M° = D Mz of D(A)°[1/p] such that

f/EEEY

Fl:=*D(A)? ift =0T with0<f<n,—1,

—nr .E

Mg = S F DA e T =02 with 0 <€ < n — 1 and Togyp # Soopp U {1},
D(A)2 otherwise.

Note that the condition /7 (A) = 0 is equivalent to @5, . = Fy (f)(A)g
preimage of ®, . under the natural reduction map

), where cbjw ; denotes the

—nt ‘L~'

D(A)? — D(A)/pD(A) = HN(A/F)3.

Using this property, one checks easily that M° is a Dieudonné submodule of D(A)°[1/p]. Put M := M°®?
equipped with the natural action of Op, ® Z, = Matx (O ® Z,,). Then M corresponds to a p-divisible
group G equipped with an Op-action and an Op,-linear isogeny ¢, : A[p>] — G. Thus there exists an
abelian variety B over F;7 with B[p*°] = G and a p-quasiisogeny ¢: A — B such that ¢, is obtained by
taking the p°°-torsion of ¢. Moreover, by construction, it is easy to see that
dim(Lie(A)$) if T/ #7,07" 7T,
dimLie(B)$, = {0 ift'=17,07"7¢,
2 ift'=1%07""1.
In other words, the Og-action on B satisfies Kottwitz’ condition for Sh(G/gr, K'P). Moreover, A4 and oy
induce an Op_-linear prime-to-p polarization Ap via the fixed isomorphism Op, >~ Op,_and a K 'P_level
structure o on B, respectively, such that (B, (5, Ap, &p) is an [F;‘f—point of Sh(Ggr, K’P). The resulting
map (A, ta, Aa, @a) — (B, g, Ap, &p) is nothing but 7.
If Yoo/p # Soojp U (T}, then 07" 1 # 7 and we have f)(B)fT
recover A from B, it suffices to “remember” the line .,

=D(A)?
- inside the two dimensional [F;‘f—vector

—_ “n,; Dy construction. To

—nr

space
D(A)anrf/pD(A)gfnrf = D(B);fnrf/pD(B)gfnrf-

This means that the fiber of 7z, over a point (B, tp, Ap, &p) € Sh(Géz, K'P) is isomorphic to P'. On the
other hand, if Y/, = Soo/p U {7} then n, = [F, : Q,] is odd, one can completely recover A from B,
and thus ] induces a bijection on closed points.> The moreover part of the statement follows from the
construction of 7.

3D. Periodic semimeanders. Following [Tian and Xiao 2019], we iterate the construction of Goren—Oort
divisors to produce some closed subvarieties called Goren—Oort cycles. To parametrize those cycles, one
need to recall some combinatorial data introduced in [loc. cit., Section 3.1].

For a prime p € X, put dy,(S) := gy —#S0p. If there is no confusion, we write dj, = d,, (S) for simplicity.
Consider the cylinder C: x2 4+ y? = 1 in 3-dimensional Euclidean space, and let Cy be the section with

3To show that 7} is indeed an isomorphism, one has to check also that 7. induces isomorphisms of tangent spaces to each
closed point. This is the most technical part of [Tian and Xiao 2016]. For more details, see [loc. cit., Lemma 5.20].
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z=0. We write Toojp = {70, ..., Tg,—1} such that 7; = ot;_; for j € Z/gyZ. For 0 < j < g, — 1,
we use 7; to label the point (cos 27 /gy, sin27j/gp, 0) on Co. If 7; € S/, then we put a plus sign
at 7;; otherwise, we put a node at ;. We call such a picture the band associated to Su/p. We often
draw the picture on the 2-dimensional xy-plane by thinking of x-axis modulo g,. We put the points
70, - - -, Tg,—1 On the x-axis with coordinates x =0, ..., g, — 1 respectively. For example, if g, = 6 and
Soo/p = {71, T3, T4}, then we draw the band as

e +e++e0,

A periodic semimeander for Sy is a collection of curves (called arcs) that link two nodes of the
band for S./p, and straight lines (called semilines) that links a node to the infinity (that is, the direction
y — 400 in the 2-dimensional picture) subject to the following conditions:

(1) All the arcs and semilines lie on the cylinder above the band (that is to have positive y-coordinate in
the 2-dimensional picture).

(2) Every node of the band for S is exactly one end point of an arc or a semiline.
(3) There are no intersection points among these arcs and semilines.

The number of arcs is denoted by r (so r < d,/2), and the number of semilines d, — 2r is called the
defect of the periodic semimeander. Two periodic semimeanders are considered as the same if they can
be continuously deformed into each other while keeping the above three properties in the process. We
use B(Sxp, 1) denote the set of semimeanders for S/, with r arcs (up to continuous deformations).
For example, if g, =7, r =2, and Sy = {71, 74}, then we have d, = 5 and

B 2 Lacax e Dliasialdlamanl
N VAN VAN IS VPN §

It is easy to see that the cardinality of B(Sxe/p, 1) is (dr*’). In fact, the map that associates to each
element a € B(Sxp, ) the set of right end points of arcs in a establishes a bijection between B (Seo/p, 1)
and the subsets with cardinality r of the d,-nodes in the band of S /.

3E. Goren—Qort cycles and supersingular locus. We fix a lifting T € X /p for each 7 € Lo /p —Soo/p-
For a periodic semimeander a € B(Sx/p, 1) with r > 1, we put

Sa:=8U{1 € Xogp | T is an end point of some arc in a}. (3-3)
For an arc § in a, we use r;“ and 75 to denote its right and left end points respectively. We take
Sa.00 = Seo U{Z;, T; | 8 is an arc of a}.

Here, f; denotes the fixed lifting of r[;“ ,and 7; ' the conjugate of the fixed lifting ;" of ;. We fix an
isomorphism G/g (A®) = G/é (A®°), and consider K'? as an open compact subgroup of Gé (A%-P), We
may thus speak of the unitary Shimura variety Sh(G’§ , K'P).
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Following [Tian and Xiao 2019, Section 3.7], for every a € *B(Sx/p, '), We construct a closed subvariety
Z’g(a) C Sh(G’g, K'P)y, of codimension r, which is an r-th iterated P!-fibration over Sh(Géu, K'P),-
We proceed by induction on > 0. When r = 0, we put simply Zé(a) = Sh(G’é, K'P)k,- Assume now
r > 1. An arc in a is called basic, if it does not lie above any other arcs. Choose such a basic arc §,
and put 7 := ‘E[;r and 7~ := 15 for simplicity. We note that 7~ = o "**7. Consider the Goren—Oort
divisor Sh(Gfg, K'P)k.z» and let 7. Sh(G’g, K'P)kr = Sh(Gér, K'P);, be the P!-fibration given by
Proposition 3.2. Let as € B(Sg,00/p, ¥ — 1) be the periodic semimeander for S, obtained from a by
replacing the nodes at 7, T~ with plus signs and removing the arc §. For instance, if

VNN

then S, = SU {1, 13, 75, T4}, and the arc § connecting 73 and ts is the unique basic arc in a, and

LD

By the induction hypothesis, we have constructed a closed subvariety Zé (as) € Sh(Gé , K'P)y, of
codimension r — 1. Then we define Z/g (a) as the preimage of Zé (as) via w,. We denote by

T Zé(a) — Sh(G’éu, K"k,
the canonical projection. In summary, we have a diagram

Z{(a)———— Sh(G}, K'P),.c —— Sh(G}, K'P)y,

L

7 | 2} (a5)———— Sh(G} . K'P),,

’
lnaa

Sh(G} , K"},

where the square is cartesian. By induction hypothesis, the morphism 7, is an (r—1)-th iterated Pl-
fibration. It follows that 7 is an r-th iterated P!-fibration.

We explain the relationship between Goren—Oort cycles and the p-supersingular locus of Sh(G’g, K'P),-
Take a € B(Soo)p, Ldp/2]). If dy is even, then we put Wé’ (a):= Z’g(a). If dy, is odd, then we let T(a) € Yoo/
denote the end point of the unique semiline in a, and define Wé(a) by the following Cartesian diagram:

AGE 0

| !

Sh(G , K"}k e Sh(G} , K"y
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We put

a-

& . {éa = (Sa, Sa.00) if d, is even, (3-4)

" (8. U{r(a). p}. Sao ULE(@)})  if dp is odd.
Note that the underlying set S} of S is independent of a € B(Sxc/p, [dy/2]), namely all S¥ are equal to

SUXo/p if d,, is even,

o (3-5)
SUXwp Ulp} if d, is odd.

S(p) := {
If d,, is odd, then we have an isomorphism

Sh(Gg . K)o (@ = Sh(Gg,, K™)i,
by Proposition 3.2. Thus, regardless of the parity of dj,, one has a |d,/2]-th iterated P!-fibration
equivariant under prime-to-p Hecke correspondences:

Talwy@ : Wa(a) > Sh(Géﬁ, K'P),-

Theorem 3.3. Under the notation above, the union

U we

GE%(SQQ/p s Ldp /ZJ)

is exactly the p-supersingular locus of Sh(Gé, K'P),, that is, the maximal closed subset where the

universal p-divisible group A/S [p°°] is supersingular.

Proof. We proceed by induction on dj, > 0. If dy, = 0, then 25(Sp, 0) consists only of the trivial periodic
semimeander (that is, the one without any arcs or semilines). In this case, one has to show that the whole
Sh(G/é, K'P)y, is p-supersingular. First, we have s; € {0, 2} for all T € X g »/p, and Assumption 2.2(2)
implies that the number of 7 € X «/p With sz = 2 equals exactly to the number of T € X o With
sz = 0. Now consider a point x = (A, (, A, ) € Sh(G/g, K’P)(F;‘f). Then, for every T € Xg /p, the
2gp-th iterated essential Verschiebung

2gp VZgP . A o ~ o ~ o
Vet = = DU > DAY, g = DA);
is bijective, no matter whether p is split or inert in E. It follows immediately that % is the only slope of
the Dieudonné module P D(A); = D(A[p™)), so that A[p™] is supersingular.

. , . . .
Assume now d, > 1. We prove first that the union Uae&B(sm/p,Ldp 2)) Wé(a) is contained in the p-

'L:EEEYDC/‘J
supersingular locus of Sh(G’g, K'P)y,. Fix a € B(Sao/p, Ldp/2]). Then one has a projection
T[l/llwé/(a)l Wé(ﬂ) — Sh(G/éa’ K/p)ko

and a p-quasiisogeny

Y 1% Al
¢a. A§|W§’(u) —)T[a Aén
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by the construction of 7r; and Proposition 3.2. Note that dj, (S,) =0, and by the discussion above, A/éu [p>°]
is supersingular over the entire Sh(G’éu, K'P)y,. It follows that A’é [p°°] is supersingular over Wg(a).

To complete the proof, it remains to show that if x € Sh(G’é, K’ P)(F5) is a p-supersingular point,
then x € Wé(a)([F?;c) for some a € B(Sx/p, [dp/2]). By Proposition 3.1, there exists T € X /p such that
X € Sh(Gé, K'P)iy. (F5). Consider the P!-fibration 7, : Sh(G/é, K'P)ior — Sh(Gng, K'P)i,- Since A/é,x

is p-quasiisogenous to A% we see that 77 (x) lies in the p-supersingular locus of Sh(GY , K'7)i,. By

0,7 (x)’
the induction hypothesis, . (x) € Wé (b)(F%5) for some periodic semimeander b € B (St o0/p, Ldp/2—1]).
Now let a be the periodic semimeander obtained from b by adjoining an arc § connecting o "<t and t so
that 7 is the right end point of . Then a € B (S /p, [dp/2]), and § is a basic arc of a such that b = a;.

To finish the proof, it suffices to note that Wé(a) = nfl(Wé (b)) by definition. O

Definition 3.4. We put
Sh(Gy, K'7)i ™ := Sh(Gy, K'")kg 5.0y

and call it the p-superspecial locus of Sh(G%, K'P)y,.

We have the following proposition that characterizes the p-superspecial locus.

Proposition 3.5. Let p € X, be such that dy is odd, and take a € B(Seosp, (dy — 1)/2). Then
Sh(Gé, K“”)E;Sp is contained in Wé(a), and the restriction of w, to Sh(G/é, K’p)Z;Sp induces an
isomorphism

Sh(Gg, K'7)y, " = Sh(Gg, . K.

5
which is equivariant under prime-to-p Hecke correspondences.
Proof. We proceed by induction on dy, > 1. If d, = 1, then all the p-supersingular locus is p-superspecial,
and the p-supersingular locus consists of only one stratum Wé(a). So the statement is clear.

Assume now d, > 1. Choose a basic arc § of a. Let T (resp. 77) be the right (resp. left) node of §, and
as be the semimeander obtained from a by removing the arc §. Then one has a commutative diagram

W (a) ZL(a) ——— Sh(G}. K'P)j «

Lk

¢ (a5) —————— Z{ (as) —— Sh(G} , K'P),

|
Sh(G , K"y v(@) — Sh(Gg , K"y,

~

Sh(G},. K'P),

where all the squares are cartesian; all horizontal maps are closed immersions; and all vertical arrows are
iterated P'-bundles. By the induction hypothesis, the p-superspecial locus Sh(G/é ,K'?P )EO_SP is contained
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in Wé (as) and the restriction of nés induces an isomorphism
Sh(G} . K'")} " = Sh(G}.. K'")y,. (3-6)
Now by Proposition 3.2, the restriction of 7, induces an isomorphism

Sh(G{"v K/p)kOs{f,Ti} ;> Sh(G{"Tv K/p)k()

compatible with the construction of Goren—Oort divisors. Thus, ] sends Sh(G%, K'? )zO_Sp isomorphically
to Sh(G/g , K'P ),’EO_SP. The statement now follows immediately by composing with the isomorphism (3-6).
O

3F. Total supersingular and superspecial loci. We will now study the total supersingular locus of
Sh(Gé, K'P)i,, that is, the maximal closed subset where the universal p-divisible group A/g [p™] is
supersingular. Put

Bs :={a = (ap)pezx, | ap € B(Soosp, Ldp/2D)},

and r := ZpeE,, ldy/2]. We attach to each a an r-dimensional closed subvariety W;(a) € Shg'(G)x,
as follows. We write ¥, = {p1, ..., P}, that is, we choose an order for the elements of X,. We put
S} :=Sg,, and St = §§p1 (see 53—4));~put inductively S; 41 := (S)a,_, » St = (éi)ij. forl <i<m-—1;
and finally put S, :=S,, and S} :=S;,. For a,, € B(Seo/p, |dp,/2]), we have constructed a |dy, /2]-th
iterated P! -fibration 7

nc’lpl W) W(ap,) — Sh(GéT, K'P)g,-
/

Now, applying the construction to ay, € B(Seo/p,, ldp,/2]) and Sh(GS*,
1

subvariety Wé’f (ap,) € Sh(GéT’ K'P)y, of codimension [dy,/27. We put

K'P);,, we have a closed

-1
Wi(ap,, ap,) = (ﬂg‘m) (WéT(am)).
Then there exists a canonical projection

’
n“PZ |Wé* (apy)

ﬂl;pl ‘Wﬁ(ap ap,)
1°9P2 / !/ /
L, W (ap,) ——— > SB(GY,, K,

/ Ny 124
ap,apy ° Wg(am ’ apz)

Repeating this construction, we finally get a closed subvariety Wé’(g) C Sh(G%, K'?)y, of codimension
> pex [dp/2] together with a canonical projection

my: Wila) — Sh(G’gg, K'P),.
Note that the underlying set S7 of §Z is independent of a € Bg, namely all of them are equal to
Smax = ZooU{p e X, | gp :=[F, : Qp] is odd}. (3-7)

Thus Sh(G/g*, K'P)y, is a Shimura variety of dimension 0, and rré is by construction an r-th iterated
P!_fibration over Sh(G},, K'P)x,- We note that W/(a) does not depend on the order pi, ..., p, of the
places of F above p. ’
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Theorem 3.6. The total supersingular locus of Sh(G’g, K'P), is given by

Sh(Gy, K" = | W@,

aeBs

where each Wg’(g) is a Zp@:p ldyp/2]-th iterated P!-fibration over some discrete Shimura variety
Sh(G/,

* 9
54

K'P)k,- In particular, Sh(G/g, K’l’)‘,if) is proper and of equidimension Zpezl, ldy/2].

Proof. This follows immediately from Theorem 3.3 by induction on the number of p-adic places p € X,
such that dy, # 0. ([

Remark 3.7. It is clear that the total supersingular locus is the intersection of all p-supersingular loci for
p € X,. It follows that
W) = (] W(ap),
peX,

and the intersection is transversal.

Similarly to Definition 3.4, we define the total superspecial locus of Sh(Gé, K'P)y, as

Sh(G/g, K/p)zﬁ — Sh(Gi, K/p)ko,Eoo — m Sh(GC’ K/p)]lzo—sp.
pe),

We have the following analogue of Proposition 3.5.

Proposition 3.8. Suppose that dy, is odd for all p € X,. Then for each a € Bg, Wg’(g) contains
Sh(G/é, K ’p)‘,iﬁ, and each geometric irreducible component of Wg’(g) contains exactly one point of

Sh(G%, K/p),ip. In other words, the restriction of w|; induces an isomorphism
0 ¢
Sh(G§, K'P);? = Sh(GY,, K'P)y,.
Proof. This follows immediately from Proposition 3.5. ]

3G. Applications to quaternionic Shimura varieties. Denote by Sh(Gs 1, K”) the integral model of
Sh(Gsg 1, K?) over Op.,  induced by Sh(G/g, K'P). We assume that the residue field of O, is
contained in ko (e.g., S =T = o), and put Sh(Gg 1, K?), := Sh(Ggs 1, K?) Q0rs 1.5 ko. As in [Tian and
Xiao 2016; 2019], the construction of Goren—Oort divisors can be transferred to Sh(Gg r, K?)y, for a
sufficiently small open compact subgroup K” C Gg(A*7),

Consider first the connected Shimura variety Sh(GS,T)ﬁF’%c = Sh(Gs’T)%;r ®zu [F‘}‘f. For each T € X,
the Goren—Qort divisor Sh(G/g)ko,, =lim,, Sh(G}, K'P),. induces a divisor Sh(G%)%}c,r on Sh(G/g)E.;C.
By the canonical isomorphism

K'P

Sh(GS,T)ﬁF)f;)c = Sh(G%)Ei;f

from Section 2F and Deligne’s recipe of recovering Sh(GS,T)[F;c from Sh(Gsg, 1), [Tian and Xiao 2016,
P
Corollary 2.13], the divisor Sh(Gg 1)f. , induces a divisor Sh(Gs’T)[F«;c,T on Sh(G&T)[Fe;)C. By Galois
P’
descent, one gets a divisor Sh(Gs 1)k, on Sh(Gs 1), which is stable under prime-to-p Hecke action.
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Finally, we define the Goren—Oort divisors on Sh(Gs 1, K”)y, as the image of Goren—Oort divisors on
Sh(Gs 1, K?)y, via the natural projection Sh(Gg 1)r, = Sh(Gs 1, K?)g,.

Proposition 3.9. Take v € X for some p € X, and put T, := TU {t}. There exists a morphism of
ko-schemes
7r: Sh(Gs 1, KP)iy.r = Sh(Gs, 1,, KP)i,,

where S; was defined in (3-2), such that
(1) it is compatible with 7t in Proposition 3.2 on neutral geometric connected components;
(2) itis an isomorphism if Yoo /p = Soo/p U {T}; and
(3) it is a P'-fibration.
Proof. This follows immediately from Proposition 3.2 and [Tian and Xiao 2019, Construction 2.12]. [J

Now, the construction of Goren—Oort cycles can be transferred to the quaternionic Shimura variety
Sh(Gs 1, K?)y,. For a periodic semimeander a € B(Sx/p, [dy/2]), we construct inductively in the same
way as Z’é (a) a closed ko-subvariety Zg t(a) € Sh(Gs, 1, K? )i, such that there exists a |d),/2]-th iterated
P!-fibration

7o Zsr(a) = Sh(Gs, 1., K”)i,

according to Proposition 3.9, where S, is defined in (3-3) and

Ta=TU{t € X | T is the right end point of an arc in a}. (3-8)
We define similarly
Zs () if d,, is even,
Ws 1(a) = { " T (3-9)
T, (Sh(GSa,Tu, Kp)k07r(a)) if dp 1S Odd,

where 7(a) € X/ is the end point of the unique semiline of a. Then 7, induces a |d),/2]-th iterated
P!-fibration

7Ta|Ws.T(a)[;e;)c : Wsr(@)re = Sh(Gsp),1z Kp)[F;;C
where S(p) = S is defined in (3-5), and

« | Ta if d,, is even,
* | TaU{t(a)} ifd, is odd.

Of course, when dj, is even, the morphism ”a|Ws,T(a)[Fa;,c is simply the base change to [F‘;)C of m,.
Similarly, for a = (Clp)pezp € Bg = Hpe):p B(Soo/p» Ldp/2]), we can define a closed subvariety
Ws t(a) € Sh(Gs 1, K?)i, of dimension r = Zp ez, |dy/2] together with an r-th iterated P!-fibration

7a: Wsr(@pwe — Sh(Gs,,, 1z, KP)pee,

where S,.x was defined in (3-7), and T; = Upe):,, sz.
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Notation 3.10. In what follows, we will write the I]:‘I‘,C—schemes Sh(Gs. 1, K?) ®Org 1.5 [Ff}‘,c and the sets
Sh(Gs 1, Kf’)([Fj*f), which are independent of T, simply by Sh(Gs, KI’)[F%C and Sh(Gg, K”)([Fj‘f), respec-
tively.

Then the target of 74 is simply Sh(Gsg, ., K? D for every a € *Bs. In particular, the set of geometric
irreducible components of Ws t(a) is in bijection with Sh(Gs,, , K P)(F;‘,C). Moreover, we have an
isomorphism

Sh(Gsmax’ Kp)([F;c) g BSXrnax\BS)jnax/Kp 1_[ K;nax’
pex,
where K™ is the unique maximal open compact subgroups of (Bs,,, ®r F)* for each p € X,. Note
that Bg,, splits (resp. ramifies) at p if gy, is even (resp. odd).

3H. Totally indefinite quaternionic Shimura varieties. We consider the case S = @ (hence T = @), and
we write G = Gy =Gy p and G' = G% for simplicity as usual. Recall that Sh(G, K?) classifies tuples
(A, t, A, &gr) as defined in Section 2E. Even though it is only a coarse moduli space, there still exists a
universal abelian scheme A over Sh(G, K?) (See Remark 2.9(1)).

Definition 3.11. Put Sh(G, K”)¢, :=Sh(G, K?) Q[ :

(1) Foreach p € X, we define the p-supersingular locus of Sh(G, K*)g, as the maximal reduced closed
subscheme of Sh(G, K?)f, where the universal p-divisible group A[p°] is supersingular.

(2) We define the total supersingular locus of Sh(G, K?)g, as the intersection of the p-supersingular
locus forallp € .

Theorem 3.12. For p € X, put g, :=[F, : Q, . Then the p-supersingular locus of Sh(G, K?)
base change to ky, is

after

P’

U Wg z(a),

a€B(Doo/p, L8p/2])
where B(Doosp, 18p/2]) is the set of periodic semimeanders of gy-nodes and | g,/2]-arcs, and each
Wg o (a) is defined in (3-9) and Wg,@(a)ﬂiic is a | gp/2|-th iterated P!-fibration over Sh(G (), KP)[Fapc.
Proof. According to the discussion of Section 2F, the definition of the p-supersingular locus of Sh(G, K7)g,
using the universal family .4 coincides with the one induced from the p-supersingular locus of the unitary

Shimura variety Sh(G’, K'P ), The statement then follows from Theorem 3.3. U
Theorem 3.13. Denote by Sh(G, K? )fFi the total supersingular locus of Sh(G, K?)g,. Then we have

Sh(G, Kp)”sfp ko= U Wa,z(a),
aeBy
where By is the set of tuples (ap)pex, with ay € B(Dooyp, L8p/2]). The base change W@,@(a)F;c of
Wz z(a) to [F?f is a (Zpezp Lgp/2j)-th iterated P'-fibration over Sh(Gs,,,. . Kp)[p;’c, equivariant under
prime-to-p Hecke correspondences, where Syax was defined in (3-7). In particular, Sh(G, K? )ﬁ is
proper and of equidimension Zp@:p Lgp/2].
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Proof. This follows from Theorem 3.12 by induction on the number of p-adic places p € Z,. U
Remark 3.14. The above theorem is known in the following cases:

(1) If p is inert in F of degree 2 and B is the matrix algebra, then the theorem was first proved in
[Bachmat and Goren 1999].

(2) If p isinertin F of degree 4 and B is the matrix algebra, then the results was due to [Yu 2003].

(3) Assume that p is inert in F of even degree. Then the strata Wy 5 (a) have already been constructed
in [Tian and Xiao 2019], and the authors proved there that, under certain genericity conditions on
the Satake parameters of a fixed automorphic cuspidal representation 7, the cycles Wy & (a) give all
the w-isotypic Tate cycles on the quaternionic Shimura variety Sh(G, K 7).

We define an action of G[Fp = Gal([Fj‘,C /Fp) on the set B4 as follows. For each periodic semimeander
ap € B(Dooyp, L&p/2]), let o (ay) be the Frobenius translate of ay, that is, there is an arc in o (ap) linking
two nodes x, y if and only if there is an arc in a, linking o '(x),o0~!(y). Fora= (ap)p, we put
o(a) := (o (ap))pex,. It is clear that the subgroup Gal([F?f/ko) of Gal([F?f/[Fp) stabilizes each a € Bg.
Then the action of Gal([Fj;C /Fp) on Sh(G, K? );iaf sends the stratum Wy g(a) to Wy 5(o(a)).

Definition 3.15. We define the superspecial locus of Sh(G, K?),, denoted by Sh(G, KP)[?;, to be the
maximal reduced closed subscheme § such that for any geometric point X — S the abelian variety Ay is
superspecial, that is, Az is isomorphic to a product of supersingular elliptic curves.

Using the universal family of abelian varieties A over Sh(G, K?), one can define, for each 7 € X, a
partial Hasse invariant 4, on Sh(G, K?);, similarly to (3-1). We can also define the Goren—Oort divisor
Sh(G, K?), - of Sh(G, K”);, as being the vanishing locus of /,. By the relation of universal abelian
schemes (2-5), this definition of Goren—Oort divisor coincides with the one defined by transferring to the
unitary Shimura variety Sh(G’, K'P);,. It is easy to see that

Sh(G, k") @ko= (7] Sh(G, K )y.c-

TE€EY o

Theorem 3.16. Assume that g, is odd for every p € X:
(1) Foreach a € By as in Theorem 3.13, Wy o (a) contains the superspecial locus Sh(G, Kp)?; ® ko,
and the morphism my: Wy (a) Fac —> Sh(Gs, ., K? )[Fe;)c induces a bijection

Sh(G, K?)P(F%) => Sh(Gs,,,. K")(F%) ~ B \B, /K" ]_[ Ky

Smax max
pex,

compatible with prime-to-p Hecke correspondences.

(2) Foreachyp € ¥, let 1, be a uniformizer of the quaternion division algebra Bs,, ®f F,. Let 11,
be the element of égm whose p-component is Iy for each p € X, and other components are 1.
Then under the bijection in (1), the action of the arithmetic Frobenius element o, € Gal(l]:j‘[‘,C /Fp) on
Sh(G, K?)*(Fyy) is induced by the right multiplication by l:[;l on B

max*
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Proof. Statement (1) follows from Proposition 3.8.

To prove (2), we take a superspecial point x = (A, ¢, A, @g») € Sh(G, K”)Sp([F;‘f) as in Section 2E.
Then A is of the form A = C ®z Z, where C is a supersingular elliptic curve and Z is a (left) fractional
ideal of Op. For each p € ¥, we have an equality of p-divisible groups A[p>°] = C[p*°] ®z, Ly, and
hence an equality

D(A[p™]) = D(A[p™]) ®z, L,

for the corresponding covariant Dieudonné modules. Let B, be the unique quaternion division algebra
over @,. Then we have End(C[p™]) ®z, Q, = B), and

Bp ®@p Fp = Bmax ®F Fp = EndOB (A[poo]) ®Zp @p-

Let IT € B, denote a uniformizer of B,, and we view it also as a uniformizer of Bn.x ®F Fj.
Via p-Frobenius isogeny F¢ : C — Cc? DECP[p™)]) is identified with lattice IT~'D(C[p™>]) in
D(C[p>®DI[1/p]. Since F4 : A — AP is induced from Fc by tensoring with Z, we see that F, allows us
to identify D(AP [p>]) with the lattice [T 'D(A[p>]) inside D(A[p>°])[1/p]. Since o,(x) is given by
AP) together with the induced polarization and level structure, the description for o, on Sh(G, K P)SP(F »)
follows. [l

Note that the action of Gal(F »/Fp) on Sh(Gg, ., K? NG p) defined in Theorem 3.16(2) is independent
of a € Bg. In other words, we have a canonical [ ,-scheme structure on Sh(Gg,, , K P)[F;c, which we
denote by Sh(Gs,_. , K?).

max ’

Corollary 3.17. Assume that g, is odd for every p € Z,,. For every a € By, the morphism wq: Wy & (a) Fac —>
Sh(Gs,,,., K? )[F;v is equivariant under Gal([F?,c / ko), hence it descends to a morphism of ko-schemes:

7g: Wa () > Sh(Gs,,,, K7)i,
Proof. This follows from the definition of underlying ko-structure on Sh(Gsg,, , K” )|]:?}c and the fact that
the inclusion Sh(G, KP)h. < Wy 5(a) pe is equivariant under Gal(Fiy / ko). O
14
4. Arithmetic level raising

In this section, we state and prove the arithmetic level raising result. We suppose that g = [F : Q] is odd.
Fix an irreducible cuspidal automorphic representation IT of GL,(AF) of parallel weight 2 defined over a
number field E.

4A. Statement of arithmetic level raising. Let B be a totally indefinite quaternion algebra over F, and
put G := Resp/g B*. Let K be a neat open compact subgroup of G(A™) (Definition 2.6) such that
(TT>®)X £ 0. We have the Shimura variety Sh(G, K) defined over Q whose C-points are given by

Sh(G, K)(C) = G(@\(H)* x G(A™)/K.
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Let R be a finite set of places of F away from which K is hyperspecial maximal.* Let T® be the Hecke
monoid away from R [Liu 2019, Notation 3.1] (that is, the commutative monoid generated by Ty, S, Sq_l
with the relation Squ_1 =1 for all primes q ¢ R). Then IT induces a homomorphism

o ZITM — O
by its Hecke eigenvalues. For every prime A of E, we have an attached Galois representation
pn,.: Gp = Gal(F*/F) — GL2(OF,) 41

which is unramified outside R UR,, where R, denotes the subset of all places of F with the same residue
characteristic as A. The Galois representation pry ; is normalized so that if oy denotes an arithmetic
Frobenius element at q for a place q ¢ R UR,;, then the characteristic polynomial of pr 3 (o) is given by

X? — R (T)X +Nrja (@) (Sy).-
Let mRn’ ,, be the kernel of the composite map Z[T?] LLN O — Og/A.

Assumption 4.1. Let ¢ be the underlying rational prime of L. We propose the following assumptions
on A:

(1) ¢ is coprime to 5, R, disc F, and the cardinality of F>*\AZX" " /(A7 N K).

2) L=>g+2.

(3) The image of pr1, := pm,» mod A contains a subgroup conjugate to SL;(F,).

(4) pn,» satisfies the condition (LI 5y ;) in [Dimitrov 2005, Proposition 0.1].

(5) H8(Sh(G, K)qge, O[E/)‘)/mRH,A has dimension 28 dim(l‘[%")K over Og/A, where I1p is the automor-
phic representation of G (A) whose Jacquet-Langlands transfer to GL,(Af) is IT.

Remark 4.2. We have the following remarks concerning Assumption 4.1:

(1) Assumption 4.1(3) is equivalent to saying that ppy ; is absolutely irreducible and that € divides the
image of oy 5.

(2) Assumption 4.1(3) (and the part £ #~ 5 in (1)) is used to guarantee Ihara’s lemma for Shimura curves
over totally real fields [Manning and Shotton 2019].

(3) If IT is not dihedral (that is, not a theta series) and not isomorphic to a twist by a character of any of
its internal conjugates, then Assumption 4.1(3) and (4) hold for all but finitely many A by [Dimitrov
2005, Proposition 0.1]. In particular, for such a IT, the entire Assumption 4.1 holds for all but finitely
many A.

(4) In general, the dimension of H8 (Sh(G, K)gsc, O[E/k)/m%’)\ is at least 28 dimE(H%O)K over Og/A.

4The meaning of R changes from here; in particular, it contains the ramification set of B, which it previously stood for.
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Let p be a rational prime inert in F, coprime to RU{2, £}. Denote by p the unique prime of F' above p.
To ease notation, we put

¢ — ¢2U{P}: Z[—IIRU{P}] — O, m:= mRIL[L{ip} C Z[TRU{p}]

For a Z[TR%}]-module M, we denote by M, its localization at m. Write K = K,K” where K, is a
hyperspecial maximal subgroup of G(Q) as p ¢ R. We have the integral model Sh(G, K?) over Z,,
defined in Section 2E for the Shimura variety Sh(G, K”) = Sh(G, K). Put 8 :=B(2, (g — 1)/2), the
set of periodic semimeanders attached to S = & with g-nodes and (g—1)/2-arcs. We note that ko defined
in Section 3A is [ 2% in the current case. Then Theorem 3.13 asserts that

Sh(G, K")p ®F e = ) Wa5(0),
ac’B

where each Wy (a) is equipped with a (g — 1)/2-th iterated P!-fibration
Tq: W@,@(a) - Sh(GSmaxv Kp)ﬂ:ng .
Let
Sh(G, K")i’ < Sh(G, K")y,

be the superspecial locus as in Definition 3.15. By Theorem 3.16, each Wy & (a) for a € ‘B contains
Sh(G, K? )?Fp 2 and the morphism 7, induces an isomorphism
P

Sh(G, k"), > Sh(Gs,,. K ) ,,
%8 P

which is equivariant under prime-to- p Hecke correspondences, and independent of a.
Consider the set B x Sh(Gs,,,., K?)(Fy), equipped with the diagonal action by Gg,. The Hecke
monoid TRV} acts through the second factor. We have a Chow cycle class map

max ’

(B x Sh(Gs,,, K")(F), Z) > CH¢*V/2(Sh(G, K”)g) (4-2)
sending a function f on B x Sh(Gs,__, KI’)([F?JC) to the Chow class of ZM f(a, S)JTa_l (s).
Lemma 4.3. The map (4-2) is equivariant under both T*%} and G .

Proof. The equivariance of 7, under prime-to-p Hecke correspondences follows from Theorem 3.16. The
equivariance under Gy, follows from the definition of G -action on Sh(Gs,,,, K?)(F)). ]

Lemma 4.4. Under the notation above, the following statements hold:

(1) There exists a canonical isomorphism
HE (Sh(G, K”)[Fz;,c, O, )m —> H®(Sh(G, K)ge, O, )m
compatible with Galois actions. In particular, we have a canonical isomorphism
H' (F i, H (Sh(G, KP)pe, Op/A((8 + 1)/2))m) = Hyy (Qn, HE (SK(G, K)se, O/A((g +1)/2))m)

for every integer h > 1.



Supersingular locus of Hilbert modular varieties, arithmetic level raising and Selmer groups 2097

(2) Suppose that £ satisfies Assumption 4.1. We have H' (Sh(G, K”)[F;c, OF,)m =Ounlessi = g.

(3) Suppose that € satisfies Assumption 4.1. We have that H8 (Sh(G, K”)[F;c, OF, ) Is a finite free
Ok, -module.

Proof. By [Lan and Stroh 2018, Corollary 4.6], no matter whether the Shimura variety Sh(G, K?) is
proper over Zp), the canonical maps

H'(Sh(G, K”)gs, Op,) => H'(Sh(G, K?)qs, Og,) <= H'(Sh(G, K”)qu, OF,)

for all i > 0 are isomorphisms compatible with Hecke and Galois actions. One gets thus Statement (1)
by localizing the Hecke action at m. Statements (2) and (3) follow from Assumption 4.1 and [Dimitrov
2005, Theorem 0.3]. We remark that although Dimitrov’s theorem is stated for Hilbert modular varieties,
the same argument there applies to our situation without change. U

To ease notation, put G’ := Gal(F}; /[ 2¢). Lemma 4.3 induces the following map
['(B x Sh(Gs,,,, K")(F), )9 — CHED2(Sh(G, KP)g ,,) (4-3)
which is equivariant under both TR} and Gal(F p2¢/Fp). On the other hand, one has a cycle class map
CHE*D2(Sh(G, K") ,,) — HETH(Sh(G, KP)r . OF, (g +1)/2)).
However, by the Hochschild—Serre spectral sequence and Lemma 4.4(2), we have a canonical isomorphism
H8*! (Sh(G, K o Or, (8 +1)/2))m = H' (F ¢, H¥ (Sh(G, K?)gse, OF, (8 +1)/2))m)-

Therefore, composing with (the localization of) (4-3) and modulo XA, we obtain a morphism

O : [(B x Sh(Gs,,,,. KP)(FX), Op/0)G — H'(F e, HE(Sh(G, KP)pae, Op/A((g +1)/2))m). (4-4)
called the unramified level raising map at m. It is equivariant under the action of Gal([F 2 /F ).

Definition 4.5. We say that a rational prime p is a A-level raising prime (with respect to I1, B, K, R) if
(L1) pisinertin F, and coprime to RU {2, £};
(L2) ¢TI, (% =Dy
(L3) ¢%(Ty)? = (p¥ + 1)* mod A and ¢%(Sy) =1 mod A.
Remark 4.6. We have the following remarks concerning level raising primes:
(1) By a similar argument of [Liu 2019, Lemma 4.11], one can show there are infinitely many A-level

raising primes with positive density, as long as there exist rational primes inert in F' and A satisfies
Assumption 4.1.

(2) By the Eichler-Shimura congruence relation, Definition 4.5(L3) is equivalent to saying that pr ; (op)

is conjugate to :I:((l) [?g)
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(3) By the Eichler—-Shimura congruence relation and the Chebotarev’s density theorem, we know that
the canonical map

H#(Sh(G, K)qs, Og/4)/m — HE (Sh(G, K)qs, O /) /mTy ;
is an isomorphism of Of/A[Gg]-modules.

Theorem 4.7 (arithmetic level raising). Let A be a prime of O satisfying Assumption 4.1, and p a \-level
raising prime. Then G’ acts trivially on ' (B x Sh(Gs, ., K? )([F;lf), O¢/)M)m and the induced map

(B x Sh(Gs,,,, K")(F¥), O/A) /m — H' (F 2, H* (Sh(G, KP)gse, O/M((g +1)/2))/m)  (4-5)

is surjective.

4B. Proof of arithmetic level raising. This section is devoted to the proof of Theorem 4.7. We assume
that we are not in the case where F' = Q and B is the matrix algebra, since this is already known by Ribet.

For a € ‘B, denote 7(a) € X the end point of the unique semiline in a. By the construction in
Section 3G, for each a € ‘B, the stratum Wy g(a) fits into the following commutative diagram

Wz z(a)¢ Zz,5(a)——— Sh(G, Kp)[szg
-
Sh(Gg, o, K”)[szg,r(a);> Sh(Gg, o, K”)[szg (4-6)

Sh(GSmax ’ Kp)ﬂ:ng ’

where the square is Cartesian. Here, @, is the set S, defined by (3-3) with S = @ and @, is the subset

defined by (3-8) with T = &, and we used slightly different notations to avoid confusion. Note that

Sh(Gg,,z,, K?) is a proper Shimura curve over O , (with F regarded as a subfield of Q% determined

by a), and Sh(G g, o, K”)r ,, r(a) =Sh(Gs,,,, K”)r ,, is exactly its supersingular locus in the sense of
P P

[Carayol 1986, Section 6.7]. Similarly to (4-3), we have a Chow class map

['(Sh(Gs,,,. K?)(F¥), Z) > CH'(Sh(G g, o, K)rse),
which induces an unramified level raising map for the Shimura curve Sh(G g, o/, K?):
®n(a): I'(Sh(Gg,,, K”)([F*;f), O[E/)‘)S‘, — Hl([szg, Hl(Sh(G@a,g/u, K”)[F?)c, Oe/2(D)m). &7
The following is an analogue of Theorem 4.7 for Shimura curves.

Proposition 4.8. Under the hypothesis of Theorem 4.7, the map ®y,(a) is surjective.

To prove this proposition, we need some preparation. We fix an isomorphism G4, (Q,) = GLo(F})
so that K, is identified with GL2(OF,). Let Iw, € K, be the standard upper triangular Iwahori sub-
group. Let Sh(Gg,, K?Iw),) be the Shimura curve attached to G, of level K”Iw,. By [Carayol
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1986], Sh(Gg,,z,, K” Iw)) admits an integral model Sh(G@m%, K?1w,) over OF , with semistable
reduction. The special fiber Sh(Gy,, o, K P Iw p)[ppg consists of two copies of Sh(Gy,, o, K P 1w p)[ppg
cutting transversally at supersingular points. There are two natural degeneracy maps

1, 7T Sh(Ggu’@;, KP IWp) —> Sh(Gga’@{l, KP)

whose restrictions to generic fibers are described as in [Tian and Xiao 2019, (2.14.1)]. We note the
following generalization of Ihara’s lemma to Shimura curves over totally real fields.

Lemma 4.9. Under the hypothesis of Theorem 4.7, the canonical map
i + 73t H (Sh(G, 0 KM, O/3)3" — H' (Sh(Go, 0, K7 IWp)as, Of/Mm
is injective.
Proof. This follows from [Manning and Shotton 2019, Theorem 6.5], under Assumption 4.1(1) and (3). J

Proof of Proposition 4.8. To simplify notation, let us put X := Sh(Gg,_ o,, K”) viewed as a proper
smooth scheme over OF p,, denote the supersingular locus as

Xﬂs:iﬂg = Sh(G@a,Qfﬁ, Kp)ﬂ:ng’fa ; Sh(GSmax’ Kp)ﬂ:ng ’

and put Xo(p) :=Sh(Gg, z,, K”Iw,). We put also k, := O/A. Consider the canonical short exact
sequence
H' (X, ko) — HO(XPe, ko) — Ho(XR, k) — H (X, k) — 0

equivariant under the action of G(PIC [Fpe) X Z[TRYPH, where X ﬁgg? =X Fac — XP is the ordinary locus.
p
The first term vanishes after localizing at m by Assumption 4.1(3). Taklng Ga101s cohomology H' (F p2e, —),

one deduces a boundary map
() H' (Xre, )iy — H' (F e, OO, K-

By the Poincaré duality and the duality of Galois cohomology over finite fields, it is easy to see that
&7 (a) is identified with the dual map of &, (a). Therefore, to finish the proof of Proposition 4.8, it
suffices to show that ®7 (a) is injective.

Recall that Xo(p)[]: . consists of two copies of X[F o Letip: Xf s Xo(p)[[: be the copy such that
7y oy is the identity, and i>: Xf e > Xo(p)r ” be the one such that w5 o iy is the identity. Then m) o i

bz, ; and
S(g+1)/2.

is the Frobenius endomorphism of Xf , relative to F,s composed with the Hecke action S‘(,g
my o iy is the Frobenius endomorphism of X , relative to F,s composed with the Hecke action

Consider the normalization map
8: Xo(pe,e = Xr,o | [ Xe,e 12 Xo(p), .
Then one has an exact sequence of étale sheaves

0— k)L — &,JC)L —> l:sk)L — 0
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on Xo(p)r 08> where i : XSS — Xo(p)r - denotes the closed immersion of the singular locus of Xo(p)r vy
and the second map 8.k;, —> zsskk is given as follows: If x € Xp° . (F) is a supersingular geometric point
with preimage ! (x) = (x1, x2) with xXj € z](X([FaC)) for j = 1 2, then (8.xkn)x = kj v, Bk x, = ki x
is given by (a, b) — a — b. By the functoriality of cohomology, we get

0=H(Xry, kp)m — HOXG, k)m = H' (Xo(Plegs, ko) 225 H (X, k)S2 - 0. (4-8)

Consider the map

7+ my s H (X, k) — H (Xo(p)rs, k) (4-9)

induced by the two degeneracy maps 7y, m2: Xo(p) — X. If Fr, denotes the action on H'(X s k)
induced by the Frobenius endomorphism of Xy , relative to [, then Frp, = ap_l and the composite map

6: H' (Xp, k)& T2 HY (Xo(p)rse, ki) T2 HY (Xpue, k)2

I
Frp SH072 1 '

By Definition 4.5(L3), the Hecke operator Sy, acts trivially on H'(X e, k;)m since the trivial action is

is given by the matrix

the only lifting of the trivial action modulo m by Assumption 4.1(1). We see that ker 6 is identified with

the image of the injective morphism

(— Frp,1d)

H' (Xrg k) H' (Xpy, k)32

However, by Ihara’s Lemma 4.9 and the proper base change, the map 7| + 75 in (4-9) is injective. Thus,

it induces an injection
* 1 Ff§=1 ~ k eky ~ 170/ vSS
o*: H (X|]:?)c, k)m =ker0 — ker(i|, iy) = H (Xpac, k3)m.
4
To finish the proof of Proposition 4.8, it suffices to show the following claims:
(1) The action of Fr on HO(X3S Facs kj)m 1s trivial so that the natural projection
HO (X8, ki)m — H' (F e, HOXPe, k)m) Z HO (X, ki) (Fry —1)

is an isomorphism.

(2) The morphism ®* is identified with ®} (a).

Claim (1) follows from Assumption 4.1(1), Definition 4.5(L.3) and the observation that Frﬁ acts through
the Hecke translation by (1,...,1, p,1,...) € AOFO’X where p is placed at the prime p.
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To prove Claim (2), consider the following commutative diagram:
HL (X, k)m ——— H' (Xpge. k) ——— 0
Jni‘—ﬂ,* Fry, ny—n; Fry
0 —— HOXEy, kidm —— HEXPE, k)& —— H (Xo(prg. kiJm —— O

IA

0 —— HO(X, k)32 —— H}.(Xﬁg%?, k)22 —— H' (Xpse, k) S* —— 0

@i1.i3)

where A is the diagonal map, and horizontal rows are exact. Then the coboundary isomorphism
ker(if, i) = HO(XE?;C, k))m given by (4-8) coincides with
P

ker(i}, i) = coker A <= HO(X%, k3)m,
p

where the first isomorphism is deduced from the commutative diagram above by the snake lemma, and
the second is induced by the injection HO(X pacs K )m <> HO(X Facs k,\)ﬁz to the second component.
V4 14

Fr2=1 - . . .
Now take x € H! (X[F%C, k)m' Z=ker0,andletx € Hg (XﬁF’ﬁéi, k;)m be a lift of x that is fixed by Sy. This
14
is possible as the action of S, on H! (Xg?, k;) is semisimple. Then 7} (x) — 7| Frp(x) € H! (Xg?, k;)®?
P P
is an element lifting 77} (x) — 7] Fry(x) € ker(i}, i), and 75 (X) — 7] Fry (%) lies actually in the image of
HO(X;%, k;)E2. Note that

3 (%) — 7} Fry(8) = (S, Frp (%), X) — (Fry (), Frp (%)) = (0, (1 — Fry) (X)).

Since ®*(x) is by definition the image of 7 (X) —7r{ Frp(X) in coker A = H! (X;%C, ky)m, we get O*(x) =
(1 —Frg)(i). However, this is nothing but the image of x € H! (X e, k;)S' via the coboundary map @ (a).
This finishes the proof of claim, hence also the proof of Proposition 4.8. O

Recall that we have, for each a € B, an algebraic correspondence
Sh(Go, o, KP)s o, < Z5.0(a) => Sh(G, KP)s ,,
Let A be O, , Og/A or Q7. We define Gys (A) to be the composite map
H!'(Sh(Go,.0,. KP)ps. Mm 75 H' (Wo o (@, A 2 HESK(G, K)pse. A(g — 1)/2))m.

where the first map is an isomorphism since 7, is a (g—1)/2-th iterated P'-fibrations, and the second
map is the Gysin map induced by the closed immersion i,. Taking sum, we get a map

Gys(A) := Y Gys,(A): @D H'(Sh(Go, o KP)sie, A)m — HE(Sh(G, KP)pse, A((g — 1)/2))m.
a aeB
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Proposition 4.10. Under the assumption of Theorem 4.7, we have that
(1) the map Gys(A) is injective for A = O, , Og/ 1, Q};
(2) the induced map

Gys(O¢/1)/m: DH(SK(Go, o, KP)pse. Op/A)/m — HE(Sh(G, K P)pse, Og/A((g — 1)/2))/m
ae’B
is injective.

Before giving the proof of the proposition, we introduce some notation. Let R, be the set of all
automorphic representations that contribute to H8 (Sh(G, K? )F;c, A((g —1)/2))m. Then it is the same as
the set of all automorphic representations that contribute to H' (Sh(Gg, z,. K? )[p;c, A)m for every a by
the Jacquet-Langlands correspondence. It is finite and contains I1. We may enlarge E such that every
automorphic representation I1" € Ry, is defined over E. Fix an embedding E;, — Q¥°. Let ary, frv € Z5°
be the eigenvalues of pry ) (0}), where Zi° denotes the ring of integers of Q%°. By Remark 4.6(2), we
may assume that ozlz_[, and ,81%1, are respectively congruent to 1 and p*¢ (modulo the maximal ideal of 7¥);
in particular, ary /B is not congruent to any i-th root of unity for 1 <i <2g by Definition 4.5(L2).

Proof of Proposition 4.10. Following [Tian and Xiao 2019], we consider the composite map
Resq(A): HE(Sh(G, KP)pse, A > HE (W o ()55, A 22> H' (Sh(G o, 27, K7). M)
for each a € ‘B, and put
Res(A) := @ Resq(A): HE(Sh(G, KP)pse, A)m — PH'(Sh(Go, 0, KP)gie, M.
acB aeB
To prove that Gys(A) is injective, it suffices to show that the composite map Res(A) o Gys(A), which is

an endomorphism of g H' (Sh(Gg, .o, Kp)[Fgf, A)m, 1s injective.
It follows from Lemma 4.4 that

Hé (Sh(G, Kp)ﬂ:?]c, A)m = H8(Sh(G, K”)[F?)c, O, )m R0y, A, (4-10)
and it is a finite free A-module. Note that we have
HE(Sh(G, KP)pe, @) = P HE(Sh(G, KP)pe, Q) [TT™]
IMeRm

as modules over Z[T®%!]. Then it was shown in the proof of [Tian and Xiao 2019, Theorem 4.4(2)] that
on each IT"*°-isotypic component, det(Res(A) o Gys(A)) is equal to a power of

p® V2 ) (o — B/ (e B Yeehe

for A = Q¥°, where 1, (,—1)2 = ZE;OI)/ 21 (¢). By (4-10), it is clear that the same formula also holds for

i
A = O, . Therefore, we see that det(Res(Of, ) oGys(Ok, )) is nonvanishing modulo A by Definition 4.5(L2).
It follows that Res(A) o Gys(A) is an isomorphism for all choices of A, hence Gys(A) is injective and

(1) follows.
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The above argument also implies (2). U

We can now finish the proof of Theorem 4.7. The assertion that G’ acts trivially on I'(5 x
Sh(Gs,,.. K P)(H:?,C), Of/A)m follows from Theorem 3.13(2) and Definition 4.5(L.3). We focus now
on the surjectivity of &, (4-4).

We write k) = O/ for simplicity as before. Under the canonical isomorphism

(B x Sh(Gs,,.. KP)(F%), ki)m = ED T (Sh(Gs,,» K )sse, ki),
aeB

the map (4-5) is identified with the composite map

BaPm(a)/m
Due T (Sh(Gs,,, KP)pe, k) /m ———— Dy H' (F 2, H' (Sh(G g, 07, KV, ki (1) /m)

x} les

H' (F ¢, HS (Sh(G, K P, ki (g +1)/2)) /m),

where the vertical map Gys is simply H! (F 2> (Gys(ky)/m)(1)). Here, we use the fact that the canonical

maps

H'(F 2, H' (Sh(G 5, 2, K", ki (1)) /m — H' (F o, H' (SW(G 5, o7, KP s, Ky (1) /m)
H' (F ¢, H¥ (Sh(G, K?)gse, ki (g +1)/2)))/m — H' (F e, H¥ (Sh(G, K ), ki (g +1)/2)) /m)

are both isomorphisms since H?(F 2, —) vanishes. By Proposition 4.8, the map @, ®m (a)/m is surjective.
To prove that &, /m is surjective, it suffices to show that so is Gys.

First, we have a description of H'(Sh(G 2.2, K 7), k(1)) /m in terms of pr 5, which is the residue rep-
resentation of (4-1) as we recall. Since ppy ; is absolutely irreducible by Remark 4.2(1), the k) [GFr]-module
Hl(Sh(G@a,@u, KP)qgue, k; (1)) /m is isomorphic to r copies of ﬁﬁ’k(l) = pr. withr > dim(l'[%o)K by
[Boston et al. 1991] and the theory of old forms. By Remark 4.6(2), one has an isomorphism of
k3 [G']-modules

o =k, ®ky(1).

In particular, H'(Sh(G Za2q> K? )[F;;c, k; (1))/m is the direct sum of the eigenspaces of opz with eigenval-
ues 1 and p?¢ both with multiplicity r.

By [Brylinski and Labesse 1984], Remarks 4.2(4) and 4.6(3) and the similar argument as above,
the (generalized) eigenvalues of opz on H8(Sh(G, K”)[p;’c, Q¥ ((g+1)/2))/m are pg(g“)ozﬁﬁﬂﬁz(g_i)
with multiplicity (%) dim(IT°)X. Note that p8@+Dap* B2 has image p#1+%9) in F3¢, which are

distinct for different i under Definition 4.5(L2). For every u € k;, let

(H#(Sh(G, K?)pe, ks (g + 1)/2))/m)*~* C H¥ (Sh(G, KP)pe, kp((g +1)/2)) /m
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denote the generalized eigenspace of %2 with eigenvalue p, that is, the maximal subspace annihilated by
(O’p2 — M)ZN for N =1, 2, .... Then by the base change property (4-10), one has a canonical decomposition

pg<1+2i —-8)

g
2
H¢ (Sh(G, K")rse, ki ((g +1)/2))/m = @D HE (Sh(G, K ), ko ((g +1)/2)) /m) %™ :
i=0
where the i-th direct summand has dimension () dim(I13°)X over k;. The direct summand with ap2 ~ 1
corresponds to the term with i = (g — 1)/2, and it has dimension ((g—g]) /2) dim(l'[%o)K . Note that

ng(1+2[—8)

H' (F 2e, (HE(Sh(G. K?)ps, ki (g + 1)/2))/m) )=0

for i # (g — 1)/2. It follows that the natural map
(HE(S(G, K ), ki (g + 1)/2))/m)7~" — HI(F e, HE(SW(G, KP)pae, k3 (g + 1)/2))/m) - (4-11)

is surjective. One gets a commutative diagram:
0 o=
P H' (G o, o, K V)i, kn (1)) /m)% =" —— @ H'(F e, H'(Sh(G g, o, K ), k(1)) /m)

El(GyS(k,\)/m)(l) chs

@

(HE(Sh(G. KP)ps. ki (g + 1)/2) /m)°s ™~ HU(E o, HES(G, K e, k(g + 1)/2))/m)

Here, (Gys(k;)/m)(1) is injective by Proposition 4.10(2), and we deduce that it is an isomorphism for
dimension reasons. It follows immediately that Gys is surjective. This finishes the proof of Theorem 4.7.

5. Selmer groups of triple product motives

In this section, we study Selmer groups of certain triple product motives of elliptic curves in the context
of the Bloch—Kato conjecture, which can be viewed as an application of the level raising result established
in the previous section.

From now on, we fix a cubic totally real number field F, and let F be the normal closure of F in C.

5A. Main theorem. Let E be an elliptic curve over F. We have the (Q-motive ®Indg h!'(E) (with
coefficient Q@) of rank 8, which is the multiplicative induction of the F-motive h'(E) to Q. The cubic-
triple product motive of E is defined to be

M(E) := (® Ind§ h' (E))(2).

It is canonically polarized. For every prime p, the p-adic realization of M(E), denoted by M(E),
is a Galois representation of (QQ of dimension 8 with @Q,-coefficients. In fact, up to a twist, it is the
multiplicative induction from F to Q of the rational p-adic Tate module of E.

Now we assume that £ is modular. Then it gives rise to an irreducible cuspidal automorphic represen-
tation ITg of (Resr,q GLy r)(A) with trivial central character. In particular, the set £(I1g, 7) defined in
Section 1C contains co. We have L(s, M(E)) = L(s + %, IMg, r) (again see Section 1C).
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Put A" := X (Tg, 1) — {oo}. Let A (resp. A, A”) be the set of primes of F above A that is of degree
either 1 or 3 (resp. unramified of degree 2, ramified of degree 2). We write the conductor of E as c¢¢’¢”¢t
such that ¢ (resp. ¢, ¢”, ¢T) has factors in A (resp. A/, A”, elsewhere).

Assumption 5.1. We consider the following assumptions:
(EO) The cardinality of X(I1g, t) is odd and at least 3.

(E1) For every finite place w of F over some prime in X (I1g, ), the elliptic curve E has either good or
multiplicative reduction at w.

(E2) For distinct embeddings 11, 75: F — F , the F -elliptic curve E QF F is not isogenous to any
(possibly trivial) quadratic twist of E QF 1, F.

Remark 5.2. Assumption 5.1(EO) implies that A is not empty. Assumption 5.1(E1) implies that E has
multiplicative reduction at w € A. Together, they imply that the geometric fiber £ ® p F* does not admit
complex multiplication.

We now assume that E is modular and satisfies Assumption 5.1. Then Assumption 5.1(E1) implies
that c¢’ is square-free, and ¢’ = O by [Liu 2019, Lemma 4.8]. We take an ideal v of O contained in
N¢™ for some integer N > 4 and coprime to A”.

Assumption 5.1(E0O) implies that A is a nonempty finite set of even cardinality. Let B be a quaternion
algebra over F, unique up to isomorphism, with ramification set A, and © € B be an Op-maximal
order. Let vo and v; be two ideals of Of such that tg, v; and A are mutually coprime. We recall the
definition of the Hilbert modular stack X'(A)y, «, over Spec(Z[NFr/q(tot y~!(disc F)~!]) defined in [Liu
2019, Definition B.3]. For every Z[Nf g (tot;) ! (disc F)~']-scheme T, X'(A)y,.r, (T) is the groupoid of
quadruples (A, t4, C4, a4) where

« A is a projective abelian scheme over T;
e 14: O — End(A) is an injective homomorphism satisfying
Tr(ta(b)| Lie(A)) = Trrq Try, p(b)
for all b € O;

e Cy4 is an O-stable finite flat subgroup of A[ty] which is étale locally isomorphic to (Of /tg)? as
O/to0O = M3 (OF /tp)-modules;
e ays: (Of/ t1)2T — A is an O-equivariant injective homomorphism of group schemes over 7.
If vty = Op, a4 is trivial and we usually omit it from the notation. If t; is contained in N Of for some
integer N > 4, then X'(A)y, ¢, 1S a scheme.
We put X; := X (A)¢r. Let D(x, ¢) be the set of all ideals of O containing t(¢t)~! as in [Liu 2019,
Notation A.5]. For every 0 € D(t, ¢t), we have the following composite map

B X =X(A)er = X(A)erop 2> X (Ao o (5-1)
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which is a finite étale morphism of Deligne-Mumford stacks, where §° is the degeneracy map defined as
follows. If (A, t4, C4) is an object of X'(A)¢ 0, (T) for some Spec(Z[NF/q;p(c’t)_1 disc(F)~!])-scheme
T, then its image by 8° is given by the object (A’, 14/, C4’), where

» A’ is the quotient A by the finite flat subgroup C[?],

e 14 is the induced O-action on A’ from A,

o Cyu is the unique subgroup scheme of C,/C4[0] étale locally isomorphic to (O /¢’ ¢t)2.
See [Liu 2019, Section B.1] for more details.

Remark 5.3. The requirement that |X(I1g, )| > 3, that is, A # & is not essential. The reason we
require this is not to make the relevant Shimura variety X, proper. In fact, it is used to obtain a refinement
(Proposition 5.13) of Theorem 4.7 so that the map (4-5) is also injective in order to deduce Lemma 5.18
which is needed for the first explicit reciprocity law back in [Liu 2019], through a trick using Jacquet—
Langlands correspondence. However, it is not clear to us what are optimal conditions for the map (4-5) to
be injective.

From now on, we fix an element tv € A. Let B be the totally definite quaternion algebra over F,
ramified exactly at A \ {wo}. Put
Ve i= B*\B*/Kq,1 (¢, v)

where Ko j(toc’, v) C B* is an open compact subgroup defined similarly as in Example 2.12.
For every ideal s contained in ¢*, we let R(s) be the union of primes dividing s and primes above A’.
In particular, we have the homomorphism

¢* = gn Z[TM] > Z

such that ¢°(Ty) = aq(E) and ¢*(Sy) = 1 for every prime q ¢ R(s). Here we recall that T® is the Hecke
monoid away from R [Liu 2019, Notation 3.1].

Let p be a rational prime.5 Let mf, be the kernel of the composite map Z[TRE)] ¢—> Z — F,. We also
have an induced Galois representation

prg,p: Gr = GL(T,(E)) = GLa(Z)),
where T, (E) is the p-adic Tate module of E. Put pri, , := pn,,, mod p.

Definition 5.4 (perfect pair). We say that:

(1) pis generic if (Ind‘% P11, p)lG; has the largest possible image, which is isomorphic to G(SLy ([ ) x
SLy(F,) x SLa(F))).

(2) The pair (p, v) is s-clean, for an ideal s of O contained in v, if:
(a) The space I'(Dk, Z)) /m; has dimension |D(t, ¢7)| over F -

SThe readers may notice that we switch the roles of p and £ (or A) in Section 5 from Section 4. This is due to a different
convention in the study of Selmer groups.
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(b) H3(X(A)eer .0, ®Q*, 7 p)/m, has dimension 8 over [, and the canonical map
P & H@ea . z,)/m > P H@X(A)wo, ®Q°,Z,)/m,
0€D(r,ct) €D (x,ct)
is an isomorphism.
(3) The pair (p, v) is perfect if:
(@) p>11and p #13,19.

(b) p is coprime to A’ and t-| (Z)xNZ)*|-u(x, ¢T)-|CI(F),|-disc F, where disc F is the discriminant
of F, CI(F), is the ray class group of F' with respect to ¢, and

1
R
u(r, ¢ Fjat(c’) )1:[( +NF/Q(Q)

with q running through the prime ideals of O dividing t but not ¢*.
(c) p is generic.
(d) Itis v-clean.
(€) prig,p is ramified at 1.

Remark 5.5. Note that the condition that p is generic implies that the condition (LIIndﬁH p) in [Dimitrov
E>

2005, Proposition 0.1] is satisfied. Consequently, H? (X, ® Q*, Z pms is finite free over Z,, for any ideal

s of OF containing v by [loc. cit., Theorem 0.3].

Let B be a quaternion algebra over @, unique up to isomorphisms, with ramification set A’ so that
B = B’ ®g F. We have similarly a moduli scheme Xy := X (A”)7 7 attached to B”. Then we obtain a
canonical morphism
0: Xf — X,

over Z[(tdisc F)~'] similar to [Liu 2019, (4.1.1)]. It is a finite morphism. Denote by ®, . the image of
9*[th ® Q] € CH?(X, ® Q) under the Abel-Jacobi map

AJ,: CH*(X, ® Q) — H'(Q, H? (X, ® @, Q,(2))/ ker ¢").

By [loc. cit., Lemma 4.6], we have H'(Q,, M(E),) = 0 for all primes v{p. Thus, we recall the
following definition.

Definition 5.6 [Bloch and Kato 1990; Liu 2019, Definition 4.7]. The Bloch—Kato Selmer group for the
representation M(E) , is the subspace H} (Q, M(E) ) consisting of classes s € H' (Q, M(E) p) such that

loc,(s) € Hy(Qp, M(E)) :=ker[H'(Q,, M(E) ) > H'(Q,, M(E) , ®g, Beris)]-

Theorem 5.7. Let E be a modular elliptic curve over F satisfying Assumption 5.1. For a rational prime
D, if there exists a perfect pair (p, v) (Definition 5.4) such that ® , . # 0, then

dimg, H}(Q, M(E) ) = 1.
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Remark 5.8. By an argument similar to [Liu 2019, Lemma 4.10], given an ideal v of O contained in
Nc™ for some integer N > 4 and coprime to A, there exists a finite set Pg . of rational primes such that
(p, v) is a perfect pair for every p & Pr.. An upper bound for Pg . can be computed effectively.

Remark 5.9. Assuming the (conjectural) triple product version of the Gross—Zagier formula and the
Beilinson—Bloch conjecture on the injectivity of the Abel-Jacobi map, the following two statements

should be equivalent:
e L'(0, M(E)) # 0 (note that L(0, M(E)) = 0 by Assumption 5.1(E0)).

o There exists some to such that for every other v contained in tp, we have ®, . # 0 as long as (p, t)
is a perfect pair.

Here, we need to use (the proof of) [Liu 2019, Proposition 4.9]. Then Theorem 5.7 implies that if
L'(0, M(E)) # 0, that is, ords=o L(s, M(E)) = 1, then dimg, H}'(@, M(E),) = 1 for all but finitely
many p.

5B. A refinement of arithmetic level raising. From now on, we fix a perfect pair (p, v) (Definition 5.4),
and put m® := m’, for short.

Definition 5.10. Let v > 1 be an integer. We say that a prime ¢ is (p", v)-admissible if:

(A1) £isinertin F' (with [ = £OF), unramified in F, and coprime to R(r) U {2, p}.

(A2) (p,v)is tl-clean.

(A3) pt(!® —1)(® +1).

(A4) ¢%(T) =£3+1 mod p".

Notation 5.11. For now on, we fix an integer v > 1 and put A :=Z/p". Let p: Gr — GL(N,) be
the reduction of prj, , modulo p where N, = T,,(E) ® A. We have the multiplicatively induced
representation p¥: Gg — GL(N ) with N, = N§3.

Lemma 5.12. Let £ be a (p”, v)-admissible prime. Then the cohomology groups
Hyne (@, B (X (A)eer,0, ® O, A(2)/ ker ™), Hip(Qp, H (X ® O, A(2))/ ker ¢™)

are free A-modules of ranks 1 and | D (x, ¢*)|, respectively.

Proof. By Definition 5.10(A2), Nakayama’s lemma and [Brylinski and Labesse 1984], we have isomor-
phisms of A[Gg,]-modules

H (X (A)eer 0, @ QF, AQ2)/ker¢™ N2 (—1), H' (X, @0, A(2))/ker¢™ = N (—=1)@PCHI,

If oy € Gp denotes an arithmetic Frobenius element at [, then p(oy) is conjugate to ( (1) £3) by
Definition 5.10(A4). Hence, the A[Gg,]-module Nf)(—l) is unramified and isomorphic to A(—1) &
A®RD® A ®R() ® A(2), where R = A®? is the rank 2 unramified representation of Gg, with
the action of the arithmetic Frobenius o, given by (0 *i) By Definition 5.10(A3), it follows that

um(@g, Nﬁ (-1 = um(@g, A), which is free of rank 1 over A. O
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Let £ be a (p", v)-admissible prime. Then X, ® Zy) is canonically isomorphic to Sh(G, K (¢, 98]
with G = Resp/g B* considered in Section 2E (See Remark 2.5 on the issue of polarizations and
Example 2.12 for the open compact subgroup Ky 1(¢/, t)), and /’\.’f ® Z ¢y is canonically isomorphic to
Sh(G”, Ko1(Z, tNZ)%) with G” = (B")*. Put X, := X, ®[F,. As before, we denote by X:p the superspecial
locus of X;. By Theorem 3.16, we may identify X;" (F¥) with Sh(Gs,,.. Ko,1(¢’, ©)*)(F¥).

The following proposition is a refinement of Theorem 4.7 in our situation.

Proposition 5.13. Let ¢ be a (p”, v)-admissible prime. Then the level raising map
(B x X:P(F), A)/ ker ¢ — H! (Fys, H} (X, ® F¥, A(2))/ ker ™) (5-2)
defined similarly as (4-5) is an isomorphism.

Proof. In the proof of Lemma 5.12, we have seen that, as a A[Gg,]-module, H} (X, ® F¥°, A(2))/ ker ¢™
is isomorphic to |D(t, ¢*)|-copies of

N (-DZA-D@®ABRDA() SR B AQ).
We get thus an isomorphism of A[Gal(Fs/F¢)]-modules
H' (Fpo, B (X ® FF, A2)/ ker¢™) ZH' (Fis, A@R)PPCN = (A @ R)®IPE (5-3)

which is free of rank 3|D(t, ¢*)| over A. By Theorem 4.7 and Nakayama’s lemma, the map (5-2) is
surjective. Thus it suffices to show that F(X:p([FZ‘C), A)/ker ¢ is a free A-module of rank |D(x, ¢*)|.
By Nakayama’s lemma, it suffices to show that F(Xip(ﬂzzc), Fp)/ m* has dimension |D (¢, ¢7)| over F -

Recall that so far, we have three quaternion algebras over F in the story: B ramified at X U A\ {tv}, B
ramified at A, and Bs,_, ramified at £, U{[}UA. Now we let B be the fourth quaternion algebra over F
ramified at ¥ U {[}U A\ {to} where X is a fixed subset of X, of cardinality 2. Let C be the corresponding
proper Shimura curve over F' (with the embedding into Q% given by the unique element in ¥, \ ) of
the similarly defined level K ; (toc’, t). As in Step 4 of the proof of [Liu 2019, Proposition 3.32], C has
a natural strictly semistable model at [. The corresponding weight spectral sequence provides us with a
canonical isomorphism

I, Z,)/m" ~H!

sing

(@, H(C ®Q*, Z,) /m")

as in the proof of [Liu 2019, Proposition 3.32]. By Definition 5.10(A2), H! (Qys, H'(C @ Q%, Zp)/m‘[)

sin
has dimension |D(t, ¢*)|. By [Boston et al. 1991], we conclude that H!' (C <gX) Q*, Zp) /m* is isomorphic
to ﬁﬁ'}fs’ml as an [ ,[Gr]-module. In particular, H'(C @ Q%, Zp)/mt[ has dimension 2|D(t, ¢)].
Now consider the semistable reduction of C at tv. Let Cy be the proper Shimura curve over F associated
to B’ of the level K¢ 1(c/, t). Then H' (Co ® Q*, Zp)/mt[ = 0 by Definition 5.4(3e). Therefore, we have

a canonical isomorphism

H' (I, H'(C ® ©@*, Z,)) /m™) 2= T (X;P (F&), F,) /m"
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from the weight spectral sequence, as the supersingular set of C at tv is also Xip([Fﬁc). Therefore,
rx.? (9, Fp) /m* has dimension |D(t, ¢*)|. The proposition follows. O

5C. Second explicit reciprocity law. Let £ be a (p”, v)-admissible prime, and [ = £Op. Recall that
Yo denotes the set of archimedean places of F. For every ideal s of O coprime to A U {[}, let
St 1 =8(Xoo UAU{I}), be the set of isomorphism classes of oriented O g-Eichler orders of discriminant
Yoo UAU{[} and level s (see [Liu 2019, Definition A.1]). It has an action by Gg, such that the arithmetic
Frobenius oy acts by switching the orientation at [.

Lemma 5.14. There is a canonical isomorphism X:p(ﬂzi}c)/ CI(F), = Sp,o. Moreover, the induced action
of Gr, on S; ¢« factors through Gal(F,2 /) and is given by the map op, switching the orientation at .

Proof. 1t is a special case of [loc. cit., Proposition A.13(1)]. (I
Denote by ¥ : X;" (F¥) — Sy ¢ the canonical projection from the above lemma.
Lemma 5.15. The canonical map
¥ T(Se.ee, A)/ ker ¢ — T(XF (F2), A)/ ker ¢
is an isomorphism.
Proof. 1t follows similarly to [loc. cit., Lemma 3.24]. U
Proposition 5.16. Under the notation above, the following statements hold:

(1) The action of op, on I'(Sg, v, A)/ ker ¢ is trivial.

(2) There exists a unique isomorphism ® such that the following diagram is commutative, where the

lower left vertical arrow is the diagonal map:

[(Spoe, A)/ kerg? —— 2 S HL (@, H3(X, ® Q%, A(2)/ ker ¢t

unr

lw* F

T(XP(FE), A)/ ker ¢ (Qps, HY (X ® @™, A(2)/ ker ¢™)) T Qus/Q0)

l (5-2)

(B x X (FX), A)/ ker ™' —————— HL(Qps, H3 (X, @ Q%, A(2)/ ker ¢™))

unr

unr

Proof. Consider the action of Gal(Q;s/Q;) on both sides of the isomorphism
T'(B x Sp.oe, A)/ ker g™ L5 T(B x XP(F), A)/ ker ¢ — H' (Fys, H (X, ® FX, A(2))/ ker ¢™).
By (5-3), we obtain an isomorphism

(T (Se,ev, A)/ ker ™)Pe=! = H! (Qp, H (X, ® @™, A(2)/ ker ™).
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By Lemma 5.12, H! (Q,, H}(X, ® Q*, A(2)/ ker ¢") is a free A-module of rank |D(r, ¢*)|. Therefore,

unr
the inclusion

(T(St.ces M)/ ker g™)Pe=! C T(Sp. e, A)/ Ker ¢
is an isomorphism as both sides are free A-module of rank |D(t, ¢™)|. Thus both (1) and (2) follow. [J
Denote by ®;’t the image of 9*[th ® Q] € CH?(X, ® Q) under the Abel-Jacobi map

AJ,: CH*(X, ® Q) — H'(Q, H* (X, ® @, A(2))/ ker ™).

For any ideal s C Op, let Sz . = S({oo} U A’ U {£})snz denote the set of isomorphism classes of oriented
Z-Eichler orders of discriminant {oo} U A” U {¢} and level s N Z [Liu 2019, Definition A.1]. We have a
natural map given by extension of scalars

918, — Seer. (5-4)

We have a bilinear pairing (-, -): I'(Se,¢c, Z) X I'(Sp,ec, Z) — Z defined by the formula (fi, f2) =
D ohe Spu f1(h) fo(h). It induces a perfect pairing

(-, ) D(Spees A)/ ker g™ x T(S.ew, A)lker¢™] — A.
Theorem 5.17 (second explicit reciprocity law). Let £ be an (p", v)-admissible prime. Then loc, (@}’,’t)
lies in H' (Q, H3 (X, ® @, A(2))/ ker ¢*), and we have

((Z/xNZ)~|
€ — 1)?|CI(F):

(® loc, @;’t, )= (

- > f@&)

)CESLt

for every f € I'(Sp, e, A)[ker ¢%). Here, ® is the isomorphism in Proposition 5.16.
We note that (¢ — 1)%|CL(F).| is invertible in A.

Proof. The fact that ©,  is unramified follows from the fact that both X, and .’{E have good reduction at £.
Recall that X, = X, ®F,. Similarly, we put XE = Xf@Fg. Then we have the morphism 6 : XE — X, over [Fy.
Let © be the image of 6,[X;] € CH2(X,) in the Galois cohomology H' (F, H3 (X, ® Fa¢, A(2)/ ker ¢™)
defined similarly as for ®) . Then under the canonical identification

H' (F, B (X ® F°, A(2))/ ker ¢™) = Hy (Qe, H (X, ® @, A(2))/ ker ™),

© coincides with locg @;’t.
From Proposition 5.13, we have an isomorphism

(B x X;P(FX), A)/ ker g™ = @ T(XF(FE), A)/ ker ¢ => H (Fys, H (X, @ F2, A(2))/ ker ¢™).
aeB

For each a € ‘B, we denote by

Wy H (Fps, H3 (X, ® F, A(2))/ ker ™) — T(X;P(FX), A)/ ker ¢*!
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the map obtained by taking the inverse of the previous isomorphism followed by the canonical projection
to the direct summand indexed by a. By a similar proof to [Liu 2019, Proposition 4.3], we have the
following commutative diagram:

XU (R — XP(FS)

)

b 9
Sg’t ” Sﬁ,c’t

where v is obtained similarly as v, but for XE. Therefore, the theorem will follow if we can show that
for every f € F(Xip(ﬂzzc), A)[ker ¢*], we have

> FOw) (5-5)

xeXyP(Fe)

— 1
(Va®, f) = =12

since v is of degree |CI1(F),| by Lemma 5.14 and similarly " is of degree |(Z/tNZ)*|.
For every a € B, we have the following commutative diagram as (4-6):

Wo,0(0) ———— Zo () Sh(G)f , = X, ® Fyo

= ja
X @ Fps — Sh(Gs,,,)F —— Sh(Gg, 2,5 ¢

where the square is Cartesian. Here, we omit the away-from-£ level structure K¢ 1(c, t)* in the notation.
However, in this case, Z4 z(a) coincides with the Goren—Oort divisor Sh(G)[Flw(a) for some 7(a) € L
determined by a. Thus it is easy to see that the (scheme-theoretical) intersection I'y N pr; Zg o (a) is

contained in XE’Sp x XP, where 'y C Xf x X, is the graph of 6 and pr,: XE x X. — X, is the canonical

projection. More precisely, it is the graph of the restricted morphism 8: X;"*" — X:P. Therefore, we have

Tasif0u[X)] = 00 [ X0 @ Fo] (5-6)
in CH!(Sh(G Das ga)[Fm), where 6, is the composite morphism
XUP @ Fs > X @ Fro = Sh(Gs,, )r, 2= Sh(G oy 0,)F -

Recall that we have two morphisms

Gys, =iaom}: H (Sh(Gy, z,)re, A1)/ ker¢™ — H? (X ® F°, A(2))/ ker g™,
Resq = 7 0if: H (X: @ F}°, A(2))/ ker¢™ — H'(Sh(G g, .0, )5, A(1))/ ker ™.

We write 8 = {ay, ap, a3} with a;_; = o (a;) for all i viewed as elements in Z/3Z, where o (a;) means
the translate of a; by the Frobenius as defined just above Definition 3.15. By [Tian and Xiao 2019,
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Theorem 4.3] and the proof of [loc. cit., Theorem 4.4], the intersection matrix (Resg, o Gysai) 1<i,j<3 18

given by
20 eyt ey
ey =20 ey,
oyt ey =20
where

ni: H'(Sh(Gg, o, )re, A1)/ ker ¢ — H'(S(Gp, o, e, A()/ker¢”

is a certain normalized link morphism introduced in [loc. cit., Section 2.25] which commutes with
the Galois action and such that the product n;4on;+1n; for i € Z/3Z is the endomorphism on
Hl(Sh(Ggai’gai)ﬂ?’zC, A(1))/ ker¢t[ given as follows. Let oy, € G, denotes an arithmetic Frobenius
element. By [Brylinski and Labesse 1984] and Definition 5.10(A4), one has a decomposition of
A [G[FZ3 ]-modules

3
H'(Sh(Ggo, o, )rx. A(D)/ ker¢™ =M] @M;

where each Mlk for A =1, £3 is a finite free A-module on which the action of 023 — X is nilpotent. Then the
action of 1, 421;+11; on Mi1 (respectively on Mf3) is the multiplication by £73 (respectively £3). Since the
roles of a; are symmetric, Hl(Sh(Ggai,gai) ac, A(1))/ ker ¢ fori = 1,2, 3 must be isomorphic. Thus,
we can identify Mf with A = 1, £3 for different i and write it commonly as M” in such a way that the
morphisms 7; are identified with the same endomorphism 7 on M! @ M?, where n acts by £~! on M!
and by ¢ on ME3, respectively. With these identification, the intersection matrix writes as

-2 77"
(Resq 0 Gysy )i<ijss=€| n =2 n7']. (5-7)
' on =2

Note also the isomorphism H' (Fys, Hl(Sh(G@ai’@ai)[F?c, A(1))/ker ¢*) = H! (Fs6, M!) on which 7 acts
by the scalar £~
By the proof of Theorem 4.7 in Section 4B, we have a commutative diagram

Gys,,
H! (Fpo, B2 (X, @ I, A(2))/ ker @) — H! (Fy, H! (Sh(Gg, 2, e, A1)/ ker¢™))

o o]

(X (FX), A)/ ker ¢ = I'(Sh(Gs,,, ) (F%), A)/ ker ¢*

where the bottom isomorphism is the one induced by the identification X’ ® [, = Sh(Gs,,, )r 4, and

6

@, is the map induced from (4-7). We claim that @, is an isomorphism. Indeed, by Proposition 4.8 and
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Nakayama’s lemma, @, is surjective. On the other hand, we have a commutative diagram

®; P,
@;_; T(Sh(Gs,, ) (), A)/ker¢™ — @7 H'(Fo, H(Sh(Go, o, I, A(1))/ ker ¢™))

\ lz, Gysu-
(5-2) '

H! (Fs6, H3 (X, ® F&, A(2))/ ker ¢*")

where the composite map is an isomorphism by Proposition 5.13. It follows that each ®,, is injective,
hence an isomorphism.
Now, we have ® = 37 Gys,, 0P, 0 Wy, (©) and

@, oResq, © = £(—2Wq, (O) + LW, (O) + £ ¥4, (0)) = (£ — 1)* g, (0)

by (5-7). Here, the last equality uses Wy, (®) = \Daz((:)) =Y, (®) by symmetry. On the other hand, by
(5-6), we have
@' oRes, ©® = 6,1

for all a € B, where 1” is the characteristic function on X E’Sp([F‘Z}C). Thus (5-5) follows immediately, and
the theorem is proved. O

The following lemma will be needed in the next section.

Lemma 5.18. When s = ¢l, the map
P 82 T(Suer. A/ kerg® > P T(Speer. A)/ kerg®

€D (r,ct) €D(r,ct)
is an isomorphism of free A-modules of rank |9 (t, ¢*)|.

Proof. The idea of proof is similar to [Liu 2019, Lemma 3.33]. Recall that we have morphisms §° in
(5-1) for each @ € D(x, ¢*). As usual, we put § := 7. Form the following pullback square

xR — X

3
Xo —— X(A)c’c+,(9p
of schemes over Z ), where all morphisms are finite étale. The scheme X? has a natural action by T
under which the above diagram is equivariant. By an argument similar to [loc. cit., Lemma 3.33], we
obtain a commutative diagram

I(Sp.ev. A)/ ker g™ —2 HL (@, H3 (X, ® @, A(2))/ ker ¢™)

unr

(OF/V)X|'5*O5EJ lsfog* (5-8)

[(Se.ev. A)/ ker ¢ —2— HY (@, HY (X, @ @, A(2))/ ker ¢

unr
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0

where @ is the isomorphism in Proposition 5.16. By proper base change, the endomorphism ¢ o * of

H3 (X, ® Q*, A(2)) coincides with the composite map
HP (X, ® @, AQ)) 25 B (X (A)eer 0, ® Q. AQR) 2> H (X ® 0%, A(2)).
Definition 5.10(A2) and Proposition 5.16(1) imply that the image of

e20e*: Hyp (Qe, H (X ® Q%, A(2))/ ker ™) — H, (Q, H (X, ® Q% A(2))/ ker ¢™)

unr

is a free A-module of rank 1. Here, we use the fact that §* is injective, as p{u(t, ¢) in Definition 5.4(3b).
By the commutative diagram (5-8), we know that the image of

8% 08%: T'(Sp.evs A)/ ker @™ — T'(Sp.cre, A)/ ker @™

is a free A-module of rank 1. Since 82 is surjective and 6* is injective, I' (S ¢+, A)/ ker ¢ is a free
A-module of rank 1. Similarly, we may deduce that the map

P 82D Seee. M)/ kerg” > P T(Seeer, A)/ ker g™ (5-9)

€D(r,ct) €D (r,ct)

is injective. However, since the source of (5-9) a free A-module of rank |D(t, ¢*)| by Proposition 5.16,
the map (5-9) has to be an isomorphism. The lemma follows. U

Remark 5.19. Note that since the images of ker ¢ in both End (T (Se.ces A)) and Endp (I'(Sy e+, A))
are finite sets, it follows by Chebotarev’s density theorem that for all but finitely many primes I of F, the
conclusion of Lemma 5.18 also holds for s = ¢Il’.

5D. First explicit reciprocity law. We keep the notation in Section 5C. Let £ = (£, £') be a pair of distinct
(p¥, v)-admissible primes (Definition 5.10) such that Lemma 5.18 holds for s = t[l’, where I := ¢'OF
(see Remark 5.19).

Put X,y == X(AU{[,'})¢ and th,g = X (A" UL, €'})z.nz (in the notation of [Liu 2019, Defini-
tion B.1]), as schemes over Z . Then we obtain a canonical morphism

O Xy — Xy (5-10)
Denote by ®;’t’ ¢ the image of 915*[)(2 ¢ ® Q] € CH? (X:,¢ ® Q) under the Abel-Jacobi map
AJ,: CHX (X, ® Q@) — H'(Q, H3 (X, ® @, A(2))/ ker ™).
Theorem 5.20 (first explicit reciprocity law). Let £ = (£, £') be as above:
(1) There is a canonical decomposition of the A|Ggl-module

H (X ® Q% AQ)/ ker¢™ = D M
€D (x,ct)

where My is isomorphic to Nf, (=1) (Notation 5.11) as a A|Gg]-module.
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(2) There is a canonical isomorphism
Hpe (Qer, H (X ® @, A(2))/ Ker ¢™') = T(Sp e, A)/ Ker ¢,

under which we have

y o l@rnnX
(@locy O} 4. f)=('+ 1) =G 0= Z F@ ()

for every f € I'(Sg v, A)lker oM.

Proof. We will use results from [Liu 2019, Sections 3 and 4]. Put VP’ := AP U {00, ¢} as in the setup of
[loc. cit., Section 4.1]. By Lemma 5.18, (p, ¢’ct, ¢/, v) is a perfect quadruple in the sense of [loc. cit.,
Definition 3.2], satisfying [loc. cit., Assumption 4.1]. Moreover, £’ is a cubic-level raising prime for
(p, dcT, ¢, v) in the sense of [loc. cit., Definition 3.3].

Note that the morphism (5-10) is nothing but 6: A’(E’)z — X)) in [loc. cit., (4.1.1)]; and the
map (5-4) is nothing but ¥ : Sb — Sy in [loc. cit., (4.1.2)]. Therefore, (1) follows from [loc. cit.,
Theorem 3.5(2)]; and (2) follows from [loc. cit., Theorems 3.5(3) and 4.5]. O

5E. Proof of main theorem. Recall that we have the multiplicatively induced representation Nf, and the
7/ p’|Gg]-module M as in Theorem 5.20. We have a Gg-equivariant pairing

NE(=1) x Mg — Z/p"(1)
which induces, for every prime power v, a local Tate pairing
(-, )v: H'(@y, N (1)) x H'(@,, Mg) = H*(@,, Z/p" (1)) =~ Z/p".
For s € H'(Q, N5 (—1)) and r € H'(Q, My), we will write (s, r), rather than (loc, (s), 10¢,(r)),.

Proof of Theorem 5.7. We assume that ®, . is nonzero. Regard ®, . as an element in H;(@, H3 (X, ®
Q?*, Z,(2))/ ker ¢*), which is not torsion. By [Brylinski and Labesse 1984] and the assumption that
(p,v) is v-clean (Definition 5.4), we know that N, := H3(X(A)c/c+,op ® Q%*,7Z,(2))/ ker¢* is a Gg-
stable lattice in M(E),; and there exists some 0 € D(r, ¢™) such that 82@ pe € H}(@, N,) is not
torsion. Here, H} (Q, N,) is by definition of the preimage of H# (Q, M(E),) under the natural map
H'(Q, N,) — H'(Q, M(E) »). We fix such an element 0. Let vy > O be the largest integer such that
820, € pH}(Q,N)).

We prove by contradiction, hence assume dim@p Hlf(@, M(E),) = 2. In what follows, we fix a
sufficiently large integer v as before, and will give a lower bound on v for which a contradiction emerges
at the end of proof.

By [Liu 2016, Lemma 5.9], we may find a free Z/ p*-submodule S of H! (@ NIi (—1)) of rank 2 with a
basis {s, s’} such that p*0s = 8$®;J. By the same discussion in [Liu 2019, Sectlon 4.3 (after Lemma 4.12)],
we have tower of fields Ls/L/Q contained in Q. Let [] be the (finite) set of rational primes that are
either ramified in Lg or not coprime to A or tdisc F. Put vg := max{v, | v € U} where v, is in [loc. cit.,
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Lemma 4.12(2)]. We choose a prime £o ¢ [ such that £, is (p", v)-admissible (Definition 5.10), which is
possible by [loc. cit., Lemma 4.11]. Let y € Gal(L/Q) be the image of Frob,,, under p*(—1) (the image
of p?(—1) has been identified with Gal(LL/Q)), where wy is some prime of L above £y. Then y has order
coprime to p; and (N%(—l))(y> is a free Z/p”-module of rank 1.

By [loc. cit.,, Lemma 4.16] and (the argument for) [loc. cit.,, Lemma 4.11], we may choose two
(O, y)-admissible places (in the sense of [loc. cit., Definition 4.15]) w, w’ of L such that

(1) (s =0,¥,(s)=t, ¥ (s) =1t witht,¢ € (Nfé(—l))“’> that are not divisible by p;

(2) the underlying prime £ of w and the underlying prime ¢’ of w’ are distinct (p”, v)-admissible primes,
such that Lemma 5.18 holds for s = ¢[l’ (see Remark 5.19).

Put £ := (¢, £'). Then there are elements @;’M eH'(Q,H? (X ®0Q*, A(2))/ ker ¢™") from Section 5D,
and 8707 , € H'(Q, Myp). We have

(3) loc, ®;,t,€ eH! (Q,,My) for a prime v ¢ DU {p, £, £'}, by [Liu 2016, Lemma 3.4];

unr

4) loc, @;’t’ /€ H} (Qp, My), by [Nekovar 2000, Theorem 3.1(ii)].
By [Liu 2019, Lemma 4.6] and [Liu 2016, Lemma 3.4], we have loc,(s’) € H! (Q,, Nf,(—l)) for every

unr

prime v ¢ OU{p, £, £'}. By [Liu 2016, Definition 4.6, Remark 4.7], we have loc,(s") € H} (Q,, Nf)(—l)).
Then by [Liu 2019, Lemma 4.12(2,3,5)] and (3), (4) above, we have

PR DL O (5-11)
V(e
Since Wy, (s") = 0 by (1), we also have

(s, 0 )e=0. (5-12)

Let ¢ be a generator of ['(Sy, ¢+, Z/p")[ker ™" ] which is a free Z/p”-module of rank 1. Then by
the choice of 5, w in (1), and Theorem 5.17, we have

> b0 @))€ pZ/p* — p* 7/ p".
Sp

By the choice of w’ in (1) and Theorem 5.20, we have

(s, O e €pZ/p’—pPt'Z/p". (5-13)

Here, we have used the fact that p is coprime to [(Z/tNZ)*|, |CI(F).|, (¢ — 1), and £’ + 1.
4 P

Take v € Z such that v > vy + v. Then the combination of (5-11), (5-12) and (5-13) contradicts with
the following well-known fact:
D s 00 =0

v
due to the global class field theory and the fact that p is odd, where the sum is taken over all primes v.
Theorem 5.7 is proved. U
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Burch ideals and Burch rings
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Dedicated to Lindsay Burch

We introduce the notion of Burch ideals and Burch rings. They are easy to define, and can be viewed as
generalization of many well-known concepts, for example integrally closed ideals of finite colength and
Cohen—Macaulay rings of minimal multiplicity. We give several characterizations of these objects. We
show that they satisfy many interesting and desirable properties: ideal-theoretic, homological, categorical.
We relate them to other classes of ideals and rings in the literature.
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1. Introduction

This article introduces and studies a class of ideals and their affiliated rings which we call Burch ideals and
Burch rings. While their definitions are quite simple, our investigation shows that they enjoy remarkable
ideal-theoretic and homological properties. These properties allow us to link them to many classes of ideals
and rings in the literature, and consequently strengthen numerous old results as well as establish new ones.

Let us make a brief remark on our motivation and historical context. The project originated from our
effort to understand a beautiful result by Burch on homological properties of ideals [1968b, Theorem 5(ii)
and Corollary 1(ii)].

Theorem 1.1 (Burch). Let (R, m) be a local ring. Let I be an ideal of R with mI #= m(l : m).
(1) Let M be a finitely generated R-module. IfTorf(R/I, M) = TorfJrl (R/I, M) = 0 for some positive
integer n, then M has projective dimension at most n.
(2) If I has finite projective dimension, then R is regular.

MSC2010: primary 13C13; secondary 13D09, 13H10.
Keywords: Burch ideal, Burch ring, direct summand, fiber product, Gorenstein ring, hypersurface, singular locus, singularity
category, syzygy, thick subcategory, (weakly) m-full ideal.
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Lindsay Burch! was a PhD student of David Rees, and she wrote several (short) papers that have had a
sizable impact on two active corners of commutative algebra: homological theory and integral closure of
ideals. Perhaps most researchers in the field know of her work via the frequently used Hilbert—Burch
theorem [Burch 1968b], her construction of ideals with only three-generators while possessing arbitrarily
complicated homological behavior [Burch 1968a], and the Burch inequality on analytic spreads [Burch
1972]. The ideas of Burch’s particular result above, while less well-known, have resurfaced in the work of
several authors which also motivated our work; see [Corso et al. 2018; 2006; Kostrikin and Shafarevich
1957; Kustin and Vraciu 2018; Striuli and Vraciu 2011]. However, it has appeared to us that what was
known previously is just the tip of an iceberg, and led us to formally make the following definitions.

Let (R, m) be a local ring. We define an ideal I of R to be a Burch ideal if mI # m(I : m). We also
define Burch rings of depth zero to be those local rings whose completions are quotients of regular local
rings by Burch ideals. Then we further define Burch rings of positive depth as local rings which “deform”
to Burch rings of depth zero; see Section 2 for the precise definitions.

It is not hard to see that the class of Burch ideals contains other well-studied classes: integrally closed
ideals of codepth zero (under mild conditions), m-full ideals, weakly m-full ideals, etc.

One of our main results characterizes Burch ideals and Burch rings of depth zero:

Theorem 1.2 (Theorem 4.1). Let (R, m, k) be a local ring and I # wm an ideal of R. Then I is Burch if
and only if the second syzygy SZ%e / 1k of k over R/I contains k as a direct summand.

From this, we can quickly deduce a characterization of Gorenstein Burch ideals, which extends results
on integrally closed or m-full ideals in [Goto 1987; Goto and Hayasaka 2002]. In fact, our proofs allow us
to completely characterized modules over Burch rings of depth zero whose some higher syzygies contain
the residue field as a direct summand, as follows:

Theorem 1.3 (Theorem 4.5). Let (R, m, k) be a Burch ring of depth zero. Let M be a finitely generated

R-module. The following are equivalent:

(1) The ideal I(M) generated by all entries of the matrices 0;, i > 0 in a minimal free resolution (F, )
of M is equal to m.

(2) The R-module k is a direct summand of QM for some r > 2.

Our work reveals some interesting connections between Burch ideals/rings and concepts studied by
other authors in quite different contexts. For instance, we show that in codimension two, artinian almost
Gorenstein rings as introduced by Huneke and Vraciu [2006] (also studied in [Striuli and Vraciu 2011])

Iwe are grateful to Rodney Sharp and Edmund Robertson for providing us with the following brief biography of Burch.
Lindsay Burch was born in 1939. She did her first degree at Girton College, Cambridge from 1958 to 1961. She then went to
Exeter University to study for a Ph.D. advised by David Rees. She was appointed to Queen’s College, Dundee in 1964 before
the award of her Ph.D., which she received in 1967 for her thesis “Homological algebra in local rings”. At the time she was
appointed to Queen’s College it was a college of the University of St. Andrews but later, in 1967, it became a separate university,
the University of Dundee. Burch continued to work in the Mathematics Department of the University of Dundee until at least
1978. She then took up computing and moved to a computing position at Keele University near Stafford in the north of England.
She remained there until she retired and she still lives near Keele University.
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are Burch; see Proposition 6.10. Over a regular local ring, the “Burchness” of an ideal / imposes a strong
condition on the matrix at the end of a minimal free resolution of /, a condition that also appeared in the
work of Corso, Goto, Huneke, Polini and Ulrich [Corso et al. 2018] on iterated socles. That connection
led us to obtain a refinement of their result in Theorem 6.2.

We also study Burch rings of higher depth, especially their homological and categorical aspects. We
completely classify Burch rings which are fiber products in Proposition 6.15. The Cohen—Macaulay rings
of minimal multiplicity are Burch. Non-Gorenstein Burch rings turn out to be G-regular in Theorem 7.7,
in the sense that all the totally reflexive modules are free. Moreover, we show an explicit result on

vanishing behavior of Tor for any pair of modules.

Theorem 1.4 (Corollary 7.13). Let R be a Burch ring of deptht. Let M, N be finitely generated R-modules.
Assume that there exists an integer | > max {3, t + 1} such that ToriR (M,N)=0 foralll+t <i<Il+2t+1.

Then either M or N has finite projective dimension.

To state our last main result in this introduction, recall that the singularity category D (R) is by
definition the triangulated category given as the Verdier quotient of the bounded derived category of
finitely generated R-modules by perfect complexes. Under some assumptions, one can classify all the
thick subcategories of Dz (R) for a Burch ring R.

Theorem 1.5 (Theorem 7.10). Let R be a singular Cohen—Macaulay Burch ring. Suppose that on the
punctured spectrum R is either locally a hypersurface or locally has minimal multiplicity. Then there is
a one-to-one correspondence between the thick subcategories of Dgg(R) and the specialization-closed

subsets of Sing R.

Next we describe the structure of the paper as well as other notable results. In Section 2 we state our
convention, basic definitions and preliminary results. Section 3 is devoted to giving a sufficient condition
for a module to have a second syzygy having a cyclic direct summand (Proposition 3.4). This is a
generalization of [Kustin and Vraciu 2018, Lemma 4.1], and has an application to provide an exact pair of
zero divisors (Corollary 3.6). These materials are used in Section 4 and are perhaps of independent interest.

In Section 5, we focus on the study of Burch rings of positive depth. We verify that the class of Goren-
stein Burch rings coincides with that of hypersurfaces (Proposition 5.1). Cohen—Macaulay local rings of
minimal multiplicity with infinite residue field are Burch (Proposition 5.2). Quotients of polynomial rings
by perfect ideals with linear resolution are Burch (Proposition 5.6). We also consider the subtle question
of whether the Burch property is preserved by cutting down by any regular sequence consisting of minimal
generators of m. Remarkably, this holds for Cohen—Macaulay local rings of dimension one with minimal
multiplicity (Proposition 5.5). However, the answer turns out to be negative in general (Example 5.8).

In Section 6 we focus more deeply on Burch ideals in a regular local ring. We give a complete
characterization in dimension two and link Burch rings and Burch ideals to various other concepts.
Moreover, we give a characterization of the Burch local rings (R, m, k) with m? =0 in terms of a Betti
number of k, the embedding dimension and type of R (Theorem 6.12). We also characterize the Burch
monomial ideals of regular local rings (Proposition 6.4).
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In Section 7, we explore the homological and categorical aspects of Burch rings. We find out the
significant property of Burch rings that every module of infinite projective dimension contains a high
syzygy of the residue field in its resolving closure (Proposition 7.6). We apply this and make an analogous
argument as in [Nasseh and Takahashi 2020] to classify various subcategories.

2. Convention, definitions and basic properties of Burch ideals and rings

Throughout this paper, we assume that all rings are commutative and noetherian, that all modules are
finitely generated and that all subcategories are full and strict. For a local ring (R, m, k), we denote by
edim R the embedding dimension of R, by r(R) the (Cohen-Macaulay) type of R, and by K® the Koszul
complex of R, i.e., the Koszul complex of a minimal system of generators of m. We set KX =0 when R
is a field. For an R-module M, we denote by £z (M) the length of M, by pg(M) the minimal number of
generators of M, and by ,BiR (M) the i-th Betti number of M. The i-th syzygy of M in the minimal free
resolution of M is denoted by Q’)QM. We omit subscripts and superscripts if there is no fear of confusion.

The remainder of this section deals with the formal notion of Burch ideals and Burch rings and their
basic properties.

Definition 2.1. Let (R, m) be a local ring. We define a Burch ideal as an ideal I with m/ #= m(/ :x m).
Note by definition that any Burch ideal I of R satisfies depth R/I = 0.

Here are some quick examples of Burch ideals. Many more examples will follow from our results later.

Example 2.2. (1) Let (R, x R) be a discrete valuation ring. Then (x") is a Burch ideal of R for all n > 1,
since x(x") = (x"*t1) £ (x") = x(x" 1) = x((x") : (x)).

(2) Let I be an ideal of a local ring (R, m). Put J =m/ and suppose J # 0. Then m(J :m) =J #mJ,
so J is a Burch ideal of R.

(3) By the previous item, if (R, m) has positive depth then 7 =m' is Burch for any ¢ > 1. More generally,
if m'*! € I Cw, then I is Burch if and only if 7 : m % m’ and /m # m’*!. Using this one can show
that the set of Burch ideals is Zariski-open in Grass; (r, m’ /m’*!), for each r = dimy I/m'*!.

(4) Let (R, m) be a local ring of positive depth. Let I be an integrally closed ideal of R. Thenm/ :m =1
by the determinantal trick, so it is Burch. See Proposition 2.3 below.

The following proposition gives some basic characterizations of Burch ideals.
Proposition 2.3. Let (R, m) be a local ring and I an ideal of R. The following are equivalent:
(1) I is a Burch ideal.
(2) (I :m)# (ml :m).
(3) Soc(R/I) -m/Im #0.
(4) depthR/I =0andr(R/ml) #r(R/I)+ pu(l).
(5) IR is a Burch ideal of R, where R is the completion of R.



Burch ideals and Burch rings 2125

Proof. (1) & (2): If ({ : m) = (m/ : m), then m(/ : m) =m(m/ : m) =ml. Conversely, if m/ =m(] : m),
then (m/ :m)=m({ :m):m) = (] :m).

(1) < (3): AsSocR/I = (I :m)/I, we have Soc R/I -m/Im =0 if and only if m(/ : m) = m/.

(2) & (4): There are inclusions m/ € I € (m/ : m) C ({ : m), which especially says that (m/ : m) #
(I : m) implies depth R/I = 0. We have £(( : m)/ml) =£4(({ : m)/I)+ LI /ml) =r(R/I)+ n(l)
if depth R/I = 0, and £((m/ : m)/ml) = r(R/mlI). Thus, under the assumption depth R/l = 0, the
equalities (/ : m) = (m/ :m) and r(R/ml) =r(R/I)+ pu(l) are equivalent.

(1) & (5): Itis clear that m/ = m(/ :g m) if and only if M/ =m(/ :3 M). O

Recall that an ideal [ of a local ring (R, m) is m-full (resp. weakly m-full) if (mI : x) = I for some
x € m (resp. (m/ : m) = I). Clearly, every m-full ideal is weakly m-full. The notion of m-full ideals
has been studied by many authors so far; see [Conca et al. 2010; Goto 1987; Goto and Hayasaka 2002;
Watanabe 1987; 1991] for instance. Notably, it is fundamental to figure out the connections between
m-full ideals and another class of ideals. For example, m-primary integrally closed ideals are m-full
or equal to the nilradical of R under the assumption that the residue field & is infinite; see [Goto 1987,
Theorem 2.4]. There are many related classes of ideals, such as ideals satisfying the Rees property,
contracted ideals and basically full ideals. See [Hong et al. 2009; Rush 2013] for the hierarchy of these
classes. The notion of weakly m-full ideals is introduced in [Celikbas et al. 2018, Definition 3.7]. The
class of weakly m-full ideals coincide with that of basically full ideals if they are m-primary; see [Heinzer
et al. 2002, Theorem 2.12]. The following corollary is immediate from the implication (2) = (1) in the
above proposition.

Corollary 2.4. Let (R, m) be a local ring. Let I be an ideal of R such that depth R/I = 0. If I is weakly
m-full, then it is Burch.

Burch ideals have minimal free resolutions of extremal growth.

Remark 2.5. Let (R, m, k) be a local ring. Let I be a Burch ideal of R. Then the equalities cxg I = cxgk
and curvg I = curvgk hold. For the definitions of the complexity cxg M and the curvature curvg M of a
module M over a local ring R, see [Avramov 1998, 4.2].

Proof. We may apply [Avramov 1996, Theorem 4] by letting M = I : m and L = I because they satisfy
LOmM #mL. |

Let f:(S,n, k) = (R, m, k) be a surjective homomorphism of local rings, and set / = Ker f. Choi
[1992] defined the invariant
cr(S, f) =dimg(n(l :gn)/nl).

Clearly, an ideal I of alocal ring (S, n) is Burch if and only if Choi’s invariant cg,; (S, ) is positive, where
7 is the canonical surjection S — §/I. We give a description of Choi’s invariant for a regular local ring.
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Proposition 2.6. Let (R, m, k) be a local ring, (S, n, k) a regular local ring, and f : S — R a surjective
homomorphism with kernel 1. Then

dimy Soc R + dimg H; (K®) — edim R — dimy H; (KX') +edim R’ if I #n,
CR(Sa f) = . 2 .
dimg n/n ifl =n,
where R' = R/ Soc R.
Proof. Put J = (I :s n). We may assume I # n, and hence J # S. Then there are equalities
cr(S, f)=dimgnJ/nl = £(J/I) + (U /nl) — £(n/n?)) — (£(J /n) — £(n/n?))
= dimy Soc R + (dimg Hy (K®) — edim R) — (dimy H; (K®') — edim R).
Now the proof of the proposition is completed. (I

The above result especially says that in the case where I # n the number cz (S, f) is determined by
the target R of the surjection f. Thus the following result is immediately obtained.

Corollary 2.7 (cf. [Choi 1992, Theorem 2.4]). Let R be a local ring that is not a field. Let (S, ny) and
(82, o) be regular local rings, and f; : S; — R surjective homomorphisms for i = 1, 2. Then the equality
cr(S1, f1) = cr(S2, f2) holds. In particular, Ker fi is Burch if and only if so is Ker f5.

We are now ready to define Burch rings.

Definition 2.8. Let (R, m) be a local ring of depth ¢. Denote by R the m-adic completion of R. We say
that R is Burch if there exist a maximal ﬁ—regular sequence X = Xy, ..., X; in R.a regular local ring S
and a Burch ideal I of S such that ﬁ/(x) =S/1

Remark 2.9. If [ is a Burch ideal of a local ring (R, m), then R/I is a Burch ring of depth zero. Indeed,
IR is a Burch ideal of R by Proposition 2.3. Take a Cohen presentation R=S /J, where (S, n) is a
regular local ring. Let I’ be the ideal of S such that I’ D J and I'/J = IR. Then one can easily verify
that nl’ #n(I’ :g n), thatis, I’ is a Burch ideal of S. Note that the completion of the local ring R/I is
isomorphic to S/I'. Hence R/I is a Burch ring of depth zero.

Let R be a local ring. The codimension and codepth of R are defined by
codim R =edim R — dim R, codepth R = edim R — depth R.

Then R is said to be a hypersurface if codepth R < 1. This is equivalent to saying that the completion R
of R is isomorphic to §/(f) for some regular local ring S and some element f € S.

Example 2.10. If R is a hypersurface, then it is a Burch ring. Indeed, take a regular sequence x in R
such that R /(x) is an artinian local ring with edim R /(x) < 1. Then R /(x) is isomorphic to the quotient
ring of a discrete valuation ring S by a nonzero ideal /. By Example 2.2(1), the ideal I of S is Burch.

We define the invariant cg of a local ring (R, m, k) by

cr = dimy Soc R + dimg Hy (K®) — edim R — dimy H; (K®') + edim R’.
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Here, we set R’ = R/ Soc R, and adopt the convention that dim; H; (KR/) =0=edim R’ in the case where
R’ =0 (i.e., R is a field). Then we can characterize the Burch rings of depth zero:

Lemma 2.11. Let (R, m, k) be a local ring. Then cg = cg, and the following are equivalent:

(1) R is a Burch ring and depth R = 0.
(2) R is a Burch ring and depth R = 0.

(3) cr #0.
(4) cg > 0.

Moreover, if R is not a field but a Burch ring of depth zero and isomorphic to S/I for some regular
local ring (S, n) and some ideal I of S, then I is a Burch ideal of S.

Proof. The numbers dim; Soc R, dimy H;(K®), edim R, dimy H; (KR,), edim R’ are preserved by the
completion of R. In particular, one has cg = cz. Furthermore, take a Cohen presentation R=S /1 with a
complete regular local ring S. Letting 7 : § — S/ be the natural surjection, we have ¢z = cg(S, 7).
This especially shows that cg is nonnegative. Now we show the equivalence of (1)—(4). It is obvious
that (1) and (3) are equivalent to (2) and (4), respectively. The equivalence of (2) and (3) follows from
Proposition 2.6. Finally, we show the last assertion. Suppose that R is Burch of depth zero and that
R = §/1I, where S is a regular local ring and [ is an ideal of S. Then R= T/J for some regular local
ring T and a Burch ideal J of T. There are surjections from the regular local rings §(the completion of S)
and 7 to the local ring §/ ISER=T /J, and the kernel of the latter is the Burch ideal J. Since Ris not a
field, Corollary 2.7 implies that / S is a Burch ideal of S, and I is a Burch ideal of § by Proposition 2.3. [J

We end this section by proving an useful characterization of Burch ideals when depth R > 1. The only
if direction is known for m-full ideals; see [Watanabe 1991, Corollary 7].

Lemma 2.12. Let (R, m) be a local ring of depth > 1. An ideal I of R is Burch if and only if there exists
a non-zerodivisor a € m such that R /m is a direct summand of the R-module I /al.

Proof. Assume that I is Burch. Then there exist a € m and b € (I :g m) such that ab € I \ mI. We have
a¢ m?2, since otherwise ab € m2(I :x m) = ml. As bm C [, it holds that abm C al. We can define an
R-homomorphism f : R/m — I/al by f(1) = ab. As ab & mI, the element ab is a part of a minimal
system of generators of //al, and hence f is a split monomorphism.

Conversely, assume that there is a split monomorphism f : R/m — [/al, where a € R is a non-
zerodivisor. Let ¢ € I be the preimage of f(1) € I/al. Then cm C al C (a). The assumption depth R > 1
implies depth R/(a) > 0. Hence c has to be in (a), that is, there exists b € R with ¢ = ab. Observe
abm = cm C al. Then a being non-zerodivisor yields bm € I. In other words, b € (I :g m). The image of
ab = c is a part of a minimal system of generators of //al, and we have ab ¢ mi. Thus m(I :p m) #ml,
which means that [ is a Burch ideal. U
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Remark 2.13. It is worth noting that Lemma 2.12 can be used to give a quick proof of Theorem 1.1
when depth R > 1 and n > 1. Namely, if Tor,lf(R/I, M) = TorffH(R/I, M) = 0 then it follows that
Tor®(1/al, M) = 0, which implies that TorX (k, M) = 0.

3. Cyclic direct summands of second syzygies

The main purpose of this section is to study sufficient conditions for an R-module to have a cyclic
direct summand in its second syzygy. They will be used in the proofs of Section 4 and are perhaps of
independent interest. In fact, some of our proofs were motivated by [Kustin and Vraciu 2018; Striuli and
Vraciu 2011] which focused on different but related problems.

We start by some simple criteria for a homomorphism f : R — M to be a split monomorphism.

Lemma 3.1. Let (R, m) be a local ring of depth zero. Let f : R — M be a homomorphism of R-modules.
Assume one of the following conditions holds:

(a) R is Gorenstein. (b) M is free. (c) M is a syzygy (i.e., a submodule of a free module).
Then the following are equivalent:

(1) f is a split monomorphism. (2) f is a monomorphism. (3) f(SocR) #0.
Proof. The implications (1) = (2) = (3) are clear. To show (3) = (1), put C = Coker f.
(a) As R is Gorenstein, we have Soc R = R/m. The equality f(Soc R) # 0 implies Ker f NSoc R = 0.
Hence Ker f =0, and f is injective. As Ext}e (C, R) =0, the map f is split injective.
(b) If f is not split injective, then Im f is contained in mM by the assumption that M is free. This yields
that the inclusions Ker f © Ann(mM) 2 Soc R hold.

(c) Let g: M — F be a monomorphism with F' free. The composition gf : R — F satisfies g f (Soc R) #0.
By the previous argument, gf is split injective. There is a retraction r : F — R with rgf =idg. We see
that rg : M — R is a retraction of f. Therefore f is split injective. ]

Next we consider R-homomorphisms from a cyclic R-module to an R-module.

Lemma 3.2. Let R be a ring, I an ideal of R and M an R-module. Consider an R-homomorphism
f i R/I — M. Then f is split injective if and only if the composition map pf : R/I — M/IM is split

injective, where p : M — M /IM is the natural surjection.

Proof. Suppose f is split injective. Then there is an R-homomorphism g : M — R/I such that gf =idg/;.
On the other hand, g factor through p: M — M/IM, thatis g = g’ p for some g’ : M/IM — R/I. So we
see that g’ is a retraction of pf. Next, suppose pf is split injective. Then there is an R-homomorphism
h:R/I — M/IM such that hpf =idg/;. Thus hp : M — R/I is a retraction of f. (I

For a matrix A over R we denote by I; (A) the ideal of R generated by the i-minors of A. For a linear
map ¢ of free R-modules, we define I;(¢) as the ideal I;(A), where A is a presentation matrix of ¢. The
following lemma is well-known; we state it for the convenience of the reader.
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Lemma 3.3. Let R" % R™ — M — 0 be exact. If 11(d) C I, then M/IM is R/I-free.

Proof. The tensored sequence (R/1)" dBR/I, (R/I)™ — M/IM — 0 is exact. Since I;(d) is contained
in I, we see that d @ R/I =0, and hence M = (R/I)™. (I

We generalize [Kustin and Vraciu 2018, Lemma 4.1] as follows.

Proposition 3.4. Let (S, n, k) be a local ring and 1 C J ideals of S. Set R = S/1. Let
... > RIC RP B RUA RM _ M0
be a minimal R-free resolution of an R-module M, where A, B, C, ... are matrices over S. Assume that J

satisfies either of the following conditions:
@ J2O2LA)+L(O). (b) J 211(A) and S/J is Gorenstein.
If(I:sJ)ZUJ:s(J:sn)]11(A)), then S/J is a direct summand on%eM.

Proof. For each integer i, let J; be the ideal of S generated by the entries of the i-th column of A. Then
LA)=h++d,and (I : 5 J)Z U] :s (J:sn) (A =T :s (J:sn)J)N---NUJT 15 (J :gn)Jy).
Hence (I :s J) € (I1J :s (J :sn)J;) for some s. Choose an element u € ({ :5 J) \ ({J :5 (J :5n)Jy) and
let v € R" be the image of u - e;, where e is the s-th unit vector of S”. Since Ju C I and I1(A) C J, v is
in Ker A = Q%M =: X. We can define an R-homomorphism f :S/J — X by f(1) =v.

Now we want to show f is split injective. By Lemma 3.2, it is enough to verify so is the induced map
f'=pf:S/J— X/JX. By Lemmas 3.1 and 3.3, it suffices to check f’(Soc S/J) # 0.

Since u &€ ((I1J) :s (J :sn)Js), we can choose an element a € (J :g n) such that auJ; € IJ. Remark
that a & J, otherwise one has au € I, which forces au Jgs to be contained in 1J. Let a be the image of a in
S/J. We have that 0 £ @ € Soc S/J. If f'(a) =0, then av € JX. Then there exist elements x € J R” and
y € I R" such that aue; = Bx +y. Observe that auAe; = ABx + Ay € IJ R™. So we obtain the inclusion
auJg C IJ, which is contradiction. Thus f’(a) # 0 and we conclude that f is split injective. (I

As a corollary, we have the following restatement of [Kustin and Vraciu 2018, Lemma 4.1].

Corollary 3.5. Let (S, n, k) be a local ring and I an ideal of S. Set R = S/1 and consider a minimal
R-free presentation R" 4 R™ — M — 0 of an R-module M, where A is an m x n matrix over S and A
is the corresponding matrix over R. If (I :gn) Q (nl :s 11 (A)), then k is a direct summand of Q%QM.

Recall that a module M over a ring R is called rotally reflexive if the natural map M — M™* is an
isomorphism and Ext"R(M, R) = Extlk(M*, R) =0 for all i > 0, where (—)* = Homg(—, R). Over a
Cohen—Macaulay local ring, a totally reflexive module is a maximal Cohen—Macaulay module, and the
converse holds as well over a Gorenstein local ring.

Also, recall that a pair (x, y) of elements of a ring R is called an exact pair of zerodivisors if the
equalities (0:g x) = yR and (0 :g ¥) = xR hold [Bonacho Dos Anjos Henriques and Sega 2011]. This is
equivalent to saying that the sequence --- <> R 2> R %> R % ... is exact. It is easy to see that for each
exact pair of zerodivisors (x, y) the R-modules R/xR and R/yR are totally reflexive.

The following result is another application of Proposition 3.4.
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Corollary 3.6. Let (S, n, k) be a local ring and I C J be n-primary ideals of S. Assume that S/1, S/J
are Gorenstein and that (I :s J) g_ (1)) :5 ((J :s n)J). Then there exist elements a, b € S such that
J=1+ (), :5J)=1+ (b),and (a,b) is an exact pair of zerodivisors of S/ L

Proof. Put R = S/I. Consider a minimal R-free resolution --- — R" 4, R > S/J — 0 of the
R-module S/J. Clearly, the equality I;(A) + I = J holds. We can derive from Proposition 3.4 that the
R-module Q%(S /J) has a direct summand isomorphic to S/J. Since R is Gorenstein and the R-module
S/J is indecomposable, Q%(S/J) is also indecomposable. This implies that Q%(S/]) = §/J, that is,
the sequence 0 — S/J — R" - R — §/J — 0 is exact. We have £(R") +£(S/J) =£L(R)+€(S/J),
which yields n = 1. Thus the ideal J/I of R is principal, and we find a € R with J/I = aR. As
O:pa)= Q}Q(J/I) = §/J, the ideal (0 :z a) of R is also principal. Taking a generator b of (0 :z a), we
get an exact pair of zerodivisors (a, b) of R. (I

4. Proof of Theorem 4.1 and some applications

This section concerns a surprising characterization of Burch rings of depth zero, and some applications.

Theorem 4.1. Let (R, m, k) be a local ring that is not a field. Then R is a Burch ring of depth zero if and
only if k is isomorphic to a direct summand of its second syzygy Q%k.

We shall delay the proof until the end of this section. First, note that we can interpret Corollary 3.5
in terms of Burch rings as follows. Here we use the notation I; (M) for an R-module M to be the ideal
I;(A) where A is a matrix in a minimal free presentation F 4, G - M — 0 of M. Remark that I, (M) is
independent of the choice of A (see [Bruns and Herzog 1998, p. 21] for instance).

Proposition 4.2. Let (R, m, k) be a Burch ring of depth zero that is not a field. Let M be an R-module
with Iy (M) = w. Then k is a direct summand of Q%e M. In particular, k is a direct summand of Q%k.

Proof. By [Leuschke and Wiegand 2012, Corollary 1.15], the module Q%M contains k as a direct
summand if and only if so does Q%M ®r R = Q%(M Qg 1/’2\). Hence we may assume that R is complete,
and then there is a regular local ring (S, n) and a Burch ideal / C n® such that R = S/I. Consider
a minimal R-free presentation R" A, R™ — M — 0 of an R-module M, where A is a matrix over S
and A is A modulo 7. Then we see that II(A) = I} (M) = m, which implies that I;(A) = n. Hence
(I:sn) £ (nl :511(A)), and thus £k is a direct summand of Q%QM by Corollary 3.5. O

In the situation of the above proposition, M has extremal behavior in the sense of [Avramov 1996],
that is, it has maximal projective/injective dimension, complexity and curvature.
Here is an immediate consequence of the above proposition.

Corollary 4.3. Let (R, m, k) be an artinian Burch ring. Then there exists an element x € m \ m? such
that k is a direct summand of the ideal (0 :g x) of R.
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Proof. Let x1, ..., x, be a minimal system of generators of m. There is an exact sequence

n n xl
0> @PO0:x) >R R > @PR/x) -0 with o=

i=1 i=1 Xn

This shows I;(3) = m and Q2 (@le R/(x,-)) = EBI'.’:l(O : x;). Proposition 4.2 implies that & is a direct
summand of @_,(0: x;). Since R is artinian, it is henselian. The Krull-Schmidt theorem shows that k
is a direct summand of (0 : x;) for some i. O

The following theorem classifies m-primary Gorenstein Burch ideals.
Theorem 4.4. Let (R, m) be a local ring and I an m-primary ideal. The following are equivalent:

(1) I is a Burch ideal of R and R/I is Gorenstein.
(2) I is weakly m-full and R/I is Gorenstein.
(3) I is m-full and R/I is Gorenstein.

4) I =(x],x2,...,%x,) withxy, ..., x, aminimal system of generators of m and n, r > 0.

Proof. It follows from [Goto and Hayasaka 2002, Proposition 2.4] that (3) is equivalent to (4), while it is
obvious that (3) implies (2) and (2) implies (1). Assume (1) to deduce (4). Remark 2.9 shows that R/I is
a Burch ring. Proposition 4.2 implies that k is a direct summand of Q%e k. As Q%e sk 1s indecomposable
(see [Yoshino 1990, Lemma 8.17] for instance), we get k = Q%e / 7k, whence R/ is a hypersurface. Thus
m/I is cyclic. Choose an element x; € m such that x] is a minimal generator of m//. Then x; is a
minimal generator of m, and m = I + (x;). There is a unique integer r > 0 with x| € I and x| “ler
Choose x3, ..., x, € I sothatx,, ..., X, is a minimal system of generators of I (R/(x1)) =m/(x;). We
see that x, x2, ..., x, is a minimal system of generators of m. Clearly, / contains J := (x2, ..., X,).
Note that every m/J-primary ideal is a power of m/J = ((x1) + J)/J. As x| € I and xf_l ¢ I, we get
1/J = ((x})+ J)/J. This shows I = (x{, x2, ..., X). (I

We now characterize the modules over a Burch ring having the residue field as a direct summand of
some high syzygy.

Theorem 4.5. Let (R, m, k) be a Burch local ring of depth zero which is not a field. Let M be an
R-module. Take a minimal free resolution (F, 0) of M. The following are equivalent:

(M Y oli(@)=m (2) k is a direct summand of Qy M for some r > 2.
In particular, if )", ,11(8;) = m, then there exists an integer i > 3 such that 1;(3;) = m.

Proof. (2) = (1): The minimal presentation matrix A of Q3 M is equivalent to (g g) , where B and C are
the minimal presentation matrices of k and N, respectively. Hence 1;(9,+1) =1;(A) =1L1(B) + 1,(C) =
m+1;(C) = m, which shows ) ._,1;(3;) =m.
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(1) = (2): We may assume that R is complete, and hence there is a regular local ring (S, n) and a Burch
ideal 1 € S with R = §/1. For each i > 0 we identify 9; with a matrix over R, and let d; be a matrix over S
lifting 0;. Then n = Zi>0 I,(d;) + I. The noetherian property shows n =1;(d;) +---+1;(d,) + I for
some n > 0. Hence (n :n)=mI :L1(d)+---+1Lidn)+ D=l :Lid)N---N(l :Li(dy))N(nl : I).
Since I is Burch, we have (I : n) € (nl : n) by Proposition 2.3. In particular / is nonzero, and we see that
(I:n)Cn=l:I). We obtain (I : n) SZ (nl :1;(d;)) for some 1 <t <n. It follows from Corollary 3.5
that k is a direct summand of the cokernel of 9;, which is QtR“M. O

Let k be a field. A local ring R is said to be a fiber product (over k) provided that it is of the form
R=8x;T={(s,1) e SxT |ms(s) =mr (1)},

where (S, mg) and (7, my) are local rings with common residue field k, and 75 : S > kand iy : T — k
are the natural surjections. The set S x; T is a local ring with maximal ideal mgy,7 = mg @ mr and
residue field k. Conversely, a local ring R with decomposable maximal ideal mg = I @ J is a fiber product
since R = (R/I) xj (R/J). These observations are due to Ogoma [1984, Lemma 3.1].

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. The “only if” part is a direct consequence of Proposition 4.2.

We consider the “if” part. Again we may assume that R is complete. Take a Cohen presentation
R = S/1I, where (S, n) is a regular local ring and / is an ideal of § contained in n2 If (I :gn) SZ n?, then
there is an element x € (m N Soc R) \ m% One has a decomposition m = J @ (x), which means that R
is of the form S x; T with edim 7 = 1. Then R is Burch by Example 2.10 and Lemma 6.14. Thus we
may assume that (I :gn) C n% Suppose that I is not Burch, so that n(/ :s n) = nl. We aim to show that
Soc Q%ek C mQ%k. Take minimal generators xj, ..., x, of n. There is a commutative diagram

0 I° S¢ R¢ 0
0 1 n m 0
I/nl 0 0
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of S-modules with exact rows and columns. Applying the snake lemma, we get an exact sequence
Qik — QRk & I/nl — 0, 4.5.1)

where § sends each element a € Q%{k whose preimage in S¢ is '(ay, ..., a.) to the image of > i Xia; in
I/nl. Now consider element a € Soc Q%k. This means that the preimage '(ay, ..., a.) € S¢ of a satisfies
a; € (I :gn) for all i. Therefore, the element ) ; x;a; € S is contained in n(I :5 n) = n/l. This yields that
3(a) =0. By the exact sequence (4.5.1), we can take the preimage (ay, ..., a.) € S° of a to be contained in
Q%k. We already have '(ay, . . ., a,) € (I :sn)S¢ Cn?S% It follows that ‘(ay, . . ., a.) € QEkNN> S CnQik,
see [Herzog et al. 1983, Theorems 3.7 and 4.1] for the second containment. Consequently, the element a
is contained in mQ%ek. This allows us to conclude that if Soc Q%ek Z mQ%k then 7 is a Burch ideal, and
hence R is a Burch ring. O

In view of Theorem 4.1, one may wonder if an artinian local ring R is Burch if the residue field k is a
direct summand of "k for some n > 3. This is not true in general:

Example 4.6. Let k be a field, and consider the ring R = k[[x, y]|/I, where I = (x*, x?y?, y*). The
minimal free resolution of k is

<—yxy2x3 0)
) 0 0y?
0k« RIEV 2T Y/ g

We have Soc Q3k = Soc R* = (x3y, xy*) R*. The column vector
2:='(x’y,0,0,0)=y-'(x*,0, y,0) = (0,0, y*,0)

is in Soc %k \ mQ>k. The assignment 1 — z makes a split monomorphism k — 3k, and k is a direct
summand of ©3k. However, R is not Burch as one can easily check the equality m(/ : m) = m/.

5. Burch rings of positive depth

In this section, we study Burch rings of positive depth. First of all, let us investigate what Gorenstein
Burch rings are.

Proposition 5.1. A local ring is Burch and Gorenstein if and only if it is a hypersurface.

Proof. Let R be a local ring of dimension d. If R is hypersurface, then R is clearly Gorenstein, and it is
also Burch by Example 2.10. Conversely, suppose that R is Burch and Gorenstein. Then there exists
a system of parameters x = xy, ..., x4 such that R /(x) is an artinian Gorenstein Burch local ring. By
definition, there exist a regular local ring (S, n) and a Burch ideal / of § such that R /(x) = S/I. By
Theorem 4.4, there are a minimal system of generators yi, ..., y, of n with n > 0 and an integer » > 0
such that I = (y{, y2, ..., yn). In particular, S/I = ﬁ/(x) is a hypersurface, and so is R. (I

A Cohen—Macaulay local ring R is said to have minimal multiplicity if e(R) = codim R + 1.
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Proposition 5.2. Let (R, m, k) be a Cohen—Macaulay local ring with minimal multiplicity, and assume
that k is infinite. Then R is Burch.

Proof. We can find a general system of parameters x such that A = R/(x) is artinian and still has minimal
multiplicity. This simply means that mi =0, so the first syzygy of k is a k-vector space. Thus A is Burch
by Theorem 4.1 and so is R. U

Remark 5.3. A Cohen—Macaulay local ring with minimal multiplicity is a typical example of a Golod
local ring. In view of Proposition 5.2, the reader may wonder if a Golod local ring is Burch. This is not
true in general; the ring R given in Example 4.6 is not Burch but Golod by [Avramov 2012, 1.4.3 and 2.1].
Neither can we say that Burch ideals are Golod. Indeed, let R = k[x, y, z, w]/mJ, where m = (x, y, z, w)
and J = (x2, yz, 7%, w?) in k[x, v, z, w]. This is the example of non-Golod ring R given in [De Stefani
2016, Example 2.1]. However, it is Burch by Example 2.2(2).

We establish a lemma to prove our next result on Burch rings.

Lemma 5.4. Let (R, m, k) be a 1-dimensional Cohen—Macaulay local ring with minimal multiplicity.
Then there exists an isomorphism m* = m, where (—)* = Homg(—, R).

Proof. If R is a discrete valuation ring, then m = R, and hence m* = m. So we assume that R is not a
discrete valuation ring. Since R has minimal multiplicity, by [Lipman 1971, Lemma 1.11], there is an
R-regular element x € m such that m?> = xm. Let Q be the total quotient ring of R. We have

m* = Hompg(m, R) = Homg(m, xR) = (xR :p m) D m,

where the second isomorphism follows from [Kobayashi and Takahashi 2019, Proposition 2.4(1)] for
instance. For each element ”; € (xR :gp m), we have ax € am C sxR, which implies a € sR as x is
R-regular, and hence ¢ € R. Therefore (xR :g m) is an ideal of R containing m. Since R is not a discrete
valuation ring, it is a proper ideal. We get (xR :p m) = m, and consequently m* = m. U

Cohen—Macaulay rings of dimension 1 with minimal multiplicity have a remarkable property.

Proposition 5.5. Let (R, m, k) be a 1-dimensional Cohen—Macaulay local ring with minimal multiplicity.
Then the quotient artinian ring R/(x) is a Burch ring for any parameter x € m \ m>

Proof. If R is regular, then it is a discrete valuation ring, and x is a uniformizer. Hence R/(x) is a field,
and it is Burch. Thus we assume that R is singular. Applying (—)* = Homg(—, R) to the natural exact
sequence 0 — m — R — k — 0, we get an exact sequence 0 — R — m* — k%" — 0, where r is the
type of R. Making the pullback diagram of the map m* — k®" and the natural surjection R®" — k%", we
obtain an exact sequence 0 — m® — RO+D . m* 5 0. As R is singular, m®" does not have a nonzero
free summand by [Dutta 1989, Corollary 1.3]. We get an isomorphism m®" = Q (m*). Combining this
with Lemma 5.4 yields m® = Qm = Q?k. Since x is an R-regular element in m\ m?, there is a split exact
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sequence 0 — k — m/xm — m/(x) — 0, which induces m/xm = k @& m/(x). We obtain isomorphisms
of R/(x)-modules

k¥ @ (m/(x)® = (m/xm)® = Q%k/xQ%k = Qg /() (m/xm)
= Qrjnk @ Ly (M/ (X)) = Qr/wk & Qo k.
where the third isomorphism holds since there is an exact sequence 0 — %k — R®" — m — 0 with
n = edim R, which induces an exact sequence 0 — Q% /xQ%k — (R/(x))®" — m/xm — 0. As R/(x)

is an artinian local ring, it is henselian. The Krull-Schmidt theorem implies that k is a direct summand of
either Qg k or Q%e /(x)k. In the former case, applying g/ (x)(—) shows that k is a direct summand of

Q%?/(x)k‘ Theorem 4.1 concludes that R/(x) is a Burch ring. O
Proposition 5.6. Let S = k[x1, ..., x,] be a polynomial ring over an infinite field and I C S is a
homogenous ideal such that S/1 is Cohen—Macaulay and I has a linear resolution. Then R = (S/1I)n is
Burch where m = (x1, ..., x,).

Proof. Let A = S/I and (I1,...,l;) be a general linear system of parameters on A. We write
A/, ..., l5)Aas T/J where T is a polynomial ring in n —d variables over k and J is a zero-dimensional

ideal. Then J still has linear resolution. Assume / (and J) are generated in degree ¢, then the regularity
of J is t, but since J is zero-dimensional, the socle degree of J is t — 1. Thus J = n’ where n is the
irrelevant ideal of 7, and so R is Burch by definition and Example 2.2. (]

Example 5.7. There are many examples satisfying the conditions of Proposition 5.6. For example, let
m >n and let I = I, C k[x;;] = S be the ideal generated by maximal minors in a m by n matrix of
indeterminates. Then it is well-known that S/ is Cohen—Macaulay with dim S// = (m + 1)(n — 1) and
the a-invariant of S/1 is —m(n — 1); see [Bruns and Herzog 1998]. It follows that the regularity of I is n,
so it has linear resolution.

Another source of examples are Stanley—Reisner rings of “facet constructible” or “stacked” simplicial
complexes; see [Dao and Schweig 2019, Theorems 4.1 and 4.4].

We will show in Corollary 7.9 that if x is a regular element of a local ring (R, m) such that R/(x) is
Burch, then x ¢ m2 It is natural to ask whether the quotient ring R/Q of a Burch ring R is again Burch
for any ideal Q generated by regular sequence consisting of elements in m \ m2 This is true if R is either
a hypersurface or a Cohen—Macaulay local ring of dimension one with minimal multiplicity, as we saw in
Propositions 5.1 and 5.5. The example below says that the question is not always affirmative.

Example 5.8. Let k be a field, and let R = k[[x, y, z]/I» (xy ’ ;2 f;) The Hilbert-Burch theorem implies
that R is a Cohen—Macaulay local ring of dimension 1. The ring R is a Burch ring since so is the artinian
quotient ring R/(x) = k[[y, zIl/(y*, yz?, z*). However, the artinian ring R/(y) = k[[x, z]l/(x*, x%2%, z*)
is not Burch. By Theorem 4.1, the R-module £ is a direct summand of Q% /(x)k, but not a direct summand

of Q%e /(y)k. Incidentally, the module % is a direct summand of Q% /(y)k by Example 4.6.

To show our next result on Burch rings, we prepare a lemma on cancellation of free summands.
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Lemma 5.9. Let R be a local ring. Let M, N be R-modules having no nonzero free summand. If
M & R® = N @ R®" for some a,b >0, then M = N and a = b.

Proof We may assume a > b. Taking the completions, we get isomorphisms M@ R® = N @ R®. Write
M=X®R® and N =Y ® R®? with ¢, d > 0 integers and X, Y having no nonzero free summand. Then
X @ R®t0) =y @ R®@+h) Ag R is henselian, we can apply the Krull-Schmidt theorem to deduce X = Y
and c+a =d+b. Hence d = c+(a—b), and we get N=Y@®R® = X RO +a—b) — jjq R®@—b) =T
where L := M @ R®“2)_ It follows from [Leuschke and Wiegand 2012, Corollary 1.15] that N is
isomorphic to L. Since N has no nonzero free summand, we must have a = b, and therefore M =L =N. [J

The following result is a higher-dimensional version of the “only if” part of Theorem 4.1.
Proposition 5.10. Let (R,m, k) be a singular Burch ring of depth t. Then Q'k is a direct summand of Q' +2k.

Proof. We prove the proposition by induction on ¢. The case ¢ = 0 follows from Lemma 2.11, so let # > 1.
There is an R-sequence x = x1, ..., x; such that R/(x) is a Burch ring of depth zero. Hence R/(x;) is a
Burch ring of dimension d — 1. The induction hypothesis implies that Q7 R /(x yk is a direct summand of
Q’RJ%X yk. Taking the syzygy over R, we see that S2g QR/(xl)k is a direct summand of QRQ’RJ;}xl)k. For
each n > 0 there is an exact sequence 0 — Q’;e/(xl)k - P, —+--— Pl — Py— k— 0 with each P;

being a direct sum of copies of R/(x), which gives rise to an exact sequence
0— QrQ )k = QrP1 @ R¥ — oo QrPIL® R — QrPy® R — Qrk — 0

with e; > 0 for 0 <i <n — 1. Note that each Q P; is a free R-module. The above sequence shows that
Q”+1k Q% (Qgk) is isomorphic to Q% Jx )k up to free R-summands. We obtain an R-isomorphism
Q”“k @ RO = QRQR/()C yk with e > 0. Thus, for some a, b > 0 we have that QLk @ R® is a direct
summand of Q?zk ® R®". Since R is singular, it follows from [Dutta 1989, Corollary 1.3] that Q"Rk
has no nonzero free summand for all i > 0. Applying Lemma 5.9, we observe that Q}k is a direct
summand of Q7 2k. O

We pose a question asking whether or not the converse of Proposition 5.10 holds true.

Question 5.11. Does there exist a non-Burch local ring (R, m, k) of depth ¢ such that Q'k is a direct
summand of Q'+2k?

6. Some classes of Burch ideals and rings

In this section, we study Burch ideals in a regular local ring and give a complete characterization in
dimension two. We also give a simple characterization of monomial Burch ideals. We compare Burch
rings to other classes of rings: radical cube zero, almost Gorenstein, nearly Gorenstein, and fiber products.

Over a two-dimensional regular local ring (R, m), the Burch ideals I are characterized in terms of the
minimal numbers of generators of / and m/.

Lemma 6.1. Let (R, m) be a regular local ring of dimension two, and let I be an m-primary ideal of R.
Then I is a Burch ideal of R if and only if p(mlI) < 2u(l).
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Proof. It follows from the Hilbert—-Burch theorem that w(I/) =r(R/I)+ 1 and u(ml) =r(R/ml) + 1.
The assertion follows from the equivalence (1) < (2) in Proposition 2.3. O

Now we can show the following theorem, which particularly gives a characterization of the Burch
ideals of two-dimensional regular local rings in terms of minimal free resolutions. Compare this theorem
with the result of Corso, Huneke and Vasconcelos [Corso et al. 1998, Lemma 3.6].

Theorem 6.2. Let (R, m) be a regular local ring of dimension d. Let I be an m-primary ideal of R. Take
a minimal free resolution 0 — Fy 2% F;_| — --- — F| 2 Fy — R/I — 0 of the R-module R/I.

Consider the following conditions:
(1) The ideal I is Burch.

(2) There exist a regular system of parameters xi, ..., xq and an integer r > 0 such that 11(¢y) =
(x{.s x21 e xd)‘

(3) One has (I :m)% £ I1(I :m).

Then the implication (1) = (2) holds. If R contains a field, then the implication (3) = (2) holds. If d =2,
then the implication (2) = (1) holds as well.

Proof. We first show that (1) implies (2). We may assume d > 2, so that R has depth greater than 1. By
Lemma 2.12 and its proof, there is a non-zerodivisor x; € m \ m? such that 7 /x;I contains the residue
field R/m as a direct summand. Tensoring R/(x) with the complex F = (0 — F; — --- — Fy — 0), we
get a minimal free resolution

O— Fy/x1Fy $a®S/01) Fo 1/Fg1— - — F/x1F, — Fi/x1F1 — 0)

of I/x1I over R/(x1). As R/m is a direct summand of //x;/, a minimal R/(x)-free resolution G of
R/m is a direct summand of the above complex. Since G is isomorphic to the Koszul complex K®/¢1)
of R/(x1), the ideal I (¢; ® R/(x1)) of R/(x;) contains the maximal ideal m/(x;). Therefore I;(¢,)
contains elements x, ..., xz such that x, xp, ..., x4 form a regular system of parameters of R. Since
the radical of I;(¢,) contains /, it is an m-primary ideal. It follows that there is an integer » > 0 such that
x1 € I1(¢q) but xlr_1 ¢ I (¢q). We obtain Iy (pg) = (x], x2, ..., x4), and (2) follows.

Next, under the assumption that R contains a field, we prove that (3) implies (2). We use an analogue of
the proof of [Corso et al. 2018, Theorem 2.4]. After completion, we may assume that R is a formal power
series ring over a field k. Suppose that (2) does not hold. Then d > 2 and we can take an ideal L containing
I1(¢4) such that there is a regular system of parameters xy, ..., xy with L = (x12, X1X2, x%, X3, ..., X4).
By [Corso et al. 2018, Proposition 2.1], an isomorphism (I : L)/I = wg;; ®p Fy; and its retraction
(I :m)/I = wg/m Qr Fy are given. Note that the canonical module wg/;, of R/L is isomorphic to
(0 :gxy L). The module Er (k) is identified with k[x1, xl_l, o X4, xd_l]/N, where N is the subspace
spanned by the monomials not in k[x~ 1, e, xd_l]. Under this identification, wg,;, = (0: L) is generated
by the monomials xfl and x;l. Set M = {xfl, x;l}. Then x1M = {1} = x, M generates wg/m. Also,
either x;w = 0 or xow = 0 holds for all w € M. We may apply [Corso et al. 2018, Proposition 2.3] as in
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the proof of [Corso et al. 2018, Theorem 2.4] to get ({ : m)?=1(I:m), contrary to (3). We have shown
that (3) implies (2).

Finally, assuming d = 2, we prove (2) implies (1). As the entries of ¢, are contained in m, we have an
exact sequence 0 — F», 22> mF; — mI — 0. This induces an exact sequence

FojmFy LERRIM o Fy jm? F) — mI/m2] — 0.

Suppose that (2) holds. Then ¢, ®g R/m # 0, and dimgm(m/m?I) < dimgm(mF;/m?F;). Note that
dimR/m(mI/mzl) = pu(m/l) and dimg /m(mF; /m?F) =2u(I). Lemma 6.1 shows that I is a Burch ideal,
that is, (1) holds. [l

Example 6.3. (1) Let I = (x*, y*, 2%, x%y, y?z, z%x) be an ideal of (R, m) = k[[x, y, z]. Then one
can check that (I : m) = (x*, x°z, x2y, xy?, xyz, xz2, y*, y?z, yz3, z%), and so (1 : m)? £ I (I : m).
However, I is not Burch. This gives a counterexample of the implication (3) = (1) in Theorem 6.2.

(2) Let I = (x*, y*, x3y, xy) be an ideal of (R, m) = k[[x, y]. Then (1 : m) = (x>, x2y?, y3). We see
that (1 : m)?> = I(I : m) and [ is Burch. This shows that the implication (1) = (3) in Theorem 6.2 is
not affirmative, even when R has dimension two.

We provide some characterizations of Burchness for monomial ideals of regular local rings.

Proposition 6.4. Let (R, m) be a regular local ring of dimension d. Let x1, . .., xq be a regular system of
parameters of R, and let I be a monomial ideal (in the x;s) of R. Then I is Burch if and only if there exist
a monomial m € I \mI and an integer 1 <i < d such that x; |m and m(x;/x;) € I forall1 < j <d.

Proof. Since I is a Burch ideal, we have m/ # m(I : m). Therefore, there is a monomial m’ € (I : m)
and an integer i such that x;m’ & ml. It also holds that x;m’ € I forall j =1,...,d. So the element
m = x;m’ satisfies m(x;/x;) € [ forall j=1,...,d. O

Corollary 6.5. Let (R, m) be a regular local ring of dimension 2 with a regular system of parameters x, y.
Let I = (x”‘ybl,xazybz, e x“"yb") be a monomial ideal withay > ay > --->a, and by <by < --- < b,,.
Then I is a Burch ideal of R if and only if a; = a;+1 + 1 or by = b;11 — 1 for somei =1, ..., n.

Proof. By Proposition 6.4, the ideal I is Burch if and only if x% y% (y/x) € I or x% y?i(x/y) € I for some
i =1,...,n. Equivalently, either x%~'y%*1 € [ or x%*+1ybi~1 ¢ I holds for some i =1, ..., n. Since
air1<ai—l<ai<ai+1<aj_yand b;_| <b; —1 < b; < b; +1 < b;41, the condition is equivalent to
saying that b; +1=b;; 1 ora; +1=a;_ forsomei =1,...,n. O

Next, we discuss the relationship between Burch rings and several classes of rings studied previously
in the literature.

Recall that the trace ideal tr M of an R-module M is defined by tr M = feHomg(m,R) IM f. The
following notions are introduced in [Herzog et al. 2019; Striuli and Vraciu 2011].

Definition 6.6 (Herzog—Hibi—Stamate). Let (R, m) be a Cohen—Macaulay local ring with canonical
module w. Then R is called nearly Gorenstein if tr @ contains m.
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Definition 6.7 (Striuli—Vraciu). Let (R, m) be an artinian local ring. Then R is called almost Gorenstein*
if (0:(0:1)) € (I :m) for all ideals I of R.

It follows from [Huneke and Vraciu 2006, Proposition 1.1] that artinian nearly Gorenstein local rings
are almost Gorenstein.

We want to consider the relationship of Burchness with near Gorensteinness and almost Gorensteinness.
For this, we establish two lemmas.

Lemma 6.8. Let (R, m, k) be a non-Gorenstein artinian almost Gorenstein local ring. Let R" 4> R™ —
E — 0 be a minimal R-free presentation of the R-module E = Eg (k). One then has 1;(A) =

Proof. Choose an artinian Gorenstein local ring (S, n) and an ideal / of S such that R = S/I. We
identify E with (0 :g I) via the isomorphisms E = Homg(R, S) = (0:5 I). Let xy, ..., x;;, be a minimal
system of generators of E. By [Striuli and Vraciu 2011, Lemma 1.2] we have

n=((x1):s (x2, ..., xm) +((x2, ..., Xm) 5 X1).

We find a matrix B over S with m rows such that I;(B) =n and (x1 - - - x,,) B = 0. We find a matrix C
over R such that the matrix B over R corresponding to B is equal to AC. We have m =1 (B)=1;(A-C)C
I;(A) € m, which implies I; (A) = m. O

Lemma 6.9. Let (R, m) be a regular local ring of dimension d, and let I € m? be an ideal of R. Take
M Fy > > F 2 Fy— R/I—>OoftheRm0dule R/L If
R/1 is artinian, non-Gorenstein and almost Gorenstein, then 11(¢4) =

a minimal free resolution 0 — F; =~

Proof. Set A= R/I and E = E4 (k). Then the sequence (Fy_/IF;_1)* —= (ZLION (Fg/IF)*— E—0
gives a minimal A-free presentation of E, where (—)* = Homa(—, A). Note that rank4 (F; /I Fy)* =
r(A) = u(E). Lemma 6.8 implies I} ((pg ® A)*) = m, which shows I (¢;) + I = m. The desired result
follows from Nakayama’s lemma. (I

We can show an artinian almost Gorenstein local ring of embedding dimension two is Burch.

Proposition 6.10. Ler (R, m) be a regular local ring of dimension 2 and I an ideal of R. Assume that
R/ 1 is a non-Gorenstein artinian almost Gorenstein ring. Then I is a Burch ideal of R.

Proof. Take a minimal free resolution 0 — F, s F; “5 Fy — R/I — 0 of the R-module R/I. Tt
follows from Lemma 6.9 that I1(¢;) = m. Since R has dimension two, we can use the implication
(2) = (1) in Theorem 6.2 to have that I is Burch. O

Remark 6.11. One may hope a non-Gorenstein nearly Gorenstein local ring is Burch, but this is
not necessarily true. Indeed, let (R, m) be a 1-dimensional nearly Gorenstein local ring (e.g., R =
k[[£3, t*, ] € k[[t] with k a field). Take a regular element x € m? and set A = R/(x). Then A is nearly
Gorenstein by [Herzog et al. 2019, Proposition 2.3(b)], but A is not a Burch ring by Corollary 7.9.

2There is another notion of an almost Gorenstein ring; see [Goto et al. 2015].
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Next, we deal with local rings the cube of whose maximal ideal is zero. The following gives a
characterization of Burchness for such rings.

Theorem 6.12. Let (R, m, k) be a local ring with m? = 0. Then R is a Burch ring if and only if there is
an inequality (k) > (edim R)? —r(R).

Proof. Put e =edim R and r =r(R). By Theorem 4.1, the ring R is Burch if and only if & is a direct sum-
mand of Qk, if and only if Soc 2k € mQ?k. There is a short exact sequence 0 — Q%k — R¢ — m — 0,
which gives an inclusion Q%k € mR¢ and an equality Soc Q%k = Soc R¢. Since m® = 0, we have an
inclusion m§%k < Soc Q2k. Thus R is Burch if and only if £(Soc Q2k) > £(m2%k). There are equalities

B (k) = €(2%k) — £(mQ*k) = £(R®) — £(m) — £(mQ%k) = (e — 1)L(m) + e — L(m%k)
= (e — D(e+e(m?) +e— L(mQ%k) = &> + (e — 1)L(m?) — £(mQk).
On the other hand, there is an inclusion 2k € m¢, which induces an inclusion mQ2k C (mz)e. Thus one has
L(m2k) < el(m?) < er = £(Soc Q2k). If £(m?) < £(Soc R) =r, then we see that £(Soc Q2k) > £(m$2k).
The above equalities show that (k) > e? — ¢(m?) > ¢ — r. Therefore, we may assume L(m?) =r. We

obtain By (k) = e? — r +er — £(mQ2k). It follows that B, > > — r if and only if er — £(mQ%k) > 0. The
latter condition is equivalent to £(Soc Q%k) > £(mS2k). O

Let R be a local ring with maximal ideal m. An element x € m is called a Conca generator of m if
x% =0 and m? = xm. This notion has been introduced in [Avramov et al. 2008]. Note that the condition
m> = 0 is necessary for R to possess a Conca generator.

Corollary 6.13. Let (R, m, k) be a local ring with m® = 0 and Soc R € wm? If R is a Burch ring, then R
has no Conca generator.

Proof. If R has a Conca generator, then the Poincaré series Py (1) =) Bit' is of the form 1/(1 —et+rt?) by
[Avramov et al. 2008, Theorem 1.1]. In particular, 8, (k) = e?>—r. Thus R is not Burch by Theorem 6.12. [J

Next, we consider the Burchness of a fiber product. Let S, T be local rings having common residue
field k. We say that the fiber product S x; T is nontrivial if S # k # T. It holds that depth S x; T =
min{depth S, depth T, 1}; see [Lescot 1981, Remarque 3.3]. We compute some invariants.

Lemma 6.14. Let R = S xi T be a nontrivial fiber product, where (S, mg, k) and (T, mp, k) are local
rings. Then the following equalities hold.

(1) edim R =edim S +edim 7.

(2) dimy Soc R = dim; Soc S + dimy Soc 7.

(3) dimg H;(K®) = dim; H; (K5) 4+ dim; H; (K”) +edim S - edim T.

4) cr=cs+cr+edimS-edimT —edim(S/Soc S) -edim(7/ Soc T).

Proof. (1), (2) These equalities can be checked directly.
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(3) One has BR (k) = B35 (k)+pT (k)+2 edim S-edim T and dimy H; (K®) = BR (k)— (edig’ K); see [Kostrikin
and Shafarevich 1957; Bruns and Herzog 1998, Theorem 2.3.2] for example. Thus there are equalities

dimg Hy (KF) = R (k) — (""" F) = B5 (k) + BT (k) + 2 edim S - edim T — (< F)
= dimyg Hy (K®) — (*“0"%) + dimy Hi (KT) — (*“7'T) + 2 edim S - edim T — (**1'¥)
= dim H; (K®") 4+ dimg H; (K®*) + edim S - edim 7.

(4) Put R"R =R/SocR, S =S/SocSand T'=T/SocT. Then " = 8§ x T’ unless S =k or T = k.
Using (1), (2) and (3), we can calculate c as follows:

cr = dimy Soc R + dim H; (K®) — edim R — dim H; (K*') + edim R’
= dimy Soc S + dimy Soc T + dimy H; (K®) 4 dim H; (K®?) + edim S - edim T
—edim S — edim T — dimg Hy (K®) — dimg H; (KT') — edim S’ - edim T’ + edim S’ + edim T’
=cs+cr+edimS-edim7 —edim S’ -edim 7. O

Using the above lemma, we can characterize the Burch fiber products.

Proposition 6.15. Let R = S x; T be a nontrivial fiber product, where (S, mg, k) and (T, mp, k) are
local rings. Then R is a Burch ring if and only if

(a) depthR > 0, or (b) depth R =0 and either S or T is a Burch ring of depth zero.

Proof. First we deal with the case where depth R = 0. Lemma 2.11 shows that R is Burch if and only if
cg > 0. Note that the integers cg, cr and N :=edim S -edim 7 — edim(S/ Soc S) - edim(7'/ Soc T') are
always nonnegative. By Lemmas 6.14(4), the positivity of cg or ¢ implies that R is Burch. Conversely,
assume that R is Burch. Then by Lemma 6.14(4) again, one of the three integers cg, cr, N is positive.
If c5 or cr is positive, then S or T is Burch. When N > 0, either edim S > edim S/ Soc § or edim T >
edim 7/ Soc T holds. Without loss of generality, we may assume that edim S > edim S/ Soc S. This
inequality means that there is an element x € (mg N Soc S) \m%. Then mg = I @ (x) for some ideal 1.
We see that S = S/(x) xS/ and edim S/I < 1. Example 2.10 implies that S// is Burch, and so is S.

Next, we consider the case where depth R > 0. In this case, we have depth S > 0, depth 7T > 0 and
depth R = 1. Take regular elements x € mg \m% and y e myp \sz. The element x —y e mgp =mg@mr is
also a regular element of R. The equalities xmz = xmg = (x — y)mg show that the image x € R/(x — y)
of x isin Soc R/(x —y). We have mg/(x —y) = (x) @ I for some ideal I of R/(x —y). Hence R/(x —y)
is isomorphic to the fiber product U x; V of local rings over their common residue field k such that
edimV < 1. As V is Burch by Example 2.10, it follows that so is R/(x — y), and hence so is R. (I

Example 6.16. Let R = k[x, y]/(x“, xy, y?) with k a field and a, b > 1. Then R is a Burch ring. In
fact, R is isomorphic to the fiber product of k[x]/(x?) and k[y]/(y*) over k. By Example 2.10, the rings
k[x]/(x?) and k[y]/(yb) are Burch, and so is R by Proposition 6.15.
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7. Homological and categorical properties of Burch rings

In this section, we explore some homological and categorical aspects of Burch rings. They come in
several flavors. We prove a classification theorem of subcategories over Burch rings. We also prove
that non-Gorenstein Burch rings are G-regular in the sense of [Takahashi 2008], and that nontrivial
consecutive vanishings of Tor over Burch rings cannot happen. We begin with recalling the definition
of resolving subcategories.

Definition 7.1. Let R be aring. A subcategory X of mod R is resolving if the following hold.
(1) The projective R-modules belong to X.
(2) Let M be an R-module and N a direct summand of M. If M is in X, then so is N.
(3) For an exact sequence 0 > L - M — N — 0, if L and N are in X, then so is M.

(4) For an exact sequence 0 - L - M — N — 0,if M and N are in &, then so is L.

Note that (1) can be replaced by the condition that X contains R. Also, (4) can be replaced by the
condition that if M is an R-module in X, then so is 2M. For an R-module C, we denote by resg C the
resolving closure of C, the smallest resolving subcategory of mod R containing C.

We establish a couple of lemmas to prove Proposition 7.6. The first lemma is used as a base result of
this section, which is essentially shown in [Takahashi 2009, Proposition 4.2]. For an R-module M we
denote by NF(M) the nonfree locus of M, that is, the set of prime ideals p of R such that M, is nonfree
as an Rp-module.

Lemma 7.2. Let (R, m) be a local ring, M a nonfree R-module, and x an element in m.
(1) There exists a short exact sequence 0 — QM — M (x) — M — 0 such that x € I;(M (x)) € m and
pdr M(x) > pdp M. In particular, M (x) belongs to resg M.
(2) Foreachp € V(x) NNF(M) one has V(p) € NF(M(x)) C NF(M) and D(x) NNF(M (x)) = &.

Proof. (1) Let --- KLIN P LN Fi N Fo > M — 0 be a minimal free resolution of M. Taking the
mapping cone of the multiplication map of the complex F by x, we get an exact sequence

(d;x) (dzx) (dlx)
s BeRh """ beF 2" FeF -2 B M T M 0.

Set M(x) = Im(%‘ _Xn) = Coker(%2 —);11 ) The free resolution of M (x) given by truncating the above
sequence is minimal. We see that x € I; (M (x)) € m as M is nonfree, and that pdp M (x) > pdp M. The

following pullback diagram gives an exact sequence as in the assertion.

e

0 oM —' R, M 0
0 oM M(x) M 0
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(2) The module M (x) fits into the pushout diagram

0 oM —' F—" M 0
0 QM M(x) M 0

Using the same argument as in the proof of [Takahashi 2009, Proposition 4.2], we observe that V() C
NF(M(x)) € NF(M) and D(x) "NF(M(x)) = & hold. O

Lemma 7.3. Let (R, m) be a local ring and M an R-module. Let W C NF(M) be a closed subset of
Spec R. Then there exists an R-module X such that pdi X > pdi M and NF(X) = W.

Proof. The assertion follows from the proof of [Takahashi 2009, Theorem 4.3] by replacing [Takahashi
2009, Lemma 4.2] used there with our Lemma 7.2. O

Lemma 7.4. Let (R, m) be a local ring and M a nonfree R-module. Then there is an exact sequence
00— M)" > N—->M"'—0withn>1,1)(N)=mand pdp N > pdp M. In particular, N € resg M.

Proof. Let x1, ..., x, be a minimal system of generators of m. According to Lemma 7.2, for each i
there exists an exact sequence 0 — QM — M(x;) - M — 0 such that x; € [;(M(x;)) € m and
pdr M (x;) >pdp M. Putting N = @?:1 M (x;), we obtain an exact sequence 0 - (2M)" > N —- M" —0
with [[(N) =7 I;(M(x;)) =mand pdg N > pdz M. O

Lemma 7.5. Let R be a local ring. Let M be an R-module that is locally free on the punctured spec-
trum of R.

(1) Forevery X eresp M there exists Y € res R M such that X is a direct summand of Y.

(2) Let N be an R-module. Ifﬁ €resyp A?, then N € resg M.

Proof. (1) Let C be the subcategory of mod R consisting of direct summands of the completions of modules
in resg M. We claim that C is a resolving subcategory of mod R containing M. Indeed, since R, M are
in resg M, the completions R , M are in C. For each E ¢ C, there exists D € resg M such that E is a
direct summand of D. The module #E is a direct summand of 2 ;55 = STR\D. As QrD eresp M, we
have QrE € C. Let 0 > A — B — C — 0 be an exact sequence of R-modules with A, C € C. Then
A, C are direct summands of f/\, W for some V, W € resg M, respectively. Writing A ® A’ = V and
C @ C' = W, we get an exact sequence o : 0 — V — B/ — W:& where B’ = A’ @ B @ C’. The exact
sequence o corresponds to an element of Ext}?(W, ‘7) = Ext}g(W, V). Since M is locally free on the
punctured spectrum of R, so are V and W. Hence Ext}e(W, V) has finite length as an R-module, and is
complete. This implies that there exists an exact sequence t : 0 — V — U — W — 0 of R-modules such
that T = o. Therefore U is in resg M and B’ is isomorphic to U. Thus B belongs to C, and the claim
follows. The claim shows that C contains resz M. Hence X is in C, which shows the assertion.
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(2) By (1) there is an R-module Y eresg M such that N is a direct summand of Y. Thanks to [Leuschke and
Wiegand 2012, Corollary 1.15(i)], the module N is a direct summand of Y. Hence N belongs toresg M. [

Now we can show the proposition below, which yields a significant property of Burch rings. This is
also used in the proofs of Theorems 7.7 and 7.10.

Proposition 7.6. Let R be a Burch local ring of depth t with residue field k. Let M be an R-module of
infinite projective dimension. Then Q'k belongs to resg M.

Proof. We begin with proving the proposition when R is complete and t = 0. As M has infinite projective
dimension, Lemma 7.4 gives rise to an R-module N € resg M with I; (N) = m. Proposition 4.2 implies
that £ is a direct summand of Q%N. As Q%N isinresg M, so is k.

Now, let us consider the case where R is complete and ¢+ > 0. By definition, there is a maximal
regular sequence x of R such that R/(x) is a Burch ring of depth 0. Note that Q'M € resg M. For all
i > 0 we have ToriR(Q’M, R/(x)) = ToriRH(M, R/(x)) = 0, which says that x is a regular sequence
on Q'M. The R/(x)-module ' M /x Q' M has infinite projective dimension by [Bruns and Herzog 1998,
Lemma 1.3.5]. The case ¢ = 0 implies that k belongs to resg(x) Q'M /x Q' M. Tt follows from [Takahashi
2010, Lemma 5.8] that Qk € resg Q"M Cresg M.

Finally, we consider the case where R is not complete. Lemma 7.3 gives an R-module X € resg M
with pdp X = 0o and NF(X) = {m}. As R is Burch and pdjgf(\ =pdz X = oo, the above argument yields
QLk e resg X. Using Lemma 7.5, we see Q'k € resg X, and Q'k € resg M. O

Non-Gorenstein Burch rings admit only trivial totally reflexive modules. Recall that a local ring R is
called G-regular if every totally reflexive R-module is free.

Theorem 7.7. Let R be a non-Gorenstein Burch local ring. Then R is G-regular.

Proof. By taking the completion and using [Takahashi 2008, Corollary 4.7], we may assume that R is
complete. Let G be the category of totally reflexive R-modules. Then G is a resolving subcategory of
mod R by [Christensen 2000, (1.1.10) and (1.1.11)]. If R is not G-regular, that is, there is a nonfree
R-module M in G, then Proposition 7.6 shows that G contains the R-module Q%% where d = dim R. In
other words, Q¢k is totally reflexive. This especially says that the R-module & has finite G-dimension,
and R is Gorenstein; see [Christensen 2000, (1.4.9)]. This contradiction shows that R is G-regular. [

Remark 7.8. The converse of Theorem 7.7 does not necessarily hold. In fact, the nontrivial fiber product
R = S x; T of non-Burch local rings S, T is non-Burch. However, thanks to [Nasseh and Takahashi
2020, Lemma 4.4], the same argument of the proof of Theorem 7.7 works, and hence R is G-regular.

As a corollary of Theorem 7.7, “embedded deformations” of Burch rings are never Burch.

Corollary 7.9. Let (R, m) be a singular local ring. Let x € m? be an R-regular element. Then the local
ring R/(x) is not Burch.

Proof. The proof of [Takahashi 2008, Proposition 4.6] gives rise to an endomorphism § : R" — R"
such that 82 = x - idgs and Im§ € mR" It is easy to see that § is injective, and we have an exact
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sequence 0 — R" %5 R" — C — 0 with xC = 0. This induces an exact sequence - - - EN (R/(x)" EN
(R/(x)" TN (R/(x)" S ... of R/(x)-modules whose R/(x)-dual is exact as well. Since Imé = C,
the R/(x)-module C is totally reflexive. As Im§ € mR”", we see that C is not R/(x)-free. Hence R/(x)
is not G-regular.

Suppose that R/(x) is Burch. Then Theorem 7.7 implies that R/(x) is Gorenstein. By Proposition 5.1,

the ring R/(x) is a hypersurface. We have
1 > codepth R/(x) =edim R/(x) —depthR/(x) =edimR — (dim R — 1) =codim R + 1,

where the second equality follows from the assumption that x is not in m% We get codim R = 0, which
means that R is regular, contrary to our assumption. U

Let (R, m) be a local ring. We denote by Spec” R the punctured spectrum of R. For a property P, we
say that Spec® R satisfies P if R, satisfies [P for all p € Spec’ R. We denote by CM(R) the subcategory
of mod R consisting of maximal Cohen-Macaulay modules. Also, D?(R) stands for the bounded derived
category of mod R, and D, (R) the singularity category of R, that is, the Verdier quotient of DP(R)
by perfect complexes. Note that DP(R) and D (R) have the structure of a triangulated category. A
thick subcategory of a triangulated category is by definition a triangulated subcategory closed under
direct summands. The following theorem gives rise to classifications of several kinds of subcategories
over Burch rings; recall that a Cohen—Macaulay local ring R is said to have finite Cohen—Macaulay
representation type if there exist only finitely many isomorphism classes of indecomposable maximal
Cohen—Macaulay R-modules. For the unexplained notations and terminologies appearing in the theorem,
we refer to [Nasseh and Takahashi 2020, §2].

Theorem 7.10. Let (R, m) be a singular Cohen—Macaulay Burch local ring.

(1) Suppose that Spec® R is either a hypersurface or has minimal multiplicity. Then there is a commuta-
tive diagram of mutually inverse bijections:

resolving subcategories of NF specialization-closed
. . pa— .
mod R contained in CM(R) NF,, subsets of Sing R

IPD || IPD~!

thick subcategories of | tickmear [ thick subcategories of
CM(R) containing R mod R containing R

restCM(R)

restcM(r) IJ{thiCszg(R) restmod R thiCka(R)

{thick subcategories of } x! {thick subcategories of }

Dss(R) T D"(R) containing R
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(2) Assume that R is excellent and admits a canonical module w. Suppose that Spec® R has finite
Cohen—Macaulay representation type. Then there is a commutative diagram of mutually inverse

bijections:

resolving subcategories NE specialization-closed
of mod R contained in y —— subsets of Sing R
. -1 .
CM(R) and containing w ] NFeum containing NG R

IPD HIPD— !

thick subcategories of | .., . thick subcategories of
Mot
CM(R) containing p— mod R containing

st
R and w TESICME) R and w
restcM(Rr) thiCszg(R) restmod R IJ/thiCka(R)
thick subcategories of
thick subcategories o 7! .
g' . f b — D°(R) containing
Dsg(R) containing w 7
R and w

Proof. The proof of [Nasseh and Takahashi 2020, Theorem 4.5] uses [Nasseh and Takahashi 2020,
Lemma 4.4]. Replace this lemma with our Proposition 7.6. Then the same argument works, and the

theorem follows. O

Example 7.11. We have the following list of examples of non-Gorenstein Cohen—Macaulay local rings
not having isolated singularities, where o and x mean “Yes” and “No” respectively.

Spec’ R
’%Xl?mhpli ngo g R dim R Burch P
[Takahashi ] hypersurface min. mult. finite CM rep. type
k 9 9
7.1 M.y, 1 o 0 o °
(x2,x2, y2)
k 9 9
7.2 ( [z[x > le]) ! ° x ° -
X, Xy, y
k
73 [x, y, 2 1 % x ° x
(xy, 22, zw, w?)
k 9 9
4 [x,y,zl 1 o o x o
(x2—yz,xy, y?)
7.5 k[[.x, yy s w]] 2 o X o o
(xy,xz,y2)
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The assertions are shown in [Takahashi 2013, Examples 7.1-7.5], except those on the Burch property.
As to the first, second, fourth and fifth rings R are Burch since the quotient of a system of parameters is iso-
morphic to k[x, y]/ (xz, Xy, y2), which is an artinian Burch ring by Example 6.16. As for the third ring R,
note that (x, y) is an exact pair of zerodivisors. Hence it is not G-regular, and not Burch by Theorem 7.7.

Now we discuss the vanishing of Tor modules over Burch rings. The following result is a simple
consequence of Lemmas 2.11 and 7.4.

Proposition 7.12. Let (R, m, k) be a Burch ring of depth zero, and M, N be R-modules. If TorlR (M,N)=
TorlRH(M, N) =0 for somel > 3, then either M or N is a free R-module.

Proof. We may assume that R is complete. Assume that M is nonfree. Since depth R =0, the R-module M
has infinite projective dimension. By Lemma 7.4, there is a short exact sequence 0 — (QM)" - X —
M"™ — 0, where X satisfies I;(X) = m. It induces an exact sequence 0 — (Q*M)" - Q’X @ F —
(2*M)" — 0 with F free. We also have Tor;_»(Q*M, N) = Tor;_»(2*M, N) = 0, which implies that
Tor;_»(22X, N) = 0. Proposition 4.2 implies that k is a direct summand of Q2X, as R is Burch. We see
that Tor;_, (k, N) vanishes. This shows that N has finite projective dimension, and so it is R-free. [

We can prove the following by applying a similar argument as in the proof of [Nasseh and Takahashi
2020, Corollary 6.5], where we use Proposition 7.12 instead of [Nasseh and Takahashi 2020, Corollary 6.2].

Corollary 7.13. Let (R, m, k) be a Burch ring of depth t. Let M, N be R-modules. Assume that there
exists an integer | > max{3, t + 1} such that Tor,-R(M, N)=0foralll+t <i <l+2t+1. Then either M
or N has finite projective dimension.

Remark 7.14. Using an analogous argument as in the proof of [Nasseh and Takahashi 2020, Corollary 6.6],
one can also prove a variant of Corollary 7.13 regarding Ext modules.

We state a remark on the ascent of Burchness along a flat local homomorphism.

Remark 7.15. Let (R, m) — (S, n) be a flat local homomorphism of local rings. Even if the rings R and
S/mS are Burch, S is not necessarily Burch. In fact, consider the natural injection

¢ : R=klx, yl/(x% xy, y*) = klx, y, 1]/ (x%, xy, y2, 15 = S.

Then ¢ is a flat local homomorphism. The artinian local rings R and S/mS = k[¢]/(¢?) are Burch by
Examples 6.16 and 2.2(1). The ring S is not G-regular since (t, t) is an exact pair of zerodivisors of S.
Theorem 7.7 implies that S is not Burch.

In the case when the closed fiber is regular, the ascent of Burchness along a flat local homomorphism
holds.

Remark 7.16. Let (R, m) — (S, n) be a flat local homomorphism of local rings. If R is Burch and S/m
is regular, then § is Burch.
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Proof. To prove this, we may take the completions, and assume that R (resp. S) is complete with respect
to m-adic (resp. n-adic) topology. Then we get a regular sequence x of R such that R/(x) is a Burch ring
of depth zero. By the flatness of S over R, x is also regular on S, and so it is enough to show that S/(x)
is Burch. Thus we can replace the flat local homomorphism R — S by R/(x) — S/(x), and assume that
R is of depth zero. Let y be a sequence of elements in S which forms a regular system of parameters of
S/mS. Then y is regular on S and S/(y) is flat over R (see [Bruns and Herzog 1998, Lemma 1.2.17]
for instance). Therefore replacing R — § by the composition R — § — S/(y), we may assume that
m = n. Thanks to Theorem 4.1, it follows that R/m is a direct summand of Q%R /m. Tensoring with §
over R, we obtain that §/mS (which is equal to S/n) is a direct summand of (Q%R /m) @ S. By the
flatness of S over R again, (Q%R /m) ®g S is isomorphic to SZ%S /n. Hence S/n is isomorphic to a direct
summand of Q%S /n, and Theorem 4.1 yields that S is Burch. ]

A localization of a Burch ring at a prime ideal may not be Burch. Indeed, we have an example below.

Example 7.17. Let R =k[x, y, z, w]]/(xz, y2, xw, yw, zw) and p be the minimal prime ideal (x, y, w)
of R. Then R is a local ring of depth zero and isomorphic to the fiber product of k[[x, y, z]l/(x2, ¥*) and
k[[w]l over k. Therefore R is Burch by Proposition 6.15. On the other hand, the localization R, of R at p
is isomorphic to k((z))[x, y1/(x2, ¥?), which is a complete intersection of codimension two. Thus Ry is
not Burch by Proposition 5.1.

Acknowledgments

Most of this work was done during Kobayashi’s visit to the University of Kansas in 2018-2019. He
is grateful to the Department of Mathematics for their hospitality. We thank Professors Rodney Sharp
and Edmund Robertson for providing useful biographical data on Professor Burch. We also thank
Professors Craig Huneke and Shinya Kumashiro for helpful comments. Dao was partly supported by
Simons Collaboration Grant FNDO0077558. Kobayashi was partly supported by JSPS Grant-in-Aid for
JSPS Fellows 18J20660. Takahashi was partly supported by JSPS Grant-in-Aid for Scientific Research
16K05098, 19K03443 and JSPS Fund for the Promotion of Joint International Research 16KK0099.
Finally, the authors thank the referees for reading the paper carefully and giving useful comments and
helpful suggestions.

References

[Avramov 1996] L. L. Avramov, “Modules with extremal resolutions”, Math. Res. Lett. 3:3 (1996), 319-328. MR Zbl

[Avramov 1998] L. L. Avramov, “Infinite free resolutions”, pp. 1-118 in Six lectures on commutative algebra (Bellaterra, Spain,
1996), edited by J. M. Giral et al., Progr. Math. 166, Birkhéuser, 1998. MR Zbl

[Avramov 2012] L. L. Avramov, “A cohomological study of local rings of embedding codepth 3”, J. Pure Appl. Algebra 216:11
(2012), 2489-2506. MR Zbl

[Avramov et al. 2008] L. L. Avramov, S. B. Iyengar, and L. M. Sega, “Free resolutions over short local rings”, J. Lond. Math.
Soc. (2) 78:2 (2008), 459-476. MR Zbl

[Bonacho Dos Anjos Henriques and Sega 2011] 1. Bonacho Dos Anjos Henriques and L. M. Sega, “Free resolutions over short
Gorenstein local rings”, Math. Z. 267:3-4 (2011), 645-663. MR Zbl


http://dx.doi.org/10.4310/MRL.1996.v3.n3.a3
http://msp.org/idx/mr/1397681
http://msp.org/idx/zbl/0867.13003
http://dx.doi.org/10.1007/978-3-0346-0329-4_1
http://msp.org/idx/mr/1648664
http://msp.org/idx/zbl/0934.13008
http://dx.doi.org/10.1016/j.jpaa.2012.03.012
http://msp.org/idx/mr/2927181
http://msp.org/idx/zbl/1259.13010
http://dx.doi.org/10.1112/jlms/jdn027
http://msp.org/idx/mr/2439635
http://msp.org/idx/zbl/1153.13011
http://dx.doi.org/10.1007/s00209-009-0639-z
http://dx.doi.org/10.1007/s00209-009-0639-z
http://msp.org/idx/mr/2776052
http://msp.org/idx/zbl/1213.13031

Burch ideals and Burch rings 2149

[Bruns and Herzog 1998] W. Bruns and J. Herzog, Cohen—-Macaulay rings, 2nd ed., Cambridge Stud. Adv. Math. 39, Cambridge
Univ. Press, 1998. Zbl

[Burch 1968a] L. Burch, “A note on the homology of ideals generated by three elements in local rings”, Proc. Cambridge Philos.
Soc. 64 (1968), 949-952. MR Zbl

[Burch 1968b] L. Burch, “On ideals of finite homological dimension in local rings”, Proc. Cambridge Philos. Soc. 64 (1968),
941-948. MR Zbl

[Burch 1972] L. Burch, “Codimension and analytic spread”, Proc. Cambridge Philos. Soc. 72 (1972), 369-373. MR Zbl

[Celikbas et al. 2018] O. Celikbas, K.-i. lima, A. Sadeghi, and R. Takahashi, “On the ideal case of a conjecture of Auslander and
Reiten”, Bull. Sci. Math. 142 (2018), 94-107. MR Zbl

[Choi 1992] S. Choi, “Exponential growth of Betti numbers”, J. Algebra 152:1 (1992), 20-29. MR Zbl
[Christensen 2000] L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math. 1747, Springer, 2000. MR Zbl

[Conca et al. 2010] A. Conca, E. De Negri, and M. E. Rossi, “Integrally closed and componentwise linear ideals”, Math. Z.
265:3 (2010), 715-734. MR Zbl

[Corso et al. 1998] A. Corso, C. Huneke, and W. V. Vasconcelos, “On the integral closure of ideals”, Manuscripta Math. 95:3
(1998), 331-347. MR Zbl

[Corso et al. 2006] A. Corso, C. Huneke, D. Katz, and W. V. Vasconcelos, “Integral closure of ideals and annihilators of
homology”, pp. 33—48 in Commutative algebra, edited by A. Corso et al., Lect. Notes Pure Appl. Math. 244, Chapman & Hall,
Boca Raton, FL,, 2006. MR Zbl

[Corso et al. 2018] A. Corso, S. Goto, C. Huneke, C. Polini, and B. Ulrich, “Iterated socles and integral dependence in regular
rings”, Trans. Amer. Math. Soc. 370:1 (2018), 53-72. MR Zbl

[Dao and Schweig 2019] H. Dao and J. Schweig, “The type defect of a simplicial complex”, J. Combin. Theory Ser. A 163
(2019), 195-210. MR Zbl

[De Stefani 2016] A. De Stefani, “Products of ideals may not be Golod”, J. Pure Appl. Algebra 220:6 (2016), 2289-2306. MR
Zbl

[Dutta 1989] S. P. Dutta, “Syzygies and homological conjectures”, pp. 139—156 in Commutative algebra (Berkeley, 1987),
edited by M. Hochster et al., Math. Sci. Res. Inst. Publ. 15, Springer, 1989. MR Zbl

[Goto 1987] S. Goto, “Integral closedness of complete-intersection ideals”, J. Algebra 108:1 (1987), 151-160. MR Zbl

[Goto and Hayasaka 2002] S. Goto and F. Hayasaka, “Finite homological dimension and primes associated to integrally closed
ideals”, Proc. Amer. Math. Soc. 130:11 (2002), 3159-3164. MR Zbl

[Goto et al. 2015] S. Goto, R. Takahashi, and N. Taniguchi, “Almost Gorenstein rings: towards a theory of higher dimension”, J.
Pure Appl. Algebra 219:7 (2015), 2666-2712. MR Zbl

[Heinzer et al. 2002] W. J. Heinzer, L. J. Ratliff, Jr., and D. E. Rush, “Basically full ideals in local rings”, J. Algebra 250:1
(2002), 371-396. MR Zbl

[Herzog et al. 1983] J. Herzog, A. Simis, and W. V. Vasconcelos, “Approximation complexes of blowing-up rings, I, J. Algebra
82:1 (1983), 53-83. MR Zbl

[Herzog et al. 2019] J. Herzog, T. Hibi, and D. I. Stamate, “The trace of the canonical module”, Israel J. Math. 233:1 (2019),
133-165. MR Zbl

[Hong et al. 2009] J. Hong, H. Lee, S. Noh, and D. E. Rush, “Full ideals”, Comm. Algebra 37:8 (2009), 2627-2639. MR Zbl

[Huneke and Vraciu 2006] C. Huneke and A. Vraciu, “Rings that are almost Gorenstein”, Pacific J. Math. 225:1 (2006), 85-102.
MR Zbl

[Kobayashi and Takahashi 2019] T. Kobayashi and R. Takahashi, “Rings whose ideals are isomorphic to trace ideals”, Math.
Nachr. 292:10 (2019), 2252-2261. MR Zbl

[Kostrikin and Shafarevich 1957] A. I. Kostrikin and I. R. Shafarevich, “Groups of homologies of nilpotent algebras”, Dokl.
Akad. Nauk SSSR (N.S.) 115:6 (1957), 1066—-1069. In Russian. MR

[Kustin and Vraciu 2018] A. R. Kustin and A. Vraciu, “Totally reflexive modules over rings that are close to Gorenstein”, J.
Algebra (online publication September 2018).


http://dx.doi.org/10.1017/CBO9780511608681
http://msp.org/idx/zbl/0909.13005
http://dx.doi.org/10.1017/s0305004100043632
http://msp.org/idx/mr/230718
http://msp.org/idx/zbl/0172.32301
http://dx.doi.org/10.1017/s0305004100043620
http://msp.org/idx/mr/229634
http://msp.org/idx/zbl/0172.32302
http://dx.doi.org/10.1017/s0305004100047198
http://msp.org/idx/mr/304377
http://msp.org/idx/zbl/0242.13018
http://dx.doi.org/10.1016/j.bulsci.2017.09.005
http://dx.doi.org/10.1016/j.bulsci.2017.09.005
http://msp.org/idx/mr/3758163
http://msp.org/idx/zbl/1402.13017
http://dx.doi.org/10.1016/0021-8693(92)90086-2
http://msp.org/idx/mr/1190402
http://msp.org/idx/zbl/0770.13008
http://dx.doi.org/10.1007/BFb0103980
http://msp.org/idx/mr/1799866
http://msp.org/idx/zbl/0965.13010
http://dx.doi.org/10.1007/s00209-009-0537-4
http://msp.org/idx/mr/2644317
http://msp.org/idx/zbl/1236.13009
http://dx.doi.org/10.1007/s002290050033
http://msp.org/idx/mr/1612078
http://msp.org/idx/zbl/0902.13003
http://msp.org/idx/mr/2184788
http://msp.org/idx/zbl/1119.13006
http://dx.doi.org/10.1090/tran/6926
http://dx.doi.org/10.1090/tran/6926
http://msp.org/idx/mr/3717974
http://msp.org/idx/zbl/1390.13030
http://dx.doi.org/10.1016/j.jcta.2018.11.015
http://msp.org/idx/mr/3885717
http://msp.org/idx/zbl/1403.05166
http://dx.doi.org/10.1016/j.jpaa.2015.11.007
http://msp.org/idx/mr/3448797
http://msp.org/idx/zbl/1339.13001
http://dx.doi.org/10.1007/978-1-4612-3660-3_7
http://msp.org/idx/mr/1015516
http://msp.org/idx/zbl/0733.13006
http://dx.doi.org/10.1016/0021-8693(87)90128-1
http://msp.org/idx/mr/887198
http://msp.org/idx/zbl/0629.13004
http://dx.doi.org/10.1090/S0002-9939-02-06436-5
http://dx.doi.org/10.1090/S0002-9939-02-06436-5
http://msp.org/idx/mr/1912992
http://msp.org/idx/zbl/0995.13009
http://dx.doi.org/10.1016/j.jpaa.2014.09.022
http://msp.org/idx/mr/3313502
http://msp.org/idx/zbl/1319.13017
http://dx.doi.org/10.1006/jabr.2001.9099
http://msp.org/idx/mr/1898390
http://msp.org/idx/zbl/1048.13001
http://dx.doi.org/10.1016/0021-8693(83)90173-4
http://msp.org/idx/mr/701036
http://msp.org/idx/zbl/0515.13018
http://dx.doi.org/10.1007/s11856-019-1898-y
http://msp.org/idx/mr/4013970
http://msp.org/idx/zbl/1428.13037
http://dx.doi.org/10.1080/00927870902747340
http://msp.org/idx/mr/2543509
http://msp.org/idx/zbl/1171.13012
http://dx.doi.org/10.2140/pjm.2006.225.85
http://msp.org/idx/mr/2233726
http://msp.org/idx/zbl/1148.13005
http://dx.doi.org/10.1002/mana.201800309
http://msp.org/idx/mr/4019663
http://msp.org/idx/zbl/1427.13008
http://mi.mathnet.ru/eng/dan22288
http://msp.org/idx/mr/0092776
http://dx.doi.org/10.1016/j.jalgebra.2018.09.012

2150 Hailong Dao, Toshinori Kobayashi and Ryo Takahashi

[Lescot 1981] J. Lescot, “La série de Bass d’un produit fibré d’anneaux locaux”, C. R. Acad. Sci. Paris Sér. [ Math. 293:12
(1981), 569-571. MR Zbl

[Leuschke and Wiegand 2012] G. J. Leuschke and R. Wiegand, Cohen—Macaulay representations, Math. Surv. Monogr. 181,
Amer. Math. Soc., Providence, RI, 2012. MR Zbl

[Lipman 1971] J. Lipman, “Stable ideals and Arf rings”, Amer. J. Math. 93:3 (1971), 649-685. MR Zbl

[Nasseh and Takahashi 2020] S. Nasseh and R. Takahashi, “Local rings with quasi-decomposable maximal ideal”’, Math. Proc.
Cambridge Philos. Soc. 168:2 (2020), 305-322. MR Zbl

[Ogoma 1984] T. Ogoma, “Existence of dualizing complexes”, J. Math. Kyoto Univ. 24:1 (1984), 27-48. MR Zbl

[Rush 2013] D. E. Rush, “Contracted, m-full and related classes of ideals in local rings”, Glasg. Math. J. 55:3 (2013), 669-675.
MR Zbl

[Striuli and Vraciu 2011] J. Striuli and A. Vraciu, “Some homological properties of almost Gorenstein rings”, pp. 201-215 in
Commutative algebra and its connections to geometry, edited by A. Corso and C. Polini, Contemp. Math. 555, Amer. Math.
Soc., Providence, RI, 2011. MR Zbl

[Takahashi 2008] R. Takahashi, “On G-regular local rings”, Comm. Algebra 36:12 (2008), 4472-4491. MR Zbl

[Takahashi 2009] R. Takahashi, “Modules in resolving subcategories which are free on the punctured spectrum”, Pacific J. Math.
241:2 (2009), 347-367. MR Zbl

[Takahashi 2010] R. Takahashi, “Classifying thick subcategories of the stable category of Cohen—Macaulay modules”, Adv.
Math. 225:4 (2010), 2076-2116. MR Zbl

[Takahashi 2013] R. Takahashi, “Classifying resolving subcategories over a Cohen—Macaulay local ring”, Math. Z. 273:1-2
(2013), 569-587. MR Zbl

[Watanabe 1987] J. Watanabe, “m-full ideals”, Nagoya Math. J. 106 (1987), 101-111. MR Zbl

[Watanabe 1991] J. Watanabe, “The syzygies of m-full ideals”, Math. Proc. Cambridge Philos. Soc. 109:1 (1991), 7-13. MR
Zbl

[Yoshino 1990] Y. Yoshino, Cohen—Macaulay modules over Cohen—Macaulay rings, Lond. Math. Soc. Lect. Note Ser. 146,
Cambridge Univ. Press, 1990. MR Zbl

Communicated by Keiichi Watanabe
Received 2019-06-12 Revised 2019-11-23 Accepted 2020-03-05

hdao®@ku.edu Department of Mathematics, University of Kansas, Lawrence, KS, United States
m16021z@math.nagoya-u.ac.jp Graduate School of Mathematics, Nagoya University, Nagoya, Japan
takahashi@math.nagoya-u.ac.jp Graduate School of Mathematics, Nagoya University, Nagoya, Japan

Department of Mathematics, University of Kansas, Lawrence, KS, United States

mathematical sciences publishers :'msp


http://dx.doi.org/10.1007/BFb0098933
http://msp.org/idx/mr/647683
http://msp.org/idx/zbl/0484.13013
http://dx.doi.org/10.1090/surv/181
http://msp.org/idx/mr/2919145
http://msp.org/idx/zbl/1252.13001
http://dx.doi.org/10.2307/2373463
http://msp.org/idx/mr/282969
http://msp.org/idx/zbl/0228.13008
http://dx.doi.org/10.1017/s0305004118000695
http://msp.org/idx/mr/4064107
http://msp.org/idx/zbl/07167597
http://dx.doi.org/10.1215/kjm/1250521383
http://msp.org/idx/mr/737823
http://msp.org/idx/zbl/0593.13011
http://dx.doi.org/10.1017/S0017089512000833
http://msp.org/idx/mr/3084669
http://msp.org/idx/zbl/1278.13029
http://dx.doi.org/10.1090/conm/555/10998
http://msp.org/idx/mr/2882684
http://msp.org/idx/zbl/1234.13015
http://dx.doi.org/10.1080/00927870802179602
http://msp.org/idx/mr/2473342
http://msp.org/idx/zbl/1156.13009
http://dx.doi.org/10.2140/pjm.2009.241.347
http://msp.org/idx/mr/2507582
http://msp.org/idx/zbl/1172.13005
http://dx.doi.org/10.1016/j.aim.2010.04.009
http://msp.org/idx/mr/2680200
http://msp.org/idx/zbl/1202.13009
http://dx.doi.org/10.1007/s00209-012-1020-1
http://msp.org/idx/mr/3010176
http://msp.org/idx/zbl/1267.13024
http://dx.doi.org/10.1017/S0027763000000908
http://msp.org/idx/mr/894414
http://msp.org/idx/zbl/0623.13012
http://dx.doi.org/10.1017/S0305004100069528
http://msp.org/idx/mr/1075117
http://msp.org/idx/zbl/0736.13006
http://dx.doi.org/10.1017/CBO9780511600685
http://msp.org/idx/mr/1079937
http://msp.org/idx/zbl/0745.13003
mailto:hdao@ku.edu
mailto:m16021z@math.nagoya-u.ac.jp
mailto:takahashi@math.nagoya-u.ac.jp
http://msp.org

ALGEBRA AND NUMBER THEORY 14:8 (2020)
https://doi.org/10.2140/ant.2020.14.2151

Sous-groupe de Brauer invariant
et obstruction de descente itérée

Yang Cao

Pour une variété quasi-projective, lisse, géométriquement integre sur un corps de nombres k, on montre
que I’obstruction de descente itérée est équivalente a 1’obstruction de descente. Ceci généralise un résultat
de Skorobogatov, et ceci répond a une question ouverte de Poonen. Les outils principaux sont la notion de
sous-groupe de Brauer invariant et la notion d’obstruction de Brauer—Manin étale invariante pour une
k-variété munie d’une action d’un groupe linéaire connexe.

For a quasi-projective smooth geometrically integral variety over a number field k, we prove that the
iterated descent obstruction is equivalent to the descent obstruction. This generalizes a result of Sko-
robogatov, and this answers an open question of Poonen. Our main tools are the notion of invariant Brauer
subgroup and the notion of invariant étale Brauer—Manin obstruction for a k-variety equipped with an
action of a connected linear algebraic group.
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1. Introduction

Soit k un corps de nombres. Soit A; 1’anneau des adeles de k. Pour une k-variété lisse X, on note
X (Ay) ’ensemble des points adéliques de X. On a le plongement diagonal

X (k) C X(Ap).

C’est une question importante de caractériser I’adhérence des points rationnels dans les points adéliques
(principe de Hasse, approximation faible, approximation forte). Manin [1971] a montré que cette adhérence
est contenue dans un fermé déterminé par le groupe de Brauer de la variété X. Depuis lors, divers auteurs

MSC2010: primary 11G35; secondary 14G05, 20G35.
Mots-clefs : Hasse principle, Brauer—Manin obstruction, algebraic group.
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(Manin, Colliot-Thélene, Sansuc, Skorobogatov, Harari, Demarche) ont décrit d’autres fermés de X (Ay)
contenant les points rationnels, et se sont attachés a comprendre les inclusions entre ces divers fermés.
On a utilisé pour cela les torseurs sous des groupes linéaires (finis ou non) sur X, et on a utilisé des
combinaisons de ces deux approches pour déterminer des fermés minimaux de X (Ax) contenant X (k).
Harari et Skorobogatov [2002, Definition 4.2] ont décrit une inclusion (cf. (1-2) pour la définition)

X(k) C X(Ak)descem.
Ensuite Poonen [2017, §8.5.2] a itéré cette inclusion en (cf. (1-3) pour la définition)
X(k) C X(Ak)descent, descent C X(Ak)descent

et demandé [Poonen 2017, §8.5.4] si la deuxieme inclusion raffine la premiere. Le théoréme principal
du présent article (théoréme 1.1) permet de répondre  cette question de Poonen : X (A )descent, descent
X (Ap)deseent (théoreme 1.2 ci-dessous). Ce théoréme 1.2 apporte un point final a I’utilisation combinée
du groupe de Brauer et de la descente sous des groupes linéaires dans la détermination de I’adhérence de
X (k) dans X (Ay).

Donnons maintenant des énoncés précis.

On note €24 I’ensemble des places du corps de nombres k. Pour chaque v € €2, on note k, le complété
de k en v et O, C k, I’anneau des entiers (O, = k,, pour v archimédienne).

Pour B un sous-groupe de Br(X), on définit

X(ApP = { (v, € X(AD) 1 Y inv,(6(x,) =0 € Q/Z, V& € B}.

UEQk

Comme I’a remarqué Manin [1971], la théorie du corps de classes donne X (k) € X (A;)5.

Soient F un k-groupe algébrique et f : Y — X un F-torseur. Pour tout I-cocycle o € Z'(k, F),
on note F, respectivement f, : Y, — X le tordu du k-groupe F, respectivement du torseur f, par le
1-cocycle o. Alors f, est un Fj-torseur. La classe d’isomorphisme du k-groupe Fy, respectivement du
torseur f,, ne dépend que de la classe de o dans H'(k, F). Par abus de notation, étant donnée une classe
[c] € H'(k, F), on note F, = Fioret fo = fio)-

Pour une k-variété lisse X, Skorobogatov [1999] et Poonen [2010, §3.3] définissent I’ensemble suivant :

x@Ap*Pf = N U fF@P"), (1-1)
f'Yi>X oeH (k,F)
" F fini

ou F parcourt les k-groupes finis. Ils obtiennent une inclusion X (k) C X (Ap)- B, Ceci définit une
obstruction au principe de Hasse pour X, appelée obstruction de Brauer—Manin étale, étudiée dans le cas
projectif par Skorobogatov, Harari et Demarche, puis dans le cas quasi-projectif [Cao et al. 2019a].

Le résultat principal de cet article est :
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Théoreme 1.1. Soient G un k-groupe linéaire quelconque, Z une k-variété lisse et p : X — Z un
G-torseur. Alors :
ZA* T = ) pe(Xo(A)*P).
oeH! (k,G)

Pour G fini et Z projective, ce théoreme avait déja été établi par Skorobogatov [2009, Theorem 1.1].
Pour G fini et Z quasi-projective, il avait été ensuite établi par Demarche, Xu et I’auteur [Cao et al.
2019a, Proposition 6.6]. Si Z est projective, 1 (Z}) est fini et G est une extension d’un k-groupe fini par
un tore, Balestrieri [2018, Theorem 1.9] a établi une variante simple, ou elle considére 1’obstruction de
Brauer—Manin algébrique étale.

Par ailleurs, dans [Poonen 2010, §3.2; 2017, §8], on définit deux ensembles

x(@Ap®ert= () | A (1-2)
frx oceH\(k,F)
F linéaire
X(Ak)descent, descent — m U fa (Yo‘ (Ak)descent). (1_3)
f:Y—F>X ocH!(k,F)
F linéaire

On a X (k) C X (Ag)deseent ot X (k) C X (Aj)descent. descent  Ceci définit deux nouvelles obstructions au
principe de Hasse pour X, appelées obstruction de descente et obstruction de descente itérée. D’ apres la
série de travaux [Demarche 2009b ; Skorobogatov 2009 ; Cao et al. 2019a], on a X (Ak)ét’ Br— X (A )descent
lorsque X est quasi-projective [Cao et al. 2019a, Theorem 1.5]. Du théoreme 1.1 on déduit facilement le :

Théoreme 1.2. Pour toute variété quasi-projective lisse géométriqguement integre X, on a
descent, descent __ descent
X(Ap)™ = X (Ax) :

L’idée clé de la démonstration du théoréeme 1.1 est la notion de sous-groupe de Brauer invariant [Cao
2018, définition 3.1], que nous rappelons ici :

Définition 1.3. Soit G un groupe algébrique connexe.

(1) Soit (X, p) une G-variété lisse connexe. Le sous-groupe de Brauer G-invariant de X est le sous-
groupe
Brg(X) :={b € Br(X) : (p*(b) — p5(b)) € piBr(G)}

de Br(X), ou G x X LaN G,GxX P4 X sont les projections et G x X L X est 'action de G.

(2) Soit X une G-variété lisse quelconque. Le sous-groupe de Brauer G-invariant de X est le sous-
groupe Brg (X) C Br(X) des éléments « vérifiant a|y € Brg(X’) pour toute composante connexe
X' de X.

(3) Soient F un k-groupe fini et X une G-variété lisse quelconque. Un F-torseur Y I X est G-

compatible s’il existe une action de G sur Y telle que f soit un G-morphisme.
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D’apres la proposition 3.3, I’action de G sur Y vérifiant les conditions ci-dessus est unique et le
F,-torseur f, est aussi G-compatible pour tout o € H'(k, F). On définit la variante de X (Ak)ét* Br
suivante :

X (A) 0 Bro = N U fo(a(anPe®). (1-4)

F 1
f:Y—>X G-compatible otk F)

F fini

Alors X (k) Cc X (Ak)ét’ BreXx (Ak)G'é" Bré Ceci définit une obstruction au principe de Hasse pour X,
appelée obstruction de Brauer—Manin étale invariante.
Le théoreme suivant joue un role clé dans la démonstration du théoréme 1.1.

Théoréme 1.4. Soient G un groupe linéaire connexe et X une G-variété lisse. Alors
X(Ak)G-ét, Brg — X(Ak)ét, Br‘

Dans le cas ou X est un G-espace homogene a stabilisateur géométrique connexe, tout torseur G-
compatible sous un k-groupe fini est constant, d’apres le corollaire 3.5(4). Donc on peut obtenir facilement
le résultat suivant.

Corollaire 1.5. Soient G un groupe linéaire connexe et X un G-espace homogéne a stabilisateur géomé-
trique connexe. Alors
X(Ak)ét, Br — X(Ak)G—ét, Brg — X(Ak)BrG(X).

Ce résultat particulier peut s’établir aussi via I’approximation forte sur X par rapport a Brg(X) (voir
[Borovoi et Demarche 2013, Theorem 1.4]).

Donnons maintenant la structure de I’article.

Au paragraphe 2, sur un corps k quelconque, s’inspirant de la notion de torseur universel de Colliot-
Thélene et Sansuc, on introduit la notion de torseur universel de n-torsion (définition 2.1). Ensuite, on
utilise cette notion a établir une formule de Kiinneth spéciale pour la cohomologie étale de degré 2.

Au paragraphe 3, sur un corps k de caractéristique zéro, on considere la donnée d’un k-groupe
algébrique G, d’une G-variété X lisse, d’un k-groupe fini £, d’un torseur ¥ — X sous F', on donne des
conditions équivalentes pour le relevement, de facon compatible, de 1’action de G sur X en une action
sur Y. Ce relevement n’est pas toujours possible. On étudie les homomorphismes surjectifs de groupes
algébriques connexes H — G avec une action compatible de H sur Y, et on montre qu’il existe un objet
minimal Hy. Etant donné un élément o € Br(X), en utilisant la formule de Kiinneth ci-dessus, on montre
ensuite qu’il existe un torseur ¥ — X sous un k-groupe fini commutatif F tel que 1’image réciproque de
o dans Br(Y) soit invariante sous Hy.

Au paragraphe 4, on rappelle des notions et des résultats établis dans [Cao 2018, §3], en particulier,
la notion de sous-groupe de Brauer invariant et aussi ses propriétés élémentaires. Ces résultats seront
utilisés dans les paragraphes 5 et 6.

Au paragraphe 5, le corps de base k est un corps de nombres. Dans [Cao 2018], étant donné un torseur
Y — X sous un groupe linéaire connexe G, j’ai développé la méthode de descente des points adéliques
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orthogonaux aux sous-groupes de Brauer invariants. Au paragraphe 5, on donne deux nouvelles variantes
de cette descente. La premieére (proposition 5.1) traite du cas ou G est un k-groupe fini commutatif. La
seconde (proposition 5.5) implique I’obstruction de Brauer—Manin étale invariante.
Les paragraphes 3, 4 et 5 sont utilisés de fagon essentielle au paragraphe 6 ot I’on établit le théoreme 1.4.
Au paragraphe 7, en combinant le théoreme 1.4 et la proposition 5.5, on établit les théorémes 1.1 et 1.2.

Conventions et notations. Soit k un corps quelconque de caractéristique char(k). On note k une clture
algébrique, ks une cloture séparable et I'y := Gal(k;/k). Si char(k) =0, on a k; = ketTy:= Gal(lE/k).
Tous les groupes de cohomologie sont des groupes de cohomologie étale.
Une k-variété X est un k-schéma séparé de type fini. Pour X une telle variété, on note k[ X] son anneau
des fonctions globales, k[ X]* son groupe des fonctions inversibles, Pic(X) := Hélt(X , G;,) son groupe de
Picard et Br(X) := H ézt(X , G;») son groupe de Brauer. Notons

Bri(X) :=Ker[Br(X) — Br(Xz)] et Bry,(X) :=Br{(X)/ImBr(k).

Le groupe Br;(X) est le sous-groupe “algébrique” du groupe de Brauer de X. Si X est inteégre, on note
k(X) son corps des fonctions rationnelles et 1 (X, x) (ou 71 (X)) son groupe fondamental étale, ol x est
un point géométrique de X. Soit 771 (X k_y)ab le quotient maximal abélien de m;(Xk,). Alors (X kx)ab est
un I';-module.

Un k-groupe algébrique G est une k-vari€t€ qui est un k-schéma en groupes. On note ¢, ’unité de
G et G* := Homy _groupe (G, » Gp) le groupe des caracteres de Gy, . C’est un module galoisien de type
fini. De plus, si G est connexe sur C, le groupe 71(G) est commutatif (cf. [Brion et Szamuely 2013,
Proposition 1.1(2)]).

Un k-groupe fini F est un k-groupe algébrique qui est fini sur k. Dans ce cas, F est déterminé par le
I'x-groupe F (k). Pour toute k-variété lisse connexe X, on a un isomorphisme canonique [SGA 1 1971,
§XI1.5] :

H'(m1(X), F(ks)) = H'(X,F) etdonc H'(Xy,, F) = Homeon(m1(Xz,), F(ks))/ ~  (1-5)

ou I’action de 71 (X) sur F (k,) est induite par celle de I'; et ~ est induite par la conjugaison.

Soit G un k-groupe algébrique. Une G-variété (X, p) (ou X) est une k-variété X munie d’une action a
gauche G x; X & X. Un k-morphisme de G-variétés est appelé G-morphisme s’il est compatible avec
I’action de G.

Comme déja indiqué ci-dessus, pour tout k-groupe algébrique F, tout F-torseur f : Y — X et tout
o € H'(k, F), on note F, (resp. fo : Yo — X) le tordu de F (resp. de f). Ainsi f, est un F,-torseur.

2. Torseur universel de n-torsion et formule de Kiinneth de degré 2

Dans toute cette section, k est un corps quelconque. Sauf mention explicite du contraire, une variété
est une k-variété. Fixons un entier n > 2 avec char(k){n et notons — ® — := — Qz/, —.
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Cette section contient deux parties. On introduit d’abord la version de n-torsion de la notion de torseur
universel (Colliot-Théléne et Sansuc) dans la définition 2.1, et aussi la notion de type prolongé d’un
torseur (Harari et Skorobogatov) dans la proposition 2.2. En utilisant ces notions, on considere ensuite
le cup-produit de la cohomologie étale de degré 2 sur un produit de deux variétés quelconques et on
établit une formule de Kiinneth pour ce produit (proposition 2.6). Cette formule généralise un résultat de
Skorobogatov et Zarhin, qui traite du cas ol les deux variétés sont propres.

Soient Sh(k) la catégorie des faisceaux étales sur le petit site de Spec k et D (k) la catégorie dérivée
bornée a gauche de Sh(k) et D?(k) 1a catégorie dérivée bornée de Sh(k) (une sous-catégorie pleine
de DT (k)). Pour tout i € Z, on a les sous-catégories canoniques DZi(k) et D= (k) de DT (k) et deux
foncteurs canoniques t<;, T>; [Kashiwara et Schapira 2006, Definition 12.3.1, Proposition 13.1.5]. Donc
Sh(k) = D=°(k) N D=%(k) est une sous-catégorie pleine canonique de D (k). Par abus de notation, pour
un objet M de Sh(k), on note M I’objet de DT (k) représenté par le complexe qui consiste en M en
degré 0.

Soient X une variété géométriquement integre et p : X — Spec k le morphisme de structure. Soit Sx un
groupe de type multiplicatif tel que Sy = H "(X4,, 4n) comme T';-modules. On rappelle que H' (X, it,)
est fini.

Dans D (k), il existe deux morphismes canoniques G,, — Rp.G,, et i, — Rpsii,. Soient A le cone
de G,,[1] = Rp.G,[1] et A, le cone de u,[1] — Rpsu,[1]. La suite exacte de Kummer donne un
diagramme commutatif de triangles distingués :

+1
Ap[=2] —— wp —— Rpspty ——

v
+1
A[-2] Gm Rp.G, ——
n- n- n-
+1
A[=2] Gy, Rp.G,, ——
+1 +1 +1

Les faisceaux de cohomologie des complexes A, et A se calculent comme suit :

Ape DZOk),  HO(An) = H'(Xi,, ) = Sk,
AeD='k), H (A =k[X]*/kX et H'(A) =Pic(Xy,).
Le morphisme ¥ : A, — A induit un morphisme V<o := t<oV¥ : Sy — T<0A.

Harari et Skorobogatov montrent que, pour tout groupe de type multiplicatif S, on a une suite exacte
naturelle [2013, Proposition 1.1, ol 7<9A est noté KD'(X)] :

H'(k, ) — H' (X, S) 5 Homp+ ) (S*, 1<0A) — H?(k, S). 2-1)
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Définition 2.1. Un rorseur universel de n-torsion pour X est un Sx-torseur 7x sur X tel que x ([Tx]) =
Y<o: Sy = T<0A.

D’apres [Harari et Skorobogatov 2013, Proposition 1.3], si X (k) # &, pour chaque x € X (k), il existe
alors un unique torseur universel de n-torsion 7x pour X tel que x*[7x]=0¢€ H Lk, Sx).

Dans le cas ol k est un corps de nombres, il existe un torseur universel de n-torsion pour X lorsque
X (A;)B1X) £ & [Harari et Skorobogatov 2013, Corollary 3.6].

Proposition 2.2. Soit Tx un torseur universel de n-torsion pour X. Soit S un groupe de type multiplicatif
tel que n - S = 0. Alors, pour tout S-torseur Y sur X, il existe un unique homomorphisme ¢ : Sx — S
tel que

¢ ([Tx]) — [Y] € Im(H' (k, S) - H'(X, ).

Démonstration. Le triangle A, — A 5 A L induit une suite exacte
Homp+)(S*, A[—1]) = Homp+ ) (S*, A,) = Homp+x) (S, A) N Homp+ ) (S*, A).
Puisque $* € D=(k) etn-S* =0,0n a
Homp+ ) (8%, A[—1]) = Homi (S*, H™'(A)) = Homy (S*, k[X]* /k*) =0
et donc Homy (¥, S%) est isomorphe a
Homp+ ) (S*, %) = Homp+ ) (S*, A,) = Homp+ ) (S*, A) < Homp+x)(S*, T<0A).

Alors x ([Y]) € Homp+)(S*, T<oA) donne un homomorphisme ¢* € Homy (S*, S}), et donc x ([Y]) =
Y<po ™. Soit ¢ : Sy — S I’homomorphisme correspondant. La suite exacte (2-1) implique I’énoncé. [J

L’homomorphisme ¢ dans la proposition 2.2 est appelé le n-type de [Y].
Soit Ty le torseur universel de n-torsion pour Xy , on obtient un isomorphisme de I'y-modules :

7x.s : Homy, (Sx, S) = Homy, (8%, §3) — H' (X4, S) : ¢ > ¢ ([Tx]). (2-2)
En particulier, on a deux I'g-isomorphismes naturels
Tx = Tx, 1 Sk = H' Xty i) 1 ¢ > ¢4(Tx) (2-3)

et
x(—1) :=tx.z/n : Homy (Sx, Z/n) => H'(Xy,, Z/n) : ¢ = $u(Tx). (2-4)

En fait, par définition, Ty est exactement ’homomorphisme Sy — HO(A,) induit par ¥ <o.
Rappelons que, pour tous Fy, F> € D?(k), le produit tensoriel F; ® F, est bien défini et le cup-produit
est le homomorphisme canonique

Uj i @B, 4y H (F1) @ HY (F2) — H (F1 @ F2)

induit par la suite spectrale de Godement (cf. [Milne 1980, Lemma VI.8.6] ou [Fu 2011, Proposi-
tion 6.4.12]). De plus, Rp.u, € Db (k) [Fu 2011, Corollary 7.5.6].
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Corollaire 2.3. Supposons que k est séparablement clos. Soit p : X — Spec k une variété intégre. Alors
(1) le cup-produit U: H' (X, i) @ Hom(u,, S) = HY(X, S) : (a, @) — @x (@) est un isomorphisme ;
(2) pour tout complexe de 7 /n-modules (vus comme k-faisceaux) de type fini F avec F € DZ%(k)nD”(k),

on a Rp.u, @ F € DZ°(k) et le cup-produit

Uj(F) . ®r+s=j Rrp*ﬂn ®,HA(F) = ®r+s=j Hr(Rp*Mn) ®,HA(F) - Hj (Rp*Mn ®L F)

est un isomorphisme pour j =0et j=1;
(3) dans (2), si HO(F) est plat, alors U,(F) est un isomorphisme.

Démonstration. Puisque X (k) # O, il existe un torseur universel de n-torsion 7y — X. D’apres (2-2), on
a le diagramme

Hom(Sx, 1ta) ® Hom(sty, §) —— Hom(Sy, 5)

;lrx(@id ;lfx,s

H'(X, i) ® Hom(y,, S) ——— H'(X, S)

ou —o — : (¥, ¢) — ¢ oy. Ce diagramme est commutatif car

Tx.5(@ 0 d) = (9 0 ®)u[Tx] = ¢ (d:[Tx]) B 7x[¢] U

pour tout ¢ € Hom(Sy, 1,) et tout ¢ € Hom(w,,, S). Donc on a (1).
Pour tout complexe F dans (2), puisque la dimension cohomologique de Rp., est finie [SGA 43 1973,
XIV] (cf. [Fu 2011, Corollary 7.5.6]), on a :

(i) D’aprés [SGA 43 1973, XVIIL. Theorem 5.2.11], pour tout j < 0, on a H/ (Rpsu, @ F) =0 et
donc Rp,u, @ F € DZ0(k). Ceci implique le premier énoncé de (2).

(i) Si F = HO(F) avec HO(F) plat, on a H/ (Rp.pn @ F) = H/ (Rpsitn) ® F et donc U;(F) est un
isomorphisme pour tout j.

(iti) Si F =HO(F), ona Rpsptn ®F F = Rp. (i, @ p*F) [SGA 43 1973, XVIL (5.2.11.1)] (cf. [Fu 2011,
Corollary 6.5.6]). Puisque X est integre, Ug(F) : i, ® F — Rp.(tn @ p*F) est un isomorphisme,
et d’apres I’énoncé (1) et [Milne 1980, Proposition V.1.20], le cup-produit

~ U ~
Ui (F): R puptn ® F = H' (X, 1t,) @ Hom (i, iy @ F) = H' (X, n @ F) ZH (Rpo (14, ® p* F))

est un isomorphisme. Ceci vaut seulement pour le cup-produit de degré 1.

Pour tout complexe F dans (2), notons F := (t>; F)[1] un objet dans D=%(k) N D’ (k). Alors Fy
vérifie toutes les hypotheses dans (2).
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Le triangle H*(F) - F — F,[—1] 1, donne un diagramme commutatif de suites exactes :

00— RIHU(F) — @, o R (F) = D,y ;) R (F) ——— 0

r4s=j

Jujmo(F)) luj(F) lujq(m l (2-5)
. 01 . ;
H 2 (F) — Hjj, (HO(F)) ——— Hjl, (F)

. 6; .
Hj(Fy) ——— HIT' (HO(F))

ol H,{n(—) =M (Rpspin @ =), R" (=) := R" pyji, ® — et la premiere ligne est exacte car elle est
scindée.

Montrons 1’énoncé (2). D apres (i), on a : H,;lz(F+) = H,;ll(F+) = 0. D’apres (iii), Ug(HO(F)) est un
isomorphisme. Le lemme des cinq implique : Uyg(F) est un isomorphisme. Ceci donne 1’énoncé(2) pour
Jj = 0. Donc Ug(F) est un isomorphisme. D’apres (iii), U (HO(F)) est un isomorphisme. Le lemme des
cinq implique : Uj (F) est un isomorphisme.

Montrons I’énoncé (3). Par hypothese, HO(F) est plat, et d’apres (ii), Us(HO(F)) est un isomorphisme.
D’apres (2), Up (F4) et Ug(F4) sont des isomorphismes. Donc 8; = 0 et le lemme des cing implique :
U, (F) est un isomorphisme. Il

Si X est lisse, d’apres (1-5), I’'isomorphisme (2-4) donne un [';-isomorphisme naturel
tx(—1) : Hom(Sx, Z/n) => H'(X,, Z/n) = Homeon (1 (X,)™, Z/n) : ¥ > Y (k) 077, (2-6)

ol Ty, @ Ty (ka)ab — Sx(ks) est ’homomorphisme induit par Tx. Ainsi 7, induit un isomorphisme de
T't-modules 71 (Xx,)®/n = Sx (k) et Tx est géométriquement intégre.

Corollaire 2.4. Soit X une variété lisse géométriquement integre. Soient M un Z /n-module et
0
T (X )® > M

un homomorphisme surjectif de noyau U-invariant. Supposons qu’il existe un torseur universel de n-
torsion pour X. Alors il existe un k-groupe fini commutatif S et un S-torseur T — X tels que T soit lisse
géométriquement integre, S(ky) = M et que, dans H! Xk, S) = Homcom(m (st)"‘b, M), on ait [Ty, ] =0.

Démonstration. Soit Tx un torseur universel de n-torsion pour X (un torseur sous le k-groupe Sx). Puisque
Ker(6) est I'y-invariant, il existe une unique ['x-structure sur M telle que 6 soit un ['g-morphisme. Ceci
induit un k-groupe commutatif S et un homomorphisme surjectif 6’ : Sx — S tels que S(ks) = M et que
0'(ks) 0 T, = 6. Alors T := 0. Ty := Tx x3% S donne I’énoncé. O

Soient U, V deux variétés géométriquement integres sur k. On considere le diagramme commutatif

Ux,V—2y

lm lqz 2-7)

uv—" Spec k
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Soient M, N deux Z/n-faisceaux finis plats sur le grand site de k. Le cup-produit donne un quasi-
isomorphisme [SGA 41, 1977, Th. finitude, corolaire 1.11] (cf. [Fu 2011, Corollary 9.3.5]) :

U: Rq1.«M ®" Rga«N = R(q1 0 p1)«(M ®" N). (2-3)
Ceci induit le cup-produit [Fu 2011, Proposition 6.4.12] :
Ui @rpse; R 615M ®2/5 R'q2.sN — HI (Rq1,:M & Rqp,N) => RV (g1 0 p1)«(M @ N).
Lemme 2.5. Le cup-produit U; est un isomorphisme pour j =0, 1, 2.

Démonstration. On peut supposer que k est séparablement clos. Les Z/n-modules finis M, N sont plats
et donc ils sont des facteurs directs de (Z/n)® pour i assez grand. Puisque tous les foncteurs ci-dessus
commutent avec les sommes directs finies, on peut supposer que M = N = u,. L’énoncé découle du
corollaire 2.3(3) et de (2-8). [l

Le résultat ci-dessous généralise [Skorobogatov et Zarhin 2014, Theorem 2.6].

Proposition 2.6. Supposons que k est séparablement clos. Soient U, V deux variétés géométriquement
integres et F' un Z /n-module fini plat. On considére le diagramme (2-7). Alors on a des isomorphismes
naturels
(Pt p3): HY(U, F)®H'\(V, F) = H' (U x V, F)
et
(P, U, p3) : H*(U, F)®[H"(U,Z/n)®z H'(V, F)]® H*(V, F) = H*(U x V, F),

onVU: H\(U, Z/n)®7z HY(V, F) — H2*(U x V, F) estle cup-produit.

C’est clair que si U, V sont définis sur un sous-corps kg C k avec k/ ko galoisienne et F' un Gal(k/ ko)-
module, alors les deux isomorphismes ci-dessus sont des isomorphismes de Gal(k/ kg)-modules.

Si char(k) = 0, cette proposition découle de [Skorobogatov et Zarhin 2014, Proposition 2.2] et de
[Milne 1980, Theorem II1.3.12] (on peut vérifier que I’homomorphisme dans [Skorobogatov et Zarhin
2014, Proposition 2.2] est compatible avec le cup-produit).

Démonstration. On applique le lemme 2.5 au cas U x k et au cas k x V, et on obtient deux diagrammes

commutatifs :
H(U,Z/n)® HO(k, F) ——— H'(U, F) HOK, Z/n) @ H'(V, F) ——— H(V, F)
idxqg‘l; lpi‘ qi‘xidlé lpi
H(U,Z/n)® H'(V, F) —— HI(U x V, F) HOWU,Z/n) @ H (V, F) —— HI(U x V, F)

pour i =1 et 2, ou Uy (resp. Uy) est le cup-produit sur U (resp. V). Donc
PI(H' (U, F)) =Ui(H'(U,Z/m)y® H*(V, F)) et p3(H'(V, F)=Ui(H'U,Z/n) @ H'(V, F)).

L’énoncé découle du lemme 2.5. |
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Soient Ty (resp. Ty) un torseur universel de n-torsion pour U (resp. pour V) et Sy (resp. Sy) le groupe
correspondant (cf. définition 2.1). Skorobogatov et Zarhin [2014, §5] introduisent un homomorphisme :

e : Homy (Sy, Sy) = H*(U x V, i) : ¢ = ¢l Tu1UITv], (2-9)

ou U est le cup-produit H'(U, Sy) x HY(V,Sy) — H*(U x V, ). Les isomorphismes 1y dans (2-3)
et Ty (—1) dans (2-4) donnent un diagramme :

&

(Homy, (Sy, Z/n) ® Sy)™* +> Homy (Su, S) H>(U XV, wy)

Z 2-10
m l 10

(H'(Ur,, Z/n) @ H (Vi )™ —— H2((U x V)i, tta),

qui est commutatif parce que, pour tous ¢ € Homy (Sy,Z/n) et ¢ € S;, = Homy, (Sy, u,), on note
¢* :=Homy (¢, uy) : Z/n — S}, le dual de ¢, eton a :

(@@ ®¢)) =e(@* o) = (@)« (p:[Tu) U[Tv] S P«[TulU [Ty ] = v (=) (9) Uty (),
ou (1) découle du diagramme commutatif
H'(UxV,Sy) x H'(UxV,Homy (Sy, i) —— H2(U x V, 1)

J]qj* ((P*)*:Homks (d)aﬂn)*/[ J]z

H'(U XV, ) x  H'(UxV,Homy, (1, ) —— H2U x V, 1)
Si U (k) # @, alors il existe un torseur universel de n-torsion pour U. Pour un point u € U (k), notons
Hy(U, py) == Ker(H' (U, ) = H'(k, j1n)).

Corollaire 2.7. Sous les notations et hypotheses ci-dessus, supposons que U (k) # & avec u € U (k) et
qu’il existe des torseurs universels de n-torsion Ty pour U (sous le groupe Sy) et Ty pour V (sous le

groupe Sy). Alors on a un isomorphisme :

(p}.p3.€)
—_—

Hy (U, pn) ® H*(V, 1) & Homy (Sy/, S) H*(U XV, ).

Démonstration. Notons E’ZJ (U):=H'(k, H (Uy,, jtn)) = H'Y/ (U, u,) la suite spectrale de Hochschild—
Serre de U et E;’j(V) (resp. E;’j(U x V)) celle de V (resp. de U x V).

Notons H.(Uy,, ptn) := Ker(H' (U, , ttn) > H'(ky, ). Alors HY(Ug,, pn) = 0 et Hi(Ug,, pn) =
H!(Uy,, 1) pour i # 0. La suite spectrale de Hochschild-Serre donne canoniquement une suite spectrale :

EY (U, u) = H (k, H] (Uy,, ) = HI (U, 11,).

Soit ¢£’j : E;’j(U, u) ® E;’j(V) — E;’j(U x V) le morphisme de suites spectrales induit par (p7}, p3).
D’apres la proposition 2.6, ([)lz’j est un isomorphisme pour j =0, 1 et qbg’z est injectif. Ainsi (/)lz’j induit
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une suite exacte par le lemme des cinq :

0— H2(U. tn) ® HA(V, jt) —2> H(U x V. 1) — coker(@5).
D’apres la proposition 2.6 et le diagramme (2-10), on a coker(ng’ 2) = (Hl(U,;, Z/n)® Hl(V,;, un))rk
et la composition

Homy (Sy, S3) S HXU x V, ) — Hz((U x V)i, ,u,,)r" — coker(d)g’ 2

est un isomorphisme, d’ou le résultat. U

3. Préliminaires sur les torseurs sous un groupe fini

Dans toute cette section, k est un corps quelconque de caractéristique 0. Sauf mention explicite du
contraire, une variété est une k-variété.

Soit G un groupe algébrique connexe et X une G-variété lisse géométriquement integre. Cette section
traite trois problemes : pour un torseur H — G sous un k-groupe fini, on montre I’existence et I’unicité
de la structure de groupe sur H dans paragraphe 3A ; pour un torseur ¥ — X sous un k-groupe fini, on
donne dans paragraphe 3B une condition nécessaire et suffisante pour le relevement, de fagcon compatible,
de I’action de G sur X en une action sur Y ; si ce relevement n’existe pas, on montre dans paragraphe 3C
I’existence d’une isogénie minimale Hy — G telle que I’action de Hy puisse étre relevée en une action
sur Y.

3A. Torseur sur un groupe algébrique. Pour un groupe algébrique connexe G, tout recouvrement étale
fini de G est une extension centrale de G [Brion et Szamuely 2013, Proposition 1.1(1)]. Le résultat
suivant généralise ce résultat au corps de base et il est aussi un analogue d’un résultat de Colliot-Thélene
[2008, Theorem 5.6].

Proposition 3.1. Soit G un groupe algébrique connexe, S un k-groupe fini commutatifet v : H — G un
S-torseur avec H géométriquement integre sur k. S’il existe un point ey € H (k) avec Y (ey) = e, alors
il existe une unique structure de k-groupe algébrique sur H telle que \r soit un homomorphisme et que
ey soit l'unité.

De plus, dans ce cas, Ker(y) = S et 'action de S sur H est compatible avec la multiplication de H.

Démonstration. L’ existence d’une structure de groupe sur H est équivalente a 1’existence d’un couple
de morphismes (m g, i) satisfaisant certaines relations ou mpy : H x H — H est la multiplication et
ig: H— H estl’inverse.

Pour I'unicité, s’il existe deux structures de groupe sur H, soient (mg, ig), (m}l, i }1) les couples de
morphismes correspondants. Soient m la multiplication de G et ig ’inverse de G. Alors

Vomyg=mgo(y xy¥)=vyomy, myleyxen)=ey=mpyleny Xen),

@[fol'HZiGOIﬁ:WOl‘/H, iH(eH):eH:i},(eH).
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Puisque 1 est fini étale et H x H est intégre, on ampy = m/H etig = i}i [Milne 1980, Corollary 1.3.13].
Ceci donne 'unicité de (mpy, ig).

Pour I’existence de la structure de groupe (i.e., I’existence de (m g, ig)), par la descente galoisienne
et 'unicité de (my, iy), il suffit d’établir I’existence de (mpyg, igy) sur k. On peut supposer que k = k.
Dans ce cas, Y est fini étale galoisien avec Aut(H/G) = S(k). D’apres [Brion et Szamuely 2013,
Proposition 1.1(1)], il existe une structure de groupe sur H telle que ¥ : H — G soit une isogénie centrale.
Notons — - — la multiplication et (—)~! I’inverse de cette structure de groupe. Soit ¢ := ey - ey et
d:=ep-c ! Les points eg, c et d sont dans Ker(v) et donc dans le centre de H. Alors les morphismes
my:HxH—H:(hj,hy)~—d-hi-hyetiyy, :H—> H:h— ¢ - h~! définissent sur H une nouvelle
structure de groupe et cette structure vérifie les hypotheses ci-dessus.

Pour le dernier énoncé, puisque S C Ker(y), I’action de § induit une inclusion de I'y-module § k) C
Aut(Hy/Gy) et la multiplication de H induit une inclusion Ker(y) (k) C Aut(H/Gp) de I'y-module.
Puisque #Aut(H/Gy) = deg(y), les deux inclusions ci-dessus sont isomorphes, d’ou le résultat. U

Corollaire 3.2. Soit G un groupe algébrique connexe. Pour tout Z/n-module fini M et tout homomor-
phisme surjectif m1(Gy) 95 M de noyau Uy-invariant, il existe un unique groupe algébrique connexe H
isogéne a G, i.e., muni d’un homomorphisme fini surjectif  : H — G, tel que (Ker(y))(k) = M et que
la composition 71 (Hp) h) m1(Gg) 95 M soit nulle.

De plus, pour tout groupe algébrique connexe Hy, tout homomorphisme fini surjectif ¥, : HL — G
vérifiant 0 o Y1, = 0 se factorise par .

Démonstration. Puisque G (k) # @, il existe un unique torseur universel de n-torsion 7g (un Sg-torseur
sur G) tel que TgleG =S6.

D’apres le corollaire 2.4, il existe un k-groupe fini commutatif S et un S-torseur H 5 G tels que
S (IE) = M et que ’homomorphisme 71(Gg) — § (k) induit par [Hg] soit 6. Donc la composition 6 o ¥,
est nulle. Aprés avoir tordu par un élément de H!(k, S), on peut supposer que [ H lle,=0€eH Lk, S).
D’apres la proposition 3.1, il existe une structure de groupe sur H telle que ¥ soit un homomorphisme et
que Ker(y) = S.

Pour tout groupe algébrique connexe H; et tout homomorphisme fini surjectif v : H; — G, le noyau
Y est commutatif et on a une suite exacte de ['y-modules :

mi(H, ;) — m1(Gy) — Ker(y1) (k) — 0.

Ceci donne un homomorphisme surjectif de ['y-modules 0; : Ker(y) (k) — M = S(k) et, puisque
[H1]|€c =0= [H]|eG, on a6 ([H]) =[H] e H'(X, S). En utilisant ’action de S, on a un Ker(yr)-
morphisme ¢ : Hj — H au-dessus de G tel que ¢(ey,) = ey. Soient i, x2 : Hy x H — H deux
morphismes avec xi(hy, hy) = ¢(hy - hy) et xa(hy, hy) = ¢ (hy) - ¢ (hy) pour tous hy, h, € Hy. Alors
x1(en,, en) = x2(em,, em,) et ¥ o x1 = ¥ o x2. Ceci induit :

x:Hy xp  Hi 225 Hxg H=Hx; S5 s.
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Puisque H; est connexe, on a Im(x) =es, x1 = x2 et ¢ est un homomorphisme. [l

3B. Relévement d’une action par un torseur. Soient G un groupe algébrique connexe et (X, p) une
G-variété lisse géométriquement inteégre. Soient F' un k-groupe fini et f : ¥ — X un F-torseur. Notons
p1:GxX — G, pr: G x X — X les deux projections.

D’apres [SGA 1 1971, X.2.2], on a deux suites exactes de groupes fondamentaux

l->mXp) »>mX)=>Tr—=1 et 1>m{(GxX)p) =>m(GxX)—>Tr—1.

D’apres [SGA 1 1971, XI1.5.2], on a w1 ((G x X)) = m1(Gy) x m1(X}), car ceci vaut pour les espaces
topologiques. Alors on a une suite exacte de groupes fondamentaux :

1 - m1(Gp) = m1(G x X) ﬂ>7'r1(X)—> 1

qui admet une section induite par i, : X — G x X : x = (e, x) et 'action de 7 (X) sur m1(Gy) se
factorise par I'y. D’apres (1-5), cette suite exacte induit une suite exacte d’ensembles pointés (voir [Serre
1964, §5.8])

1> H'(X, F) B HY(G x X, F) > H' (G, F)™ (3-1)
et p; admet une section induite par i}.

Proposition 3.3. Soient G un groupe algébrique connexe et (X, p) une G-variété lisse géométriquement
integre. Soient F un k-groupe fini et f : Y — X un F-torseur. Alors les hypothéses ci-dessous sont

équivalentes :
(@) ona p*([Y]) = p;(I¥Y]) € H'(G x X, F);
(b) pour i dans (3-1),ona t(p*([Y])) =0¢€ Hl(G,g, F);
(c) le F-torseur Y est G-compatible, i.e., I’action de G sur X se releve en une action sur Y ;
(d) il existe un morphisme py : G X Y — Y tel que py|eGXy = idy et que py soit compatible avec p,
i.e.,, po(idg x f)= fopy.
De plus, sous les hypotheses ci-dessus, on a
(1) l’action de G sur'Y pour laquelle f est un G-morphisme est unique ;

(2) l’action de G et celle de F commutent ;

(3) pour tout o € H'(k, F), le Fy-torseur Y, est G-compatible.

Démonstration. Puisque i (p5([Y])) =i (p*([Y])) dans H 1(X, F), I’équivalence (a)<>(b) découle de la
suite exacte (3-1).

Lemme 3.4. Pour tout k-schéma de type fini Z et tous morphismes 01,0, : G X Z — Y,si f o0 = fob,
et Oyle,xz = Ohle,xz, alors 61 = 6,.
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Démonstration. En fait, 6, 6, induisent un morphisme

0:Gxz8" y vy, FES F

tel que 6 (e; x Z) = ep. Puisque G est integre, (G x Z) = e, et donc 0; = 0;. O

Pour (a)=(d), soient p*Y le pullback de Y par p et p;Y := G x Y. Notons Morg(p3Y, F) I’ensemble
des morphismes x : p;Y — F telsque x(a-y) =a- x(y) ca”! pour tous a € F et y € p3Y. Définissons
de méme Morr (Y, F). Alors Y =e; x Y C p3Y induit un morphisme surjectif Morg(p3Y, F) Mor(ie),
Morp (Y, F), car il existe une section induite par p,. Par hypothese, on a un isomorphisme de F-torseur
1294 2, p*Y. Pour tout isomorphisme ¢, I’argument classique montre qu’il existe un x; € Morp(p3Y, F)
tel que ¢; = x1 - ¢. Puisque Mor(i,) est surjectif, on peut supposer que ¢|..xx est I'identité de Y. Le
morphisme py : G X Y LN p*Y — Y donne (d).

Pour (d)=(c), I’hypothese (d) donne un diagramme commutatif :

idy : eGXYLGXYLY
lf lidcxf lf (3-2)
idy:  egxX —GxX Lo X

tel que py oi, y =idy. Soient 81,6, : G x G x Y — Y les deux morphismes définis par

01(g1,82,y)=g1-(g2-y) et 0(g1,82,y) =(g1-8)-y

pour tous g1, g2 € G ety € Y. Alors 0y (e;, g2, y) = 02(e;, &2, y) et le lemme 3.4 montre que 0; = 6.
Donc py est une action et f est un G-morphisme. Ceci donne (c).

Supposons (c) et montrons (1), (2), (3) et (a).

L’hypothese (c) donne aussi le diagramme commutatif (3-2) avec py 1’action relevée de G sur Y.

Soient 01, 6, deux actions de G sur Y telles que f soit un G-morphisme. Puisque f o6 =po(idg X f) =
f 06, On applique le lemme 3.4 2 61,6, : G x Y — Y et on obtient (1).

Soient 1,6, : G x F x Y — Y les deux morphismes définis par

01(g,a,y)=g-(a-y) et 6g,a,y)=a-(g-y)

pourtous g€ G,ac FetyeY. Alors

Oi(eg,a,y)=a-y==0y(eg,a,y) et (fob)(g . a,y)=g-f(y)=(fob)(g, a,y).

On applique le lemme 3.4 26,6, : G x F x Y — Y et on obtient (2).

Pour le F-torseur p5([Y]) = (G x Y — G x X), I’énoncé (2) montre que I’action G x Y — Y est un
F-morphisme compatible avec p. Ceci induit un isomorphisme de F-torseurs p;([Y]) = p*([Y]) et on
a (a).

Puisque I’énoncé (b) est un énoncé sur k, on obtient (3). [l
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Corollaire 3.5. Soient G un groupe algébrique connexe et (X, p) une G-variété lisse géométriquement
integre. Alors p induit un homomorphisme pr, : w1(G) — m1(X) et, pour tout k-groupe fini F, il induit
pi tHY(X,F)— H'(G, F)etona:

(1) le sous-groupe Im(py,) C m1(X) est normal et il est contenu dans le centre de w1(X}) ;

(2) pour touto € H' (X, F), ona Pz, (@) = t(p*(@)), ou v est dans (3-1);

(3) pour tout 1-cocycle a de wi(X) a valeurs dans F(k), I’homomorphisme a o py, : w1 (Gf) — F (k)
est de noyau I'y-invariant, et il est nul si et seulement si p}; ([a]) =03
(4) si X est un G-espace homogene a stabilisateur géométrique connexe, alors tout F-torseur G-

compatible est constant, i.e., ce torseur est isomorphe a M x; X avec M un F-torseur sur k.

Démonstration. L énoncé (1) vaut car
P2 ~
m1(Gp) = Ker(m1(G x X) =5 71(X)) et m((G x X)p) = m1(Gp) x m1(Xp).

Les énoncés (2) et (3) découlent par définition.

Pour (4), dans ce cas, Im(p5,) =1 (Xg) [Szamuely 2009, Proposition 5.5.4]. D’apres la proposition 3.3
et (2), (3) ci-dessus, tout F-torseur G-compatible est trivial sur Xz, et donc il provient d’un F-torseur
sur k. U

Corollaire 3.6. Sous les notations et les hypotheses ci-dessus, supposons que f est G-compatible. Alors,
pour tout k-schéma fini étale E, la restriction de Weil V := Ry g/x (Y X E) estun Rg i (F Xy E)-torseur
G-compatible sur X.

Démonstration. Notons fy : V — X. Par hypothese, fy est un torseur sous le groupe
RXxE/X(F x X X E) = RE/k(F Xk E)

Mol Gxx A XetGxY

comme un X-schéma par p o (idg x f). Dans ce cas, tout morphisme py € Morx (G x V, V) satisfait

On considere G x V comme un X-schéma par le morphisme G x V

fvopy =po(idg x fy). D’apres la proposition 3.3(d), il suffit de trouver un py € Morx (G x V, V) tel
que ,0v|erV =idy. Puisque

Moryx (V,V) = Morxxg(VXE,YxXE) etque Morx(GxV,V)= Morxxg(GxV XE,Y xXE),

I’identité idy induit un morphisme V x E b Y xE.Le XXE -morphisme

idg x0 id
GxVXxES 6xyxEXXE vy E

induit un morphisme py € Mory (G x V, V) qui satisfait ,OvlerV =idy. O

Corollaire 3.7. Soient G un groupe algébrique connexe, Z une variété lisse géométriquement intégre et
p : X — Z un G-torseur. Pour tout k-groupe fini F et tout F-torseur G-compatible Y — X, il existe un
F-torseur Yz sur Z tel que [Y] = p*([Yz]) € HY(X, F).
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Démonstration. D’apres la proposition 3.3(2), Y est un G x F-torseur sur Z tel que Y/F = X. Alors
Yz :=Y/G estun F-torseur sur Z et Y — Yz est un F-morphisme. Donc [Y] = p*([Yz]). O

3C. Le groupe minimal compatible avec un torseur. Soit G un groupe algébrique connexe. Soit Cg
la catégorie des groupes algébriques connexes H isogénes a G, i.e., munis d’un homomorphisme fini
surjectif ¥ : H — G. C’est clair que si G est linéaire, tout objet dans C¢ est aussi linéaire.

Soit (X, p) une G-variété lisse géométriquement intégre. Soient F' un k-groupe finiet f : Y — X un
F-torseur. Soit Cg(Y) la sous-catégorie pleine de Ci dont les objets sont les groupes H isogenes a G tels
que f soit H-compatible. D apres la proposition 3.3(1), tout objet H € Cg(Y) admet une unique action
sur Y telle que f soit un H-morphisme. Alors tout morphisme de C (Y) est compatible avec les actions
ci-dessus.

Proposition 3.8. La catégorie C;(Y) admet un objet final (Hy LN G), et un objet (H v, G) eCg(Y)

est final si et seulement si I’action de ker(\) sur Y est libre.

Démonstration. Dans la suite exacte (3-1), notons & := t(p*([Y])) € H' (G, F)™X). Soit
6 € Homeon (71 (Gp), F (k)

un élément correspondant a « selon (1-5). D’apres le corollaire 3.5(3), le noyau Ker(6) est ['x-invariant.

La fonctorialité de (3-1) et la proposition 3.3 montrent qu'un objet (H LA G) € Cg est contenu
dans Cg(Y) si et seulement si ¥, () =0 € H! (H, F), i.e., 0 oYz, = 0 (corollaire 3.5(3)), ol ¥y, :
m1(Hp) — m1(Gg). Puisque 71 (Gp) est abélien [Miyanishi 1972, Theorem 1], le corollaire 3.2 implique
I’existence de 1’objet final de Cs (Y).

L’argument ci-dessus montre que la catégorie Cg (Y) est stable par changement de base, i.e., pour toute
G-variété X’ et tout G-morphisme X’ — X, onaun F-torseur Y :=Y xx X' — X' et C(Y') =Cs(Y)
comme sous-catégories de Cg.

Soit (Hy 4 G) I’objet final de C; (Y). 1l est I’objet final de C;(Y’) aussi pour tout ¥’ — X’ ci-dessus.

Pour montrer que I’action de Ker(i/y) est libre, on peut supposer que k = k et que X est un espace
homogene de G. Dans ce cas, Y est un espace homogene de F x Hy (proposition 3.3(2)). Puisque Ker(yy)
est dans le centre de F' x Hy, les stabilisateurs de Ker(yy) en tous les points x € X sont les mémes. La
propriété de 1’objet final implique que 1’action de Ker(yry) soit libre.

Soit (H v, G) € Cg(Y) un objet tel que I’action de ker(y) sur Y est libre. Soit ¢ : H — Hy
I’homomorphisme canonique. Puisque ¥y, ¥ sont finis surjectifs et que Hy est connexe, I’homomorphisme
¢ est fini surjectif. La proposition 3.3(1) implique que ¢ est compatible avec ’action de H et de Hy.
Puisque I’action de Ker() sur Y est libre, ¢ est un isomorphisme. U

Définition 3.9. L’objet final (Hy 49 G) de Cs(Y) est appelé le groupe minimal compatible avec le
F-torseur Y.

Remarque 3.10. Soit p;, : 71(G;) — 71(X) 'homomorphisme dans le corollaire 3.5 et soit o un 1-
cocycle de m1(X) en F (k) qui correspond a [Y] € H'(X, F). Alors |7, (x;) est un homomorphisme.
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Par la démonstration de la proposition 3.8, le groupe minimal compatible au F-torseur Y est déterminé
par Ker(o o pg,), ou o 0 pr, : 11 (Gg) = F (k) est un homomorphisme. Donc ceci est déterminé par
Ker(ozllm(pnl)).

D’apres la proposition 3.3(3), Hy est aussi le groupe minimal compatible au F,-torseur Y, pour tout
o e H'(k, F).

Corollaire 3.11. Sous les notations et les hypotheses ci-dessus, si Y est géométriquement intégre sur k,
alors il existe un homomorphisme injectif ¢ : Ker(yy) — F d’image centrale compatible avec [’action de
Ker(yry) et de F surY.

Démonstration. L action de Ker(yy) induit un morphisme :
@ Ker(Py) x ¥ 2220 vy sy v = Fx v 25 F,
ol pg, est 'action de Hy. Pour tous & € Ker(yy),yeY,onah-y=®(h,y)-y.

Puisque Y est géométriquement integre, il existe un morphisme ¢ : Ker(yy) — F tel que ® = ¢ o py,
ou p; : Ker(¢ry) x ¥ — Ker(¢y) est la projection. Puisque I’action de F sur Y est libre, ¢ est un
homomorphisme. La proposition 3.3(2) implique que I’'image de ¢ est centrale. D’apres la proposition 3.8,
I’action de Ker(yry) est libre et donc ¢ est injectif. O

Rappelons la définition de Brg (X) dans la définition 1.3.

Proposition 3.12. Soient G un groupe algébrique connexe et X une G-variété lisse géométriquement
integre. Supposons qu’il existe un torseur universel de n-torsion Tx L5 X sous le groupe Sx. Soit H LANe:
le groupe minimal compatible au Sx-torseur Tx. Alors, pour tout élément de n-torsion a € Br(X) et tout
o€ H'(k, Sx), ona fX(a) € Bry(Tx,0), ou fF : Br(X) — Br(Tx,») est [’homomorphisme induit par
fo i Tx6 — X.
Démonstration. On peut supposer que o =0 € H'(k, Sx).

Notons py : H x Tx — Tx l'actionde H et p1 g : HxTx — H, po.y: HX Tx — Tx les deux
projections. Soit 7 un torseur universel de n-torsion pour G sous le groupe Sg.

Appliquant le corollaire 2.7 a (G, X), on obtient : pour tout oy € H 2(X, pn), il existe un ¢ €

Hom(Sg, S}) etun B € H*(G, ) tels que (p* — p3) (1) = £(¢) + pi(B).
Puisque f*([7x]) =0e€ H'(Tx, Sx), ona

(W x ) (e@) =W x ) (@:(TeDUI[Tx]) = ¢ Y[ Tc ) U f*([Tx]) =0.

Alors (pf; — p3 ) ([ (1)) = (¥ x )*((p* — p3)(1)) = (¥ x )*(p7(B)) = p] y(¥*(B)).
D’apres la suite exacte de Kummer, (o}, — p; (@) C pi" yBr(H), d’ou le résultat. O

4. Rappel sur le sous-groupe de Brauer invariant

Dans toute cette section, k est un corps quelconque de caractéristique 0. Sauf mention explicite du
contraire, une variété est une k-variété.
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Dans cette section, on rappelle des notions et des résultats dans [Cao 2018, §3] sur le sous-groupe de
Brauer invariant.

Pour la définition du sous-groupe de Brauer invariant on renvoie le lecteur a la définition 1.3.

Soit AB la catégorie des groupes abéliens. Soit GX la catégorie des couples (G, X) avec G un groupe
algébrique connexe et X une G-variété lisse, et un morphisme (H, Y) — (G, X) dans GX est un couple
(¥, f) avec ¥ : H — G un homomorphisme et f : ¥ — X un H-morphisme, ou I’action de H sur X est
induite par . Par définition,

Br_(—):GX— AB: (G, X) — Brg(X)
est un foncteur contravariant.

Exemple 4.1. (1) [Cao 2018, lemme 3.6] Soit G un groupe linéaire connexe. Alors Brg(G) = Bri(G).
(2) [Cao 2018, proposition 3.9(3)] Soient G un groupe linéaire connexe, Go C G un sous-groupe fermé
connexe et X := G/Gy. Alors

Brg(X) = Bri (X, G) :=ker(Br(X) — Br(Gy)).

Le groupe Br (X, G) est défini par Borovoi et Demarche [2013] pour étudier 1’approximation forte de X.
(3) Soit A une variété abélienne. L’ auteur ne sait pas identifier le groupe Br4 (A). Par exemple, 1’auteur

ne sait pas si Bry(A) C Bri(A) ou si Bry(A) D Bri(A).

Au vu de I’exemple 4.1(3), dans la suite du présent article, on suppose que G est un groupe linéaire.
Soient G un groupe linéaire connexe et X une G-variété lisse géométriquement integre. Notons
p:GxX— XTlactionet p;: G x X —- G, pr: G x X — X les deux projections.

(1) Puisque Bri (G x X) = Br.(G) é Br;(X) [Sansuc 1981, lemme 6.6], on peut obtenir facilement [Cao
2018, proposition 3.2(4)] :
Bri(X) C Brg(X). 4-1)

(2) Puisque pjlBr,(G) : Bre(G) — Br(G x X) est injectif, par la définition de Brg (X)), il existe un unique
homomorphisme Brg (X) A Br.(G) tel que [Cao 2018, (3.4)]

pioi=p*—p;:Brg(X)— Br(G x X).

Le A : Brg(X) — Br.(G) est appelé I’homomorphisme de Sansuc [Cao 2018, définition 3.8].

(3) Pour toute extension de corps K/k, et tous x € X(K), g € G(K), o € Brg(X), on a [Cao 2018,
proposition 3.9(1)] :
(g -x)* (o) = g"(AM(a)) + x" () € Br(K).

Alors, dans le cas ou k est un corps de nombres, on a :
G(AYP D X (AP = X (AP, (4-2)

La formule (4-1) et [Harari et Skorobogatov 2013, Corollary 3.6] impliquent directement :
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Corollaire 4.2. Soit (G, X) € GX un objet. Si X (Ay)Bre™) % &, alors, pour tout entier n > 2, il existe
un torseur universel de n-torsion pour X.

Pour un torseur sous un groupe linéaire connexe, Sansuc a construit une suite exacte dans [Sansuc
1981, proposition 6.10], qui est appelée la suite exacte de Sansuc. La proposition suivante dit que les
sous-groupes de Brauer invariant sont compatibles avec la suite exacte de Sansuc.

Proposition 4.3 [Cao 2018, corollaire 3.11(2)]. Soit 1 - N —- H Yy G — 1 une suite exacte de
groupes linéaires connexes. Soit (Y, ) : (H,Y) — (G, X) un morphisme dans GX tel que X soit
géométriquement integre sur k et Y — X soit un N-torseur, oit I’action de N sur Y est induite par celle
de H. Alors f* :Br(X) — Br(Y) satisfait (f*)"'Brgy (Y) = Brg(X) et on a une suite exacte, fonctorielle
en (X,Y, f,N):

Pic(Y) — Pic(N) — Brg(X) L) Bry (Y) A Br.(N),
ou ) :Bry(Y) C Bry(Y) — Br.(N) est I’homomorphisme de Sansuc.

Pour une fibration f : X — T et tout t € T (k), on note i, : X; C X la fibre et on a la spécialisation du
groupe de Brauer i/ : Br(X) — Br(X,). La proposition suivante dit que, si la fibration f est compatible
avec des actions des groupes linéaires, alors les sous-groupes de Brauer invariants sont compatibles avec
la spécialisation du groupe de Brauer.

Proposition 4.4 [Cao 2018, proposition 3.13]. Soit 1 — Gy 2 G L T — 1 une suite exacte de groupes
linéaires connexes avec T un tore. Soient X une G-variété lisse géométriquement integre et X L T un
G-morphisme. Notons Bri(G) LN Bri(Gg) I’homomorphisme induit par ¢. Alors, pour tout t € T (k),

ona
(1) lafibre i, : X, C X est Go-invariante

(2) on a une suite exacte naturelle
Br,(T) — Brg(X) KN Brg,(X;) — coker(¢,);

(3) [Cao 2018, lemme 5.5] si k est un corps de nombres et H>(k, T*) =0, on a coker(¢,) = 0 et i est
surjectif.

5. La descente par rapport au sous-groupe de Brauer invariant

Dans toute cette section, k est un corps de nombres. Sauf mention explicite du contraire, une variété
est une k-variété.

La méthode de descente des points adéliques est établie par Colliot-Thélene et Sansuc [1987a].
Dans [Cao 2018], I’auteur étudie la méthode de descente des points adéliques orthogonaux aux sous-
groupes de Brauer invariants et établit le résultat : pour un groupe linéaire connexe G, une variété lisse
géométriquement integre Z et un G-torseur p : X — Z,
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(1) on a [Cao 2018, théoréme 5.9] :
ZAP P = | po(Xo(Ap)PreeX)):; (5-1)
oeH! (k,G)
(2) si G est un tore quasi-trivial, on a [Cao 2018, proposition 5.2]
24" = p(x (40, (5-2)
pour tout sous-groupe B C Brg(X), ot p* : Br(Z) — Br(X);
(3) pour tout homomorphisme surjectif ¢ : H — G de groupes linéaires connexes, on a [Cao et al.
2019b, Theorem 5.1] :
G(AY™ D =y (H(AP"™D) - G k). (5-3)

La proposition 5.1 et la proposition 5.5 suivantes sont quelques variantes de ce résultat. Plus précisément,
la proposition 5.1 est une variante de (2) pour G un groupe fini commutatif et sa démonstration utilise
(2) et (3) mais pas (1). La proposition 5.5 est une variante de (1) en remplacant “Br” par “ét, Br” et en
remplacant “Brg” par “G-ét, Brg”, donc elle est une version limite de (1) pour tout k-torseur Z' — Z
sous un k-groupe fini, et sa démonstration utilise (1) mais pas (2) et (3).

Proposition 5.1. Soient G, H deux groupes linéaires connexes et  : H — G un homomorphisme surjectif
de noyau S fini. Soient X (resp. Y) une G-variété (resp. H-variété) lisse géométriquement intégre et
f Y — X un H-morphisme tels que Y soit un S-torseur sur X, ou l’action de S est induite par I’action
de H. Alors, pour tout o € H! (k, S), le tordu Y,; est une H-variété et on a:

X(ApPe O =) fo(Yo(ApPmO=).
ocH!(k,S)

Démonstration. On construira les diagrammes ci-dessous

0 S To—T 0
[
H——Hy——T et Y — sy,
Xlwo leo
G X

ou le diagramme a gauche est un diagramme de groupes algébriques, le diagramme a droite est un
diagramme de variétés lisses, chaque groupe dans le diagramme a gauche agit sur la variété dans le
diagramme a droite avec le méme position et ces actions sont compatibles avec tous les morphismes.

Puisque H est connexe, S est contenu dans le centre de H. Donc S est commutatif. Une résolution
coflasque [Colliot-Thélene et Sansuc 1987b, Proposition 1.3] induit une suite exacte

0>S—>To>T—0 (5-4)
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ot Ty est un tore quasi-trivial et 7 est un tore coflasque, i.e., H'(k’, T*) = 0 pour toute extension
k'/k. Puisque H3(k, T*) = [] H(ky, T*) = [1ye00, H' (ky, T*) [Cao 2018, lemme 5.4], on a
H3(k, T*) =0.

Soit Hy := H x5 Ty. Alors Hy est un groupe linéaire connexe et H v, G induit une suite exacte

VEOQK Slee)

1> Ty— Hy 2% G — 1.

Soit Yy := Y x5 Ty. Notons i : ¥ — Y, I’immersion fermée canonique. Alors Yy est une Hy-variété et
induit un Hy-morphisme Yy o, X tels que fp est un Tp-torseur. D’apres (5-2) et la proposition 4.3, on a

X(APY = fo(Yo(ApPralt0)).

L’isomorphisme Yy x™ T = Y x5 Ty x™ T = X x T induit un Ty-morphisme ¢ : ¥y — T tel que
o Yer)=i(Y). D’apres des arguments classiques (voir la démonstration de [Cao 2018, théoreme 5.9]),
pour tout ¢ € T(k), on a ¢~ (t) = Y, et le morphisme ¢~ '(t) < Yo Jo, X est exactement Fowy»
ot d : T(k) - H'(k,S) est I’homomorphisme induit par (5-4). Puisque H3(k, T*) =0, d’apres la
proposition 4.4, =1 (¢) est une H-variété et I"'homomorphisme canonique Bry, (Yo) — Bry (¢~1(1)) est
surjectif pour tout t € T'(k).

D’apres (4-2), Yo(Ap)BH Y0 gt T(A)B" ) invariant. On applique (5-3) agp eton a

T(A)™" " = p(To(Ap)™" ) - T (k).

Puisque ¢ (Yo (Ax)BH0 30y « 7(A)B" ™) ona:

Yo(Ag)PBrHo o) =T0(Ak)Br1(T0).( |_| ¢1(,)(Ak)BrH(¢‘<r)>)’
teT (k)

et donc

X(Ak)BrG(X) — f0|: I_l ¢—1(t)(Ak)BrH(¢_1(l))] — U fa(t)[Ya(t)(Ak)BrH(ya(t))]. N

teT (k) teT (k)

Rappelons la définition de X (Ap) 9B dans (1-4).
Pour toute variété lisse X, définissons X (A}°) I’espace des points adéliques de X hors des places

complexes, i.e., on a X (Ar) = (] X (ky)) x X (A}). De plus, on a :

v complexe

X (AP = ( ]_[ X(kv)> X X (AR©)°P (5-5)

v complexe

pour I’obstruction ob = Br(X) ou ob = Br;(X) ou ob = ét, Br ou, si X est une G-variété pour un groupe
linéaire connexe G, pour ob = Brg(X) ou ob = G-ét, Brg.
Le lemme suivant est bien connu (voir [Demarche 2009a, lemme 2.2.8] pour une variante).
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Lemme 5.2. Soient X une variété lisse et {X;}ic; les composantes connexes de X telles que X; soit

géométriquement integre pour touti € 1. Alors on a:

X(Azc)Bn X) — L[ X; (Azc)Brl(X;)’ X(Azc)ét, Br _ L[ X; (Azc)ét, Br
iel iel

et, si X est une G-variété pour un groupe linéaire connexe G,on a:

X(AEC)Br(;(X) _ ]_[ X; (AEC)Br(;(X,-) et X(AEC)G-ét, Brg _ ]_[ X[(A2C)G-ét, Brg
iel iel
Démonstration. Puisque le groupe de Brauer (resp. le sous-groupe de Brauer G-invariant, resp. I’ensemble
des F-torseurs, resp. I’ensemble des F-torseurs G-compatibles pour un k-groupe fini F) de X est la
somme directe de celui des composantes connexes de X, on obtient I’inclusion D dans les quatre cas
ci-dessus.

Par ailleurs, soit 7y(X) le schéma des composantes connexes géométriques de X, i.e., mo(X) est un
k-schéma fini étale et il existe un k-morphisme surjectif ¢ : X — mo(X) de fibres géométriquement
integres. Pour tout k-schéma V fini étale connexe, V (A}°) # @ implique V = Spec k. D’apreés [Liu et Xu
2015, Proposition 3.3] (un résultat inspiré par Stoll), on a (X )(AEC)BY(”O(X ) = 7o(X) (k). Par définition,
¢*(Br(my(X))) C Bri(X), ¢*(Br(mwp(X))) C Brg(X) et donc on obtient I’inclusion C. O

Les deux lemmes suivants sont bien connus.

Lemme 5.3. Soient X une variété lisse, L un groupe linéaire quelconque et h : V — X un L-torseur.
Alors, pour tout x € X (Ay), ensemble {oc € H'(k, L) : x € he(V5(Ay))} est fini.

Démonstration. Le résultat découle du fait que, pour tout o € H'(k, L), I’ensemble IIT' (k, L) est fini
[Serre 1964, §111.4.6]. O

Voir [Skorobogatov 2001, Proposition 5.3.2; Cao et al. 2019a, Lemma 6.3] pour des résultats similaires.

Lemme 5.4 (M. Stoll [2007], cf. [Cao et al. 2019a, Lemma 7.1]). Soit X une variété lisse géométriquement
intégre, F un k-groupe fini et f : Y — X un F-torseur. Supposons qu’il existe un x € X (Ay)4B". Alors
il existe un o € H'(k, F), un sous-groupe fermé F' C F,, une composante connexe Y' C Y, tels
que Y' soit géométriquement intégre et F'-invariant, f' .= fs|y : Y — X soit un F'-torseur et que
x € f1(Y'(An»Y).

La proposition suivante est une étape intermédiaire importante dans la démonstration du théoreme 1.1.

Proposition 5.5. Soient G un groupe linéaire connexe, Z une variété lisse géométriquement intégre et

p: X — Z un G-torseur. Alors :
ZAYYPT = | pe(Xe (A0 P,
oeH! (k,G)

Démonstration. L’inclusion D découle du fait que, pour tout torseur V — Z sous un k-groupe fini, I’'image
réciproque X xz V — X est G-compatible.
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Pour I’inclusion C, on peut supposer que Z(A;)" B £ @.

On fixe un point z € Z(Az)®Br.

Soit A I’ensemble des o € H'(k, G) tels que p; ' (z) N Xy (Ag) B¢ Xo) £ &5 Alors A # @ par (5-1).
Pour tout o € A, on fixe un point x, € p_ Y(2) N X, (Ag)B6o Xo)  Ceci induit un isomorphisme :

W, 0 G(Ar) = p, (2)(Ap) 1 g+ g %o
Notons :
Eoo =9, (p;' (@) N X (AP0 X)) et Eg:=| | Eoo.
o€eA

Pour tout o € A, soit G, (Ay) %% Hom(Bra (Gy),Q/ Z) I’homomorphisme induit par 1’accouplement
de Brauer—Manin. Donc Ker(a,) = G, (A;)B“(C2). Notons

Kon:=[]Ker(a,) et Ga(Ap):=| | Gs(Ap).

oEA oEA
Définissons I’action de Ker(a,) sur G, (Ay) par la multiplication a gauche. Ceci induit une unique action
de K, A sur Ga(Ayg) telle que I’action de Ker(oy) sur G, (Ay) soit I’identité pour tous o1 7 o2. D apres
(4-2), Ey est K, a-invariant.

Soit S I’ensemble des couples (F, V EN Z) avec F un k-groupe fini et V 1, 7 un F-torseur tel
que V soit géométriquement integre. On définit un ordre partiel : pour tous (Fi, Vy), (F2, Vo) € S,
on a (Fi, Vi) < (F», V») si et seulement s’il existe un o € H!(k, F}) et un homomorphisme surjectif
¢ Fr = Fi g tels que ¢.([V2]) = [Vis].

Pour tout (8, 0) € H'(k, F) x H'(k, G), soit Y, s := X, Xz V5. On a un diagramme commutatif de
Fs x G,-variétés et de Fs5 x G,-morphismes :

f(T
Ya,é d XO'
lpg |:| lpo
Vs S z,

tel que toute verticale soit un G, -torseur et que toute horizontale soit un Fj-torseur.
Pour tout (F, V EN Z) € S ettout o € A, notons

Epve =9, (pgl(@ N [ U fgg(Ya,s(Ak)BrG“(Y""S))]) C Go(Ap) (5-6)
SeH!(k,F)
et Ery :=|l,en EF.v.o C Ga(Ap).
Lemme 5.6. Pour tout (F,V ER Z)eS,ona:
(1) I’ensemble Efy est un sous-ensemble non vide fermé K, a-invariant de Ey ;
(2) pour tout (Fy, V1) € S vérifiant (F, V) < (F1, V1),ona Er, vy CEFry;

(3) l’ensemble S est un ensemble ordonné filtrant.
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Démonstration. Pour tout § € H'(k, F) et tout o € H'(k, G), le morphisme f;” est fini. D’apres (4-2),
Y(,,g(Ak)BrGa(Yoﬁ) est Ker(a, )-invariant et

15 (Vo5 (A)Broe To)y € X (Ay)Bros Xo)
est fermé [Conrad 2012, Proposition 4.4] et Ker(a, )-invariant. Ainsi

W g (@) N fY (Yo 5(A)Pe Yo)] € Eg

est fermé et Ker(a, )-invariant.
8
Appliquant (5-1) et le lemme 5.3 4 ¥, 5 22> Vj, il existe au moins un et au plus un nombre fini de
(8,0) € H'(k, F) x H'(k, G) tels que

(50 02) 71 2) N Yy 5 (AP0 o) £ &5

Alors p;1(z) N Xy (Ag)B6eXo) £ &5 et donc un tel o est dans A. Alors Ef,y # @ et (1) découle du
premier paragraphe.

L’énoncé (2) découle de la fonctorialité de 1’accouplement de Brauer—Manin.

Pour tous (Fy, Vi), (F2, V2) € S, on aun F| x F,-torseur V| xz Vo — Z. Par hypothese, il existe un
(01,00) € H' (k, F) x H' (k, F>) tel que (V}., Xz Va.5,) (Ax) B V11 X2V202) oL &5 D’ apres le lemme 5.2 et
(5-5), il existe un k-sous-groupe fermé F3 C Fj 4, X F2 4, €t une composante connexe V3 C Vi 4, Xz V2.4,
tels que V3 soit géométriquement integre et que V3 — Z soit un F3-torseur compatible avec 1’action de
Fl6, X F20, sur Vi 5, Xz V2 5,. Alors le morphisme /1 : V3 C Vi 4, Xz V2,6, = V1,4, €st compatible avec
¢1: F3 C Fl o, X I2,6, > F14,. Puisque V] 4, est géométriquement integre, le morphisme £ est surjectif
et donc ¢, est surjectif. Alors [V] o, 1= @1 «([V3]) et (F1, V1) < (F3, V3). Par ailleurs, (F2, V) < (F3, V3),
d’ou I’énoncé (3). U

Soient B :=_| Hom(Bra(Ga), @/Z) et

oeA
ar:Ga=| | Ga(AD) Lea oo, | | Hom(Bu(Go). @/Z) = B.

ogeA geA

En tant qu’ensembles, on a Im(aa) = K, A\G . Lespace Hom(Br, (G, ), Q/Z) est compact, car Br,(G)
est discret. D’apres le lemme 5.3, A est fini et donc B est compact. Puisque a, est continu et ouvert [Cao
2018, lemme 4.1], I’application ax est ouverte. Donc I’image d’un sous-ensemble fermé K, a-invariant
est fermée. Alors aa(EF,y) C B est fermé non vide pour tout (F, V) € S. Puisque B est compact et que
S est un ensemble ordonné filtrant, d’apres le lemme 5.6 (2), Iintersection

ﬂ arn(Epy) #@ etdonc Eo:= ﬂ Epyv #Q.
(F,V)eS (F,V)eS

Ilexisteun o € Atel que Eoo N E, # .
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Soient g € Eoo NE, et x := W, (g) = g - x5. Alors p, (x) =z et, d’apres (5-6), on a
re m |: U Is (Ya,a(Ak)Ban(Ya.a))]'
(F,V)GS SEHl(k,F)

D’apres le corollaire 3.7, tout torseur G-compatible sous un k-groupe fini sur X provient d’un torseur
sur Z. D’apres le lemme de Stoll (lemme 5.4), il suffit de considérer les torseurs géométriquement integres.
Donc x € X, (Ag) % B%s  d’ou le résultat. O

La proposition suivante est une généralisation de [Cao et al. 2019a, Remark 7.5].

Proposition 5.7. Soit X une variété lisse géométriquement integre. Soit
I >N>LL Fo1

une suite exacte de groupes linéaires avec F fini. Soient V. — X un L-torseur etY :=V/N — X le
F-torseur induit par ¥, i.e., [Y] = ¥« ([V]). Faisons l'une ou I’autre des hypotheses :

(1) Le groupe N est connexe.

(2) Le groupe L est fini et N est contenu dans le centre de L.
Alors, pour tout o € H'(k, F) avec Y, (Ay)B"1Y) £ & il existe un « € H'(k, L) tel que V() = 0.

Démonstration. Le cas o N est connexe est exactement [Cao et al. 2019a, Remark 7.5].

On considere le cas (2). Dans ce cas, N est un k-groupe fini commutatif. La résolution flasque [Colliot-
Thélene et Sansuc 1987b, Proposition 1.3] donne une suite exacte 0 - N — T — Ty — 0 avec T un
tore et Ty un tore quasi-trivial. Soit L’ := L x" T. Alors L’ est un groupe linéaire, car N est contenu
dans le centre de L. Ceci induit un diagramme commutatif de suites exactes et de colonnes exactes :

1 1
1 N L F 1
V) l=
1 T - F 1
TO ;) TO
0 0

Appliquons le cas (1) au L'-torseur ¥, ,([V]). On obtient un 8 € H'(k, L) tel que ¥ «(B) = o. Puisque
H'(k, To) =0, il existe un o € H'(k, L) tel que Y2.«(a) = B et donc Y. () = 0. O

La proposition 5.7(2) et la formule (4-1) impliquent directement :
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Corollaire 5.8. Sous les hypotheses de la proposition 5.7(2), soit G un groupe linéaire. Pour tout o €
H'(k, F), s’il existe une action de G sur Y, telle que Y, (A;)B¢Yo) £ & alors il existe un o € H' (k, L)
tel que Y. (a) = 0.

6. Démonstration du théoréme 1.4

Dans toute cette section, k est un corps de nombres. Sauf mention explicite du contraire, une variété
est une k-variété.

Dans toute cette section, G est un k-groupe linéaire connexe et (X, p) une G-variété lisse géomé-
triquement integre.

Pour tout k-groupe fini F et tout F-torseur f :Y — X, soit (Hy RN G) le groupe minimal compatible
au F-torseur Y (cf. définition 3.9). Pour tout o € H!(k, F), le F,-torseur f, : Y, — X est Hy-compatible,
i.e., il existe une unique action de Hy sur Y, telle que f, soit un Hy-morphisme.

Dans paragraphe 1, on a défini X (A;)% BT (cf. (1-1)) et X (A) 9t B (cf. (1-4)). On définit

X(ap*Pe= (1 |J fo(0(apPmt),

f:yi)x ocH!(k,F)
F fini

X(Apee b= U e @anPm ),
in)X O'EHl(k,F)

F fini commutatif
Y géo. connexe

ou géo. connexe signifie géométriquement connexe et c.c. est une abréviation de commutatif connexe.

On a directement :
X(Ak)ét, Brg C X(Ak)C.C.,ét, Brg et X(Ak)ét, Br C X(Ak)ét, Brg C X(Ak)G—ét, BFG.

Proposition 6.1. X (Ap)S & Bo o x (A)B,

Démonstration. 11 suffit de montrer que, pour tout o € Br(X) et tout x € X (Ay)“ €.Br¢ ona a(x) =0.
On fixe un tel x et un tel «.

Il existe un entier n tel que n - @ = 0. D’apres le corollaire 4.2, il existe un torseur universel de n-
torsion Ty NG (un Sx-torseur). Soit H le groupe minimal compatible au Sy-torseur 7x. Par hypothese,
il existe un o € H!(k, Sx) et un point adélique ¢ € Tx.c (Ap)BrHTx0) tels que f,(t) = x. D’apres la
proposition 3.12, f¥(a) € Bry(Tx o). Alors a(x) = fF(a)(t) =0. [l

Le lemme suivant généralise un résultat de Skorobogatov [2009, Theorem 1.1] et il généralise aussi
[Cao et al. 2019a, Proposition 6.6]. Sa démonstration suit I’idée de [Skorobogatov 2009, p. 506] et de
[Stoll 2007, Proposition 5.17].

Lemme 6.2. Soient F un k-groupe fini, f : Y — X un F torseur et (Hy Yy, G) le groupe minimal
compatible au F-torseur Y. Supposons que Y est géométriquement integre. Alors

(1) ona XA =Uscpiq py fo Yo (A P11
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(2) ona X (A Br = Usertw.r) folYo (A B

) si Yy : Hy = G est un isomorphisme, on a

XAYeePo = | folta (A& Pol.
oceH (k,F)

Démonstration. L’inclusion D dans les trois cas est définie par le pullback des torseurs et la fonctorialité
de I’accouplement de Brauer—Manin. On considere I’inclusion C.

Dans le cas (1), il suffit de montrer que, pour tout x € X(Ak)ét’ BrG il existe un o € H'(k, F) et un
y € Yy (Ar) By tels que £, (y) = x. On fixe un tel x.

Pour tout o € H!(k, F), soient

Api=f'(0)NYs(Ar), Ti={oeH'(* F): A; #2} et A:=|]A,.
oeX
D’apres le lemme 5.3, A et X sont finis.

Soit S 'ensemble des X -torseurs sur Y sous k-groupes finis i.e., I’ensemble des quintuples
o.EELF, v x vy,

avec o € H'(k, F), E un k-groupe fini, ¥ un homomorphisme surjectif, V v, X un E-torseur et /i
un E-morphisme sur X. Alors ¥, ([V]) = [Ys] € H'(k, F) et h: V — Y, est un Ker(y/)-torseur. Donc
he : Vo = Yoy, () €st un Ker(y,)-torseur pour tout o € H'(k, E). Soit

Ay :={yeA: 3aeH'(k E)tel que y € ho(Vo(Ar)®"v ")},

Par I’hypothese sur x, ’ensemble Ay est non vide.

On définit un ordre partiel de S : pour tous (oy, E1, V1, Vi, hy), (02, E2, Y2, Vo, hp) € S, on a
(o1, E1, Y1, V1, hy) < (02, E2, Y2, Va, hy) si et seulement si o7 = oy et s’il existe un « € H'(k, E}), un
homomorphisme surjectif ¢ : E; — Ej , et un E>-morphisme hg : Vo — Vi o sur Y,;,. Dans ce cas, on a
Ay, C Ay,.

Puisque A est fini, il existe un quintuple (o, Eg, Y0, Vo, ho) dans S tel que Ay, soit minimal. On fixe
un y € Ay,. Apres avoir remplacé o par o + Vg () pour certain @ € H'(k, Ey), on peut supposer que
y € Y5 (Ap).

Pour tout torseur Z > Y, sous un k-groupe fini F;, d’apres [Skorobogatov 2009, Proposition 2.3
et (4)], il existe un (o, E, ¥, hy : V — X, h) € S, un homomorphisme surjectif Ker(yy) — F; et un
Ker(yr)-morphisme V — Z sur Y, avec

~ h
V =Ry, «.r,v,(Z X1 Fy) = Ry, /x(Z) xx Yy = X. (6-1)
Ceci induit

Ave | haWuA)Pm Oy | fla(Za(Ag)Pz ),
aeH! (k,Ker(y)) acH(k,Fy)
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Par ailleurs, on a :
(0, Eo, Y0, Vo, ho), (0, E, ¥, V. h) < (0, Eo X, E, Y90 (idg, X £, ¥), Vo Xy, V, hoo (idy, Xy, h))

dans S, et donc Ay, D Ay,x, v C Ay. Puisque Ay, est minimal, on a Ay, = Ay,x, v C Ay. Donc
y € Yo (AR By d’oti I’on déduit (1).

L’énoncé (2) découle du méme argument que 1’énoncé (1).

Pour (3), d’apres le corollaire 3.6, le torseur V — X dans (6-1) est G-compatible. L’énoncé (3) découle
du méme argument que 1’énoncé (1). U

La proposition suivante généralise un lemme de Stoll [2007] (cf. lemme 5.4).

Proposition 6.3. Soient G un k-groupe linéaire connexe et (X, p) une G-variété lisse géométriquement
intégre. Supposons que X (Ay)9 B¢ £ &5 Alors, pour tout k-groupe fini F et tout F-torseur Y — X, il
existe un o € H'(k, F) tel qu’il existe une composante connexe Y' C Y, qui est géométriquement intégre.

De plus, dans ce cas, il existe un sous k-groupe fermé F' C F, tel que Y' soit un F'-torseur sur X, ot

Uaction de F' sur Y' est induite par I’action de Fy, sur Y.

Démonstration. Le morphisme G x X %5 X induit un homomorphisme pr, : m1(Gj) — m1(X). D apres
le corollaire 3.5, 'image Im(p,,) est un sous-groupe normal de 1 (X) et elle est contenue dans le centre
de 1 (X}). Pour tout k-groupe fini F, d’apres (1-5), tout Fi-torseur Y1 — X induit un homomorphisme
01 m(Xp) — Fi (k) a conjugaison pres et, d’apres la proposition 3.3 et le corollaire 3.5, Y} est G-
compatible si et seulement si 61 o p, =0.

D’apres (1-5), soit « € H'(m1(X), F(IE)) un 1-cocycle qui correspond a [Y] € H'(X, F). 1l existe un
sous-groupe ouvert distingué A C m1(X) tel que afa = 0. Soient Ap := AN (Xp) et o := ot|r, (xp)-
Alors aj est un homomorphisme 71 (X) — F(k).

Lemme 6.4. Pour trouver Y' dans la proposition 6.3, on peut supposer que Ag -Im(py,) = m1(X) et
donc Im(o;) = Im(ag o oy, ).

Démonstration. Le sous-groupe Im(p,) - A est ouvert normal dans m;(X). Soit Y — X le revétement
galoisien correspondant. Par construction, Yo — X est un torseur G-compatible sous un k-groupe constant
F, = m(X)/(Im(px,) - A). Par hypothese, il existe un o € H'(k, ) tel que Yzya(Ak)BrG(szJ) # O.
D’apres le lemme 5.2 et (5-9), il existe une composante connexe Y3 C Y, telle que Y3 est géométriquement
integre. Ainsi Y3 — X est un torseur sous un sous-groupe fermé F3 C F>, eton a

Im(my (Y; ) = 71(Xp)) = w1 (Xp) NI (Ya) — 7y(X)) = Im(pz,) - A

Alors Y3 — X est G-compatible. Par le lemme 6.2(3), aprés avoir remplacé Y3 par son tordu, on peut
supposer que Y3(Ay) Gt Bre £ o,

S’il existe un o € H'(k, F) et une composante connexe Y3’ du F,-torseur Y, X x Y3 — Y3 tels que Y3’
soit géométriquement intégre, alors I’image de Y; par le morphisme fini étale Y, xx Y3 — Y, est une
composante connexe Y’ de Y, telle que Y’ soit géométriquement intégre. Donc on peut remplacer X par
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Y3 et, apres avoir remplacé X par Y3, on peut supposer que Ay - Im(p7,) = 1 (X}). Puisque az(Ap) =0,
on a Im(ag) = Im(aj o o). O

Dans ce cas, puisque 71(G) est commutatif, Im(aj) est commutatif. D aprés le corollaire 3.5, o
induit un homomorphisme 7y (X ,;)ab — F(k) de noyau ['x-invariant, car « est défini sur k. D apres le
corollaire 2.4, il existe un k-groupe fini commutatif S et un S-torseur 7 — X tels que 7 soit géomé-
triquement integre, S k) = Im(o) et que, dans

H'(Xz, ) = Homeon (771 (X)), Im(ag)),

on ait [T;] = af.

Soit (Hy Yr, G) le groupe minimal compatible au F-torseur Y. D’apres la remarque 3.10, (Hy Y, G)
est aussi le groupe minimal compatible au S-torseur 7. D’apres le corollaire 3.11, Ker(iy) = S. Donc Y4 :=
T xxY estune Hy-variété et Y4 — X estun (S x F)-torseur Hy-compatible. Donc Ys5:=Ys/Ker(yry) > X
est un F-torseur G-compatible et on a un F-morphisme fini étale ¢s : Ys — Y /Ker(¥y). Par hypothése,
il existe un o € H'(k, F) tel que Y5 ,(A;)B¢50) £ & D’apres le lemme 5.2, il existe une composante
connexe Y; de Y5 , telle que Y7 soit géométriquement intégre. Ainsi ¢5(Y3) est une composante connexe
de (Y/Ker(¥y)),, qui est géométriquement integre. Puisque Hy est connexe, les composantes connexes
géométriques de (Y /Ker(vy)), et de Y, sont les mémes, d’ou le résultat. U

Lemme 6.5. X (Ap)%Bro — X (A;)0Bra,

Démonstration. 11 suffit de montrer que, pour tout x € X (Az) %< Bra _tout k-groupe fini F et tout F'-torseur
Y L X, ilexiste un o € H'(k, F), un y € Y, (AP ¥ tels que f,(y) = x, ott (Hy 2> G) est le
groupe minimal compatible au F-torseur Y.

Onfixedetels x, F, Y, f.

D’apres la proposition 6.3, on peut supposer que Y est géométriquement integre.

D’apres le corollaire 3.11, il existe un plongement ¢ : Ker(yy) — F d’image centrale compatible avec
les actions de Ker(yy) et de F sur Y. Ceci induit une suite exacte de k-groupes finis

| = Ker(yy) > F 25 Fy 1

qui définit F;. Alors Y| :=Y /Ker(yy) S, X estun F 1-torseur G-compatible sur X. De plus, Y| est lisse
et géométriquement integre.

Par hypothese, il existe un o € H'(k, F))etun y; € Yl (Ap)BreMion) tels que f1.,(y1) =x. D’apres
le corollaire 5.8, il existe un o9 € H!(k, F) tel que ¢1 «x(0p) = o1. Comme I’'image de ¢ est centrale
dans F, on a Ker(Yry)q, = Ker(¢ry).

L’argument ci-dessus donne un Ker(yry)-torseur Y,, — Y1, compatible avec I’action de Hy. D apres
la proposition 5.1, il existe un o, € H' (k, Ker(y/y)) etun y € Y, (Ap)Brr ¥o) avec o :=0p+02€ H' (k, F)
tels que f,(y) = x. U

Lemme 6.6. X (AP = X (A,)% Bro,
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Démonstration. On peut supposer que X (A;)® B¢ £ . 11 suffit de montrer que, pour tout k-groupe fini
F et tout F-torseur f:Y — X,ona

X@ap*Poc | S (A0P).
oeH! (k,F)
D’apres la proposition 6.3, on peut supposer que Y est géométriquement integre. L’énoncé découle de la
proposition 6.1 et du lemme 6.2 (1). ]

Démonstration du théoreme 1.4. D’apres le lemme 5.2 et (5-5), on peut supposer que X est géomé-
triquement intégre. On obtient le théoréme par combinaison du lemme 6.6 et du lemme 6.5. O

Remarque 6.7. Rappelons les catégories AB et GX dans paragraphe 4. On fixe un objet (G, X) € GX.
Soit GXx I’ensemble des objets (H, Y) € GX tels qu’il existe un morphisme (¢, f):(H, Y) — (G, X)
dans GX avec v, f finis.
Dans toute cette section (paragraphe 6), pour établir le théoreme 1.4 de (G, X), I’hypothése que
G est linéaire et la notion de sous-groupe de Brauer invariant sont utilisés seulement pour appliquer
la proposition 3.12, la proposition 5.1, le corollaire 4.2, le lemme 5.2 et le corollaire 5.8 a 1’élément
dans GXx. Donc, cette section a essentiellement montreé :

pour tout foncteur contravariant B(—, —) : GX — AB qui associe au couple (H,Y) un
sous-groupe B(H,Y) C Br(Y), si I’on peut établir la proposition 3.12, la proposition 5.1,
le corollaire 4.2, le lemme 5.2 et le corollaire 5.8 pour tout élément dans GXx (en remplacant
tout groupe de Brauer invariant par le B(—, —) correspondant), alors on a X (Ak)ét* Br —
X (A BG2) ot X (Ap) ¢ BG.—) est défini de la méme facon que X (Ay) @<t Bro,

7. Démonstration des théoremes 1.1 et 1.2

Dans toute cette section, k est un corps de nombres. Sauf mention explicite du contraire, une variété
est une k-variété.

Démonstration du théoreme 1.1. D’apres le lemme 5.2 et (5-5), on peut supposer que Z est géomé-
triquement inteégre. Si G est connexe, I’énoncé découle du théoreme 1.4 et de la proposition 5.5. Si G
est fini, d’apres la proposition 6.3, on peut supposer que X est géométriquement integre, et le résultat
découle du lemme 6.2(2).
Pour établir le cas général, on reprend certains arguments de [Demarche 2009b; Cao et al. 2019a]. 1l
existe une suite exacte
1-N—->G i F—1

de k-groupes linéaires avec N un k-groupe linéaire connexe et F' un k-groupe fini. Alors
h:U:=X/N—>Z

estun F-torseur. Notons ¢ : X — U. Pourun z € Z(A;)® B ilexiste un o € H' (k, F) etunu € Uy (Ay)S B
tels que h, (1) = z. D’apres la proposition 5.7(1), il existe un ¢ € H'(k, G) tel que V¥, (ap) = 0. Ceci
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induit une suite exacte

Ve
1> N % Gy =% Fy — 1

de k-groupes linéaires. Alors N /2 = Ny et N’ est un k-groupe linéaire connexe. Ainsi g, : Xo, = Uy est
un N'-torseur. Donc il existe un 8 € H'(k, N') etun x € (Xao)ﬂ(Ak)ét' Br tels que (Gay) p(x) = u. Soit
a = og+ ¢ (B). Alors (Xo)p = Xy €t py = hy 0 (go,)p. Donc x € Xa(Ak)é" Bret po(x) =z, d’oule
résultat. ]

Démonstration du théoréeme 1.2. Ceci découle du théoreme 1.1 et de [Cao et al. 2019a, Theorem 1.5]. O

Démonstration du corollaire 1.5. Pour tout k-groupe fini F et tout F-torseur G-compatible f : ¥ — X,
d’apres le corollaire 3.5(4), il existe un F-torseur M sur k tel que ¥ = M x; X comme F-torseurs. Alors
il existe un og € H'(k, F) tel que Y,, = F x X. Donc

X(Ak)BrG(X) C fO’O(YO‘()(Ak)BrG(YGO)) C U fg(Yg(Ak)BrG(YU)).
oeH (k,F)

Ainsi X (A;)0tB6 = x (A;)Bre(X) et le résultat découle du théoreme 1.4. O
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Most words are geometrically almost uniform

Michael Jeffrey Larsen

If wis aword in d > 1 letters and G is a finite group, evaluation of w on a uniformly randomly chosen
d-tuple in G gives a random variable with values in G, which may or may not be uniform. It is known
that if G ranges over finite simple groups of given root system and characteristic, a positive proportion of
words w give a distribution which approaches uniformity in the limit as |G| — oo. In this paper, we show
that the proportion is in fact 1.

1. Introduction

A word for the purposes of this paper is an element of the free group F,;. For any finite group G, the
word w defines a word map wg : G¢ — G by substitution; we denote it w when G is understood. If Ug
defines the uniform measure on G, we can measure the failure of random values of w to be uniform by
comparing the pushforward w,Uga to the uniform distribution Ug. We say w is almost uniform for an
infinite family of finite groups G if

lim [[w,Ugs —Ugll =0,
|G|—>o00

where || - || denotes the L' norm, and G ranges over the groups of the family. We are particularly interested
in the family of finite simple groups.

When w is of the form wg for some k > 2, then w is said to be a power word. It is easy to see that
power words are not almost uniform for finite simple groups; for instance, in large symmetric groups,
most elements are not k-th powers at all [Pouyanne 2002]. There has been speculation as to whether all
nonpower words are almost uniform for finite simple groups (see, e.g., [Shalev 2013, Problem 4.7; Larsen
2014, Question 3.1]). Since power words are exponentially thin [Lubotzky and Meiri 2012], one could
ask an easier question: is the set of words which are not almost uniform for finite simple groups thin?
Or, easier still, does it have density 07 Some words are known to be almost uniform for finite simple
groups: primitive words, which are exactly uniform for all groups; the commutator word xjx2x;” 1x2_ !
by [Garion and Shalev 2009], words of the form x{"x7 by [Larsen and Shalev 2016], and, recently, all
words of Waring type, i.e., words which can be written as a product of two nontrivial words involving
disjoint variables [Larsen et al. 2019, Theorem 1]. The defining relation of the surface group of genus g
is therefore covered for all g > 1, and, more generally, various words in which some variables appear
The author was partially supported by NSF grant DMS-1702152.
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exactly twice can also be treated by combining the idea of Parzanchevski and Schul [2014] with the
method of Liebeck and Shalev [2005]. All of these words, of course, are in some sense rare and atypical.

From the point of view of algebraic geometry, the easiest families of finite simple groups to consider
are those of the form G (Fy)/Z(G(F4n)), where G is a simple, simply connected algebraic group over [,
and n ranges over the positive integers. We say that w is geometrically almost uniform for G if it is so for
this family of groups. In [Larsen et al. 2019, Theorem 2], it is proved that this property is equivalent to
an algebro-geometric condition on w, namely that the morphism of varieties wg : G¢ — G (which by a
theorem of Borel [1983] is dominant) has geometrically irreducible generic fiber. Using this criterion, it
is proved in [Larsen et al. 2019, Theorem 3] that for each d, there exists a set of words of density greater
than % which are almost uniform for G for all G/[F,. (Note that this does not imply that these words are
almost uniform for the family of all finite simple groups of Lie type.)

The main result of this paper is that for each G the set of words which are geometrically almost uniform
for G has density 1. More explicitly:

Theorem 1.1. Let d > 2, T, and G be fixed. Let (i1, ey), (i2, €2), ... be chosen independently and
uniformly from {1, ...,d} x {£1}. Let w = xiﬁ‘ - -x;’;l be a random word of length | defined in this way.
Then the probability that w is geometrically almost uniform for G goes to 1 as | — oo.

The idea of the proof is as follows. In [Larsen et al. 2019, Corollary 2.3], it is proved that if the image
w of w under the abelianization map F; — Z¢ is primitive, i.e., if y () = 1, where y denotes the g.c.d.
of its coordinates, then w is almost uniform for every G, the idea being that wg ) is then surjective
for all n, and this implies that wg does not factor through a nonbirational generically finite morphism
Xo— G.

Now, the image of a random walk on F,; under the abelianization map is a random walk on 74, 1f Xd.1
is the endpoint of a random walk of length [ on Z¢, then

limsup P[y(Xqg) =11 <1

[—o00

for all d, so this is not good enough to get a result which covers almost all words. A new idea is needed.
By a probabilistic analysis, we prove that for each d,

im liminf P[1 <y (Xy;) < M]=1.

1
M—o0 [—o0

Thus, it suffices to prove that for each d > 2 and k > 0, in the limit as / goes to infinity, the fraction
of w of length / with y (w) = k for which w is almost uniform in rank < r goes to 1. For any such w
and any group G, the image of w¢ contains all k-th powers in G. For k > 1, this no longer implies
geometric irreducibility of the generic fiber of wg, but it puts very strong constraints on which quasifinite
morphisms Xy — G it can factor through.

To see how to exploit such constraints, consider the following toy problem. Suppose a polynomial map
f: Al — Al is defined over [; for all n, f(F,») contains all squares in [, and for some ng, f(Fym)
contains a nonsquare. We claim this implies f is purely inseparable.
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Indeed, consider the curve C: y? = f(x). For C to fail to be geometrically irreducible would mean that
fx) = g(x)2 for some g(x) € ﬂ_:q [x]. Either g(x) € Fy[x] or f(x) = ah(x)? for some nonsquare a € [,
and some h(x) € F,[x]. In the first case, f(F,n) contains only squares in [, contrary to assumption.
In the second case, for all n > 1, f(F ) contains no nonzero square in [Fyn.

Thus, the conditions on the image of f imply that C is geometrically irreducible, so it has (14 o0(1))g”"
points over F,» by the Lang—Weil estimate. Consider the y-map, that is, the morphism of degree deg f
from C to the affine line given by the function y. By the Chebotarev density theorem for finite extensions
of [, (2), in the limit as n — 00, a fixed positive proportion of points in Al (Fgn) have preimage in C ([F4n)
consisting of deg, f points, where deg, denotes the separable degree of f. Since the y-map is surjective
on [4»-points, this implies that f is purely inseparable.

To apply this idea in the word map setting, one needs to find elements in w((_}([Fqn)d ) which play
the role of nonsquare elements in f(F,»). We do not need to find them for all w, just for almost all in
an asymptotic sense. An approach to achieving this is to fix a d-tuple g € Q([Fqn)d and estimate the
probability that w(g) is a “nonsquare” element. For large enough 7, one can view w(g) as uniformly
distributed in G(F,»). In order to get the probability of success to approach 1, it is necessary to use
not a single g but a sufficiently large number of independent choices gy, ..., gn. The existence of N
elements of (_?([Fqn)d which are independent in this sense (in the limit n — 00) depends on Q([Fqn)N being
d-generated. There is a substantial literature, going back to work of Philip Hall [1936], concerning the
size of minimal generating sets of GV, where G is a finite simple group. We use a recent result of Mar6ti
and Tamburini Bellani [2013].

2. Varieties over finite fields

Throughout this section, a variety will always mean a geometrically integral affine scheme of finite type
over a finite field. Let A C B be an inclusion of finitely generated [, -algebras such that X := Spec A and
Y := Spec B are normal varieties. Let ¢p: ¥ — X = Spec A correspond to the inclusion A C B. Let K
and L denote the fraction fields of A and B respectively. Let Ko denote the separable closure of K in L,
which is a finite extension of K since L is finitely generated. Let Ag denote the integral closure of A in
Ko, X the spectrum of Ag, and 1/: Xo — X the morphism corresponding to the inclusion A C Ag. As
B D A is integrally closed in L D K| it follows that B contains A, so ¢ factors through .

Proposition 2.1. For all positive integers n,
¢ (Y (Fyn)) C ¥ (Xo(Fyn)), @2-1)
and  |Y(Xo([Fg)| — (¥ (Fgn))| = 0(g" ™), (2-2)

Moreover  is an isomorphism if and only if ¢ has geometrically irreducible generic fiber; if not, there

exists € > 0 and a positive integer m such that

[ (Xo(Fgn))| < (1 —e)g"4mX (2-3)

if m divides n.



2188 Michael Jeffrey Larsen

Proof. As A C Ap C B, the morphism ¢ factors through ¥, implying (2-1).

By [EGA 1V, 1965, proposition 4.5.9], K = K if and only if the generic fiber of ¢ is geometrically
irreducible. By the same proposition, the generic fiber of ¥ — X is always geometrically irreducible.
By [EGA V3 1966, théoreme 9.7.7], there is a dense open subset of X over which the fibers of ¥ — Xy
are all geometrically irreducible. Let C denote the complement of this subset, endowed with its structure
of reduced closed subscheme of X.

It is well known that the Lang—Weil estimate is uniform in families. There does not seem to be
a canonical reference for this fact, but a proof is sketched, for instance in [Larsen and Shalev 2012,
Proposition 3.4; Tao 2012, Theorem 5]. From this, it follows that if # is sufficiently large, for every point
of Xo([F4») over which the morphism ¥ — X has geometrically irreducible fiber, there exists an [,»-point
in this fiber. In particular, every point in Xo(F,») \ C(F,») lies in the image of Y (F;n) — Xo(Fzn). By
the easy part of the Lang—Weil bound,

|Q(|]an)| — O(C]ndimg> < O(qn(diml(o—l)).

Thus, the complement of the image of Y (F;») — Xo(F,») has cardinality o(q”dimg ), which implies (2-2).

If ¢ is not geometrically irreducible, then [Kg : K] > 1. Let K| denote the Galois closure of Ko/ K
in a fixed separable closure K. We choose m so that [F,m contains the algebraic closure of [, in K. If
we are content to limit consideration to [,«-points of X and X, where m divides n, we may replace X
and X by the varieties Xr , and (Xo)r,. respectively, obtained by base change. This has the effect of
replacing K, Ko, and K| by KF,n, KolFym, and KF,» = K respectively. Replacing g by ¢™, we may
now assume that [, is algebraically closed in K.

Now, Gal(K/K) acts faithfully on Ay as [,-algebra. As A is integrally closed in K and A is the
integral closure of A in Ky, it follows that

Ac AT c ANk = A,

s0A= A?al(K‘/ B likewise, Ag = A?al(Kl/ Ko} Geometrically, this means that X and X are the quotients
of X1 :=Spec A; by Gal(K;/K) and Gal(K/Kj) respectively. We denote these quotient maps 7 and
7o respectively. Thus we have the diagram

I

TT

=)
<—

I
(=]
=

<
—

I

As the action of Gal(K|/K) on X is faithful and X is irreducible, there is a dense affine open
subvariety of X; on which Gal(K;/K) acts freely. Replacing X; by this subvariety and X and X
by quotients of this subvariety by Gal(K;/K) and Gal(K;/K,) respectively affects o(g"™%) of the
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[F,»-points of X, Xo, and X, so without loss of generality, we may assume that Gal(K/K) acts freely
on Xi. Now
VU (Xo(Fgn)) =¥ (Xo(Fgr) \ mo(X1(Fgn))) Um (X1(Fgn)). (2-4)

By Lang—Weil, | X (Fyn)| = (1 +o(1))g"dimX g0

|7T0(X1(|]:q”)))| = ([K;: Ko]_l +0(1))qndimX’
|7 (X1 (Fgn )| = ([Ky : K]_1 +0(1))qndimg(.
By (2-4),
¥ (Xo(Fy))| < (1 — Ky : Kol ' + K1 : K171 +0(1))g" 9™,

which implies (2-3). U

Lemma 2.2. Let G be a finite group acting transitively on a set S with more than one element and H a
normal subgroup of G such that every element of H has at least one fixed point in S. Then forall s € S,
H Stabg (s) is a proper subgroup of G.

Proof. By a classical theorem of Jordan, every nontrivial transitive permutation group contains a derange-
ment, so H must act intransitively. Thus, the orbit of H Stabg(s) containing s is a proper subset of S,
which implies the lemma. O

Lemma 2.3. Let K be a field, K a separable closure of K, and K| and K> finite extensions of K in K.
Suppose K is Galois over K and K, # K. If K1 N Ky = K, then there exists an element of Gal(K /K1)
which does not stabilize any K-embedding of K> in K.

Proof. Let K3 be the Galois closure of K5 in K and define G := Gal(K;K3/K). Thus G acts transitively
on the set S of K-embeddings of K, in K.LetH= Gal(K|K3/K{), which is normal in G since K| /K is
Galois. If every element of Gal(K /K1) fixes at least one element of S, then by Lemma 2.2, H Stabg(s)
is a proper subgroup of G, where s denotes the identity embedding of K, in K. If L is the fixed field
of K1 K3 under H Stabg (s), then L is a nontrivial extension of K contained in both (K;K3)" = K| and
(K1K3)Stabc(s) =K. O

Proposition 2.4. Let X be a variety over T, with coordinate ring A with function field K. Let K C
Ko, K» C K, and let K, (resp. K3) denote the Galois closure of K (resp. K») in K. Let Ajfor0<i <3
denote the integral closure of A in K;, and let X; := Spec A;. If K| and K, satisfy the hypotheses of
Lemma 2.3, then there exists € > 0 so that for all sufficiently large integers n, there are at least eq" ™%X

elements of X (Fyn) which lie in the image of X;(Fyn) — X (F;») for i =0 but not fori =2.

Proof. Let K13 = K1 K3, A3 denote the integral closure of A in K3, and X3 denote Spec Ay3. Let
G := Gal(K3/K). The action of G on X3 is faithful, and X3 is irreducible, so there exists a dense
open affine subvariety U3 C X3 on which G acts freely. Replacing X3, together with its quotients
by subgroups of G, by U3 and its corresponding quotients affects only o(g" 4m¥) [F4»-points of these
quotients, and therefore does not affect the statement of the proposition. We may therefore assume that we
are in the setting of [Serre 1965, Theorem 6] and can apply the Chebotarev density theorem for varieties.
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By Lemma 2.3, there exists g € G such that g acts trivially on K; but acts without fixed points on the set
of K-embeddings K» — K or, equivalently, on the geometric points lying over any given geometric point
of X for the covering map X, — X. This implies that if x € X(F;») and g belongs to the ¢"-Frobenius
conjugacy class of x, then there is no ¢"-Frobenius stable point lying over x on X, — X, i.e., x does not
lie in the image of X,(Fyn) — X(F;»). On the other hand, every geometric point of X lying over x is
stable by the ¢"-Frobenius, so x lies in the image of Xo(F4») — X (F;»). By Chebotarev density [Serre
1965, Theorem 7], the proposition follows for every € < |G|~!. (I

The main technical result of this section is the following.

Proposition 2.5. Let ¢: Y — X be a dominant morphism of normal varieties over . Then there exists
a positive integer m and for every positive integer n, there exist subsets X, ; C X (Fgn), 1 <i <m, with
the following properties.
X .
(1) Foreachi from 1 to m, we have lim infM >
no | X (Fgn)l
(2) If0: Z — X is any dominant morphism of normal varieties over [, such that
@) foralln > 1,0(Z(Fgn)) > ¢ (Fgn), and
(b) there exists an integer ng > 1 such that 0(Z(F4n0)) N X,,,,; is nonempty for eachi =1, ...,m,

then the generic fiber of 0 is geometrically irreducible.

Proof. Let A, B, C denote the coordinate rings of X, Y, and Z respectively. Let K, L, and M be the fields
of fractions of A, B, and C respectively. We regard B and C as A-algebras via ¢ and 6 respectively, so L
and M are extensions of K. Let K and K, denote the separable closures of K in L and M respectively.
As B and C are finitely generated [, -algebras, L and M are finitely generated K-extensions, and Ky
and K are finite separable extensions of K. The claimed generic irreducibility of the generic fiber of 6
amounts to the equality K = K;. We define K, Ky, K3, and K3 as in Proposition 2.4.

Let F, ..., F, denote all subfields of K| over K, excluding K itself. Thus, we have the following
diagram of fields:

L 1‘? M

K, K3 (2-5)
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For 0 <i <3, let A; denote the integral closure of A in K; and X; = Spec A;; likewise for A3 and
X13. For 1 <i <m, let D; denote the integral closure of A in the field F;, and let W; := Spec D;. By
(2-5), we have the following diagram of varieties:

Y Z
X3
7N
Xi X3
| |
W, - W Xo Xo
\\\ ///
X

Let X,,; denote the complement of the image of W;([F,) in X(F;»). By (2-3) and the Lang—Weil

estimate, for 1 <i <m,

|Xnil = €™ > 51X (Fy) (2-6)

if n is sufficiently large, which implies property (1).
Moreover, if 0 : Z — X is a dominant morphism satisfying condition (a), then foralln > 1, 6(Z(F;»)) D
¢ (Y (F4n)), implying that

[im(X 1 (Fg) > X (Fg)) \im(X(Fgn) = X (Fgn))|
< [im(Xo(Fgn) = X (Fgn) \im(X2(Fyr) > X (Fg)))|
= [im(¥ (Fyn) = X (Fyn) \im(Z(Fyn) = X (Fg))| +0(g" ™)
= ¢ (Fy) \ O(Z(Fyn))| +0(g" M%)

— O(qndimg).

If K; # K, Proposition 2.4 implies that K; N K, must be a nontrivial extension of K, so F; C K, for
some i € [1, m]. Thus, for ng as in (b),

O(Z([Fgm0)) Cim(X2(Fgno) = X(Fgno)) Cim(Wi(Fgno) — X (Fgno)),

contrary to the assumption that 6(Z(F;m)) N X, ; is nonempty for each i. We conclude that K> = K,

and the proposition follows. U
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3. Random walks

This section does not claim any original results. Its goal is to present well known ideas in probability
theory in the form needed for the proof of Theorem 1.1.

For any positive integer d and nonnegative integer /, we define X, ; to be the convolution of / i.i.d.
random variables on Z¢, each uniformly distributed over the 2d-element set {*eq, ..., *e;}, where
e, ..., eq are the standard generators of Z¢. When d = 2, we write X; for short.

The main result in this section is the following.

Proposition 3.1. For all d > 2 and € > 0, there exist M and N such that for | > N,

P|:Xd’l (S U iZdj| < €.

i>M
We begin with a general result.

Lemma 3.2. Let G be a finite group and S a (not necessarily symmetric) set of generators. Let S1, S, . ..
be i.i.d. random variables on G with support S. Let Gy =Sy - - - S;. Suppose that there does not exist a
homomorphism from G to any nontrivial cyclic group C mapping S to a single element. Then the limit as
| — o0 of the distribution of G, is the uniform distribution on G.

Proof. Consider the Markov chain with state space G in which the probability of a transition from g
to hg is P[S; = h]. Since the uniform distribution is stationary, it suffices to check that this Markov
chain is irreducible and periodic [Levin et al. 2009, Theorem 4.9]. Irreducibility is immediate from the
condition that S generates G. If the Markov chain is periodic, then for some proper subset X C G and
some integer j, s1---5; € Stabg(X) for all s; € S. Let G; denote the subgroup of G generated by

{s1---sjls1,...,5; €S}

As G; C Stabg(X) C G, G; is a proper subgroup of G.

Consider the subgroup Gof GxZ /jZ generated by {(s, 1) | s € S}. By definition, the kernel of
projection on the second factor is G;. By Goursat’s Lemma, G is the pullback to G x Z/jZ of the graph
of an isomorphism between G/G; and a quotient of Z/jZ. This identifies G/G; with a nontrivial cyclic
group C, and all elements of S map to the same generator of C, contrary to hypothesis. U

The remaining results in this section are needed for the proof of Proposition 3.1.

Lemma 3.3. Let p > 2 be prime, k a positive integer, and € > 0. For [ sufficiently large,

1+e€

P[X; € p*7*] < o

Proof. The image under (mod p*) reduction of our random walk on Z? is a random walk on G = (Z/ p*7)?
with generating set S = {%1, 0), (0, £1)}. As differences between elements of S generate G, there is no
proper coset of G which contains S. By Lemma 3.2, X; becomes uniformly distributed (mod p*) in the
limit [ — oo, which implies the lemma. ]
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Lemma 3.4. Let k be a positive integer, and € > 0. For [ sufficiently large,

2+4¢€

P[X; € 2¥7%) < .

Proof. If [ is odd, the probability that X; € 272 is zero. We therefore assume [ = 2ly, so X; is the sum of
lp 1.i.d. random variables supported on

{(£2, 0), (0, £2), (£1, £1), (0, 0)}.

Reducing (mod 2¥), we obtain an irreducible aperiodic random walk on ker(Z/2K7)* — 7 /27, and the
argument proceeds as before by Lemma 3.2. [l

Proposition 3.5. For all € > 0, there exist M and N such that for[ > N,
P|:X1 € U iZ2:| <e€.
i>M

Proof. By [Larsen et al. 2019, Proposition 3.2], if p > 2 is prime,

4
2
P[X; € pZ7\{(0,0)}] < m

ZL<£
(p+D2 2

p>s

We choose s > 2 large enough that

and choose k such that 3s /4% < €/2, so that if [ is sufficiently large, the total probability that X; € p¥Z? for
some p < s is less than € /2. Note that this includes the probability that X; = (0, 0). Let M be larger than
sT] p<s p*. If i > M, then either i has a prime factor greater than s or a prime factor < s with multiplicity
at least k. The probability that there exists i > M such that G € iZ? is therefore less than €. (I

Proof of Proposition 3.1. The projection of a random walk on Z¢ onto the first two coordinates gives a
random walk on Z2 where each of the four possible nonzero steps are equally likely, but a zero step is
also possible in the projection if d > 2. Since the projection of an element of iZ¢ is an element of i 7,
the conditional probability that X;; € |, i 74 if we condition on at least [y steps which are nonzero
in the projection is less than €/2 if [ is large enough. Given [y the probability that there are less than
lp steps nonzero in the projection goes to 0 as / goes to infinity, so it can be taken to be less than €/2,
implying that P[Xs; € ;- iZ7] <e. O

4. Proof of Theorem 1.1
We now prove the main theorem.

Proof. Fix a simple, simply connected algebraic group G over a finite field I,. We apply Proposition 2.5
inthecase X =G, Y =G, Z = G%, ¢ is the k-th power map for some positive integer k, and 6 is the
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evaluation map w for some w € Fy for which w = (ay, ..., ay) and y(ay, ..., aq) = k. Given w, there
exist integers by, ..., by for which k = a1by + - - - + azb,, so that
weE (8" ..., g") =g

for all n and all g € G(Fyn), s0 ¢(G(Fyn)) CO(G(Fyn)) foralln > 1.

By the main theorem of [Mar6ti and Tamburini Bellani 2013], for every finite simple group I,
there exists a 2-element generating set of I'V whenever N < 2./[T"|. Let no be any positive integer.
Defining Ny := ¢"™ and applying this to I := G(F4n)/Z(G(F4m)), we see that TN is d-generated. As
G = (_}([Fqno)NO is a perfect central extension of I'0, lifting any set of d generators of the latter to the
former, we again obtain a generating set.

We denote by

S={(git, ..., giny) | 1 <i <d}

a generating set of G and consider an /-step random walk on this group with generating set S. By
Lemma 3.2, for all § > 0, if [ sufficiently large, the probability that the walk ends in any subset 7 C G is
at least

(1 =38/2)IT/IG].
We define T :=ToU---UT|ny/m|—1, Where

T, .= (_;([Fq,,o)im X Xno,l X o+ X Xno,m X Q(ﬂ:an)No—(i—H)m’

and X, ; are defined as in Proposition 2.5.
To estimate the probability that a uniformly randomly chosen element of G lies in 7', we note that
membership in the 7; are independent conditions. The probability of membership in each 7; is
ﬁ Xujl "
1G0T 2
by (2-6). Therefore, the probability of membership in 7" for a uniformly chosen element of G is at least
1—(1— Em/2M)LNo/mJ'

Taking n¢ (and therefore Ny) sufficiently large, we can guarantee this exceeds 1—34/2. Thus, the probability
that the random walk ends in T is greater than 1 —§.

For 1 < j < Ny, let g; =(g1,...,8a4j).- We have seen that for a random word w of length n, the
probability that (w(g1), ..., w(gn,)) € T is greater than 1 —§. Membership in 7 implies membership in
some 7;, which implies

W(gim+1) € Xng 15+« s W(gim+m) € Xng.m>
and therefore, by Proposition 2.5, if y (w) = k, then w is geometrically almost uniform for G.

Thus, for each k, the probability is < § that a random word w of length [ satisfies y (w) = k and that w
is not geometrically almost uniform. By Proposition 3.1, for each fixed € > 0, there exists M such that if
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[ is large enough, then the probability that y (w) is zero or greater than M for a word of length [ is less
than €. Therefore, the probability that w is not geometrically almost uniform for G is less than € + M.
Choosing first € and then 8, we can make this quantity as small as we wish, proving the theorem. U

We remark that the proof also shows that almost all words w are almost uniform for the family of
groups {G(Fy») | n > 1}. The proof, together with that of [Larsen et al. 2019, Theorem 2], implies that
w is almost always uniform for all finite simple groups with fixed root system and characteristic. For
instance, almost all w are almost uniform for the Suzuki and Ree groups.

5. Questions

Question 5.1. If G is a simple, simply connected group scheme over Z, does the probability that a random
word is almost uniform for all simple groups of the form G(F,)/Z(G(F,)) go to 1?

It seems likely that the methods of this paper will allow one to prove this for all characteristics satisfying
some Chebotarev-type condition, but can one do it for all characteristics simultaneously, or even a density
one set of characteristics? Even more optimistically, one can ask:

Question 5.2. Does the probability that a random word is geometrically almost uniform for all simple,
simply connected algebraic groups over finite fields go to 1?

Given an e-tuple of words wy, ..., w, € Fy, for each G we can define a function G? — G¢, and we
can ask about almost uniformity. In geometric families, this reduces again to the question of the geometric
irreducibility of the generic fiber of the morphism G¢ — G for simple, simply connected algebraic
groups over finite fields. In the case that

74/ Span, (W, ..., W) = 797¢,
the function (_;([Fqn)d — G([F,n)¢ is surjective. Geometric irreducibility for such words follows as before.

Question 5.3. For e < d, does the probability that a random e-tuple of elements of F; of length n is
geometrically almost uniform go to 1 as n — 00?

Question 5.2 has an analogue for simple, simply connected compact Lie groups. As a special case, one
can ask:

Question 5.4. Does the probability that for a random word w of length n

Jim 2.~ Usin | =0

gotolasn— 0o?
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On a conjecture of Yui and Zagier

Yingkun Li and Tonghai Yang

We prove the conjecture of Yui and Zagier concerning the factorization of the resultants of minimal
polynomials of Weber class invariants. The novelty of our approach is to systematically express differences
of certain Weber functions as products of Borcherds products.

1. Introduction

In his book, Weber [1908] proved the following well-known theorem in the theory of complex multiplica-
tion. For a fundamental discriminant d < 0, let O, = Z[6] be the ring of integers of an imaginary quadratic
field K; = Q(v/d). Then the CM value of the famous j-invariant j(t) at T =6 is an algebraic integer
generating the Hilbert class field of K;. The number j (0) is called singular moduli and plays an important
role in the arithmetic of CM elliptic curves [Gross and Zagier 1985]. Weber also considered some special
modular functions £ of higher levels and observed that some of their CM values /(0) still generate the
Hilbert class field of K, (for some choices of ), not the larger class fields as expected for general A.
These amusing observations were later studied by various authors; see, for example, [Birch 1969; Yui
and Zagier 1997; Gee 1999]. In particular, Gee gave a systematic proof of these facts using Shimura’s
reciprocity law. One of them concerns with the CM values of the three classical Weber functions of

level 48, which are defined by the following quotients of n-functions:

o) o= 12D g4 ﬁ(l +q"72)
BRRTCY 1 ’
fi(z) == 177723 =¢ w5 [Ja-q"), (1-1)
n=1

2 L
fa0) =28 = gk a1+,
n=1

Together, they form a 3-dimensional, vector-valued modular function for SL;(Z); see (2-4). In fact, the
same holds for integral powers of these modular functions; see [Milas 2007, p. 50]. Furthermore, f, is a

modular function for I'g(2) with character y of order 24:

f20r7t) = x(Wf2(r), v €To(2). (1-2)

Li is supported by the LOEWE research unit USAG. Yang is partially supported by NSF grant DMS-1762289.
MSC2010: primary 11G18; secondary 11F03, 11F27.
Keywords: modular form, Borcherds product, Weber invariants.
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The kernel of x, denoted by I, C I'9(2), is a congruence subgroup containing I"(48); see (2-8). Yui and
Zagier [1997] studied the CM values of these modular functions. The starting point of their work is the
following result.

Proposition 1.1 [Yui and Zagier 1997, Proposition]. Let d < 0 be a discriminant satisfying
d=1mod8 and 31d. (1-3)
Denote ¢4 := (—1)“4=D/8 For each proper ideal a = [a, %(—b + \/c_i)] of the order O := Z[%(l + \/3)]
witha > 0, let T, = ﬁ(—b + \/3) be the associated CM point and
—c—ac? .
Ln TN if2(@. o),
f@ = eag2 07z if2la, 24, (1-4)

_ 2 .
calp’ T Ma(wa) if21a,2lc.

Then f(a) is an algebraic integer depending only on the class of a in the class group Cl(d) of Oy, i.e., it is
a class invariant. Moreover, H; == K4(f(a)) = K4(j (1)) is the ring class field of K4 corresponding O,.

Remark 1.2. The class invariant in [Yui and Zagier 1997] was defined using binary quadratic forms. It
is a standard procedure to go between these and ideals in quadratic fields; see, e.g., [Cox 1989].

Remark 1.3. The sign ¢4 in the definition of f(a) ensures that the class invariants behave nicely under
the action of the Galois group. In particular when d < 0 is fundamental,

00, (f(a1) = faray ") (1-5)

for any proper O4-ideals a;, a, where o, € Gal(H;/K ) is associated to the ideal class [a] € Cl(d) by
Artin’s map. This was conjectured in [Yui and Zagier 1997] and proved in [Gee 1999, Proposition 22].

This class invariant is much better than the singular moduli in the sense that its minimal polynomial
(class polynomial) has much smaller coefficients. This gives a generator of the Hilbert class field with
small height, which is crucial in the speed of elliptic curve primality test [Atkin and Morain 1993]. For
example, according to [Yui and Zagier 1997], the minimal polynomial of j (1 (1 ++/=55)) is

x*+335329.134219x% — 375323 . 101 - 32987x2 +3°5711283 - 101 - 110641x — 3'25%11329%413,
while the minimal polynomial of f(O_ss) is simply
x* +x3 —2x — 1.

Yui and Zagier [1997] made conjectures about the prime factorizations of the discriminants and resultants
of such polynomials. The goal of this paper is to prove the conjecture about the factorizations of the
resultants, which also clears the path to prove the conjecture about the discriminant; see Remark 1.13.
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For two co-prime, fundamental discriminants d; and d», Gross and Zagier [1985] proved a beautiful
factorization formula for the resultant of the class polynomials of j (%(dl +Jd )) and j (%(dz + \/d_z)),
which is the norm of the difference j(3(di +v/dD)) — j(5(d2 + /d2)). When (442) 2 —1, set

<ﬂ) if ptd,
p

(%) if ptds.

e(p)o4 ™ where ord p(n) is the power of p dividing n. For a positive

€(p) =

Define in general €(n) =[]

pln
integer m, if e(m) = —1, define
Fmy= [] n“eN, (1-6)
nn'=m
n,n'>0

which is always a prime power. If e(m) =1 or is not defined, define §(m) = 1. The result of Gross and
Zagier can be stated as follows.

Theorem 1.4 [Gross and Zagier 1985, Theorem 1.3]. Let d, d» < 0 be co-prime, fundamental discrimi-
nants, and w; = |(9;j |. In the notations above, we have

Jdid) =[] @) =@ =[] §m. (1-7)
[a;1€Cl(d;), j=1,2 meN,aeZ
a*+4m=d,d,

Inspired by this beautiful formula, Yui and Zagier [1997] gave a conjectural formula of the resultant of
the minimal polynomials of the Weber class invariants defined above and provided numerical evidence.
This conjecture was originally given using two tables with totally 48 entries (see [Yui and Zagier 1997,
p- 1653]), but can be simplified and formulated in the following elegant way (see, e.g., (149) in [Yui and
Zagier 1997] for d| = d» = 1 mod 24).

Conjecture 1.5 [Yui and Zagier 1997, (14+)]. Let dy, dy be co-prime, fundamental discriminants satisfy-
ing (1-3) and s | 24. Define the constant

1 l‘f(ﬁ):<@>:—land3|s,

Kk3(s) =1 2 3 3 (1-8)
1 otherwise,
which only depends on dy, d» and s. Then
fd,dy:= T[]  1f@)™ = f@)*|= I1 F(m)s . (1-9)

[a;]eCl(d}), j=1,2 m,aeN,r|s
a*+16mri=d\d»
m=19(d+d>»—1) mod s/r

Remark 1.6. Because of the relation j(t) = (f5*(r) — 16)*/f5*(t), we know that f(d;, d2) | J(dy, d2)
for any co-prime, fundamental discriminants d;, d, satisfying (1-3). Since the invariants are algebraic
integers, it is also clear that fy (dy, d2) | fs(d1, d>) for any s | s’ | 24. The conjecture above also reflects
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such divisibilities since F(m/r?) | §(m) for all m, r € N; see, e.g., the explicit formula of F(m) on [Yui
and Zagier 1997, p. 1651].

When s = 1, it was suggested in [ Yui and Zagier 1997] that one can try to prove this conjecture by
adapting the analytic approach in [Gross and Zagier 1985] with SL;(Z) replaced by I'g(2). This was later
carried out in [Roskam 2003]. Yang and Yin [2019] gave another analytic proof of the conjecture for
s = 1, where the new ingredients are Borcherds’ regularized theta lift [1998] and the big CM formula
in [Bruinier et al. 2012]. Although the spirits of the approaches are the same, the one in [Yang and Yin
2019] is conceptually easier to understand and opens the door to attack the conjecture for s > 1. In this

paper, we complete the proof of the conjecture for all s | 24.
Theorem 1.7. Conjecture 1.5 is true for every s | 24.
For s = 1, the proof of Theorem 1.7 in [ Yang and Yin 2019] consists of three steps:

(1) Relate f2(z1)** — §2(z2))?* to a Borcherds product on the Shimura variety associated to the rational
quadratic space (M(Q), det).!

(2) View a pair of CM points (71, 72) as a big CM point on this Shimura variety in the sense of [Bruinier
et al. 2012]. Apply the big CM value formula [Bruinier et al. 2012, Theorem 5.2] and express the
CM value in terms of Fourier coefficients of incoherent Eisenstein series.

(3) Compute the Fourier coefficients in Step (2) and obtain the formula. This is a local calculation.

In the first step for s = 1, one can find a vector-valued modular function F | and identify f, (21— 2 (z2)%*
with the Borcherds product W (z1, z2, fl) associated to Fl. Note fz(z)24 =212(A(22) /A(z)) is a Haupt-
modul of I'g(2), and the Borcherds product W(zy, z2, F 1) is well-known in the literature on VOA and
moonshine (see, e.g., [Borcherds 1992; Scheithauer 2008]). In the second step, one suitably identifies the
Galois orbit of CM points with the toric orbit of big CM points, and apply Theorem 5.2 in [Bruinier et al.
2012]. This reduces the proof to the third step, where the local calculations have been completed in many
special cases (see [ Yang 2005; Howard and Yang 2012, Section 4.6; Kudla and Yang 2010]) and the most
general result can be found in Appendix A of [Yang et al. 2019].

To execute this strategy for s > 1, we first need to relate f,(z1)%** — §2(z2)**/* to Borcherds product.

Since the function f,(z)%**

is invariant with respect to I',  :=(I",, T*) D I"(2s), one would hope to find
the analog of F | in M'(wy), with @, the Weil representation of SL,(Z) on the finite quadratic module
associated to the lattice L (see (3-1)), which is the same as the lattice used in [Yang and Yin 2019] to
produce W(zy, z2, F 1), but with the quadratic form scaled by s. We have computationally decomposed
the representation w, and analyzed the space of vector-valued modular functions. To our surprise, there is
no modular function whose Borcherds product equals to (f2 (z1)*/s — 2 (z2)**/%)*1 Our new idea then is

to express (f2(21)*"* —2(22)**/%)* as a product of Borcherds products, which works out beautifully.

IThe Shimura variety is just the product of two modular curves in this case.
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Theorem 1.8 (Theorems 4.4 and 4.5). For every d | 24, there is a vector-valued modular function
Fd € M'(wq) with associated Borcherds product Wq(z1, 20) := W (z1, 22, Fd) such that

(2™ = (ef222)**) = [ [ Watz1, 22" * (1-10)
d|s

for every s | 24 and any ¢ = £1.

Remark 1.9. The index r | s in the product on the right-hand side of (1-9) is not directly related to the
index d | s in the product above! Instead, it comes out of local calculation in Section 6.

Remark 1.10. Each Borcherds product W4(z;, z2) comes from a different quadratic space depending on d,
and is a meromorphic function on the Shimura variety X3, which admits a natural covering map from X2
when d | s (see Section 4). One can then pull back Wy to a function on Xf. Notice that this decomposes the
divisor of the left-hand side, which is a Heegner divisor on X2, into a sum of pullbacks of Heegner divisors
on X (21 with d | s. When s > 1, the product Hdl s Wa(z1, z2) is itself not a single Borcherds product on X2,

Remark 1.11. Theorem 1.8 naturally leads one to speculate a generalization of the converse theorem in
[Bruinier 2014], namely every principal Heegner divisor on an orthogonal Shimura variety associated to
a lattice of signature (n, 2) with Witt rank greater than or equal to 2 should be the divisor of a product of
Borcherds products.

To arrive at this idea, we took s = 2 and started from the simple observation that

f2(z1)!1? — fa(z2) 12
f2(z)1? +f2(22) 1%

We already know that the first factor on the right-hand side is a Borcherds product. If we can realize the

(F2z) " = 12(22)'%)? = (F2(z1)* — F2(z2)*) - (1-11)

second factor as a Borcherds product, then the left-hand side would be a product of Borcherds products
(with different quadratic forms). To do that, we can read off the divisor of the second factor, and deduce

—1/2y4, for a suitable

the principal part of the input to Borcherds’ lift. In this case, it is of the form ¢
vector 11 in a 64 dimensional vector space C[.A;], where SL,(Z) acts via the Weil representation w,
(see Section 3A for details). Then we find the irreducible representation in w, containing i, which is
3-dimensional, and hope to find the suitable vector-valued modular function F, with this principal part.

Miraculously, this function exists and its three components are the (—24/2)-th power of the three Weber

; [ I
functions AR
The observation (1-11) generalizes to any s | 24 by substituting X = (ef2(22)/§2(z1))?*/* into the

following simple identity in Q(X)
(1=x7 =] Ja-xmrwam, (1-12)
ds bld

where y is the Mébius function, and multiplying by f2(z1)** on both sides. Note that the identity in (1-12)
holds for any s € N (see Lemma 4.3). Then the miracle continues to happen, and we find a family of
vectors {ug : d |24} (see (3-12)) and vector-valued modular functions fd =g Vyug+0(q"?D) producing



2202 Yingkun Li and Tonghai Yang

the Borcherds lifts Wy (see (2-4) and Remark 3.7). For d > 1, the vector 14 satisfies nice invariance
properties (see Proposition 3.5) and is of independent interest, whereas the components of Fy are simply

_ : ions = JL T2
the (—24/d)-th power of the three Weber functions 7 ﬁ ﬁ!

Remark 1.12. The ¢ ==+1 in Theorem 1.8 is there for a good reason. To prove the Yui—Zagier conjecture,
we need to choose ¢ = g4,&4, = (—1)d+2=2)/8 (gee Proposition 5.5 and its proof). It is also amusing to
see that the same ¢ appears when we calculate the Fourier coefficients of derivatives of certain Eisenstein
series (see Theorem 6.2).

To complete the proof, we can now apply the second step to each Borcherds product, obtain a big CM
value formula, and add them together. Note that the identification of the Galois orbit of (g, , 74,) used in
defining f;(d;, d») with the big CM cycle in [Bruinier et al. 2012] depends on the input Fd in Step (1).
Therefore, it is not a priori clear that this will work out. We prove this in Proposition 5.5, which crucially
depends on Lemma 5.2. This unexpected result was first observed with some computer calculations, and
has been reduced to a computation with finite groups in GL,(Z/37) and GL,(Z/16Z). Finally, we apply
the local calculations in [Yang et al. 2019] to finish off Step (3).

Remark 1.13. With Theorem 1.8, one can now replace the big CM value formula in [Bruinier et al.
2012] with the small CM value formula in [Schofer 2009] to prove the conjectural factorization of the
discriminant of the minimal polynomials of the Weber invariants in [Yui and Zagier 1997]. We plan to
carry these out as a sequel to this work [Li and Yang > 2021].

This paper is organized as follows. After setting up notation and defining basic terms in Section 2,
we study in Section 3 the action of certain subgroup Hj C SO(L4)/ 'z, on the finite quadratic module
Aq = Lg /L4 and use it to decompose the Weil representation wq of SLy(Z) on G:[.Ad]Hé. The goal
and main result is to construct certain element iy € (D[.Ad]Hé satisfying (3-13). This vector generates
a 3-dimensional, H}-invariant subrepresentation of wq, and will be crucial in finding the input Fy that
produces the Borcherds product Wy. In Section 4, we view product of two modular curves as a Shimura
variety of orthogonal type (2, 2) associated to Lg4, construct the Borcherds product Wy, and prove
Theorem 1.8. In Section 5, we view the pair (g, 74,) as a big CM point on the product of two modular
curves and study its Galois orbit. The upshot is Proposition 5.5, which relates the left-hand side of
Conjecture 1.5 to the big CM value of Borcherds products. By the second step of strategy, Conjecture 1.5
is reduced to local calculation of certain Eisenstein series and its derivative, which we carry out in
Section 6B using the results in the appendix of [Yang et al. 2019]. Finally in the Appendix, we explicitly
write down the cosets in the finite quadratic module used in constructing the Borcherds products, and
include a numerical example for d; = —31 and d, = —127.

2. Preliminaries

2A. Weil representation. Let (L, Q) be an even integral lattice of signature (2,2) and V := L ® Q the
rational quadratic space. Denote L’ the dual lattice and A, := L’/L the finite quadratic module. The
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group SL,(Z) acts on U, := C[.A] via the Weil representation w; given by

1
wL(Dey = e(—=QU)er,  wL(S)en= —=m > e ey, @-1)
HeAL

where {e,, : u € A} is the standard basis of Uy and

11 0 -1
T.=<0 1), S.=(1 0). (2-2)

Note that this differs from the convention of Borcherds by complex conjugation.
Let S(L) =,/ ¢ C S(V @A) with L = L ® Z and

¢, = Char(u + Z).

Under the isomorphism U; — S(L) that maps ¢, to ¢, the representation w; becomes the restriction of
the Weil representation w = wy y (with the usual idelic character v of Q) from SL;(A) to (the diagonally
embedded) SL;(Z). We will sometimes switch the representation spaces between Uy and S(L). Note
that S(L; @ Ly) = S(L1) ® S(Ly) for any two sublattices L, L, C L orthogonal to each other.

2B. Weber functions. For any finite-dimensional, C-representation p : I' — V of a finite index subgroup
I' € SLy(Z), denote M'(p, T') the space of weakly holomorphic, vector-valued modular function with
respect to p. We drop p (resp. I') from the notation if p is trivial (resp. I' = SL,(Z)). For example, the
three Weber functions defined by (1-1) form a vector-valued modular function

f2
| p—
fi ] € M (024).
f
Here, for a positive integer d and j € (Z/2dZ)*, the representation g, ; : SL»(Z) — GL3(C) is defined by
g7 00 010
04,;j(T):=| 0 0 ngd , 04,;(S):=[100]. (2-3)
0 ffd 0 001
We simply write o4 for oq 1. Finally, 5(g) := p(g). Later, the modular function
—24/d )
24/d | '2
Fae):=~2 " | 57249 (2) | € M' (o), d 124 (2-4)
f—24/d(.[)

will play an important role for us as the representation o4 defined above is a subrepresentation of certain
Weil representation that we will consider.

Remark 2.1. For convenience later, we will denote

24/d
\/524/df;24/d(f) _ ( n(r) ) _ Z cd(l)ql/d c q—l/dZIIq]]. (2-5)

77(27‘—) [>—1,I=—1 modd
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Clearly cq(—1) =1 for every d | 24. We will also denote c_1 (/) the /-th Fourier coefficient of

212f1_24(2r) _ %4(r) _ 212%2:)).
Let x : ['9(2) — C* be the character defined in (1-2). On the generators T, S? and TB of T'y(2), where
B:=ST?s"'= (_12 (])) : (2-6)
the character x is explicitly given by
x(M)=¢u, x($H=1, and x(TB)=1. 27
The kernel of x is a normal subgroup of I'¢(2) defined by
T, := ([o(2)%*, T?, §%, TB) C Tp(2), (2-8)

where I'o(2)%" is the derived subgroup of I'g(2). We remark that I', is the group @8(24) in [Yang and
Yin 2016]. Furthermore, it contains the congruence subgroup I'g(48) N T"(24) and I'y(2)/ ", = Z/24.
More generally, for any divisor d | 24, denote the kernel of x24/¢ by

Tya:= (T, T% CTy(Q2). (2-9)
It has index d in I'g(2) and contains I', =I", 24, as well as the congruence subgroup
Iq:=T1Q2d)NITa). (2-10)

In particular, I'g(2) =Ty ;. More generally for d | d’ | 24, we have I'y D I'q. For future convenience, we
also write d,, for the p-primary part of d. Then clearly d = d»ds.

3. Decomposition of Weil representations

3A. Lattice. For a divisor d | 24, consider the quadratic lattice

Aoo Aol
Li=3{A= tNij €2y, A) = A). -1
d { (%0 An) j € } Qq(%) :=ddet(}) (3-D
The dual lattice is given by
1 (oo ro1/2
[ —_ . . -
Ld_{)\_d<)»10 i hijely. (3-2)

The finite quadratic module L}/Lq is then isomorphic to
Ag:={h=1lho, hi, ha, h3] : ho, h3 € Z/dZ, hy, hy € 7/(2dZ)}, (3-3)

where the isomorphism is fixed throughout and given by

Aoo Ao1/2
Ao Al

Ly/La = Aqg, 1 (

d >+Ldr—> [X00, Aot1, A10, A1l (3-4)
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Via this isomorphism, the quadratic form Q4 on A4 becomes

2hohs —hihy 1
h) = ————¢€—7/7 3-5
Qa(h) 2d € g%/ (3-5)

for h = [hg, h1, hy, h3] € Ag. We denote Uy := C[.Aq], which is acted on by SL,(Z) via the Weil
representation wq := wr,,.
Now, we can map Lq into L);/Lq = Aq via

Kq:Lg— L:l/Ld, A ék + Ly, (3-6)

which is compatible with the left and right action of I'(2), i.e.,

g1 ka(A-g2) =ka(g1-A-g2) =ka(g1-A)- & (3-7)

for all g1, g2 € I'0(2) and A € Ly. By viewing I, | =I'g(2) as a subset of L4, we can send it to a subset
in Aq. If we denote

AS = {lho, h1, ha, h3] € Aq - hy =0 € Z/(2dZ)}, (3-8)

it will be helpful to know the parts of I'g(2) that land in Ag under x4 when we simplify the expression of
Borcherds products. For this we need the following lemma, whose proof will follow from combining the
corresponding local results in Lemmas 3.8 and 3.12.

Lemma 3.1. For any j € Z/dZ, we have (viewing I'g(2) C Lq)
Ka(TIT ) NA = {d5 [, r (2 + (% = 1)), 0,71 : 7 € (Z/dZ)*).

Remark 3.2. Note that 7> — r mod 2d is well-defined for r € (Z/dZ)* when d | 24. Furthermore

3 dmod2d if 8|dand r =43 mod 8,
" |0 mod2d otherwise.

Let GL,(Q) x GL,(Q) acts on Vg = Ly ® Q = M>(Q) via

(g1,82) - X =g1Xg, .

This action gives an identification of GSpin(V) with H = {(g1, g2) : detg; = det g»}, and a commutative
diagram of exact sequences:

] — {21} —— SLy x SL, — SO(V) — 1

L

1 Gm H SO(V) — 1.

For the particular lattice L4, we have

SO(La) =T0(2) x I'g(2) =T'0(2) x T'o(2)/{£(I2, 1)}, (3-9)
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As {£(I, I)} does not matter in this paper, we will simply identify SO(Lq4) with I'g(2) x ['g(2) and
drop the overline. Under this identification, we have I'y; = I'y x I'q, where I'q is defined in (2-10). In
particular, we are interested in the action of the subgroup of SO(Ly) generated by the images of (7, T') and
I'y.a x 'y q. We let Hj be its image in Hy := Ngq x Ng, where Nq:=T0(2)/Tq. Let Nj:=T", 4/ T'q. Then

N} x Ny C Hj C Hq = Ng x Ng. (3-10)

Since I'g(2)/T'y.q = Z/dZ, the quotient group Hy/H] is isomorphic to Z/dZ. For prime p, let Ny
denote the quotient of the subgroups generated respectively by I'g(2) and I'q in SL>(Z,). Similarly, we
can also define K, for K € {Ng4, N, é, Hy, Hé}- Since d is only divisible by 2 and 3 in our case, the Chinese
remainder theorem implies

Hy=Hgox Hq3, Hy=Hi,xHy; Ny, xNg,CHy,CHip=NapxNap.
For the same reason, we have the decomposition
.AdgAng.Adj, .Ad,p = Ad®ZZ,,. (3-11)

Using this isomorphism, we can write wg = w42 ® wg;3 and Ug = Ug 2 ® Ug 3, where wy, ), is the Weil
representation of SL,(Z,,) acting on Uy, , associated to Ag, .
Now, we introduce the vector uq € Uy.

U= U2 QUaz = Y ad(j)< > eh),

jez/az hekg(TIT, )
(3-12)
. j d ¢(d)
ad(}):=( > §§J)=u( ) —eZ,
se@RD)> d, j) /) e(d/(d, j))
where ug , =uq ,(1,...,1) € Ué’p C Uy, is the vector defined in (3-23) and (3-33), u and ¢ are the

Mobius and Euler ¢-function respectively. Note that aq(j) is defined for any d € N and j € Z/dZ.

Remark 3.3. A natural question is where the element ug , comes from and what it is good for? In the
next two subsections, we will give some ideas where they come from. For now, we are satisfied to give
its nice properties as below. See Proposition 3.6 below.

Lemma 3.4. For any d,r | 24, the vector uq € Z[Aq] is invariant with respect to I, , x 'y . if and
onlyifd|r.

Proof. If d | r,then I, , C ', 4 and we just need to prove the case when r =d. Let (g1, g2) € SO(Lyg)
with g; € I'y 4. Then

(81,82) W= Z ad(j)( Z €h>=ud,

jezjaz heka(giTiTyagy")
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where we have used the fact that I', 4 is normal in I'g(2) with coset representatives { T/:jez/dZ)}. Simi-
larly, (T, T)-ug =ug. Thus uqis I'y g x I'y g-invariant. If d{r, then (", 1) € (T'y , X T’y )\ (Iy,a X T'y ).

It is easy to see that
(T", 1) ug = E:cmu—+o< > %)¢ud

Jjez/dz heka(TINY)
since
aa(—r) _ p@/@d.r) | _ as(©)
@(d) @(d/(d,r)) @(d)
when d{r. O

Proposition 3.5. For any d | 24, we have

wa(g)ua = x (g) %y (3-13)
forall g € T'g(2).

Proof. This follows directly from the local results 3.10 and 3.16 as

)—24(d2/d3+d3/d2) )—24/dud.

w4(8)ud = (wa,2(8)ud,2) ® (wq,3(8)ua,3) = x (g Ug2 Qug s = x(g

for all g € ['h(2). Here we have used é — (g—i + g—;) € Z when d | 24. O

Now, define two further vectors
va = wa(S)ug, g = L5 wa(T)vg. (3-14)

Note that uq, by and toq are linearly independent for all d | 24. The key to the input of Borcherds lifting is
then constructed using these vectors in the following result.

Proposition 3.6. The representations o4 defined in (2-3) is a subrepresentation of the Weil representation

wq via the map
’ a
W:C— Uf“ C Uy, (b) — aug + bog + ctog. (3-15)
c
Let F4 be the modular function defined in (2-4). The function 1q o Fy is then in M "(wq) and invariant with

respect to the orthogonal group Hy C SO(Lq)/ T'r,. Furthermore, it has the principal part
0(q'? ifd>1,

o) ifd=1,
Remark 3.7. When d =1, the function ¢4 o Fy differs from the input in [Yang and Yin 2019] by a constant
vector. To simplify the notation, we will write

wof%@)=q_”%m+{ (3-16)

24(e0,0) +¢1/2,0) ifd=1,

3-17
0 ifd>1, ( )

FdZILdOFd—l—{

which is an element in M'(wq) invariant with respect to H (’1.
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Proof. It suffices to check on the generators 7', S of SLy(Z). From the definition and Proposition 3.5,
it is clear that

wa(T)ug =g 'ug,  wa(T)vg = ratog,
wd(T)0g = &y 0d(T*S)ug = &5 wa(SB)ug = Lawa(S)ud = 2004,
wd(S)ug = vy, @d(S)vg = uq,

@a(S)a = G35 0a(STS)ua = L' @a((ST)* BSHua = &9 0a(S(T)Hua = &3 wa(Sug = wq. 0
In the following two subsections, we work at the 2-part and 3-part separately and construct ug , for

p =2, 3. This will shed some light on where 14 comes from.

3B. The case p = 3. There are two possibilities for Ag 3. If 31d, then Aq 3 is trivial. If 3 | d, we can
identify the groups Aq 3 and A := M>([F3) via

ho —h
Ka3: My(F3) = Ags, (h‘z’ h%‘) mod 3 — h = [ho, hy, hy, h3] ® 73, (3-18)

which is just the map x4 in (3-6) tensored with Z3. This is an isomorphism of finite quadratic modules
if we equip M, (F3) with the quadratic form Qg3 := (3d,)~! det, which has value in %Z/Z. Then
H; = SL,(F3) x SLo(F3), Hj = (Nj x N;, (T, T)), where

Nis={(o1)- (517 (5o)- 1) (0 2 (20 ) (4 2D

(3-19)
={(50) (1 1)) € SLa(F3) € Ma(F)
is isomorphic to the group of quaternions. Another way to characterize N(/i,3 is
Ny ={£(s 1)} U {s € SLa(Fy) : Tr(e) = 0} (3-20)

From this, it is easy to check the following local analog of Lemma 3.1 at 3.

Lemma 3.8. Forany j € 7Z/d3Z, we have
ka3 (TN 3) N AG 3 = {1, -, 0, 1]}.

Denote 03 € A the zero matrix. Then Hy 3 acts on the set A\03, and decomposes it into 3 orbits
according to the norm of the elements. The subgroup Hé’3 C Hy 3 acts on A\03 similarly and decomposes
the three orbits into 5 orbits. We denote the sum of elements in each orbit by tv; fori =0, 1, 2, 3, 4. They
are explicitly given as follows:

D hewaa(TiN, ) ¢h ifi =0,1,2.

10; =
ZheA\O; det(h)=—i mod 3 ¢h ifi =3, 4.

(3-21)

This gives Ud 57 = Cep, + Z _0 Cw; C C[A]. Moreover, Uy 3‘3 contams an SL;(Z)-invariant vector

4eq, + to3, which is also in Ul d. 3 . Its orthogonal complement in U 43 * is 5-dimensional and decomposes
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into x5 e X3 L g 0~ %, where x3 and o are irreducible representations of SL,(Z) given by

1 -1 2 2

6=t ®=1 M= & : Q(S)=% 2 -1 2|, (3-22)
2 2 2 -1

with respect to the basis {tog — v, 1 — 107, 8eg, — 103, o+ 10| + 107, 2tuy}. For any m € Z, we use o™
and Xé’"] to denote the representations of SL,(Z) defined by

[m

o"™(g) :=0(@)", x"(g) = x3()™.

Note that o and X3[m] are well-defined and only depend on m mod 3. We remark x3|r,2) = x3 In
summary, we have:

Lemma 3.9. (1) The subrepresentation wﬁ{‘f C wq.3 fixed by Hy 3 decomposes as

Hys ~

wy3 = 1 Q[_dZ]
with respect to the basis {4eo, + 103, 8tvg — 103, tog + 101 4 102, 2104}

Hys . o, Hj .
(2) Denote U(/i’3 the orthogonal complement of Udg’3 in U(Lg~3 and a)él’3 the restriction of wq 3 to Uéﬁ.
Then

2
U(’L3={Zajmj 1aj eC, Zaj =O}
Jj=0 J

and a)éL3 = (X3[_d2])@2.
(3) Under this identification, M'(wq 3)43 = M' ® M'(o!=*") and
M (@43)"05 = M (043) 703 ® M (142,
The analog of uy satisfying Lemma 3.4 and Proposition 3.5 is in the subspace

Ué,3 ={ug3(0):c=(cy) € Crday,

where

ug 3(6) = Z( > c@ﬂ)( > eh>. (3-23)

JELIRT N se@ /) heka3(TIN}3)
As a consequence of Lemma 3.4, we have the following local analog of Proposition 3.5 at p = 3.

Proposition 3.10. For any d | 24 and ¢ € C*%), we have

wa,3(8)ua3(C) = x (8) "2/ Buy5(©) (3-24)
forall g € T'y(2).

Proof. If d3 = 1, this is clear. Otherwise,

wa3(8)ua3(©) = x3(8) " Puq3() = x(8) *Ruqg3(0). O
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Ifé=(1,...,1) € C*Y), then we simply denote 14 3(¢) by ug 3, which is explicitly given by
2tog — 1oy —top  if d3 =3,
a3 = { e (3-25)
€05 if d3 =1.
3C. The case p = 2. In this case, the finite quadratic module
Ago=2/07Z x 7]2d2)Z x Z](2d2)Z x Z]drZ
has the quadratic form
4! 1
Qa2(lho, b, ha, h3)) == 32~ (2hohs — hih) € 5—-Z/Z. (3-26)
2(12 2dZ

Even though the size of Aq > can be large, the number of orbits under the suitable orthogonal group H ,
is much smaller. More precisely, we have Hyq 2 = Ng 2 x Ng 2 and Hé’2 D) NC’L2 X Né’z, where

2c d
Nj,:=(A,C,D)=(Z/(d2(2,d2)/ (4, d2))Z x Z/(d2/(2, d2))Z) x Z (4, d2)Z.

Ngs = {( a b ) e SLZ(Z/(ZdZZ))} ST, /.y,
(3-27)

Here A .= (i g), C .= (156 143), D= (:é i) are elements in SL,(Z) projected into Nq 2. The commutation
relation is given by DAD ™! = A3, In particular N c/1,2 has size d% and is abelian ford, =1, 2, 4.

The group Ny 2 acts on the left on Ag4 2 via (simply coming from matrix multiplication)

b
<2ac d) -[ho, h1, ha, h3] := [aho + Dha, ahy 4 2(bh3), 2(cho) +dhy, chy + dh3] (3-28)

for (2“6 s) € Ng2 and [ho, hy, ha, h3] € Aq2. The same holds for the right action. We can embed Ny »
into Ag 2 using the map k42 : Ng.2 — Ag,2 defined by

Kd,z((zac Z)) = d;'[a mod dy, 2b, 2¢, d mod dy]. (3-29)

It is then easy to check that

ka2(8182) = 81 -ka,2(82) = ka2(81) - &2,

. 3-30
4y deit) mod > _ 2 (3-30)
d 2d,

Qd2(ka2(8)) =

for all g, g1, g2 € Ng,2. From this, when 2 | d, it is easy to check that 4 is a two-to-one map since

d+1)(",) e Nj, and
ol () =)

To better describe kq4,2(Ng,2), it is useful to know the smallest additive subgroup of .44 > containing it.
We describe it in the following lemma.
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Lemma 3.11. Let Aé » C Aqg,2 be the smallest (additive) subgroup containing k42 (N, (’1 ).

(1) When 8 | d, Ad , = /27)? x (Z/8Z)? is the orthogonal complement of the subgroup generated by
[6,4,0,2],0,8,0,0],[0,2,2,0] € Ag .2, and

-1 l a7/ NG
Kap(Agp) = NgpUT Ny .
Furthermore, we can distinguish the elements in N , and T*N 1 Via

Ni, = Kd‘,é({[ho, hi, ha, h3] € Ay, hg—d3 = hy + hy mod 16}),
T*N§, =g ({[ho. i, ha. h3] € Ay, hg —d3 = hy +hy + 8 mod 16}).

(3-31)
(2) When 8 td, .Ad , = = (Z/d22)? is generated by Kq, 2((1 1)) Kd,z((:é })) and
K(Ié (Ag2) = Ny,
Proof. This can be verified using the Appendix and some computer calculation. O
In addition, we record the following local analog of Lemma 3.1 at the prime 2.
Lemma 3.12. Forany j € Z/d,Z, we have
ka2(TINy2) NAG, = {lr, r(2j + (d3r)> = 1), 0, 7] : r € (Z/daZ)*).
Proof. For j = 0, this follows directly from Lemma 3.11. In general, it is easy to check that
T (ka2(Ng ) N A p) = ka2(T/ Ny ) NAG
for any j since the action of T preserves Ag. O

Since T2 =0 ¢ N’2 and H/2 is generated by N} 42 X N} 42 and (T, T), the index of H’2 in Hd2 is dp

and the sizes of Hy 2 and Hé , are dS »/(2,dz) and & 5/(2, d2) respectively. The dimension of Ud 5" is the
number of orbits in A4 7 under the action of Hé’z. Since the finite group Hj 4.2 1s explicitly given in (3-27),
it is straightforward to calculate these orbits on a computer in practice. We did this in Sage [2019] and
received the following results:

4 ifd, =1,

. H 16 ifdy, =2,
dimU, 5* = 56 i, (3-32)

118 ifd, =8.

H),
With these calculations, one can already explicitly decompose the representatlon o 2 on Uy 22 To find

the desired vectors, we need to consider the following subspace of U ;2.
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For d; = 1, the vector ¢(1,2,0) — ¢(0,1/2) generates a 1-dimensional SL(Z)-invariant subspace. Denote

H . .

Ui, C Uy 5% its orthogonal complement. For d, > 2, the subgroup Hj , has index 2 in H} o =
’ H/ H/ ’ H/ . ’

(T%/?, Hj,). Denote U}, C U, 5% the orthogonal complement of U, q g/ »cUu q 5%. Then it is clear that
dim U} , = 3 (numbers of H} ,-orbits of Ag» — numbers of Hj , ,-orbits of Aq,).

The following result comes out of the computer calculations.

Lemma 3.13. For any d | 24, the dimension of UG’L2 is 3¢(dy). Furthermore, the support of any elements
in Ué,z is contained in the union of {h € A4 :2Qq4(h) = —d;l/dz} and UjeZ/dZZ Kd,z(TjNé’z).

Now for d | 24, define the following vectors
wo= Y (¥ al)( X w)
JEZIAT N se(@)dr2)* hexa2(TIN, ) (3-33)
04.2(C) 1= @4 2(SHug2(6), Wy 2(6) 1= §d_2d3wd,2(T)Ud,2(5)
for all ¢ = (¢;) € C¥9), From Lemma 3.13, we can show that these vectors give a basis of U c/l,z-

Lemma 3.14. For any d |24 with2 | d and ¢ € C?%), the vectors 04.2(C), 04.2(C) have the same support,
which is disjoint from that of ug »(c1) for any ¢ € C#@),

Proof. Since the action of wg>(T) does not change the support, we know that vy »(¢) and tvg 2(¢) have
the same support. Now we have by definition

ba2@ =)™ D e D Y ;({j( > e((u,h))eu)-

SE(Z)Z)*  neAqr jeZ/dZ heka (T Ny ,)

We want to show that the coefficient of ¢, is zero if u = ka2(T1 gy with j € Z/dyZ and g’ € N ,. Now
if h = kq2(g) with g € T/ N/, ,, then

d; ' Tr(g(T7/'gH™)

(e, h) = &

by (3-30). Since N, is normal in Ny, which contains T, we have TjNé’zT_j' = Tj_f"Né’z. Therefore,
it suffices to show that the sum below vanishes

SIS S TAEEED SRS M

jez/dy7 heka2(TIN} ) j'ez/dZ hexaa(T1" N} ,)

with j” := j — j". Also for h = [hg, hy, ha, h3] € Kd’z(Né’z), we have Tr(T/ - h) = Tr(h) + j - hy. Using
this, we can rewrite

-1 -1 .1 -1
j’s dy Tr(h) dy” Tr(h) J"(s+d3 " h1)
Z gdz Z gdz - Z é‘dz Z é'ﬂdz

J'€LIDL ey y (TN, heka2 (N} ,) J'€Z/drZ
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By Lemma 3.11 (or inspecting the Appendix), we know that 4| € 27/2d,Z for all h € Kd’z(Né,z). So
s+dy 'h e (Z/d2Z)* and the sum above vanishes. O
Lemma 3.15. For any d | 24 and any basis B of C¥%), the set
U (402(@). 0420, w420} (3-34)
ceB
is a basis of Uy ,.
Proof. We know that dimension of U é,z is 3¢ (dy) from Lemma 3.13, and need to check linear independence
of the vectors in the set above. Since the vectors ug 2(c), vq.2(¢), t042(¢) are defined linearly, it suffices
to prove the lemma for B = {é(so) : 5o € (Z/d2Z)*} with é(sy) € C?%) the standard basis vector with 0
everywhere except 1 at the so-th entry. It is easily checked from the definition that ug 2(c), bg2(¢), tog.2(¢)
are in U (/1,2 are eigenvectors of 7 with eigenvalue g“d_zs‘) when ¢ = €(sg). Therefore, it suffices to check
that the three vectors g 2(C), v4.2(C), 104.2(¢) are linearly independent whenever ¢ = é(sp).

When d, = 1, this is easily checked by hand. When d, > 2, it suffices to show that vq > (€(sp))
and 1y 2(€(sp)) are linearly independent by Lemma 3.14. Let us assume otherwise. Then the restric-
tion of wq > to Cug2(€(s0)) + Coq2(€(sp)) is a 2-dimensional representation of SL;(Z). In the basis
{ua,2(é(s0)), va.2(€(s0))}, it is given by the map

% 1
T|—>( j:de), Sr—><1 )

However, (T - S)° is the identity, whereas

(% 2 D=6 )
+84,/ \1 §2_di

is not the identity since 2 | d,. This is a contradiction and finishes the proof. U
Proposition 3.16. Ford |24, let a)éy2 denote the restriction of wq o to U é,z cU f é’z. Then uq »(C) satisfies

©)2(8)ua.2(€) = x (§) 74/ Pug2(®) (3-35)
for all g € Ty(2) and ¢ € C*9)., Furthermore with respect to the basis in (3-34), we have

W)y, = Qgﬁjﬂ (3-36)

Here 04, 4, 1s the 3-dimensional representation defined in (2-3).
Remark 3.17. If ¢ = (1, ..., 1) € C*9), we simply write ug > for 142(c). They are explicitly given by

¢0, ifd, =1,
222, Ny O = Yy ) ¢p) ifdy=2,4,8.

Proof. For the first claim, it suffices to prove the cases g = 7, S2 TB, which are generators of ['g(2).
If ¢ =T, then wé’z(T)eh = e(—Qq.2(h))e,. For h € Kd’z(TjNé’Z), we have Qg2(h) = d;l/dz =

ud’z (3-37)
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d3/d; € 52/2. Therefore (3-35) holds for g = 7. When g = S since wy(S%)¢;, = e_y, for all h € Aqg
and —(1 1) € Né,z’ we know that —Kd(TjN(/LZ) = Kd(TjN(’LZ) and (3-35) holds for g = S2
For g = TB = TST?S!, it suffices to show the middle equation below
_ - ;! - - -
@} 2($)wa 2 (T~ g 2(6) = 132 042(0) = wa2(T?)042(6) = a2 (T?)w} 5 (S)ua2(0).
This is easily checked by hand when dy = 1. If 2 | d», we know by Lemmas 3.13 and 3.14 that the
support of vg2(¢) is contaigled in{h € Ag2:204(h) = —dy l/dz}. It is therefore an eigenvector of
a)é’z(Tz) with eigenvalue {5123 . This proves the first claim. As in the proof of Proposition 3.6, the vectors
{ug.2(¢), 04.2(C), Wy 2(¢)} generate a 3-dimensional subrepresentation of wg > isomorphic to g4, d;- The
second claim then follows from Lemma 3.15. U

4. Borcherds liftings

4A. Brief review of Borcherds liftings. We first set up notation and briefly review the Borcherds lifting,
following [Yang and Yin 2019, Section 3]. Let V = V4 and H be as in Section 3.
Let
L={weVc:(w,w)=0, (w,w) <0}. 4-1)

and let D be the Hermitian symmetric domain of oriented negative 2-planes in Vg = V ®g R. Then one
has an isomorphism
pr:L/C*=D, w=u+ivr Ru+R(—v).

For the isotropic matrix £ = (8 _01 ) €Land ¢ = (1% 8) € V with (¢, £') = 1. We also have the associated
tube domain

z1 O
He o = {(01 > DYy > 0}, yi =1Im(z;),
-2

i 2z 0\ _ [z —duzn
w:Hey — L, w((o —Zz>>_(1/d 2 )

This gives an isomorphism H; ¢ = £/C*. We also identity H? U (H™)? with H; » by

VYa:z=1(21,22) (Zlo/d —z(i/d)'

together with

Note that we use this identification in order to have the following compatibility property and it is also the
identification used in the computation of Borcherds products. The following is a special case of [Yang
and Yin 2019, Proposition 3.1].

Proposition 4.1. Define

d — d
wa: H2U(H)? > L, wd(21,zz)=w0¢d(21,zz)=(Zl/ az )

1/d  —z/d
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Then the composition pr o wq gives an isomorphism between H> U (H™)? and D. Moreover, wq is

H (R)-equivariant, where H (R) acts on H2 U (H™)? via the usual linear fraction:

(81, &2)(21, 22) = (81(21), &2(22)),
and acts on L and D naturally via its action on V. Moreover, one has

(g1, gwa(zs, 22) = LEL T E22) 0 o)), (4-2)
v(g1, &2)

where v(g1, g2) = det g1 = det g, is the spin character of H = GSpin(V), and

. L _(a b
](g,Z).—CZ+d, g_<c d)

is the automorphy factor of weight 1.

For a congruence subgroup I' of SL,(Z), let X1 be the associated open modular curve over Q such
that X (C) =T'\H. Assume I' D I'(M) for some integer M > 1. Let

v:A* < GLy(A), v(d)=diag(l,d).

Let K (I') be the product of v(/Z\X) and the preimage of I'/ '(M) in GL, (/Z\) (under the map GL, (Z) —
GLy(Z/MZ)). Let K = (K(I') x K(I')) " H(A ). Then one has by the strong approximation theorem

XKgX[‘XXF.

In this way, we have identified the product of two copies of a modular curve X with a Shimura variety X .
Suppose that I acts on L'/L trivially, then for each u € L’'/L and m € Q(u) + L, the associated
special divisor Zr(m, w) is given by

Zr(m, u) = (I' x D)\{(z1, z2) : wqa(z1, z2) L x for some x € u + L, Q(x) = m}.
More generally, assume I' D I'(M) preserves L, and u=)_a,e, € C[L'/L]is " x I'-invariant, the cycle

Zron(m,u) = ZGMZF(M)(’/”’ )
descends to a cycle Zr(m, u) in Xr x Xr. For our purpose, we will take
dj24, T'=T,4DI¢DI'(2d) DI 48)
from now on and write Xq := Xr = Xr,. Notice that X; = X¢(2) has two cusps, ico and 0. Since
{T/:1 < j <d} are coset representatives of I', 4 in 'y 1, the modular curve X4 has the same cusps as X;.

Lemma 4.2 [Yang and Yin 2019, Corollary 3.3]. Ford | d' | 24, let w : Xr@a)y — Xa be the natural

projection. Then

* 1 1
xm X =Y. Zreo(g. 77 +L) (43)
yel/T@d)

and the group T'(2d’) can be replaced by Ty.
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Since I" is normal in I'g(2) =T", 1, the action of T = ( (1) }) € I'9(2) on H factors through X4 and defines
an isomorphism X4 — X4, which we also denote by 7. Using this, we can define translates of the diagonal

X§() = (T x D*(X§) € Xa x Xq (4-4)
for j € Z/dZ. Equation (4-3) also generalizes to
; 1 1.
XD XN = Y Zran(g. 3TV +L), (4-5)
yel/Td)

where one can replace I'(2d’) with I'y. From this, we see that the pull back of X dA (j) along natural
projection X¢ x Xg — Xq x Xq1is U;cqz 1z X @( j +1). Before proceeding further to state and prove
the main result of this section, we record the following identity for convenience.

Lemma 4.3. For any d € N, we have the following identity in Q(X)
paX) == [ (=¢f{x)u@ =[] —x¥bybncd), (4-6)
jezjaz bld
where aq(j) is the constant defined in (3-12). Furthermore for any s € N, we have
[Ipax*’ ==Xy @7)
djs

Proof. To prove (4-6), it suffices to check that both sides have the same roots counting multiplicity, since
they agree at X = 0. The multiplicity of X = gf on the left-hand side is aq(—j) = aq(j), whereas it is
Zbl ., j) b+ 1(d/D) on the right-hand side. The equality is then a consequence of the identity

dy _ @(d)
me:b'M(E> = uid/m OGS nld

which is a standard exercise that we leave, along with (4-7), to the curious readers. Ol

Now, we can specialize Borcherds’ far reaching lifting theorem [1998, Theorem 13.3] (see also [ Yang
and Yin 2019, Theorems 2.1 and 2.2]) to the modular function Fd in (3-17) and the result below.

Theorem 4.4. For every d | 24, recall the modular function in M'(wq)™

24(e0,00 te/2.0) fd=1,

Far) = V2 (1,2 (0w + 1, 24 0wa + 729 (0)r0g) + { . a1

defined in (3-17) with uq, V4, 104 € Uq vectors defined in (3-12) and (3-14). Let W4(z) be the meromorphic
modular function on Xq x Xq (with some characters) associated to fd via Borcherds multiplicative lifting,
i.e., —log||Wq4(z) ||12Jet is the regularized theta lift of Fd with || - ||pet a suitably normalized Petersson norm
(see, e.g., Theorem 2.1 in [Yang and Yin 2019]). Then V4(z) has the following properties:
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(1) On Xd X Xd,
Div(Wa(2) = Y aa(HX3 (),

jez/dz

(2) Whend =1, Vq4(z) has a product expansion of the form

i) =21 —q) [ A—aia5) ™™ (1 —gi"g3™) ™
m,n>1
near the cusp QC of Xg, where q; = e2™2i and cq(l) are the Fourier coefficients defined in
Remark 2.1.

(3) Whend > 1, W4(z) has a product expansion of the form

1/b 1/b 5 mib calmn)(—1)"?=D/d2
wo=Tal" o TT - ([Ta-ofa o)

b|d m,neN b|d
mn=—1 mod d

near the cusp QU of Xk, where u and ¢ are the Mobius and Euler @-function respectively.

Proof. This is a specialization of Borcherds’ result to the input I?d € M'(wq). For this, we need to substitute
the suitable parameters into Borcherds’ result, which has been specialized to this case in Theorems 2.1
and 2.2 in [Yang and Yin 2019]. Using the specialization there, we see that the divisor of Wy is

aa(j z (—1, >= aa(j z (—1,1Tf L),
je%iz a(j) Ma;}@ ral —gr M je%lz a(j) yeF/ZF(Zd) reo\—q- gl v+
which gives us the first claim after applying Lemma 4.2.

For the second and third claim, we specialize Theorem 2.2 in [ Yang and Yin 2019] and use the notations
there. When d = 1, this is rather classical and can be found in [Scheithauer 2008] (see also Proposition 5.3
in [Yang and Yin 2019]).2 For d > 1, the Weyl chambers for fd are the same as in the case d = 1, and
we choose the one W = R{(* _) :a > 1}. Since ug, bg and wq do not have support on any isotropic
vector, the associated form Fy p is identically zero, and the Weyl vector p(W, Fy) is 0. Since Fy does not
have any constant term, the constant C in the product expansion is 1, For the infinite product, suppose
A=1("" ) withm,n € Z. Then (A, W) > 0if and only if m > —n,n > 0 and (m, n) # (0, 0).

The set of € L,/ L with p(u) = A consists then of é(_om _n’) with j € %Z/dZ. For such A, u, we have

i n/d_mj/d
= (0 2+ (u, €)= 1= ] g} g3
By inspecting the g-expansion of Fy, we notice that

Fd(r>=(q—‘/d+ > cd<1>q’/d)ud+ > Fau()e,.

IeN,I=—1 mod d ) 11,1
mo “EL/L’Qd(")E{Z_d’Z_d"'E}

2Note that the Fourier expansion of f in [loc. cit.] is incorrect.
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Therefore, the only pairs of (m,n) withm <0is m = —n = —1, and the only u € L;,/L where Fy,
could be nonzero are contained in the support of ug4, hence

—m 7 .
M=é( 0 ,Jl)—i-Le(l—le Ty a+L

withmn=—1 moddand ;' :=nj —%(n2 —1)eZ/dZ by Lemma 3.1. The Fourier coefficient c(— Q (1), ®)
of the input is then cq(mn)aq(j’). It is easy to check that aq(j") = ad(j)(—l)(”z_l)/dz. By Theorem 2.2
in [Yang and Yin 2019], W4(z) has the product expansion

i n/d_m/dyc ) (—1)@>-1/8
v =[] 1 (1= ¢l g g/ ®ycatmmaa(=n

meZ-_y,neN jez/dZ
mn=—1 mod d

Finally, applying Lemma 4.3 finishes the proof. O

4B. The Weber function differences as Borcherds liftings. Now, we are ready to state and prove the
following main result of this section.

Theorem 4.5. Ford |24, let V4(z1, 22) be the Borcherds product of Fd € M'(wq) as in Theorem 4.4. Then
forany s | 24 and ¢ € {1}, we have
(F2@D™ = (522)**) = [ Waer. 227" (4-8)

d|s

Proof. We first look at their divisors in the open Shimura varieties X; x X;. Suppose € = 1. The left-hand
side clearly has s - [X SA] as its divisor, whereas the right-hand side has the divisor

DY ) Yo IXPGHDI= Y (Zw(k))[X?(k)J=s-[X?L

dls jez/dz ledZ/sZ kez/sz ™ d|s
as
s ifk=0,
> aatk) =" pn(d/d, k))p(d)/ed/d, k) = .
0 otherwise.
d|s d|s
When ¢ = —1, the argument is the same unless 8 | s. In that case, the divisor of the left-hand side is

s -[X2(s/2)], whereas the divisor of the right-hand side is

Div [ | Wa(z1.22)* = Div [ [ Wa(z1. 22) = s - AIXP T+ X2 (/2D — 5 [XP] =5 [X 2 (s/2)].
dls/2 dls

Now let
[Ty 82 Wa(z1, 22)
(F2(z1)%45 — (ef2(22))2¥/5)s

g(z1,22) =
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Then it is holomorphic and has no zeros on X x X;. So
Div(g(z1, 22)) = doo,1 ({00} X X) + doo,2(Xs X {00}) 4 ao,1 ({0} x X;) + ao2(Xs x {0})

is supported on the boundary with a; ; € Z. The product expansion of W; and the definition of f, imply
that deo,1 = doo.2 = 0.

Next, fix zp € X the above argument shows that g(z1, z2), as a function of z; on X U {0, oo} has
only zeros or poles at the cusp {0}, which is impossible. So g(z1, z2) has no zeros or poles in z;, and
is therefore independent of zy, i.e, g(z1, 22) = g(z2) is purely a function of z, with no zeros or poles in
X U{oo}. This implies that g(z;, z2) = g(z2) = C is a constant.

Finally, looking at the ¢g;-leading term of the Fourier expansion, we see C = 1 and this proves the
theorem. The last part of the proof follows from the argument in the proof of [Yang and Yin 2019,
Theorem 3.4]. O

5. Big CM values

5A. Products of CM cycles as big CM cycles. Yang and Yin [2019, Section 3.2] have described how to
view a pair of CM points as a big CM point, which we now briefly review for convenience and set up
necessary notation. We modify a little for use in this paper. For j =1, 2, letd; <0 be co-prime, fundamental
discriminants satisfying (1-3). Denote E; = @(«/c_lj) with ring of integers O; = Z[%(l + \/Z)] and
class group Cl(d;). Let E = E| ®q E> = Q(+/d;, /dy) with ring of integers O = O ®7 O,. Then E
is a biquadratic CM number field with real quadratic subfield F' = QD) and D = d,d>.

For a positive integer d, we define W = Wy = E with the F-quadratic form Q(x) = dxx/+/D. Let
Wg = W with the Q-quadratic form Qg(x) =Trr/g Qr(x). Let o1 and o2 be two real embeddings of F
with 0;(v/D) = (—1)/~'/D. Then W has signature (0, 2) at o, and (2, 0) at oy respectively, and so Wq
has signature (2, 2). Choose a Z-basis of O as follows

_SlVE S Vd L VB 1+

e1=1®1, e= 2 2 , e3 2 1® 5 c=eaes
We will drop ® when there is no confusion. Then it is easy to check that
~ X3 X
(Wa. Qo) = (V. Q) = (Ma(@). ddet), > xie; > ( > 1) . (5-1)
X4 X

We will identify (Wg, Qg) with the quadratic space (V, Q) = (M»(Q), d det). Under this identification,
the lattice M»(Z) becomes O, and the lattice Lq becomes Ze| + Zey, + Zez + Z2e4 C O, which we still
denote by L = Lq4. Define T to be the maximal torus in H given by the following diagram:

1 Gm 1‘ Resr/o SO(W) —— 1 (5-2)
H

1 Gm SO(V) —— 1
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Then T can be identified with ([Howard and Yang 2012; Bruinier et al. 2012, Section 6])
T(R)={(t1,h) € (E1QqR)* x (E2 Qg R)* : 1] = htr},

for any Q-algebra R, and the map from 7 to SO(W) is given by (¢, ;) +> 11 /1. The map from T to H
is explicitly given as follows. Define the embeddings ¢; : E; — M>(Q) by

(e1,e)t1(r) = (re1,rez), wa(r)(es, e) = (Fes, rer)'. (5-3)

Then ¢ = (11, tp) gives the embedding from 7 to H. If r; = oje; + (—1)j+1,3jej+1 € Ej, then

1 L@ -1
Lj(rj) =« <0 ?) + B <(1) 4(dil )) : (5-4)

Extend the two real embeddings of F into a CM type ¥ = {0}, 0,} of E via

a1(Vd) =d; eH, or(Jd))=Vdi, or(Jdr) =—/d.

Since Wy, = W ®F 4, R C Vg has signature (0, 2), it gives two points szz in D. In this case, the big CM
cycles associated to T as defined in [Bruinier et al. 2012; Yang and Yin 2019] are given by

Z(W,z2) = {25} x T(@\T(Ay) /K1 € Z*(Xg), (5-5)
and

Z(W)=Z(W,z;) +02(Z(W,z})). (5-6)

For simplicity, we will denote z,, for zjz. The same calculation as in the proof of [Yang and Yin 2019,

Lemma 3.4] gives the following result.

Lemma 5.1. On H? U (H™)2 one has 2o, = (T1, T2) € H? and Z,, = (T1, ) € (H)2 where

g
_

Tj
For d | 24, let Kq C H(A) be the compact open subgroup generated by (7', T'), (I'y .a X 'y .4) ® 7 C
H(Ayr) and (U(ZX) X v(zx)) N H(Ay). By the choice of I, 4, we actually have the following result.

Lemma 5.2. Suppose d; < 0 are discriminants satisfying (1-3) for j = 1,2. Then for any d | 24, the
preimage 1~ (Ky) is independent of d | 24.

Remark 5.3. We will simply denote :~!(K4) by K7.
Remark 5.4. The lemma does not require d; to be fundamental or co-prime.

Proof. Since K»4 C Kgq C K for any d | 24, it suffices to check that t"1(K) = t"'(K24). Furthermore,
we know that I'(48) C I', 24 C T'y ;1 =T"9(2), so we only need to check the equality when tensoring with
Z/37Z and with Z/16Z. This then boils down to a short calculation with finite groups.
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To check the case modulo 3, it suffices to show that ( (1 ™! (K1) ®7Z /37) C K24 C GLo(Z /37) xGLy(Z /37).
Since I'y 1®7/3=T0(2)®7Z/3 =SL,(Z3), we have YK )®Z/3=1""(H(Z/3Z)). Thus (5-4) implies

(KD ®Z/3) = {((“f pitdj = 1)/4)) € H(Z/32):a;, B; € Z/3Z, }
Bi  aj—Bj =12

and we need to show that this is contained in

Koy ®7Z/37 = (T 04 X Tyoar (T, T), v(Z*) x v(Z*)) @ Z/3Z
= (T3 XT3, (T, T),v(Z*) x v(2*)) ® /37
=Nz x Noa (1. 1) ((" ). (" L)) € H@/3).

Now given r = (r1,r2) € .7 (K1) ® Z/3Z with ¢;(r}) = (Z’ ﬂf((xd_f:;m), we know that
J J J

8 :=det(1; (r)) = Tr(1;(r)))* — Bid; € (2/32)* (5-7)
is independent of j. If B; =0, then ¢;(r;) = :I:(1 1) € Né’3 and 1(r) € Kopu ®7/37. 1If By =0 and B, #0,
then ¢ (ry) € Né,3 and § = 1, which implies Tr(t;(r;)) = 0 by (5-7). That means () € NC’L3 by (3-20).
Finally suppose ; # 0, then we can use 3 {d; to show that € := «;8;(8 + 1) is independent of j. It is

then straightforward to check that Tl_é(1 8)Lj (rj) e Né,B' Therefore ((r) € Kr4 ® Z/37.
To check the case modulo 16, suppose

r=(mn) el (K)®Z/16Z

with r; =aje1+(—1)j+l,3jej+1, a;, Bj €Z/16Z. Then simple calculation shows thato; —1, B; €2Z/16Z.
Furthermore, det(tj(rj))=aj(ocj—/3j)—,3jz.(dj—l)/4e (£/16Z)* is independent of j since t(r) € H(Ay),
and ,8]2.(dj —1)/4=0 mod 8 since d; = 1 mod 8 and B; € 27/16Z. Therefore,

det(e;(r)) " =a; (aj — BT+ BF(d; — 1)/4.

Now r € 1.~ (K»4) if and only if 1 (r) € K24 ® Z/16Z, which is generated by v((Z/16Z)*) x v((Z/16Z)*),
(T, T)®Z/16Z and (I'y 24 xT"y 24) ®2Z/16Z = (I, 3/ I'(16) x I';, g/ I'(16)). From the natural surjection
I, 8/T(16) > T, 3/Tg=Ng= Né’z, we see that the following claim will finish the proof: the element

gj = v(det(Lj(rj)))flTdet(‘f(rf)fl)/ztj(rj)

isin Nj= N, forall rj =aje;+(—1)/*!gje;, withaj — 1, B; € 2Z/16Z. By dropping the subscript j
indj, gj,a; and B;, we can write

| Ye=p-1-pAd-1)/4 ) a@—B)—1-2d-1)/4 d—1  a@—B)—1-p2d—-1)/4
ﬁ b

g=ua 2 R 2 4 2
0 e la—p)~' + 241 a =g~ —a~l@—-p)"!
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which is an element in Ng = N3 5. Denote h =[hg, h1, ha, h3]:=kg.2(g) € Asg . To show that g € N; = Nél,
it suffices check that 4 € Ag’z, ie.,

h11[6,4,0,2], h1]0,2,2,0]

and h% —1=h;+hy mod 16 by Lemma 3.11. All of these can be checked by hand (assuming d =1 mod 8
and ¢ — 1 = 8 =0 mod 2), and we leave the details to the reader. U

By [Yang and Yin 2019, Lemma 3.5], the map

p:T@\T(Ap)/Kr — Cl(d)) xCl(d), [11, ] = ([11], [12]) = ([a1], [@2]) (5-8)

is injective. Here a; is the ideal of E; associated to 7;. If d, d, are co-prime, then [Yang and Yin
2019, Lemma 3.8] tells us that it is an isomorphism. If d;d> is not a perfect square, this subgroup can
be identified with Gal(H/E) with H the composite of the ring class fields Hy; associated to the order
of discriminant d; (see Proposition 3.2 in [Li 2018]). This observation and the above lemma give the
following corollary.

Proposition 5.5. Let d; < 0 be co-prime, fundamental discriminants satisfying (1-3). For [a;] € Cl(d}),
recall the class invariant f(a;) defined in (1-4). Then for any s | 24

as > loglf @) — fa)? =" e log | Wa(Z(W))], (5-9)

[a;1€Cl(d)), j=1,2 ds
where € := g4,64, = (=) @+L=2/8 4nd Z(W) is the big CM cycle defined in (5-6).

Proof. We may assume s = 24 for simplicity, as the other cases are the same. By applying Shimura’s
reciprocity law, Proposition 22 in [Gee 1999] showed that class invariants f(a;) for [a;] € Cl(d;) are
conjugates of each other under the Galois group. In particular, [loc. cit., (18)] implies

F(@) = 60, G O™ = 4,645 "o’ (T77) = a8y ST, )

where the class t; € (E; ® Ay)* in CI(d;) is [a;]. Here tjt_j can be understood to be an integer
modulo 48, and

2)%jj
5(tj) = &

V2

is an 8-th root of unit depending only on #;7; mod 8, coming from the Fourier coefficients of f,. Note
that v/2 = g + ;‘8_1. Thus for t = (t1, 1) € T(Ay), we have 111; = tp1, and

log | f(ar) — £ (a2)] = log (L4 Fa (1))t — £(L45'F2(12))72 | = log [fa (") — efa(r, )l
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which depends only on the image p(¢) = ([a;], [a2]) € Cl(d;) x Cl(d>). So by the isomorphism (5-8),
Yoo doglfa) = f)l= Y loglh(") —efa(r,?)]

[a,1€Cl(d)), j=1,2 teT@\T(As)/Kr

= > loglfaz) — eha(@)lem=len-

(z.)eZ(W,05)

As the other three orbits are Galois conjugates of Z(W, O’2+ ), the sums over the other orbits are the same
as this one. Now the desired identity follows from Theorem 4.5. (I

6. Incoherent Eisenstein Series and the proof of the Yui-Zagier conjecture

In this section, we will use the big CM value formula of Bruinier, Kudla and Yang [Bruinier et al. 2012]
(see also [Yang and Yin 2019, Theorem 2.6]) to prove the factorization formula for W4(Z(W)) and the
Yui—Zagier conjecture. To do so, we need to review the associated incoherent Eisenstein series and
compute their Fourier coefficients.

6A. Incoherent Eisenstein series. Let F = Q(v/D), E = Q(/d,, ~/d3), and W = E with F -quadratic
form Qp(x) =dxx/ /D as in Section 5. Here D = d;d,. Let xe,/r be the quadratic Hecke character
of F associated to E/F. Then there is a SL,(Af)-equivariant map

A= l_[)\v S(W(AFR)) = 10, xe/r), AM@)(g) = w(g)¢(0). (6-1)
SLa(Ar)

Ba,
functions ® on SL,(Ar) satisfying the condition

Here I(s, xg/r) = Ind xe/F| - |° is the principal series, whose sections (elements) are smooth

d(nbym(a)g,s) = X(a)|a|5+1CI>(g, s), beAp, ac A;ﬁ.

Here B = N M is the standard Borel subgroup of SL,. Such a section is called factorizable if & =) @,
with @, € I (s, xy). It is called standard if ®[g;,5,)s0,®)2 1 Independent of s. For a standard section
® e I(s, x), its associated Eisenstein series is defined as

E@gs,®= Y (g5
y€Bp\SLy(F)
for 9(s) > 0.

For ¢ € S(Vy) = S(Wy), let @ be the standard section associated to A ¢ (¢) € 1(0, x ). For each real
embedding 0; : F — R, let ®,, € I (s, xc/r) =1 (s, XE,;/ Fa,-) be the unique “weight one” eigenvector of
SL,(R) given by

D, (n(bym(a)ks) = xc/m(@)lal* e,

for b € R, a € R¥, and kg = ( “%%, *"%) € SO,(R). We define for T = (71, o) € H?

—sinf cos@

EG.s,0) =N@"E(ge.5. 0,0 ( Q) @),

1<i<2
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where U = Im(7), N(¥) =[], v, and gz = (n(u;)m(/v;))1<i<2. It is a (nonholomorphic) Hilbert modular
form of parallel weight 1 for some congruence subgroup of SL;(OF). Following [Bruinier et al. 2012],

we further normalize
E*(T,s,9)=AGs+1, xg/r)EX, s, 9),

where
Als, x) = D (@S0 (L5 + 1))’ Ls, xg/p)- (6-2)

According to [Yang and Yin 2019], this Eisenstein series is incoherent in the sense of Kudla, and
E*(7,0, ¢) = 0 automatically. Write its central derivative via Fourier expansion

EY(T,0,¢)=)Y a(@.1.¢)q'. q'=e(Tr(t7)), (6-3)
teF
with v the imaginary part of 7 € H2 Then it is known that a(t, ¢) = a(v, t, ¢) is independent of ¥ when ¢
is totally positive. Finally, when ¢ = (X)p ¢p € S(Vy) is factorizable, one has for > 0 (the factor —4
comes from [Yang and Yin 2019, Proposition 2.7(1)(2)])

d
a(t, @) = —4— ( [ WisGs, ¢>) (6-4)
s p S=0
where
Wip(s. ¢) == /F o (wn (b)) (@) (0)|a(wn (b)) |31y (—tb) db (6-5)

are the local Whittaker functions. Specializing Theorem 5.2 in [Bruinier et al. 2012] gives us the

following result.

Theorem 6.1 (Bruinier-Kudla-Yang). Let d; < 0 be fundamental discriminants satisfying d; = 1 mod 8
and 31d;. Forany 1 #d |24, let ¢q € S(Va(Ay) be associated to uq. Then we have

—log [Wa(Z(W)[* = C(W. K) > a(t. ga). (6-6)
te F>1>3>0,Tr(t)=1/d
where Z(W) is the big CM 0-cycle associated to dy, d, defined in (5-6), and
deg(Z(W. %))
AO, 0
The rest of this section is to compute a(¢, ¢4) and prove the Yui—Zagier conjecture. Unfortunately, ¢4

C(W,K)=

is not factorizable over F at the places dividing (d, 6). Instead, we have

Pd = Pd.2Pd,3 pt6 Pd.p-

Then for p { 6, the contribution of W; ,(s, ¢q) is the same as in the case of Gross-Zagier (see [Yang and
Yin 2019]). Therefore, we are left with the local calculations at 2 and 3. Since 2 splits completely in
E/Q, we denote py, p the two primes in F above 2. Also denote p3, pg the primes in F above 3. They
are the same if and only if (%) = —1. The local calculations in Section 6B lead to the following result.



On a conjecture of Yui and Zagier 2225

Theorem 6.2. Let d; < 0 and d be the same as in Theorem 6.1, and let ¢ = ¢1&; = (—1)d+d2=2)/8
Suppose t = (a ++/D)/(2dv/D) € F* is totally positive with a € Q. Then

2

pinertin E/F

a(t, ¢a) = —dae?*98,(da, 1) x [ (1+ord, (tv/D)) p @ (1+/Dp)83(d3, 1) log(Nm(p))

p3
+log3 Y pPuVDpHsids 01 (67
p inertin E/F
pl3
ifa € Z and zero otherwise. The functions 8,(d,, t) and §5(ds, t) are defined by
S2(L, 1) :=2(v2(Nm(r)) — 1),  v2(Nm(?)) = 2,
52(2. 1) 1= { 1 y’vz(Nm(t)) =0,
vy(Nm()) =3 if vu(Nm(r)) > 1,
Fl1 if Nm(2¢t) = £1 mod 4,
52(4,1) 1= 1 if v2(Nm(z)) =0,
v (Nm(7)) =3 if v2(Nm(7)) > 1,
1 if Nm(4¢) = 3 mod 8,
—1 if Nm(4¢) =7 mod 8,
62(8,1) := F1 if Nm(2¢t) = +1 mod 4,
1 if v2(Nm(z)) =0,
v(Nm(7)) =3 if v2(Nm()) > 1,
83(L, 1) := p3(1), v3(Nm(r)) =0,
2-3(1-(2)(1- (%)) if Nm(3t) = 1 mod 3,
33(3,1) := -1 if Nm(3t) =2 mod 3,
(14 (4))vsNm(e) + 1= (4)" ™7 if vs(Nm(30) > 1,
51(ds ) 1= { v3(Nm(#)) + 1 l.fd3 =1,
2v3(Nm(#)) +3  ifd; =3,
and zero otherwise. Here p™ (a) := p(a'™) is the number of integral ideals of E with relative

norm (to F) a™ | ppr(a) := p(a/a™), and a™ is the prime to M part of an ideal a.

Proof. To evaluate a(t, ¢), it is convenient to introduce the “Diff” set of Kudla. For a totally positive
t € F*, define

Diff(W, 1) := {p : W, does not represent }.
Then |Diff(W, t)| is finite and odd. Furthermore if #Diff(W, t) > 1, then a(¢, ¢) vanishes. This is also

the case with the expression on the right-hand side of (6-7), since §3(ds, t) = O if p3, pg e Diff(W, t)
and p© (r+/Dp) = 0 for every inert p if Diff(W, ) contains two primes coprime to 6. Therefore, we
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can suppose that Diff(W, ¢t) = {po} for a single prime pg of F. In that case, every term with p # po on
the right-hand side of (6-7) vanishes. Given t = (a + VD) / (2dv/D) € F totally positive, the Fourier
coefficient a(t, ¢) is given by

’

s=0

d <W;T2(S,¢d,2) W s(s, ¢a,3) 1—[ W,fp(s,qﬁp))

) :_4_
a0 ="4\ "y A

pt6oo

where y (W,) is the Weil index of W, (see, e.g., Proposition 2.7 in [Yang and Yin 2019]).

Recall that py, po and p3, p5 are primes in F above 2 and 3 respectively. Since py, p> splits in E, they
are not in Diff(W, ¢) for any ¢. However, p3 and p} could appear in some Diff set if they are inert in E/F.
Now, if pg 1 3, then we can proceed as in the proof of Theorem 1.1 in [Yang and Yin 2019] to obtain

W:Z(O’ ¢d,2) W::g (Oa ¢d,3)

o) = —2
alt: 90) y W) p(Wa)

p©®(dv/Drpy ") (1 4 ordy, (1+/D)) log Nm(po).

By Lemma 6.5 and (6-13), we can replace 2W:2(0, da.2)/y (W) with £24/4d,8,(da, 1). By Lemmas 6.7,
6.10 and 6.12, we can replace W:3 (0, ¢a.3)/y (W3) with §3(ds, ) and arrive at the right-hand side.
If Diff(W, t) = {po} with pg | 3, then (%’) = —1 and we can write

" N
Wt’z((), @a,2) W* ,,3(0, ¢d’3)p(6)(d\/5t)-

o) = —4
alt: 90) YW (W)

We can again replace 2W/,(0, ¢q,2)/y (W2) with £24/4d58,(dy, t) and apply Lemma 6.12 to replace
2W**;’3(0, $q,3)/v (W3) with 85(3, t) log 3. This finishes the proof. O

Yui and Zagier [1997] derived the conjectural factorization of Nmy o (f (1)) — f (12)%*%) from
the conjectural factorization of Nmp /o (®24/5(f (1), f(12))), where ®, the r-th cyclotomic polynomial.
Since §(m) is the power of a rational prime £, we can define

Fom) =07, (6-8)
where y (m) = lem ¥p(m) with

ord,(m) +1 ife(p)=1,
yp(m) = 1 if e(p)=—1and 2| ord,(m), (6-9)
%(ordp(m) +1) ife(p)=—1and2{ord,(m) (i.e., p=1).

The conjecture is then expressed in terms of how y»(m) and y3(m) decomposes, which are summarized
in two tables (see [Yui and Zagier 1997, p. 1653]). The theorem above is equivalent to this formulation of
the conjecture. As in [Yui and Zagier 1997], one can give a conjecture with an equivalent, but simplified,
expression. This is the content of Conjecture 1.5, which we prove now.



On a conjecture of Yui and Zagier

Proof of Theorem 1.7. By Proposition 5.5 and Theorems 6.1, 6.2, we can write

4s Z

log | f (a))** — f(ax)**/%)|*
[a;1€Cl(d)), j=1,2

— 9 Z c24/d Z

dls te F*,1>0,Tr(1)=1/d

2y ¥

dls teF*,1>0,Tr()=1/d

x {logS >

pinertin E/F
pl3

>

pinertin E/F
p3

YY)

4/ DicOr,i>>0,Tr(H)=1/2 dls

x {logS >

pinertin E/F
pl3

>

pinertin E/F
pf3

a(t7 ¢d)

d2é2(da, 1)

=2

By Theorem 6.2, we have

Z d28(da, %) = Z d282(da, (21—;)

da|s2 da|s2

p@ (tv/Dp~1)84(ds, 1)

(14 ordy (tv/D)) p @ (tv/Dp~")83(d3, 1) log(Nm(p))}

PP (v Dy)33(ds, §)

(1+ ordy (7v/D)) p® (7v/Dp~")83(d3, &) log(Nm(p))}

Y dada(da, F) =2(2(Nm(®) + 1) =2y, (Nm (7)),

ds|1

D dady(d, 3) =4 { b

~ v (Nm(7)) — 1
1

> dady(da. E) =38

dold va(Nm(7)) — 3

1

> " dady(da. E) =16
d>]8

v (Nm(#)) =5

if v2(Nm(7)) = 0,
if v(Nm(7)) > 1,

if v(Nm(7)) = —1 mod 4
or v2(Nm(7)) = 2,
if v,(Nm(7)) > 3,

if vy (Nm(7)) = 4

or v2(Nm(7)) = 12 mod 16
or v2(Nm(7)) = 3 mod 8,
if v,(Nm(7)) > 5.
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From this, it is easy to check that

Y dda(da, ) =25 > ya(m), (6-10)

da|s2 ra)s2, m:=DNm(f/r2)€Z,
m=3 mod s/

where we write s = 5,53 with s, the p-part of 5. Similarly, we also have

K3(s)s3 > y3(m)

r3|s3,m:=DNm(i/r3)eZ,
m=d|+d>—1 mod s3/r3

_ {% Y guiss Lppp 2301 7/3)84(d3, ) i (%) = (%) = —1 and 2t v3(Nm(D)),

3 (6-11)
Zd3|S3 83 (d3, %) otherwise,

where «3(s) € {1, %} is the constant defined in (1-8). So suppose Diff(W, 1) = {po} with £ = Nm(po).
Then substituting in these gives us

2 daba(d %f>{10g3 > P VD §)

d|s pinertin E/F
pI3

+ Y (I+ordy(VD))p® (v Dp~")83(ds, Z) log(Nm(p))

pinertin E/F

pt3
=45 > log() [ [ vp(m) = 4s > log F(m).
r|s, m:=DNm(t/r)eZ plm rls, m:=DNm({/r)eZ
m=19D mod s/r m=19D mod s/r
After writing = (VD +a) / (4+/D) with a € Z in the summation, we obtain (1-9). O

6B. Local Calculations. We first need to write ¢q,, as a linear combination of ®p| p ®p for some
¢p € S(Ep) = S(Wp).

6B1. p =2. In this subsection, we deal with the case p = 2. Since d; = 1 mod 8, the prime 2 splits
completely. We fix 8, §; € ZJ such that

=D, 8 =d;, 88=34. (6-12)

We also denote

Note that
2
£d,8d, = (3) (6-13)
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For i = 1,2, let p; be the two primes in F above 2, and 3;, B; the two primes in E above p;. Then the
local fields Ey; and Eg; are isomorphic to Q; via the map

0 By £Qp, VD> (—1)16,
0 Ep, =Qa, VD> (=1)'s, Jd; > (—1)DUDs,
0i:Eg Q. VD> (=18, Jd;—> —(-1I"0 s,
Under these identifications, Wr = W ®q Q2 = W), x W), with
Wy = By = By, x B, 203 Q01,72 = (=D v,
Now we identify the (»-quadratic space

01 (V®a Q2. Q)= (Ey,. Op) X (Epy. Opy). (ﬁj 2)»» (01(0), 01(2), 02(x), 02(0).  (6-14)

with

X=x1+x2

_l-sz_l+X3l+g/d_2+X4_lzml+5/CT2€W2.

Under this isomorphism, we can identify S(V ® Q) with S(Ey,, x Ep,) = S(Ey,) ® S(Ey,), and map the
lattice Lg2 := Lgq® Z, onto

~

L:= {y =y YY) €Z3: ) yi € ZZz},
The Q;-quadratic form éd on L is given by

Q4(y) = _g(}’l)’z —y3y4) = Qp, (y1, y2) + Op, (3, ¥3).

Let
Lo= (2Zy)" =20g, x20g, =M x M,

with 1\7,- being the O Fy, -lattice 20 Ey, - Then
LOCZCZ/CL/ziLO and L' = y:L(yl ¥2, V3 y4)eLZ4‘y~+y‘=0mod2
07 44, 2d, 7T 2, 27T '

Notice that

1 . .
$7007 = D biyr ity ® Plys vl
yi€Z)27

2 i=0
where ¢4 = Char(A) for A C W,. To apply the general formula in [Yang et al. 2019], we define M; = Z%
with quadratic form Q;(y1y2) = (—l)i‘ts—dylyz. Then (M;, Q;) = (AZ-, Qy,) via scaling by 2. For any
w € (Q,/75)?, we denote

¢, = char(u +73)

and view it as an element in S(M;) forbothi =1,2if u € (ﬁzz/zz)z.
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Now, we can apply this scaling map to ¢4 o o1, where Pa.2 € S(Lqg2) is the Schwartz function
associated to ug 2. We denote the result by %,z € S(M; x My) = S(M) @ S(M»), which will depend on
the choice of § mod d;. We have listed them as follows.

Lemma 6.3. For$; € Z5 and § = 8,8, € 75, we have

or dy=1,

~ Po®P1 s+P1,—5Q¢0, dry=2,
$a2= 2((o+1,—)®bns+b2 s (Go+b1.0)). =4, 19

(53-)H(@0+81.9@35+ 82,5 @ ot b1.-5)+9250055-+03 -5 02, ). da =8,

where for j =1,2,3, r e (Z)2/1'7)*

bo = Z ¢%(k,k)_¢%(k,k+l)’ bjr:= Z Putar.jy = Puiasr+2i:j)

kez/27 ae(Z/2i+1)x
are elements in S(M;) with

1
war, )= gla,rah) € (Qo/22)".

Remark 6.4. Note that the support of us4 5 is the support of ug» after scaling by dz. This does not
affect ¢; , for j = 1, 2 but introduces the factor (d_23) when j = 3, since ¢, 2 = (%)qb;;’r for any odd
integer c. Therefore this factor appears above when d, = 8.

Proof. One can use Lemma 3.11 to check that the cosets on the right indeed appear. Then we have all of
them by counting. U

Now, we can apply the general Whittaker function formulas in [Yang et al. 2019] to obtain:

Lemma 6.5. Let §,(dy, t) be defined as in Theorem 6.2. Then we have

W0, ¢a2) (2)2“/%2

Y (W2) 5) 2%d0

for all totally positive t € F* with Tr(t) = é.
Proof. This can be checked case by case. For d, = 1, this was already done in [Yang and Yin 2019].
Otherwise, we can apply Propositions 5.3 and 5.7 in [Yang et al. 2019] after scaling the lattice by 2 and
the quadratic form by 4 (i.e., variant 2 in [Yang et al. 2019]). We write t; = 0;(¢) € Q, and suppose
o(t1) > o(ty) with o(t;) the 2-adic valuation of ¢; € Q5. The case o(t;) < o(ty) will be exactly the same.
Tables 1-6 contain the nonzero values of W;l_k 0, u,)/y (Wy,) fori =1.
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o(t1) wr = (0,0)

(:3) (

1
>2 o(t

0
)—2

1
0

Table 1. d, =2, 8 = —8d35~!.
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_ 11 1 a _a’ls a a l(=5+2)
o(1r) m= 0,0 (33 (0 (§.-%) G ~—72)
neds+47, 0 0 0 3 0
€ —ds+47, 0 0 0 0 3
2 0 1 0 0 0
>3 ot)—3 0 1 0 0
Table 2. d, =4, 8 = —16d35~.
_ 11 1 a als a 16+2) a als! a a '¢1+4)
o(1r) m= 0,0 (33 (0 (1.9 G~ =) G—F%)
t € 3(—d3 +8Z,) 0 0 0 0 0 ! 0
1 € 3(3d3 +82,) 0 0 0 0 0 0 i
1 € 2(—d3 +47,) 0 0 0 i 0 0 0
1t € 2(d3 +475) 0 0 0 0 3 0 0
3 0 1 0 0 0 0 0
>4 o(r)—4 0 1 0 0 0 0
Table 3. d, =8, 8 = —32d36\.
a a”! a a71
o) m= (.95 (§.¢2)
>1 3 0
Table4. d, =2, 8 =8d35 .
-1 a!
o) w= (550 (5 )
0 0 :
> 1 1 0
Table 5. d, =4, = 16d35~ .
o a'sd? o a '(6d248) o Sa~lsd? o a ' (58d2+8)
o)  m= (5 —5) (6% ) (6 —1) (o)
-1 0 i 0
>1 5 0 0 0

Table 6. d, =8, B =32d386 .



2232 Yingkun Li and Tonghai Yang

For i = 2, we write «(uy, t2) := Buaiy — t2 in the notation of [Yang et al. 2019]. When d, = 2,
we have 1, € %(d;l +47,) if o(t;) > 1, since t; +t» = 1/(2d3). Then with B = 8d38~!, we have

a(u(a; 8,1), 1) = 492 — 1y € 27,. When dy = 4, we have

1 +1+422,  ifo(t) =0,

Hh € q
1451 +27, if o(1) > 1,

since t;+1, = 1/(4d3). Then with 8 = 16d38~!, we have a(w(a; 8, 2), 1) € Z3, a(u(a; 8+4,2), 1) € 27,
if o(t}) =0, and a(u(a; 8, 2), ) € 275, a(u(a; §+4,2), ) € ZZX if o(t1) > 1. When d, = 8, we have

1y +1ds+22,  ifo(t) =1,

e I
545" +22, if o(t) > 1,

since t; + 1, = 1/(8d3). Then with g = 32d38~!, we have

17x .
=7 ifo(t]) = —1,
a(u(a; 62, 3), 1) € | 2 o
) 275 if o(ty) > 1,

if o(t)) = —1,
X

A if o(ty) > 1,

5 27,
and a(i(a; 8d3 + 8, 3), 1), a(iu(a; 58d2 + 8, 3), 1) & 275.
Putting these together, we see that when d, = 2, we have
Wi 0, ¢a2) [ 1 if o(t)) = 1,
y(Wa) o) —4  ifo(t) >2.
Notice that vo(Nm(¢)) = o(t1t2) = o(t;) — 1. This proves the lemma for d = 2. When d, = 4, we have
Fl if t; € &d3 +472,,
1 if o(t)) =2,
o(t))—5 ifo(yy) > 3.

W7 (0. da2) _
y (W)

Notice that v,(Nm(?)) = o(t1t2) = o(t;) — 2. If t; € £d3 + 475, then 41, € d3_1 + 47, and Nm(2¢t) =
411t = =1 mod 4. This proves the lemma for d; = 4. Finally when d, = 8, we have
1 if 1| € 3(—d3 4+ 82,),
—1 if 1| € 3(3d3 +8Z5),
Fl1 if 4y € 2(£d3 +42,),
1 if o(t]) =3,
o(t;))—6 ifo(y)) = 4.

W;(0, ¢a.2)
()= am -

Notice that v,(Nm(?)) = o(t11) = o(t;) —3. If t; € %(—dg +475), then 81, € d3_1 +4+487, and Nm(4t) =
16¢1t, =3 mod 8. Similarly, if #; € %(3(13 +475), then 8¢, € d;l +4487, and Nm(4t) = 16t =7 mod 8.
If 11 € 2(x£d3+47,), then 81, € d3_1 487, and Nm(2¢t) = 4t,t, = £1 mod 4. This completes the proof. [J
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6B2. p =3. If d3 = 1, then ¢4 3 = Char(Og ® Z3) and the calculations have been done before. So
suppose d3 = 3. There are 3 cases to consider.

O € R C

The first case is similar to the case p = 2 considered above. We again fix §; € Z3 square roots of d;
and denote § := §;6,. Then the analog of the map in (6-14) for p= 3, which we also call o, identifies
La3z = My (Z3) W1th L3 := 7%, which has the quadratic form Qd(y) 34 (y1y2 — y3y4). Denote
¢>d,3 =¢g300" les (L3) where ¢y 3 is the Schwartz function associated to ug3 € C[Aqg 3]. Then the
analog of Lemma 6.3 is as follows.

Lemma 6.6. For §; € 75 and § = 8,8, = £1 mod 3, we have

Ba3 =0 ® s+ P_s @ o+ 205 D P,

where
b0 :=260.0) ~ (P10, T PLa.0 T PLoy TPLo2): P21 =010 un Tdl010):

are in S(Z%).
Proof. This follows from a straightforward calculations as in the case p = 2. (I
Lemma 6.7. Suppose (%’) = 1. Then we have

Wr0.¢as) |2 if v3(Nm()) = —2,

v (W3) 203(Nm(7))  if vs(Nm(r)) > —1,

for all totally positive t € F* with Tr(t) = é.
Proof. Apply Lemma 6.6 and Propositions 5.3, 5.7 in [ Yang et al. 2019]. |

In the second case, the prime 3 is inert in F and splits into two primes 33, 3 in E. We therefore fix
8 € Q3 such that > = D, and denote Fs := Q3(8) the quadratic extension of Q3 with O5 C Fj its ring
of integers, where 3 is inert. For any choice of §; € Fj such that 8? =d; and 6,6, = §, we can identify
W ® Q3 with F5 x Fj via

(a1 +b1v/d1) ® (a2 + bav/dy) > (a1 +b181) (@2 + b282), (a1 — b181) (a2 — b282)).

This identifies the Q3-vector spaces V ® Q3 and Fs x Fs. The Z3-lattice L3g, ® Z3 and its dual lattice
L3y, ®Z3in V ® Q3 are then mapped to

Ly:=05x0s5 and Zg =3710; x 3710,

respectively. The finite Z3-modules (L, a0,/ L3d,) ® 3 and O5 /305 x O5/30s are explicitly identified via

1 <x3 xl) ®7s > (dz_l(xl +x2 — X3 = Xg + (X2 = x2)81 — (¥3 +x4)82 + x49),
3d2 X4 X

a3 n b =5 =X — (= )8+ (5 xR +0). (616)
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The latter can be viewed as the finite quadratic module of the Os-lattice O ® Z3 = Os x Oy with the
Fs-quadratic form Qqs5(y) := —%ﬁylyz for y = (y1, y2) € Fs x Fs. Note that O5 /305 = (Z/37)[5] is a
finite field of size 9.

Now let (’Edﬁ € S(Of ® Z3) be the Schwartz function associated to ¢q,3 € S(Lg,3) under the map in
(6-16). It is easy to check by hand the following lemma.

Lemma 6.8. Let 6, 51,5, € @3 be as above. Then

Ga3=2> =Y bu— Y Pu (6-17)

1ESo LHES) HeS-
where S; :={u € (32/2)[8] x (3Z/Z)[8]: Qus() = 3(—d2 + j8) € (32/2)[581} for j =0, £1.
Remark 6.9. The size of S; is 8 for every j.
We can now apply Proposition 5.3 in [Yang et al. 2019] to find the value of the Whittaker function.

Lemma 6.10. Suppose (‘g—l) #= (%‘) Then we have

Wr0,443) | 2 ifNm@3r)=1 mod3,

y(W3) —1 ifNm(3t) =2 mod 3,

for all totally positive t € F* with Tr(t) = é.

Proof. First, § = —3d,/§, the normalizing L-factor is L(1, x) = % and the volume vol(Op, dgx) = é.
Suppose t = (§ +a)/(6d28) € Fs. For u € §;, the quantity 3o (u, 1) is

Bar(u, 1) :=3(Qas (1) — 1) = (—da + j8) — 2(d28) ™" (§ +a) = (j — dra)8 mod 3
since 82 = D = 2 mod 3. Now 3a(u, 1) = 0 mod 3 if and only if 3 | (j — dpa). This happens when
3| (j,a), in which case u € Sy and Nm(3¢) =1 +a? =1 mod 3. The value of WO, $d,3)/y(W3) is 2.
Otherwise if 3{a and 3 | (j —dza), then u € S4,, and Nm(3¢) =2 mod 3. The value of W;*(0, ad,3)/y(W3)
is then —1. This finishes the proof. (I

In the last case, we need to calculate both the value and derivative of the Whittaker function at s =0
since 3 splits into the product of two inert primes pp, py in F. As in the setup of the previous two cases, we
fix 8, §; € Qs such that 81.2 =d; and § = 65, € Z3. Denote E:= Q3(851) = Q3(8,) the quadratic extension
of Q3 with ring of integers O. This gives an identification

0 FRQ3=Q3: VD> (=1)'8, o0;:Ep, ZE:Jdj > (=1)"DU-Dg,,
Then the isomorphism in (5-1) induces V@ Q3 =W @ Q3 = Ep, X Ey, = ExE , with the quadratic form
ony € E,, givenby Q;(y) := (—l)i_1(3d2)/(«/5)Nm(y). The lattice Lg 3 is then isometric to
Liz:=0xOCEXE,
whose dual lattice is ZZU = %(7) X %5 CExE , with respect to the quadratic form éd,a(y) =

—(3dy/8)(Nm(y;) — Nm(y,)) for y = (y1, ») € E x E. Under this identification, the Schwartz function
q?b’d’g es (Zd,3) associated to ¢4 3 € S(Lg,3) has the following decomposition.
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Lemma 6.11. Let 6, 51, 6, € @3 be as above. Then

$13=2) $u®b0+2 ) d®¢u— D D¢ (6-18)

HES) MES_| MIES_1,2€ES)
where S; := {j € 10/0: —3Nm(u) = £ mod Z3} for j = £1.
Now, we can again apply Proposition 5.3 in [Yang et al. 2019] to calculate the values and derivatives

of the Whittaker function.

Lemma 6.12. Suppose (%‘) = (%1) = —1. Then we have

=1 ifvs(Nm(r)) = -2,

% =1 2 ifvs(Nm(2)) > 0 is even,
7 0  otherwise,
% - <U3 (Nm(#)) + %) log3 if us(Nm(r)) > —1 is odd,

or all totally positive t € F* with Tr(t) = L.
d

Proof. Denote t; := 0;(t) € Q3 and o(f;) its valuation. Since Tr(¢) = 1/(3dy), either o(t;) = —1
for both i = 1,2, or o(t;) > 0 for exactly one of i = 1, 2. In the first case, it is easy to check that
Wi (s, o ® ¢o) and W;, (s, ¢o @ ¢,,) are identically zero by Proposition 5.7 in [Yang et al. 2019]. If
we write f; = (6§ —a)/(2d,36), o = (§ + a)/(2d2368) with a € Z3, then we must have a € 373 since
8>=D e 14375 and

—2=o0(t) +o(rr) =o(titr) = =24 0(8* —a®) = =2+ o(1 — a?).

That means for 1, € S_; and u, € S;, we have

3d2 d2 d—a
1) = ——=N —fj=—————=0mod Zs,
a(ur, ty) 5 m(u) — 4 3 24,36 mod Z3
(2, 1) = 2N( ) —t d> 5+a_0 dz
, ) = —Nm —h=—————=0mo
o\, In M2 2 3 2d235 3

By Proposition 5.3 in [Yang et al. 2019], y (W3)~! Wi (0, dp, Q@ du,) = 1—16 for any (1, o) € S—1 x S1.
Since S; has size 4 for j = £1, we obtain

W (0, ¢q,3) _
v (W3)

-1

when v3(Nm(z)) = o(t)) + o(tp) = —2.
In the second case, suppose o(t;) > 0. Then Propositions 5.3 and 5.7 in [Yang et al. 2019] imply that
Wi (s, ¢u, @ ¢u,) vanishes identically for (p1, u2) € S—1 x §1 and

WtT(O’ ¢0) _ 1 + (_1)()(“)_1 W;; (09 ¢,u)
y (Wp,) 2 T (W)

_ 1
=L(1, xp,)37 ' = T
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w*! (0, 20(t1) + 1
n( ¢0): o(t) + log(3) when2|o(f)

Yy (W) 2
when u € Sy asa(u, o) =—(d,Nm(w))/(38)—1 € d?z—t2+Z3 =/73. Since v3(Nm(t)) =o(t11r) =o(t;)—1,
we obtain the lemma when o(#;) > 0. The case o(#;) > 0 holds similarly. ]

Appendix

We record here the set Kd,z(Né’z) CAar=27]drZ xZ7/2drZ x Z/2d,Z x Z/d2Z. Note that the group Né’z
and the map ds - k42 only depend on dj. This helps with checking Lemma 3.11.

Kl,Z(N{’z) = K3,2(N§’2) = {[07 O]}v KZ,Q(NQ’Z) = K6,2(Né’2) = {[17 05 07 l]a [17 2a 25 1]}7

K42(Nj ) = k12.2(Njp ) =
{11,2,6,3],[1,6,2,3],[1,0,0,1],[1,4,4,1],[3,6,2, 11,3, 2,6, 11, [3, 0,0, 3], [3, 4, 4, 3]}.

K8,2(Ng 5) =
{[1, 2,14,7],[1,6,10,7],[1, 10,6,7],[1, 14,2,71,[1,0,0, 11,1, 4, 12, 1], [1, 8,8, 1], [1, 12,4, 1],
[3, 14,10, 5], (3, 2,6, 5], [3, 6, 2, 5], [3, 10, 14, 5], [3, 8, 0, 31, [3, 12, 12, 3], [3, 0, 8, 3], [3, 4, 4, 3],
[5,2,6,3],[5,6,2, 3], [5, 10, 14, 3], [5, 14, 10, 3], [5, 8, 0, 51, [5, 12, 12, 5], [5, 0, 8, 51, [5, 4, 4, 5],
[7,14,2, 11,17, 2, 14,11, [7,6, 10, 1], [7, 10,6, 1], [7,0,0, 71, (7,4, 12,71,(7, 8, 8,71, [7, 12, 4, 7]}

K24,2(Npy 5) = k24 2(Ng 5) = 3! -kg2(Ng 5) =
{[3, 6, 10, 5], [3, 2, 14, 5], [3, 14, 2, 5], [3, 10, 6, 5], 3, 0, 0, 31, [3, 12, 4, 3], [3, 8, 8, 31, [3, 4, 12, 3],
1,10, 14,7],[1,6,2,7],]1,2,6,7],[1, 14, 10,7],[1,8,0, 1], [1, 4,4, 1],[1,0,8, 1], [1, 12, 12, 1],
[7,6,2,11,17,2,6,11,17, 14, 10, 11, [7, 10, 14, 11, [7, 8,0, 71, [7,4,4,7],[7,0, 8,71, [7, 12, 12, 7],
[5, 10,6, 3], [5, 6, 10, 3], [5, 2, 14, 3], [5, 14, 2, 3], [5,0, 0, 51, [5, 12, 4, 5], [5, 8, 8, 5], [5, 4, 12, 5]}

Here we also include an explicit example for Theorem 1.7. Let d; = —31, d, = —127, which have
class numbers 3 and 5 respectively and satisfy d; = 17 mod 24. Then the minimal polynomials of the

invariants f([l, %(1 + \/aT])]) are

g =x+x—1, g)=x—x*-23+x2+3x—1. (6-19)
Table 7 lists the values of §(m) for various m. By the Gross—Zagier theorem, one obtains J(d;, d») by
simply takes the product of all the numbers in the fourth column. For f(d;, d>), one takes product of

the entries 8(%) over all the m’s in the table and r | s satisfying m =4 - 19(d; +d> — 1) mod 4sr. This
congruence condition eliminates many entries, especially if s is large. For example, we have

puttn = (5(5)5 (G5 (G (35) =

by Theorem 1.7. One can then immediately check that this is the absolute value of the resultant of the

minimal polynomials g1, g2 in (6-19).
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m m m m m m m m
a« o omoommedse 500 5(35) 3(5) 3() 5() 5(5) 3(7%) () S(i)
1 23.3.41 24 38 34 1 1 1 1 1 1
3 2491 22 4912 1 1 1 1 1 1 1 1
5 2.3.163 18 34 1 1 1 1 1 1 1 1
7 22.3° 12 3% 33 1 1 1 3? 1 1 1
9 22.241 4 2413 241 1 1 1 1 1 1 1
11 2-32.53 90 532 1 1 1 1 1 1 1 1
13 2.3-157 78 34 1 1 1 1 1 1 1 1
15 2°.29 64 200 29* 292 1 1 1 1 1 1
17 2*.3.19 48 310 36 32 1 1 1 1 1 1
19 2-3.149 30 34 1 1 1 1 1 1 1 1
21 2-19.23 10 234 1 1 1 1 1 1 1 1
23 2%2.3.71 84 36 32 1 1 1 1 1 1 1
25 22.32.23 60 233 23 1 1 1 23 1 1 1
27 2-401 34 4012 1 1 1 1 1 1 1 1
29 2.32.43 6 432 1 1 1 1 1 1 1 1
31 23.3.31 72 38 34 1 1 1 1 1 1 1
33 23.89 40 89* 892 1 1 1 1 1 1 1
35 2.3-113 6 34 1 1 1 1 1 1 1 1
37 2-3-107 66 34 1 1 1 1 1 1 1 1
39 2%.151 28 1513 151 1 1 1 1 1 1 1
41 22.3.47 84 36 32 1 1 1 1 1 1 1
43 2.3%2.29 42 292 1 1 1 1 1 1 1 1
45 2.239 94 23972 1 1 1 1 1 1 1 1
47 2+.33 48 310 36 32 1 1 33 3 1 1
49 27.3 0 38 36 34 32 1 1 1 1 1
51 2-167 46 1672 1 1 1 1 1 1 1 1
53 2.3.47 90 34 1 1 1 1 1 1 1 1
55 22.3.19 36 30 32 1 1 1 1 1 1 1
57 22.43 76 433 43 1 1 1 1 1 1 1
59 2.3-19 18 34 1 1 1 1 1 1 1 1
61 2.33 54 34 1 1 1 1 1 1 1 1

Table 7. Values of § for (dy, d») = (=31, —127).
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On iterated product sets with shifts, |l

Brandon Hanson, Oliver Roche-Newton and Dmitrii Zhelezov

The main result of this paper is the following: for all b € Z there exists k = k() such that
max{|A©, [(A+uw)®1} = 1A%,

for any finite A C @ and any nonzero u € Q. Here, |A¥)| denotes the k-fold product set {a; - - - ay :
ar, ..., a EA}.

Furthermore, our method of proof also gives the following /, sum-product estimate. For all y > 0
there exists a constant C = C(y) such that for any A C Q with |AA| < K|A| and any c;, c; € Q )\ {0},
there are at most K€|A|” solutions to

cix+oy=1, (x,y)eAxA.

In particular, this result gives a strong bound when K = |A|¢, provided that € > 0 is sufficiently small,
and thus improves on previous bounds obtained via the Subspace Theorem.

In further applications we give a partial structure theorem for point sets which determine many
incidences and prove that sum sets grow arbitrarily large by taking sufficiently many products.

We utilize a query-complexity analogue of the polynomial Freiman—Ruzsa conjecture, due to Palvolgyi
and Zhelezov (2020). This new tool replaces the role of the complicated setup of Bourgain and Chang
(2004), which we had previously used. Furthermore, there is a better quantitative dependence between the
parameters.

1. Introduction

1.1. Background and statement of main results. Let A be a finite set of rational numbers and let u € Q
be nonzero. In this article we wish to investigate the sizes of the k-fold product sets

AL ={a1---ar:ay,...,ar € A} and (A+u)(k)={(a1+u)---(ak+u):al,...,akeA}.

This is an instance of a sum-product problem. Recall that the Erdés and Szemerédi [1983] sum-product
conjecture states that, for all € > 0 there exists a constant c(¢) > 0 such that

max{|A + A|, |[AA[} > c(e)|A]*¢

holds for any A C Z. Here A+ A:={a+b:a, b c A} is the sum set of A, and AA is another notation
for A®. Erd6s and Szemerédi also made the more general conjecture that for any finite A C Z,

max{[kAl, |A¥[} > c(e)|A|F,

MSC2010: primary 11B99; secondary 11D72.
Keywords: sum-product problem, S-units, weak Erd6s—Szemerédi, unbounded growth conjecture, subspace theorem.
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where kA :={a+---+ar:ai,...,ar € A} is the k-fold sum set. Both of these conjectures are wide open,
and it is natural to also consider them for the case when A is a subset of R or indeed other fields. The
case when k = 2 has attracted the most interest. See, for example, [Konyagin and Shkredov 2015; 2016;
Solymosi 2009; Tao and Vu 2006] for more background on the original Erdés—Szemerédi sum-product
problem.

Most relevant to our problem is the case of general (large) k. Little is known about the Erd6s—Szemerédi
conjecture in this setting, with the exception of the remarkable series of work of Chang [2003] and
Bourgain and Chang [2004]. This culminated in the main theorem of [Bourgain and Chang 2004]: for all
b € R there exists k = k(b) € Z such that

max{|kAl, |A*|} > |A[? (1)

holds for any A C @. On the other hand, it appears that we are not close to proving such a strong result
for A CR.

In the same spirit as the Erd6s—Szemerédi conjecture, it is expected that an additive shift will destroy
multiplicative structure present in A. In particular, one expects that, for a nonzero u, at least one of |A®)|
or |(A 4+ u)®] is large. The k = 2 version of this problem was considered in [Garaev and Shen 2010]
and [Jones and Roche-Newton 2013]. The main result of this paper is the following analogue of the
Bourgain—Chang theorem.

Theorem 1.1. For all b € Z, there exists k = k(b) such that for any finite set A C Q and any nonzero
rational u,

max{|A“|, |(A + )|} = |AI".
This paper is a sequel to [Hanson et al. 2019], in which the main result was the following:

Theorem 1.2. For any finite set A C Q with |AA| < K|A|, any nonzero u € Q and any positive integer k,

A"

(k)
A+0®lz oo

The proof of this result was based on an argument that Chang [2003] introduced to give similar bounds
for the k-fold sum set of a set with small product set. Theorem 1.2 is essentially optimal when K is of
the order c log|A|, for a sufficiently small constant ¢ = c¢(k). However, the result becomes trivial when K
is larger, for example if K = |A|€ and ¢ > 0. The bulk of this paper is devoted to proving the following
theorem, which gives a near optimal bound for the size of (A + u)® when K = |A|°, for a sufficiently
small but positive €.

Theorem 1.3. Given 0 < y < %, there exists a positive constant C = C(y, k) such that for any finite
A C Qwith |AA| = K|A| and any nonzero rational u,
|A|k(1—y)—l

(k)
(A+w® = =g
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In fact, we prove a more general version of Theorem 1.3 in terms of certain weighted energies and so-
called A-constants (see Theorem 3.6 for the general statement that implies Theorem 1.3 —see Sections 2
and 3 for the relevant definitions of energy and A-constants). This more general result is what allows us
to deduce Theorem 1.1.

1.2. A subspace type theorem — an l, sum-product estimate. It appears that Theorem 1.1, as well as
the forthcoming generalized form of Theorem 1.3, lead to some interesting new applications. To illustrate
the strength of these sum-product results, we present three applications in this paper.

Our main application concerns a variant of the celebrated subspace theorem by Evertse, Schmidt and
Schlikewei [Evertse et al. 2002] which, after quantitative improvements by Amoroso and Viada [2009],
reads as follows: Suppose ay, ..., ar € C*, ay, ..., a, € C* and define

F={a" o, zi €7},

so I' is a free multiplicative group of rank r.! Consider the equation

aix1+axxo+ - Farxi =1 2)
with a; € C* viewed as fixed coefficients and x; € I' as variables. A solution (x, ..., xz) to (2) is called
nondegenerate if for any nonempty J C {1, ..., k}

Z a; X 75 0.
ieJ

Theorem 1.4 (the subspace theorem [Evertse et al. 2002; Amoroso and Viada 2009]). The number A(k, r)
of nondegenerate solutions to (2) satisfies the bound

Alk, r) < (8k) ¥ dHrD (3)
The subspace theorem dovetails nicely to the following version of the Freiman lemma.

Theorem 1.5. Let (G, -) be a torsion-free abelian group and A C G with |AA| < K|A|. Then A is

contained in a subgroup G’ < G of rank at most K.

Now assume for simplicity that A C @ and |[AA| < K|A|. Let us call such sets (this definition
generalizes of course to an arbitrary ambient group) K -almost subgroups.”

We now show that it is natural to expect that the subspace theorem generalizes to K -almost subgroups
with K taken as a proxy for the group rank. A straightforward corollary of Theorems 1.5 and 1.4 is as
follows.

I The original theorem is formulated in a more general setting, namely for the division group of I', but we will stick to the
current formulation for simplicity.

20ne could have used a more general framework of K -approximate subgroups introduced by Tao. We decided to introduce a
simpler definition in order to avoid technicalities. However, in the abelian setting the definitions are essentially equivalent.
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Corollary 1.6 (subspace theorem for K-almost subgroups). Let A be a K-almost subgroup. Then the
number A(k, K) of nondegenerate solutions (x1, x3, ..., Xg) € A¥ 1o

cixi+exo+ - Foxg =1
with fixed coefficients c; € C* is bounded by
Ak, K) < (Sk)4k4(k+kl(+l)'

Similarly to (1), the bound of Corollary 1.6 becomes trivial when A is large and K is larger than
clog|A| for some small ¢ > 0.
We conjecture that a much stronger polynomial bound holds.

Conjecture 1. There is a constant c(k) such that Corollary 1.6 holds with the bound
Ak, K) < K°®,

We can support Conjecture 1 with a special case k =2 and A C Q, ¢; € Q@ and a somewhat weaker
estimate, which we see as a proxy for the Beukers—Schlikewei theorem [Beukers and Schlickewei 1996].

Theorem 1.7 (weak Beukers—Schlikewei for K -almost subgroups). For any y > 0 there is C(y) > 0 such
that for any K -almost subgroup A C Q and fixed nonzero cy, ¢; € Q the number A(2, K) of solutions
(x1,x) € A2 to

cix1+coxy =1

is bounded by
A2, K) <|A|"KC.

One can view Theorem 1.7 as an [, version of the weak Erdés—Szemerédi sum-product conjecture.
The weak Erdds—Szemerédi conjecture is the statement that, if |AA| < K|A| then |A + A| > K~C|A|? for
some positive absolute constant C. For A C Z, this result was proved in [Bourgain and Chang 2004], but
the conjecture remains open over the reals.

A common approach to proving sum-product estimates is to attempt to show that, for a set A with
small product set, the additive energy of A, which is defined as the quantity

E.(A):=|{(a,b,c,d) e A* :a+b=c+d)|,

is small. Indeed, this was the strategy implemented in [Chang 2003] and [Bourgain and Chang 2004], the
latter of which showed that,? for all y > 0, there is a constant C = C(y) such that for any A C Q with
|AA| = KAl

E.(A) <KC|A*Y, 4)

3This is something of an over-simplification, as [Bourgain and Chang 2004] in fact proved a much more general result which
bounded the multifold additive energy with weights attached.
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Since there are at least |A|? trivial solutions when {a, b} = {c, d}, this bound is close to best possible. It

then follows from a standard application of the Cauchy—Schwarz inequality that

AP

[A+ Al >
Defining the representation function r444(c) = |{(a1,a2) € A x A :a; +ax = c}|, it follows that

E¢(A) =) rasa®)’,
X
and so bounds for the additive energy can be viewed as [, estimates for this representation function.
Theorem 1.7 gives the stronger [, estimate: it says that, if |AA| < K|A| then r44(c) < KC€|A|” for
all ¢ # 0. This implies (4), and thus in turn the weak Erd6s—Szemerédi sum-product conjecture. We prove

Theorem 1.7 in Section 4.

Remark. It is highly probable that our method can be combined with the ideas of [Bourgain and Chang
2009] which would generalize Theorem 1.7 to K -almost subgroups consisting of algebraic numbers of
degree at most d (though not necessarily contained in the same field extension). The upper power C is
going to depend on d then, so the putative bound (using the notation of Theorem 1.7) is

AQ2,K) <C'(d)|AYK TP

with some C, C’ > 0. We are going to consider this matter in detail elsewhere. Note, however, that
proving a similar statement with no dependence on d seems to be a significantly harder problem.

1.3. Further applications.

1.3.1. An inverse Szemerédi-Trotter theorem. Theorem 1.7 can be interpreted as a partial inverse to the
Szemerédi—Trotter theorem. The Szemerédi—Trotter theorem states that, if P is a finite set of points and L
is a finite set of lines in R2, then the number of incidences I (P, L) between P and L satisfies the bound

I(P,L):=|{(p,])e Px L:pel}l=0(PI**ILI**+|P|+|L)). )

The term |P|*/3|L|*/? above is dominant unless the sizes of P and L are rather imbalanced. The
Szemerédi—Trotter theorem is tight, up to the multiplicative constant.

It is natural to consider the inverse question: for what sets P and L is it possible that / (P, L) =
Q(|P|*3|L|*/?)? The known constructions of point sets which attain many incidences appear to all have
some kind of lattice like structure. This perhaps suggests the loose conjecture that point sets attaining
many incidences must always have some kind of additive structure, although such a conjecture seems to
be far out of reach to the known methods.

However, with an additional restriction that P = A x A with A C Q, Theorem 1.1 leads to the following
partial inverse theorem, which states that if A has small product set then / (P, L) cannot be maximal.
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Theorem 1.8. For all y > 0 there exists a constant C = C(y) such that the following holds. Let A be a
finite set of rationals such that |AA| < K|A| and let P = A x A. Then, for any finite set L of lines in the
plane, (P, L) <3|P|+|A]"K€|L|.

In fact, not only does this show that / (A x A, L) cannot be maximal when |A A| is small, but better still
the number of incidences is almost bounded by the trivial linear terms in (5). The insistence that the point
set is a direct product is rather restrictive. However, since many applications of the Szemerédi—Trotter
Theorem make use of direct products, it seems likely that Theorem 1.8 could be useful. The proof is
given in Section 5.

1.3.2. Improved bound for the size of an additive basis of a set with small product set. Theorem 1.7
also yields the following application concerning the problem of bounding the size of an additive basis
considered in [Shkredov and Zhelezov 2018]. We can significantly improve the bound in the rational
setting, pushing the exponent in (6) from % + ﬁ —o0(1) to % — 0¢(1) in the limiting case K = |A|€.

Theorem 1.9. For any y > 0 there exists C(y) such that for an arbitrary A C Q with |AA| = K|A| and
B, B’ C Q,

S:=|{(b,b') e Bx B :b+b" e A}| <2|A]” K  min{|B|"*|B| +|B|, |B'|'*|B| +|B'|}.
In particular, for any y > 0 there exists C(y) such that if A C B + B then
Bl = |APFVKTC. 6)
The proof of Theorem 1.9 is given in Section 5.

Remark. During the preparation of the manuscript we became aware that Cosmin Pohoata has indepen-
dently proved Theorem 1.9 using an earlier result of Chang and by a somewhat different method.

1.3.3. Unlimited growth for products of difference sets. It was conjectured in [Balog et al. 2017] that for
any b € R there exists k = k(b) € N such that for all A C R

(A — A=A

In another application of Theorem 1.1, we give a positive answer to this question under the additional
restriction that A C Q. In fact, we prove the following stronger statement.

Theorem 1.10. For any b € R there exists k = k(b) € N such that for all A C Q and B C Q with |B| > 2,
A+ B = A",
The proof is given in Section 5.

1.4. Asymptotic notation. Throughout the paper, the standard notation <, > is applied to positive
quantities in the usual way. Saying X > Y or ¥ <« X means that X > cY, for some absolute constant
¢ > 0. The expression X ~ Y means that both X > Y and X < Y hold.
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1.5. The structure of the rest of this paper. In Section 2, we introduce a new kind of mixed energy, and
establish some initial bounds on this energy which are strong when the set A is defined by relatively few
primes (c log|A| for a sufficiently small constant c¢). The structure of these arguments are similar to those
introduced by Chang [2003], and also used by the authors in [Hanson et al. 2019].

The goal of Section 3 is to prove the main technical result of the paper, Theorem 3.6. The statement
uses the language of A-constants, which is a robust generalization of additive energy, and so we must
first define what these constants are and identify some of their crucial properties. We also introduce the
notion of query complexity, which is nicely tuned in to the techniques used and results established in
Section 2. An essential tool in converting the bounds from Section 2 into strong bounds for A-constants
is a deep new result of Zhelezov and Palvolgyi [2020].

In Section 4, we use Theorem 3.6 to conclude the proofs of the main results of this paper, Theorems 1.1,
1.3 and 1.7. Finally, in Section 5, we give proofs of further applications of our main results.

2. A Chang-type bound for the mixed energy

Different kinds of energies play a pivotal role in the work of Chang [2003] and Bourgain and Chang
[2004], as well as [Hanson et al. 2019]. In [Chang 2003], it was proved that, for any finite set of rationals
A with |AA| < K|A|, the k-fold additive energy, which is defined as the number of solutions to

a4 Aa=ap +-an, (... ax) € A%, @)

is at most (2k? — k)*8| A|*. A simple application of the Cauchy—Schwarz inequality then implies that the
k-fold sum set satisfies the bound
Al*

kAl > ————.
WAL= G2 —ipx

Bound (7) is close to optimal when K = clog|A|, but becomes trivial when K = |A|®. In [Bourgain and
Chang 2004], (a weighted version of) this bound was used as a foundation, and developed considerably
courtesy of some intricate decoupling arguments, in order to prove a bound for the k-fold additive energy
which remains very strong when K is of the order |A|°.

In [Hanson et al. 2019], we followed a similarly strategy to that of [Chang 2003], proving that for any
finite set of rationals A with [AA| < K|A| and any nonzero rational u, the k-fold multiplicative energy of
A + u, which is defined as the number of solutions to

(a1 +u) - (g +u) = (ar1 +u) - (ay +u), (a,...,ay) e A%, ®)

is at most (Ck?)*X|A|¥. Unfortunately, in adapting the approach of [Chang 2003] in order to bound
the number of solutions to (8) in [Hanson et al. 2019], we encountered some difficulties with dilation
invariance which made the argument rather more complicated, and we were unable to marry our methods
with those of [Bourgain and Chang 2004] to obtain a strong bound when K is of order |A|®.
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In this paper, we modify the approach of [Hanson et al. 2019] by working with a different form of
energy. Consider the following representation function:

re, ) =1, ...,a) € A¥ iy cap =x, (a1 4+u) - (@ +u) =y}

Then, because r is supported on A® x (A +u)®, it follows from the Cauchy—Schwarz inequality that

2
|A|2k:( > rk(x,y)) <1A9)|(A +u)®] > ne@ i)

(x.7)€A® x (A1) ® (6, 1)EAD x (A+u)®

The latter sum is the quantity

k k k k
Ev(A;u) = H(al,...,ak,bl,...,bk) e A% . l_[ai :Hbi, H(ai—l—u):l_[(b,-—i-u)”.
i=1 i=1 i=1 i=1

We summarize this in the following lemma.

Lemma 2.1. For any finite set A C R, any u € R\ {0} and any integer k > 2, we have
AP < JADNA + )P Ex(A; w).

In particular,

Al* ® ®
< max{[A™], [(A+u)"|}.
Ex(A; u)l/2

Our goal is to estimate this energy and to show that, at least for sets of rationals, it cannot ever be too
big.

In this section we seek to give an initial upper bound for Ei(A; u). The strategy is close to that of
Chang [2003]. There are also clear similarities with the prequel to this paper [Hanson et al. 2019].

To do this, as in [Hanson et al. 2019], we will write Ek (A; u) in terms of Dirichlet polynomials. In
this case, our Dirichlet polynomials will be functions of the form

b
Fonsy= Y 12D

a’! sz
(a,b)eQ?

where f : Q> — C is some function of finite support. It will also be more convenient to count weighted
energy. For w, a sequence of nonnegative weights on A, let

Epw(Asu) = Z Way * = Wa Wy~ * * W

ay---ax=b;---by
(ar+u)-(ag+u)=(br+u)--(bg+u)

Lemma 2.2. Let A be a finite set of rational numbers and let u be a nonzero rational number. Then, for
any integer k > 2, we have

E~k,w(A; u) = hm — dlldtz

T—00 T2

Z wya ll‘l (a + u)ltz
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Proof. Expanding, the double integral on the right hand side is equal to

E E wal...wakwbl...wbk

al,..., akEAbl ..... bkEA

T T
(ar---agby - b dr / (a1 +u) - (g +uw) by +u) o (b +u) D2 di.
0 0
Now
=
—/ (u/v)" dt = Lo
uv(T ) ifu#v.
From this, the lemma follows. O

Let ||-|l2x be the standard norm in L%([0, T]?), normalized such that ||1]x = 1. So,

1 (T T N
||f||zk:=(ﬁ/0 /0 T dt) .

Lemma 2.3. Let J be a set of integers and decompose it as J = 1 U---U Jy. Foreach j € J let
fi :RxR— C be a function belonging to L**(R?) for every integer k > 2. Then, for every integer k > 2,

2% 1/k
i(t1, 1) dfldt2>

1
lim (—
T—oo\ T2

1/k
(tl,l‘z) dtldtz) . (10)

Proof. 1t suffices to prove the inequality for all sufficiently large 7', which we assume fixed for now. Then

(%/OT/OT 2kd;1dz2)l/k ( >2§<Z Zf/ >2, an

n=1"jed,
by the triangle inequality. By the Cauchy—Schwarz inequality, (11) is bounded by

D’:E: > f3

n=1"jeJ,

'(tlv t2)

n=1 jeJ,

(12)

Letting T — oo we get the claim of the lemma. U

Corollary 2.4. Let A be a finite set of rational numbers, partitioned as A = A1 U---U Ay, let w be a set

of nonnegative weights, and let u be a nonzero rational number. Then for any integer k > 2

N
Eiw(A; ) F <N Eru(Ajs )/,
j=1
Now let p be a fixed prime. For a € Q, let v,(a) denote the p-adic valuation of a. For a set A of
rational numbers and an integer 7, we let A; ={a € A :v,(a) =t}.
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Lemma 2.5. Let p be a prime number. Suppose A is a finite set of rational numbers and let u be a
nonzero rational number. Then for any w, a set of nonnegative weights on A, and any integer k > 2,

B0 <2(5 ) Y EeuAs -
deZ

Proof. First,let A=A, UA_where Ay ={a€A:v,(a) >v,(w)}and A_={a € A:v,(a) <v,(u)}.
By Corollary 2.4, we have

Erw(A; )% < 2E1 (A w)* 4+ 2B, (A_; w)'/E, (13)

These two terms will be dealt with in turn, starting with Ey ,, (Ay; u)Y/* . To do this, we first set up some

more notation. For an integer d, define the function

fa(h,0) =Y wea™ (a4 u)™,

aEAd

Epw(Ag;u) = hngoﬁ/ f

Expanding this expression, as in the proof of Lemma 2.2, we obtain that Ek w(AL; u) is equal to

Then, by Lemma 2.2

dl]dl‘z

> faln, tz)

d>vp(u)

Z lim —/ / Ja (1, 02) -+ fa, (01, ) fap,, (81, 02) - - fan (f1, B2) diidt,. (14)

For fixed dy, . . ., d, the quantity

lim —/ / fd1 (1, ) - fdk(tl, t2)fdk+1(tl9 f) - fdzk(tlv ) dtidt.

T—oc0 T2
gives a weighted count of the number of solutions to the system of simultaneous equations
ap - Qg =agq1 - Aok (15)
(a1 +u)- - (ax +u) = (a1 +u) - - - (a2 +u), (16)

such that a; € Ay,
We claim that there are no solutions to (16), and thus also no solutions to the above system, if all of
the d; are distinct. Indeed, suppose we have a solution

(ar+u)---(ax+u) = (agy1 +u)--- (ax +u)
and so
@u™' + 1) (@u™ +1) = epu 1) - byu™" 4 1). (17)

Since v), (a;u~") > 0, expanding out both sides of (17) and simplifying gives

u~'(ay + - - -+ a) + higher terms = u ! (bg41 + - - - + box) + higher terms. (18)
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If all of the d; are distinct, then there is some unique smallest d;, and thus a unique smallest value of v, (a;).
But then the left hand side and the right hand side are divisible by distinct powers of p, a contradiction.
So returning to (14), we need only consider the cases in which one or more of the d; are repeated.

There are three kinds of ways in which this can happen:
(1) di=d; with 1 <i <k and k41 < i’ < 2k. There are k? possible positions for such a pair (i, i’).
(2) d; =d; with 1 <i,i’ < k. There are (g) possible positions for such a pair (i, i’).
(3) di =d; with k+1 <i,i’ <2k. There are (];) possible positions for such a pair (i, i’).

dyi. The other k% — 1 cases can

Suppose we are in situation (1) above. Specifically, suppose that d| =
be dealt with by the same argument. Then these terms in (14) can be rewritten as

Z Tll)mooﬁ/ f fdl(t19t2)fd| (II’ZZ)

di=vp(u)
Z Ja(t1, ) - fa (1, 02) fa (B, 1) -+ - fan, (11, 02) dtidity

da,....dy—1>vp (1)
— li R f,t E fa(t1, 1
Tlm:a lZf / |fd(l 2)| d(l )

d>vp(u) d>vp(u)

2(k—1)
dtidt.  (19)

Suppose we are in situation (2). Specifically, suppose that d; = d,. The other (]5) — 1 cases can be

dealt with by the same argument. Then these terms in (14) can be rewritten as

> gim / / e Y futnn) e fal ) fan (B - fan, ) did

d3,....doy=vp (1)

dlzvp(u)
< i —
< Jim / / |falt, )P Y fd(n,rz) 1 1) dfldtz
d>vp(u) d=v,u)
2(k—1)
= li .
Jm T2/ / [far, )P Y falh, 1) dndn
d>v () d>v, ()
The same argument also works in case (3). Returning to (14), we then have
3 2k 2(k—1)
Ewavw=(5) Y lim = / / fat )P Y fatrm)|  dndn

d>vp(u) d>vp(u)

2k - .
: < 2 ) Y ErwAs ) Epu(Ars w1

d>vp(u)

the last inequality being Holder’s. It therefore follows that

EowArin' < (5) 2 EeulAs ', 0)

d=vp(u)



2250 Brandon Hanson, Oliver Roche-Newton and Dmitrii Zhelezov
Now we proceed to Ej ,(A_; u)'/*. For any solution to the pair of equations
ap---ag =agqr1---az and  (ay+u) - (ap +u) = Qg1 +u) -+ - (ax +u)
we have a solution to the equation
(1 —I—ual_l) ¢! —I—uak_l) =(1 +ua,:1) ¢! —i—uaz_k]).
Again, we expand and simplify, using this time that v, (ua;” 1 is positive, and get
u(al_] + - -ak_l) + higher terms = u(akjll + - -az_k]) + higher terms.

4

As in the previous case,” we cannot have a unique smallest v, (ua;” 1. We can therefore repeat the

arguments that gave us (20) in order to deduce that

~ 2k ~
EewAs < (5) 3 Ewlagn'/*, 1)

d<v,(u)

Inserting (20) and (21) into (13) completes the proof. O
Next, this is used as a base case to give an analogous result with more primes.

Lemma 2.6. Let p1, ..., px be a prime numbers. Suppose A is a finite set of rational numbers and let u
be a nonzero rational number. For a vectord = (dy, ..., dg), define

Ag={acA:vy(a)=d,... v, (a)=dx}.

Then for any w, a set of nonnegative weights on A, and for any integer k > 2,

Ek,w(A;u)”ks(z(zk)) S ErwAas )%,

dezK
Proof. The aim is to prove that

1/k
Tli_)rr;o<T2/ / > wed(a+uw)® dtldt2>

de7K acAq
2k
(o)) Zam(nf

4Note that here we have used the information that ap ---ag = agy1 - - - az, whereas we did not use this when bounding
Ek,w (A4 u).

1/k
dl‘]dlz) . (22)

Z waa l[](a+u)ll‘2

acAq
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We proceed by induction on K, the base case K =1 being given by Lemma 2.5. Then

1/k
: § E it it
Tlgnoo<T2 / f Had l(a * u) 2 dlldtz)

de7K acAy
dg EZ<

~m (s [

2% 1/k
dt1dl2)

Z wqa'" (a+ u)”Z)

d'c7K~ laEA 4 .d
2k . ) 2k 1/k
251 i
§2<2> Tli)rlgo(TZ/ / Z wea' (a +u) dl‘ldl‘z)
d'e7K-1acAy g4
- 1/k

2 2

< 2( ;) Z (2( 2]()) Tll_)m (TZ/ / Z Waa aih (a+u)”2 dl]d[z)
dxeZ d'e7K-1 o0 aEA 7.
1/k
= 2<2k> lim Zw a”'(a-l—u)”2 dtldtz /,
2 T—>oo T2

The first inequality above follows from an application of Lemma 2.5. The second inequality follows from
the induction hypothesis. U

3. Lambda-constants and query complexity

3.1. Lambda constants. In order to extract as much as possible from the Lemma 2.6, it will be convenient
to use the language of A-constants. The main motivation behind A-constants is the stability property
given by the forthcoming Corollary 3.2, which is absent in the nonweighted version of the energy.

We also encourage the interested reader to consult our preceding paper [Hanson et al. 2019] for a
slightly more gentle introduction to A-constants in the setting of Dirichlet polynomials and more in-depth
motivation behind this concept.

Let A C Q be a finite set and let # be a nonzero rational. Define

Ay (A; u) := max Ek,w(A; u)V/k,
where the maximum is taken over all weights w on A such that

Z w(a)> =1. (23)

acA

An equivalent definition is

2

Ar(A; u) :=max lim
T—o00

Z waa' (a + u)'™

acA 2k

where the maximum is taken over the same range of weights.



2252 Brandon Hanson, Oliver Roche-Newton and Dmitrii Zhelezov

Lemma 3.1. Let A C Q be a finite set with some nonnegative real weights w, assigned to each element

a € A and let u be a nonzero rational. Then
2

Z wea' (a + u)'™

acA

< Ai(A; u)(zuﬁ) + 07200 (1). (24)
2k acA
Proof. If y_ . 4 w2 = 0 the claim of the lemma is trivial. Otherwise, define new weights

Wq

(Caeawd)”

w, =
which satisfy (23). It thus suffices to show that

2
< Ak(A; u) + or—00(1),

Z u);a”1 (a+u)"

acA

2%k
which is a straightforward consequence of our definition of Ay (A; u). O
We will use the following stability property of A-constants which helps us to work with subsets.
Corollary 3.2. Suppose that A C Q, that u is a nonzero rational and A" C A. Then
Ar(A'su) < A(Asu).
In particular,

E/ A u) < A(Asw)| Al and  Ex(A; w) < AK(A; w)] AR,

Proof. The first claim follows from the observation that any set of weights {w,},ea With > wﬁ =1 can
be trivially extended to a set of weights {w,},ca by assigning zero weight to the elements in A\ A". Next
observe that Ej is just Ej ., with all the weights being one and apply Lemma 3.1. (I

3.2. Query complexity. The ideas of Section 2 dovetail perfectly with the notion of the query-complexity
of a set of rationals. Given a set A C (), we define its query complexity g(A) to be the smallest integer ¢
such that there are functions f; : Z — P,i =1, ...,t—1 and a fixed prime pg such that the vectors

(vpo(@), vp (@), ..., vp_ (@), a€A

are pairwise distinct, with the primes p; defined recursively as

pi = fi(vp,_,(a)). (25)

In the language of computational complexity, suppose that Alice and Bob agree on a set A C @, and
then Alice secretly chooses an element a € A. Bob can recover the value a € A by querying Alice
iteratively at most 7 times, at step i evaluating p; using (25) and asking Alice for v, (a).

The following result was recently proven by Zhelezov and Palvolgyi [2020], building on work of
Matolsci, Ruzsa, Shakan and Zhelezov [Matolcsi et al. 2020].3

SWe state a version of the result which is geared towards the particular considerations of our problem; see [Zhelezov and
Palvolgyi 2020, Theorem 1.1] for a more general statement.
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Theorem 3.3. For any € > 0, and any set A C Q with |AA| < K|A|, there exists a subset A C A with
|A'| > K=%€|A| and q(A) < €log,|A|.

The next lemma records that any set with small query complexity also has a small A-constant.

Lemma 3.4. Let A C Q with q(A) <t. Then for any u € Q\ {0}

Ar(A; ) < (2(22k>)t.

Proof. Write t = g(A). Let w be any set of weights on A that satisfy (23). Let a € A be arbitrary. In the
notation of Lemma 2.6, we have a list of primes pi, pa, ..., p; defined by (25) such that the set

Ag={d' € A:v, (d)=vp(a),...,vpa)=v,(a)}

has cardinality exactly 1. For any singleton {a} € A, Ek,w({a}; u) = wgk . Therefore, by Lemma 2.6,

- 2k\\' 2k\\'
.1k 2
Exu(A ) 5(2<2>) Zwa=(2(2>)- -
acA’
The following result is important generalization of the previous one; it shows that if A contains a large

subset with small query complexity then A itself has small A-constant.

Lemma 3.5. Let A C Q* be a finite set with |AA| < K|A| and let u be a nonzero rational number.
Suppose that A’ C A and q(A’) =t. Then

. A 1A (4 2k\ )
= () ()

Proof. Let w be an arbitrary set of weights on A such that >

acA w(a)? = 1. We seek a suitable upper

bound for
2

Z waail‘l (a + u)itg

acA

2k

For a fixed z € A/A’, define a set of weights w® on zA’ by taking w® (za’) = w(za’) if za’ € A and
w® (za") = 0 otherwise. Define

Rasan.ar(x) := |{(s,a) € (A/A) x A" sa = x}|

and note that R4 a7 a'(x) > |A’| for all x € A. This is because, for all a’ € A’, x = (x/a’)a’. Therefore,

2k

Z Z w® (za")(za)" (za' + )"

ZEAJA a' A

Z Rayan o (@w(a)a™ (a+u)'™

acA

2k

> |A|

Z waai” (a+ u)"t2

acA

2k
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On the other hand, by the triangle inequality and Lemma 3.1
Z Z w®(za)(za") " (za' +u)| < Z
Z€A/A €A/ 2k zeA/n

< Y MGAT W' P+ oroo(l).
ZEAJA’

Z w(z) (Za/)(za/)itl (Za/ + u)ilz

a'eA’ 2k

Since g (A’) =t, it follows from Lemma 3.4 that A (zA'; u) = Ap(A'; u/7) < (2(221‘))t. We also have

2
ALY _ k214,

|A/A'| < |A/A| < <
|A|

by the Ruzsa triangle inequality (see [Tao and Vu 2006]). It therefore follows that

N 2ky\ /2
R EGE)) v

and the result follows. U

Z waaitl (a + u)itz

acA

Combining this with Theorem 3.3 gives the following, which is our main result concerning A-constants.

Theorem 3.6. Given 0 < y < %, there exists a positive constants C = C(y, k) such that for any finite
A C Q* with |AA| = K|A| and any nonzero rational u,

Ar(A;u) < KC|A".

Proof. Apply Theorem 3.3 with € = y/log,(4k). There exists A’ C A with |A’| > K~?/¢|A| and
q(A) <elog,|A|. Then by Lemma 3.5

|A| 2 2k elog,|A|
Ar(A: u) < K4<|A/|> (2( 5 )) < K4H/e| pjeloma@h) O

Observe that we can in fact take C(y, k) in Theorem 3.6 to be 4 44 log,(4k)/y .

4. Concluding the proofs

In this section we conclude the proof of Theorem 1.1, which is the main theorem of this paper, and
Theorem 1.7 announced in the introduction.

We will use the Pliinnecke—Ruzsa theorem. See [Petridis 2012] for a simple inductive proof. Following
convention, we state it using additive notation, although it will be used in the multiplicative setting.

Theorem 4.1. Let A be a subset of a commutative additive group G with |A + A| < K|A|. Then for any
heN,
lhA| < KA.

For the convenience of the reader, we restate Theorem 1.1.
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Theorem 4.2. For all b € Z, there exists k = k(b) such that for any finite set A C Q* and any nonzero

rational u,
max{|A®|, (A +u)P|} > |A[P

Proof. Fix b and assume that
A9 <1A)°

for some sufficiently large k = 2!. The value of / (and thus also that of k) will be specified at the end of
the proof. Since |A(21>| < |A|?, it follows that

|A(2’)| |A(2H)| |A@|

. ALl
[AQD]1A@™) |A| <14l
and thus there is some integer /o </ such that
A(leJrl)
Az , | |A| =D/,
4@

Therefore, writing ko = 2l and B = A% we have
|BB| < |B|| A7V,
Also, for any nonzero A € @, |(AB)(AB)| < |B||A|®~D/!, Therefore, by Theorem 3.6,
An(hB: u) < |A|CO=D/ B < |A|CG-D/1+rD

where C = C(h, y) and h, y will be specified later.
Now, for some A € @, we have A C A B, and thus by Corollary 3.2 and Lemma 2.1

|AI? ~1/h, ) 14+C(b—1)/I+yb
max{|AM|, [(A+ u)W |}/ " = B (A < 1AIAGB ) < 1A .

This rearranges to

max{|A™], [(A +uw) P} = |AOZCCDITYD),
Choose y = 1/100b and h = 4b. Then C = C(h, y) = C(b) and we have
max{lA(h)|, |(A +u)(h)|} > |A|h/2(99/100—C(b)(b—1)/l).
Then choose [ = (b — 1)4C to get
max{|AP[, [(A+u)P} > |AM* = AP

Note that the choice of / depends only on b and thus k = 2*¢®=D = k(b). In particular, since k > h, we

conclude that
max{|A®[, (A +uw) P} > A,

as required. U
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If we use the value of C(y, k) indicated at the end of the proof of Theorem 3.6 to keep track of the
constants in this argument, it follows that we can take k = 20(®?10gb) T be even more precise, it gives

k = (16b)1616°

This compares favorably with the dependency in the corresponding sum-product bound of Bourgain and
Chang [2004], where they commented that it was possible to take k = 2°®¢"). A similar quantitative
improvement for the classical iterated sum-product problem is possible by studying the recent paper of
Zhelezov and Pélvolgyi [2020] and filling in some extra details.

Theorem 3.6 also implies Theorem 1.3. The statement is repeated below for the convenience of the
reader.

Theorem 4.3. Given 0 < y < % and any integer k > 2, there exists a positive constant C = C(y, k) such
that for any finite A C Q* with |AA| = K|A| and any nonzero rational u,

|A|k(l—y)—l

(A+w® 2 —

Proof. Define w(a) = 1/|A|'/? for all a € A and note that (23) is satisfied. Furthermore, for this set of
weights w,
Ex(Aru) _ Al*

|AlE T JAB(A+u)®|

Eyw(A;u) = (26)

where the inequality comes from Lemma 2.1. It follows from Theorem 3.6 that there exists a constant
C = C(y, k) such that for any u € @\ {0}, Ax(A; u) < K€|A|”. Consequently, by the definition of
Ar(A; u),

Eru(Asu) < KH|APE,

Combining this with (26), it follows that
|A|F(=7)

ACNA+ 0O 2 —m

(27)

Finally, since |AA| < K |A]|, it follows from the Pliinnecke—Ruzsa Theorem that |[A®)| < K*|A|. Inserting

this into (27) completes the proof. (I
We now turn to the proof of Theorem 1.7. Recall its statement.

Theorem 4.4. For any y > 0 there is C(y) > 0 such that for any K -almost subgroup A C Q* and fixed
nonzero cy, ¢y € Q) the number A(2, K) of solutions (x1, x3) € A% to

cix1+coxy =1
is bounded by
A2, K) <|A|"KC.
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Proof. Let S C A be the set of x| € A such that c;x; 4 cpx2 = 1 for some x, € A. Since the projection
(x1, x2) — x is injective, it suffices to bound the size of S.
Since S C A, by Theorem 3.6 and Corollary 3.2 for any nonzero u

Ex(S; u) < KXCO 0 A1 5k

with the parameters 0 < ' < %, k > 2 to be taken in due course.
In particular, by Lemma 2.1

1SIF < (KFCO R AR |2 max{|S¥], [(S — 1/c1)k]).
On the other hand, S € A and (S — 1/¢1) € —(c2/c1)A, so by the Plinnecke—Ruzsa inequality
max{|S*|, |(S — 1/e)!]} < 1A®| < K¥| Al

‘We then have

IS| < |A|y'+2/kKC+2’
and taking k = [2/y’] 4+ 1 and y’ = y /2, the claim follows. O

5. Further applications

Proof of Theorem 1.8. Recall that Theorem 1.8 is the following statement. For all y > 0 there exists a
constant C = C(y) such that for any finite A C Q with |[AA| < K|A| and any finite set L of lines in the
plane, I (P, L) <3|P|+ |A|” K€|L|, where P = A x A.

First of all, observe that horizontal and vertical lines contribute a total of at most 2| P|. This is because
each point p € P can belong to at most one horizontal and one vertical line. Similarly, lines through the
origin contribute at most | P| 4 |L| incidences, since each point aside from the origin belongs to at most
one such line, and the origin itself may contribute |L| incidences.

It remains to bound incidences with lines of the form y = mx + ¢, with m, ¢ # 0. Let /,, . denote
the line with equation y = mx + c. Note that, if m ¢ Q then /,, . contains at most one point from P.
Indeed, suppose /,, . contains two distinct points (x, y) and (x’, y') from P. In particular, since A C Q,
x,y,x',y" € Q. Then [,, . has direction m = (y — y")/(x — x’). Therefore, lines ,, . with irrational slope
m contribute at most |L| incidences.

Next, suppose that m € Q and ¢ ¢ Q. Then /,, . does not contain any points from P, since if it did
then we would have a solution to y = mx + ¢, but the left hand side is rational and the right hand side is
irrational.

It remains to consider the case when m, ¢ € Q*. An application of Theorem 1.7 implies that |/,, .N P| <
KC|A|”. Therefore, these lines contribute a total of at most |L|K¢|A|” incidences.

Adding together the contributions from these different types of lines completes the proof. U
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Proof of Theorem 1.9. Recall that Theorem 1.9 states that, for any y > 0 there exists C(y) such that for
an arbitrary A C Q with |[AA| = K|A| and B, B’ C Q,

S:=|{(b,b)e Bx B :b+b' € A} <2|A|” K¢ min{|B|'?|B’| +|B|, |B'|"/*|B| + |B'|}.

We will prove that
S <2|A”KC(|B'|'/*|B| +|B'}). (28)

Since the roles of B and B’ are interchangeable, (28) also implies that S < 2|A|” K€ (|B|'/?|B’| +|B]),
and thus completes the proof.

Let y > 0 and C(y), given by Theorem 1.7, be fixed. Without loss of generality assume that S > 2|B’|
as otherwise the claimed bound is trivial.

For each b € B define

Sp:={b'eB :b+b €A},
and similarly for b’ € B’
Ty :={beB:b'+bc A}
It follows from Theorem 1.7 that for by, by € B with by # b;
1S5, N Spa| < |A] K€
since each x € Sp, N S, gives a solution (a, a’) := (b; +x, by + x) to
a—a =b;—by

with a, a’ € A.
On the other hand, by double-counting and the Cauchy—Schwarz inequality,

DUSsl+ Y 1Sy NSpl= Y ITy* = BT () _1Ty)* =B 'S
beB by,breB:b1#by b'eB’ b'eB’
Therefore,
D Sy NSkl = BT'S* = IS| =B 7'S* =5 = 4B 7'
by,b2eB:b1#by beB

by our assumption.
The left-hand side is at most |B|?|A|Y K€, and so

S < QIAI" K9 |CIV B,
which completes the proof. (I

Proof of Theorem 1.10. Recall that Theorem 1.10 states that for all b there exists k£ such that for all
A, B C Q with |B| > 2, |(A+ B)X| > |A|".
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Since | B| > 2, there exist two distinct elements by, b, € B. Apply Theorem 1.1 to conclude that for all
b there exists k = k(b) with

[(A+ B)Y| > max{|(A +b)*|, |((A+b1) + (b2 — b)) [} > |A]". O
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The dimension growth conjecture,
polynomial in the degree and
without logarithmic factors

Wouter Castryck, Raf Cluckers, Philip Dittmann and Kien Huu Nguyen

We study Heath-Brown’s and Serre’s dimension growth conjecture (proved by Salberger) when the degree
d grows. Recall that Salberger’s dimension growth results give bounds of the form Oy ,(BY™X+¢) for the
number of rational points of height at most B on any integral subvariety X of Pg, of degree d > 2, where
one can write Oy , . instead of Oy . as soon as d > 4. We give the following simplified and strengthened
forms of these results: we remove the factor B® as soon as d > 5, we obtain polynomial dependence
on d of the implied constant, and we give a simplified, self-contained approach for d > 16. Along the
way, we improve the well-known bounds due to Bombieri and Pila on the number of integral points of
bounded height on affine curves and those by Walsh on the number of rational points of bounded height
on projective curves. This leads to a slight sharpening of a recent estimate due to Bhargava, Shankar,
Taniguchi, Thorne, Tsimerman and Zhao on the size of the 2-torsion subgroup of the class group of a
degree d number field. Our treatment builds on recent work by Salberger, who brings in many primes in
Heath-Brown’s variant of the determinant method, and on recent work by Walsh and by Ellenberg and
Venkatesh who bring in the size of the defining polynomial. We also obtain lower bounds showing that
one cannot do better than polynomial dependence on d.

1. Introduction and main results

1.1. Following a question raised by Heath-Brown [1983, page 227] in the case of hypersurfaces, Serre
[1992, page 27; 1989, page 178] twice formulated a question about rational points on a projective variety
X of degree d, which was dubbed the dimension growth conjecture by Browning [2009]. The question
puts forward concrete upper bounds on the number of such points with height at most B, as a function
of B. This dimension growth conjecture is now a theorem due to Salberger [2013] (and others under
various conditions on d); moreover, for d > 4 Salberger obtains complete uniformity in X, keeping only
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d and the dimension of the ambient projective space fixed, thereby confirming a variant that had been
proposed by Heath-Brown.

We remove from these bounds the factors of the form B® when the degree d is at least 5, without
creating a factor log B, while moreover obtaining polynomial dependence on d of the constants. The
approach with polynomial dependence on d is implemented in all auxiliary results as well, and this has
the pleasant consequence of yielding a more direct and self-contained proof of the dimension growth
conjecture for d at least 16 (our treatment of dimension growth for 5 < d < 15 is not self-contained
and uses [Browning et al. 2006] when d > 5 and [Salberger 2013] for d = 5). Theorems 2 and 3 below
give such improvements to bounds by Walsh [2015] on the number of rational points of bounded height
on integral projective curves, and to bounds of Bombieri and Pila [1989, Theorem 5] on the number of
integral points of bounded height on affine irreducible curves, with rather low powers of d, compared
to [Walkowiak 2005]. Polynomial dependence on d for projective curves as in Theorem 2 is useful
for effective versions of Hilbert’s irreducibility theorem and for Malle’s conjecture; see [Debes and
Walkowiak 2008; Motte 2018; Walkowiak 2005].

The possibility of polynomial dependence on d came to us via a question raised by Yomdin (see
below Remark 3.8 of [Burguet et al. 2015]) in combination with the determinant method with smooth
parametrizations as in [Pila 2010], refined in [Cluckers et al. 2020b], and via the work by Binyamini and
Novikov [2019, Theorem 6]. The removal of the factor B® without needing log B was recently achieved
by Walsh [2015, Theorems 1.1, 1.2, 1.3] who combines ideas by Ellenberg and Venkatesh [2005] with the
determinant method based on p-adic approximation (rather than on smooth maps) due to Heath-Brown
[2002], refined in [Salberger 2013]. In fact, polynomial dependence on d for the case of projective curves
was also achieved in [Motte 2018] and [Walkowiak 2005], with a higher exponent. One cannot achieve
dependence on d better than polynomial, as shown by the lower bounds from Proposition 5 below. Let
us mention that positive characteristic analogues, over [, [¢], are obtained in [Cluckers et al. 2020a] and
[Sedunova 2017] for curves, and in [Vermeulen 2020] for dimension growth.

1.2. Let us make all this more precise. We study the number
N(X, B)

of rational points of height at most B on subvarieties X of P" defined over (2. Here, the height H (x) of a
Q-rational point x in *" is given by

H(x) = max(|xgl, ..., |x:])

for an (n+1)-tuple (xo, ..., x,) of integers x; which are homogeneous coordinates for x and have greatest
common divisor equal to 1.

Salberger [2013] proved the so-called dimension growth conjecture raised as a question by Serre [1992,
page 27] following a question of Heath-Brown [1983, page 227].
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Dimension growth [Salberger 2013, Theorem 0.1]. If X is an integral projective variety of degree d > 2
defined over Q, then

N(X, B) < Ox . (BYimXTe),

One should compare the bound for N (X, B) from this theorem to the trivial upper bound Oy ,, (Bdim X+1)
that follows from Lemma 4.1.1 below.

A variant of this question from [Serre 1989, page 178] replaces the factor B by log(B)¢ for some ¢
depending on X, see Section 1.4 below.

Heath-Brown [2002] introduces a form of this conjecture with uniformity in X for fixed d and n, and
he develops a new variant of the determinant method using p-adic approximation instead of smooth
parametrizations as in [Bombieri and Pila 1989; Binyamini and Novikov 2019; Pila 2010; Cluckers et al.
2020b]. In [Salberger 2013], Salberger proves this uniform version of the dimension growth conjecture
for d > 4.

Uniform dimension growth [Salberger 2013, Theorem 0.3]. For X C PP, an integral projective variety
of degree d > 4, one has

N(X, B) < Oy . (BEmX+e),

Almost all situations of this uniform dimension growth had been obtained previously in [Heath-Brown
2002] and [Browning et al. 2006], including the case d = 2 but without the (difficult) cases d =4 and
d = 5. Our main contributions are to make the dependence on d polynomial, to remove the factor B®
without having to use factors log B, and to provide relatively self-contained proofs for large degree, with
main result as follows.

Theorem 1 (uniform dimension growth). Given n > 1, there exist constants ¢ = c(n) and e = e(n), such
that for all integral projective varieties X C Py, of degree d > 5 and all B > 1 one has

N(X, B) < cd*BYmX. (1-2-1)

As mentioned earlier, one cannot do better than polynomial dependence on d, see the lower bounds
from Proposition 5 and Section 6 below.

We heavily rework results and methods of Salberger, Walsh, Ellenberg and Venkatesh, Heath-Brown,
and Browning, and use various explicit estimates for Hilbert functions, for certain universal Noether
polynomials as in [Ruppert 1986], and for solutions of linear systems of equations over Z from [Bombieri
and Vaaler 1983].

1.3. Rational points on curves and hypersurfaces. Let us make precise some of our improvements for
counting points on curves and surfaces, which are key to Theorem 1. We obtain the following improvement
of Walsh’s Theorem 1.1 [2015].
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Theorem 2 (projective curves). Given n > 1, there exists a constant ¢ = c(n) such that for all d > 0 and
all integral projective curves X C P, of degree d and all B > 1 one has

N(X, B) < cd*B*“.

In view of Proposition 5 below, the exponent 4 of d in Theorem 2 can perhaps be lowered, but cannot
become lower than 2 in general. Several adaptations of results and proofs of [Walsh 2015] are key to our
treatment and are developed in Section 3.

For affine counting we use the following notation for a variety X C Ag and a polynomial f in
ZIy1, ..o s ynl:

Nae(X, B) :=#{x € Z" | |x;| < B for each i and x € X (Q)},
and
Nae(f, B) :=#{x € 7" | |x;] < B for each i and f(x) = 0}.

By a careful elaboration of the argument from [Ellenberg and Venkatesh 2005, Remark 2.3] and an
explicit but otherwise classical projection argument, we find the following improvement of bounds by
Bombieri and Pila [1989, Theorem 5] and later sharpenings by Pila [1995; 1996], Walkowiak [2005],
Ellenberg and Venkatesh [2005, Remark 2.3], Binyamini and Novikov [2019, Theorem 6], and others.

Theorem 3 (affine curves). Given n > 1, there exists a constant ¢ = c(n) such that for all d > 0, all
integral affine curves X C Ag, of degree d, and all B > 1 one has

Nait(X, B) < cd’B"“(log B +d).

A variant of Theorem 3 is given in Section 4, where log B is absent and instead the size of the
coefficients of the polynomial f defining the affine planar curve comes in.

It is well-known that Theorems 1, 2, and 3 imply similar bounds for varieties defined and integral over
Q (instead of @), by intersecting with a Galois conjugate and using a trivial bound, see Lemma 4.1.3.
The following improves Theorem 0.4 of [Salberger 2013] and is key to Theorem 1. It can be seen as an
affine form of the dimension growth theorem, for hypersurfaces.

Theorem 4 (affine hypersurfaces). Given n > 2, there exist constants ¢ = c(n) and e = e(n), such that for
all polynomials f in Z[y, . .., ya] whose homogeneous part of highest degree h( f) is irreducible over Q

and whose degree d is at least 5, one has
Nuit(f, B) < cd*B" 2.

One should compare the bound from this theorem to the trivial upper bound Oy, (B"~') from
Lemma 4.1.1.

1.4. Example and a question. In Serre’s example [1989, page 178] of the degree 2 surface in P? given
by the equation xy = zw, the logarithmic factor log B cannot be dispensed with in the upper bound.
Hence, (1-2-1) of Theorem 1 cannot hold for d = 2 in general. For d = 3, the bound from (1-2-1) remains
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wide open since already uniformity in X € P" of degree 3 is not known for the uniform dimension growth
with Od,n,g(Bdim X+¢) as upper bound (see [Salberger 2015; 2013] for subtleties when d = 3). For d = 4,
one may investigate whether (1-2-1) of Theorem 1 remains true, that is, without involving a factor B or
log B.

1.5. Lower bounds. In Section 6 we discuss the necessity of the polynomial dependence on d in the
above theorems.

Proposition 5. For each integer d > O there is an integral projective curve X C P? of degree d and an
integer B > 1 such that
1d*B** < N(X, B).

In particular, in the statement of Theorem 2 it is impossible to replace the factor d* with an expression in
d which is o(d?).

Similarly we show that it is impossible to replace the quartic dependence on d of the bound from
Theorem 3 by a function in o(d?/logd). We also show that in Theorems 1 and 4 we cannot take e < 1 or
e < 2, respectively.

1.6. An application. Our bounds with improved exponent can be used as substitutes for those by Sal-
berger, Bombieri and Pila, and Walsh upon which they improve, potentially leading to stronger statements.
A very recent example of such an application is Bhargava, Shankar, Taniguchi, Thorne, Tsimerman and
Zhao’s bound [Bhargava et al. 2020, Theorem 1.1] on the number /,(K) of 2-torsion elements in the
class group of a degree d > 2 number field K, in terms of its discriminant Ag. Precisely, they show that

ha(K) < Og o (|Ag |27 1/CDFEY

thereby obtaining a power saving over the trivial bound coming from the Brauer—Siegel theorem. This
power saving is mainly accounted for by an application of Bombieri and Pila’s bound [1989, Theorem 5].
In Section 4 we explain how our improved bound stated in Theorem 3, or rather its refinement stated
in Corollary 4.2.4, allows for removal of the factor |Ag|® as soon as d is odd; if d is even then we can
replace it by log|Ak].

Theorem 6. For all degree d > 2 number fields K we have
I (K) < Og(|Ax|V>" V@D (1og| A g )1~ (@ mod 2y,

It is possible to make the hidden constant explicit, but targeting polynomial growth seems of lesser
interest since |Ag| is itself bounded from below by an exponential expression in d, coming from
Minkowski’s bound.

1.7. Structure of the paper. In Section 2 we render several results of Salberger [2007] explicit in terms
of the degrees and dimensions involved. In Section 3 we similarly adapt the results of Walsh [2015].
Section 4 completes the proofs of our main results in the hypersurface case, which is complemented by
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Section 5, in which we discuss projection arguments from [Browning et al. 2006], explicit in the degrees
and dimensions, and thus finish the proofs of our main theorems. Finally, in Section 6, we provide lower
bounds showing the necessity of polynomial dependence on d in our main results.

2. The determinant method for hypersurfaces

With the aim of improving the results of [Walsh 2015] in the next section, we sharpen some results from
Salberger’s global determinant method. The main result of this section is Corollary 2.9, which improves
on [Salberger 2013, Lemmas 1.4, 1.5] (see also [Walsh 2015, Theorem 2.2]). This mainly depends on
making [Salberger 2007, Main Lemma 2.5] in the case of hypersurfaces explicit in its independence of
the degree.

Let f be an absolutely irreducible homogeneous polynomial in Z[xy, ..., x,+] which is primitive,
and let X be the hypersurface in Pa“ defined by f. For p a prime number, let X, denote the reduction
of X modulo p, i.e., the hypersurface in Pg:l described by the reduction of f mod p.

Lemma 2.1 (Lemma 2.3 of [Salberger 2007], explicit for hypersurfaces). Let A be the stalk of X, at some
[ ,-point P of multiplicity . and let m be the maximal ideal of A. Let gx p : Z~o — Z be the function
given by gx p(k) = dimy/m I't’tk/mkJrl for k > 0. Then one has

sy = (") fork <
and
g(k) = <n:k> - <n+i_u>fork > L.
In particular,
k! o
g(k) < D! + On (k")

for all k = 1, where the implied constant depends only on n, as indicated.

Proof. The function g is identical to the Hilbert function of the projectivized tangent cone of X, at P,
which is a degree u hypersurface in P". This gives the explicit expression for g, so it only remains to
prove the estimate.

Consider first k < p. Then

K" k"1
n+k) - u 4 On(knfz).

gU‘):(n T 2 =)

Since u > k, for k > n we immediately obtain the desired inequality, and the k between 1 and n are

covered by choosing the constant large enough.

n+X )
n

Now consider k > p. Write p(X) for the polynomial ( and a; for its coefficients. Then

pk) — ptk— ) = ay (K" — (k — ") + a1 (k"' — (k — ") + 0, (K"2).
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Observe thata, = 1/n!,a,_1=m+1)/Q2n —1)!) =a,(n+ 1)n/2, and write
K= (k= )" = p k" k= )K" 2 = )"

as well as
70— (k= )" = (T (k= )R,

Considering u > n(n 4+ 1)/2, we have

k — )i k"1 4 (”";1)” (k — )i~ gn=1=i < gt

for i > 1, and hence

m n—1
an (K" = k= )" + ap 1 (K" = k= )" ) < (" T = 4

n! (n—1)!

as desired.

For u less than n(n + 1)/2, one simply bounds k"' — (k — u)"~! < 0, (k"~2) and the statement
follows. 0

Lemma 2.2. Let ¢, n, i > 0 be integers. Let g: Z>y — Z~q be a function with g(0) = 1 and satisfying
g(k) < uk" ' /(n — D! +cpuk"=2 for k > 0. Let (n;);>1 be the nondecreasing sequence of integers m > 0
where m occurs exactly g(m) times. Then for any s > 0 we have

1/n
n! n
ny+---+ng > (;) m51+1/n—0n,c(5)-

This statement is implicitly contained in the proof of [Salberger 2007, Main Lemma 2.5], but we give
the full proof to stress that the error term does not depend on .

Proof. Note that replacing g by a function which is pointwise larger than g at any point only strengthens
the claim, so we may as well assume that

g(k) = %(k" — k= 1)) ek — (k= 1"

fork > 0. Let G: Z>y— Z>0 be givenby G(k) =g(0)+---+g(k) = nﬁ!k” +cpk™ '+ 1. Now

n! I/n n L+1/n MknJrl "
(ﬁ) ar1o® T (i—DI(n+1)  One (k%)
and
K in :n—1 :# n+1 n
0g(0) +- - +kg(k) = (n_l)!Z(z T Ou(ei"™) = KT One (k™).

i<k

This proves the lemma for s = G (k).
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To deduce the result for general s > 0, let k be the unique integer with G(k — 1) < s < G(k), and use

1/
> —ko(k) > n_' HLle-H/n_O k"
ni+---+ng>ni+---+nge —kgk) > P (k) n,c (k™)

n+1
a\"" n
> (;) msl+l/n — On,c(s)~ D

Lemma 2.3. Consider A as in Lemma 2.1, and let (n;(A));>1 be the nondecreasing sequence of integers
m > 0 where m occurs exactly dim mE /mA ! times. Write A(s) =n1(A) + - - - +ns(A). Then

[ l/l‘l
A(s) > (%) (n”?>sl“/" — 0,(5),

where the implied constant only depends on n.
Proof. This is immediate from the last two lemmas. (I
As usual, write Z,) for the localization of Z at (the complement of) the prime ideal (p).

Lemma 2.4 (Lemma 2.4 of [Salberger 2007], cited as in the Appendix of [Browning et al. 2006]).
Let R be a noetherian local ring containing Z,), A = R/pR, and consider ring homomorphisms
Vi, ..., ¥s: R— Zp). Letry, ..., rg be elements of R. Then the determinant of the s x s-matrix (Y;(r;))

is divisible by pA®,

Corollary 2.5 (Main Lemma 2.5 of [Salberger 2007]). Let X — Spec Z be the hypersurface in IP’%Jrl cut
out by the homogeneous polynomial f as above, so X is the generic fiber of X and X, is the special fiber
of X over p.

Let P be an [ ,-point of multiplicity u on X, and let &, ..., & be Z-points on X, given by some
primitive integer tuples, with reduction P. Let Fy, ..., Fy be homogeneous polynomials in xg, . . ., Xp+1
with integer coefficients.

Then det(F;(§;)) is divisible by p® where

a\'" g
e> (—) — s 0,(s).
In n+1

Proof. Let P’ be the image of P under the closed embedding X, < X, and R the stalk of X at P’. Then
R is a noetherian local ring containing Z,,), and R/pR is the stalk of X, at P. Since P’ is a specialization
of all the &; (this is precisely what it means that the & have reduction P), it makes sense to evaluate an
element of R at each &;, giving s ring homomorphisms R — Z,).

The F; induce Z(,)-valued polynomial functions on an affine neighborhood of P’, and hence give
elements of R. The statement now follows from the preceding two lemmas. ]

Proposition 2.6. Let X be as above. Let &y, ..., & be Z-points on X, and F, ..., Fy be homogeneous

polynomials in n+1 variables with integer coefficients. Then the determinant A of the s x s-matrix
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(Fi(§))) is divisible by p°, where

s1+l/n

e>mH'/m—

—0,(s),
n+1 n},/" n(s)

and where n , is the number of [ ,-points on X ,, counted with multiplicity.

Proof. This is identical to the proof of [Salberger 2013, Lemma 1.4], see also the appendix of [Walsh
2015] —but we have eliminated the dependence of the constant on d. (Il

Lemma 2.7. In the situation above, if p > 27d* and X p Is geometrically integral, i.e., the defining
polynomial f has absolutely irreducible reduction modulo p, thenn, < p" + O, (d?p"1/2).

Proof. By [Cafure and Matera 2006, Corollary 5.6] the number of [ ,-points of X, counted without
multiplicity is bounded by
P 4+ (d—1)(d=2)p" P4 (5d* +d +1)p" -1
p—1
(This uses the lower bound on p and the condition on X ,.)

< "4 0, (d*p"1/?).

The singular points of X, all lie in the algebraic set cut out by f and ;—){;, which can be assumed to be
nonzero without loss of generality. This is an algebraic set all of whose components have codimension 2
and the sum of the degrees of these components is bounded by d?. The standard Lang—Weil estimate
yields that there are O,(d?p"~') < 0,(dp"~'/?) points on this algebraic set and hence at most that many
singular points, each of which has multiplicity at most d. Adding this term to the number of points
counted without multiplicity yields the claim. U

Lemma 2.8. In the situation above, with p > 27d* and X p geometrically integral, we have n,l,/ "Ip—1<
Ou(d*p~172).

Proof. Apply the general inequality x'/" —1 < x — 1 for x > 1. ]
We immediately obtain the following from Proposition 2.6.

Corollary 2.9. The determinant A from Proposition 2.6 is divisible by p¢, where
gl+1/n
n+1p+0,(dp'/?)

This is stated as Theorem 2.2 in [Walsh 2015], but our statement is more precise in terms of the implied

e> (n)/"

— O,(s).

constants.

3. Points on projective hypersurfaces a la Walsh

3.1. Formulation of main result. The following result is the goal of this section and an improvement to
Theorem 1.3 of [Walsh 2015]. Call a polynomial f over Z primitive if the greatest common divisor of its
coefficients equals 1. For any f, we write || f|| for the maximum of the absolute values of the coefficients

of f.
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Theorem 3.1.1. Let n > 0 be an integer. Then there exists c (depending on n) such that the following holds

or all choices of f,d, B. Let f be a primitive irreducible homogeneous polynomial in Z[xy, . .., X,+1] 0
Il choi d,B. L b imitive irreducible h [ jal in 7] ]
degree d > 1, and write X for the hypersurface in [IJ’?;DJrl cut out by f. Choose B > 1. Then there exists a
homogeneous g in Z[xo, ..., Xp+1] of degree at most
4—1/
¢ B D/ (md'™) d__Th(/) +cd" " log B +cd* /",

| £
not divisible by f, and vanishing at all points on X of height at most B.

Here the quantity b( f) is defined in Definition 3.2.1; it always satisfies b( ) < O (max(d—>log|| f||, 1)).
The main improvement over [Walsh 2015] lies in the polynomial dependence on the degree d.
We also immediately obtain the following, which is the essential tool for proving Theorem 2.

Corollary 3.1.2. For any primitive irreducible polynomial f € Z[x¢, x1, x2] homogeneous of degree d
and any B > 1 we have

z/dd b(f)

G +cdlog B+ cd* < c'd*B*?,

N(f. B

where c, ¢’ are absolute constants.

Proof. Apply Theorem 3.1.1 to obtain a polynomial g, and then apply Bézout’s theorem to the curves

defined by f and g. This yields the first inequality. For the second inequality we can use that b(f)/|| fI'/ a

is bounded because b(f) < O(max(d—2log| |, 1)). (I

3.2. A determinant estimate. In this section we want to use the results of Section 2 for a number of
primes simultaneously. It is useful to introduce the following measure of the set of primes modulo which
an absolutely irreducible polynomial over the integers ceases to be absolutely irreducible.

Definition 3.2.1. For an integer polynomial f in an arbitrary number of variables we set b(f) =0 if f

b(f) = Hexp( i”)

otherwise, where the product is over those primes p > 27d* such that the reduction of f modulo p is not

is not absolutely irreducible, and

absolutely irreducible.

For now we work with a degree d hypersurface in P"*! defined by a primitive polynomial f €
Z[xg, ..., x,+1] which is absolutely irreducible. We first establish a basic estimate on b( f), showing in
particular that it is finite.

Theorem 3.2.2 (explicit Noether polynomials, [Ruppert 1986, Satz 4]). Letd > 2, n > 3. There is a

collection of homogeneous polynomials ® in ("+d) variables over Z of degree d* — 1, such that

Il < d3d2-3[(”+d)3d]

d?—1
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(where ||-||1 denotes the sum of the absolute values of the coefficients), and such that the following holds
for any polynomial F in n+1 variables homogeneous of degree d over any field:

o If F is not absolutely irreducible, then all the ® vanish when applied to the coefficients of F, reducing
modulo the characteristic of the ground field if necessary.

o If F is absolutely irreducible over a field of characteristic 0, then one of the ® does not vanish when

applied to the coefficients of F.
Corollary 3.2.3. b(f) < O(max(d~%log| f1l, 1)).

Proof. Write P for the set of prime numbers p > 27d* modulo which f is not absolutely irreducible.
There exists a Noether form ® with coefficients in Z such that ® applied to the coefficients of f is nonzero,
but is divisible by any prime in P. In particular, the product of such p is bounded by ¢ := || ® ||| f |4 ®.

Now
log p
logh(f) =)
peP
lo lo
< Z gp n Z gp
p logc
27d*<p<logc logc<peP
logc
<max(loglogc —4logd,0)+0(1) + ——
logc

< max(loglogc —4logd,0)+ O(1)
< max(log(deg ® log|| f||) —4logd, loglog||®|; —4logd, 0) + O(1),

where we have used that the function logx — ) _ log p/p is bounded (Mertens’ first theorem). Since

p=x

loglog||®||; —4logd is bounded above, the claim follows. Il

We now adapt [Walsh 2015, Theorem 2.3], keeping track of the dependency on the degree and on
b(f).

Lemma 3.2.4. For any x > 0, )
exceeding x.

p<x 108 p = 2x, where the sum extends over prime numbers not

Proof. This is a classical estimate on the first Chebyshev function. (Il

Lemma 3.2.5. As x varies over positive real numbers we have ), log p/p>?* = 0(x~Y?), where the
sum extends over prime numbers greater than x.

Proof. Estimate the density of prime numbers using the prime number theorem and compare the sum
with an integral. U

Proposition 3.2.6. Let (&1, ..., &) be a tuple of rational points in X, let Fj; € Z[xo, ..., Xp+1), 1 <I <L,

1 <i <s, be homogeneous polynomials with integer coefficients, and write A for the determinant of
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(F1i(§)))ij- Let A be the greatest common divisor of the A;, and assume that A # 0. Then we have the
bound

11/n
log|A| > %SHI/"(logs — 0,(1) — n(4logd +log b(f))).
n
This is a more explicit variant of [Walsh 2015, Theorem 2.3].

Proof. Let P be the collection of prime numbers p such that either p < 27d* or X p 18 not geometrically
integral.

1/n

We now apply Corollary 2.9 to all prime numbers p < s'/" not in P, yielding

n!t/"p log p
log|A| > ——gltl/n P _ 0 log p.
p=st/n

p<sl/n

The last term is bounded by O, (1)s'*1/7,
In estimating the main term, we may use that 1/(p + O,(d’>p'/?)) > 1/p — 0,(d?)/p>/>. We can then
bound

log p log p log p 2 log p
_ > — — -0, —
Z P+ 0,(d?p'/?) ~ Z p Z p n(d”) Z 3/2
PFp<si/n p<sl/n peP PIp<si/n

I ! !
> 220 5 2P iogb(f)— 0(1) - On<d2 3 Of/f)
" p=<27d* p>27d* P

> 10% — lOg(27d4) — IOg b(f) — 0(1) — 011(d2(27d4)_1/2)

. log s

—4logd —logb(f) — 0,(1). O

3.3. The main estimates. We first establish that we can reduce to the case of absolutely irreducible f in
the proof of Theorem 3.1.1.

Lemma 3.3.1. If f € Z[xo, ..., Xn+1] is homogeneous of degree d > 1 and irreducible but not absolutely
irreducible, then there exists another polynomial g € Z[xy, ..., xy,+1] of degree d, not divisible by f,

which vanishes on all rational zeroes of f.
Proof. This is established in the first paragraph of Section 4 of [Walsh 2015]. (Il

Let us now work with a restricted class of homogeneous polynomials f, namely those which are

d

absolutely irreducible and for which the leading coefficient c, i.e., the coefficient of the monomial x; 1

satisfies
_ dl-H/n
crzlflIc™
for some positive constant C which is allowed to depend on n (for this reason the factor » in the exponent
is in fact superfluous, but it simplifies the proof write-up below).
The two main results are the following:
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Lemma 3.3.2. For f as above, and B satisfying || f|| < B>+, there exists a homogeneous polynomial
g not divisible by f, vanishing at all zeroes of f of height at most B, and of degree

d*=1 b f)
LAl

Lemma 3.3.3. For f as above, and B satisfying || f || = B??"+V  there exists a homogeneous polynomial

M = 0, (1) B +D/@d"™ +d"V"log B+ 0,(d).

g not divisible by f, vanishing at all zeroes of [ of height at most B, and of degree
M = 0,(d*™"™).

These two lemmas together clearly imply the statement of Theorem 3.1.1, at least for polynomials f
satisfying the condition on leading coefficients.

We follow the exposition in [Walsh 2015, Section 4], and prove the two lemmas together. We shall
need the following.

Theorem 3.3.4 [Bombieri and Vaaler 1983, Theorem 1]. Let 22:1 auixr=0(m=1,...,s) be asystem
of s linearly independent equations in r > s variables x1, . .., x., with coefficients a,,x € Z. Then there

exists a nontrivial integer solution (xy, ..., x,) satisfying
max |x;| < (D™'/|det(AAT))/ =9,
1<i<r

Here A = (ayy) is the matrix of coefficients and D is the greatest common divisor of the determinants of

the s X s minors of A.

Proof of Lemmas 3.3.2 and 3.3.3. Fix B > 1, and let S be the set of rational points on the hypersurface
described by f of height at most B. Let M > 0 be such that there is no homogeneous polynomial g of
degree M, not divisible by f, which vanishes on all points in S; we shall show that M is bounded in
terms of n, B, d, || f| as stated. Let us assume in the following that M is bigger than some constant (to
be specified later) times d>.

Given an integer D, write B[ D] for the set of monomials of degree D in n 4 2 variables, so |B[D]| =

(D :;L”Tl) Write E C S for a maximal subset which is algebraically independent over monomials of degree
M, in the sense that applying all monomials in B[M] to 2 yields s = | E| linearly independent vectors.

M+n+1
n+l

A is bounded in absolute value by BY. Since all polynomials in f - BJM — d] vanish on E, and no

Let A be the s x r matrix whose rows are these vectors, where r = |B[M]| = ( ); each entry of
polynomials of degree M not divisible by f do by assumption on M, we have s = |B[M]| — |B[M —d]|.

Now A describes a system of linear equations whose solutions correspond to (the coefficients of)
homogeneous polynomials of degree M vanishing on all points in E and therefore all points in S; by
assumption, these polynomials are multiples of f and therefore have one coefficient of size at least
cr>fIC —nd ' by the assumption on f. Hence Theorem 3.3.4 yields

A < /|det(AAT) (| FllC4 "y
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where we write A for the greatest common divisor of the determinants of the s x s minors of A. Taking
logarithms, using the estimate |det(AA )| < s!(r BM)* obtained by estimating the size of the coefficients
of AAT, and using the estimate for A obtained from Proposition 3.2.6, this expands as follows:

11/n
%s”l/"(logs — 0,(1) —n(4logd +1og b(f)))
n
log s!
< O‘is +%logr—i—leogB—(r—s)(10g||f||—nle/"On(l))

We can use the estimates log s! < s logs and logr < log(M + 1)"*! < 0,(log M) < O, (log s) to see
that the first two terms on the right-hand side are both in O, (s'*!/") and can hence be neglected by
adjusting the constant O, (1) on the left-hand side. Dividing by Ms now yields:

nit/n gl/n r—s
1 Jogs = 0n(D) —n(logd +logh(f)) <log B~ — =

(log|l fIl = nd'tV/" 0, (1)) (3-3-1)

M+n+1) _ (M—d+n+1

Theterms:( ] et

) is a polynomial in M and d. We can write

n

+ O, (d* M"Y,

s =
n!

in particular logs =logd +nlog M — O,(1). By rearranging and applying the binomial series, which is
legal since d*>/M is bounded above by an adjustable absolute constant, we also obtain

Sl/n _ dl/n o d2
M PO\ )

Thus the left-hand side of the inequality above can be replaced by

dl/nl’l 1 d271/n
N e )

where we have dropped terms O, (d*~'/"log M/ M) and O,(d*~'/"1ogd/M) by adjusting the constant
in O,(1).
Let us now estimate (r —s)/(Ms). We have r —s = (M™1)/((n + 1)) + 0,(dM™), so

r—s 1 1+ 0,d/M) 1 (i)
Ms dn+D1+4+0,d/M) dn+1) "\M)

Therefore inequality (3-3-1) becomes

dl/nn 1 dZ—l/n
n+1(logM—On(l)—((4—;)10gd+(1+0n< I ))logb(f)>>

1 1
< log 5 Joelf] 0n( og| /1

= Tdn+1) M

Let us now assume that || || < B2?®+D and M > d'~'/"log B. Then log| f|| <2d(n + 1)log B <
0,(d'/"M), so we can drop the last term on the right-hand side, as well as the O, (logb(f)/M) on the

). (3-3-2)
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left-hand side. Rearranging yields that

n+1 log|l £

1
logM < On(l)—i-mlogB— nle/"+ (4— ;) logd +logb(f),

so we obtain Lemma 3.3.2.
Now, on the other hand, assume that || f|| > B??®+D and M > 4d(n + 1). Rearranging inequality
(3-3-2) yields

log|| £l

1 1
0 2 —1/n _
log M < 0,(1) + (4 n) logd + (14 0,(d™"") logb(f) ~ o~

1
< 0n(1)+max{3logd, (4— —) logd},
n

where we have used

log|| £l log|| £l
O, (1) logb(f) — Indi+1/n < O, (1) max(loglog| /|| —2logd, 0) — Indi+1/n
< max(0, —2logd +log(0, (1)4nd' /"))
= Ox(1)
by Corollary 3.2.3 and the lemma below. This establishes Lemma 3.3.3. O

Lemma 3.3.5. Let ¢ > 0. For any x > 1 we have loglogx —log(x)/c <logc+ O(1).

Proof. Let C =sup, . | (loglogx —log x); note that the supremum exists, since it is taken over a continuous
function on |1, co[ which tends to —oo at both ends of the interval. Now loglogx — log(x)/c =
log ¢ + loglog x'/¢ —log x'/¢ <logc+C. ]

3.4. Finishing the proof. We use ideas from [Walsh 2015, Section 3] to finish the proof of Theorem 3.1.1.

Lemma 3.4.1. Let f € C[x] be a polynomial of degree < d, and write || f|| for the maximal absolute

value among the coefficients. There exists an integer a, 0 < a < d, such that | f (a)| = 37¢| f|I.

Proof. This is a statement about the ||-||o-operator norm of the inverse of the Vandermonde matrix with

nodes O, ..., d, which can be deduced from [Gautschi 1962, Theorem 1]. |
Lemma 3.4.2. Let f € Clxo, ..., Xp+1] be homogeneous of degree d. There exist integers ay, . . . , dy
with 0 < a; <d such that | f (ag, ..., ap, 1)| > 37D 1.

Proof. Dehomogenize by setting x,,1| = 1, and then use induction with the preceding lemma. ]
Proof of Theorem 3.1.1. Take a nonzero [ € Z[xy, ..., X,+1] homogeneous of degree d. Consider
aop, ..., a, as in the last lemma and let A = I + A9 € SL,12(Z), where I is the (n +2) x (n + 2)
identity matrix and A has its last column equal to (ao, ..., a,, 0) and zero everywhere else. Note that

A~ =1 — A,.
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Let f' = f o A. By construction, the x}fﬂ—coefﬁcient of f/is > 3="*+Dd| || Because of the

boundedness of the entries of A, we furthermore see that

n+d+1

1 d d
I/l <d*(n+2) ( ntl

>||f|| < exp(O,(d" V™ NI fI.

d _nd1+l/n
n+

only on n. The polynomial f’ is primitive if and only if f is, since they are related by the matrices A,

In particular, the x{ ,-coefficient of f’ is greater than C || /Il for some constant C depending
A~! with integer coefficients, and b(f) = b(f’). Furthermore, if g’ is a homogeneous polynomial in
Z[xo, . .., Xn41] vanishing on all zeroes of f” up to a certain height B, then g = g’ 0 A~! is a polynomial
of the same degree vanishing on all zeroes of f up to height B = B’/(d + 1).

Since either Lemma 3.3.2 or Lemma 3.3.3 applies to /' and B’, we obtain the desired statement

for f. U

4. Proofs of Theorems 1, 2, 3,4, 6

4.1. On trivial bounds. In this subsection, we extend our notation to varieties defined over any field K
containing @@, and we write N (X, B) for the number of points in P"(Q) N X (K) of height at most B,
when X is a subvariety of [P}, and similarly we write N(Y, B) for the number of points in Z" NY (K) N
[—B, B]", when Y C A%.

Lemma 4.1.1. Let X C A% be a (possibly reducible) variety of pure dimension m and degree d defined
over Q. Then the number Ny(X, B) of integral points on X of height at most B is bounded by d(2B +1)".

When X is a hypersurface, this is the well-known Schwarz—Zippel bound, and even the general case
appears in many places in the literature, albeit often without making the bound completely explicit.

Proof. This is an easy inductive argument using intersections with shifts of coordinate hyperplanes.
In fact, the proof of [Browning and Heath-Brown 2005, Theorem 1] automatically gives this stronger
statement. (I

Corollary 4.1.2. For an irreducible affine variety X in A" of degree d and dimension < n there exists a
tuple (ay, ..., ay) of integers not on X, with |a;| < d for every i. For every irreducible projective variety
X in P" of degree d and dimension < n there exists a point in P" (Q) of height at most d not on X.

Proof. The affine version is implied by the preceding lemma, and the projective version follows by
considering the affine cone. (]

Lemma 4.1.3. Let X C A% be an absolutely irreducible variety of dimension m and degree d not
defined over Q. Then the number Ny(X, B) of integral points on X of height at most B is bounded by
d*2B + "1,

By considering the affine cone over a projective variety, this result also applies to projective varieties
of dimension m, with bound d*(2B + 1)™.
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Proof. For every field automorphism o of @, there is a conjugate variety X°. Since X is not defined
over Q, there exists a o with X? # X. All Q-points of X necessarily also lie on X?. Since X° has
degree d, it is the intersection of hypersurfaces of degree < d, see for instance [Heintz 1983, Proposition 3].
Let Y be a hypersurface of degree < d containing X° and not containing X. Then X NY is a variety of
pure dimension m — 1 and degree at most d>. Now Lemma 4.1.1 gives the result. O

The following allows us to reduce to the geometrically irreducible situation when counting points on
varieties.

Corollary 4.1.4. Let X C A" be an irreducible variety over Q of dimension m and degree d which is not
geometrically irreducible. Then for any B > 1 we have Ny(X, B) < d*2B + 1" 1,

As above, this also applies to projective varieties.

Proof. Let K /(D be a finite Galois extension over which X splits into absolutely irreducible components,
and let Y be one of the components. Since all components are Galois-conjugate, the (D-points on X in
fact also lie on Y. Now the preceding lemma applied to Y gives the result. ]

Remark 4.1.5. Note that this trivially proves Theorems 1 and 3 for irreducible, but not geometrically
irreducible varieties, and similarly for absolutely irreducible varieties defined over @ but not over @. The
same applies for Theorem 2 by considering a projective curve as the union of an affine curve with a finite
number of points.

Thus we henceforth only need to concern ourselves with absolutely irreducible varieties defined over Q.

4.2. Affine counting. Our results for projective hypersurfaces from the last section yield the follow-
ing result for affine hypersurfaces, by refining the technique given in [Ellenberg and Venkatesh 2005,
Remark 2.3].

Proposition 4.2.1. Fix an integer n > 0. Then there exist ¢ and e such that the following holds for all
f,B,d. Let f € Z]|xy, ..., Xy+1] be irreducible, primitive and of degree d. For each i write f; for the
degree i homogeneous part of f. Fix B > 1. Then there is a polynomial g in Z[x1, ..., X,+1] of degree at
most

gl j2-1mmindog| full +dlog B + d*, d*b(f))

1-1/n 4—1/n
TG +cd log B +cd ,

not divisible by f, and vanishing on all points x in 7" satisfying f(x) =0 and |x;| < B.

To prove Proposition 4.2.1 we need the following lemmas:

Lemma 4.2.2 [Browning et al. 2006, Lemma 5]. Let f € Z[xy, ..., Xy42] be a primitive absolutely
irreducible polynomial, homogeneous of degree d, defining a hypersurface Z in P"*!. Let B > 1. Then
either the height of the coefficients of f is bounded by 0,1(Bd(d:ﬁ|)), or there exists a homogeneous
polynomial g of degree d vanishing on all points of Z of height at most B.
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Lemma 4.2.3. For F € Z[x, ..., xp42] an irreducible primitive homogeneous polynomial and 1 <y <
| F|| we have

log y +d?

- b(F) —1/
g4-1/n < 0,(1)d> 1/1W.

|||/ =

Proof. The function
log x

X ———
e l/n1/d+

1/n-1/d' /"

on (1, co) is monotonically increasing up to its maximum when x = e, and monotonically

decreasing thereafter.

Let us write x = || F|| and use d?b(F) < O, (1)(logx + d?) by Corollary 3.2.3. By the monotonicity

l/n-l/dH'l/”

considered above, there is nothing to show when y > e. Otherwise,

2 2
pqp-im 108y Etd 2d2_1/”d—]+]/ s g-im( L ;/ ,
yl/n-1/d1+Y yl/n-1/dn e | yl/nljdie

and the left-hand side of the inequality in the statement is always bounded by

ndH—l/n d2 )

log x +d?
+ 1 1+1/n
e xl/n1/d

On (™" e = on(l)d“/"(

yielding the claim. U

As mentioned above, the following proof follows [Ellenberg and Venkatesh 2005, Remark 2.3]; but
additionally we bring in the idea of forming the homogeneous polynomial Fy for primes H in the range
(B/2; B] to control primitivity.

Proof of Proposition 4.2.1. By applying Lemma 3.3.1 to the homogenization of f, we may assume that
f is absolutely irreducible. For each natural number H, consider the polynomial Fg € Z[xy, ..., X,42]
given by Fy(x(, ..., Xp42) = Z?:o Hi f,x,‘f;é Then Fpg is an irreducible homogeneous polynomial of
degree d. On the other hand, each integral point (xy, ..., x,+1) € Z(f)(Z) gives us a rational point
(X1, ..., Xpp1, H) in Z(Fp)(Q), where Z(f) stands for the hypersurface in A"*! given by f and Z(Fp)
stands for the hypersurface in P**! given by Fp.

If B is bounded by some polynomial expression in d (to be determined later), then B!/ " is bounded
by a constant depending only on n; hence we use Theorem 3.1.1 for Fp, by which there exists a number ¢

depending only on n along with a homogeneous polynomial G in Z[xy, ..., x,4+2] of degree at most

b(F1)

1/d"/" 4—1/n
cB d ||F1||1/n_1/d1+1/n

+cd'"V"log B+ cd*1/",
not divisible by Fi, and vanishing at all points on Z(F;)(Q) of height at most B. Since b(F;) = b(f)
and || F1|| > || f«ll, by Lemma 4.2.3 we obtain

min(d*b(f), log||.f || +d*)
[ Fy ||/t = '

| fal| M/
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Hence the polynomial g(x1, ..., x,+1) = G1(x1, ..., X,+1, 1) satisfies our proposition.

For any B > 2 Bertrand’s postulate guarantees the existence of a prime B’ in the interval (B/2, B].
Moreover, if B'f fy, then Fp is primitive. By Theorem 3.1.1 for Fp/, there exists a number ¢ depending
only on n along with a homogeneous polynomial Gp' in Z[x1, ..., x,42] of degree at most

(n4+1)/nd"" ;4—1/n b(Fp) 1-1/n 4—1/n
cB d —IIFB/III/”'I/‘{'“/" +cd log B +cd ,
not divisible by Fp/, and vanishing at all points on Z(Fp/)(Q) of height at most B.
It is clear that || Fp || = B"| fall = 27¢B?| f4||, so by Lemma 4.2.3 we have

_ n 1/n
Ji-in_ b(Fp) 0(1)(3) V0T o yynlogl fall +dlog B +d

- 7 < —
| F [/ = 2 | fall /1

Furthermore b(Fp/) agrees with b(Fy) up to a factor of exp(log B’/B’) < O(1). Hence we in fact have

d4_1/n b(FB/) 1/(nd1/")d2_1/n miﬂ(10g||fd|| +d10g B +d2, b(f))

TEg v = OnDE | fal[ /AT

Thus the polynomial g(xy, ..., x,+1) = Gp/(x1, ..., Xy11, B') is as desired.
From now on, we suppose that B > 2 and B’ | f; for all primes B’ in the interval (B/2, B]. Then we

( 11 B’)|fo

B’ prime
B/2<B'<B

have

If fo # 0 then we deduce that
> logB' <loglfol.

B’prime,B/2<B'<B

. . d+n+1 . ..
By Lemma 4.2.2, we are done if fj is large compared to B so in the remaining case we have

d 1

Z logB/fd( ot >logB—0n(1)
) n+1

B’prime,B/2<B’<B

Because of the well-known estimate

lim = 08P 1,
X400 X
we see that B is necessarily bounded by a certain polynomial in d in this case, so we are done by the
discussion above.

If f(0) = 0, then by Corollary 4.1.2 there exists an integer point A = (ay, ..., dy+1) With
fay,...,ay,+1)#0and |a;| <d forall 1 <i <n-+1. We consider the shifted polynomial f(x) = f(x+A),
for which £(0) #0, || f41l = || fzll, and b( f) = b(f). We apply the above discussion for f and B = B +d
to obtain a polynomial g (x) vanishing on all zeroes of f of height at most B, and take g(x) = g(x — A).

This satisfies the required degree bound since g does. U
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Corollary 4.2.4. There exists a constant ¢ such that for all d > 0 and all irreducible affine curves X C Aé
of degree d, cut out by an irreducible primitive polynomial f € Z[x1, x»], and all B > 1 one has

,min(d? log|l f4ll +d* log B +d*, d*b(f))
Il fallV/42

Proof. Take n = 1 in Proposition 4.2.1 and apply Bézout’s theorem. O

Nue(X, B) < cB"/ +cd log B+ cd*.

If the absolute irreducibility of f can be explained by the indecomposability of its Newton polytope,
e.g., in the sense of [Gao 2001], then this allows for good bounds on b( f) which get rid of the factor
log B. The following instance will be used to prove Theorem 6:

Corollary 4.2.5. There exists a constant ¢ such that for all affine curves X C A?Q cut out by a polynomial
f € Z[x1, x2] of the form
cdxf + cd/xg/ + Z c,-.,-xixé,
id’+f”£1,<dd’
with d > d’' > 0 coprime integers and cy4, cy # 0, and for all B > 1, one has

Nait(X, B) < ed*(log|cqcq| + 1) B4,

Proof. By dividing out by the greatest common divisor of the coefficients, we may suppose that f is
primitive. The presence of the edge (d, 0)—(0, d’) in the Newton polytope of f is enough to guarantee
absolute irreducibility in any characteristic [Gao 2001, Theorem 4.11]. Therefore we can bound

lo
b(H) < [] exp(ﬂ) < loglegea] +1

plcacy p

through Mertens’ first theorem as in Corollary 3.2.3. (I

4.3. Proofs of our main results. We can now prove our main theorems, subject to the following proposi-
tions; they allow us to reduce to the case of hypersurfaces throughout, and will be established in Section 5
by projection arguments.

Proposition 4.3.1. Given a geometrically integral affine variety X in A" of dimension m and degree d,
there exists a geometrically integral affine variety X' in A"+ birational to X, also of degree d, such that

forany B > 1 we have

Naii(X, B) < dNyse(X', c,d B),

where c,,, e, are constants depending only on n.

Form =1, we can even achieve

Nage(X, B) < Nayge(X', c,d® B) + d>.
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Proposition 4.3.2. Given a geometrically integral projective variety X in P" of dimension m and degree d,
there exists a geometrically integral projective variety X' in P! birational to X, also of degree d, such
that for any B > 1 we have

N(X,B) <dN(X', c,d*'B),

where c,,, e, are constants depending only on n.

Form =1, we can even achieve
N(X, B) < N(X', ¢,d*" B) +d>.

Proof of Theorem 2. In the case of a planar curve, i.e., for n = 2, Corollary 3.1.2 gives the claim. For the
general case, we may assume that the given curve is geometrically integral by Remark 4.1.5, and then
reduce to n = 2 by applying Proposition 4.3.2 (where m = 1). (Il

Proof of Theorem 3. We may assume that the curve X is geometrically integral by Remark 4.1.5. In the
case of a planar curve, i.e., for n = 2, Corollary 4.2.4 yields that

N(X, B) < 0,((d*log B +d*)BY4),

by observing that
d’log| fall +d*log B +d*

|| fall /4

We can reduce the general case to n = 2 by applying Proposition 4.3.1 (where m = 1), yielding the same

<d’log B +2d*.

estimate. O

Proof of Theorem 6. In the penultimate step of their proof of Theorem 1.1, Bhargava et al. [2020] establish
the bound

ha(K) < Oa e ((AK[V*) + 37 Nur(fp, [Ak /)
BeB

where B C Oy is a set of size Og(|Ag|/?>~1/4) and
fg= y:— Nko(x —B) = y? — x4 — lower order terms in x.

Theorem 3 implies that

Natt(f5, 1Ak 1% < 04(1AK |V ?D Tog| Ak ),

yielding the desired result when d is even. If 4 is odd then instead of Theorem 3 we apply Corollary 4.2.5
withd' =2, c; =—1, ¢y = 1 to get rid of the factor log|Ag]|. O

For the proof of Theorem 4, we need the following explicit form of Proposition 1 of [Browning et al.
2006] with D = 1.
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Proposition 4.3.3. There exists a constant ¢ such that for all d > 3 and all polynomials f € Z[xy, x, x3]
of degree d such that the highest degree part h(f) = fu of f is irreducible, all finite sets I of curves C of
Ag@ of degree 1 and lying on the hypersurface defined by f, and all B > 1 one has

Naff(xm (U c), B) <cd®B +#I1.
Cel

Proof. We write I =11 Ul where I1 ={L € I | Nyge(L, B) <1} and I ={L € I | Nogr(L, B) > 1}. It
is clear that Nyg(X N ULes, L) <#I,. If L € I, then there exist a = (aj, a2, a3), v = (v1, v2, v3) € Z°
such that H(a) < B, v is primitive and L(Q) = {a 4+ Av | A € Q}. Since v is primitive we deduce that

L@Z)N[-B,BP ={a+iv|AeZ H(a+hiv)<B}.
So

#(L(Z)N[—B, B]®) < 1+2—B
’ - H@)’

Since L € I, we have H(v) <2B and f;(v) = 0. On the other hand, for each point v with f;(v) =0,
there are at most d(d — 1) lines L € I, in the direction of v, since each such line intersects a generic
hyperplane in A3 in a point which is simultaneously a zero of f and of the directional derivative of f in
the direction of v. Put A; = {v € P>(Q) | f4(v) =0, H(v) =i} and n; = #A;. Then, by Corollary 3.1.2,
there exists a constant ¢ independent of f such that ) i<k i < cd*k*1. By our discussion,

2B

Naff(Xﬂ <U C), B) <#L+(d— 1)le’li(1 + ZZ—B)
Cel i=1

On the other hand, summation by parts gives the following:

k 2B

2B 2B—1
2B 2B 2B 2B
S 1+ 22) = S () (2= 22 )+ (o) (1422
. ”(ﬂ) ( ”)(k k+1>+(. ")( +213)
i=1 k=1 i=1 i=1

2B—1

2B
<cd* | a— 1Y )LL)
<c (; k(k+1)+( )

Since d > 3, one has Y, k¢ - 1/(k(k 4+ 1)) < 400 and B¢ < B. Thus, by enlarging c, we have

Naff<x N (U c), B) <cd®B +#1
Cel
as desired. O

In order to prove Theorem 4, we now first consider the case of a surface in [P, with proof inspired by
the proof of Corollary 7.3 of [Salberger 2013] in combination with the improvements developed above.

Proposition 4.3.4. There exists a constant ¢ such that for all polynomials f in Z[yi, y2, y3] whose
homogeneous part of highest degree f; is irreducible over Q and whose degree d is least 5, one has
Nuii(f. B) < cd"B.
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Proof of Proposition 4.3.4 for d > 16. For any prime modulo which f; is absolutely irreducible, the
reduction of f is likewise absolutely irreducible, so b(f) < b(f;). Applying the usual estimate from
Corollary 3.2.3, Proposition 4.2.1 yields for each B > 1 a polynomial g of degree at most

cd?BVVA. (4-3-1)

not divisible by f and vanishing on all points x in Z" satisfying f(x) =0 and |x;| < B, with ¢ an absolute
constant. Let C be an irreducible component of the (reduced) intersection of f = 0 with g = 0. Call this
intersection C. If C is of degree § > 1, then

Nate(C, B) < ¢'8°B'/* (log B + ) (4-3-2)

by Theorem 3, for some absolute constant ¢’.
By Proposition 4.3.3, the total contribution of integral curves D of C of degree 1 is at most

"d°B (4-3-3)

for some absolute constant ¢”.

Suppose that Cq, ..., Cy are irreducible components of the intersection of f = 0 and g = 0 and
deg(C;) > 1 for all i. Furthermore, we assume that deg(C;) <log B for all 1 <i <m and deg(C;) > log B
for all i > m. Since the function § — 4logg(8) 4+ 1/4 is decreasing in (0, log B/4) and increasing in
(log B/4, +00), by enlarging ¢/, for all 1 <i < m we have

Nutt(Ci, B) < ¢'B'*(log B+ 1). (4-3-4)
On the other hand, if § > log B then B'/? is bounded, so (4-3-1) and (4-3-2) imply

> Nur(Ci, B) < "d" BV (4-3-5)
m+1<i<k
for some ¢”” independent of d and B.
Putting the estimates (4-3-1), (4-3-3), (4-3-4), (4-3-5) together proves the proposition when d is at
least 16. O

To give a proof of Proposition 4.3.4 for lower values of d than 16, one could try to get a form of
Theorem 3 with a lower exponent of the degree and repeat the above proof. We proceed differently: we
treat the values for d going from 6 up to 15 by inspecting the proof of [Browning et al. 2006, Theorem 2]
in combination with some of the above refinements, and the case of d = 5 by using [Salberger 2013,
Theorem 7.2] (at the cost of being less self-contained).

Proof of Proposition 4.3.4 with 6 <d < 15. Fix 6 <d < 15, let f € Z[y1, y2, ¥3] be of degree d with
absolutely irreducible homogeneous part of highest degree, and let X be the surface described by f.

In [Browning et al. 2006, Theorem 2], the estimate Ny (f, B) < Oy, ¢« (B'1¢) is established for every
¢ > 0. However, using our Theorem 2 and Proposition 4.3.3, we shall show that their proof [Browning
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et al. 2006, pages 568-570] in fact gives the bound N.g( f, B) < O4(B), without any €, which is sufficient
for our purposes.

Specifically, they first consider the case in which Lemma 4.2.2 applies, so all the rational points on
X of height up to B lie on a union of irreducible curves with sum of degrees at most d>. Applying
Theorem 2 to those curves of degree > 2 and Proposition 4.3.3 for the contribution of curves of degree 1
yields the claim in this case.

In the remaining case, it is argued that there is an open subset U € X (specifically consisting of those
nonsingular points on X which have multiplicity at most 2 on the tangent plane section at the point) whose
complement consists of O4(1) integral components of degree O,4(1); by the same argument as in the
preceding paragraph, the contribution of this complement is O4(B), so it suffices to estimate Ny(U, B).

Further, it is argued that the points on U of height at most B are covered by a certain collection
of irreducible curves. The subcollection / consisting of those curves of degree at most 2 satisfies
[I| < O4.(B* ‘/g”s), so our Proposition 4.3.3 and [Browning et al. 2006, Proposition 1] gives a
contribution Oy . (B + B¥Y4+3¢) < 04(B).

The remaining curves, of which there are no more than Oy . (B%/ Vdy_all contribute at most B'/3~1/2Vad)
[Browning et al. 2006, Proposition 2], so their total contribution is

04, (BY@VDH3+ey < 0, (B). O

Theorem 4.3.5 [Salberger 2013, Theorem 7.2]. Let X be a geometrically integral surface in [F"?:D of degree
d and X its nonsingular locus. Suppose that the hyperplane defined by xo = 0 intersects X properly, and
identify A3 with the open subset of P given by xo # 0. There exists a positive constant ¢ bounded solely
in terms of d such that the following holds: for every B > 1 there exists a set of Oz(B'/ vd logB+1)
geometrically integral curves D, on X of degree O4(1) such that

Naﬂ'(an \ U D;, B) < Od(BZ/x/g-i-c/log(l-i-log B))‘
A

Proof of Proposition 4.3.4 for d = 5. Suppose that the degree d of f is exactly 5, and let X be the surface
in Aa given by f. We may assume that B > 2. By Theorem 4.3.5, there is ¢ > 0 such that for each B > 2

there is a set C of at most
cB'/Ve log B

geometrically integral curves C C Aa of degree at most ¢ and lying on X such that

Naff<xns\ Ue. B) < O(BYVdte/leeloe b)) < 0 (B),
CeC
where Xy is the open subvariety of nonsingular points.
The complement of X5 in X is a union of irreducible curves the sum of whose degrees is bounded by
a constant. Applying Theorem 2 to those curves of degree > 2 and Proposition 4.3.3 for the contribution
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of curves of degree 1 yields that the complement of X, contributes at most O(B) points, which is
satisfactory for our purposes.

Similarly, the curves in C of degree 1 contribute at most O(cB'/ vd log B + B) < O(B) points by
Proposition 4.3.3, and the curves in C of degree > 2 each contribute at most O (B'/>*¢) by Theorem 3,
again giving a contribution of size O(B). This proves the claim. (Il

Remark 4.3.6. We see that Proposition 4.3.4 for fixed d > 6, and therefore also Theorems 1 and 4 for
fixed degree, already follow from combining [Browning et al. 2006] with the results of [Walsh 2015] and
Proposition 4.3.3. Similarly, for fixed degree d > 5 one can use the results of [Salberger 2013]. However,
keeping track of the dependence on d in Section 3 permits us to use a considerably simpler argument for
fixed d > 16 than in the works cited, and to furthermore obtain polynomial dependence on d.

It remains to prove Theorems 1 and 4. This closely follows [Browning et al. 2006, Lemma 8, Theorem 3].
The proofs are based on Proposition 4.3.4 and the following lemma.

Lemma 4.3.7. Let n > 3 and X C Py, be a geometrically integral hypersurface of degree d. Then there
exists a nonzero form F € Z[yq, . .., yu| of degree at most (n + 1)(d?> — 1) such that F (A) = 0 whenever
the hyperplane section Hy N X is not geometrically integral, where A € (P")* and Hx C P" denotes the
hyperplane cut out by the linear form associated with A.

Proof. Suppose that X is given by f, a geometrically irreducible form of degree d. For A € (P")* write

A=(ap:a;: - :ay) € (P")*. Assuming ag # 0, one has that H4 N X is not geometrically integral if
and only if
aj a
f<__-x1 _"'__n-xrh-xl’ ---’xn)
aop aop

is reducible. Since n > 3 and since X is geometrically integral, we have for a generic choice of B € (P")*
that Hg N X is also geometrically integral. Hence Theorem 3.2.2 implies that there exists a nonzero
form Fy in Z[yy, ..., y,] of degree at most d?* — 1 such that Fy(ay, ..., a,) =0. Similarly, if a; # 0, we
produce a nonzero form F; in Z[yq, ..., Yi—1, Yi+1, - - - » Yu] such that F;(ag, ..., a;—1, aj+1, ..., a,) =0.
So F =[]\, F; is as we want. O

Proof of Theorem 4. Let n > 3 and X C Ag be a geometrically integral hypersurface of degree d > 5
described by a polynomial f € Z[xy, ..., x,] with absolutely irreducible highest degree part. We proceed
by induction on n, where the base case n = 3 is Proposition 4.3.4.

Now assume that n > 3 and the theorem holds for all lower n. Let f; = h(f) be the homogeneous
part of highest degree, which describes a hypersurface in P"~!. By Lemma 4.3.7 and Corollary 4.1.2,
there exists A = (ay, ..., a,) such that the hyperplane section { f; = 0} N {D_ a;x; = 0} is geometrically
integral of degree d, with all ¢; having absolute value at most n(d”> — 1).

Nuge(f, B) < Z Naff<{f:O}m{Zaixi:k}»B)-

|k|<n2(d*>—1)B

Now
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For each k, the variety { f =0} N { > aixi = k} is a hypersurface in the affine plane { > aixi = k}, which
after a change of variables is described by a polynomial g € Z[x1, ..., x,—1] whose homogeneous part of
highest degree is absolutely irreducible by the construction of A. Now the induction hypothesis finishes
the proof. ]

Proof of Theorem 1. We may assume that the variety in question is geometrically irreducible by
Remark 4.1.5, and can reduce to consideration of a hypersurface by Proposition 4.3.2. Hence let
n > 3 and consider an absolutely irreducible polynomial f € Z[xy, ..., x,] homogeneous of degree d > 5.

Then f defines not only a projective hypersurface X in [P", but also an affine hypersurface in A"*!,
the cone of X. We now trivially have

N(f, B) < Nusi(f, B),

so Theorem 4 finishes the proof. U

Remark 4.3.8. Using the explicit exponents obtained in Proposition 4.3.4 and in the proof of
Proposition 4.3.2 in Section 5, we can conservatively estimate e(n) < 2n + 8 for the exponent in
Theorem 4, and e(n) < 2n3 for the exponent in Theorem 1.

5. Reduction to hypersurfaces via projection

In this section we prove Propositions 4.3.1 and 4.3.2, which allowed us to reduce to the case of hypersur-
faces in the proofs of our main theorems. This is an elaboration of familiar projection arguments, which
classically show that every variety is birational to a hypersurface, and which are used in the proofs of
[Browning et al. 2006, Theorem 1] and [Pila 1995, Theorem A]. The additional difficulty for us is that we
have to keep track of the dependence on the degree of the variety throughout. Our main auxiliary result is:

Lemma 5.1. Given a geometrically irreducible subvariety X C P" of dimension m < n — 1 and degree d,
one can find an (n —m — 2)-plane A disjoint from X and an (m+1)-plane ", both defined over Q, such
that ANT" = &, such that the corresponding projection map par : P*\ A — T satisfies

H(par(P)) < cyd*™" V" H(P) (5-1)

forall P € P"(Q)\ A, and such that pa rl|x is birational onto its image. Here c, is an explicit constant

depending only on n.

Because A is disjoint from X, the statement that p, |y is birational onto its image is equivalent to
saying that p r(X) is again a variety of degree d; see [Harris 1992, Example 18.16].

In order to prove Lemma 5.1, we first concentrate on finding an appropriate A, which we think of as
living in the Grassmannian G(n —m — 2, n) consisting of all (n —m — 2)-planes in P”. It is well-known
that the latter has the structure of an (m +2)(n —m — 1)-dimensional irreducible projective variety through
the Pliicker embedding

Piom—2n:Gn—m—2,n)— P": Ar>det(Py,..., Prom—1),



The dimension growth conjecture, polynomial in the degree and without logarithmic factors 2287

where v = (nf;il) —1and (P,..., P,_jy—1) isthe (n —m — 1) x (n + 1) matrix whose rows are
coordinates for n —m — 1 independent points P; € A. Here and throughout this section, for a matrix
M whose number of rows does not exceed its number of columns, we write det(M) to denote the tuple
consisting of its maximal minors, with respect to some fixed ordering.

Fixing such a A € G(n —m — 2) and independent points Py, ..., P,_,,—1 € A, we can also consider
the map

7w P"\NA—> P*:Pr>det(P, Pr,..., Pum_1),

n+1
n—m

where © = ( ) — 1. Writing wp = (7,0, ..., TA,,) We see that the nonzero 7, ; can be viewed as
linear forms whose coefficients are coordinates of P,_,,_> ,(A), modulo sign flips. Note that 7 ;(P) =0

for all j if and only if P € A. In particular 5 is well-defined and easily seen to factor as
P\ A 225 [ s pH (5-2)

for all (m+1)-planes I suchthat ' N A = @.

Another theoretical ingredient we need is the Chow point Fy associated with an irreducible m-
dimensional degree d variety X C [P". This is an irreducible multihomogeneous polynomial of multidegree
d,d,...,d) in m + 1 sets of n 4+ 1 variables such that for all tuples (H;, H>, ..., Hy4+1) of m 4+ 1
hyperplanes in P" one has Fx(Hj, ..., Hy+1) =0if and only if HHNH, N---N Hp1 N X # . See
e.g., [Gelfand et al. 1994, Chapter 4].

Lemma 5.2. Let X be a geometrically irreducible degree d subvariety of P" having dimensionm <n — 1
and consider

Gx={AeGn—m—2,n)| ANX = & and 7 |x is birational onto its image}

with 7w p as above. This is a dense open subset of G(n —m — 2, n) whose complement, when viewed under
the Pliicker embedding, is cut out by hypersurfaces of degree less than (m + 1)2d>.

Proof. Given a hyperplane H € P* we abusively write H o, for nKI(H ) U A, since this is the
hyperplane in " cut out by the precomposition of 4 with the linear form associated with H. Define a
multihomogeneous degree (d, d, ..., d) polynomial Rx s in m + 1 sets of u + 1 variables by letting

Rx a(Hy, Hy, ..., Hyp1) = Fx(Hioma, Hyomp, ..., Hyp10mp).

Note that its coefficients are degree (m+1)d polynomial expressions in the coordinates of P,_;;—2 ,(A).
We will show that

Gx ={A eG(n—m—2,n)| Rx, A is absolutely irreducible}, (5-3)

which implies that the complement of Gy is precisely the vanishing locus of the Noether irreducibility
polynomials from Theorem 3.2.2 evaluated in these coefficients. This indeed yields expressions in the
coordinates of P,_,,_2 ,(A) of degree less than (m + 1)2d?, where we note that not all these expressions
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can vanish identically, since generic A’s do not meet X and generic projections are known to be birational
[Harris 1992, page 224].

We now prove (5-3). First note that A N X # @ implies that Rx , vanishes identically. Indeed, if
P € A then all hyperplanes of the form H om, pass through P, so if moreover P € X we see that Ry A
is identically zero. We can therefore assume that A N X = &. This ensures that 7 (X) is an irreducible
projective variety of dimension m; see [Harris 1992, page 134], so we can consider its Chow point Fy, (x),
which is an irreducible multihomogeneous polynomial of multidegree

(deg(ma (X)), deg(ma (X)), ..., deg(ma (X))

in the same m + 1 sets of ; + 1 variables as in the case of Ry 5. It has the property that for all tuples
(Hy, ..., Hy41) of hyperplanes in P#* we have Fy, (x)(Hi, ..., Hpt+1) =0if and only if H1N- - -NH,, 1N
7A(X) # @. Butin this case 7' (H) N - - Ny (Hpt1) N X # @ so that Ry A (Hi, ..., Hyt1) = 0.
Conversely, if Rx o (Hj, ..., Hy+1) =0 then there exists a point P € HjomwpN- - -NH,y10maNX, which
since ANX =@ implies that 75 (P) € H1N- - -NH,,41N7 A (X) and hence that F, (x)(Hj, ..., Hy41) =0.
We conclude that F, (x) and Rx s have the same vanishing locus and because the former polynomial is
irreducible there must exist some » > 1 such that

RX’A = F;A(X)'

In particular Ry 4 is irreducible if and only if » = 1. But this is true if and only if 7 (X) has degree d,
which as we know holds if and only if 7 |x is birational onto its image. ]

Lemma 5.3. Using the assumptions and notation from Lemma 5.2, there exists an (n — m — 2)-plane
A € Gx(Q) such that

H(A) < ((m+ D)D" " Y (n—m—1)!
when considered under the Pliicker embedding.

Proof. Consider the rational map
T ([an)n—m—l - PV (Pl, B Pnfmfl) = det(Pl, R Pnfmfl)

which is well-defined on the open U consisting of tuples of independent points. Observe that 7(U) =
G(n —m —2,n). By Lemma 5.2 there exists a polynomial F of degree less than (m + 1)?d? which
vanishes on the complement of G x but which does not vanish identically on G(n —m — 2, n). The

polynomial
X10 X11 . X1n
X20 X21 e Xon
Q:=F | det
Xn—m—1,0 Xn—m—1,1 «-+ Xn—m—1,n
is multihomogeneous of multidegree (deg(F), ..., deg(F)) in the n —m — 1 blocks of n 4 1 variables

corresponding to the rows of the displayed matrix. Clearly Q vanishes on the complement of U, while it is
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not identically zero because Q(Py, ..., Pp—y—1) = F(7(Py, ..., P,—n—1)) for any tuple of independent
points P;.
Write

Q=Y 010, X1)Rj(X20. .- Xnm—1.0)
J

for nonzero Q ; and linearly independent polynomials R;. Lemma 4.1.1 helps us to find a point Py € P"(Q)
of height at most deg(F) such that Q(P;) # 0. By the linear independence of the R; one sees that
Q(P1, x20, - - ., Xn—m—1.n) 1s not identically zero. Repeating the argument eventually yields a tuple of
points Py, Py, ..., P,_,;—1 of height at most deg(F’) such that Q(Py, ..., P,—m—1) # 0. In particular this
tuple of points belongs to U, i.e., they are independent, and 7w (Py, Pa, ..., Py—m—1) € Gx(Q). From this
the lemma follows easily. (I

Proof of Lemma 5.1. Let A be the Q-rational (n —m — 2)-plane produced by the proof of Lemma 5.3.
In particular A N X = @ and 7, |x is birational onto its image. Then for all (m + 1)-planes I" such that
I'NA = & the projection map px r|x is also birational onto its image, thanks to the factorization from (5-2).

The proof of Lemma 5.3 moreover shows that A can be assumed to be the linear span of rational
points Py, ..., P,_p,—1 € P" satistying H(P;) < (m + 1)%2d?* =: B;. By Lemma 5.4 below we can find
linear forms L, Lo, ..., L,—_,,—1 with integral coefficients whose absolute value is bounded by

Byi=/(n—m—=2)l(n+ DB ™"

such that L; vanishes on Py, ..., Pi_1, Piy1, ..., P,_,,—1 but not on P;. Together these linear forms cut
out an (m + 1)-plane I' such that ' N A = &. Furthermore
Li(P) Ly—m-1(P)
par(P)=P— P——— Py (5-4)
LI(PI) Lnfmfl(Pnfmfl)

for all P € P*\ A. So we have
H(par(P) < (n—m)((n+1)B1 By)" "' H(P) = cd®" " V" H(P) (5-5)
for some constant ¢ that is easily bounded by an expression purely in . O

Lemma 5.4. Let B, r, s € Z>1 be integers such that s <r. Consider a linear system of linearly independent

equations Y ;_, aixxy =0 fori =1, ..., s, where all a;; are integers satisfying la;;| < B. There exists
a nonzero tuple of integers (x1, x2, . . ., x,) violating the first equation but satisfying all other equations
such that

Ixi| < /(s — DIrB*~! (5-6)
foralli.

Proof. This follows from [Bombieri and Vaaler 1983, Theorem 2], which strengthens Theorem 3.3.4. It
ensures the existence of r — s + 1 linearly independent tuples of integers (x1, X2, ..., x,) satisfying the
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last s — 1 equations and meeting the bound (5-6). Since the space of solutions to the full linear system of

s equations has dimension r — s, at least one of these tuples must violate the first equation. (Il

We can now prove Propositions 4.3.1 and 4.3.2, reducing the situation of a general variety to a
hypersurface.

Proof of Proposition 4.3.2. Let X be a geometrically integral projective variety in P” of dimension m
and degree d, where we may assume that n > m 4 1. We consider a projection p r as in Lemma 5.1.
By dropping appropriately chosen coordinates, its image X’ can be viewed as a hypersurface in P"+!,
birational to X and hence also of degree d. In each fiber of p, r there are at most d points. The height

relation from Lemma 5.1 now immediately implies
N(X, B) <dN(X', c,d*""=D"B)

for all B > 1. This proves the claim for m > 1. For m = 1, consider the normalization X — X and
compose it with the morphism X — X’ induced by p, r to find a resolution of singularities X - X.
The latter map is one-to-one away from the singular points of X’, which together have no more than
(d — 1)(d — 2) preimages by [Kunz 2005, Theorem 17.7(b)]. But then the same claims must apply to
X — X/, yielding the stronger bound

N(X,B) < N(X', c,d*"~?’B) +d°,
as wanted. O

Proof of Proposition 4.3.1. Let X be a geometrically integral affine variety in A" of dimension m and
degree d, where we may assume that m < n — 1. Let Z be the projective closure of X in P"; we apply
Lemma 5.1 and shall argue later that we can take the (n —m —2)-plane A to be contained in the hyperplane
P"~! at infinity. Let Z’ C T be the image of Z under the projection pa 1. As above, by dropping some
coordinates we can view " as P+ = A7+ P where p AI([P’"‘1 \ A) corresponds to P™. In particular
pa,r maps X to the affine part X, = Z’ NA™ ! of Z'.

Consider Py, Py, ..., Py_y—1and Ly, Lo, ..., L,_,,—1 as in the proof of Lemma 5.1. Let P € X be a
point having integer coordinates; when considered as a projective point of Z its coordinate at infinity is 1.
Since the coordinates at infinity of the P; are 0, the projection formula (5-4) shows that pa r(P) € Z’
admits integer coordinates such that the coordinate at infinity is

LI(PI)LZ(PZ) e Ln—m—l(Pn—m—l)a

regardless of the choice of P. As a consequence, this is a multiple of the denominators appearing among
the coordinates of p, r(P) when viewed as an affine rational point of X|,. Therefore, postcomposing
with a coordinate scaling map A”*! — A™*! we obtain another variety X’ in A”*! such that every
integral point P of X is mapped to an integral point of X’ whose height satisfies the same upper bound as
in (5-5). All fibers of this map X — X’ have at most d points, and in the case of curves the map is even
one-to-one away from the singular points on X’. So we can conclude as in the proof of Proposition 4.3.2.
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It remains to argue why we can take A in the hyperplane at infinity. We first claim that the “good set” G z
from Lemma 5.2 has a nonempty intersection with the Grassmannian parametrizing (n —m — 2)-planes A
contained in P"~!. Indeed, it is apparent that the generic such A does not intersect the (1 — 1)-dimensional
set ZNP"~! and hence satisfies A N Z = &. Furthermore, the argument from [Harris 1992, page 224]
showing that generic projections are birational leaves enough freedom to draw the same conclusion when
restricting to projections from planes at infinity. More precisely, if m = n — 2 then it suffices to project
from a point outside the cone spanned by Z and some random point g € Z. Since this cone is irreducible
of dimension at most m + 1 =n — 1 and since Z & P"~!, the generic point at infinity indeed meets this
requirement. If m < n — 2 then the desired conclusion follows by applying the foregoing argument to
n —m — 1 successive projections from points.

So we can redo the proof of Lemma 5.3 starting from a polynomial F of degree less than (m + 1)?d>
which vanishes on the complement of G x but which does not vanish identically on the Grassmannian of
(n —m — 2)-planes that are contained in the hyperplane at infinity; we just argued that such an F exists.
Then one can proceed with the same polynomial Q as before, but with zeroes substituted for the variables

x107x207 -~~axn—m—l,0~ D

6. Lower bounds

We conclude with some lower bounds showing that one cannot make the dependence on d subpolynomial.
Our main auxiliary tool is the following lemma.

Lemma 6.1. For each pair of integers d > 1, n > 2 there exists an absolutely irreducible degree
d polynomial f € Q[xy, x2, ..., x,] which vanishes at all integral points (ry,r, ..., r,) for which
|ri| < L(d —1)/2n] foralli.

Proof. The lemma is immediate if d = 1, so we can assume that d > 2. We claim that there exists a

polynomial
xpxd ol xd > iy, iy X)X Xl
0<i,....in=|(d=1)/n]
which vanishes simultaneously at the integral points (ry, 72, .. ., r,,) satisfying

d—1 d—1 d—1
— =r=
2n n - 2n
for all i. From this the lemma follows, because indeed |(d —1)/2n] — |(d —1)/n] < —|(d —1)/2n]
and because the polynomial is absolutely irreducible, as its Newton polytope is indecomposable; see e.g.,
[Gao 2001, Theorem 4.11]. To verify the claim, note that every point (ry, 7y, ..., r,) imposes a linear
condition on the coefficients a;, . ;, . together resulting in a linear system of (| (d —1)/n] + 1)" equations

in the same number of unknowns. It suffices to see that the matrix corresponding to its linear part is
nonsingular. But this matrix is the n-th Kronecker power of the Vandermonde matrix (r'),; where r and
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respectively. Therefore its determinant is a power of the determinant of this Vandermonde matrix, from

i range over

which the desired conclusion follows. O

Proof of Proposition 5. If d =1, 2 then we let X be a line or conic through a coordinate point, respectively,
so that we can take B = 1. If d > 3 then we consider the affine curve defined by the polynomial f from
the proof of the foregoing lemma for n = 2. Let X be its projective closure, which has an extra height 1
point at infinity. With B = [(d — 1)/2] — [(d — 1)/4] one observes that
d—1 : 2 d* s AL,
N(X,B)z([TJ—H) HZZ:?'ZZ?'B/' O
Note that using the same f and B one also finds that

Nt (f, B) > -1 2>—d2 B 10g B
s jetl = ()
aft 2 4logd g

for all d > 3, confirming our claim that, in the statement of Theorem 3, it is impossible to replace the
quartic dependence on d by any expression which is o(d?/logd). In arbitrary dimension, the same
reasoning shows that there exists a positive constant ¢ = c(n) such that for all integers d > 0 we can find
an absolutely irreducible degree d polynomial f € Q[xy, x3, ..., x,] along with an integer B > 1 such
that

Nyt(f, B) > cd’*B"™> and N(X, B) > cdBY™X,

where X C Py, denotes the integral degree d hypersurface defined by the homogenization of f. This
shows that Theorems 1 and 4 cannot hold with e < 1 or e < 2, respectively.
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