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Toroidal orbifolds, destackification,
and Kummer blowings up

Dan Abramovich, Michael Temkin and Jarosław Włodarczyk

With an appendix by David Rydh

We show that any toroidal DM stack X with finite diagonalizable inertia possesses a maximal toroidal
coarsening X tcs such that the morphism X→ X tcs is logarithmically smooth.

Further, we use torification results of Abramovich and Temkin (2017) to construct a destackification
functor, a variant of the main result of Bergh (2017), on the category of such toroidal stacks X . Namely, we
associate to X a sequence of blowings up of toroidal stacks F̃ X : Y → X such that Ytcs coincides with the
usual coarse moduli space Ycs. In particular, this provides a toroidal resolution of the algebraic space Xcs.

Both X tcs and F̃ X are functorial with respect to strict inertia preserving morphisms X ′→ X .
Finally, we use coarsening morphisms to introduce a class of nonrepresentable birational modifications

of toroidal stacks called Kummer blowings up.
These modifications, as well as our version of destackification, are used in our work on functorial

toroidal resolution of singularities.
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1. Introduction

We study the birational geometry of toroidal orbifolds, aiming towards applications in resolution of
singularities and semistable reduction, as initiated in our paper [Abramovich et al. 2020].

Throughout this paper a noetherian logarithmically regular logarithmic DM stack X will be referred
to as a toroidal DM stack, and if its inertia is finite and diagonalizable then we say that X is a toroidal
orbifold. Finally, X is called simple if its inertia groups Ix act trivially on the sharpened stalks M x of the

This research is supported by BSF grant 2014365.
MSC2010: primary 14A20; secondary 14E05, 14E15.
Keywords: algebraic stacks, toroidal geometry, logarithmic schemes, birational geometry, resolution of singularities.
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logarithmic structure. The coarse moduli space is denoted Xcs. For such objects we prove the following
destackification result:

Theorem 1 (see Theorem 4.1.5). Let C be the category of simple toroidal orbifolds. Then to any object X
in C one can associate a destackifying blowing up of toroidal stacks FX : X ′→ X along a nowhere zero
ideal IX and a coarse destackifying blowing up F0

X : X0→ Xcs along a nowhere zero ideal JX so that

(i) X0 = (X ′)cs and X0 inherits from X ′ a logarithmic structure making it a toroidal algebraic space
such that the morphism X ′→ X0 is logarithmically smooth;

(ii) the blowings up are compatible with any surjective logarithmically smooth inert morphism f :Y→ X
from C:

IXOY = IY , JXOYcs = JY , Y ′ = X ′×X Y, Y ′0 = X ′0×Xcs Ycs.

Moreover, the last two isomorphisms hold even without assuming that f is surjective.

In addition, we remove the assumption on the triviality of the inertia action in Theorem 4.1.4. In this
case, destackification is achieved by a sequence of blowings up, which is only compatible with strict
inert morphisms.

The theorem above is a variant of the main result of [Bergh 2017]. It is tuned for different purposes and
uses different methods. First, we restrict to diagonalizable inertia. In this case, Theorem 4.1.5 generalizes
the main result of [Bergh 2017] in that we allow arbitrary toroidal singularities. Our method is also
different from Bergh’s, in that we use the torific ideal of [Abramovich and Temkin 2017] which produces
the destackification result in one step. Unlike Bergh’s result we do not describe the destackification in
terms of a sequence of well-controlled operations such as blowings up and root stacks. In particular,
applications to factorization of birational maps must use [Bergh 2017] rather than our theorems.

Our study of destackification requires understanding the degree to which one may remove stack
structure while keeping logarithmic smoothness. For this purpose we introduce and study the properties
of coarsening morphisms of Deligne–Mumford stacks in general in Section 2. A full classification of
Deligne–Mumford coarsenings and in particular their existence, generalizing the Keel–Mori theorem,
is a question we believe is of independence interest. This task, as well as a discussion of key cases, is
provided in Appendix A written by David Rydh.

We then specialize to toroidal stacks in Section 3. We associate to a toroidal Deligne–Mumford stack X
its total toroidal coarsening X tcs, whose existence follows from Appendix A, and prove:

Theorem 2 (see Theorem 3.4.7). Let C̃ be the 2-category of toroidal orbifolds and let X be an object of C̃.
Then

(i) the total toroidal coarsening X→ X tcs exists;

(ii) for any geometric point x→ X, we have (IX/X tcs)x = G tor
x , where (IX/X tcs)x is the relative stabilizer

and G tor
x ⊂ Gx the maximal subgroup of inertia acting toroidally;
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(iii) any logarithmically flat morphism h : Y → X in C̃ induces a morphism htcs : Ytcs → X tcs with a
2-commutative diagram

Y

h
��

φY
// Ytcs

htcs
��

X
φX

//

α
:B

X tcs

and the pair (htcs, α) is unique in the 2-categorical sense;

(iv) assume in addition that Y is simple and h is logarithmically smooth and inert. Then the diagram
in (iii) is 2-cartesian.

We emphasize that in this paper the theorem above is only used in Theorems 4.1.4 and 4.1.5, and
only tangentially. Our original treatment of Theorem 3 below used toroidal coarsenings, but our current
formalism requires a relative coarsening over BGm .

Apart from destackification, our treatment of coarsening morphisms figures in our study of a collection
of nonrepresentable birational modifications which is essential in our work [Abramovich et al. 2020]
on resolution of singularities. This is detailed in Section 5, which is mostly independent of Sections 3
and 4. We define in Section 5.4.1 the notion of a permissible Kummer center I on a toroidal scheme,
and in Section 5.4.4 we define its blowing up [BlI (X)] → X , which is in general a toroidal DM stack.
Furthermore, in Section 5.5 we extend these notions to the case when X itself is a toroidal DM stack.
The key properties of Kummer blowings up are as follows:

Theorem 3 (see Theorems 5.4.5 and 5.4.16, Lemmas 5.4.21, 5.4.19 and 5.4.18, and Section 5.5). Let X
be a toroidal DM stack and let I be a permissible Kummer ideal on X with the associated Kummer
blowing up f : [BlI (X)] → X. Then

(i) (V (I )-modification) f is proper and an isomorphism over X r V (I );

(ii) (principalization property) f −1(I ) is an invertible ideal;

(iii) (universal property) f is the universal morphism of toroidal DM stacks h : Z→ X such that h−1(I )
is an invertible ideal;

(iv) (orbifold property) the relative inertia I[BlI (X)]/X is finite diagonalizable, and it acts trivially on the
monoids M x . If X is a simple toroidal orbifold then [BlI (X)] is a simple toroidal orbifold as well;

(v) (functoriality) let f :Y→ X be a logarithmically smooth morphism of toroidal orbifolds and J = IOY .
Then [BlJ (Y )] = [BlI (X)]×X Y, where the product is taken in the category of fs logarithmic stacks;

(vi) (coarse blowing up) assume Z ↪→ X is a strict closed logarithmic subscheme. Let Z ′→ Z be the
strict transform (i.e., the closure of Z r V (I ) in [BlI (X)]). Set Jn = I n!

∩OX . Then the relative
coarse moduli space Z ′cs/X is the blowing up of Z along the saturated ideal ((Jn)

m)norOZ for large
enough n and m;

(vii) (strict transform) assume further in (vi) that J = IOZ is a permissible Kummer ideal on Z. Then
the morphism Z ′→ Z factors through a unique isomorphism Z ′ = [BlJ (Z)].
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Remark 4. We expect some of our statements to apply in greater generality: it is natural to allow X to be
an Artin stack, where the stabilizer at any x ∈ X acts discretely on the monoid M x , and where the kernel
of this action is linearly reductive. With this generality, permissible Kummer centers (Section 5.4.1) may
have index d divisible by the characteristic of the residue field at x .

2. Coarsening morphisms and inertia

2.1. Inertia stack.

2.1.1. Basic properties of inertia. Recall that the inertia stack IX/Y of a morphism f : X→ Y of Artin
stacks is the second diagonal stack IX/Y = X ×X×Y X X, where both structure arrows X→ X ×Y X are
the diagonal. It is a representable group object over X.

The absolute inertia stack of X is IX = IX/Z. Recall that by [Stacks, Tag 04Z6]

IX/Y = IX ×IY X. (1)

In other words, IX/Y = Ker(IX → f ∗(IY )), where f ∗(IY )= IY ×Y X.
In fact, the inertia stack is a group functor in the following sense: given a morphism f : X → Y a

natural morphism I f : IX → IY arises, and the induced morphism IX → f ∗(IY ) is a homomorphism. In
addition, the inertia functor is defined as a 2-limit and hence it respects 2-limits, including fiber products.
So, given T = X ×Z Y with projections f : T → X , g : T → Y and h : T → Z , one has that

IX×Z Y = IX ×IZ IY = f ∗(IX )×h∗(IZ ) g∗(IY ). (2)

Similar facts hold for relative inertia over a fixed stack S.

2.1.2. Inert morphisms. We say that a morphism f : X→ Y is inert or inertia-preserving if it respects
the inertia in the sense that IX = f ∗(IY ). In particular, IX/Y = X and hence f is representable (see
[Stacks, Tag 04SZ] for the absolute case, the relative case follows easily). Inert morphisms are preserved
by base changes. Finally, inert morphisms have no nontrivial automorphisms.

2.1.3. Inert groupoids. In general, one runs into 2-categorical issues when trying to define groupoids in
stacks or their quotients. This is addressed, using the theory of higher stacks and their truncations, in
[Harper 2017, Definition 3.10, Proposition 3.11], where groupoids with representable projection arrows
are considered. We sketch the situation here in the case of inert groupoids, suppressing the specification
of a number of 2-arrows that the theory of higher stacks provides. The treatment here is thus a restatement
of [Stacks, Tag 044U] in the situation of inert groupoids. By an inert groupoid in stacks we mean a usual
datum (p1,2 : X1 ⇒ X0,m, i, δ) as in [Stacks, Tag 0231], where X i are stacks and all morphisms are inert.

Let f : X0→ Y be a morphism. An isomorphism φ : f ◦ p1→ f ◦ p2 is said to satisfy the cocycle
condition on

X2 := X1×p2,X0,p1 X1

π1,2

⇒ X1

if π∗2φ ◦ π
∗

1φ = m∗φ.

http://stacks.math.columbia.edu/tag/04Z6
http://stacks.math.columbia.edu/tag/04SZ
http://stacks.math.columbia.edu/tag/044U
http://stacks.math.columbia.edu/tag/0231
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Lemma 2.1.4. Assume that p1,2 : X1 ⇒ X0 is a smooth inert groupoid in Artin stacks. Then there exists a
representable smooth morphism of stacks q : X0→ X such that X1 = X0×X X0, with a 2-isomorphism
q ◦ p1→ q ◦ p2 satisfying the cocycle condition on X2, and moreover

(1) X is the quotient [X0/X1] in the sense that any morphism f : X0 → Y with a 2-isomorphism
f ◦ p1→ f ◦ p2 satisfying the cocycle condition on X2 are induced by q from a morphism X→ Y,
which is unique up to a unique 2-isomorphism;

(2) if Z → X is a morphism from an algebraic space, inducing a smooth inert groupoid in algebraic
spaces pZ

1,2 : Z1 ⇒ Z0, then [Z0/Z1] → Z is an isomorphism;

(3) if Y1 ⇒ Y0 is another inert groupoid with quotient Y, and a given smooth morphism X0→ Y0 extends
to a cartesian morphism of groupoids, then there is a smooth morphism X→ Y, unique up to unique
isomorphism, with X i = Yi ×Y X.

Sketch of proof. Let U → X0 be a smooth covering by a scheme and set

R =U ×X0,p1 X1×p2,X0 U.

Since inert morphisms are representable, R is an algebraic space and we obtain a smooth groupoid R⇒U in
algebraic spaces. So the quotient X = [U/R] is an Artin stack, and a (mostly 1-categorical) diagram chase
shows that X is as required and satisfies (1) and (2). The existence of a morphism X→Y in part (3) follows
from (1), and its properties follow from (2) by taking compatible smooth covers Z X→ X and ZY → Y. �

2.1.5. Inertia of special types. We say that a stack X has finite inertia if the morphism IX → X is finite,
and we say that X has diagonalizable inertia if the geometric fibers of IX → X are diagonalizable groups.
For example, both conditions are satisfied when X admits an étale inert covering of the form [Z/G]→ X,
where Z is a separated scheme acted on by a finite diagonalizable group G.

2.2. Coarse spaces.

2.2.1. Coarse moduli spaces and their basic properties. Recall that by the Keel–Mori theorem, a stack X
with finite inertia possesses a coarse moduli space Xcs; see [Keel and Mori 1997] and more generally
[Rydh 2013, pp. 630–631]. Rydh’s treatment removes all but necessary assumptions; here the morphism
π : X→ Xcs is a separated universal homeomorphism with π∗OX =OXcs , but cannot be assumed proper
unless X is of finite type over a scheme.

In the sequel, we will say that Xcs is the coarse space of X and X → Xcs is the total coarsening
morphism of X. Recall that for any flat morphism of algebraic spaces Z→ Xcs, the base change morphism
Y = X ×Xcs Z → Z is a total coarsening morphism and the projection Y → X is flat and inert. As a
partial converse, a morphism Y → X which is either inert and étale [Rydh 2013, Theorem 6.10], or inert
and flat with X tame [Rydh 2020] is the base change of hcs : Ycs→ Xcs.

2.2.2. The universal property. The coarse space of X is initial among morphisms X→ Z to algebraic
spaces, and we will extend this, under appropriate assumptions, to morphisms X→ Z of stacks. We say that
an inertia map IX→ IZ is trivial if it factors through the unit Z→ IZ . This happens if and only if IX/Z = IX .
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Theorem 2.2.3. Assume that φ : X→ Z is a morphism of Artin stacks and the inertia of X is finite.

(i) Assume either X is tame or Z is a Deligne–Mumford stack. Then the inertia map Iφ : IX → IZ is
trivial if and only if φ factors through the coarse space f : X→ Xcs: there exists ψ : Xcs→ Z and a
2-isomorphism α : φ −→∼ ψ ◦ f .

(ii) A factorization in (i) is unique in the sense of 2-categories: if ψ ′ and α′ form another such datum
then there exists a unique 2-isomorphism ψ = ψ ′ making the whole diagram 2-commutative.

Proof. If φ factors through f then Iφ factors through the inertia IXcs , which is trivial. Conversely, assume
that Iφ is trivial.

• Assume Z is Deligne–Mumford. Choose an étale covering of Z by a scheme Z0 and set Z1= Z0×Z Z0

and X i = X ×Z Zi , as in the left part of following diagram, which is cartesian:

Z1

����

X1oo //

����

Y1

����

Z0

��

X0oo //

��

Y0

Z Xoo

Since IZi and Iφ are trivial, equations (1) and (2) imply that IX i = IX ×X X i , and we obtain that the
étale surjective morphisms X i → X are inert.

It follows that each X i has finite inertia, in particular, coarse spaces Yi = (X i )cs are defined as in
the right-hand side of the diagram above.

Since the arrows X1→ X0 are both étale and inert, [Rydh 2013, Theorem 6.10] applies (with
W → X there replaced by X1 → X0). Thus the left-hand diagram above is cartesian and the
morphisms Y1→ Y0 are étale. Now Y1 ⇒ Y0 is an étale groupoid with quotient Xcs. For i = 0, 1 the
map X i → Zi factors through Yi uniquely, and the induced morphism of groupoids

(Y1 ⇒ Y0)→ (Z1 ⇒ Z0)

gives rise to the unique morphism ψ : Xcs→ Z as required.

• Assume instead X is tame. The same argument as in the Deligne–Mumford case above holds,
replacing the reference [Rydh 2013] with [Rydh 2020]. Here we present another argument valid
when both X and Z are tame. By [Abramovich et al. 2011, Theorem 3.1] the morphism X → Z
factors through its relative coarse moduli space Xcs/Z , hence it suffices to replace Z by Xcs/Z and
show that Xcs/Z → Xcs is an isomorphism. The problem is local in the étale topology of Xcs, hence
we may assume X = [V/G] with V a scheme and G finite linearly reductive, in which case the
result follows from [Abramovich et al. 2011, Proposition 3.6].
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For (ii), consider a diagram

X // Xcs

ψ
//

ψ ′
// Z

with isomorphisms α :φ−→∼ ψ ◦ f , α′ :φ−→∼ ψ ′◦ f . Given a presentation Z0→ Z , the isomorphisms α, α′

provide a commutative base change diagram

(Xcs)0 ψ0
**

��
X0

44

**

Z0.

(Xcs)
′

0
ψ ′0

44

Since (Xcs)0, (Xcs)
′

0→ Xcs are flat, both X0→ (Xcs)0, (Xcs)
′

0 are coarse moduli spaces, giving a unique
(Xcs)0→ (Xcs)

′

0 making the diagram commutative. The same holds with Z0 replaced by Z1 = Z0×Z Z0,
providing a unique isomorphism of ψ with ψ ′. �

Remark 2.2.4. We note that further results are provided in [Abramovich and Temkin 2018; Romagny
et al. 2018; Rydh 2020]. Part (i) does not hold without restrictions; see the example in Section A.2.3.

2.3. General coarsening morphisms.

2.3.1. Coarsening morphisms. We say that a morphism of stacks π : X→ Y is a coarsening morphism
if the inertia IX/Y is finite and for any flat morphism Z→ Y with Z an algebraic space the base change
X ×Y Z→ Z is a total coarsening morphism as discussed in Section 2.2. It follows, see Lemma 2.3.4,
that these are separated universal homeomorphisms with π∗OX =OY . It is easy to see that coarsening
morphisms are preserved by composition and arbitrary flat base change, not necessarily representable. In
addition, being a coarsening morphism is a flat-local property on the target. In fact, one can show that
this is the smallest class of morphisms containing total coarsening morphisms and closed under flat base
changes and descent.

Remark 2.3.2. We use a new terminology and definition, but the object is not new. We refer to
[Abramovich et al. 2011, Section 3] for the definition of relative coarse moduli space Xcs/S of a morphism
of stacks X→ S with finite relative inertia. It is easy to see that X→ Xcs/S is a coarsening morphism
and, conversely, for every coarsening morphism X→ Y one has that Y = Xcs/Y .

2.3.3. Basic properties. In view of Remark 2.3.2, the following lemma is essentially covered by
[Abramovich et al. 2011, Theorem 3.2], but we provide a proof for completeness.

Lemma 2.3.4. Let X be an Artin stack with finite inertia and let f : X→ Y be a coarsening morphism.
Then

(i) there exists a unique morphism g : Y → Xcs such that g ◦ f is isomorphic to the total coarsening
morphism h : X→ Xcs;

(ii) f is a separated universal homeomorphism;

(iii) Ycs = Xcs, i.e., g is the total coarsening morphism.



2008 Dan Abramovich, Michael Temkin and Jarosław Włodarczyk

Proof. (i) Choose an atlas Y1 ⇒ Y0 of Y and set X i = Yi×Y X. Then Yi = (X i )cs and hence the composed
morphisms X i → X→ Xcs factor uniquely through morphisms gi : Yi → Xcs. The uniqueness implies
that g1 coincides with both pullbacks of g0, hence f descends to a morphism g :Y→ Xcs, which is unique.

(ii) Continuing with the notation above, since the projections fi : X i→ Yi are total coarsening morphisms
(Section 2.2.1), they are separated universal homeomorphisms, and hence the same is true for f by descent.

(iii) We should prove that a morphism Y → T with T an algebraic space factors uniquely through Xcs.
The composed morphism X→ Y → T factors through Xcs uniquely, hence the morphisms X i→ X→ T
factor through Xcs. Since Yi = (X i )cs we obtain that the morphisms Yi → T factor through Xcs in a
compatible way, and hence they descend to a morphism Y → Xcs through which Y → T factors. �

2.3.5. The universal property. Similarly to coarse spaces, with appropriate assumptions, coarsening
morphisms can be described by a universal property.

Theorem 2.3.6. Let φ : X → Z be a morphism of Artin stacks and let f : X → Y be a coarsening
morphism.

(i) Assume either X is tame or Z is a Deligne–Mumford stack. Then the following conditions are
equivalent:

(a) φ factors through f .
(b) Iφ : IX → φ∗(IZ ) factors through I f : IX → f ∗(IY ).
(c) The map IX/Y → φ∗ IZ is trivial.
(d) IX/Y ⊆ IX/Z .

(ii) A factoring of φ through f in (i) is unique in the 2-categorical sense (see Theorem 2.2.3(ii)). In other
words, f is a 2-categorical epimorphism.

(iii) In particular, the 2-category of coarsening morphisms of X is equivalent to a partially ordered set
and the total coarsening morphism h is its final object.

Proof. The implications (a)⇒(b)⇒(c)⇔(d) in (i) follow from the definitions and the base change property
of inertia, see (1) in Section 2.1.1. So assume that the map IX/Y → IZ is trivial and let us prove (a).
Consider a smooth covering of Y by a scheme Y0 and set Y1 = Y0 ×Y Y0 and X i = Yi ×X Y. Since
IX i = IX ×IY IYi and IYi is trivial, we obtain that IX i is the pullback of IX/Y , and hence the morphisms
IX i → IZ are trivial. By Theorem 2.2.3, the morphisms X i → Z factor through Yi = (X i )cs uniquely. We
obtain a morphism of groupoids (Y1 ⇒ Y0)→ Z , which gives rise to a required morphism Y → Z .

In the same way, part (ii) reduces to Theorem 2.2.3(ii) using that the question is smooth-local on Y.
Part (iii) follows from part (ii). �

Remark 2.3.7. The implication (c)⇒(b) in the theorem is nontrivial. Informally, it indicates that f ∗(IY )=

IX/IX/Y . (To prove that this is indeed a group scheme quotient we should have tested it with all group
schemes over X, while (b) only uses group schemes which are a pullback of some IZ .)

Note that again the example in Section A.2.3 shows that part (i) does not hold without appropriate
assumptions.
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Remark 2.3.8. A full classification of Deligne–Mumford coarsenings, as well as a discussion of key
cases, is provided in Appendix A.

3. Toroidal stacks and moduli spaces

3.1. Toroidal schemes.

3.1.1. References. We adopt the terminology of [Abramovich and Temkin 2017] concerning toroidal
schemes and their morphisms with the only difference that we replace Zariski fine and saturated logarithmic
structures by the étale fine and saturated logarithmic structures. In other words, in this paper we extend
the class of toroidal schemes so that it contains “toroidal embeddings with self-intersections” in the
terminology of [Kempf et al. 1973].

Note that when Kato [1994] introduced logarithmically regular logarithmic schemes, he worked with
Zariski logarithmic schemes for simplicity. However, étale locally any fine logarithmic scheme is a Zariski
logarithmic scheme, and this allows to easily extend all results about logarithmic regularity to general fs
logarithmic schemes; see [Nizioł 2006].

We will make use of Kummer logarithmically étale morphisms; see [Nizioł 2008] and Section 5.3.5.

3.1.2. Toroidal schemes. Now, let us recall the main points quickly. In this paper, a toroidal scheme X
is a logarithmically regular logarithmic scheme (X,MX ) in the sense of [Nizioł 2006]. Alternatively,
one can represent X by a pair (X,U ), where the open subscheme U is the locus where the logarithmic
structure is trivial. One reconstructs the monoid by MX =OXét ∩ i∗(O×Uét

), where i :U ↪→ X is the open
immersion. Usually, we will denote a toroidal scheme X or (X,U ).

3.1.3. Fans. Recall that the logarithmic stratum X (n) of a logarithmic scheme (X,MX ) consists of all
points x ∈ X with rank(M x) = n. Here and in the sequel we use the convention that M x denotes M x̄

for a geometric point x̄→ X over x . In particular, M x is defined up to an automorphism, but its rank
is well defined.

If X is a toroidal scheme then, by logarithmic regularity, each stratum X (n) is regular of pure
codimension n. By the fan of a toroidal scheme X we mean the set Fan(X) of all generic points of the
logarithmic strata of X. Also, let η : X→ Fan(X) denote the contraction map sending a point x to the
generic point of the connected component of the logarithmic stratum containing x .

3.1.4. Morphisms. A morphism of toroidal schemes (Y, V )→ (X,U ) is a morphism of the associated
logarithmic schemes. Equivalently one can describe it as a morphism f : Y → X such that f (V )⊆U .
Logarithmically smooth morphisms form an important class of morphisms (called toroidal morphisms in
[Abramovich and Temkin 2017]). Strict morphisms form another important class: these are the morphisms
that induce an isomorphism f ∗MX −→

∼ MY .

3.2. Toroidal actions.

3.2.1. Definitions. A diagonalizable group G is a Z-flat group scheme of the form DL for a finitely
generated group L; see [Abramovich and Temkin 2018, Section 3.2]. An action of G on a scheme X is
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relatively affine if there is a scheme Z and an affine G-invariant morphism X→ Z ; see [Abramovich and
Temkin 2018, Section 5.1]. This will be a running assumption throughout. It implies the existence of
schemes of fixed points and a good inertia stratification. We also assume that X is toroidal and G acts on it
in the sense of [Abramovich and Temkin 2017, Section 3.1]: p∗MX −→

∼ m∗MX , where p,m : X×G ⇒ X
are the projection and the action morphisms, but in this paper MX is an étale sheaf. In particular
Gη(x) ⊆ Gx . The action is simple at a point x ∈ X if the stabilizer Gx acts trivially on M x , and the action
is toroidal at x if it is simple at x and Gx = Gη(x). Note that the latter happens if and only if Gx acts
trivially on the connected component of the logarithmic stratum through x ; see [Abramovich and Temkin
2017, Sections 3.1.4, 3.1.7].

Remark 3.2.2. (i) By [Abramovich and Temkin 2017, Corollary 3.2.18], the set of points x ∈ X, at
which the action is toroidal or simple, is open.

(ii) Let us temporary say that the action is quasitoroidal at x is Gx = Gη(x). This notion is not so
meaningful due to the following examples:

(1) The openness property fails for quasitoroidality. For example, let G = Z/2Z act on X =
Spec(k[x, y]) by switching the coordinates. Then the action is quasitoroidal at the origin, but it
is not quasitoroidal at other points of the line X G, which is given by x = y. Note that this action is
not simple at the origin, so the example is consistent with the openness result for the toroidal locus.

(2) Let G = Z/4Z with a generator g act on X = Spec(k[x, y]) by gx = y and gy =−x . Then the
action is quasitoroidal everywhere but is not simple at the origin.

(iii) We note, as in Remark 4 of the introduction, that while the restrictions imposed here are sufficient
for the immediate applications we have in mind, we expect some of our statements to hold in greater
and more natural generality.

3.2.3. The groups G tor
x . Let G M x

be the subgroup of Gx that stabilizes M x . By the toroidal stabilizer
at x we mean the subgroup G tor

x = Gη(x) ∩G M x
of the stabilizer Gx . Thus G tor

x is the maximal subgroup
of Gx that acts toroidally at x .

Lemma 3.2.4. If a diagonalizable group G acts in a relatively affine manner on a toroidal scheme X then
any point x ∈ X possesses a neighborhood X ′ such that G tor

x ∩Gx ′ = G tor
x ′ for any point x ′ ∈ X ′.

Proof. Let X ′ be obtained by removing from X the Zariski closures of all points ε ∈ Fan(X) which are not
generizations of x . Thus, η(x ′) is a generization of η(x) for any x ′ ∈ X ′. Note that M x ′ =Mη(x ′) since M X

is locally constant along logarithmic strata. Therefore G tor
x ′ = G tor

η(x ′), and it suffices to deal with the case
when x, x ′ ∈ Fan(X). Then x ′ specializes to x and our claim reduces to the check that G M x

∩Gx ′ =G M x ′
.

Since any cospecialization φ : M x→ M x ′ is surjective, G M x
∩Gx ′ ⊆ G M x ′

. Conversely, we need to show
G M x ′

⊂ G M x
.

Let F ⊂ M x be a face associated to the closed stratum Y = {x ′} and cospecialization φ, so that
M x ′ = M x/F and φ is the quotient homomorphism. The normalization Y nor of Y is itself toroidal, having
characteristic monoid F at a point xnor over x (and trivial monoid at the generic point x ′). Since G M x ′
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fixes x ′ it acts trivially on Y nor and hence on F. Since G M x ′
also acts trivially on M x ′ = M x/F it acts

trivially on M x , as needed. �

3.2.5. The quotients. Toroidal stabilizers can also be characterized in terms of the quotient morphisms.
To obtain a nice picture we restrict to étale groups.

Lemma 3.2.6. Assume that an étale diagonalizable group G acts in a relatively affine manner on a
toroidal scheme (X,U ) and x ∈ X is a point. Then G tor

x is the maximal subgroup H of the stabilizer Gx

such that if q : X → X/H is the quotient morphism then the pair (X/H,U/H) is toroidal at q(x) and
the morphism (X,U )→ (X/H,U/H) is Kummer logarithmically étale at x.

Proof. If H ⊆ G tor
x , that is H acts toroidally at x , then the quotient is as asserted by [Abramovich and

Temkin 2017, Theorem 3.3.12]. Conversely, assume that H is such that q is Kummer logarithmically
étale at x . Then Mq(x) contains nM x for a large enough n, and since H acts trivially on Mq(x), it acts
trivially on M x . So the action of H is simple in a neighborhood of x . Let C be the connected component
of the logarithmic stratum containing x . If H * Gη then the induced morphism C→ q(C) is ramified
at x because η is the generic point of C . But we assumed that q is logarithmically étale, and hence
C→ q(C) is étale at x . This shows that H ⊆ Gη, and hence H ⊆ Gη ∩G M x

= G tor
x , as required. �

3.2.7. Functoriality. Assume that toroidal schemes X and Y are provided with relatively affine actions
of diagonalizable groups G and H, respectively, λ : H → G is a homomorphism, and f : Y → X is a
λ-equivariant morphism. We want to study when the toroidal inertia groups are functorial in the sense that
H tor

y ↪→ λ−1(G tor
x ) for any y ∈ Y with x = f (y). By [Abramovich and Temkin 2017, Lemma 3.1.6(i)],

strict morphisms respect simplicity of the action. The toroidal property is more subtle: the functoriality
of toroidal inertia may fail even for surjective fix-point reflecting strict morphisms.

Example 3.2.8. Let X = Spec(k[x, y]) with the toroidal structure (x) and G = Z/2Z acting by the sign
both on x and y. Then the action is not toroidal at the origin O , so G tor

X,O = 1. Let Y be the x-axis
Spec(k[x])with the toroidal structure (x). Then Y embeds G-equivariantly into X, but the action is toroidal
on Y and hence G tor

Y,O = G is not mapped into G tor
X,O. Furthermore, if X0 = X r {O} then X0

∐
Y → X

is a surjective fix-point reflecting strict morphism which is not functorial for the toroidal inertia.

Remark 3.2.9. As this example shows, the statement in [Abramovich and Temkin 2017, Lemma 3.1.9(ii)]
needs to be corrected to read “and the converse is true if f is étale and surjective”, and the proof should
read “Hence (ii) follows from (i), Lemma 3.1.6(i) and étale descent”. This does not affect other results of
that paper, since only the direct implication was used.

The problem in Example 3.2.8 is that O is in the fan of Y but not in the fan of X, and the stabilizer
drops at ηX (O). To avoid such examples we will restrict to logarithmically flat morphisms.

Lemma 3.2.10. Assume that f : Y → X is a logarithmically flat morphism of toroidal schemes. Then for
any point y ∈ Y with x = f (y) one has that f (ηY (y))= ηX (x). In particular, f (Fan(Y ))⊆ Fan(X).
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Proof. It suffices to prove that each connected component C of a logarithmic stratum on Y goes to the
same logarithmic stratum X (n), and the induced morphism f : C → X (n) is flat. The claim is étale
local, hence we can assume that f splits into a composition of a strict flat morphism Y → X P [Q] and
the projection X P [Q] → X, where P ↪→ Q and X P [Q] = X ×Spec(Z[P]) Spec(Z[Q]). The first case is
clear, and in the second case the maps of the strata are easily seen to be flat. �

Lemma 3.2.11. Let f : Y → X be a λ-equivariant morphism as in Section 3.2.7, and let y ∈ Y be a point
with x = f (y) and the induced homomorphism λy : Hy → Gx such that f is logarithmically flat at y.
Then

(i) λy(H tor
y )⊆ G tor

x ;

(ii) if , in addition, f is fix-point reflecting and either f is strict at y, or the action of H is simple at y,
then λy : H tor

y −→
∼ G tor

x .

Proof. Claim (i) follows from the following two observations: by logarithmic flatness M x ⊂ M y so the
inclusion λy(HM y

)⊆ G M x
holds, and the inclusion λy(Hη(y))⊆ Gη(x) holds because f (η(y))= η(x) by

Lemma 3.2.10.
In part (ii), strictness or simplicity assumption implies that HM y

−→∼ G M x
. It remains to note that

Hη(y) −→∼ Gη(x) because f (ηY (y))= ηX (x) by Lemma 3.2.10 and f is fix-point reflecting. �

3.2.12. Toroidal inertia. For the sake of completeness we note that the groups G tor
x glue to a toroidal

inertia group scheme I tor
X over the G-scheme X. Namely, if ε denotes the Zariski closure of ε then

I tor
X :=

⋃
ε∈Fan(X)

G tor
ε × ε

is a subgroup of G×X, which is obviously contained in IX . Since G is discrete there is no ambiguity about
the scheme structure: G × X =

∐
g∈G X and IX =

∐
g∈G X g, where X g is the closed subscheme fixed

by g. The functoriality results of Lemma 3.2.11 extend to the toroidal inertia schemes in the obvious way.

3.3. Toroidal stacks. Using descent, the notions of toroidal schemes and morphisms can easily be
extended to Artin stacks; see [Olsson 2003, Section 5]. We will stick to the case of DM stacks, since only
they show up in our applications. A minor advantage of this restriction is that one can work with the étale
topology instead of the lisse-étale topology.

3.3.1. Logarithmic structures on stacks. By a logarithmic structure on an DM stack X we mean a sheaf
of monoids MX on the étale site Xét and a homomorphism αX : MX →OXét inducing an isomorphism
M×X −→

∼ O×Xét
. If p1,2 : X1 ⇒ X0 is an atlas of X then giving a logarithmic structure M is equivalent to

giving compatible logarithmic structures MX i in the sense that p−1
i MX0 = MX1 for i = 1, 2. We say that

(X,MX ) is fine, saturated, etc., if (X0,MX0) is so. We use here that these properties of MX0 are étale
local on X0, and hence are independent of the choice of the atlas.
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3.3.2. Logarithmic stacks and atlases. By a logarithmic stack (X,MX ) we mean a stack provided with a
logarithmic structure. In this case, for any smooth atlas X1 ⇒ X0 of X we provide X0 and X1 with the
pullbacks of MX and say that (X1,MX1)⇒ (X0,MX0) is an atlas of (X,MX ). Indeed, αX : MX →OXét

is uniquely determined by this datum.

3.3.3. Toroidal stacks. A logarithmic stack (X,MX ) is logarithmically regular or toroidal if it admits an
atlas such that (X0,MX0) is toroidal. In this case any atlas is toroidal because logarithmic regularity is a
smooth-local property; see [Gabber and Ramero 2004, Proposition 12.5.46].

Furthermore, the triviality loci Ui ⊆ X i of MX i are compatible with respect to the strict morphisms p1,2,
hence U0 descends to an open substack i :U ↪→ X that we call the triviality locus of MX . Furthermore,
when (X,MX ) is logarithmically regular, U determines the logarithmic structure by MX =OXét∩ i∗(O×Uét

)

because the same formulas reconstruct MX i . In the sequel, we will often view toroidal stacks as pairs
(X,U ). Again, a morphism (Y, V )→ (X,U ) of toroidal stacks is nothing else but a morphism f : Y→ X
of stacks such that V ↪→ f −1(U ).

3.4. Total toroidal coarsening. Let (X,U ) be a toroidal DM stack.

3.4.1. Toroidal coarsening morphisms. Let f : X→ Y be a coarsening morphism and V ↪→ Y the open
substack corresponding to the open subset f (|U |). We say that f : X→ Y is toroidal if the pair (Y, V )
is a toroidal stack, and the morphism (X,U )→ (Y, V ) is Kummer logarithmically étale. If it exists,
the final object of the category of toroidal coarsening morphisms of X will be called the total toroidal
coarsening of X and denoted φX : X→ X tcs.

Our next goal is to construct X tcs. By Theorem A.1.3, φX is determined by the geometric points of its
inertia, so our plan is as follows. First, we will extend the notion of toroidal stabilizers from Section 3.2.3
to geometric points of stacks, and then we will use them to construct φX so that, indeed, (IφX )x is the
toroidal stabilizer of x . In this context, IφX is the generalization to toroidal stacks of the toroidal inertia
I tor

X from Section 3.2.12.

3.4.2. Toroidal inertia. Let Z = Xcs. By [Abramovich and Vistoli 2002, Lemma 2.2.3], a geometric point
x→ X possesses an étale neighborhood X ′ = X ×Z Z ′ of the form [X ′0/Gx ], in particular X ′→ X is
inert. Pulling back the toroidal structure of X we obtain a Gx -equivariant toroidal structure on X ′0 and we
take G tor

X ′0,x
to be the maximal subgroup of Gx acting toroidally along x . By the following lemma, we can

denote this group simply G tor
x . It will be called the toroidal stabilizer at x . Note also that M X,x = M X ′0,x ,

and hence we obtain an action of Gx on M x . We say that X is simple if for any point x→ X the group Gx

acts on M x trivially.
The toroidal stabilizer is related to the previous paragraph: by Lemma 3.2.6 a coarsening morphism

f : X→ Y is toroidal if and only if Ker(Gx → G f (x))⊂ G tor
x .

Lemma 3.4.3. With the above notation, the group G tor
X ′0,x

and the action of Gx on M x are independent of
the choices of neighborhood X ′ and quotient presentation X ′ = [X ′0/Gx ].
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Proof. Given a finer étale neighborhood Z ′′ → Z ′ of the image of x in Z , set X ′′ = X ×Z Z ′′ and
X ′′0 = X ′0×X ′ X ′′. In particular, X ′′ = [X ′′0/Gx ]. It suffices to check that G tor

X ′0,x
= G tor

X ′′0 ,x
. Being a base

change of a morphism of algebraic spaces, the morphism X ′′ → X ′ is inert, and it follows that the
strict étale Gx -equivariant morphism X ′′0 → X ′0 is inert. Therefore, G tor

X ′0,x
= G tor

X ′′0 ,x
by [Abramovich and

Temkin 2017, Lemma 3.1.9(ii)] and Remark 3.2.9. Also, it is clear that M X ′0,x = M X ′′0 ,x as Gx -sets.
It remains to consider two different presentations X ′ = [X ′0/Gx ] ' [X ′′0/Gx ] over the same étale

Z ′→ Z . Write Y = X ′0×X ′ X ′′0, so that X ′ ' [Y/(Gx ×Gx)]. One checks that Y → X ′0 and Y → X ′′0 are
inert. Lemma 3.2.11 implies G tor

X ′0,x
= G tor

X ′′0 ,x
, giving the result. �

Functoriality properties from Lemma 3.2.11 extend to stacks straightforwardly.

Lemma 3.4.4. Let f : Y → X be a morphism of toroidal stacks, and y→ Y a point with x = f (y) and
the induced homomorphism λy : G y→ Gx .

(i) If f is étale, strict and inert, then λy : G tor
y −→
∼ G tor

x .

(ii) If f is logarithmically flat at y, then λy(G tor
y )⊆ G tor

x . If , in addition, f is inert and Y is simple at y,
then λy : G tor

y −→
∼ G tor

x .

Proof. If Y0→ X0 is a λy-equivariant morphism of affine schemes inducing f : Y = [Y0/G y] → X =
[X0/Gx ] then the toroidal stabilizers equal to the toroidal stabilizers of the actions of G y and Gx on Y0

and X0, respectively. In this case, (i) follows from [Abramovich and Temkin 2017, Lemma 3.1.9(ii)] and
Remark 3.2.9, and (ii) follows from Lemma 3.2.11.

The general case is reduced to this by local work on the coarse moduli spaces: first we base change
both stacks with respect to an étale morphism Z ′→ Xcs such that we can present X = [X0/Gx ]. Then
we replace Y further by an appropriate étale neighborhood of y induced from an étale neighborhood of its
image in Ycs, so that we can present Y = [Y0/G y]. Now the Gx -torsors associated to Y → BG y→ BGx

and Y → X→ BGx agree on the residual gerbe BG y ⊂ Y , so that after further inert localization of Y
they agree on Y. This provides a λ-equivariant morphism Y0→ X0 as needed. �

3.4.5. Toroidal orbifolds. In the sequel, by a toroidal orbifold we mean a toroidal DM stack X with finite
diagonalizable inertia (but note Remarks 4 and 3.2.2(iii)). We allow the generic stabilizer to be nontrivial.

3.4.6. The construction. Now we can construct the total toroidal coarsening.

Theorem 3.4.7. Let C̃ be the 2-category of toroidal orbifolds with the subcategory C of simple objects.
Then

(i) for any object X of C̃, the total toroidal coarsening X tcs exists;

(ii) for any geometric point x→ X, we have (IX/X tcs)x = G tor
x , where (IX/X tcs)x is the relative stabilizer

and G tor
x the toroidal inertia group;



Toroidal orbifolds, destackification, and Kummer blowings up 2015

(iii) any logarithmically flat morphism h : Y → X in C̃ induces a morphism htcs : Ytcs → X tcs with a
2-commutative diagram

Y

h
��

φY
// Ytcs

htcs
��

X
φX

//

α
:B

X tcs

and the pair (htcs, α) is unique in the 2-categorical sense: if (h′tcs, α
′) is another such pair then there

exists a unique 2-isomorphism h′tcs = htcs making the whole diagram 2-commutative;

(iv) assume that h is logarithmically smooth and inert, and Y is simple. Then the diagram in (iii) is
2-cartesian.

The present proof of (i) and (ii) was suggested by David Rydh.

Proof. We first show that there is an open and closed subgroup I tor
X ⊂ IX with fibers G tor

x .
Fix x and write G = Gx . By [Abramovich and Vistoli 2002, Lemma 2.3.3] there is a neighborhood

Z0→ Z := Xcs and a Gx -scheme W0 with isomorphism X0 := [W0/G] ' X ×Z Z0. By Lemma 3.4.3
we may replace X by X0. Since |X0| = |Z0|, by Lemma 3.2.4 we can shrink Z0 so that G tor

w = G tor
x ∩Gw

for any w ∈W0. Since G tor
x ⊂ G are discrete groups this defines an open and closed subgroup I tor

X ⊂ IX .
Theorem A.1.3 provides a coarsening morphism X→ X tcs satisfying (i), (ii).
To prove (iii) we should prove that the morphism Y → X tcs factors through Ytcs uniquely. So, by

Theorem 2.3.6 we should prove that IY/Ytcs is mapped to zero in IX tcs . We claim that, moreover, the map
IY → IX takes IY/Ytcs to IX/X tcs . It suffices to check this on the geometric points, since the inertia are
étale for DM stacks. But the latter is covered by Lemma 3.4.4(ii).

Let us prove (iv). Let Q denote the square diagram from (iii). Choose an étale covering f : Z→ X tcs

with Z a scheme. It suffices to show that the base change square f ∗(Q) :=Q×X tcs Z is 2-cartesian. For any
point y→ Y with x = h(y) we have that G tor

y −→
∼ G tor

x by Lemma 3.4.4(ii). Hence IφY (y)= IφX (x), and we
obtain that the morphism htcs is inert. It follows that Z×X tcs Ytcs is an algebraic space. Thus, the morphisms
f ∗(φX ) and f ∗(φY ) are coarsening morphisms whose targets are algebraic spaces, and hence both are
usual coarse spaces. We can now apply Lemma B.2.6 to conclude that the square f ∗(Q) is 2-cartesian. �

4. Destackification

4.1. The main result.

4.1.1. Blowings up of toroidal stacks. We say that a morphism f : (X ′,U ′) → (X,U ) of toroidal
stacks is the blowing up along a closed substack Z ↪→ X if f : X ′→ X is a blowing up along Z and
U ′= f −1(U )r f −1(Z). For example, a blowing up of toroidal schemes is a blowing up of usual schemes
f : X ′→ X such that the toroidal divisor X ′rU ′ of (X ′,U ′) is the union of the preimage of the toroidal
divisor of (X,U ) and the exceptional divisor of f . We use the same definition for normalized blowings up.
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4.1.2. Torification. Our destackification results are based on and can be viewed as stack-theoretic en-
hancements of torification theorems of [Abramovich and Temkin 2017]. In Appendix B we recall these
results and slightly upgrade them according to the needs of this paper.

4.1.3. Destackification theorem. Let us first formulate our main results on destackification. Their proof
will occupy the rest of Section 4. Using the torification functors T and T̃ we will construct two
destackification functors: F and F̃. The former one has stronger functoriality properties, but only applies
to toroidal stacks with inertia acting simply.

Theorem 4.1.4. Let C̃ be the category of toroidal orbifolds.

(i) For any object X of C̃ there exists a sequence of birational blowings up of toroidal stacks F̃ X :

Xn→ · · · → X such that (Xn)tcs = (Xn)cs.

(ii) In addition, one can choose F̃ compatible with surjective smooth strict inert morphisms f : X ′→ X
from C̃ in the sense that for any such f the sequence F̃ X ′ is the pullback of F̃ X . Compatibility on the
level of morphisms holds even without assuming that f is surjective.

Theorem 4.1.5. Let C be the category of simple toroidal orbifolds. Then to any object X in C one can
associate a birational blowing up of toroidal stacks FX : X1→ X along an ideal IX and a blowing up
F0

X : X0→ Xcs along an ideal JX so that

(i) (X1)tcs = (X1)cs = X0;

(ii) if f : X ′→ X is a surjective logarithmically smooth inert morphism in C, then FX ′ and F0
X ′ are the

pullbacks of FX and F0
X , respectively. Compatibility on the level of morphisms holds even without

assuming that f is surjective.

For the sake of completeness, we note that claim (ii) of the two theorems is also satisfied for strict
morphisms f which are strongly equivariant in the sense that f : X ′→ X is the pullback of fcs : X ′cs→ Xcs.
For these versions of Theorem 4.1.4(ii) (resp. Theorem 4.1.5(ii)) the proof is the same, but the reference
to Corollary B.2.7 should be replaced by a reference to Theorem B.2.2 (resp. Theorem B.2.4). In both
cases birationality follows from Proposition B.1.4.

4.2. The proof. We will work with Theorem 4.1.5 for concreteness. The proof of Theorem 4.1.4 is similar
and involves less details; the main difference is that one should use Theorem B.2.2 as the torification input
instead of Corollary B.2.7. (Recall that smooth inert morphisms are strongly equivariant by [Abramovich
and Temkin 2018, Theorem 1.3.1(ii)(b)].)

We will construct the functor F by showing that the torification functor T descends to stacks. This
will be done in two stages: first we will establish its descent to global quotients [W/G] and then will use
étale descent with respect to inert morphisms.

4.2.1. Step 1: the global quotient case. We will first prove the theorem for the subcategory C′ of C
whose objects X are of the form [W/G], where G is an étale diagonalizable group acting on a toroidal
quasiaffine scheme W.
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Since the blowing up and the center of T ′W,G are G-equivariant, they descend to X. Namely, there exists
a unique blowing up of toroidal stacks FX,W : X1→ X whose pullback to W is T ′W,G :W1→W. Since
[W/G]cs =W/G, we simply set F0

X,W = T ′0W,G . We claim that these FX,W and F0
X,W are independent of

the choice of the covering W.
Suppose that X = [W ′/G ′] is another such representation. Note that X = [W ′′/G ′′], where W ′′ =

W ×X W ′ and G ′′ = G×G ′, and it suffices to compare the blowings up induced from W and W ′′. In this
case the projection W ′′→W is inert and λ-equivariant for the projection λ : G ′′� G, and hence T ′W ′′,G ′′
and T ′0W ′′,G ′′ are the pullbacks of T ′W,G and T ′0W,G by Corollary B.2.7. It follows that FX,W = FX,W ′′ and
F0

X,W = F0
X,W ′′ , and in the sequel we can safely write FX and F0

X .
The properties of F and F0 are checked similarly, so we will only discuss F. The action of G on W1

is toroidal, hence Gw = G tor
w for any w ∈W1. Since X1 = [W1/G], the definition of toroidal stabilizers

in Section 3.4.2 implies that Gx = G tor
x for any geometric point x → X1. Therefore, (X1)tcs = (X1)cs

by Theorem 3.4.7. Assume that f : X ′→ X is a logarithmically smooth inert morphism in C′. Choose
presentations X = [W/G] and X ′ = [W ′/G ′]. Replacing the latter presentation by [W ′×X W/G×G ′],
we can assume that there is a homomorphism λ : G ′→ G such that f lifts to a λ-equivariant morphism
h :W ′→W. Since f is inert, the same is true for h, and T ′W,G and T ′W ′,G ′ are compatible by Corollary B.2.7.
By the definition of F on C′, we obtain that FX and FX ′ are compatible too.

4.2.2. Step 2: inert étale descent. Assume now that X is an arbitrary toroidal orbifold. By [Abramovich
and Vistoli 2002, Lemma 2.2.3], the coarse moduli space Z = Xcs possesses an étale covering

Z ′ =
l∐

i=1

Zi → Z

such that each Zi is affine and each X i = X ×Z Zi lies in C′, say X i = [Wi/Gi ]. Note that X ′ =
∐l

i=1 X i

is also in C′, for example, X ′ = W ′/G ′ for W ′ =
∐

i (X i ×
∏

j 6=i G j ) and G ′ =
∏

j G j . Furthermore,
X ′′ = X ′×X X ′ is also in C′ since X ′′ = [W ′′/G ′′] for W ′′ = W ′×X W ′ and G ′′ = G ′×G ′. (Although
IX → X is finite, X does not have to be separated, so W ′′ can be quasiaffine even though we started with
an affine W ′.)

By Section 4.2.1 F was defined for X ′ and X ′′ and FX ′′ is the pullback of FX ′ with respect to either of
the projections X ′′⇒ X ′. By étale descent, FX ′ is the pullback of a blowing up FX,X ′ : X1→ X of the
toroidal stack X. In the same fashion, the blowings up F0

X ′ and F0
X ′′ of Z ′ and Z ′′ = Z ′×Z Z ′ descend to

a blowing up F0
X,X ′ : Z1→ Z , and by descent (X1)cs = Z1. Independence of the covering X ′→ X is

proved as usual: given another such covering one passes to their fiber product, which is also a global
quotient of a quasiaffine scheme, and then uses that F is compatible with inert morphisms.

We have now constructed FX and F0
X for an arbitrary object of C. Their properties are established by

étale descent via a covering f : X ′→ X as above. For example, for any geometric point x→ X1 choose
a lifting x ′→ X ′1. Then Gx = Gx ′ because f is inert, and hence f1 : X ′1→ X1 is inert too. In addition,
G tor

x = G tor
x ′ by Lemma 3.4.4(i), and Gx ′ = G tor

x ′ by Step 1. Thus, Gx = G tor
x , and hence (X1)tcs = (X1)cs.
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5. Kummer blowings up

5.1. Permissible centers.

5.1.1. Toroidal subschemes. Let X be a toroidal scheme. We say that a closed subscheme Y of X is
toroidal if (Y,MX |Y ) is toroidal. Thus toroidal closed subschemes correspond to strict closed immersions
of toroidal schemes. We stress that this differs from the terminology of [Abramovich and Temkin 2017,
§2.3.12], in that toroidal subschemes are not defined by monomial ideals. Rather, they are locally described
as follows:

Lemma 5.1.2. Let X be a toroidal scheme and Y a closed subscheme of X. Then Y underlies a toroidal
subscheme if and only if locally at any point y ∈ Y there exist elements t1, . . . , tn ∈ OX,y restricting
to regular parameters on the stratum X (d) of X through y, and m ≤ n such that Y = V (t1, . . . , tm)
locally at y.

Elements t1, . . . , tn ∈OX,y as in the statement will be called regular coordinates.

Proof. The inverse implication follows from the formal-local description of toroidal schemes; see [Kato
1994, Theorem 3.2]. Assume that Y is toroidal and let us construct required coordinates at y. We can
assume that X and Y are local with closed point y. Let d be the rank of M X,y =MY,y , and let n and n−m
be the dimensions of the closed logarithmic strata X (d) and Y (d). Since X (d) and Y (d) are regular,
OX (d),y possesses a regular family of parameters t ′1, . . . , t ′n such that V (t ′1, . . . , t ′m)= Y (d). Lift them to
coordinates t1, . . . , tn ∈OX,y . Since Y (d)= X (d)×X Y , we can also achieve that t1, . . . , tm vanish on Y.
The scheme V (t1, . . . , tm) is integral (even toroidal) by the inverse implication, and dim(X)= d + n and
dim(Y )= d + n−m, hence the closed immersion Y ↪→ V (t1, . . . , tm) is an isomorphism. �

5.1.3. Permissible centers. Let X be a toroidal scheme. An ideal J ⊂OX is monomial if it is the image of
a monoid ideal in MX . A closed subscheme Z = SpecX (OX/I ) is called a permissible center if locally at
any point z∈ Z it is the intersection of a toroidal subscheme and a monomial subscheme, that is, there exists
a regular family of parameters t1, . . . , tn and a monomial ideal J such that I = (t1, . . . , tl, J ) for l ≤ n.

5.1.4. Playing with the toroidal structure. A standard method used in toroidal geometry is to en-
large/decrease the toroidal structure by adding/removing components to/from X r U. For example,
see [Abramovich and Temkin 2017, §§3.4, 3.5]. We will use this method, and here is a first step.

Lemma 5.1.5. Assume that (X,U ) is a local toroidal scheme, C is the closed logarithmic stratum and
t1, . . . , tn a regular family of parameters of OC,x . Let W be obtained from U by removing the divisors
V (t1), . . . , V (tl), where 0≤ l ≤ n. Then (X,W ) is toroidal and M (X,W ),x = M (X,U ),x ⊕Nl .

Proof. The equality of the monoids is clear. Since the intersection of C with V (t1, . . . , tl) is regular of
codimension l we obtain that (X,W ) is toroidal at x and hence toroidal. �

Corollary 5.1.6. Assume that (X,U ) is a toroidal scheme and Z ↪→ X is a permissible center. Then
locally on X one can enlarge the toroidal structure of X so that Z is a monomial subscheme of the new
toroidal scheme (X,W ).
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Proof. Locally at x ∈ X the center is given by (t1, . . . , tl, J ), where J is monomial. Set W =Ur
⋃l

i=1 V (ti )
and use Lemma 5.1.5. �

5.1.7. Functoriality. Permissible centers are respected by logarithmically smooth morphisms.

Lemma 5.1.8. Assume that f : Y → X is a logarithmically smooth morphism of toroidal schemes and
Z ↪→ X is a permissible center (resp. a toroidal subscheme). Then Z ×X Y is a permissible center (resp.
a toroidal subscheme) in Y.

Proof. Note that f induces smooth morphisms between logarithmic strata of Y and X. It follows that
if t1, . . . , tn are regular coordinates at x ∈ X then their pullbacks form a part of a family of regular
coordinates at a point y ∈ f −1(x). In view of Lemma 5.1.2, this implies the claim about toroidal
subschemes. Since pullback of a monomial subscheme is obviously monomial, we also obtain the claim
about permissible centers. �

5.2. Permissible blowings up.

5.2.1. The model case. We will prove that permissible centers give rise to normalized blowings up of
toroidal schemes in the sense of Section 4.1.1. This can be done very explicitly in the model case
when X = An

M = Spec(B[M, t1, . . . , tn]), where B is an arbitrary regular ring, M is a toric monoid, and
I = (t1, . . . , tn,m1, . . . ,mr ) for mi ∈ M. For the sake of illustration we consider this case separately. Let
X ′ = BlI (X)nor be the normalized blowing up of X along I. We have two types of charts:

(1) The ti -chart is An−1
N = Spec(B[N , t1/ti , . . . , tn/ti ]), where N is the saturation of the submonoid of

M ⊕Zti generated by M, ti and the elements m1− ti , . . . ,mr − ti . In particular, for any point x ′ of
the chart with image x ∈ X one has that rk(M x ′)≤ rk(M x)+ 1. The monoid N is still sharp.

(2) The m j -chart is An
P = Spec(B[P, t1/m j , . . . , tn/m j ]), where P is the saturation of the submonoid

of Mgp generated by M and the elements m1−m j , . . . ,mr −m j . In particular, the rank does not
increase on this chart: rk(M x ′)≤ rk(M x) for any point x ′ sitting over x ∈ X. The monoid P need
not be sharp.

5.2.2. The general case. One can deal with the general case similarly by reducing to formal charts, but
this is slightly technical, especially in the mixed characteristic case. A faster way is to play with the
toroidal structure, reducing to the known properties of toroidal blowings up.

Lemma 5.2.3. Assume that (X,U ) is a toroidal scheme and f : X ′→ X is the normalized blowing up
along a permissible center Z ↪→ X, and set U ′ = f −1(U r Z). Then (X ′,U ′) is a toroidal scheme and
hence f underlies a normalized blowing up of toroidal schemes.

Proof. The question is étale local on X, so we can assume that X = Spec(A) is a strictly henselian scheme
with closed point x . Then Z = V (t1, . . . , tl,m1, . . . ,mr ), where mi are monomials and t1, . . . , tn is a
family of regular parameters of the logarithmic stratum through x . Set W = U r

⋃l
i=1 V (ti ). Then

(X,W ) is toroidal by Lemma 5.1.5 and Z is a monomial subscheme of (X,W ). Set W ′ = f −1(W r Z).
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Then (X ′,W ′) is toroidal and the toroidal blowing up (X ′,W ′)→ (X,W ) is logarithmically smooth; see
[Nizioł 2006, Section 4] for proofs or [Abramovich and Temkin 2017, Lemma 4.3.3] for a summary.
Furthermore, X ′rU ′ is obtained from X ′r W ′ by removing the strict transforms D′i of Di = V (ti ), so
we should prove that this operation preserves the toroidal property. By [Abramovich and Temkin 2017,
Theorem 2.3.15] it suffices to prove that each D′i is a Cartier divisor.

Now choose y ∈ {t1, . . . , tl,m1, . . . ,mr } and let us study the situation on the y-chart X ′y . We claim
that the inclusion D′i |X ′y ↪→ V (ti/y) is an equality and hence D′i is Cartier, as required. If y = ti there is
nothing to prove, so assume that y 6= ti . It suffices to show that V (ti/y) is integral. So, for any x ′ ∈ X ′y
it suffices to prove that M x ′ splits as Q⊕ (ti − y)N. To compute M x ′ we recall that toroidal blowings
up are base changes of toric blowings up of the charts. In particular, X ′→ X is the base change of the
blowing up of Spec(Z[M, t1, . . . , tl]) along the ideal generated by (t1, . . . , tl,m1, . . . ,mr ). The latter
was computed in Section 5.2.1, and we saw that, indeed, its charts are of the form Spec(Z[Q, ti/y]). �

5.2.4. Functoriality. In the sequel, by a permissible blowing up we mean the normalized blowing up along
a permissible center. To simplify the notation, we will omit the normalization and will simply write BlI (X)
or BlZ (X). Naturally, permissible blowings up are compatible with logarithmically smooth morphisms.

Lemma 5.2.5. Let X be a toroidal scheme and let Z ↪→ X be a permissible center. Then for any
logarithmically smooth morphisms f : Y → X of toroidal schemes, the pullback T = Z ×X Y is a
permissible center and BlT (Y )= BlZ (X)×X Y in the category of fs logarithmic schemes.

Proof. We know that T is permissible by Lemma 5.1.8. The problem is local on X hence we can assume
that X is local. As in the proof of Lemma 5.2.3, Z = V (t1, . . . , tl,m1, . . . ,mr ) and Z becomes monomial
once we replace U = X (0) by U ′ = U r

⋃l
i=1 V (ti ). Since the pullbacks of ti form a subfamily of a

regular family at any point of f −1(x), we also have that V ′ = Y (0)r
⋃l

i=1 f −1(V (ti )) defines a toroidal
structure and T is monomial on (Y, V ′). We omit the easy check that the morphism (Y, V ′)→ (X,U ′) is
logarithmically smooth. The lemma now follows from the fact that toroidal blowings up are compatible
with logarithmically smooth morphisms; see [Nizioł 2006, Corollary 4.8]. �

5.3. Kummer ideals. Let X be a logarithmic scheme. In [Abramovich et al. 2020] we also use a
generalization of permissible blowings up that we are going to define now. Informally speaking, we will
blow up “ideals” of the form (t1, . . . , tn,m1/d

1 , . . . ,m1/d
r ). Our next aim is to formalize such objects, and

the main task is to define “ideals” (m1/d).

5.3.1. Ideals I [1/d]. First, let us describe the best approximation to extracting roots on the logarithmic
scheme itself. For any monomial ideal I and d ≥ 1 let I [1/d] denote the monomial ideal J generated by
monomials m with md

∈ I. Recall that monomial ideals are in a one-to-one correspondence with the ideals
of M X . If I corresponds to J ⊆ M X then I [1/d] corresponds to (1/d)J ∩M X . So, extracting the root is a
purely monomial operation, and hence it is compatible with strict morphisms f : Y → X in the sense that

( f −1(I ))[1/d] = f −1(I [1/d]X ).
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Remark 5.3.2. It may happen that I is invertible but I [1/d] is not. On the level of monoids this can be
constructed as follows: take M ⊂ N2 given by (x, y) with x + y ∈ 3Z and I = (3, 3)+M. Then I [1/3] is
generated by (1, 2) and (2, 1) and it is not principal.

5.3.3. Kummer monomials. By a Kummer monomial on a logarithmic scheme X we mean a formal
expression m1/d where m is a monomial on X and d ≥ 1 is an integer which is invertible on X. In order
to view m1/d as an actual function we should work locally with respect to a certain log-étale topology.
For example, X [m1/d

] := (X ⊗k[m] k[m1/d
])sat is the universal fs logarithmic scheme over X on which

m1/d is defined, and X [m1/d
] → X is logarithmically étale by our assumption on d.

Remark 5.3.4. One can also consider roots with a noninvertible d but then the morphism X [m1/d
] → X

is only logarithmically syntomic, i.e., logarithmically flat and lci. We prefer to exclude such cases because
we will later consider only toroidal schemes, and logarithmic regularity is not local with respect to the
log-syntomic topology.

5.3.5. Kummer topology. In order to define operations on different monomials one has to pass to larger
covers of X, and there are two ways to do this uniformly. The first one is to consider the pro-finite
coverings and work with structure sheaves on nonnoetherian schemes; see [Talpo and Vistoli 2018].
Another possibility is to work with the structure sheaf of a topology generated by finite coverings. The
two approaches are equivalent. We adopt the second one using the Kummer logarithmically étale topology
defined by Nizioł [2008]. For brevity, it will be called the Kummer topology.

Recall that a logarithmically étale morphism f : Y → X is called Kummer if for any point y ∈ Y with
x = f (y) the homomorphism Mgp

x → Mgp
y is injective with finite cokernel, and M y is the saturation of

M x in Mgp
y . Setting surjective Kummer morphisms to be coverings, we obtain a Kummer topology on the

category of fs logarithmic schemes. The site of Kummer logarithmic schemes over X will be denoted Xkét.
The following lemma shows that when working with the Kummer topology it suffices to consider two
special types of coverings. The proof is simple, and we refer to [Nizioł 2008, Corollary 2.17] for details.

Lemma 5.3.6. The topology of Xkét is generated by two types of coverings: strict étale morphisms Z→ Y
and morphisms of the form Y [m1/d

] → Y, with d invertible in OY .

5.3.7. The structure sheaf. The rule Y 7→ 0(OY ) defines a presheaf of rings OXkét on Xkét.

Lemma 5.3.8. The presheaf OXkét is a sheaf.

Proof. A more general claim is proved in [Nizioł 2008, Proposition 2.18]. Let us outline a simple argument
that works in our case. It suffices to check the sheaf condition for the two coverings from Lemma 5.3.6.
The first case is clear since OXét is a sheaf. In the second case we note that µd acts on Y ′ = Y [m1/d

] and
Y is the quotient, in particular, OY (Y ′)µd =OY (Y ). The saturated fiber product Y ′′ = (Y ′×Y Y ′)sat equals
µd × Y ′, and hence the equalizer of OY (Y ′)⇒OY (Y ′′) equals OY (Y ′)µd , that is, OY satisfies the sheaf
condition with respect to the covering Y ′→ Y. �
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5.3.9. Kummer ideals. By a Kummer ideal we mean an ideal I ⊆OXkét which is coherent in the following
sense: there exists a Kummer covering Y → X and a coherent ideal IY ⊆OY such that I |Ykét is generated
by IY in the sense that 0(Z , I )= 0(Z , IYOZ ) for any Kummer morphism Z→ Y.

Example 5.3.10. (i) If IX is a monomial ideal on X let I be the associated ideal on Xkét and for Y
Kummer over X let IY denote restrictions of I onto Y. Given d ≥ 1 define J = I 1/d by JY = (IY )

[1/d].
Note that the projections p1,2 of Z = (Y ×X Y )sat onto Y are strict. Hence p−1

i (JY ) = JZ for i = 1, 2,
and we obtain that the pullbacks are naturally isomorphic, that is, J is an ideal in OXkét . Moreover, J
is coherent because one can construct a covering Y → X such that IY = J d

Y and then JZ = JYOZ for
any Kummer morphism Z→ Y. For example, choose an étale covering

⋃
i X i → X such that the ideals

I |X i = ({mi j }) are globally generated by monomials, let Yi = (X i [m
1/d
i1 ,m1/d

i2 , . . .])
sat, and take Y =

∐
i Yi .

(ii) One can produce more ideals using addition and multiplication, ideals coming from OX , and
Kummer ideals from (i). For example, if ti ∈ 0(OX ) and m j are global monomials then the ideal
J = (t1, . . . , tn,m1/d

1 , . . . ,m1/d
r ) is a well-defined coherent Kummer ideal, as well as its powers J l .

Remark 5.3.11. (i) It is essential that we are working with saturated logarithmic schemes and the
Kummer topology. For example, if X = Spec(k[t]) and Xfl denotes the small flat site of X then by the
usual flat descent OXfl is a sheaf in which any coherent ideal comes from a coherent ideal of OX . In
particular, the ideal tOXfl is not a square. This happens for the following reason: although (t) = (y2)

on the double covering Y = Spec(k[y])→ X with y2
= t , the fiber product Z = Y ×X Y equals to

Spec(k[y1, y2]/(y2
1 − y2

2)) and the two pullbacks of (y) to Z are different: (y1) 6= (y2). In other words,
the root (y)=

√
(t) is not unique locally on Xfl and hence does not give rise to an ideal.

(ii) The sheaf OXkét also has noncoherent ideals. For example, for X =Spec(k[m]) the maximal monomial
ideal

∑
∞

d=1(m
1/d). In fact, it is not even quasicoherent because it is not generated by an ideal on a

Kummer étale cover of X.

5.4. Blowings up of permissible Kummer ideals. This section provides the key construction of a Kummer
blowing up of a toroidal scheme. It was pointed out by David Rydh that Kummer blowings up have an
elegant construction using stack-theoretic Proj constructions and specifically stack-theoretic blowings
up. Rydh’s forthcoming foundational paper on these notions will simplify this entire section significantly.

5.4.1. Permissible Kummer centers. We restrict our consideration to toroidal schemes. Permissible
centers extend to Kummer ideals straightforwardly: we say that a Kummer ideal I on a toroidal scheme X
is permissible if it is generated by the ideal of a toroidal subscheme and a monomial Kummer ideal.
In other words, for any geometric point x̄ → X one has that Ix̄ = (t1, . . . , tn,m1/d

1 , . . . ,m1/d
r ), where

t1, . . . , tn is a part of a regular sequence of parameters, and m1, . . . ,mr are monomials. We impose the
additional assumption that d is invertible on X, which is sufficient for our characteristic 0 applications
but not optimal; see Remark 4. By V (I ) we denote the set of points of X where I is not the unit ideal; it
is a closed subset of X.
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5.4.2. Kummer blowings up: global quotient case. Let I be a permissible Kummer center on X. The
idea of defining BlI (X) is to blow up a sufficiently fine Kummer covering of X and then descend it to a
modification of X.

Assume first that there exists a G-Galois Kummer covering Y → X such that I is generated by IY .
Note that X = Y/G. Locally, IY is generated by monomials and elements coming from I. Since G acts
by characters on monomials and preserves elements coming from I, the ideal IY and the blowing up
Y ′ = BlIY (Y )→ Y are G-equivariant. Moreover, using these generators we see that the blowing up Y ′ is
covered by G-equivariant affine charts. In particular, the algebraic space Y ′/G is a scheme, which we
denote X ′cs, and X ′cs→ X is a W -modification, where W = X r V (I ). Here a W -modification X ′cs→ X
is a modification restricting to the identity over the dense open W ⊂ X.

Note that X ′cs is the coarse space [Y ′/G]cs of the stack quotient [Y ′/G]. We will show that X ′cs depends
only on X and I, but it may happen that X ′cs with the quotient logarithmic structure is not toroidal: see
Section 5.4.6 below for a general explanation and Example 5.4.12(ii) for a concrete example. On the
other hand, [Y ′/G] is too close to Y ′: the morphism Y ′→ [Y ′/G] is étale hence [Y ′/G] is toroidal, but
it is ramified over the same points of X ′cs over which Y ′ is ramified, and hence depends on the choice of
the covering Y → X. Finally, we would like to ensure that the exceptional divisor E on [Y ′/G] remains
Cartier, in other words, we would like the morphism [Y ′/G] → BGm corresponding to the line bundle
O(E) to descend to our modification. For these reasons the main player in the sequel will be the relative
coarsening [Y ′/G]cs/BGm (see Section 2.3 and Remark 2.3.2). In particular, we will see that it is toroidal
and independent of the choice of the covering Y → X.

Lemma 5.4.3. With the above notation, the X-stack X ′= [Y ′/G]cs/BGm and its coarse space X ′cs= Y ′/G
depend on X and I only, but not on the Kummer covering Y → X.

Proof. It suffices to deal with X ′, since X ′cs is obtained from it. We should prove that if Z → X is
another Kummer covering with Galois group H and Z ′ = BlIZ (Z) then [Z ′/H ]cs/BGm = X ′. The family
of Kummer coverings is filtered, hence it suffices to consider the case when Z dominates Y. In this case,
Z/K = Y where K is a subgroup of H with H/K = G.

Since IZ = IYOZ , the charts of both BlIY (Y ) and BlIZ (Z) can be given by the same elements. It follows
that Z ′→Y factors through a finite morphism Z ′→Y ′. Since Y ′ is normal, this implies that Z ′/K =Y ′, and
we obtain a coarsening morphism h : [Z ′/H ]→ [Y ′/G]. Clearly, the exceptional divisor on [Z ′/H ] is the
pullback of the exceptional divisor on [Y ′/G]. Therefore the morphism [Z ′/H ] → BGm factors through
the morphism [Y ′/G] → BGm , and this implies that [Z ′/H ]cs/BGm = [Y

′/G]cs/BGm , as required. �

5.4.4. Kummer blowings up: the general case. In the general case, the Kummer blowing up of X along I
is defined by gluing. Namely, X has an étale covering tX i → X such that Ii = I |X i is generated by
global functions and roots of global monomials, and then each X i has a Gi -Kummer Galois covering
Yi → X i such that Ji = IYi generates I |Yi . By Lemma 5.4.3 the stack X ′i = [BlJi (Yi )/Gi ]cs/BGm and its
coarse space (X ′i )cs = BlJi (Yi )/Gi depend on X i and IX i only.
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Over X i j := X i ×X X j the stacks (X ′i )X i j and (X ′j )X i j are isomorphic by Lemma 5.4.3. Indeed the
isomorphism over X is unique: the stacks are birational, normal, separated and Deligne–Mumford;
hence [Fantechi et al. 2010, Proposition A.1] applies. This implies that X ′i glue uniquely over the
intersections X i j . Thus, we obtain morphisms X ′→ X and X ′cs→ X depending only on X and I. We
say that X ′cs := BlI (X) is the coarse Kummer blowing up of X along I and X ′ = [BlI (X)] is the Kummer
blowing up of X along I. Here are two basic properties of this operation.

Theorem 5.4.5. Assume that (X,U ) is a toroidal scheme and I is a permissible Kummer center, and let
W = X r V (I ). Then

(i) f : [BlI (X)] → X and BlI (X)→ X are W -modifications of X;

(ii) ([BlI (X)], f −1(U )) is a simple toroidal orbifold.

Proof. The claims are local on X, so we can assume that X possesses a G-Galois Kummer covering Y
such that IY generates I |Ykét . Then [BlIY (Y )/G] is proper over X and the preimage of W is dense, and
hence the same is true for the partial coarse spaces [BlI (X)] and BlI (X). Furthermore, the constructions
are compatible with localizations and I |W = 1, hence both are W -modifications of X.

The fact that ([BlI (X)], f −1(U )) is a toroidal orbifold is shown in Lemma 5.4.7 below, using the
explicit charts described in Section 5.4.6. Its simplicity follows from the observation that G acts simply
on Y, and hence it also acts simply on BlIY (Y ). �

5.4.6. Charts of Kummer blowings up. Next, let us describe explicit charts of Kummer blowings up.
Assume that X = Spec(A) and I = (t1, . . . , tn,m1/d

1 , . . . ,m1/d
r ) is a permissible Kummer ideal, where

(t1, . . . , tn) defines a toroidal subscheme and mi are global monomials. Then X ′ = [BlI (X)] is of the
form [BlJ (Y )/G]cs/BGm , where

B = A⊗Z[m1,...,mr ] Z[m
1/d
1 , . . . ,m1/d

r ],

Y = Spec(Bsat), G = (µd)
r , and J = IOY . Note that BlJ (Y ) is covered by the charts

Y ′y = Spec(B[t ′1, . . . , t ′n, u′1, . . . , u′r ]
sat),

where y ∈ {t1, . . . , tn,m1/d
1 , . . . ,m1/d

r }, t ′i = ti/y and u′j = m1/d
i /y. Hence X ′ is covered by the charts

X ′y = [Y
′
y/G]cs/BGm .

Let us describe X ′y locally at the image of a point q ∈ Y ′y . The stabilizer Gq is the inertia group of
[Y ′y/G] at the image of q. Hence the morphism [Y ′y/G] → BGm induces a homomorphism Gq → Gm ,
whose kernel Gq/BGm is the relative stabilizer of [Y ′y/G] over Gm at the image of q. In particular,
X ′y = [(Y

′
y/Gq/BGm )/(G/Gq/BGm )] locally at the image of q. To complete the picture it remains to

observe that the relative stabilizer Gq/BGm is the subgroup of Gq acting trivially on y, that is, Gq acts
on y through its image in Gm . To show this explicitly consider two cases:
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(1) The ti -chart. Since G acts trivially on ti we have that Gq/BGm =Gq and hence X ′y=Y ′y/G is a scheme.

(2) The m1/d
i -chart. In this case, Gq/BGm contains Gq ∩µr−1

d and Gq/Gq/BGm = µe, where e is the
minimal divisor of d such that mi ∈Md/e

x , where x ∈ X is the image of q; in particular, Gq acts
through µe on the image of m1/d

i in Mq .

Lemma 5.4.7. Keep the above notation. Then the group Gq/BGm acts toroidally at q. In particular, the
coarsening [Y ′/G] → [BlI (X)] is toroidal and [BlI (X)] = [Y ′/G]cs/Gm = [Y

′/G]tcs/BGm .

Proof. The regular coordinates on Y ′y are of the form t ′i = ti/y. Since Gq/BGm acts trivially on ti and y, it
acts trivially on t ′i . Thus, its action at q is toroidal. �

We will not need the following remark, so its justification is left to the interested reader.

Remark 5.4.8. (i) The whole group Gq can act nontrivially on m1/d
i -charts, see Example 5.4.12(ii) below.

So, one may wonder what is the maximal toroidal coarsening [Y ′/G]tcs. By the above lemma, we have a
natural morphism f : [BlI (X)] → [Y ′/G]tcs. It turns out that in the nonmonomial case (i.e., there exists
at least one regular parameter t1), f is an isomorphism. On the other hand, in the monomial case the
action of the whole Gq is automatically toroidal, and hence [Y ′/G]tcs = Y ′/G. In this case, f can be a
nontrivial coarsening; see Example 5.4.12(i).

(ii) In an early version of the paper, we defined [BlI (X)] to be equal to [Y ′/G]tcs. This definition
possesses worse functorial properties and often required to distinguish the monomial and nonmonomial
cases. It seems that the new definition is the “right” one.

5.4.9. The coarse blowing up. The coarse blowing up can be computed directly.

Lemma 5.4.10. Assume given a toroidal affine scheme X = Spec(A) with a positive number e ∈ dZ and
a Kummer ideal I = (t1, . . . , tn,m1/d

1 , . . . ,m1/d
r ). Then BlI (X) is the normalized blowing up of X along

either of the following ideals: Je = (te
1 , . . . , te

n ,me/d
1 , . . . ,me/d

r ), J̃e = I e
∩OX .

Proof. Set Y = Spec(B) with B = A[m1/d
1 , . . . ,m1/d

r ]. It suffices to check that BlIY (Y ) is finite over
both BlJe(X) and Bl J̃e

(X). Indeed, in this case BlI (X) = BlIY (Y )/µ
r
d is a finite modification of both

BlJe(X)
nor and Bl J̃e

(X)nor, and since the latter are normal we are done.
We will check the finiteness on charts. Let y ∈ {t1, . . . , tn,m1/d

1 , . . . ,m1/d
r } and x = ye. It suffices to

show that B[I/y] is finite over both A[Je/x] and A[ J̃e/x]. But this is clear because B[I/y] is integral
over both B[Je B/x] and B[ J̃e B/x]. �

5.4.11. Examples. Let us consider two basic examples of Kummer blowings up.

Example 5.4.12. (i) Let X = Spec(k[π ]) with the logarithmic structure given by π , and let I = (π1/d).
Then [BlI (X)] = [Spec(k[π1/d

])/µd ] has stabilizer µd at the origin.

(ii) Let X = Spec(k[t, π]) with the logarithmic structure given by π , and let I = (t, π1/2). By
Lemma 5.4.10, the coarse blow up X ′cs = BlI (X) coincides with BlJ (X)nor, where J = (t2, π). In
fact, BlJ (X) is already normal and covered by two charts: (X ′1)cs = Spec(k[t, π, t2/π ]) and (X ′2)cs =
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Spec(k[t, π/t2
]). The chart (X ′2)cs is regular, but the chart (X ′1)cs has an orbifold singularity OX at the

origin. Moreover, the natural logarithmic structure on (X ′1)cs is generated by π only, and (X ′1)cs is not
toroidal with this logarithmic structure. (Though (X ′1)cs can be made toroidal by increasing the toroidal
structure, for example, by adding the divisor (t).)

Now let us consider the finer stack-theoretic picture. The Kummer blowing up X ′ = [BlI (X)] can be
computed using the Kummer covering Y = Spec(k[t, π1/2

]) with G = µ2. This can be done directly, but
for the sake of comparison we will first compute X ′′ = [Y ′/G]tcs, where Y ′ = Bl(t,π1/2)(Y ). Cover Y ′ by
two charts: Y ′1 = Spec(k[t/π1/2, π1/2

]) and Y ′2 = Spec(k[t, π1/2/t]). Then X ′′ is covered by the charts
X ′′i = [Y

′

i /G]tcs. The action of G on Y ′2 is toroidal, and hence X ′′2 = Y ′2/G= (X ′2)cs. The action of G at the
origin OY of Y ′1 is not toroidal because G acts via the nontrivial character on both parameters. Therefore
the stabilizer at the image OX ′′ ∈ X ′′ of OY is G. In particular, the coarse moduli space X ′′→ X ′cs is
an isomorphism over X ′cs r {OX ′cs

}, and the preimage of OX ′cs
is the point OX ′′ with a nontrivial stack

structure. Furthermore, it is easy to see that the exceptional divisor is Cartier on X ′′, and hence the
morphism X ′→ X ′′ admits a section. Thus, X ′ = X ′′ is the cone orbifold.

5.4.13. Enlarging the toroidal structure. As in the proof of Lemma 5.2.3, enlarging the toroidal structure
any Kummer blowing up can be made into a logarithmically smooth morphism.

Lemma 5.4.14. Let X = (X,U ) be a toroidal scheme, I be a permissible Kummer ideal on X and
f : X ′ = [BlI (X)] → X be the associated Kummer blowing up. Assume that X1 = (X,U1) is a toroidal
scheme obtained by enlarging the toroidal structure so that I is monomial on X1 (see Corollary 5.1.6).
Then X ′1 = (X

′, f −1(U1)) is a toroidal orbifold and the morphism X ′1→ X1 is logarithmically smooth.

Proof. The claim is local on X, hence we can assume that there exists a G-Galois Kummer covering
Y → X such that J = IOY is a permissible ideal. Let Y ′ = BlJ (Y ) and let Y ′1 and Y1 be the toroidal
schemes with the toroidal structure induced from U1. Since J is monomial on Y1, we have that Y ′1→ Y1

is a toroidal blowing up. By Section 5.4.6 the action of G on Y ′1 is toroidal (it acts trivially on all regular
coordinates). Therefore, any subgroup H ⊆ G acts toroidally and hence the morphism Y ′1/H → X1 is
logarithmically smooth. It follows that for any coarsening T of [Y ′1/G] the morphism T → Y1/G = X1 is
logarithmically smooth. It remains to recall that, by definition, X ′ is a coarsening of [Y ′/G], namely the
relative coarse space with respect to the morphism [Y ′/G]→ BGm induced by the exceptional divisor. �

5.4.15. The universal property. Kummer blowings up can be characterized by a universal property which
extends the classical characterization of blowings up.

Theorem 5.4.16. Let X be a toroidal scheme and let I be a permissible Kummer ideal with the associated
Kummer blowing up f : [BlI (X)] → X. Then f −1(I ) is an invertible ideal and f is the universal
morphism of toroidal DM stacks h : Z→ X such that h−1(I ) is an invertible ideal.

Proof. All claims are local on X, so we can use the description of charts from Section 5.4.6: choosing
a G-Galois Kummer covering Y → X, such that IY is an ordinary ideal, and setting Y ′ = BlIY (Y )
we have that [BlI (X)] = [Y ′/G]cs/BGm . Now, the first claim is obtained by unraveling the definition of
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X ′ := [BlI (X)]. Indeed, the exceptional divisor on Y ′, and hence also on Y ′/G, is Cartier. Furthermore, the
induced morphism [Y ′/G]→ BGm factors through X ′, that is the exceptional divisor on X ′ is also Cartier.

Now, let us check the universal property. So, assume that h : Z→ X is such that h−1(I ) is an invertible
ideal, and let us show that it factors through [BlI (X)] uniquely up to a unique 2-isomorphism. Set
T = Z ×X Y as an fs logarithmic scheme. From the factorization T → Z→ X, the pullback of I to T
is an invertible Kummer ideal. From the factorization T → Y → X, the pullback of I to T is the usual
ideal IYOT . Therefore IYOT is an invertible ideal, and by the universal property of blowings up, T → Y
factors through a morphism T

φ
→ Y ′ = BlIY (Y ) in a unique way. The exceptional divisors on T and Y ′

are compatible, hence induce compatible morphisms to BGm .
Note that T → Z is Kummer étale with Galois group G = µr

d equal to the Galois group of Y → X.
Taking the stack quotient by G, the exceptional divisors remain Cartier, hence morphisms [T/G] →
[Y ′/G]→ BGm arise. Passing to the relative coarse moduli spaces yields a morphism [T/G]cs/BGm→ X ′.
It remains to recall that the exceptional divisor on Z = T/G is already Cartier, hence [T/G]cs/BGm = Z
and we obtain the required morphism Z→ X ′. �

5.4.17. Strict transforms. By a classical observation, the universal property of blowings up implies that
if X ′→ X is the blowing up along an ideal I then the strict transform Z ′ of a closed subscheme Z ↪→ X
is the blowing up of Z along IOZ . The same reasoning applies to Kummer blowings up as well.

Lemma 5.4.18. Assume that X is a toroidal scheme, Z ↪→ X is a closed toroidal subscheme, and I ⊆OX

is a permissible Kummer ideal whose restriction J = IOZ is a permissible Kummer ideal on Z. Let
X ′→ X be the Kummer blowing up along I and let Z ′ be the strict transform of Z (i.e., the closure of
Z r V (I ) in X ′). Then the morphism Z ′→ Z factors through a unique isomorphism Z ′ = [BlJ (Z)].

Proof. On the one hand, since Z ′ → X factors through X ′, the ideal IOZ ′ = JOZ ′ is invertible. So,
Z ′→ Z factors through a morphism h : Z ′→ Y = [BlJ (Z)] by Theorem 5.4.16. On the other hand,
JOY is an invertible ideal, and since JOY = IOY , we obtain by Theorem 5.4.16 that the morphism
Y → X factors through X ′. Furthermore, Y → X factors through Z ′ because Z r V (J ) is dense in Y.
This provides a morphism Y → Z ′, which is easily seen to be the inverse of h by the uniqueness of the
factorization in Theorem 5.4.16. �

Since Kummer blowings up were only defined for toroidal schemes, we cannot extend the above
theorem to the case when Z is an arbitrary closed logarithmic subscheme of X. However, in this case we
can at least describe the strict transform on the level of the coarse space.

Lemma 5.4.19. Assume that X is a toroidal scheme, Z ↪→ X is a strict closed logarithmic subscheme,
and I ⊆ OX is a permissible Kummer ideal. Let X ′→ X be the Kummer blowing up along I and let
Z ′→ Z be the strict transform. Set Jn = I n!

∩OX . Then Z ′cs is the blowing up of Z along ((Jn)
m)norOZ

for large enough n and m.

Proof. The claim is local on X, hence by Lemma 5.4.14 we can enlarge the logarithmic structure on X
making I monomial. Recall that by Lemma 5.4.10, X ′cs→ X is the normalized blowing up along Jn for
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a large enough n. Clearly Jn is monomial, hence by [Abramovich and Temkin 2017, Corollary 5.3.6]
X ′cs→ X is the blowing up along ((Jn)

m)nor for a large enough m. Note that Z ′cs is the closed subscheme
of X ′cs coinciding with the image of Z ′. It follows that Z ′cs is the strict transform of Z and hence it is the
blowing along ((Jn)

m)norOZ by the usual theory of strict transforms. �

5.4.20. Functoriality. The universal property can also be used to show that, as most other constructions
of this paper, Kummer blowings up are compatible with logarithmically smooth morphisms.

Lemma 5.4.21. Let f : Y → X be a logarithmically smooth morphisms of toroidal schemes, I a
permissible Kummer center on X, and J = f −1(I ). Then [BlJ (Y )] = [BlI (X)]×X Y, where the product
is taken in the category of fs logarithmic schemes.

Proof. Recall that J is permissible by Lemma 5.2.5. Set X ′ = [BlI (X)] and Y ′ = [BlJ (Y )]. Since
JOY ′ = IOY ′ , the morphism Y ′→ X factors through X ′ by Theorem 5.4.16, and we obtain a morphism
Y ′→ X ′×X Y. Conversely, since X ′×X Y is logarithmically smooth over X ′, the pullback of the invertible
ideal IOX ′ to X ′ ×X Y is also invertible. The latter coincides with the pullback of J to X ′ ×X Y, and
using Theorem 5.4.16 again we obtain a morphism X ′×X Y → Y ′. It follows from the uniqueness of the
factorizations that these two morphisms are inverse, implying the lemma. �

5.5. Kummer blowings up of stacks. It is also desirable to work with compositions of Kummer blowings
up. For example, such sequences will be our main tool in constructing logarithmic desingularization in
[Abramovich et al. 2020]. For this one should at least extend the construction to the case when X itself is
a toroidal orbifold. We will see that, in fact, everything works fine when X is a toroidal DM stack.

5.5.1. Kummer ideals. The Kummer topology naturally extends to logarithmic stacks, giving rise to the
notion of Kummer ideals. Permissibility of Kummer ideals is an étale-local notion and hence it extends to
toroidal DM stacks too. Also, Lemma 5.2.3, which concerns usual coherent ideals, generalizes as follows:

A permissible blowing up of a toroidal DM stack (resp. simple toroidal orbifold) is again a
toroidal DM stack (resp. simple toroidal orbifold).

To combine the two notions and form the Kummer blowing up of a toroidal DM stack we must check
that 2-categorical issues do not arise.

5.5.2. Kummer blowings up. Assume now that X is a toroidal DM stack and I is a permissible Kummer
ideal on Xkét. Find a strict étale covering of X by a toroidal scheme X0 and set X1 = X0×X X0. The pull-
back Ii of I to X i is a permissible Kummer ideal, and we set Yi = [BlIi (X i )]. Since [X1 ⇒ X0] is an étale
groupoid whose projections and the multiplication morphism are strict, we obtain by Lemma 5.4.21 that
Y1 ⇒ Y0 is an étale groupoid of stacks whose projections are strict and inert. By Lemma 2.1.4 the quotient
Y = [Y0/Y1] exists as a toroidal DM stack and satisfies Yi = X i ×X Y. We call Y the Kummer blowing
up of X along I and denote it [BlI (X)] := Y. A straightforward verification using Lemma 5.4.21 shows:
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(1) The X -stack Y = [BlI (X)] is independent of the presentation X = [X0/X1] and depends only on
X and I. The uniqueness of Y is understood up to an isomorphism of X -stacks, which is unique
up to a unique 2-isomorphism, again by [Fantechi et al. 2010, Proposition A.1]. If X is simple then
Y is simple.

(2) If f : X ′→ X is a logarithmically smooth morphism and I ′= f −1(I ) then [BlI ′(X ′)]=[BlI (X)]×X X ′,
the product taken in the fs category.

5.5.3. Proof of Theorem 3. If X is a toroidal scheme, then parts (i) and (iv) were proved in Theorem 5.4.5,
parts (ii) and (iii) in Theorem 5.4.16, part (v) in Lemma 5.4.21, part (vi) in Lemma 5.4.19, and part (vii)
in Lemma 5.4.18. In general, part (v) holds by (2) above, and this allows to reduce all other claims to the
case of schemes. Namely, choose a strict étale covering f : X ′→ X of X by a toroidal scheme X ′, set
I ′= f −1(I ), and consider the Kummer blowing up Y ′= [BlI ′(X ′)]. Then Y ′= Y×X X ′, and all assertions
for Y → X follow from the case of Y ′→ X ′ by étale descent. For example, IY/X ×X X ′ = IY ′/X ′ = IY ′ is
finite diagonalizable and acts trivially on the monoids M x ′ = M f (x ′), hence the same is true for IY/X .

Appendix A: Existence of coarsenings
by David Rydh

A.1. Classification of Deligne–Mumford coarsenings.

A.1.1. The category of coarsenings. Recall that a coarsening is a morphism f : X→ Y of Artin stacks
such that Y is the coarse space of X relative to Y (Section 2.3.1). Equivalently, for any flat morphism
Y ′→ Y from an algebraic space Y ′, the base change f ′ : X ′→ Y ′ is a coarse space. Equivalently, f is a
universal homeomorphism with finite diagonal and f∗OX =OY .

A priori, coarsenings f : X→Y of a fixed Artin stack X constitute a 2-category CX where a 1-morphism
from f1 : X→ Y1 to f2 : X→ Y2 is a 1-morphism h : Y1→ Y2 together with a 2-morphism α : h◦ f1⇒ f2;
and a 2-morphism (h1, α1) ⇒ (h2, α2) is a 2-morphism γ : h1 ⇒ h2 such that α2 ◦ γ = α1. The
2-category CX is, however, always equivalent to a partially ordered set (Theorem 2.3.6(iii)). The initial
object of CX is idX . If X has finite inertia, then the final object of CX is the usual coarse space, or total
coarsening, f : X→ Xcs (Section 2.2.1).

A.1.2. The main theorem. Let CDM
X ⊆ CX denote the full 2-subcategory of DM-coarsenings, that is,

coarsenings X → Y with Y a Deligne–Mumford stack. The purpose of this appendix is to prove the
following classification result for DM-coarsenings.

Theorem A.1.3. Let X be an Artin stack with finite inertia. The 2-category CDM
X is equivalent to the

partially ordered set of open and closed subgroups N ⊆ IX . A DM-coarsening X→ Y corresponds to the
subgroup IX/Y ⊆ IX .

A morphism φ : X→ Z , with Z Deligne–Mumford, factors uniquely through a given DM-coarsening
f : X→ Y if and only if the induced map on inertia IX/Y → φ∗ IZ is trivial (Theorem 2.3.6(i)). It follows
that the map (X→ Y ) 7→ IX/Y is injective on DM-coarsenings.
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If f : X → Y is a DM-coarsening, then IY → Y is finite and unramified so the unit section of IY is
an open and closed immersion. Since IX/Y = ker(IX → f ∗ IY ) it follows that IX/Y ⊆ IX is an open and
closed subgroup.

It remains to prove that every open and closed subgroup N of IX gives rise to a DM-coarsening. Note
that any subgroup N ⊆ IX is necessarily normal: if T is a scheme, ξ : T → X is a morphism and s is
a section of ξ∗ IX → T, then s corresponds to a 2-morphism u : ξ ⇒ ξ and the induced isomorphism
ξ∗N→ ξ∗N is conjugation by s (see the discussion in [Abramovich et al. 2008, Appendix A] right before
Theorem A.1). The final object, corresponding to N = IX , is the total coarsening morphism X→ Xcs.
Theorem A.1.3 is thus a generalization of the Keel–Mori theorem on the existence of total coarsenings.

A.1.4. Étale neighborhoods with desired inertia. The key step in the proof of the Keel–Mori theorem
is the existence of a suitable étale neighborhood h :W → X; see [Keel and Mori 1997, §4; Rydh 2013,
Proposition 6.11]. Specifically, h should be inert, that is, IW = h∗ IX , and W should admit a finite flat
presentation by a scheme (this is the basic case where we know how to construct a coarse space). We
give the following variant of this result.

Proposition A.1.5. Let X be an Artin stack with finite inertia and let N ⊆ IX be an open and closed
subgroup. Then there is a representable, separated, étale and surjective morphism h :W → X such that
IW = h∗N as subgroups of h∗ IX .

Proof. Let p :U → X be a locally quasifinite flat presentation [Rydh 2011, Theorem 7.1] (or [Stacks,
Tag 04N0] if X is not quasiseparated). Note that p is separated. The relative Hilbert functor Hilb(U/X)→
X is thus representable, separated and locally of finite presentation. Indeed, if T is a scheme and T → X
is a morphism, then U ×X T is an algebraic space, separated and locally of finite presentation over T, and
hence so is Hilb(U/X)×X T =Hilb(U×X T/T ), by Artin’s representability theorem [1969, Corollary 6.2].

Let W ′ ⊂ Hilb(U/X) be the open substack parametrizing open and closed subschemes along the
fibers, namely, the restriction of the universal closed subscheme to W ′ is open in Hilb(U/X)×X U. Let
h′ : W ′ → X be the structure map. It is representable, separated, étale and surjective, but allows for
all possible open and closed subgroups of inertia. Over W ′ we have two open and closed subgroups
IW ′ ⊆ h′∗ IX and h′∗N ⊆ h′∗ IX . The locus W ⊆ W ′ where these coincide is open since h′∗ IX → W ′ is
closed. It remains to verify that h :W → X is surjective which can be done on points.

Let x : Spec k→ X be a point with k algebraically closed. Then the stabilizer Gx acts freely on the
finite k-scheme x∗U. Let Z ⊆ x∗U be an open and closed subscheme such that x∗N acts set-theoretically
transitively on Z , that is, Z is the preimage of a connected component of x∗U/x∗N. Then the stabilizer
of [Z ] in W ′ is x∗N so [Z ] is a point in W lifting x . �

As in [Rydh 2013, Proposition 6.11], by construction the stacks W and W ′ admit finite flat presentations
by AF-schemes.

A.1.6. Proof of Theorem A.1.3. Two Deligne–Mumford coarsenings fi : X→Yi with the same subgroups
IX/Yi are uniquely isomorphic by Theorem 2.3.6. Given an open and closed subgroup N ⊆ IX , take an

http://stacks.math.columbia.edu/tag/04N0
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étale neighborhood h :W→ X as in Proposition A.1.5. Note that IW×X W = IW ×N IW = IW ×X W, hence
the étale projections W ×X W →W are inert. It follows from [Rydh 2013, Theorem 6.10] that the two
induced maps (W×X W )cs→Wcs are also étale morphisms and give rise to an étale groupoid. The quotient
stack Y thus admits a morphism X → Y and, tautologically, W = X ×Y Wcs and h∗ IX/Y = IW = h∗N.
The morphism X→ Y is thus a Deligne–Mumford coarsening with IX/Y = N.

A.2. Examples of coarsenings.

A.2.1. Characteristic zero. In characteristic zero, every stack with finite inertia is Deligne–Mumford
and Theorem A.1.3 gives a full classification of all coarsenings.

A.2.2. Tame Deligne–Mumford stacks. If X is tame and Deligne–Mumford, then every coarsening is
Deligne–Mumford. This is an immediate consequence of Theorem 2.3.6(i). Thus we obtain a full
classification of all coarsenings in this case as well.

A.2.3. Wild Deligne–Mumford stacks. When X is Deligne–Mumford but not tame, then there may exist
coarsenings that are not Deligne–Mumford. The following example is given in [Romagny et al. 2018, §4.5].

Let U =Spec Fp[ε, x]/(ε2) and let G=Z/pZ act via t.(ε, x)= (ε, x+tε). Let X =[U/G]. There is a
p-torsion line bundle L on X corresponding to the trivial line bundle OU ·e on U with action t.e= (1+tε)e.
The classifying map φ : X→ Bµp induces a trivial map IX → µp on inertia. Nevertheless, φ does not
factor through the coarse space f : X→ Xcs. If we let Z = Xcs/Bµp , then X→ Z is a coarsening that is
not Deligne–Mumford and IX/Z = IX .

A.2.4. Tame Artin stacks. When X is tame, then its coarsenings correspond to subgroups of inertia by
Theorem 2.3.6(i). These subgroups are closed but not necessarily open as in the following example.

Let U = Spec Fp[x] and let G = µ2p = µp × Z/2Z act on U via t.x = t x . Let X = [U/G] and
Y = [V/µp] where V = Spec Fp[x2

] and the action is t.x2
= t2x2. The inertia stack of X is trivial except

for a µ2p over the origin. The natural map f : X→ Y is a coarsening and the closed subgroup IX/Y ⊂ IX

is not open: it is trivial except for a Z/2Z over the origin.

A.2.5. Initial DM-coarsening. There is always an initial DM-coarsening of X corresponding to the
intersection of all open and closed subgroups of IX . This initial DM-coarsening need not commute with
restrictions to open substacks though. The reason is that the identity component (IX )

0 need not be open.
For example, this happens if X = BG where G is a 1-parameter deformation of Z/pZ to µp in mixed
characteristic p or from Z/pZ to αp in equal characteristic p. One can, however, show that (IX )

0 is open
and closed if X is a tame Artin stack in equal characteristic.

A.2.6. Rigidifications. When X is any Artin stack and N ⊆ IX is a flat subgroup, then there is a
rigidification f : X → X( N [Abramovich et al. 2008, Appendix A]. This is a coarsening that also is
an fppf-gerbe. It has the universal property that for any Artin stack Z , a morphism φ : X → Z factors
through f if and only if the induced map N → φ∗ IZ is trivial. The universal property does not require Z
to be Deligne–Mumford or X to be tame.
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Appendix B: Torification

B.1. The torification functors.

B.1.1. The general case. Let W be a toroidal scheme acted on by a diagonalizable group G in a relatively
affine way. For example, any action of G on a quasiaffine scheme is relatively affine. The main results of
[Abramovich and Temkin 2017] establish a so-called torification T̃ W,G :W tor

→W, which is a composition
of two G-equivariant morphisms of toroidal schemes: the barycentric subdivision and the normalized
blowing up of a so-called torifying ideal, see [op. cit., Theorem 4.6.5], such that the action on W tor is
toroidal. The barycentric subdivision is naturally a composition of blowings up, see [op. cit., §4.1.2]. The
resulting sequence of normalized blowings up is compatible with strict strongly G-equivariant morphisms
f :W ′→W in the sense that T̃ W ′,G ′ is the contracted pullback of T̃ W,G , i.e., f ∗(T̃ W,G) with all empty
blowings up removed. Furthermore, it is shown in [op. cit., Theorem 5.4.5] that the normalized blowing
up of a torifying ideal IW can also be realized as a blowing up of another ideal I ′W , in particular, T̃ W,G is
a projective modification even when W is not qe and it is not obvious a priori that normalizations are
finite. However, the resulting realization of W tor

→ W as a sequence of blowings up, that we denote
T̃ ′W,G , is only compatible with surjective morphisms f :W ′→W as above.

B.1.2. Simple actions. If the action is simple then slightly stronger results are available; see [Abramovich
and Temkin 2017, Theorems 4.6.3 and 5.4.2]. In particular, torification is achieved by a single G-
equivariant normalized blowing up TW,G :W tor

→W, and the quotient morphism T 0
W,G :W

tor�G→W�G
has a natural structure of a normalized blowing up. This is compatible with strict strongly G-equivariant
morphisms f :W ′→W. In addition, both morphisms can be enhanced to blowings up, that we denote
T ′W,G and T ′0W,G . This involves the choice of a large enough threshold n — their centers are obtained
from the centers of TW,G and T 0

W,G by raising them to the n-th powers and applying the integral closure
operation. As a result, T ′W,G and T ′0W,G are only compatible with surjective morphisms.

B.1.3. Birationality. In [Abramovich and Temkin 2017, Theorems 4.6.3, 4.6.5, 5.4.2, and 5.4.5] it
was shown that the torification functors used here are birational modifications only under a technical
assumption that the action is full. For the purpose of this article we note the following:

Proposition B.1.4. Assume G is finite. Then the torification morphisms are birational.

Proof. For a point w ∈ W write η(w) for the generic point specializing to w— it is unique since W is
normal. The subset U1 ⊂ W where the logarithmic structure is trivial and the subset U2 ⊂ W where
Gw = Gη(w) are both open, invariant, and dense, hence the same is true for U = U1 ∩U2. Since G is
finite the strict embedding U ↪→W is strongly equivariant, hence the torific ideal restricts to OU and the
torification morphisms are trivial on U. �

We note that, when G is infinite, some assumption on the action is necessary: the standard action of
Gm on A1 has σx = {1}, which cannot be balanced since I−1 = 0.
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B.2. Stronger functoriality. Using the methods of [Abramovich and Temkin 2018] one can easily show
that the functors T̃ and T possess stronger functoriality properties than asserted there. Let us discuss
this strengthening.

B.2.1. λ-equivariance. We start with an aspect that holds for both algorithms. Recall that a G-morphism
f :W ′→W is strongly equivariant if f is the base change of the GIT quotient f �G. Some criteria of
strong equivariance and related properties can be found in [Abramovich and Temkin 2018, Theorem 1.3.1
and Lemma 5.6.2; Rydh 2020]. More generally, assume that G ′ acts on W ′, G acts on W, and f is
λ-equivariant for a homomorphism λ : G ′→ G. We say that f is strongly λ-equivariant if it is fix-point
reflecting and the G-morphism

W ′×G ′ G = (W ′×G)/G ′→W

is strongly equivariant. Recall that the fixed-point reflecting condition means that f induces an isomor-
phism G ′x = G f (x) for any x ∈W ′, and hence G ′ acts freely on W ′×G.

Theorem B.2.2. Assume that toroidal schemes W and W ′ are provided with relatively affine actions of
diagonalizable groups G and G ′, respectively. Further assume that λ : G ′→ G is a homomorphism, and
f :W ′→W is a strict and strongly λ-equivariant morphism. Then T̃ W ′,G ′ is the contracted pullback of
T̃ W,G . In addition, T̃ ′W ′,G ′ is the contracted pullback of T̃ ′W,G if f is surjective.

Proof. This happens because T̃ is defined in terms of local combinatorial data (M x ,Gx , σx), see
[Abramovich and Temkin 2017, Section 3.6.8], and the latter only depends on Gx rather than on the
entire G. �

B.2.3. Weakening the strictness assumption. A finer observation is that the strictness assumption is not
so essential for the functoriality of T . For comparison, note that T̃ is constructed using barycentric subdi-
visions which depend on the monoids M x , hence it is not functorial with respect to nonstrict morphisms.

Theorem B.2.4. Assume that toroidal schemes W and W ′ are provided with relatively affine and simple
actions of diagonalizable groups G and G ′, respectively, λ :G ′→G is a homomorphism, and f :W ′→W
is a strongly λ-equivariant morphism. Further assume that for any point x ′ ∈ W ′ with x = f (x ′) the
restriction fS : S′→ S of f to the logarithmic strata through x ′ and x is strongly λ-equivariant. Then the
normalized blowings up TW ′,G ′ and T 0

W ′,G ′ are the pullbacks of TW,G and T 0
W,G , respectively. If f is also

surjective, then the same is true for the blowings up T ′W ′,G ′ , T
′0

W ′,G ′ and T ′W,G , T ′0W,G .

Proof. Note that a reference to [Abramovich and Temkin 2017, Lemma 4.2.13(ii)] is the only place in
the proof of [op. cit., Theorem 4.6.3], where one uses the assumption that f is strict. The lemma asserts
that f respects the reduced signatures: f ∗(σx)= σx ′ . Recall that the latter are defined as the multisets of
nontrivial characters through which Gx acts on the cotangent spaces to S and S′ at x and x ′, respectively.
But we assume that fS is strongly Gx -equivariant, hence f ∗(σx)= σx ′ by [op. cit., Lemma 3.6.4], and
we avoid the use of [op. cit., Lemma 4.2.13(ii)]. �

B.2.5. Logarithmically smooth morphisms. The assumption that f :W ′→W is strong can be omitted
when f is logarithmically smooth. For this we need the following instance of Luna’s fundamental lemma.
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Lemma B.2.6. Assume that Y and X are toroidal schemes provided with relatively affine actions of étale
diagonalizable groups, the action on Y is simple, λ : H → G is a homomorphism, and f : Y → X is a
logarithmically smooth λ-equivariant inert morphism. Then f is strongly λ-equivariant.

Proof. Replacing Y by Y ×H G we can assume that G = H. In addition, it suffices to work locally on
Y � G and X � G, hence we can assume that these schemes are local and f is surjective. Since f is
logarithmically smooth and inert, simplicity of the action on Y implies that the action on X is simple too.

In addition, let G̃ denote the stabilizer of the closed orbits of Y and X. Then f � G̃ is strongly
G/G̃-equivariant because G/G̃ acts freely on Y � G̃ and X � G̃. Therefore, it suffices to prove that f is
strongly G̃-equivariant, and replacing G by G̃ and localizing again, we can assume that G = G̃.

Note that if f is strict, then it is a smooth morphism and the claim was proved in Luna’s lemma
[Abramovich and Temkin 2018, Theorem 1.3.1(2b)]. We will deduce the lemma from this particular
case. In particular, using this claim we can replace X and Y by their equivariant étale covers, hence by
[Abramovich and Temkin 2017, Proposition 3.2.10(i); Illusie and Temkin 2014, Proposition 1.2] we can
assume that there exist an equivariant chart P→ Q, X→ AP , Y → AQ of f , where AM = Spec(Z[M])
and the actions are trivial on P and Q. Then the morphism g : YP [Q] = Y ×AP AQ→ Y is strong as both
g and g�G are pullbacks of AQ→ AP . In addition, Y→ YP [Q] is strict and hence smooth. It remains to
observe that Y→YP [Q] is also fix-points preserving, and hence it is strongly smooth by the above case. �

As an application we obtain:

Corollary B.2.7. Assume that toroidal schemes W and W ′ are provided with relatively affine and simple
actions of étale diagonalizable groups G and G ′, respectively, λ : G ′ → G is a homomorphism, and
f :W ′→W is a logarithmically smooth, fix-point reflecting, λ-equivariant morphism. Then the normalized
blowings up TW ′,G ′ and T 0

W ′,G ′ are the pullbacks of TW,G and T 0
W,G , respectively. If f is also surjective,

then the same is true for the blowings up T ′W ′,G ′ , T
′0

W ′,G ′ and T ′W,G , T ′0W,G .

Proof. Since f is strongly equivariant by Lemma B.2.6, the claim will follow from Theorem B.2.4 once we
prove that the induced morphisms fS : S′→ S between the logarithmic strata are strongly equivariant. Since
fS is logarithmically smooth, fS is smooth. Clearly, fS is fix-point reflecting. Since the groups are finite,
all orbits are special and hence fS is inert [Abramovich and Temkin 2018, §5.1.8 and §5.5.3]. Thus, fS

is strongly equivariant (even strongly smooth) by [Abramovich and Temkin 2018, Theorem 1.1.3(ii)]. �
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Auslander correspondence for triangulated categories
Norihiro Hanihara

We give analogues of the Auslander correspondence for two classes of triangulated categories satisfying
certain finiteness conditions. The first class is triangulated categories with additive generators and we
consider their endomorphism algebras as the Auslander algebras. For the second one, we introduce the
notion of [1]-additive generators and consider their graded endomorphism algebras as the Auslander
algebras. We give a homological characterization of the Auslander algebras for each class. Along the
way, we also show that the algebraic triangle structures on the homotopy categories are unique up to
equivalence.

1. Introduction

The main concern in representation theory of algebras is to understand the module categories. Among
such categories, those with finitely many indecomposable objects, or equivalently the representation-finite
algebras, are most fundamental. Let us recall the following famous theorem due to Auslander [1971]:

Theorem 1.1 (Auslander correspondence). There exists a bijection between the set of Morita equivalence
classes of finite dimensional algebras 3 of finite representation type and the set of Morita equivalence
classes of finite dimensional algebras 0 such that gl. dim0 ≤ 2 and dom. dim0 ≥ 2.

This theorem states that a categorical property (=representation-finiteness) of mod3 can be charac-
terized by homological invariants (=gl. dim and dom. dim) of 0, called the Auslander algebra of mod3.
There are many results of this type giving the relationships between categorical properties of those
appearing naturally in representation theory, and homological properties of their “Auslander algebras”,
for example, [Iyama 2005; 2007; Enomoto 2018].

The aim of this paper is to find an analogue of these results for triangulated categories [Neeman 2001].
Let k be an arbitrary field and T be a k-linear, Hom-finite, idempotent-complete triangulated category.
We consider two kinds of finiteness conditions on triangulated categories.

The first one is a direct analogue of representation-finiteness: T is finite, that is, T has finitely many
indecomposable objects up to isomorphism. In this case, T has an additive generator M . We call EndT (M)
the Auslander algebra of T , which is uniquely determined by T up to Morita equivalence. The first main
result of this paper is the following homological characterization of the Auslander algebras of triangulated
categories. We say that a finite dimensional algebra A is twisted n-periodic if it is self-injective and there

This work is supported by JSPS KAKENHI Grant Number JP19J21165.
MSC2010: primary 18E30; secondary 16E05, 16E65, 16G70.
Keywords: triangulated category, Auslander correspondence, periodic algebra, Cohen–Macaulay module.
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exists an automorphism α of A such that �n
' (−)α as functors on mod A. We refer to Corollary 2.2 for

equivalent characterizations.

Theorem 1.2. Let k be a perfect field. The following are equivalent for a basic finite dimensional
k-algebra A:

(1) A is the Auslander algebra of a k-linear, Hom-finite, idempotent-complete triangulated category
which is finite.

(2) A is twisted 3-periodic.

This result shows a close connection between periodic algebras [Erdmann and Skowroński 2008] and
triangulated categories. Our proof depends on Amiot’s result (Proposition 3.2). This is a complement of
Heller’s classical observation [1968, 16.4] which gives a parametrization of pretriangle structures on a
pretriangulated category T in terms of isomorphisms �3

' [−1] on mod T . Later practice of this property
of the third syzygy in representation theory can be seen in [Auslander and Reiten 1996; Yoshino 2005;
Amiot 2007; Iyama and Oppermann 2013].

Moreover, with some additional assumptions on T , we give a bijection between finite triangulated
categories and certain algebras, which is a more precise form of the above theorem; see Theorem 3.4.
Furthermore, after submitting this article, a similar result by Muro [2020] appeared. His main result
enables us to state Theorem 3.4 with less additional assumptions; see Remark 3.5.

The second finiteness condition is the following:

(S1) There is an object M ∈ T such that T = add{M[n] | n ∈ Z}.

(S2) For any X, Y ∈ T , HomT (X, Y [n])= 0 holds for almost all n.

If these conditions are satisfied, we say T is [1]-finite and call M as in (S1) a [1]-additive generator.
For example, the bounded derived categories of representation-finite hereditary algebras are [1]-finite,
and additive generators for module categories are [1]-additive generators for the derived categories. There
are various studies on [1]-finite triangulated categories, for example [Rouquier 2008; Xiao and Zhu 2005;
Amiot 2007]. Note that [1]-finite triangulated categories have infinitely many indecomposable objects
unless T = 0.

For a [1]-finite triangulated category T with a [1]-additive generator M , we call

C =
⊕
n∈Z

HomT (M,M[n])

the [1]-Auslander algebra of T , which is naturally a Z-graded algebra and is uniquely determined by T
up to graded Morita equivalence. Thanks to our condition (S2), C is finite dimensional. To study it, we
prepare some results on “graded projectivization” in Section 4 (see Proposition 4.2). Such constructions
of graded algebras appear naturally in various contexts [Artin and Zhang 1994; Asashiba 2017].

Our second main result is the Auslander correspondence for [1]-finite triangulated categories. To state
it, we have to restrict to a nice class of triangulated categories called algebraic. Recall that they are
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the stable categories of Frobenius categories [Happel 1988, I.2.6]. Algebraic triangulated categories
are enhanced by differential graded categories [Keller 2006], and play a central role in tilting theory
[Angeleri Hügel et al. 2007].

Now we can formulate the following second main result of this paper in terms of algebraic triangulated
categories and graded algebras. We say that a finite dimensional Z-graded algebra A is (a)-twisted
n-periodic if it is self-injective and there exists a graded automorphism α of A such that Pα ' P for all
P ∈ projZ A and �n

' (−)α(a) as functors on modZ A. We refer to Corollary 2.4 for equivalent conditions.

Theorem 1.3. Let k be an algebraically closed field. There exists a bijection between the following:

(1) The set of triangle equivalence classes of k-linear, Hom-finite, idempotent-complete, algebraic
triangulated categories T which are [1]-finite.

(2) The graded Morita equivalence classes (see Definition 4.3) of finite dimensional graded k-algebra C
which are (−1)-twisted 3-periodic.

(3) A disjoint union of Dynkin diagrams of type A, D, and E.

The correspondences are given as follows:

• From (1) to (2): Taking the [1]-Auslander algebra of T .

• From (1) to (3): Taking the tree type of the AR-quiver of T .

• From (2) to (1): C 7→ projZC.

• From (3) to (1): Q 7→ k(ZQ), where k(ZQ) is the mesh category associated with ZQ.

Moreover, we have the following explicit descriptions of (1) and (2) in the above theorem.

Theorem 1.4 (Theorem 5.3, Proposition 6.1). The classes (1) and (2) in Theorem 1.3 are the same as (1′)
and (2′), respectively:

(1′) The set of triangle equivalence classes of the bounded derived categories Db(mod k Q) of the path
algebra k Q for a disjoint union Q of Dynkin quivers of type A, D, and E.

(2′) The orbit algebras k(ZQ)/[1] for a disjoint union Q of Dynkin quivers of type A, D, and E.

Compared to Theorem 1.2, Theorem 1.3 is more strict in the point that the Auslander algebras C
correspond bijectively to the triangulated categories. This can be done by the classification of [1]-finite
triangulated categories as is stated in (1′). These results suggest that [1]-finite triangulated categories are
easier than finite ones in controlling their triangle structures as well as their additive structures.

Our classification is deduced from the following uniqueness of the triangle structures on the homotopy
categories, which is somehow surprising; compare [Keller 2018].

Theorem 1.5 (Theorem 5.1). Let 3 be a ring such that Kb(proj3) is a Krull–Schmidt category and 3
does not have a semisimple ring summand, and let C be an algebraic triangulated category. If C and
Kb(proj3) are equivalent as additive categories, then they are equivalent as triangulated categories.
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For example, Kb(proj3) is Krull–Schmidt if 3 is a module-finite algebra over a complete Noetherian
local ring. We actually see that the possible triangle structure on a given Krull–Schmidt additive category
is unique in the sense that the suspensions and the mapping cones are uniquely determined as objects, see
Proposition 5.5 for details.

As an application of our classification Theorem 1.4 of [1]-finite triangulated categories, we recover the
main result of [Chen et al. 2008] stating that any finite dimensional algebra over an algebraically closed
field with derived dimension 0 is piecewise hereditary of Dynkin type.

We also apply Theorem 1.4 to Cohen–Macaulay representation theory. A rich source of [1]-finite
triangulated categories is given by CM-finite Iwanaga–Gorenstein algebras [Curtis and Reiner 1981; 1987;
Leuschke and Wiegand 2012; Simson 1992; Yoshino 1990], for example, simple singularities and trivial
extension algebras of representation-finite hereditary algebras. We consequently obtain the following
result, which states that CMZ3 is triangle equivalent to the derived category of a Dynkin quiver under
some mild assumptions.

Corollary 1.6 (Theorem 7.3). Let k be an algebraically closed field and 3=
⊕

n≥03n be a positively
graded CM-finite Iwanaga–Gorenstein algebra such that each 3n is finite dimensional over k and 30

has finite global dimension. Then, the stable category CMZ3 is [1]-finite and therefore, it is triangle
equivalent to Db(mod k Q) for a disjoint union Q of some Dynkin quivers of type A, D, and E.

This partially recovers [Kajiura et al. 2007; Buchweitz et al. 2020, 2.2] in a quite different way. Note
that our result is more general, but less explicit in the sense that Corollary 1.6 does not give the type of Q
from given 3.

As this application suggests, our classification shows that the “easiest” triangulated categories are very
likely to be the derived category of Dynkin quivers, and provides a completely different method (from a
direct construction of tilting objects) of giving a triangle equivalence for such categories.

Notations and conventions. We denote by k a field. For a category C, we denote by HomC(− ,− ) or
simply C(− ,− ) the Hom-spaces between the objects and by JC(− ,− ) the Jacobson radical of C. A
C-module is a contravariant functor from C to the category of abelian groups. A C-module M is finitely
presented if there is an exact sequence

C(−, X)→ C(−, Y )→ M→ 0

for some X, Y ∈ C. We denote by mod C the category of finitely presented C-modules. If C is graded by
a group G, the category of finitely presented graded functor is denoted by modGC, and its projectives
by projGC. The morphism space in modGC is denoted by HomC(− ,− )0 or C(− ,− )0. The category
modGC is endowed with the grade shift functor (g) for each g ∈G, defined by M(g)= M as an ungraded
module and (M(g)(X))h = (M X)gh for each X ∈ C.

Similarly, for a k-algebra A, the Jacobson radical of A is denoted by JA. A module over A means a
finitely generated right module. We denote by mod A (resp. proj A) the category of (projective) A-modules.
If A is graded, the category of graded (projective) A-modules is denoted by modG A (resp. projG A).
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2. Periodicity of syzygies

Let A be a k-algebra. We denote by Ae the enveloping algebra Aop
⊗k A and by �A (resp. �Ae ) the

syzygy, that is, the kernel of the projective cover in mod A (resp. mod Ae). In this section, we generalize
for our purpose the result of Green, Snashall and Solberg [Green et al. 2003] which relates the periodicity
of syzygy of simple A-modules and that of A considered as a bimodule over itself. The following theorem
and its proof is a graded and twisted version of [loc. cit., 1.4].

Theorem 2.1. Let G be an abelian group and A be a finite dimensional, ring-indecomposable, non-
semisimple G-graded k-algebra. Assume that JA = JA0 ⊕ (

⊕
i 6=0 Ai ) and that A/JA is separable over k.

Then, the following are equivalent for a ∈ G and n > 0:

(1) �n
A(A/JA)' A/JA(a) in modG A.

(2) A is self-injective and there exists a graded algebra automorphism α of A such that �n
' (−)α(a)

as functors on modG A.

(3) There exists a graded algebra automorphism α of A such that �n
Ae(A)' 1 Aα(a) in modG Ae.

Proof. By the original case, we have that A is self-injective under the assumption (3). Then the implication
(3)⇒ (2) follows. Also, (2)⇒ (1) is clear.

It remains to prove (1) implies (3). Note that by our assumption on JA, it is graded and any simple
object in modG A is simple in mod A. Assume (1) holds and set B = �n

Ae(A). This is a projective
A-module on each side.

Step 1: S⊗A B is simple for all graded simple (right) A-modules S.
Let S be a graded simple A-module. Then, applying S ⊗A − to the minimal projective resolution

P : · · · → Pi
di
−→ Pi−1 → · · · → P0 of A in modG Ae yields the minimal projective resolution of

S in modG A. Indeed, since A/JA is separable over k, we have JAe = JA ⊗k A + A ⊗k JA. Then,
Im di ⊂ Pi−1 JAe = JA Pi−1+ Pi−1 JA by the minimality of P and therefore, Im(S⊗ di )⊂ S⊗A Pi−1 JA

by S⊗A JA Pi−1 = 0. This shows S⊗A P is minimal. Therefore we have S⊗A B ' �n
A(S), which is

simple by assumption (1).
It follows by induction that the exact functor −⊗A B preserves length.

Step 2: B ' A(a) in modG A.
Consider the exact sequence 0 → JA → A → A/JA → 0 in modG A. Applying − ⊗A B yields

B → A/JA(a) → 0. This shows that the module B contains A/JA(a) in its top. But since B is a
projective (right) A-module having the same length as A by the remark following Step 1, we see that
B ' A(a) in modG A.

Step 3: There exists a graded algebra automorphism α of A such that �n
Ae(A)' 1 Aα(a).

By Step 2, there exists a graded algebra endomorphism α of A such that B ' αA1(a) in modG Ae.
Indeed, fix an isomorphism ϕ : A(a)→ B in modG A, put x = ϕ(1), and set α(u)= ϕ−1(ux) for u ∈ A.
Then, α is of degree 0, since x and ϕ are, and it is easily checked that α is an algebra endomorphism
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and that ϕ : αA1(a)→ B is an isomorphism in modG Ae. Now we show that α is an isomorphism. Let
I be the kernel of α. Since B ' αA is a projective left A-module, the inclusion I ⊂ A in modG A stays
injective by applying −⊗A αA. But since the map I ⊗A αA→ αA is zero, we have I ⊗A αA= 0, and we
conclude that I = 0 by the remark following Step 1.

This finishes the proof of (1)⇒ (3). �

We need the following two particular cases. The first one, which we will use in Section 3 is the following
result for G = {1}, where the special case “�n(S)' S for all simples” is [Green et al. 2003, 1.4].

Corollary 2.2. Let A be a ring-indecomposable, nonsemisimple finite dimensional k-algebra such that
A/JA is separable over k. Then, the following are equivalent for n > 0:

(1) �n
A(A/JA)' A/JA.

(2) A is self-injective and there exists an automorphism α of A such that �n
' (−)α as functors on

mod A.

(3) There exists an automorphism α of A such that �n
Ae(A)' 1 Aα in mod Ae.

We name such algebras as follows:

Definition 2.3. A finite dimensional algebra is twisted n-periodic if it is a direct product of simple
algebras or algebras satisfying the equivalent conditions in Corollary 2.2.

The second one is the following for G = Z and the permutation of simples is the identity, which will
be used in Section 6.

Corollary 2.4. Let A be a finite dimensional, ring-indecomposable, nonsemisimple Z-graded k-algebra
such that A/JA is separable over k. Then, the following are equivalent for a ∈ Z and n > 0:

(1) �n
A(S)' S(a) in modZ A for any simple objects in modZ A.

(2) A is self-injective and there exists a graded algebra automorphism α of A such that �n
' (−)α(a)

as functors on modZ A and Pα ' P in modZ A for all P ∈ projZ A.

(3) There exists a graded algebra automorphism α of A such that �n
Ae(A) ' 1 Aα(a) in modZ Ae and

Pα ' P in modZ A for all P ∈ projZ A.

Similarly, we name these algebras as follows:

Definition 2.5. A finite dimensional graded algebra is (a)-twisted n-periodic if it is a direct product of
simple algebras or algebras satisfying the equivalent conditions in Corollary 2.4.

3. Auslander correspondence

We now prove the first main result Theorem 1.2 of this paper, which gives a homological characterization
of the Auslander algebras of finite triangulated categories.

First, we give the properties of the endomorphism algebra of a basic additive generator for a finite
triangulated category, proving Theorem 1.2(1)⇒ (2).
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Proposition 3.1. Let T be a k-linear, Hom-finite idempotent-complete triangulated category. Assume T
has an additive generator M. Take M to be basic and set C = EndT (M). Let α be the automorphism of C
induced by [1]; precisely, fix an isomorphism a : M→ M[1] and define α by α( f )= a−1

◦ f [1] ◦ a for
f ∈ EndT (M). Then, C is a finite dimensional algebra which is twisted 3-periodic.

Proof. Since mod T ' modC and mod T is a Frobeniuis category (see [Krause 2007, 4.2]), C is self-
injective. Also, since the triangles in T yield projective resolutions of C-modules, the third syzygy is
induced by the automorphism α, that is, we have �3

' (−)α on modC . Then C is twisted 3-periodic by
Corollary 2.2. �

For the converse implication, we need the following result due to Amiot, which allows one to introduce
a triangle structure on the category of projectives in a Frobenius category.

Proposition 3.2 [Amiot 2007, 8.1]. Let P be an idempotent complete k-linear category such that the
functor category modP is naturally a Frobenius category. Let S be an autoequivalence of P and extend
this to modP→modP . Assume there exists an exact sequence of exact functors from modP to modP

0→ 1→ X0
→ X1

→ X2
→ S→ 0,

where X i take values in P = projP . Then, P has a structure of a triangulated category with suspension S.
The triangles are ones isomorphic to X0 M→ X1 M→ X2 M→ SX0 M for M ∈modP .

Combining this with Corollary 2.2, we can prove Theorem 1.2(2)⇒ (1). Let us summarize the proof
below.

Proof of Theorem 1.2. (1)⇒ (2) is Proposition 3.1.

(2)⇒ (1) Since A is self-injective, �3 permutes the simples, so by Corollary 2.2, there exists an exact
sequence

0→ A→ P0
→ P1

→ P2
→ 1 Aα→ 0

of (A, A)-bimodules, with P i ’s projective and α is an automorphism of A. Then, we can apply
Proposition 3.2 for P = proj A, S =−⊗A Aα, and X i

=−⊗A P i . �

Applying a recent result of Keller [2018], we can formulate Theorem 1.2 in terms of bijection between
triangulated categories and algebras under some assumptions on triangulated categories. Let us recall the
relevant definitions. Let T be a k-linear triangulated category with Auslander–Reiten triangles, and 0 its
AR-quiver. Then 0 together with the AR-translation τ forms a translation quiver. For each pair of vertices
x, y ∈ 0, we denote by {x→ y} the set of arrows from x to y. Fix a bijection σ : {y→ x} → {τ x→ y},
and define mx =

∑
a∈{y→x} σ(a)a which is a morphism in the path category k0. Let I be the ideal of k0

generated by {mx | x ∈ 0}.

Definition 3.3 [Riedtmann 1980; Happel 1988]. In the above setting, we call the category k0/I the mesh
category of the translation quiver 0. We say that T is standard if it is k-linearly equivalent its mesh
category of the AR-quiver.
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We have the following version of Theorem 1.2 under the standardness of T .

Theorem 3.4. Let k be an algebraically closed field. Then, there exists a bijection between the following:

(1) The set of triangle equivalence classes of k-linear, Hom-finite, idempotent-complete triangulated
categories which are finite, algebraic, and standard.

(2) The set of isomorphism classes of finite dimensional mesh algebras over k.

The correspondence from (1) to (2) is given by taking the basic Auslander algebra, and from (2) to (1) by
taking the category of projective modules.

Proof. We first check that each map is well-defined.
Let T be a triangulated category as in (1). Then, the standardness of T implies that its basic Auslander

algebra is a mesh algebra.
Suppose next that A is a finite dimensional mesh algebra. We want to show that proj A has the unique

structure of an algebraic triangulated category up to equivalence. Since the third syzygy of simple
A-modules are simple, T = proj A has a structure of a triangulated category by Theorem 1.2. Also, this is
standard since A is a mesh algebra. We claim that proj A admits a triangle structure which is algebraic.
Since T is a finite, standard triangulated category, there exists a Dynkin quiver Q, a k-linear automorphism
F of Db(mod k Q), and a k-linear equivalence Db(mod k Q)/F ' proj A [Riedtmann 1980]. As in the
proof of [Keller 2018], F is isomorphic to −⊗L

k Q X for some (k Q, k Q)-bimodule complex X . Then
by [Keller 2005], Db(mod k Q)/F admits an algebraic triangle structure as a triangulated orbit category,
hence so does proj A. This finishes the proof of the claim. Now, this algebraic triangle structure is unique
up to equivalence by the main result of [Keller 2018]. This shows the well-definedness.

It is clear that these maps are mutually inverse. �

Remark 3.5. One can show that using the main result of [Muro 2020], the assumption “standardness”
can be dropped.

4. Graded projectivization

In this section, we formulate the method of realizing certain additive categories, which we call G-finite
additive categories on which a group G acts with some finiteness conditions, as the category of graded
projective modules over a G-graded algebra. This generalizes the classical “projectivization” [Auslander
et al. 1995, II.2], which realizes a finite additive category as the category of projectives over an algebra.

Let A be an additive category with an action of a group G. Precisely, an automorphism Fg of A
is given for each g ∈ G so that Fgh = Fh ◦ Fg for all g, h ∈ G. Then the action of G extends to an
automorphism of modA by Fg M = M ◦ F−1

g . For example, the action on the representable functors is
FgA(−, X)=A(−, Fg X).

Recall that the orbit category A/G has the same objects as A and the morphism space

(A/G)(X, Y )=
⊕
g∈G

A(X, FgY )
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and the composition b ◦ a of a ∈ T (X, FgY ) and b ∈ T (Y, Fh Z) is given by b ◦ a = Fg(b)a, where the
right hand side is the composition in A. Then, A/G is naturally a G-graded category whose degree g
part is A(X, FgY ).

Proposition 4.1. Let A be an additive category with an action of a group G. Consider the orbit category
C =A/G. Then, the following assertions hold:

(1) The Yoneda embedding A→ projGC is fully faithful. It is an equivalence if A is idempotent-complete.

(2) There exists an equivalence modA'modGC such that the action of Fg on modA corresponds to the
grade shift (g) on modGC, that is, we have the following commutative diagram of functors:

modA '
//

Fg

��

modGC

(g)
��

modA '
// modGC

Proof. (1) We have the Yoneda lemma for graded functors: HommodGC(C(−, X),M)= (M X)0. It follows
that the Yoneda embedding A→projGC is fully faithful. Also, if A is idempotent-complete, the projectives
in modGC are representable, and therefore the Yoneda embedding is dense.

(2) It is clear that the functor in (1) induces an equivalence modA ' modGC. Also, the degree h part
of the functor C(−, Fg X) is A(−, Fh Fg X) = A(−, Fgh X), which is equal to the same degree part of
C(−, X)(g). Thus we have the commutative diagram. �

Now we impose the following finiteness conditions on the G-action:

(G1) There is M ∈A such that A= add{Fg M | g ∈ G}.

(G2) For any X, Y ∈A, HomA(X, FgY )= 0 for almost all g ∈ G.

If these conditions are satisfied, we say that an additive category A with an action of G is G-finite. If A
is a G-finite additive category, we say M ∈A as in (G1) is a G-additive generator. If G is generated by
a single element F , we use the term F-finite for G-finiteness, and F-additive generator for G-additive
generator. Note that if G is the trivial group, G-finiteness is nothing but finiteness, and a G-additive
generator is an additive generator.

Let us reformulate Proposition 4.1 in terms of the graded endomorphism algebra below. Note that this
generalizes the classical “projectivization” for finite additive categories, which is the case G is trivial, to
“graded projectivization” for G-finite categories. Although this is rather formal, it will be useful in the
sequel.

Proposition 4.2. Let A be a k-linear, Hom-finite, idempotent-complete category with an action of G,
which is G-finite. Let M ∈ A be a G-additive generator and set C = EndA/G(M). Then, the following
assertions hold:
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(1) C is a finite dimensional G-graded algebra.

(2) The functor A→ projGC , X 7→
⊕

g∈G HomA(M, Fg X) is an equivalence.

(3) There exists an equivalence modA'modGC such that the action of g on modA corresponds to the
grade shift (g) on modGC.

Proof. (1) C is finite dimensional by (G2).

(2) Since we have an equivalence projGA/G→ projGC by substituting M , the assertion follows from
Proposition 4.1(1).

(3) This is the same as Proposition 4.1(2). �

Definition 4.3. G-Graded rings A and B are graded Morita equivalent if there is an equivalence modG A'
modG B which commutes with grade shift functors (g) for all g ∈ G.

Let us note the following remark.

Proposition 4.4. Assume (G1) is satisfied and set C = EndA/G(M).

(1) The ungraded algebra C does not depend on the choice of M up to Morita equivalence.

(2) The graded algebra C does not depend on the choice of M up to graded Morita equivalence.

Proof. (1) Since C is the endomorphism algebra of an additive generator of the category A/G, the
assertion follows.

(2) This follows from Proposition 4.2(3). �

As a direct application of this graded projectivization, we present as an example the following graded
version of the Auslander correspondence. For simplicity, we consider Z-graded algebras. A graded
algebra 3 is representation-finite if modZ3 has finitely many indecomposables up to grade shift. This is
equivalent to the representation-finiteness of the ungraded algebra 3 [Gordon and Green 1982].

Proposition 4.5. There exists a bijection between the following:

(1) The set of graded Morita equivalence classes of finite dimensional Z-graded algebras 3 of finite
representation type.

(2) The set of graded Morita equivalence classes of finite dimensional Z-graded algebras 0 with
gl. dim0 ≤ 2≤ dom. dim0.

The correspondence is given as follows:

• From (1) to (2): 0 = End3(M) =
⊕

n∈Z Hom3(M,M(n))0 for a (1)-additive generator M for
modZ3.

• From (2) to (1): 3 = End0(Q) =
⊕

n∈Z Hom0(Q, Q(n))0 for a (1)-additive generator Q for the
category of graded projective-injective 0-modules.

Proof. Note that 0 (resp. 3) does not depend on the choice of M (resp. Q) by Proposition 4.4(2). The
rest of the proof follows by the same argument as in Theorem 1.1; see [Auslander et al. 1995, VI.5]. �
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Notice that this correspondence 3↔ 0 is the same as the ungraded case, thus it is a refinement of
Theorem 1.1 on how much grading 3 or 0 have up to graded Morita equivalence.

5. Uniqueness of triangle structures

The aim of this section is to prove some results which state the uniqueness of triangle structures on certain
additive categories. We say that an additive category C has a unique algebraic triangle structure up to
equivalence if C1 = (C, [1],4) and C2 = (C, [1]′,4′) are algebraic triangle structures on C, then there
exists a triangle equivalence F : C1

∼
−→ C2 such that F(X)' X in C for all X ∈ C.

The following is the main result of this section.

Theorem 5.1. Let 3 be a ring with no simple ring summands such that Kb(proj3) is Krull–Schmidt.
Then, the additive category Kb(proj3) has a unique algebraic triangle structure up to equivalence.

We give applications of Theorem 5.1. For a quiver Q, let ZQ be the associated infinite translation
quiver [Assem et al. 2006; Happel 1988], and let k(ZQ) be its mesh category [Happel 1988].

Corollary 5.2. Let Q be a disjoint union of Dynkin quivers which does not contain A1. Then, the mesh
category k(ZQ) has a unique algebraic triangle structure up to equivalence.

As a consequence, we have the classification of [1]-finite algebraic triangulated categories.

Theorem 5.3. Let k be an algebraically closed field. Any [1]-finite algebraic triangulated category over k
is triangle equivalent to the bounded derived category Db(mod k Q) of the path algebra k Q for a disjoint
union Q of Dynkin quivers of type A, D, and E.

Now we start the preparations for the proofs of the above results. Recall that an additive category is
Krull–Schmidt if any object is a finite direct sum of objects whose endomorphism rings are local. This is
the case if the category is idempotent-complete and Hom-finite over a complete Noetherian local ring.
A Krull–Schmidt category C is purely nonsemisimple if for each X ∈ C, JC(−, X) 6= 0 or JC(X,−) 6= 0
holds. Note that these conditions are equivalent if C is triangulated.

First we observe that the suspension and the terms appearing in triangles in a triangulated category are
determined by its additive structure under some Krull–Schmidt assumptions. Recall from [Auslander
et al. 1995, I.2] that a morphism f : X→ Y in a Krull–Schmidt category is right minimal if for any direct
summand X ′ of X , the restriction f |X ′ is nonzero. We dually define left minimality.

Lemma 5.4. Let C be a Krull–Schmidt additive category. Assume C has a structure of a triangulated
category. Let f : X→ Y be a right minimal morphism in JC:

(1) The mapping cone of f is the minimal weak cokernel of f .

(2) X [1] is the minimal weak cokernel of the minimal weak cokernel of f .

Proof. Complete f to a triangle X f
−→ Y g

−→ Z h
−→ X [1].
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(1) We have to show that g is the minimal weak cokernel of f . We only have to show the left minimality
of g. If this is not the case, then h has a summand W 1W

−→W for a common nonzero summand W of Z
and X [1]. This contradicts the right minimality of f .

(2) We want to show that h is the minimal weak cokernel of g. Again, we only have to show the left
minimality of h. If this is not the case, then f [1] has a summand V 1V

−→ V for a common nonzero
summand V of X [1] and Y [1]. This contradicts f ∈ JC(X, Y ). �

We deduce that the possible triangle structures on a given purely nonsemisimple Krull–Schmidt additive
category is roughly unique in the following sense. We denote by cone4( f ) the mapping cone of f in a
triangle structure 4.

Proposition 5.5. Let C be a purely nonsemisimple Krull–Schmidt additive category. If (C, [1],4) and
(C, [1]′,4′) are triangle structures on C, then we have the following:

(1) X [1] ' X [1]′ for all objects X ∈ C.

(2) cone4( f )' cone4′( f ) in C for all morphisms f in C.

Proof. (1) Let X ∈ C be an indecomposable object. Since C is purely nonsemisimple, there exists a
nonzero morphism f : X → Y in JC . Then, f is a right minimal radical map, and hence the assertion
follows from Lemma 5.4(2).

(2) Let f : X→ Y be an arbitrary morphism in C. By removing the summands isomorphic to W 1
−→W ,

which does not affect the mapping cone, we may assume f ∈ JC . Then, f has a decomposition
X1⊕X2

( f1,0)
−−→ Y with right minimal f1 ∈ JC and the mapping cone of f is the direct sum of that of f1 and

X2[1]. Now the mapping cone of f1 is determined by Lemma 5.4(1) and since C is purely nonsemisimple,
[1] is determined by the additive structure by (1). This proves the assertion. �

For Theorem 5.1, we need the following result of Keller on algebraic triangulated categories.

Proposition 5.6 [Keller 1994, 4.3]. Let T be an algebraic triangulated category and T ∈ T be a tilting
object. Then, there exists a triangle equivalence T ' Kb(proj EndT (T )).

Note that we have the following observation, which will be crucial for the proof.

Lemma 5.7. Let C be a purely nonsemisimple Krull–Schmidt additive category. Assume C1 = (C, [1],4)
and C2 = (C, [1]′,4′) are triangle structures on C. Then, an object T ∈ C is a tilting object in C1 if and
only if it is a tilting object in C2.

Proof. Indeed, we have C1(T, T [n])= C2(T, T [n]′) by Proposition 5.5(1), which shows that the vanishing
of extensions does not depend on the triangle structure. Also, by Proposition 5.5(2), T generates C1 if
and only if T generates C2. This shows the assertion. �

Now we are ready to prove our results.
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Proof of Theorem 5.1. Let C be the underlying additive category of K = Kb(proj3). Assume C is
triangulated. We show that C is triangle equivalent to K by finding a tilting object whose endomorphism
ring is 3. Note that C = K is purely nonsemisimple and Krull–Schmidt by our assumption on 3. Let
T ∈ C be the object corresponding to 3 ∈ K. Then, T is a tilting object by Lemma 5.7 and clearly
EndC(T ) = 3. By our assumption that C is algebraic, we deduce that C is triangle equivalent to K by
Proposition 5.6. �

For the proof of Corollary 5.2, let us recall the following standardness theorem of Riedtmann.

Proposition 5.8 [Riedtmann 1980]. Let k be a field and T be a k-linear, Hom-finite idempotent-complete
triangulated category whose AR-quiver is ZQ for some acyclic quiver Q. Assume the endomorphism
algebra of an indecomposable object of T is k. Then, T is k-linearly equivalent to the mesh category
k(ZQ).

A well known application of this result is an equivalence Kb(proj k Q)' k(ZQ) for a Dynkin quiver Q
[Happel 1988, I.5.6].

Proof of Corollary 5.2. Since k(ZQ)' Kb(proj k Q) as additive categories, Theorem 5.1 gives the result.
�

A k-linear triangulated category T is locally finite [Xiao and Zhu 2005] if for each indecomposable
X ∈ T , we have

∑
Y :indec. dimk HomT (X, Y ) <∞. This condition is equivalent to its dual [loc. cit.].

Clearly, our [1]-finite triangulated categories are locally finite. The classification of [1]-finite triangulated
category depends on the following result.

Proposition 5.9 [Xiao and Zhu 2005, 2.3.5]. Let k be an algebraically closed field and T be a locally
finite triangulated category which does not contain a nonzero finite triangulated subcategory. Then, the
AR-quiver of T is ZQ for a disjoint union Q of Dynkin quivers of type A, D, and E.

Proof of Theorem 5.3. The AR-quiver of a [1]-finite triangulated category is ZQ for some Dynkin quiver
Q by Proposition 5.9. Moreover, it is equivalent to k(ZQ) by Proposition 5.8. Thus Corollary 5.2
applies. �

We end this section by noting the following lemma, which we use later. This lemma states in particular,
that for mesh categories, the suspension is unique up to isomorphism of functors

Lemma 5.10. Let Q be a Dynkin quiver and α be an automorphism of the mesh category k(ZQ) such
that αX ' X for all X ∈ k(ZQ). Then, α is isomorphic as functors to the identity functor.

Proof. Since Q is Dynkin, we can inductively construct a natural isomorphism between α and id. �

6. [1]-Auslander correspondence

In this section, we prove the second main result, Theorem 1.3, of this paper. In the first subsection, we
give the correspondence from triangulated categories to algebras, and the converse one in the second
subsection. We will prove the main theorem in the final subsection.
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6A. From triangulated categories to algebras. We apply the graded projectivization prepared in Section 4
to triangulated categories. Let T be a k-linear, Hom-finite, idempotent-complete triangulated category.
Consider the action on T of G = Z, generated by the suspension [1]. Then, the G-finiteness in this case
are:

(S1) There is M ∈ T such that T = add{M[n] | n ∈ Z}.

(S2) For any X, Y ∈ T , HomT (X, Y [n])= 0 for almost all n.

According to the terminology in Section 4, we say T is [1]-finite, and call M as in (S1) a [1]-additive
generator.

The following proposition gives the correspondence from triangulated categories to algebras.

Proposition 6.1. Let T be a k-linear, Hom-finite, idempotent-complete, triangulated category which is
[1]-finite. Let M ∈ T be a [1]-additive generator and set C =EndT /[1](M). Then, C is a finite-dimensional
graded self-injective algebra such that �3L ' L(−1) for any graded C-module L.

Proof. C is finite dimensional by (S2). Also, since mod T ' modZC by Proposition 4.2(2) and mod T
is Frobenius, C is self-injective. It remains to show the statement on the third syzygy. Let L be a
graded C-module and let Q → R → L → 0 be a projective presentation of L in modZC . Take the
map X → Y in T corresponding to Q→ R and complete it to a triangle W → X → Y → W [1]. Put
PZ =

⊕
n∈Z HomT (M, Z [n]) for each Z ∈ T . This is the graded projective C-module corresponding to

Z . Note that PZ [1] = PZ (1), where (1) is the grade shift functor on modZC . The triangle above yields an
exact sequence PX (−1)→ PY (−1)→ PW → PX → PY → PW (1). Since PX = Q and PY = R, we see
that �3L ' L(−1). �

Example 6.2. Let Q be a Dynkin quiver and T = Db(mod k Q). Let M be an additive generator for
mod k Q. Then, M is a [1]-additive generator for T and we have C = Endk Q(M)⊕Ext1k Q(M,M). The
degree 0 part of C is the Auslander algebra of mod k Q.

Let Q′ be another Dynkin quiver with the same underlying graph 1 as Q. Since k Q and k Q′ are
derived equivalent, we have Db(mod k Q′)= T . Similarly as above, an additive generator M ′ for mod k Q′

is a [1]-additive generator for T . The corresponding graded algebra C ′ is Endk Q′(M ′)⊕Ext1k Q′(M
′,M ′),

with the Auslander algebra of mod k Q′ in the degree 0 part.
By Proposition 4.4, C and C ′ are isomorphic as ungraded algebras (but not as graded algebras). In this

way, C ' C ′ contains the Auslander algebras of module categories over 1 for any orientation of 1.

Let us give a more specific example.

Example 6.3. Let Q be the following Dynkin quiver of type A3, and T be its derived category Db(mod k Q).

a← b← c.
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Then, the AR-quiver of T is as follows:

· · · ◦

$$

1
$$

3
$$

6
$$

4[1]
$$

· · ·

· · · ◦

$$

::

◦

$$

::

2
$$

::

5
$$

::

2[1]
$$

::

◦
$$

::

· · · ◦

::

◦

::

4
::

1[1]
::

3[1]
::

· · ·

where 1, . . . , 6 denotes the objects from mod k Q. Take M =
⊕6

i=1 Mi , where Mi is the indecomposable
k Q-module corresponding to the vertex i . Then, C = Endk Q(M)⊕ Ext1k Q(M,M). It is easily verified
that C is presented by the quiver ZA3/[1] and the mesh relations. The quiver of C looks as follows:

4
��

1
~~

3
~~

6
~~

4
~~

5

``

~~

2

``

~~

5

``

~~

2

``

~~

]]

��

3

]]

6

``

4

``

1

``

3

``

where the vertices with the same number are identified, with mesh relations along the dotted lines. The
arrows 1→ 5 and 2→ 6 have degree 1 and all the others have degree 0.

Now, let Q′ be the quiver obtained by reflecting Q at vertex a:

a→ b← c.

Fix an equivalence Db(mod k Q′) ' Db(mod k Q) so that M ′ = M2 ⊕ · · · ⊕ M6 ⊕ M1[1] is an additive
generator for mod k Q′. Then, C ′ = Endk Q′(M ′)⊕Ext1k Q′(M

′,M ′) is presented by the same quiver with
relations as C , with arrows 2→ 1 and 2→ 6 having degree 1 and all the others degree 0. Thus C ' C ′

as ungraded algebras but not as graded algebras.
Nevertheless, C and C ′ are graded Morita equivalent. Here we give a direct equivalence modZC→

modZC ′. Let ei be the idempotent of C corresponding to Mi (1≤ i ≤ 6) and set P = e2C ⊕· · ·⊕ e6C ⊕
e1C(1). Then, we have EndC(P)' C ′ as graded algebras and HomC(P,−) gives a desired equivalence.

6B. From algebras to triangulated categories. We can give the converse correspondence as in Section 3.
Setting a =−1 in the following proposition gives the result.

Proposition 6.4. Let A be a finite dimensional graded algebra such that A/JA is separable over k and
�3S ' S(a) for any graded simple module S. Then, projZ A has a structure of a triangulated category. If
k is algebraically closed and a 6= 0, then the suspension is isomorphic to (−a) and the algebraic triangle
structure on projZ A is unique up to equivalence.

Proof. By Corollary 2.4, A is self-injective and there exists an exact sequence

0→ A→ P0
→ P1

→ P2
→ 1 Aα(−a)→ 0

in modZ Ae, where P i , i = 0, 1, 2 are projectives, and α is a graded algebra automorphism of A such
that Pα ' P for all P ∈ projZ A. Then, we can apply Proposition 3.2 for P = projZ A, X i

= −⊗A P i

and S = (−)α(−a) to see that projZ A is triangulated with suspension (−)α(−a). Now assume k is
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algebraically closed and a 6= 0. Since we have HomprojZ A(X, Y (−na))= 0 for almost all n ∈ Z for each
X, Y ∈ projZ A, the triangulated category projZ A is [1]-finite, and therefore, it is equivalent to the mesh
category k(ZQ) for some Dynkin diagram Q by Propositions 5.9 and 5.8. Then, by changing the triangle
structure if necessary, projZ A has a structure of an algebraic triangulated category, which is unique up to
equivalence by Corollary 5.2. Also, (−)α(−a) and (−a) are isomorphic as functors by Lemma 5.10. �

6C. Proof of Theorem 1.3. Combining the previous results, we can now prove the second main result
of this paper.

Proof of Theorem 1.3. For M as in (1), C is as stated in (2) by Proposition 6.1. Also, the graded
Morita equivalence class of C does not depend on the choice of M by Proposition 4.4. This shows the
well-definedness of (1) to (2).

For the map from (2) to (1), it is well-defined since projZC has the unique structure of an algebraic
triangulated category up to equivalence by Proposition 6.4.

It is easily checked that these maps are mutually inverse.
The bijection between (1) and (3) is Proposition 5.9 and Theorem 5.3. �

Remark 6.5. The algebra C in Theorem 1.3 satisfies [3] ' (1) as functors on modZC by Proposition 6.1.

7. Applications to Cohen–Macaulay modules

Applying our classification in Theorem 5.3 of [1]-finite triangulated categories, we show that the stable
categories CMZ3 of some CM-finite Iwanaga–Gorenstein algebras, in particular, of (commutative) graded
simple singularities are triangle equivalent to the derived categories of Dynkin quivers.

A Noetherian algebra 3 is Iwanaga–Gorenstein if id33 = id3op 3 < ∞. A typical example of
Iwanaga–Gorenstein algebra is given by commutative Gorenstein rings of finite Krull dimension. For an
Iwanaga–Gorenstein algebra 3, we have the category

CM3= {X ∈mod3 | Exti3(X,3)= 0 for all i > 0}

of Cohen–Macaulay 3-modules. It is naturally a Frobenius category and we have a triangulated category
CM3.

Now consider the case 3 is graded: let 3=
⊕

n≥03n is a positively graded Noetherian algebra such
that each 3n is finite dimensional over a field k. If 3 is a graded Iwanaga–Gorenstein algebra, we
similarly have the category

CMZ3= {X ∈modZ3 | Exti3(X,3)= 0 for all i > 0}

of graded Cohen–Macaulay modules. It is again Frobenius and hence the stable category CMZ3 is trian-
gulated. A graded Iwanaga–Gorenstein algebra is CM-finite if CMZ3 has finitely many indecomposable
objects up to grade shift.

We now show that CM-finite Iwanaga–Gorenstein algebras give a large class of examples of [1]-finite
triangulated categories.
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Proposition 7.1. Let 3 be a positively graded CM-finite Iwanaga–Gorenstein algebra with gl. dim30 <

∞. Then, the triangulated category CMZ3 is [1]-finite.

To prove this, we need an observation for general Noetherian algebras, which is motivated by [Ya-
maura 2013, 3.5]. Let us fix some notations. We denote by Exti3(− ,− )0 the Ext groups on modZ3.
Note that for M, N ∈ modZ3, the Ext groups on mod3 are graded k-vector spaces: Exti3(M, N ) =⊕

n∈Z Exti3(M, N (n))0, (i ≥ 0). For each M ∈modZ3 and n ∈ Z, we denote by M≥n the 3-submodule
of M consisting of components of degree ≥ n.

Lemma 7.2. Let 3 be a positively graded Noetherian algebra with gl. dim30 < ∞. Then, for any
X, Y ∈modZ3, we have Hom3(X, �nY )0 = 0 for sufficiently large n.

Proof. Take a minimal graded projective resolution of Y : · · · → P2→ P1→ P0→ Y → 0. We will
show that for each i ∈ Z, Pn = (Pn)≥i holds for n� 0. For this, it suffices to show that Pn = (Pn)≥1 for
Y = Y≥0. Note that the degree 0 part of the minimal projective resolution of Y yields a 30-projective
resolution of Y0. By our assumption that gl. dim30 <∞, we have (Pn)0 = 0, hence (Pn)≥1 = Pn for
sufficiently large n. Now, we have Hom3(X,3(−n))0 = Hom3(X,3)−n = 0 for n� 0. Indeed, this is
certainly true if X is projective. For general X , take a surjection P � X from a projective module P .
Then we have an injection Hom3(X,3) ↪→ Hom3(P,3) and our assertion follows from the case X is
projective. Therefore, we conclude that Hom3(X, Pn)0 = 0, thus Hom3(X, �n+1Y )0 = 0 for sufficiently
large n. �

Proof of Proposition 7.1. We verify the conditions (S1) and (S2) found in Section 6A.
First we show (S2): Hom3(X, �

nY )0 = 0 for almost all n for each X, Y ∈ CMZ(3). The case n� 0
is done in Lemma 7.2, so it remains to prove the case n� 0. Since 3 is CM-finite, CMZ3 has the AR
duality, and we have D Hom(X, �nY )0 'Hom(Y, �−n−1τ X)0, hence the assertion follows from the case
of n� 0.

Next we show (S1): CMZ3 has only finitely many indecomposables up to suspension. Since 3 is of
finite CM type, there exists 0 6= n ∈ Z such that �n X ' X up to grade shift for any indecomposable
X ∈ CMZ3. By (S2), �n X and X are not actually isomorphic in CMZ3. Therefore, CMZ3 has only
finitely many indecomposables up to �n , in particular up to �−1.

These assertions show that CMZ3 is [1]-finite. �

As an application of Theorem 5.3, we immediately obtain the following result.

Theorem 7.3. Let k be algebraically closed and let 3 =
⊕

n≥03n is a positively graded Iwanaga–
Gorenstein algebra such that each 3n is finite dimensional over k. Suppose 3 is CM-finite and
gl. dim30 <∞. Then, the AR-quiver of CMZ3 is Z1 for a disjoint union 1 of some Dynkin diagrams of
type A, D and E. Moreover, CMZ3 is triangle equivalent to Db(mod k Q) for any orientation Q of 1.

Proof. The statement for the AR-quiver follows from Propositions 7.1 and 5.9. The triangle equivalence
follows from Proposition 7.1 and Theorem 5.3. �
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A well-known class of commutative Gorenstein rings of finite representation type is given by simple
singularities. Here we assume that k is algebraically closed of characteristic 0. Then, they are classified up
to isomorphism by the Dynkin diagrams for each d = dim3 and have the form k[x, y, z2, . . . , zd ]/( f )
with

(An) f = x2
+ yn+1

+ z2
2+ · · ·+ z2

d , (n ≥ 1),

(Dn) f = x2 y+ yn−1
+ z2

2+ · · ·+ z2
d , (n ≥ 4),

(E6) f = x3
+ y4
+ z2

2+ · · ·+ z2
d ,

(E7) f = x3
+ xy3

+ z2
2+ · · ·+ z2

d ,

(E8) f = x3
+ y5
+ z2

2+ · · ·+ z2
d ;

see [Leuschke and Wiegand 2012, Chapter 9]. We admit any grading on 3 so that each variable and f
are homogeneous of positive degrees. Then, 3 is CM-finite (in the graded sense) since its completion
3̂ at the maximal ideal 3>0 is CM-finite, that is, CM 3̂ has only finitely many indecomposable objects
[Yoshino 1990, Chapter 15].

Corollary 7.4. Let k be an algebraically closed field of characteristic zero and3=k[x, y, z2, . . . , zd ]/( f )
with f one of the above. Give a grading on 3 so that each variable and f are homogeneous of positive
degrees. Then, the stable category CMZ3 is triangle equivalent to the derived category Db(mod k Q) of
the path algebra k Q of a disjoint union Q of Dynkin quivers.

We give several more examples. First we consider the case 3 is finite dimensional.

Example 7.5. Let

3=3n = k[x]/(xn)

with deg x=1. Then,3 is a finite dimensional self-injective algebra. In this case we have CMZ3=modZ3.
It is of finite representation type with indecomposable 3-modules 3i (1≤ i ≤ n), and 30 = k has finite
global dimension. We can easily compute its AR-quiver (for n = 4) to be

· · · ◦

��

33(−1)
��

33

��

33(1)
��

◦

��

· · ·

· · · ◦

��

??

32(−2)
��

??

32(−1)
��

??

32

��

??

32(1)
��

??

◦

��

??

· · · ◦

??

31(−2)

??

31(−1)

??

31

??

31(1)

??

· · · ,

where the top of 3i is in degree 0. We see that the AR-quiver of modZ3 is ZAn−1. Consequently, we
have a triangle equivalence modZ3' Db(mod k Q) for a quiver Q of type An−1.

The next one is a finite dimensional Iwanaga–Gorenstein algebra.
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Example 7.6. Let 3 be the algebra presented by the following quiver with relations:

1

x
��

2a
oo

y
��

3b
oo

4

c

OO

5
f

oo

d

OO

6g
oo

e

OO
da = f c, eb = gd,

ax = yg,

cx = 0, xd = 0, x f = 0, dy = 0, by = 0, ye = 0,

with deg x = deg y = 1 and all other arrows having degree 0. Then, it is an Iwanaga–Gorenstein algebra
of dimension 1. (In fact, this is the 3-preprojective algebra [Iyama and Oppermann 2013] of its degree 0
part.) We can compute the AR-quiver of modZ3 to be the following:

4
1

��

2
6

��

6
5 3

4 2
1

��

1
5 (1)

��

6
3

��

1

��

??

4 2
1 6

??

��

2

��

5 3
4 2

1

??

��

6
5 3

4 2

��

5

??

��

1 6
5 3 (1)

��

??

6

��
· · · //

??

��

2
1 6

5
// 2

1 6

??

��

4 2
1

//

??

��

5
4 2

1
//

5 3
4 2 2

1
//

??

��

3
2

// 5 3
4 2

//

??

��

5
4

//
6

5 5 3
4 2

//

??

��

6
5 3

2
// 6

5 3

??

��

1 6
5 (1) //

??

��

2
1 6

5
(1) // · · ·

6 (−1)

??

2
1

??

��

3
4 2

1

??

��

5
4 2

??

��

5 3
2

??

��

6
5 3
4

??

��

6
5

??

1 (1)

??

��
· · ·

??

3
2
1

??

4

??

5
2

??

3

??

6
5
4

??

· · ·

Here, each module is graded so that its top is concentrated in degree 0, or equivalently, its lowest degree is
at 0. We then compute the category CMZ3 to be the circled modules and it is verified that the AR-quiver
of CMZ3 is

· · ·

��

1

��

4 2
1
��

5 3
4 2

1
��

5
6
��

1 (1)

��1 6
5

??

2
1

??

3
4 2

1

??

5

??

1 6
5 (1)

??

· · ·

We see that this is ZA2 and consequently CMZ3' Db(mod k Q) for a quiver Q of type A2.

We consider as a final example a Gorenstein order: let R = k[x1, . . . , xd ] be a polynomial ring. A
Noetherian R-algebra 3 is an R-order if it is projective as an R-module. An R-order 3 is Gorenstein
if HomR(3, R) is projective as a 3-module. In this case, Cohen–Macaulay 3-modules are 3-modules
which are projective as R-modules.

Example 7.7. Let R = k[x] be a graded polynomial ring with deg x = 1 and let

3=

(
R R
(xn) R

)
.

This is a Gorenstein R-order of dimension 1. Its indecomposable CM modules up to grade shift are given
by the row vectors Mi =

(
(x i ) R

)
for 0 ≤ i ≤ n, and M0 and Mn are the projectives. We define the
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gradings on the Mi so that their top
(
0 k

)
is in degree 0. Then, the AR-quiver of CMZ3 (for n = 4) is

computed to be
· · ·

��

◦

��

M0(−1)
��

M0

��

· · ·

◦

��

??

M1(−1)
��

??

M1

��

??

M1(1)

��

??

· · ·

��

??

M2(−1)
��

??

M2

��

??

M2(1)

��

??

· · ·

M3(−1)
��

??

M3

��

??

M3(1)

��

??

◦

��

??

· · ·

??

M4

??

M4(1)

??

◦

??

· · · ,

where the upgoing arrows are natural inclusions, the downgoing arrows are the multiplications by x ,
and the dotted lines indicate the AR-translations. By deleting the projective vertices, we see that the
AR-quiver of CMZ3 is ZAn−1, and consequently CMZ3' Db(mod k Q) for a quiver Q of type An−1.
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Supersingular locus of Hilbert modular varieties,
arithmetic level raising and Selmer groups
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This article has three goals: First, we generalize the result of Deuring and Serre on the characterization of
supersingular locus to all Shimura varieties given by totally indefinite quaternion algebras over totally
real number fields. Second, we generalize the result of Ribet on arithmetic level raising to such Shimura
varieties in the inert case. Third, as an application to number theory, we use the previous results to study
the Selmer group of certain triple product motive of an elliptic curve, in the context of the Bloch–Kato
conjecture.
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1. Introduction

The study of special loci of moduli spaces of abelian varieties starts from Deuring and Serre. Let N ≥ 4 be
an integer and p a prime not dividing N . Let Y0(N ) be the coarse moduli scheme over Z(p) parametrizing
elliptic curves with a cyclic subgroup of order N . Let Y0(N )ss

Fp
denote the supersingular locus of the

special fiber Y0(N )Fp , which is a closed subscheme of dimension zero. Deuring and Serre proved the
following deep result (see, for example [Serre 1996]) characterizing the supersingular locus:

Y0(N )ss
Fp
(Fac

p )
∼= B×\B̂×/R̂×. (1-1)

Here, B is the definition quaternion algebra over Q ramified at p, and R ⊆ B is any Eichler order of
level N . Moreover, the induced action of the Frobenius element on B×\B̂×/R̂× coincides with the Hecke
action given by the uniformizer of B⊗Q Qp.

One main application of the above result is to study congruence of modular forms. Let f = q +
a2q2
+ a3q3

+ · · · be a normalized cusp new form of level 00(N ) and weight 2. Let m f be the ideal of
the away-from-N p Hecke algebra generated by Tv − av for all primes v - N p. We assume that f is not
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dihedral. Take a sufficiently large prime `, not dividing N p(p2
− 1). Using the isomorphism (1-1) and

the Abel–Jacobi map (over Fp2), one can construct a map

0(B×\B̂×/R̂×, F`)/m f → H1(Fp2,H1(Y0(N )⊗ Fac
p , F`(1))/m f ) (1-2)

where 0(B×\B̂×/R̂×, F`) denotes the space of F`-valued functions on B×\B̂×/R̂×. [Ribet 1990] proved
that the map (1-2) is surjective. Note that the right-hand side is nonzero if and only if ` | a2

p − (p+ 1)2,
in which case the dimension is 1. From this, one can construct a normalized cusp new form g of level
00(N p) and weight 2 such that f ≡ g mod ` when ` | a2

p − (p+ 1)2.
This article has three goals: First, we generalize the result of Deuring and Serre to all Shimura varieties

given by totally indefinite quaternion algebras over totally real number fields. Second, we generalize
Ribet’s result to such Shimura varieties in the inert case. Third, as an application to number theory, we
use the previous results to study Selmer groups of certain triple product motives of elliptic curves, in the
context of the Bloch–Kato conjecture.

For the rest of Introduction, we denote F a totally real number field, and B a totally indefinite quaternion
algebra over F . Put G := ResF/Q B× as a reductive group over Q.

1A. Supersingular locus of Hilbert modular varieties. Let p be a rational prime that is unramified in F .
Denote by 6p the set of all places of F above p, and put gp := [Fp : Qp] for every p ∈ 6p. Assume
that B is unramified at all p ∈ 6p. Fix a maximal order OB in B. Let K p

⊆ G(A∞) be a neat open
compact subgroup in the sense of Definition 2.6. We have a coarse moduli scheme Sh(G, K p) over Z(p)

parametrizing abelian varieties with real multiplication by OB and K p-level structure (see Section 2E for
details). Its generic fiber is a Shimura variety; in particular, we have the following well-known complex
uniformization:

Sh(G, K p)(C)∼= G(Q)\(C−R)[F :Q]×G(A∞)/K p K p,

where K p is a hyperspecial maximal subgroup of G(Qp). The supersingular locus of Sh(G, K p), that
is, the maximal closed subset of Sh(G, K p)⊗ Fac

p on which the parametrized abelian variety (over Fac
p )

has supersingular p-divisible group, descends to Fp, denoted by Sh(G, K p)ss
Fp

. Our first result provides a
global description of the subscheme Sh(G, K p)ss

Fp
.

To state our theorem, we need to introduce another Shimura variety. Let B† be the quaternion
algebra over F , unique up to isomorphism, such that the Hasse invariants of B† and B differ exactly
at all archimedean places and all p ∈ 6p with gp odd. Similarly, put G†

:= ResF/Q(B†)× and identify
G†(A∞,p) with G(A∞,p). We put

Sh(G†, K p)(Fac
p ) := G†(Q)\G†(A∞)/K p K †

p,

where K †
p is a maximal open compact subgroup of G†(Qp). We denote by Sh(G†, K p)Fac

p
the correspond-

ing scheme over Fac
p , that is, copies of Spec Fac

p indexed by Sh(G†, K p)(Fac
p ).
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Theorem 1.1 (Theorem 3.13). Let h be the least common multiple of (1+ gp− 2bgp/2c)gp for p ∈6p.
We have1

Sh(G, K p)ss
Fp
⊗ Fph =

⋃
a∈B

W (a).

Here

• B is a set of cardinality
∏

p∈6p

( gp
bgp/2c

)
equipped with a natural action by Gal(Fph/Fp);

• the base change W (a)⊗ Fac
p is a

(∑
p∈6p
bgp/2c

)
-th iterated P1-fibration over Sh(G†, K p)Fac

p
, equi-

variant under prime-to-p Hecke correspondences.2

In particular, Sh(G, K p)ss
Fp

is proper and of equidimension
∑

p∈6p
bgp/2c.

If p is inert in F of degree 2 and B is the matrix algebra, then the result was first proved in [Bachmat
and Goren 1999]. If p is inert in F of degree 4 and B is the matrix algebra, then the result was due to Yu
[2003]. Assume that p is inert in F of even degree. Then the strata W (a) have already been constructed in
[Tian and Xiao 2019], and the authors proved there that, under certain genericity conditions on the Satake
parameters of a fixed automorphic cuspidal representation π , the cycles W (a) give all the π -isotypic Tate
cycles on Sh(G, K p)Fp .

Similarly, one can define the superspecial locus Sh(G, K p)
sp
Fp

of Sh(G, K p), that is, the maximal
closed subset of Sh(G, K p)⊗ Fac

p on which the parametrized abelian variety has superspecial p-divisible
group. It is a reduced scheme over Fp of dimension zero. We have the following result:

Theorem 1.2 (Theorem 3.16). Assume that gp is odd for every p ∈ 6p. For each a ∈ B as in the
previous theorem, W (a) contains the superspecial locus Sh(G, K p)

sp
Fp
⊗Fph , and the iterated P1-fibration

πa : W (a)⊗ Fac
p → Sh(G†, K p)Fac

p
induces an isomorphism

Sh(G, K p)
sp
Fac

p

∼
−→ Sh(G†, K p)Fac

p

compatible with prime-to-p Hecke correspondences.

In fact, Theorem 3.16(2) shows that the Fp2-scheme structure on Sh(G†, K p)Fac
p

induced from the
isomorphism in the above theorem is independent of a. In other words, we have a canonical Fp2-scheme
structure on Sh(G†, K p)Fac

p
, which we denote by Sh(G†, K p). Then it is easy to see that the iterated

P1-fibration πa descends to a morphism of Fph -schemes

πa : W (a)→ Sh(G†, K p)Fh
p
.

A main application of the global description of the supersingular locus is to study the level raising
phenomenon, as we will explain in the next section.

1The notation here is simplified. In fact, in the main text and particularly Theorem 3.13, B†, G†, B, a and W (a) are denoted
by BSmax , GSmax , B∅, a and W∅,∅(a), respectively.

2One should consider Sh(G†, K p)Fac
p

as the Fac
p -fiber of a Shimura variety attached to G†. However, it seems impossible to

define the correct Galois action on Sh(G†, K p)Fac
p

using the formalism of Deligne homomorphisms when gp is odd for at least
one p ∈6p . When gp is odd for all p ∈6p , we will define the correct Galois action by Gal(Fac

p /Fp) using superspecial locus.
See the discussion after Theorem 1.2.
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1B. Arithmetic level raising for Hilbert modular varieties. We suppose that g = [F : Q] is odd. Fix
an irreducible cuspidal automorphic representation 5 of GL2(AF ) of parallel weight 2 defined over a
number field E. Let B, G be as in the previous section; and let K be a neat open compact subgroup of
G(A∞). Then we have the Shimura variety Sh(G, K ) defined over Q. Let R be a finite set of places of F
away from which 5 is unramified and K is hyperspecial maximal.

Let p be a rational prime inert in F such that the unique prime p of F above p is not in R. Then
K = K p K p and Sh(G, K ) has a canonical integral model Sh(G, K p) over Z(p) as in the previous section.
We also choose a prime λ of E and put kλ :=OE/λ.

Let Z[TR
] (resp. Z[TR∪{p}

]) be the (abstract) spherical Hecke algebra of GL2,F away from R (resp.
R∪ {p}). Then 5 induces a homomorphism

φ5,λ : Z[TR
] →OE→ kλ

via Hecke eigenvalues. Put m := ker(φ5,λ|Z[TR∪{p}]).
The Hecke algebra Z[TR∪{p}

] acts on the (étale) cohomology group H•(Sh(G, K p)⊗ Fac
p , kλ). Let

0(B×Sh(G†, K p)(Fac
p ), ∗) be the abelian group of ∗-valued functions on B×Sh(G†, K p)(Fac

p ), which
admits the Hecke action of Z[TR∪{p}

] via the second factor. We have a Chow cycle class map

0(B×Sh(G†, K p)(Fac
p ),Z)→ CH(g+1)/2(Sh(G, K p)Fac

p
)

sending a function f on B × Sh(G†, K p)(Fac
p ) to the Chow class of

∑
a,s f (a, s)π−1

a (s), which is
Z[TR∪{p}

]-equivariant. We will show that under certain “large image” assumption on the mod-λ Galois
representation attached to 5, the above Chow cycle class map (eventually) induces the following Abel–
Jacobi map

0(B×Sh(G†, K p)(Fac
p ), kλ)/m→ H1(Fp2g ,Hg(Sh(G, K p)Fac

p
, kλ((g+ 1)/2))/m). (1-3)

See Section 4A for more details. The following theorem is what we call arithmetic level raising:

Theorem 1.3 (Theorem 4.7). Suppose that p is a λ-level raising prime in the sense of Definition 4.5. In
particular, we have the following equalities in kλ:

φ5,λ(Tp)
2
= (pg

+ 1)2, φ5,λ(Sp)= 1,

where Tp (resp. Sp) is the (spherical) Hecke operator at p represented by
( p

0
0
1

)
∈ GL2(Fp) (resp.( p

0
0
p

)
∈ GL2(Fp)). Then the map (1-3) is surjective.

As we will point out in Remarks 4.2 and 4.6, if there exist rational primes inert in F , and 5 is not
dihedral and not isomorphic to a twist by a character of any of its internal conjugates, then for all but
finitely many prime λ, there are infinitely many (with positive density) rational primes p that are λ-level
raising primes.

Suppose that the Jacquet–Langlands transfer of 5 to B exists, say 5B . If (5∞,pB )K p
has dimension 1

and there is no other automorphic representation of B×(AF ) (of parallel weight 2, unramified at p, and
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with nontrivial K p-invariant vectors) congruent to 5B modulo λ, then the target of (1-3) has dimension( g
(g−1)/2

)
over kλ.

Remark 1.4. In principle, our method can be applied to prove a theorem similar to Theorem 1.3 when
B is not necessarily totally indefinite but the “supersingular locus”, defined in an ad hoc way if B is
not totally indefinite, still appears in the near middle dimension. In fact, the proof of Theorem 1.3 will
be reduced to the case where B is indefinite at only one archimedean place (that is, the corresponding
Shimura variety Sh(B) is a curve). However, we decide not to pursue the most general scenario as that
would make the exposition much more complicated and technical. On the other hand, we would like
to point out that arithmetic level raising when 1 < dim Sh(B) < [F : Q] has arithmetic application as
well, for example, to bound the triple product Selmer group (see the next section) with respect to a cubic
extension F/F[ of totally real number fields with F[ 6=Q.

Let us explain the meaning of Theorem 1.3. Suppose that 5 admits Jacquet–Langlands transfer, say
5B , to B× such that 5K

B 6= {0}. Then the right-hand side of (1-3) is nonzero. In particular, under the
assumption of Theorem 1.3, the left-hand side of (1-3) is nonzero as well. One can then deduce that
there is an (algebraic) automorphic representation 5′ of G†(A) = (B†)×(AF ) (trivial at∞) such that
the associated Galois representations of 5′ and 5 with coefficient OE/λ are isomorphic. However, it
is obvious that 5′ cannot be the Jacquet–Langlands transfer of 5, as B† is ramified at p while 5 is
unramified at p. In this sense, Theorem 1.3 reveals certain level raising phenomenon. Moreover, this
theorem not only proves the existence of level raising, but also provides an explicit way to realize the
congruence relation behind the level raising through the Abel–Jacobi map (1-3). As this process involves
cycle classes and local Galois cohomology, we prefer to call Theorem 1.3 arithmetic level raising. This is
crucial for our later arithmetic application. Namely, we will use this arithmetic level raising theorem to
bound certain Selmer groups, as we will explain in the next section.

1C. Selmer group of triple product motive. In this section, we assume that g = [F : Q] = 3; in other
words, F is a totally real cubic number field.

Let E be an elliptic curve over F . We have the Q-motive ⊗ IndF
Q h1(E) (with coefficient Q) of rank 8,

which is the multiplicative induction of the F-motive h1(E) to Q. The cubic-triple product motive of E
is defined to be

M(E) := (⊗ IndF
Q h1(E))(2).

It is canonically polarized. For every prime p, the p-adic realization of M(E), denoted by M(E)p,
is a Galois representation of Q of dimension 8 with Qp-coefficients. In fact, up to a twist, it is the
multiplicative induction from F to Q of the rational p-adic Tate module of E .

Now we assume that E is modular. Then it gives rise to an irreducible cuspidal automorphic represen-
tation 5E of (ResF/Q GL2,F )(A)=GL2(AF ) with trivial central character. Denote by τ : L G→GL8(C)

the triple product L-homomorphism [Piatetski-Shapiro and Rallis 1987, Section 0], and L(s,5E , τ ) the
triple product L-function, which has a meromorphic extension to the complex plane by [Garrett 1987;
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Piatetski-Shapiro and Rallis 1987]. Moreover, we have a functional equation

L(s,5E , τ )= ε(5E , τ )C(5E , τ )
1/2−s L(1− s,5E , τ )

for some ε(5E , τ ) ∈ {±1} and positive integer C(5E , τ ). The global root number ε(5E , τ ) is the
product of local ones: ε(5E , τ ) =

∏
v ε(5E,v, τ ), where v runs over all places of Q. Here, we have

ε(5E,v, τ ) ∈ {±1} and that it equals 1 for all but finitely many v. Put

6(5E , τ ) := {v | ε(5E,v, τ )=−1}.

In particular, the set 6(5E , τ ) contains∞. We have L(s,M(E))= L
(
s+ 1

2 ,5E , τ
)
.

Now we assume that E satisfies Assumption 5.1. In particular, 6(5E , τ ) has odd cardinality. Let B[ be
the indefinite quaternion algebra over Q with the ramification set 6(5E , τ )−{∞}, and put B := B[⊗Q F .
Put G := ResF/Q B× as before. We will define neat open compact subgroups Kr ⊆ G(A), indexed by
certain integral ideals r of F . We have the Shimura threefold Sh(G, Kr) over Q. Put G[

:= (B[)× and let
K [
r ⊆ G[(A) be induced from Kr. Then we have the Shimura curve Sh(G[, K [

r ) over Q with a canonical
finite morphism to Sh(G, Kr). Using this 1-cycle, we obtain, under certain conditions, a cohomology
class

2p,r ∈ H1
f (Q,M(E)p)

⊕a(r),

where H1
f (Q,M(E)p) is the Bloch–Kato Selmer group (Definition 5.6) of the Galois representation

M(E)p (with coefficient Qp), and a(r) > 0 is some integer depending on r. See Section 5A for more
details of this construction. We have the following theorem on bounding the Bloch–Kato Selmer group
using the class 2p,r.

Theorem 1.5 (Theorem 5.7). Let E be a modular elliptic curve over F satisfying Assumption 5.1. For a
rational prime p, if there exists a perfect pair (p, r) such that 2p,r 6= 0, then we have

dimQp H1
f (Q,M(E)p)= 1.

See Definition 5.4 for the meaning of perfect pairs, and also Remark 5.8.

The above theorem is closely related to the Bloch–Kato conjecture. We refer readers to the Introduction
of [Liu 2016] for the background of this conjecture, especially how Theorem 1.5 can be compared to
the seminal work of Kolyvagin [1990] and the parallel result [Liu 2016, Theorem 1.5] for another triple
product case. In particular, we would like to point out that under the (conjectural) triple product version
of the Gross–Zagier formula and the Beilinson–Bloch conjecture on the injectivity of the Abel–Jacobi
map, the following two statements should be equivalent:

• L ′(0,M(E)) 6= 0 (note that L(0,M(E))= 0).

• There exists some r0 such that for every other r contained in r0, we have 2p,r 6= 0 as long as (p, r)
is a perfect pair.
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Assuming this, then Theorem 1.5 implies that if L ′(0,M(E)) 6= 0, that is, ords=0 L(s,M(E))= 1, then
dimQp H1

f (Q,M(E)p)= 1 for all but finitely many p. This is certainly evidence toward the Bloch–Kato
conjecture for the motive M(E).

At this point, it is not clear how the arithmetic level raising, Theorem 1.3, is related to Theorem 1.5.
We will briefly explain this in the next section.

1D. Structure and strategies. There are four sections in the main part. In short words, Section 2 is respon-
sible for the basics on Shimura varieties that we will use later; Section 3 is responsible for Theorems 1.1
and 1.2; Section 4 is responsible for Theorem 1.3; and Section 5 is responsible for Theorem 1.5.

In Section 2, we study certain Shimura varieties and their integral models attached to both unitary
groups of rank 2 and quaternion algebras, and compare them through Deligne’s recipe of connected
Shimura varieties. The reason we have to study unitary Shimura varieties is the following: In the proof
of Theorems 1.1, 1.2 and 1.3, we have to use an induction process to go through certain quaternionic
Shimura varieties associated to B that are not totally indefinite. Those Shimura varieties are not (coarse)
moduli spaces but we still want to carry the information from the moduli interpretation through the
induction process. Therefore, we use the technique of changing Shimura data by studying closely related
unitary Shimura varieties, which are of PEL-type. Such argument is coherent with [Tian and Xiao 2016]
in which the authors study Goren–Oort stratification on quaternionic Shimura varieties.

In Section 3, we first construct candidates for the supersingular locus in Theorem 1.1 via Goren–Oort
strata, which were studied in [Tian and Xiao 2016], and then prove that they exactly form the entire
supersingular locus, both through an induction argument. As we mentioned previously, during the
induction process, we need to compare quaternionic Shimura varieties to unitary ones. At last, we identify
and prove certain properties for the superspecial locus, in some special cases.

In Section 4, we state and prove the arithmetic level raising result. Using the nondegeneracy of certain
intersection matrices proved in [Tian and Xiao 2019], we can reduce Theorem 1.3 to establishing a similar
isomorphism on certain quaternionic Shimura curves. Then we use the well-known argument of Ribet
together with Ihara’s lemma in this context to establish such isomorphism on curves.

In Section 5, we focus on the number theoretical application of the arithmetic level raising established
in the previous section. The basic strategy to bound the Selmer group follows the same line as in
[Kolyvagin 1990; Liu 2016; 2019]. Namely, we construct a family of cohomology classes 2νp,r,` to serve
as annihilators of the Selmer group after quotient by the candidate class 2p,r in rank 1 case. In the case
considered here, those cohomology classes are indexed by an integer ν as the depth of congruence, and a
pair of rational primes `= (`, `′) that are “pν-level raising primes” (see Definition 5.10 for the precise
terminology and meaning). The key idea is to connect 2p,r and various 2νp,r,` through some objects in
the middle, that is, some mod-pν modular forms on a certain Shimura set. Following past literature, the
link between 2p,r and those mod-pν modular forms is called the second explicit reciprocity law; while
the link between 2νp,r,` and those mod-pν modular forms is called the first explicit reciprocity law. The
first law in this context has already been established by one of us in [Liu 2019]. To establish the second
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law, we use Theorem 1.3; namely, we have to compute the corresponding element in the left-hand side in
the isomorphism of Theorem 1.3 of the image of 2p,r in the right-hand side.

1E. Notation and conventions. The following list contains basic notation and conventions we fix through-
out the article. We will usually not recall them when we use, as most of them are common:

• Let 3 be an abelian group and S a finite set. We denote by |S| the cardinality of S and 0(S,3) the
abelian group of 3-valued functions on S.

• If a base is not specified in the tensor operation ⊗, then it is Z. For an abelian group A, put
Â := A⊗ (lim

←−−n Z/n). In particular, we have Ẑ=
∏

l Zl , where l runs over all rational primes. For a
fixed rational prime p, we put Ẑ(p) :=

∏
l 6=p Zl .

• We denote by A the ring of adèles over Q. For a set � of places of Q, we denote by A� the ring of
adèles away from �. For a number field F , we put A�

F := A�
⊗Q F . If �= {v1, . . . , vn} is a finite

set, we will also write Av1,...,vn for A�.

• For a field K , denote by K ac the algebraic closure of K and put GK :=Gal(K ac/K ). Denote by Qac

the algebraic closure of Q in C. When K is a subfield of Qac, we take GK to be Gal(Qac/K ) hence
a subgroup of GQ.

• For a number field K , we denote by OK the ring of integers in K . For every finite place v of OK ,
we denote by OK ,v the ring of integers of the completion of K at v.

• If K is a local field, then we denote by OK its ring of integers, IK ⊆ GK the inertia subgroup. If v is
a rational prime, then we simply write Gv for GQv

and Iv for IQv
.

• Let K be a local field, 3 a ring, and N a 3[GK ]-module. We have an exact sequence of 3-modules

0→ H1
unr(K , N )→ H1(K , N ) ∂

−→ H1
sing(K , N )→ 0,

where H1
unr(K , N ) is the submodule of unramified classes.

• Let 3 be a ring and N a 3[GQ]-module. For each prime power v, we have the localization map
locv : H1(Q, N )→ H1(Qv, N ) of 3-modules.

• Denote by P1 the projective line scheme over Z, and Gm = Spec Z[T, T−1
] the multiplicative group

scheme.

• Let X be a scheme. The cohomology group H•(X,−) will always be computed on the étale site
of X . If X is of finite type over a subfield of C, then H•(X (C),−) will be understood as the Betti
cohomology of the associated complex analytic space X (C).

2. Shimura varieties and moduli interpretations

In this section, we study certain Shimura varieties and their integral models attached to both unitary
groups of rank 2 and quaternion algebras, and compare them through Deligne’s recipe of connected
Shimura varieties.
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Let F be a totally real number field, and p ≥ 3 a rational prime unramified in F . Denote by 6∞ =
HomQ(F,C) the set of archimedean places of F , and 6p the set of p-adic places of F above p. We
fix throughout Sections 2 and 3 an isomorphism ιp : C ∼

−→Qac
p . Via ιp, we identify 6∞ with the set of

p-adic embeddings of F via ιp. For each p ∈6p, we put gp := [Fp :Qp] and denote by 6∞/p the subset
of p-adic embeddings that induce p, so that we have

6∞ =
∐
p∈6p

6∞/p.

Since p is unramified in F , the Frobenius, denoted by σ , acts as a cyclic permutation on each 6∞/p.
We fix also a totally indefinite quaternion algebra B over F such that B splits at all places of F above p.

2A. Quaternionic Shimura varieties. Let S be a subset of 6∞ ∪6p of even cardinality, and put S∞ :=
S∩6∞. For each p ∈ 6p, we put Sp := S∩ (6∞/p ∪ {p}) and S∞/p = S∩6∞/p. We suppose that Sp
satisfies the following assumptions.

Assumption 2.1. Take p ∈6p:

(1) If p ∈ S, then gp is odd and Sp =6∞/p ∪ {p}.

(2) If p /∈ S, then S∞/p is a disjoint union of chains of even cardinality under the Frobenius action on
6∞/p, that is, either Sp =6∞/p has even cardinality or there exist τ1, . . . , τr ∈6∞/p and integers
m1, . . . ,mr ≥ 1 such that

Sp =
r∐

i=1

{τi , σ
−1τi , . . . , σ

−2mi+1τi } (2-1)

and στi , σ
−2mi τi 6∈ Sp.

Let BS denote the quaternion algebra over F whose ramification set is the union of S with the
ramification set of B. We put GS := ResF/Q(B×S ). For S = ∅, we usually write G = G∅. Then GS is
isomorphic to G over Fv for every place v /∈ S, and we fix an isomorphism

GS(A
∞,p)∼= G(A∞,p).

Let T be a subset of S∞, and Tp = S∞/p ∩ T for each p ∈ 6p. Throughout this paper, we will always
assume that |Tp| = #Sp/2. Consider the Deligne homomorphism

hS,T : S(R)= C×→ GS(R)∼= GL2(R)
6∞−S∞ × (H×)T× (H×)S∞−T

x +
√
−1y 7→

((
x
−y

y
x

)6∞−S∞
, (x2
+ y2)T, 1S∞−T

)
where H denotes the Hamiltonian algebra over R. Then GS,T := (GS, hS,T) is a Shimura datum, whose
reflex field FS,T is the subfield of the Galois closure of F in C fixed by the subgroup stabilizing both S∞
and T. For instance, if S∞ =∅, then T=∅ and FS =Q. Let ℘ denote the p-adic place of FS,T via the
embedding FS,T ↪→ C ∼

−→Qac
p . By abuse of notation, we will often write G = G∅,∅ in what follows.
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In this article, we fix an open compact subgroup K p =
∏

p∈6p
Kp ⊆ GS(Qp)=

∏
p∈6p

(BS⊗F Fp)
×,

where

• Kp is a hyperspecial subgroup if p /∈ S, and

• Kp =O×Bp
is the unique maximal open compact subgroup of (BS⊗F Fp)

× if p ∈ S.

For a sufficiently small open compact subgroup K p
⊆ G(A∞,p) ∼= GS(A

∞,p), we have the Shimura
variety Sh(GS,T, K p) defined over FS whose C-points are given by

Sh(GS,T, K p)(C)= GS(Q)\(H
±)6∞−S∞ ×GS(A

∞)/K p K p

where K = K p K p ⊆ G(A∞), and H± = P1(C)−P1(R) is the union of upper and lower half-planes.
Note that the scheme Sh(GS,T, K p)Qac over Qac is independent of T, but different choices of T will give
rise to different actions of Gal(Qac/FS,T) on Sh(GS,T, K p)Qac .

When S∞=6∞, the action of 0FS,T :=Gal(Qac/FS,T) on the set Sh(GS,T, K p)(Qac) is given as follows.
Note that the Deligne homomorphism hS,T factors through the center TF = ResF/Q(Gm)⊆ GS, and the
action of 0FS,T factors thus through its maximal abelian quotient 0ab

FS,T
. Let µ : Gm,FS,T → TF ⊗Q FS,T be

the Hodge cocharacter (defined over the reflex field FS,T) associated with hS,T. Let Art : A
∞,×
FS,T
→ 0ab

FS,T

denote the Artin reciprocity map that sends uniformizers to geometric Frobenii. Then the action of Art(g)
on Sh(GS,T, K p)(Qac) is given by the multiplication by the image of g under the composite map

A
∞,×
FS,T

µ
−−→ TF (A

∞

FS,T
)= (F ⊗Q A∞FS,T

)×
NFS,T/Q
−−−→ A

∞,×
F ⊆ GS(A

∞).

If F̃ denotes the Galois closure of F in C, then the restriction of the action of 0FS,T to 0F̃ depends only
on #T.

We put Sh(GS,T) := lim
←−−K p Sh(GS,T, K p). Let Sh(GS,T)

◦ be the neutral geometric connected component
of Sh(GS,T)⊗FS Qac, that is, the one containing the image of point

(i6∞−S∞, 1) ∈ (H±)6∞−S∞ ×GS(A
∞).

Then Sh(GS,T)
◦
⊗Qac,ιp Qac

p descends to Qur
p , the maximal unramified extension of Qp in Qac

p . Moreover,
by Deligne’s construction [1979], ShK p(GS,T) can be recovered from the connected Shimura variety
Sh(GS,T)

◦ together with its Galois and Hecke actions (see [Tian and Xiao 2016, 2.11] for details in our
particular case).

2B. An auxiliary CM extension. Choose a CM extension E/F such that

• E/F is inert at every place of F where B is ramified,

• for p ∈6p, E/F is split (resp. inert) at p if gp is even (resp. if gp is odd).

Let 6E,∞ denote the set of complex embeddings of E , identified also with the set of p-embeddings of E
by composing with ιp. For τ̃ ∈6E,∞, we denote by τ̃ c the complex conjugation of τ̃ . For p ∈6p, we
denote by 6E,∞/p the subset of p-adic embeddings of E inducing p. Similarly, for a p-adic place q of E ,
we have the subset 6E,∞/q ⊆6E,∞ consisting of p-adic embeddings that induce q.
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Assumption 2.2. Consider a subset S̃∞ ⊆6E,∞ satisfying the following:

(1) For each p ∈6p, the natural restriction map 6E,∞/p→6∞/p induces a bijection S̃∞/p ∼−→ S∞/p,
where S̃∞/p = S̃∞ ∩6E,∞/p.

(2) For each p-adic place q of E above a p-adic place p of F , the cardinality of S̃∞/q is half of the
cardinality of the preimage of S∞/p in 6E,∞/q.

For instance, if p splits in E into two places q and qc and Sp is given by (2-1), then the subset

S̃∞/p =
r∐

i=1

{τ̃i , σ
−1τ̃ c

i , . . . , σ
−2mi+2τ̃i , σ

−2mi+1τ̃ c
i }

satisfies the requirement. Here, τ̃i ∈6E,∞/p denotes the lift of τi inducing the p-adic place q. The choice
of such a S̃∞ determines a collection of numbers sτ̃ ∈ {0, 1, 2} for τ̃ ∈6E,∞ by the following rules:

sτ̃ =


0 if τ̃ ∈ S̃∞,
2 if τ̃ c

∈ S̃∞,
1 otherwise.

Our assumption on S̃∞ implies that, for every prime q of E above p, the set {τ̃ ∈6E,∞/q | sτ̃ = 0} has
the same cardinality as {τ̃ ∈6E,∞/q | sτ̃ = 2}.

Put S̃ := (S, S̃∞) and TE := ResE/Q(Gm). Consider the Deligne homomorphism

hE,S̃,T : S(R)= C×→ TE(R)=
∏
τ∈6∞

(E ⊗F,τ R)× ∼= (C
×)S∞−T

× (C×)T× (C×)S
c
∞

z = x +
√
−1y 7→ ((z, . . . , z), (z−1, . . . , z−1), (1, . . . , 1)).

where, for each τ ∈ S∞, we identify E ⊗τ,F R with C via the embedding τ̃ : E ↪→ C with τ̃ ∈ S̃∞
lifting τ . We write TE,S̃,T = (TE , hE,S̃,T) and put KE,p := (OE ⊗Zp)

×
⊆ TE(Qp), the unique maximal

open compact subgroup of TE(Qp). For each open compact subgroup K p
E ⊆ TE(A

∞,p), we have the
zero-dimensional Shimura variety Sh(TE,S̃,T, KE) whose Qac-points are given by

Sh(TE,S̃,T, KE)(Q
ac)= E×\TE(A

∞)/K p
E KE,p.

2C. Unitary Shimura varieties. Put TF := ResF/Q(Gm,F ). Then the reduced norm on BS induces a
morphism of Q-algebraic groups

νS : GS→ TF .

Note that the center of GS is isomorphic to TF . Let G ′′
S̃,T

denote the quotient of GS× TE by TF via the
embedding

TF ↪→ GS× TE , z 7→ (z, z−1),

and let G ′
S̃

be the inverse image of Gm ⊆ TF under the norm map

Nm : G ′′S̃ = (GS× TE)/TF → TF , (g, t) 7→ νS(g)NmE/F (t).
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Here, the subscript S̃ is to emphasize that we will take the Deligne homomorphism h′′
S̃
: C×→ G ′′

S̃
(R)

induced by hS,T× hE,S̃,T, which is independent of T. Note that the image of h′′
S̃

lies in G ′
S̃
(R), and we

denote by h′
S̃
: C×→ G ′

S̃
(R) the induced map.

As for the quaternionic case, we fix the level at p of the Shimura varieties for G ′′
S̃

and G ′
S̃

as follows.
Let K ′′p ⊆ G ′′

S̃
(Qp) be the image of K p × KE,p, and put K ′p := K ′′p ∩G ′

S̃
(Qp). Note that K ′′p (resp. K ′p)

is not a maximal open compact subgroup of G ′′
S̃
(Qp) (resp. G ′

S̃
(Qp)), if S contains some p-adic place

p ∈6p. For sufficiently small open compact subgroups K ′′p ⊆ G ′′
S̃
(A∞,p) and K ′p ⊆ G ′

S̃
(A∞,p), we get

Shimura varieties with C-points given by

Sh(G ′′S̃, K ′′p)(C)= G ′′S̃(Q)\(H
±)6∞−S∞ ×G ′′S̃(A

∞)/K ′′p K ′′p,

Sh(G ′S̃, K ′p)(C)= G ′S̃(Q)\(H
±)6∞−S∞ ×G ′S̃(A

∞)/K ′p K ′p.

We put
Sh(G ′′S̃) := lim

←−−
K ′′p

Sh(G ′′S̃, K ′′p), Sh(G ′S̃)= lim
←−−
K ′p

Sh(G ′S̃, K ′p).

The common reflex field ES̃ of Sh(G ′
S̃
) and Sh(G ′′

S̃
) is a subfield of the Galois closure of E in C. The

isomorphism ιp : C ∼
−→Qac

p defines a p-adic embedding of ES̃ ↪→Qac
p , hence a p-adic place ℘̃ of ES̃. Then

ES̃ is unramified at ℘̃. Let Sh(G ′′
S̃
)◦ (resp. Sh(G ′

S̃
)◦) denote the neutral geometric connected component

of Sh(G ′′
S̃
)⊗ES̃

Qac (resp. Sh(G ′
S̃
)⊗ES̃

Qac). Then both Sh(G ′′
S̃
)◦⊗Qac,ιp Qac

p and Sh(G ′
S̃
)◦⊗Qac,ιp Qac

p can
be descended to Qur

p .
In summary, we have a diagram of morphisms of algebraic groups

GS← GS× TE → G ′′S̃ = (GS× TE)/TF ← G ′S̃

compatible with Deligne homomorphisms, such that the induced morphisms on the derived and adjoint
groups are isomorphisms. By Deligne’s theory of connected Shimura varieties (see [Tian and Xiao
2016, Corollary 2.17]), such a diagram induces canonical isomorphisms between the neutral geometric
connected components of the associated Shimura varieties:

Sh(GS,T)
◦ ∼
←− Sh(G ′′S̃)

◦ ∼
−→ Sh(G ′S̃)

◦. (2-2)

Since a Shimura variety can be recovered from its neutral connected component together with its Hecke
and Galois actions, one can transfer integral models of Sh(G ′

S̃
) to integral models of Sh(GS,T) (see [Tian

and Xiao 2016, Corollary 2.17]).

2D. Moduli interpretation for unitary Shimura varieties. Note that Sh(G ′
S̃
, K ′p) is a Shimura variety

of PEL-type. To simplify notation, let O℘̃ be the ring of integers of the completion of ES̃ at ℘̃. We recall
the integral model of Sh(G ′

S̃
, K ′p) over O℘̃ defined in [Tian and Xiao 2016] as follows.

Let K ′p ⊆ G ′
S̃
(A∞,p) be an open compact subgroup such that K ′p K ′p is neat (for PEL-type Shimura

data). We put DS := BS⊗F E , which is isomorphic to Mat2(E) by assumption on E . Denote by b 7→ b
the involution on DS given by the product of the canonical involution on BS and the complex conjugation
on E/F . Write E = F(

√
d) for some totally negative element d ∈ F that is a p-adic unit for every p ∈6p.
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We choose also an element δ ∈ D×S such that δ = δ as in [Tian and Xiao 2016, Lemma 3.8]. Then the
conjugation by δ−1 defines a new involution b 7→ b∗= δ−1bδ. Consider W = DS as a free left DS-module
of rank 1, equipped with an ∗-hermitian alternating pairing

ψ : W ×W →Q, ψ(x, y)= TrE/Q(Tr◦DS/E(
√
dx yδ)), (2-3)

where Tr◦DS/E denotes the reduced trace of DS/E . Then G ′
S̃

can be identified with the unitary similitude
group of (W, ψ).

We choose an order ODS ⊆ DS that is stable under ∗ and maximal at p, and an ODS-lattice L ⊆ W
such that ψ(L , L)⊆ Z and L ⊗Zp is self-dual under ψ . Assume that K ′p is a sufficiently small open
compact subgroup of G ′

S̃
(A∞,p) which stabilizes L ⊗ Ẑ(p).

Consider the moduli problem Sh(G ′
S̃
, K ′p) that associates to each locally noetherian O℘̃-scheme S the

set of isomorphism classes of tuples (A, ι, λ, αK ′p), where:

• A is an abelian scheme over S of dimension 4[F :Q].

• ι : ODS ↪→ EndS(A) is an embedding such that the induced action of ι(b) for b ∈OE on Lie(A/S)
has characteristic polynomial

det(T − ι(b)|Lie(A/S))=
∏

τ̃∈6E,∞

(x − τ̃ (b))2sτ̃ .

• λ : A→ A∨ is a polarization of A such that

– the Rosati involution defined by λ on EndS(A) induces the involution b 7→ b∗ on ODS ,
– if p /∈ S, λ induces an isomorphism of p-divisible groups A[p∞] ∼−→ A∨[p∞], and
– if p ∈ S, then (ker λ)[p∞] is a finite flat group scheme contained in A[p] of rank p4gp and the

cokernel of induced morphism λ∗ : HdR
1 (A/S)→ HdR

1 (A
∨/S) is a locally free module of rank

two over OS ⊗Zp OE/p. Here, HdR
1 (−/S) denotes the relative de Rham homology.

• αK ′p is a K ′p level structure on A, that is, a K ′p-orbit of ODS-linear isomorphisms of étale sheaves
α : L⊗Ẑ(p) ∼−→ T̂ p(A) such that the alternating pairing ψ : L⊗Ẑ(p)×L⊗Ẑ(p)→ Ẑ(p) is compatible
with the λ-Weil pairing on T̂ p(A) via some isomorphism Ẑ(p)∼= Ẑ(p)(1). Here, T̂ p(A)=

∏
l 6=p Tl(A)

denotes the product of prime-to-p Tate modules.

Remark 2.3. Sometimes it is convenient to formulate the moduli problem Sh(G ′
S̃
, K ′p) in terms of isogeny

classes of abelian varieties: one associates to each locally noetherian O℘̃-scheme S the equivalence classes
of tuples (A, ι, λ, αrat

K ′p), where

• (A, ι) is an abelian scheme up to prime-to-p isogeny of dimension 4[F :Q] equipped with an action
ODS satisfying the determinant conditions as above;

• λ is a polarization on A satisfying the condition as above;
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• αrat
K ′p is a rational K ′p-level structure on A, that is, a K ′p-orbit of ODS ⊗A∞,p-linear isomorphisms

of étale sheaves on S:

α : W ⊗Q A∞,p ∼
−→ V̂ p(A) := T̂ p(A)⊗Q

such that the pairing ψ on W ⊗Q A∞,p is compatible with the λ-Weil pairing on V̂ p(A) up to a
scalar in A∞,p,×.

For the equivalence of these two definitions, see [Lan 2013].

Theorem 2.4. The moduli problem Sh(G ′
S̃
, K ′p) is representable by a quasiprojective and smooth scheme

Sh(G ′
S̃
, K ′p) over O℘̃ such that

Sh(G ′S̃, K ′p)⊗O℘̃
ES̃,℘̃
∼= Sh(G ′S̃, K ′p)⊗ES̃

ES̃,℘̃ .

Moreover, the projective limit Sh(G ′
S̃
) := lim

←−−K ′p Sh(G ′
S̃
, K ′p) is an integral canonical model of Sh(G ′

S̃
)

over O℘̃ in the sense that Sh(G ′
S̃
) satisfies the following extension property over O℘̃ : if S is a smooth

scheme over O℘̃ , any morphism S⊗O℘̃
ES̃,℘̃→ Sh(G ′

S̃
) extends uniquely to a morphism S→ Sh(G ′

S̃
).

Proof. This follows from [Tian and Xiao 2016, 3.14, 3.19]. �

Let Zur
p be the ring of integers of Qur

p . The closure of Sh(G ′
S̃
)◦ in Sh(G ′

S̃
)⊗O℘̃

Zur
p , denote by Sh(G ′

S̃
)◦Zur

p
,

is a smooth integral canonical model of Sh(G ′
S̃
)◦ over Zur

p . By (2-2), this can also be regarded as an
integral canonical model of Sh(GS,T)

◦ over Zur
p . This induces a smooth integral canonical model Sh(GS,T)

of Sh(GS,T) over OFS,T,℘ by Deligne’s recipe (see [Tian and Xiao 2016, Corollary 2.17]). For any open
compact subgroup K p

⊆ GS(A
∞,p), we define Sh(GS,T, K p) as the quotient of Sh(GS,T) by K p. If K p

is sufficiently small, then Sh(GS,T, K p) is a quasiprojective smooth scheme over OFS,T,℘ , and it is an
integral model for Sh(GS,T, K p).

2E. Moduli interpretation for totally indefinite quaternionic Shimura varieties. When S = ∅, then
T=∅ and the Shimura variety Sh(G, K p) := Sh(G∅,∅, K p) has another moduli interpretation in terms of
abelian varieties with real multiplication by OB . Using this moduli interpretation, one can also construct
another integral model of Sh(G, K p). The aim of this part is to compare this integral canonical model of
Sh(G, K p) with Sh(G, K p) constructed in the previous subsection using unitary Shimura varieties.

We choose an element γ ∈ B× such that

• γ =−γ ;

• b 7→ b∗ := γ−1bγ is a positive involution;

• ν(γ ) is a p-adic unit for every p-adic place p of F , where ν : B×→ F× is the reduced norm map.

Put V := B viewed as a free left B-module of rank 1, and consider the alternating pairing

〈 · , · 〉F : V × V → F, 〈x, y〉F = Tr◦B/F (x yγ ),
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where Tr◦B/F is the reduced trace of B. Note that 〈bx, y〉F = 〈x, b∗y〉F for x, y ∈ V and b ∈ B. We let
G = B× act on V via g · v = vg−1 for g ∈ G and v ∈ V . One has an isomorphism

G ∼= AutB(V ).

Fix an order OB ⊆ B such that

• OB contains OF , and it is stable under ∗;

• OB ⊗Zp is a maximal order of B⊗Q Qp ∼= GL2(F ⊗Q Qp).

Let K p
⊆ G(A∞,p) be an open compact subgroup. Consider the moduli problem Sh(G, K p) that

associates to every Z(p)-scheme T the equivalence classes of tuples (A, ι, λ, αK p) where

• A is a projective abelian scheme over T up to prime-to-p isogeny;

• ι is a real multiplication by OB on A, that is, a ring homomorphism ι : OB→ End(A) satisfying

det(T − ι(b)|Lie(A))= NF/Q(N◦B/F (T − b)), b ∈OB,

where N◦B/F is the reduced norm of B/F ;

• λ is an F p,×
+ -orbit of OF -linear prime-to-p polarizations λ : A→ A∨ such that ι(b)∨ ◦λ= λ ◦ ι(b∗)

for all b ∈OB , where F p,×
+ ⊆ F× is the subgroup of totally positive elements that are p-adic units

for all p ∈6p;

• αK p is a K p-level structure on (A, ι), that is, αK p is a K p-orbit of B⊗Q A∞,p-linear isomorphisms
of étale sheaves on T :

α : V ⊗Q A∞,p ∼
−→ V̂ p(A).

Remark 2.5. By [Zink 1982, Lemma 3.8], there exists exactly one F p,×
+ orbit of prime-to-p polarizations

on A that induces the given positive involution ∗ on B. Hence, one may omit λ from the definition of the
moduli problem Sh(G, K p). This is the point of view in [Liu 2019]. Here, we choose to keep λ in order
to compare it with unitary Shimura varieties.

By [Zink 1982, page 27], one has a bijection

Sh(G, K p)(C)∼= G(Q)\(H±)6∞ ×G(A∞)/K p K p = Sh(G, K p)(C).

Note that an object (A, ι, λ, αK p) ∈ Sh(G, K p)(T ) admits automorphisms O×F ∩ K p, which is always
nontrivial if F 6= Q. Here, O×F is considered as a subgroup of G(A∞,p) via the diagonal embedding.
Thus, the moduli problem Sh(G, K p) can not be representable. However, Zink shows [1982, Satz 1.7]
that Sh(G, K p) admits a coarse moduli space Sh(G, K p), which is a projective scheme over Z(p). This
gives an integral model of the Shimura variety Sh(G, K p) over Z(p).

We recall briefly Zink’s construction of Sh(G, K p). Take (A, ι, λ, αK p) ∈ Sh(G, K p)(T ) for some
Z(p)-scheme T . Choose a polarization λ∈ λ, and an isomorphism α ∈ αK p . Then λ induces a Weil pairing

9̂λ
: V̂ p(A)× V̂ p(A)→ A∞,p(1),
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and there exists a unique F-linear alternating pairing

9̂λ
F : V̂ p(A)× V̂ p(A)→ A

∞,p
F (1)

such that 9̂λ
= TrF/Q ◦9̂

λ
F . We fix an isomorphism Z∼= Z(1), and view 〈 · , · 〉 as a pairing with values

in F(1). Then by [Zink 1982, 1.2], there exists an element c ∈ A
∞,p,×
F such that

9̂λ
F (α(x), α(y))= c〈x, y〉F , x, y ∈ V ⊗Q A∞,p.

The class of c in A
∞,p,×
F /ν(K p), denoted by c(A, ι, λ, αK p), is independent of the choice of α ∈ αK p . If

F×+ ⊆ F× is the subgroup of totally positive elements, then the image of c(A, ι, λ, αK p) in

A
∞,p,×
F /F p,×

+ ν(K p)∼= A
∞,×
F /F×

+
ν(K )

is independent of the choices of both λ and α.
We choose representatives c1, . . . , cr ∈A

∞,p,×
F /ν(K p) of the finite quotient A

∞,p,×
F /F p,×

+ ν(K p), and
consider the moduli problem S̃h(G, K p) that associates to every Zp-scheme T equivalence classes of
tuple (A, ι, λ, αK p), where

• (A, ι) is an abelian scheme over T up to prime-to-p isogeny equipped with real multiplication by OB ;

• λ : A→ A∨ is a prime-to-p polarization such that ι(b)∨ ◦ λ= λ ◦ ι(b∗) for all b ∈OB ;

• αK p is a K p-level structure on A such that c(A, ι, λ, αK p)= ci for some i = 1, . . . , r .

To study the representability of S̃h(G, K p), we need the following notion of neat subgroups.

Definition 2.6. Let R be the ramification set of B. For every gv ∈ (B⊗F Fv)× with v /∈ R, let 0gv denote
the subgroup of Fac,×

v generated by the eigenvalues of gv. Choose an embedding Qac ↪→ Fac
v . Then

(0gv ∩Qac)tor is the subgroup of 0gv consisting of roots of unity, and it is independent of the embedding
Qac ↪→ Fac

v .
Let � be a finite set of places of Q containing the archimedean place, and let �F be the set of places

of F above �. An element g ∈ G(A�) = (B ⊗Q A�)× is called neat if
⋂
v∈�F−R(0gv ∩Qac)tor

= {1}.
We say a subgroup U ⊆ G(A�) is neat if every element g = gRgR ∈ U with ν(gR) = 1 is neat. Here,
gR
∈ (B⊗F A

�F∪R
F )× (resp. gR ∈

∏
v∈R−�F

(B⊗F Fv)×) is the prime-to-R component (resp. R-component)
of g.

Assume from now on that K p
⊆ G(A∞,p) is neat. It is easy to see that each object of S̃h(G, K p)

has no nontrivial automorphisms. By a well-known result of Mumford, S̃h(G, K p) is representable by a
quasiprojective smooth scheme S̃h(G, K p) over Z(p). If B is a division algebra, then S̃h(G, K p) is even
projective over Z(p) (see [Zink 1982, Lemma 1.8]).

Let O×F,+ be the group of totally positive units of F . There is a natural action by O×F,+ ∩ ν(K
p) on

S̃h(G, K p) given by ξ · (A, ι, λ, αK p)= (A, ι, ξ · λ, αK p) for ξ ∈ O×F,+, and the quotient is the moduli
problem Sh(G, K p). Note that the subgroup (O×F ∩ K p)2 acts trivially on S̃h(G, K p). Here, O×F is
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considered as a subgroup in the center of G(A∞,p). Indeed, if ξ = η2 with η ∈ O×F ∩ K p, then the
multiplication by η on A defines an isomorphism (A, ι, λ, αK p) ∼−→ (A, ι, ξ · λ, αK p). Put

1K p := (O×F,+ ∩ ν(K
p))/(O×F ∩ K p)2.

Proposition 2.7. Assume that K p is neat. Let (A, ι, λ, αK p) be a T -valued point of Sh(G, K p). Then
the group of automorphisms of (A, ι, λ, αK p) is O×F ∩ K p. Here, O×F is viewed as a subgroup of G(A∞,p)
via the diagonal embedding.

Proof. This is a slight generalization of [Zink 1982, Korollar 3.3]. Take η ∈ EndOB (A)Q that preserves λ
and αK p . Then there exists ξ ∈ F+× such that ηη̂= ξ , where η̂ is the Rosati involution of η induced by λ.
By [Zink 1982, Satz 3.2], it is enough to show that η̂= η. Choose α ∈ αK p , which induces an embedding

(EndOB (A)⊗Q)×→ (EndB(V )⊗Q A∞,p)× ∼= G(A∞,p).

Then the image of η under this embedding lies in K p. Consider the endomorphism η2ξ−1
∈EndOB (A)⊗Q.

Its image in G(A∞,p) lies in K p and has reduced norm equal to 1. Since K p is neat, all the eigenvalues
of η2ξ−1 are 1. So η2ξ−1 must be trivial, hence η = η̂. �

Corollary 2.8. Assume that K p is neat. Then the action of 1K p on S̃h(G, K p) is free.

Proof. The same argument for [Zink 1982, Korollar 3.4] shows that it follows from the above proposition.
�

We put

Sh(G, K p) := S̃h(G, K p)/1K p , (2-4)

which exists as a quasiprojective smooth scheme over Z(p) by [SGA 1 2003, Exposé VIII, Corollaire 7.7].
Then Sh(G, K p) is the coarse moduli space of the moduli problem Sh(G, K p), and S̃h(G, K p) is a finite
étale cover of Sh(G, K p) with Galois group 1K p . For each i = 1, . . . , r , we denote by S̃hci

(G, K p)

the subscheme of S̃h(G, K p) consisting the tuples (A, ι, λ, αK p) with c(A, ι, λ, αK p) = ci . It is clear
that each S̃hci

(G, K p) is stable under the action of 1K p . Let Shci (G, K p)⊆ Sh(G, K p) be the image of
S̃hci

(G, K p) under the morphism (2-4). Note that each Shci (G, K p) is not necessarily defined over Z(p).
Actually, using the strong approximation theorem, one sees easily that Shci (G, K p)(C) is a connected
component of Sh(G, K p)(C).

Remark 2.9. Assume that K p is neat:

(1) Let (Ã, ι̃) be the universal abelian scheme with real multiplication by OB over S̃h(G, K p). Then Ã
is equipped with a natural descent data relative to the projection S̃h(G, K p)→ Sh(G, K p), since
the action of 1K p modifies only the polarization. By [SGA 1 2003, Exposé VIII, Corollaire 7.7], the
descent data on Ã is effective. This means that, even though Sh(G, K p) is not a fine moduli space,
there exists still a universal family A over Sh(G, K p). Moreover, by étale descent, ι̃ descends to a
real multiplication ι by OB on the universal family A over Sh(G, K p).
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(2) In general, 1K p is nontrivial. However, for any open compact subgroup K p
⊆G(A∞,p), there exists

a smaller open compact subgroup K ′p ⊆ K p such that 1K ′p is trivial.

We give an interpretation of S̃h(G, K p) in terms of Shimura varieties. Let G?
⊆ G be the preimage

of Gm,Q ⊆ TF = ResF/Q(Gm,F ) via the reduced norm map ν : G→ TF . The Deligne homomorphism
h∅ : S(R)= C×→ G(R) factors through G?(R), hence induces a map

hG? : S(R)→ G?(R).

We put K ?
p := G?(Qp)∩ K p, which will be the fixed level at p for Shimura varieties attached to G?. For

a sufficiently small open compact subgroup K ?p
⊆ G?(A∞,p), we have the associated Shimura variety

Sh(G?, K ?p) defined over Q, whose C-points are given by

Sh(G?, K ?p)(C)= G?(Q)\((H±)6∞ ×G?(A∞)/K ?p K ?
p).

Put Sh(G?) := lim
←−−K ?p Sh(G?, K ?p) as usual.

There is a natural action of A∞,p,× on A
∞,p,×
F /F p,×

+ ν(K p) by multiplication. Let c1, . . . , ch denote
the equivalence classes modulo F p,×

+ A∞,p,× of the chosen set {c1, . . . , cr } ⊆ A
∞,p,×
F /ν(K p). We may

and do assume that all the ci ’s in one equivalence class differ from each other by elements in A∞,p,×.
For each c ∈ {c1, . . . , ch}, we put

S̃hc
(G, K p) :=

∐
ci∈c

S̃hci
(G, K p)

and similarly Shc(G, K p)=
∐

ci∈c
Shci (G, K p).

Proposition 2.10. Suppose that K p
⊆ G(A∞,p) is a neat open compact subgroup. For every c ∈

{c1, . . . , ch}, there exists an element g p
∈ G(A∞,p) such that if K ?,p

c := G?
∩ g p K pg p,−1, then we have

an isomorphism of schemes over Q

S̃hc
(G, K p)⊗Z(p) Q ∼

−→ Sh(G?, K ?,p
c ).

Proof. Let X ∼= (H±)6∞ denote the set of conjugacy classes of hG? : S(R)→ G?(R). We fix a base
point (A0, ι0, λ0, αK p,0) ∈ S̃hc

(G, K p)(C). Put VQ(A0) := H1(A0(C),Q). We fix an isomorphism
η0 : VQ(A0)

∼
−→ V of left B-modules and a choice of α0 ∈ αK p . Then the composite map

(η0⊗ 1) ◦α0 : V ⊗Q A∞,p→ V̂ p(A0)∼= VQ(A0)⊗Q A∞,p→ V ⊗Q A∞,p

defines an element g p
∈ G(A∞,p). Now let (A, ι, λ, αK p) ∈ S̃hci

(G, K p)(C) be another point. There
exists also an isomorphism η : VQ(A) ∼−→ V as B-modules, and the Hodge structure on VQ(A)⊗Q R=

H1(A(C),R) defines an element x∞ ∈ X . By the definition of Shc(G, K p), there exists an element
α ∈ αK p such that the isomorphism

h p
:= (η⊗ 1) ◦α ◦α−1

0 (η0⊗ 1)−1
∈ G(A∞,p)
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preserves the alternating pairing 〈 · , · 〉F on V ⊗Q A∞,p up to a scalar in A∞,p,×. Such an element α is
unique up to right multiplication by elements in K p, and it follows that h p is well defined up to right
multiplication by elements of K ?,p

c := g p K pg p,−1
∩G?(A∞,p). Viewing h p as an element of G?(A∞)

with p-component equal to 1, then (A, ι, λ, αK p) 7→ [x∞, h p
] defines a map

f : S̃hc
(G, K p)(C)→ Sh(G?, K ?,p)(C)∼= G?(Q)\(X ×G?(A∞)/K ?,p

c K ?
p).

By the complex uniformization of abelian varieties, it is easy to see that f is bijective, and f descends to
an isomorphism of schemes over Q by the theory of canonical models. �

Remark 2.11. In general, there is no canonical choice for g p in the above proposition. Different choices
of g p will result in different K ?,p

c , which are conjugate to each other in G?(A∞,p). Consequently,
the corresponding Sh(G?, K ?,p

c ) are isomorphic to each other by the Hecke action of some elements
in G?(A∞,p). However, if c = ctri is the trivial equivalence class, g p has a canonical choice, namely
g p
= 1. In the sequel, we will always take g p

= 1 if c= ctri. Applying Proposition 2.10 to this case, one
obtains a moduli interpretation of Sh(G?, K ?,p) as well as an integral model Sh(G?, K ?,p) over Z(p) of
Sh(G?, K ?,p). Explicitly, the integral model Sh(G?, K ?,p) parametrizes equivalence classes of tuples
(A, ι, λ, αK ?,p), where (A, ι, λ) is the same data as in S̃h(G, K p), and αK ?,p is a K ?,p-level structure on
A, that is, an K ?,p-orbit of isomorphisms α : V ⊗A∞,p ∼

−→ V̂ p(A) such that 〈 · , · 〉F is compatible with
9̂λ

F up to a scalar in A∞,p,×.

Example 2.12. Fix a lattice 3⊆ V stable under OB such that 〈3,3〉F ⊆ d−1
F , where dF is the different

of F/Q, and that 3⊗Zp is self-dual under 〈 · , · 〉F .
Let M,N be two ideals of OF such that they are mutually coprime, both prime to p and the ramification

set R of B, and that N is contained in NOF for some integer N ≥ 4. Let K0,1(M,N)p be a subgroup
of γ ∈ G(A∞,p) such that there exists v ∈3 with γ v ∈ (OFv+M3)∩ (v+N3); put K0,1(M,N) :=

K0,1(M,N)p K p. Then K0,1(M,N)p is neat and ν(K0,1(M,N))= Ô×F . We have thus isomorphisms

A
∞,p,×
F /F p,×

+ ν(K0,1(M,N)p)∼= A
∞,×
F /F×

+
Ô×F ∼= Cl+(F),

where Cl+(F) is the strict ideal class group of F ; and the action of A∞,× on Cl+(F) is trivial. We
choose prime-to-p fractional ideals c1, . . . , ch that form a set of representatives of Cl+(F). Then for each
c ∈ {c1, . . . , ch}, the moduli scheme S̃hc

(G, K0,1(M,N)p) classifies tuples (A, ι, λ,CM, αN), where

• (A, ι) is a projective abelian scheme equipped with real multiplication by OB ;

• λ : A→ A∨ is an OF -linear polarization such that ι(b)∨ ◦λ= λ ◦ ι(b∗) for b ∈OB , and the induced
map of abelian fppf-sheaves

A∨ ∼
−→ A⊗OF c

is an isomorphism;

• CM is a finite flat subgroup scheme of A[M] that is OB-cyclic of order (NmM)2;
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• αN : (OF/N)
⊕2 ↪→ A[N] is an embedding of finite étale group schemes equivariant under the action

of OB ⊗OF OF/N∼= GL2(OF/N).

Let g p
c ∈ G(A∞,p) be such that the fractional ideal attached to the idèle ν(g p

c ) ∈ A
∞,p,×
F represents

the strict ideal class c. Put

K ?,p
ci
:= g p

c K0,1(M,N)pg p,−1
c ∩G?(A∞,p).

Then we have

S̃hc
(G, K0,1(M,N)p)⊗Q∼= Sh(G?, K ?,p

ci
).

More explicitly, if 0c
0,1(M,N) := G?(Q)+ ∩ K ?,p

c , where G?(Q)+ ⊆ G?(Q) is the subgroup of elements
with totally positive reduced norms, then

S̃hc
(G, K0,1(M,N)p)(C)∼= Sh(G?, K ?,p

c )(C)∼= 0
c
0,1(M,N)\(H+)6∞ .

In particular, S̃hc
(G, K0,1(M,N)p)⊗Q is geometrically connected for every c. In this case, one has

1K0,1(M,N)p =O×F,+/O
×,2
F,N, where O×F,N denotes the subgroup of ξ ∈O×F with ξ ≡ 1 mod N. It is clear

that the action of 1K0,1(M,N)p preserves S̃hc
(G, K0,1(M,N)p), and one obtains an isomorphism

Sh(G, K0,1(M,N)p)∼=

h∐
i=1

Shci (G, K0,1(M,N)p)

with Shci (G, K0,1(M,N)p) = S̃hci
(G, K0,1(M,N)p)/1K0,1(M,N)p . Since 1K0,1(M,N)p acts freely on

S̃h(G, K0,1(M,N)p), each Shci (G, K0,1(M,N)p) is a smooth quasiprojective scheme over Z(p).

2F. Comparison of quaternionic and unitary moduli problems. We now compare the integral model
Sh(G, K p) defined in (2-4) and the one constructed using the unitary Shimura variety Sh(G ′

S̃
, K ′p)

with S = ∅. Note that when S = ∅, there is only one choice for S̃, so we write simply G ′ for G ′
S̃
. By

the universal extension property of Sh(G) := lim
←−−K p Sh(G, K p), these two integral canonical models

are necessarily isomorphic. However, for later applications to the supersingular locus of Sh(G, K p)Fp ,
one needs a more explicit comparison between the universal family of abelian varieties over Sh(G) (as
in Remark 2.9(1)) with that over Sh(G ′). It suffices to compare the universal objects over the neutral
connected components via the isomorphism

Sh(G)◦Zur
p

∼
−→ Sh(G ′)◦Zur

p

induced by (2-2). Here, Sh(G)◦Zur
p

is defined similarly as Sh(G ′)◦Zur
p
; in other words, it is the closure of

Sh(G)◦ in Sh(G)⊗Zur
p .

The natural inclusion G? ↪→ G induces also an isomorphism of derived and adjoint groups, and is
compatible with Deligne homomorphisms. By Deligne’s theory of connected Shimura varieties, it induces
an isomorphism of neutral connected components Sh(G?)◦ ∼= Sh(G)◦. Therefore, we are reduced to
comparing the universal family over Sh(G?) and Sh(G ′).
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Recall that we have chosen an element γ ∈ B× to define the pairing 〈 · , · 〉F on V = B. We take the
symmetric element δ ∈ D×S in Section 2D to be δ = γ /(2

√
d). One has W = V ⊗F E , and

ψ(x ⊗ 1, y⊗ 1)= 〈x, y〉

for any x, y ∈ V . Put 〈 · , · 〉 := TrF/Q ◦〈 · , · 〉F . Then G? (resp. G ′) can be viewed as the similitude group
of (V, 〈 · , · 〉) (resp. (W, ψ) (2-3)); and there exists a natural injection G? ↪→ G compatible with Deligne
homomorphisms that induces isomorphisms on the associated derived and adjoint groups.

We take OD∅ =OB ⊗OF OE . Let K ?p
⊆ G?(A∞,p) and K ′p ⊆ G ′(A∞,p) be sufficiently small open

compact subgroups with K ?p
⊆ K ′p. To each point (A, ι, λ, αK ?,p) of Sh(G?, K ?,p) with values in a

Zp-scheme S, we attach the tuple (A′, ι′, λ′, αrat
K ′p), where

• A′ = A⊗OF OE ;

• ι′ : OD∅→ EndS(A′) is the action induced by ι;

• λ′ : A′→ A′∨ is the prime-to-p polarization given by

A′ = A⊗OF OE
λ⊗1
−−→ A∨⊗OF OE

1⊗i
−−→ A∨⊗OF d

−1
E/F
∼= A′∨,

where d−1
E/F is the inverse of the relative different of E/F and i : OE→ d−1

E/F is the natural inclusion;

• αrat
K ′p is a rational K ′p-level structure on A′ induced by αK ?,p by the compatibility of alternating

forms (V, 〈 · , · 〉) and (W, ψ). Here, we use the moduli interpretation of Sh(G ′, K ′p) in terms of
isogeny classes of abelian varieties (See Remark 2.3).

This defines a morphism
Sh(G?, K ?p)→ Sh(G ′, K ′p)

over Zp extending the morphism Sh(G?, K ′?p)⊗Q Qp → Sh(G ′, K ′p)⊗Q Qp. Taking the projective
limit on the prime-to-p levels, one gets a morphism of schemes over Zp

f : Sh(G?)→ Sh(G ′)

such that one has an isomorphism of abelian schemes

f ∗A′ ∼=A⊗OF OE ,

where A (resp. A′) is the universal abelian scheme over Sh(G?) (resp. over Sh(G ′
S̃
)). By the extension

property of the integral canonical model, the map f induces an isomorphism

f ◦ : Sh(G?)◦ ∼−→ Sh(G ′)◦

which extends the isomorphism Sh(G?)◦ ∼−→ Sh(G ′)◦ induced by the morphism of Shimura data on the
generic fibers. Thus the two universal families over Sh(G)◦ induced from Sh(G?) and Sh(G ′) respectively
are related by the relation

f ◦,∗(A′|Sh(G ′)◦)∼=A|Sh(G)◦ ⊗OF OE . (2-5)
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3. Goren–Oort cycles and supersingular locus

In this section, we study the supersingular locus and the superspecial locus of certain Shimura varieties
established in the previous section.

3A. Notation and conventions. Let k be a perfect field containing all the residue fields of the auxiliary
field E in Section 2B at p-adic places, and W (k) be the ring of Witt vectors. Then 6E,∞ is in natural
bijection with HomZ(OE ,W (k)), and we have a canonical decomposition

ODS ⊗Z W (k)∼=Mat2(OE ⊗Z W (k))=
⊕

τ̃∈6E,∞

M(W (k)).

Let S be a W (k)-scheme, and N a coherent OS ⊗ODS-module. Then one has a canonical decomposition

N =
⊕

τ̃∈6E,∞

Nτ̃ ,

where Nτ̃ is a left Mat2(OS)-module on which OE acts via the composite map OE
τ̃
−→W (k)→OS . We

also denote by N ◦
τ̃

the direct summand e · Nτ̃ with e =
(1

0
0
0

)
∈Mat2(OS), and we call M◦

τ̃
the reduced

τ̃ -component of M .
Let G be a p-divisible group over a k-scheme S. We say that G is supersingular if, for every geometric

point s of S, the Newton polygon of G ×S s has only slope 1
2 . An abelian variety A over S is called

supersingular if A[p∞] is a supersingular p-divisible group over S, or equivalently for every geometric
point s of S, A×S s is isogenous to a product of supersingular elliptic curves.

Consider a quaternionic Shimura variety Sh(GS,T, K p) of type considered in Section 2A, and let
Sh(G ′

S̃
, K ′p) be the associated unitary Shimura variety over O℘̃ as constructed in Section 2D for a certain

choice of auxiliary CM extension E/F . Let k0 be the smallest subfield of Fac
p containing all the residue

fields of characteristic p of E . Then we have k0 ∼= Fph with h equal to the least common multiple of
{(1+ gp− 2bgp/2c)gp | p ∈6p}. Put

Sh(G ′S̃, K ′p)k0 := Sh(G ′S̃, K ′p)⊗O℘̃
k0.

The universal abelian scheme over Sh(G ′
S̃
, K ′p)k0 is usually denoted by A′

S̃
.

3B. Hasse invariants. We recall first the definition of essential invariant on Sh(G ′
S̃
, K ′p)k0 defined in

[Tian and Xiao 2016, Section 4.4]. Let (A, ι, λ, αK ′p) be an S-valued point of Sh(G ′
S̃
, K ′p)k0 for some

k0-scheme S. Recall that HdR
1 (A/S) is the relative de Rham homology of A. Let ωA∨ be the module of

invariant differential 1-forms on A∨. Then for each τ̃ ∈6E,∞, HdR
1 (A/S)◦

τ̃
is a locally free OS-module

on S of rank 2, and one has a Hodge filtration

0→ ω◦A∨,τ̃ → HdR
1 (A/S)◦τ̃ → Lie(A/S)◦τ̃ → 0.

We defined, for each τ̃ ∈6E,∞, the essential Verschiebung

Ves,τ̃ : HdR
1 (A/S)◦τ̃ → HdR

1 (A
(p)/S)◦τ̃ ∼= HdR

1 (A/S)◦,(p)
σ−1τ̃

,
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to be the usual Verschiebung map if sσ−1τ̃ = 0 or 1, and to be the inverse of Frobenius if sτ̃ = 2. This is
possible since for sτ̃ = 2, the Frobenius map F : HdR

1 (A
(p)/S)◦

τ̃
→ HdR

1 (A/S)◦
τ̃

is an isomorphism. For
every integer n ≥ 1, we denote by

V n
es : HdR

1 (A/S)◦τ̃ → HdR
1 (A

(pn)/S)◦τ̃ ∼= HdR
1 (A/S)◦,(p

n)

σ−n τ̃

the n-th iteration of the essential Verschiebung.
Similarly, if S = Spec k is the spectrum of a perfect field k containing k0, then one can define the

essential Verschiebung
Ves : D̃(A)◦τ̃ → D̃(A)◦

σ−1τ̃
for all τ̃ ∈6E,∞,

as the usual Verschiebung on Dieudonné modules if sτ̃ = 0, 1 and as the inverse of the usual Frobenius if
sτ̃ = 2. Here, D̃(A) denote the covariant Dieudonné module of A[p∞]. This is a σ−1-semilinear map of
W (k)-modules. For any integer n ≥ 1, we denote also by

V n
es : D̃(A)

◦

τ̃ → D̃(A)◦σ−n τ̃

the n-th iteration of the essential Verschiebung.
Now return to a general base S over k0. For τ ∈6∞− S∞, let nτ = nτ (S) denote the smallest integer

n ≥ 1 such that σ−nτ ∈6∞− S∞. Assumption 2.1 implies that nτ is odd. Then for each τ̃ ∈6E,∞ with
sτ̃ = 1, or equivalently each τ̃ ∈6E,∞ lifting some τ ∈6∞− S∞, the restriction of V nτ

es to ω◦A∨,τ̃ defines
a map

h τ̃ (A) : ω◦A∨,τ̃ → ω
◦,(pnτ )

A∨,σ−nτ τ̃
∼= (ω

◦

A∨,σ−nτ τ̃ )
⊗pnτ

.

Applying this construction to the universal object, one gets a global section

h τ̃ ∈ 0(Sh(G ′S̃, K ′p)k0, (ω
◦

A′∨
S̃
,σ−nτ τ̃

)⊗pnτ
⊗ (ω◦A′∨

S̃
,τ̃
)⊗−1). (3-1)

called the τ -th partial Hasse invariant.

Proposition 3.1. Let x = (A, ι, λ, αK ′p) be an Fac
p -point of Sh(G ′

S̃
, K ′p)k0 , and p a p-adic place of F

such that S∞/p 6= 6∞/p. Assume that h τ̃ (A) 6= 0 for all τ̃ ∈ 6E,∞/p with sτ̃ = 1. Then the p-divisible
group A[p∞] is not supersingular.

Proof. The covariant Dieudonné module D̃(A) of A[p∞] is a free W (Fac
p )⊗Z ODS-module of rank 1.

Then the covariant Dieudonné module of A[p∞] is given by

D̃(A[p∞])=
⊕

τ̃∈6E,∞/p

D̃(A)◦,⊕2
τ̃

,

and there exists a canonical isomorphism

D̃(A)◦τ̃/pD̃(A)◦τ̃ ∼= HdR
1 (A/F

ac
p )
◦

τ̃ .

By assumption, for all τ̃ ∈6E,∞/p lifting some τ ∈6∞/p− S∞/p, the map

h τ̃ (A) : ω◦A∨,τ̃ → ω
◦,(pnτ )

A∨,σ−nτ τ̃
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is nonvanishing. Thus it is an isomorphism, as both the source and the target are one-dimensional
Fac

p -vector spaces. For each τ̃ ∈6E,∞/p lifting some τ ∈6∞/p− S∞/p, choose a basis eτ̃ for ω◦A∨,τ̃ , and
extend it to a basis (eτ̃ , fτ̃ ) of HdR

1 (A/F
ac
p )
◦

τ̃
. If we consider Ves as a σ−1-linear map on HdR

1 (A/F
ac
p )
◦

τ̃
,

then one has

V nτ
es (eτ̃ , fτ̃ )= (eσ−nτ τ̃ , fσ−nτ τ̃ )

(
u τ̃ 0
0 0

)
with u τ̃ ∈ Fac,×

p .
Let q be a p-adic place of E above p. By our choice of E , gq := [Eq :Qp] is always even no matter

whether p is split or inert in E . To prove the proposition, it suffices to show that the p-divisible group
A[q∞] is not supersingular. By composing the essential Verschiebung maps on all HdR

1 (A/S)◦
τ̃

with
τ̃ ∈6E,∞/q, we get

V gq
es (eτ̃ , fτ̃ )= (eτ̃ , fτ̃ )

(
a τ̃ 0
0 0

)
with a τ̃ ∈ Fac,×

p for all τ̃ ∈ 6E,∞/q with sτ̃ = 1. Now, note that V gq
es on HdR

1 (A/F
ac
p )
◦

τ̃
is nothing but the

reduction modulo p of the σ−gq-linear map

V gq/pm
: D̃(A)◦τ̃ → D̃(A)◦τ̃ ,

where m is the number of τ̃ ∈6E,∞/q with sτ̃ = 2. If (ẽτ̃ , f̃τ̃ ) is a lift of (eτ̃ , fτ̃ ) to a basis of D̃(A)◦
τ̃

over
W (Fac

p ), then V gq/pm on D̃(A)◦
τ̃

is given by

V gq

pm (ẽτ̃ , f̃τ̃ )= (ẽτ̃ , f̃τ̃ )
(

aτ̃ pbτ̃
pcτ̃ pdτ̃

)
for some aτ̃ ∈W (Fac

p )
× lifting a τ̃ and bτ̃ , cτ̃ , dτ̃ ∈W (Fac

p ). Put

L :=
⋂
n≥1

(
V gq

pm

)n

D̃(A)◦τ̃ .

It is easy to see that L is a W (Fac
p )-direct summand of D̃(A)◦

τ̃
of rank one, on which V gp/pm acts

bijectively. It follows that 1−m/gq is a slope of the p-divisible group A[q∞]. By our choice of the sτ̃
in Section 2B, the two sets {τ̃ ∈ 6E,∞/q | sτ̃ = 2} and {τ̃ ∈ 6E,∞/q | sτ̃ = 0} have the same cardinality,
hence 2m < gq, that is, 1−m/gq > 1

2 . Therefore, A[q∞] hence A[p∞], are not supersingular. �

3C. Goren–Oort divisors. For each τ ∈ 6∞ − S∞, let Sh(G ′
S̃
, K ′p)k0,τ be the closed subscheme of

Sh(G ′
S̃
, K ′p)k0 defined by the vanishing of h τ̃ for some τ̃ ∈ 6E,∞ lifting τ . By [Tian and Xiao 2016,

Lemma 4.5], h τ̃ vanishes at a point x of Sh(G ′
S̃
, K ′p)k0 if and only if h τ̃ c vanishes at x . In particular,

Sh(G ′
S̃
, K ′p)k0,τ does not depend on the choice of τ̃ lifting τ . We call Sh(G ′

S̃
, K ′p)k0,τ the τ -th Goren–

Oort divisor of Sh(G ′
S̃
, K ′p)k0 . For a nonempty subset 1⊆6∞− S∞, we put

Sh(G ′S̃, K ′p)k0,1 :=

⋂
τ∈1

Sh(G ′S̃, K ′p)k0,τ .
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According to [Tian and Xiao 2016, Proposition 4.7], Sh(G ′
S̃
, K ′p)k0,1 is a proper and smooth closed

subvariety of Sh(G ′
S̃
, K ′p)k0 of codimension #1; in other words, the union

⋃
τ∈6∞−S∞ Sh(G ′

S̃
, K ′p)k0,τ

is a strict normal crossing divisor of Sh(G ′
S̃
, K ′p)k0 .

In [Tian and Xiao 2016], we gave an explicit description of Sh(G ′
S̃
, K ′p)k0,τ in terms of another unitary

Shimura variety of type in Section 2D. To describe this, let p ∈6p denote the p-adic place induced by τ .
Set

Sτ =
{

S∪ {τ, σ−nτ τ } if 6∞/p 6= S∞/p ∪ {τ },
S∪ {τ, p} if 6∞/p = S∞/p ∪ {τ }.

(3-2)

We fix a lifting τ̃ ∈ 6E,∞ of τ , and take S̃τ,∞ to be S̃∞ ∪ {τ̃ , σ−nτ τ̃ c
} if 6∞/p 6= S∞/p ∪ {τ }, and to be

S̃∞ ∪ {τ̃ } if 6∞/p = S∞/p ∪ {τ }. This choice of S̃τ,∞ satisfies Assumption 2.2. We note that both DS and
DSτ are isomorphic to Mat2(E). We fix an isomorphism DS ∼= DSτ , and let ODSτ

denote the order of DSτ

corresponding to ODS under this isomorphism.

Proposition 3.2. Under the above notation, there exists a canonical projection

π ′τ : Sh(G ′S̃, K ′p)k0,τ → Sh(G ′S̃τ , K ′p)k0

where:

(1) If 6∞/p 6= S∞/p ∪ {τ }, then π ′τ is a P1-fibration over Sh(G ′
S̃τ
, K ′p)k0 such that the restriction of π ′τ

to Sh(G ′
S̃
, K ′p)k0,{τ,σ−nτ τ } is an isomorphism.

(2) If 6∞/p = S∞/p ∪ {τ }, then π ′τ is an isomorphism.

Moreover, π ′τ is equivariant under prime-to-p Hecke correspondences when K ′p varies, and there exists
a p-quasiisogeny

φ : A′S̃|Sh(G ′
S̃
,K ′p)k0,τ

→ π ′∗τ A′S̃τ

that is compatible with polarizations and K ′p-level structures on both sides, and that induces an isomor-
phism of relative de Rham homology groups

φ∗,τ : HdR
1 (A

′

S̃|Sh(G ′
S̃
,K ′p)k0,τ

/Sh(G ′S̃, K ′p)k0,τ )
◦

τ̃ ′
∼= HdR

1 (A
′

S̃τ
/Sh(G ′S̃τ , K ′p))◦τ̃ ′

for any τ̃ ′ ∈6E,∞/p lifting some τ ′ ∈6∞− Sτ,∞/p.

Proof. This is [Tian and Xiao 2016, Theorem 5.2]. �

Here, we are content with explaining the map π ′τ and the quasiisogeny φ on Fac
p -points. Take x =

(A, ιA, λA, αA) ∈ Sh(G ′
S̃
, K ′p)k0,τ (F

ac
p ). Denote by D̃(A)◦ =

⊕
τ̃ ′∈6E,∞

D̃(A)◦
τ̃ ′

the reduced covariant
Dieudonné module as usual. For each τ̃ ′ ∈6E,∞, define the essential Frobenius

Fes : D̃◦σ−1τ̃ ′
→ D̃◦τ̃ ′
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as the usual Frobenius map if s
τ̃ ′
= 1, 2 and as the inverse of Verschiebung map if sτ̃ ′ = 0. Consider a

W (Fac
p )-lattice M◦ =

⊕
τ̃ ′∈6E,∞

Mτ̃ ′ of D̃(A)◦[1/p] such that

M◦τ̃ ′ =


Fnτ−`

es D̃(A)◦
σ−nτ τ̃

if τ̃ ′ = σ−`τ̃ with 0≤ `≤ nτ − 1,
1
p Fnτ−`

es D̃(A)◦
σ−nτ τ̃ c if τ̃ ′ = σ−`τ̃ c with 0≤ `≤ nτ − 1 and 6∞/p 6= S∞/p ∪ {τ },

D̃(A)◦
τ̃ ′

otherwise.

Note that the condition h τ̃ (A) = 0 is equivalent to ω̃◦A∨,τ̃ = Fnτ
es (D̃(A)◦σ−nτ τ̃

), where ω̃◦A∨,τ̃ denotes the
preimage of ω◦A∨,τ̃ under the natural reduction map

D̃(A)◦τ̃ → D̃(A)◦τ̃/pD̃(A)◦τ̃ ∼= HdR
1 (A/F

ac
p )
◦

τ̃ .

Using this property, one checks easily that M◦ is a Dieudonné submodule of D̃(A)◦[1/p]. Put M :=M◦,⊕2

equipped with the natural action of ODS ⊗Zp ∼=Mat2(OE ⊗Zp). Then M corresponds to a p-divisible
group G equipped with an ODS-action and an ODS-linear isogeny φp : A[p∞] → G. Thus there exists an
abelian variety B over Fac

p with B[p∞] = G and a p-quasiisogeny φ : A→ B such that φp is obtained by
taking the p∞-torsion of φ. Moreover, by construction, it is easy to see that

dim Lie(B)◦τ̃ ′ =


dim(Lie(A)◦

τ̃ ′
) if τ̃ ′ 6= τ̃ , σ−nτ τ̃ ,

0 if τ̃ ′ = τ̃ , σ−nτ τ̃ c,

2 if τ̃ ′ = τ̃ c, σ−nτ τ̃ .

In other words, the OE -action on B satisfies Kottwitz’ condition for Sh(G ′
S̃τ
, K ′p). Moreover, λA and αA

induce an ODSτ
-linear prime-to-p polarization λB via the fixed isomorphism ODS 'ODSτ

and a K ′p-level
structure αB on B, respectively, such that (B, ιB, λB, αB) is an Fac

p -point of Sh(G S̃τ , K ′p). The resulting
map (A, ιA, λA, αA) 7→ (B, ιB, λB, αB) is nothing but π ′τ .

If 6∞/p 6= S∞/p ∪ {τ }, then σ−nτ τ 6= τ and we have D̃(B)◦
σ−nτ τ̃

= D̃(A)◦
σ−nτ τ̃

by construction. To
recover A from B, it suffices to “remember” the line ω◦A∨,σ−nτ τ̃

inside the two dimensional Fac
p -vector

space
D̃(A)◦σ−nτ τ̃/pD̃(A)◦σ−nτ τ̃ = D̃(B)◦σ−nτ τ̃/pD̃(B)◦σ−nτ τ̃ .

This means that the fiber of π ′τ over a point (B, ιB, λB, αB) ∈ Sh(G ′
S̃τ
, K ′p) is isomorphic to P1. On the

other hand, if 6∞/p = S∞/p ∪ {τ } then nτ = [Fp : Qp] is odd, one can completely recover A from B,
and thus π ′τ induces a bijection on closed points.3 The moreover part of the statement follows from the
construction of π ′τ .

3D. Periodic semimeanders. Following [Tian and Xiao 2019], we iterate the construction of Goren–Oort
divisors to produce some closed subvarieties called Goren–Oort cycles. To parametrize those cycles, one
need to recall some combinatorial data introduced in [loc. cit., Section 3.1].

For a prime p∈6p, put dp(S) := gp−#S∞/p. If there is no confusion, we write dp= dp(S) for simplicity.
Consider the cylinder C : x2

+ y2
= 1 in 3-dimensional Euclidean space, and let C0 be the section with

3To show that π ′τ is indeed an isomorphism, one has to check also that π ′τ induces isomorphisms of tangent spaces to each
closed point. This is the most technical part of [Tian and Xiao 2016]. For more details, see [loc. cit., Lemma 5.20].
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z = 0. We write 6∞/p = {τ0, . . . , τgp−1} such that τ j = στ j−1 for j ∈ Z/gpZ. For 0 ≤ j ≤ gp − 1,
we use τ j to label the point (cos 2π j/gp, sin 2π j/gp, 0) on C0. If τ j ∈ S∞/p, then we put a plus sign
at τ j ; otherwise, we put a node at τ j . We call such a picture the band associated to S∞/p. We often
draw the picture on the 2-dimensional xy-plane by thinking of x-axis modulo gp. We put the points
τ0, . . . , τgp−1 on the x-axis with coordinates x = 0, . . . , gp− 1 respectively. For example, if gp = 6 and
S∞/p = {τ1, τ3, τ4}, then we draw the band as

b b b
+ + + .

A periodic semimeander for S∞/p is a collection of curves (called arcs) that link two nodes of the
band for S∞/p, and straight lines (called semilines) that links a node to the infinity (that is, the direction
y→+∞ in the 2-dimensional picture) subject to the following conditions:

(1) All the arcs and semilines lie on the cylinder above the band (that is to have positive y-coordinate in
the 2-dimensional picture).

(2) Every node of the band for S∞/p is exactly one end point of an arc or a semiline.

(3) There are no intersection points among these arcs and semilines.

The number of arcs is denoted by r (so r ≤ dp/2), and the number of semilines dp − 2r is called the
defect of the periodic semimeander. Two periodic semimeanders are considered as the same if they can
be continuously deformed into each other while keeping the above three properties in the process. We
use B(S∞/p, r) denote the set of semimeanders for S∞/p with r arcs (up to continuous deformations).
For example, if gp = 7, r = 2, and S∞/p = {τ1, τ4}, then we have dp = 5 and

B(S∞/p, 2)=

 b b b b b+ + , b b b b b+ + , b b b b b+ + , b b b b b+ + , b b b b b+ + ,

b b b b b+ + , b b b b b+ + , b b b b b+ + , b b b b b+ + , b b b b b+ + .

It is easy to see that the cardinality of B(S∞/p, r) is
(dp

r

)
. In fact, the map that associates to each

element a ∈B(S∞/p, r) the set of right end points of arcs in a establishes a bijection between B(S∞/p, r)
and the subsets with cardinality r of the dp-nodes in the band of S∞/p.

3E. Goren–Oort cycles and supersingular locus. We fix a lifting τ̃ ∈6E,∞/p for each τ ∈6∞/p−S∞/p.
For a periodic semimeander a ∈B(S∞/p, r) with r ≥ 1, we put

Sa := S∪ {τ ∈6∞/p | τ is an end point of some arc in a}. (3-3)

For an arc δ in a, we use τ+δ and τ−δ to denote its right and left end points respectively. We take

S̃a,∞ = S̃∞ ∪ {τ̃+δ , τ̃
−,c
δ | δ is an arc of a}.

Here, τ̃+δ denotes the fixed lifting of τ+δ , and τ̃−,cδ the conjugate of the fixed lifting τ̃−δ of τ−δ . We fix an
isomorphism G ′

S̃a
(A∞)∼= G ′

S̃
(A∞), and consider K ′p as an open compact subgroup of G ′

S̃a
(A∞,p). We

may thus speak of the unitary Shimura variety Sh(G ′
S̃a
, K ′p).
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Following [Tian and Xiao 2019, Section 3.7], for every a∈B(S∞/p, r), we construct a closed subvariety
Z ′

S̃
(a) ⊆ Sh(G ′

S̃
, K ′p)k0 of codimension r , which is an r-th iterated P1-fibration over Sh(G ′

S̃a
, K ′p)k0 .

We proceed by induction on r ≥ 0. When r = 0, we put simply Z ′
S̃
(a) := Sh(G ′

S̃
, K ′p)k0 . Assume now

r ≥ 1. An arc in a is called basic, if it does not lie above any other arcs. Choose such a basic arc δ,
and put τ := τ+δ and τ− := τ−δ for simplicity. We note that τ− = σ−nτ τ . Consider the Goren–Oort
divisor Sh(G ′

S̃
, K ′p)k0,τ , and let π ′τ : Sh(G ′

S̃
, K ′p)k0,τ → Sh(G ′

S̃τ
, K ′p)k0 be the P1-fibration given by

Proposition 3.2. Let aδ ∈ B(Sa,∞/p, r − 1) be the periodic semimeander for Sa obtained from a by
replacing the nodes at τ, τ− with plus signs and removing the arc δ. For instance, if

b b b b b+ +
,

then Sa = S∪ {τ2, τ3, τ5, τ6}, and the arc δ connecting τ3 and τ5 is the unique basic arc in a, and

b b b+ ++ +

By the induction hypothesis, we have constructed a closed subvariety Z ′
S̃τ
(aδ) ⊆ Sh(G ′

S̃τ
, K ′p)k0 of

codimension r − 1. Then we define Z ′
S̃
(a) as the preimage of Z ′

S̃τ
(aδ) via π ′τ . We denote by

π ′a : Z ′S̃(a)→ Sh(G ′S̃a, K ′p)k0

the canonical projection. In summary, we have a diagram

Z ′
S̃
(a) �
�

//

π ′a

��

��

Sh(G ′
S̃
, K ′p)k0,τ

π ′τ

��

� � // Sh(G ′
S̃
, K ′p)k0

Z ′
S̃τ
(aδ)

π ′aδ
��

� � // Sh(G ′
S̃τ
, K ′p)k0

Sh(G ′
S̃a
, K ′p)k0

where the square is cartesian. By induction hypothesis, the morphism π ′aδ is an (r−1)-th iterated P1-
fibration. It follows that π ′a is an r -th iterated P1-fibration.

We explain the relationship between Goren–Oort cycles and the p-supersingular locus of Sh(G ′
S̃
, K ′p)k0 .

Take a∈B(S∞/p, bdp/2c). If dp is even, then we put W ′
S̃
(a) := Z ′

S̃
(a). If dp is odd, then we let τ(a)∈6∞/p

denote the end point of the unique semiline in a, and define W ′
S̃
(a) by the following Cartesian diagram:

W ′
S̃
(a) �
�

//

��

Z ′
S̃
(a)

π ′a
��

Sh(G ′
S̃a
, K ′p)k0,τ (a)

� � // Sh(G ′
S̃a
, K ′p)k0
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We put

S̃∗a :=
{

S̃a = (Sa, S̃a,∞) if dp is even,
(Sa ∪ {τ(a), p}, S̃a,∞ ∪ {τ̃ (a)}) if dp is odd.

(3-4)

Note that the underlying set S∗a of S̃∗a is independent of a ∈B(S∞/p, bdp/2c), namely all S∗a are equal to

S(p) :=
{

S∪6∞/p if dp is even,
S∪6∞/p ∪ {p} if dp is odd.

(3-5)

If dp is odd, then we have an isomorphism

Sh(G ′S̃a, K ′p)k0,τ (a)
∼= Sh(G ′S̃∗a, K ′p)k0

by Proposition 3.2. Thus, regardless of the parity of dp, one has a bdp/2c-th iterated P1-fibration
equivariant under prime-to-p Hecke correspondences:

π ′a|W ′S̃(a)
: W ′S̃(a)→ Sh(G ′S̃∗a, K ′p)k0 .

Theorem 3.3. Under the notation above, the union⋃
a∈B(S∞/p,bdp/2c)

W ′S̃(a)

is exactly the p-supersingular locus of Sh(G ′
S̃
, K ′p)k0 , that is, the maximal closed subset where the

universal p-divisible group A′
S̃
[p∞] is supersingular.

Proof. We proceed by induction on dp ≥ 0. If dp = 0, then B(S∞/p, 0) consists only of the trivial periodic
semimeander (that is, the one without any arcs or semilines). In this case, one has to show that the whole
Sh(G ′

S̃
, K ′p)k0 is p-supersingular. First, we have sτ̃ ∈ {0, 2} for all τ̃ ∈6E,∞/p, and Assumption 2.2(2)

implies that the number of τ̃ ∈ 6E,∞/p with sτ̃ = 2 equals exactly to the number of τ̃ ∈ 6E,∞/p with
sτ̃ = 0. Now consider a point x = (A, ι, λ, α) ∈ Sh(G ′

S̃
, K ′p)(Fac

p ). Then, for every τ̃ ∈ 6E,∞/p, the
2gp-th iterated essential Verschiebung

V 2gp
es =

V 2gp

pgp
: D̃(A)◦τ̃ → D̃(A)◦

σ−2gp τ̃
= D̃(A)◦τ̃

is bijective, no matter whether p is split or inert in E . It follows immediately that 1
2 is the only slope of

the Dieudonné module
⊕

τ̃∈6E,∞/p
D̃(A)τ̃ = D̃(A[p∞]), so that A[p∞] is supersingular.

Assume now dp ≥ 1. We prove first that the union
⋃

a∈B(S∞/p,bdp/2c) W ′
S̃
(a) is contained in the p-

supersingular locus of Sh(G ′
S̃
, K ′p)k0 . Fix a ∈B(S∞/p, bdp/2c). Then one has a projection

π ′a|W ′S̃(a)
: W ′S̃(a)→ Sh(G ′S̃a, K ′p)k0

and a p-quasiisogeny

φa : A′S̃|W ′S̃(a)→ π ′∗a A′S̃a
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by the construction of π ′a and Proposition 3.2. Note that dp(Sa)= 0, and by the discussion above, A′
S̃a
[p∞]

is supersingular over the entire Sh(G ′
S̃a
, K ′p)k0 . It follows that A′

S̃
[p∞] is supersingular over WS̃(a).

To complete the proof, it remains to show that if x ∈ Sh(G ′
S̃
, K ′p)(Fac

p ) is a p-supersingular point,
then x ∈W ′

S̃
(a)(Fac

p ) for some a ∈B(S∞/p, bdp/2c). By Proposition 3.1, there exists τ ∈6∞/p such that
x ∈Sh(G ′

S̃
, K ′p)k0,τ (F

ac
p ). Consider the P1-fibration π ′τ : Sh(G ′

S̃
, K ′p)k0,τ→Sh(G ′

S̃τ
, K ′p)k0 . Since A′

S̃,x
is p-quasiisogenous to A′

S̃τ ,π ′τ (x)
, we see that π ′τ (x) lies in the p-supersingular locus of Sh(G ′

S̃τ
, K ′p)k0 . By

the induction hypothesis, π ′τ (x)∈W ′
S̃τ
(b)(Fac

p ) for some periodic semimeander b∈B(Sτ,∞/p, bdp/2−1c).
Now let a be the periodic semimeander obtained from b by adjoining an arc δ connecting σ−nτ τ and τ so
that τ is the right end point of δ. Then a ∈B(S∞/p, bdp/2c), and δ is a basic arc of a such that b= aδ.
To finish the proof, it suffices to note that W ′

S̃
(a)= π ′−1

τ (W ′
S̃τ
(b)) by definition. �

Definition 3.4. We put
Sh(G ′S̃, K ′p)p−sp

k0
:= Sh(G ′S̃, K ′p)k0,6∞/p,

and call it the p-superspecial locus of Sh(G ′
S̃
, K ′p)k0 .

We have the following proposition that characterizes the p-superspecial locus.

Proposition 3.5. Let p ∈ 6p be such that dp is odd, and take a ∈ B(S∞/p, (dp − 1)/2). Then
Sh(G ′

S̃
, K ′p)p−sp

k0
is contained in W ′

S̃
(a), and the restriction of π ′a to Sh(G ′

S̃
, K ′p)p−sp

k0
induces an

isomorphism
Sh(G ′S̃, K ′p)p−sp

k0
∼
−→ Sh(G ′S̃∗a, K ′p)k0,

which is equivariant under prime-to-p Hecke correspondences.

Proof. We proceed by induction on dp ≥ 1. If dp = 1, then all the p-supersingular locus is p-superspecial,
and the p-supersingular locus consists of only one stratum W ′

S̃
(a). So the statement is clear.

Assume now dp > 1. Choose a basic arc δ of a. Let τ (resp. τ−) be the right (resp. left) node of δ, and
aδ be the semimeander obtained from a by removing the arc δ. Then one has a commutative diagram

W ′
S̃
(a) //

��

Z ′
S̃
(a) //

��

Sh(G ′
S̃
, K ′p)k0,τ

π ′τ

��

W ′
S̃τ
(aδ)

��

// Z ′
S̃τ
(aδ)

π ′aδ
��

// Sh(G ′
S̃τ
, K ′p)k0

Sh(G ′
S̃a
, K ′p)k0,τ (a)

//

∼=

��

Sh(G ′
S̃a
, K ′p)k0

Sh(G ′
S̃∗a
, K ′p)k0

where all the squares are cartesian; all horizontal maps are closed immersions; and all vertical arrows are
iterated P1-bundles. By the induction hypothesis, the p-superspecial locus Sh(G ′

S̃τ
, K ′p)p−sp

k0
is contained
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in W ′
S̃τ
(aδ) and the restriction of π ′aδ induces an isomorphism

Sh(G ′S̃τ , K ′p)p−sp
k0

∼
−→ Sh(G ′S̃∗a, K ′p)k0 . (3-6)

Now by Proposition 3.2, the restriction of π ′τ induces an isomorphism

Sh(G ′S̃, K ′p)k0,{τ,τ−}
∼
−→ Sh(G ′S̃τ , K ′p)k0

compatible with the construction of Goren–Oort divisors. Thus, π ′τ sends Sh(G ′
S̃
, K ′p)p−sp

k0
isomorphically

to Sh(G ′
S̃τ
, K ′p)p−sp

k0
. The statement now follows immediately by composing with the isomorphism (3-6).

�

3F. Total supersingular and superspecial loci. We will now study the total supersingular locus of
Sh(G ′

S̃
, K ′p)k0 , that is, the maximal closed subset where the universal p-divisible group A′

S̃
[p∞] is

supersingular. Put
BS := {a= (ap)p∈6p | ap ∈B(S∞/p, bdp/2c)},

and r :=
∑

p∈6p
bdp/2c. We attach to each a an r-dimensional closed subvariety W ′

S̃
(a) ⊆ ShK ′(G ′S̃)k0

as follows. We write 6p = {p1, . . . , pm}, that is, we choose an order for the elements of 6p. We put
S1 := Sap1

and S̃∗1 := S̃∗ap1
(see (3-4)); put inductively Si+1 := (Si )api+1

, S̃∗i+1 =
˜(Si )
∗
api+1

for 1≤ i ≤m−1;
and finally put Sa := Sm and S̃∗a := S̃∗m . For ap1 ∈B(S∞/p, bdp1/2c), we have constructed a bdp1/2c-th
iterated P1-fibration

π ′ap1
|W ′

S̃
(ap1 )
: W ′S̃(ap1)→ Sh(G ′S̃∗1 , K ′p)k0 .

Now, applying the construction to ap2 ∈ B(S∞/p2, bdp2/2c) and Sh(G ′
S̃∗1
, K ′p)k0 , we have a closed

subvariety W ′
S̃∗1
(ap2)⊆ Sh(G ′

S̃∗1
, K ′p)k0 of codimension ddp2/2e. We put

W ′S̃(ap1, ap2) := (π
′

ap1
)−1(W ′S̃∗1

(ap2)).

Then there exists a canonical projection

π ′ap1 ,ap2
: W ′S̃(ap1, ap2)

π ′ap1
|W ′

S̃
(ap1 ,ap2 )

−−−−−−−−→W ′S̃∗1
(ap2)

π ′ap2
|W ′

S̃∗1
(ap2 )

−−−−−−−−→ Sh(G ′S̃∗2 , K ′p)k0 .

Repeating this construction, we finally get a closed subvariety W ′
S̃
(a)⊆ Sh(G ′

S̃
, K ′p)k0 of codimension∑

p∈6ddp/2e together with a canonical projection

π ′a : W ′S̃(a)→ Sh(G ′S̃∗a, K ′p)k0 .

Note that the underlying set S∗a of S̃∗a is independent of a ∈BS, namely all of them are equal to

Smax :=6∞ ∪ {p ∈6p | gp := [Fp :Qp] is odd}. (3-7)

Thus Sh(G ′
S̃∗a
, K ′p)k0 is a Shimura variety of dimension 0, and π ′a is by construction an r-th iterated

P1-fibration over Sh(G ′
S̃∗a
, K ′p)k0 . We note that W ′

S̃
(a) does not depend on the order p1, . . . , pm of the

places of F above p.
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Theorem 3.6. The total supersingular locus of Sh(G ′
S̃
, K ′p)k0 is given by

Sh(G ′S̃, K ′p)ss
k0
:=

⋃
a∈BS

W ′S̃(a),

where each W ′
S̃
(a) is a

∑
p∈6p
bdp/2c-th iterated P1-fibration over some discrete Shimura variety

Sh(G ′
S̃∗a
, K ′p)k0 . In particular, Sh(G ′

S̃
, K ′p)ss

k0
is proper and of equidimension

∑
p∈6p
bdp/2c.

Proof. This follows immediately from Theorem 3.3 by induction on the number of p-adic places p ∈6p

such that dp 6= 0. �

Remark 3.7. It is clear that the total supersingular locus is the intersection of all p-supersingular loci for
p ∈6p. It follows that

W ′S̃(a)=
⋂
p∈6p

W ′S̃(ap),

and the intersection is transversal.

Similarly to Definition 3.4, we define the total superspecial locus of Sh(G ′
S̃
, K ′p)k0 as

Sh(G ′S̃, K ′p)sp
k0
:= Sh(G ′S̃, K ′p)k0,6∞ =

⋂
p∈6p

Sh(G ′S̃, K ′p)p−sp
k0

.

We have the following analogue of Proposition 3.5.

Proposition 3.8. Suppose that dp is odd for all p ∈ 6p. Then for each a ∈ BS, W ′
S̃
(a) contains

Sh(G ′
S̃
, K ′p)sp

k0
, and each geometric irreducible component of W ′

S̃
(a) contains exactly one point of

Sh(G ′
S̃
, K ′p)sp

k0
. In other words, the restriction of π ′a induces an isomorphism

Sh(G ′S̃, K ′p)sp
k0
∼
−→ Sh(G ′S̃∗a, K ′p)k0 .

Proof. This follows immediately from Proposition 3.5. �

3G. Applications to quaternionic Shimura varieties. Denote by Sh(GS,T, K p) the integral model of
Sh(GS,T, K p) over OFS,T,℘ induced by Sh(G ′

S̃
, K ′p). We assume that the residue field of OFS,T,℘ is

contained in k0 (e.g., S= T=∅), and put Sh(GS,T, K p)k0 := Sh(GS,T, K p)⊗OFS,T,℘
k0. As in [Tian and

Xiao 2016; 2019], the construction of Goren–Oort divisors can be transferred to Sh(GS,T, K p)k0 for a
sufficiently small open compact subgroup K p

⊆ GS(A
∞,p).

Consider first the connected Shimura variety Sh(GS,T)
◦

Fac
p
:= Sh(GS,T)

◦

Zur
p
⊗Zur

p
Fac

p . For each τ ∈6∞,
the Goren–Oort divisor Sh(G ′

S̃
)k0,τ = lim

←−−K ′p Sh(G ′
S̃
, K ′p)k0,τ induces a divisor Sh(G ′

S̃
)◦Fac

p ,τ
on Sh(G ′

S̃
)◦Fac

p
.

By the canonical isomorphism
Sh(GS,T)

◦

Fac
p
∼= Sh(G ′S̃)

◦

Fac
p

from Section 2F and Deligne’s recipe of recovering Sh(GS,T)Fac
p

from Sh(GS,T)
◦

Fac
p

[Tian and Xiao 2016,
Corollary 2.13], the divisor Sh(GS,T)

◦

Fac
p ,τ

induces a divisor Sh(GS,T)Fac
p ,τ

on Sh(GS,T)Fac
p

. By Galois
descent, one gets a divisor Sh(GS,T)k0,τ on Sh(GS,T)k0 , which is stable under prime-to-p Hecke action.
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Finally, we define the Goren–Oort divisors on Sh(GS,T, K p)k0 as the image of Goren–Oort divisors on
Sh(GS,T, K p)k0 via the natural projection Sh(GS,T)k0 → Sh(GS,T, K p)k0 .

Proposition 3.9. Take τ ∈ 6∞/p for some p ∈ 6p, and put Tτ := T∪ {τ }. There exists a morphism of
k0-schemes

πτ : Sh(GS,T, K p)k0,τ → Sh(GSτ ,Tτ , K p)k0,

where Sτ was defined in (3-2), such that

(1) it is compatible with π ′τ in Proposition 3.2 on neutral geometric connected components;

(2) it is an isomorphism if 6∞/p = S∞/p ∪ {τ }; and

(3) it is a P1-fibration.

Proof. This follows immediately from Proposition 3.2 and [Tian and Xiao 2019, Construction 2.12]. �

Now, the construction of Goren–Oort cycles can be transferred to the quaternionic Shimura variety
Sh(GS,T, K p)k0 . For a periodic semimeander a ∈B(S∞/p, bdp/2c), we construct inductively in the same
way as Z ′

S̃
(a) a closed k0-subvariety ZS,T(a)⊆ Sh(GS,T, K p)k0 such that there exists a bdp/2c-th iterated

P1-fibration

πa : ZS,T(a)→ Sh(GSa,Ta, K p)k0

according to Proposition 3.9, where Sa is defined in (3-3) and

Ta = T∪ {τ ∈6∞ | τ is the right end point of an arc in a}. (3-8)

We define similarly

WS,T(a)=

{
ZS,T(a) if dp is even,
π−1
a (Sh(GSa,Ta, K p)k0,τ (a)) if dp is odd,

(3-9)

where τ(a) ∈ 6∞/p is the end point of the unique semiline of a. Then πa induces a bdp/2c-th iterated
P1-fibration

πa|WS,T(a)Fac
p
: WS,T(a)Fac

p
→ Sh(GS(p),T∗a, K p)Fac

p

where S(p)= S∗a is defined in (3-5), and

T∗a =
{

Ta if dp is even,
Ta ∪ {τ(a)} if da is odd.

Of course, when dp is even, the morphism πa|WS,T(a)Fac
p

is simply the base change to Fac
p of πa.

Similarly, for a = (ap)p∈6p ∈ BS =
∏

p∈6p
B(S∞/p, bdp/2c), we can define a closed subvariety

WS,T(a)⊆ Sh(GS,T, K p)k0 of dimension r =
∑

p∈6p
bdp/2c together with an r -th iterated P1-fibration

πa : WS,T(a)Fac
p
→ Sh(GSmax,T∗a, K p)Fac

p
,

where Smax was defined in (3-7), and T∗a :=
⋃

p∈6p
T∗ap .
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Notation 3.10. In what follows, we will write the Fac
p -schemes Sh(GS,T, K p)⊗OFS,T,℘

Fac
p and the sets

Sh(GS,T, K p)(Fac
p ), which are independent of T, simply by Sh(GS, K p)Fac

p
and Sh(GS, K p)(Fac

p ), respec-
tively.

Then the target of πa is simply Sh(GSmax, K p)Fac
p

for every a ∈BS. In particular, the set of geometric
irreducible components of WS,T(a) is in bijection with Sh(GSmax, K p)(Fac

p ). Moreover, we have an
isomorphism

Sh(GSmax, K p)(Fac
p )
∼= B×Smax

\B̂×Smax
/K p

∏
p∈6p

K max
p ,

where K max
p is the unique maximal open compact subgroups of (BSmax ⊗F Fp)

× for each p ∈6p. Note
that BSmax splits (resp. ramifies) at p if gp is even (resp. odd).

3H. Totally indefinite quaternionic Shimura varieties. We consider the case S=∅ (hence T=∅), and
we write G = G∅ = G∅,∅ and G ′ = G ′∅̃ for simplicity as usual. Recall that Sh(G, K p) classifies tuples
(A, ι, λ, αK p) as defined in Section 2E. Even though it is only a coarse moduli space, there still exists a
universal abelian scheme A over Sh(G, K p) (See Remark 2.9(1)).

Definition 3.11. Put Sh(G, K p)Fp := Sh(G, K p)⊗ Fp:

(1) For each p∈6p, we define the p-supersingular locus of Sh(G, K p)Fp as the maximal reduced closed
subscheme of Sh(G, K p)Fp where the universal p-divisible group A[p∞] is supersingular.

(2) We define the total supersingular locus of Sh(G, K p)Fp as the intersection of the p-supersingular
locus for all p ∈6p.

Theorem 3.12. For p ∈6p, put gp := [Fp :Qp]. Then the p-supersingular locus of Sh(G, K p)Fp , after
base change to k0, is ⋃

a∈B(∅∞/p,bgp/2c)

W∅,∅(a),

where B(∅∞/p, bgp/2c) is the set of periodic semimeanders of gp-nodes and bgp/2c-arcs, and each
W∅,∅(a) is defined in (3-9) and W∅,∅(a)Fac

p
is a bgp/2c-th iterated P1-fibration over Sh(G∅(p), K p)Fac

p
.

Proof. According to the discussion of Section 2F, the definition of the p-supersingular locus of Sh(G,K p)Fp

using the universal family A coincides with the one induced from the p-supersingular locus of the unitary
Shimura variety Sh(G ′, K ′p)Fp . The statement then follows from Theorem 3.3. �

Theorem 3.13. Denote by Sh(G, K p)ss
Fp

the total supersingular locus of Sh(G, K p)Fp . Then we have

Sh(G, K p)ss
Fp
⊗ k0 =

⋃
a∈B∅

W∅,∅(a),

where B∅ is the set of tuples (ap)p∈6p with ap ∈ B(∅∞/p, bgp/2c). The base change W∅,∅(a)Fac
p

of
W∅,∅(a) to Fac

p is a
(∑

p∈6p
bgp/2c

)
-th iterated P1-fibration over Sh(GSmax, K p)Fac

p
, equivariant under

prime-to-p Hecke correspondences, where Smax was defined in (3-7). In particular, Sh(G, K p)ss
Fp

is
proper and of equidimension

∑
p∈6p
bgp/2c.



Supersingular locus of Hilbert modular varieties, arithmetic level raising and Selmer groups 2093

Proof. This follows from Theorem 3.12 by induction on the number of p-adic places p ∈6p. �

Remark 3.14. The above theorem is known in the following cases:

(1) If p is inert in F of degree 2 and B is the matrix algebra, then the theorem was first proved in
[Bachmat and Goren 1999].

(2) If p is inert in F of degree 4 and B is the matrix algebra, then the results was due to [Yu 2003].

(3) Assume that p is inert in F of even degree. Then the strata W∅,∅(a) have already been constructed
in [Tian and Xiao 2019], and the authors proved there that, under certain genericity conditions on
the Satake parameters of a fixed automorphic cuspidal representation π , the cycles W∅,∅(a) give all
the π -isotypic Tate cycles on the quaternionic Shimura variety Sh(G, K p)Fp .

We define an action of GFp = Gal(Fac
p /Fp) on the set B∅ as follows. For each periodic semimeander

ap ∈B(∅∞/p, bgp/2c), let σ(ap) be the Frobenius translate of ap, that is, there is an arc in σ(ap) linking
two nodes x, y if and only if there is an arc in ap linking σ−1(x), σ−1(y). For a = (ap)p, we put
σ(a) := (σ (ap))p∈6p . It is clear that the subgroup Gal(Fac

p /k0) of Gal(Fac
p /Fp) stabilizes each a ∈B∅.

Then the action of Gal(Fac
p /Fp) on Sh(G, K p)ss

Fac
p

sends the stratum W∅,∅(a) to W∅,∅(σ (a)).

Definition 3.15. We define the superspecial locus of Sh(G, K p)Fp , denoted by Sh(G, K p)
sp
Fp

, to be the
maximal reduced closed subscheme S such that for any geometric point x→ S the abelian variety Ax is
superspecial, that is, Ax is isomorphic to a product of supersingular elliptic curves.

Using the universal family of abelian varieties A over Sh(G, K p), one can define, for each τ ∈6∞, a
partial Hasse invariant hτ on Sh(G, K p)k0 similarly to (3-1). We can also define the Goren–Oort divisor
Sh(G, K p)k0,τ of Sh(G, K p)k0 as being the vanishing locus of hτ . By the relation of universal abelian
schemes (2-5), this definition of Goren–Oort divisor coincides with the one defined by transferring to the
unitary Shimura variety Sh(G ′, K ′p)k0 . It is easy to see that

Sh(G, K p)
sp
Fp
⊗ k0 =

⋂
τ∈6∞

Sh(G, K p)k0,τ .

Theorem 3.16. Assume that gp is odd for every p ∈6p:

(1) For each a ∈B∅ as in Theorem 3.13, W∅,∅(a) contains the superspecial locus Sh(G, K p)
sp
Fp
⊗ k0,

and the morphism πa : W∅,∅(a)Fac
p
→ Sh(GSmax, K p)Fac

p
induces a bijection

Sh(G, K p)sp(Fac
p )

∼
−→ Sh(GSmax, K p)(Fac

p )' B×Smax
\B̂×max/K p

∏
p∈6p

K max
p

compatible with prime-to-p Hecke correspondences.

(2) For each p ∈ 6p, let 5p be a uniformizer of the quaternion division algebra BSmax ⊗F Fp. Let 5p

be the element of B̂×Smax
whose p-component is 5p for each p ∈ 6p and other components are 1.

Then under the bijection in (1), the action of the arithmetic Frobenius element σp ∈ Gal(Fac
p /Fp) on

Sh(G, K p)sp(Fac
p ) is induced by the right multiplication by 5−1

p on B̂×max.
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Proof. Statement (1) follows from Proposition 3.8.
To prove (2), we take a superspecial point x = (A, ι, λ, αK p) ∈ Sh(G, K p)sp(Fac

p ) as in Section 2E.
Then A is of the form A = C ⊗Z I, where C is a supersingular elliptic curve and I is a (left) fractional
ideal of OB . For each p ∈6p, we have an equality of p-divisible groups A[p∞] = C[p∞]⊗Zp Ip, and
hence an equality

D(A[p∞])= D(A[p∞])⊗Zp Ip

for the corresponding covariant Dieudonné modules. Let Bp be the unique quaternion division algebra
over Qp. Then we have End(C[p∞])⊗Zp Qp = Bp and

Bp⊗Qp Fp = Bmax⊗F Fp = EndOB (A[p
∞
])⊗Zp Qp.

Let 5 ∈ Bp denote a uniformizer of Bp, and we view it also as a uniformizer of Bmax ⊗F Fp.
Via p-Frobenius isogeny FC : C → C (p), D(C (p)

[p∞]) is identified with lattice 5−1D(C[p∞]) in
D(C[p∞])[1/p]. Since FA : A→ A(p) is induced from FC by tensoring with I, we see that FA allows us
to identify D(A(p)[p∞]) with the lattice 5−1D(A[p∞]) inside D(A[p∞])[1/p]. Since σp(x) is given by
A(p) together with the induced polarization and level structure, the description for σp on Sh(G, K p)sp(Fp)

follows. �

Note that the action of Gal(Fp/Fp) on Sh(GSmax, K p)(Fp) defined in Theorem 3.16(2) is independent
of a ∈B∅. In other words, we have a canonical Fp-scheme structure on Sh(GSmax, K p)Fac

p
, which we

denote by Sh(GSmax, K p).

Corollary 3.17. Assume that gp is odd for every p∈6p. For every a∈B∅, the morphism πa :W∅,∅(a)Fac
p
→

Sh(GSmax, K p)Fac
p

is equivariant under Gal(Fac
p /k0), hence it descends to a morphism of k0-schemes:

πa : W∅,∅(a)→ Sh(GSmax, K p)k0 .

Proof. This follows from the definition of underlying k0-structure on Sh(GSmax, K p)Fac
p

and the fact that
the inclusion Sh(G, K p)

sp
Fac

p
↪→W∅,∅(a)Fac

p
is equivariant under Gal(Fac

p /k0). �

4. Arithmetic level raising

In this section, we state and prove the arithmetic level raising result. We suppose that g = [F :Q] is odd.
Fix an irreducible cuspidal automorphic representation 5 of GL2(AF ) of parallel weight 2 defined over a
number field E.

4A. Statement of arithmetic level raising. Let B be a totally indefinite quaternion algebra over F , and
put G := ResF/Q B×. Let K be a neat open compact subgroup of G(A∞) (Definition 2.6) such that
(5∞)K

6= 0. We have the Shimura variety Sh(G, K ) defined over Q whose C-points are given by

Sh(G, K )(C)= G(Q)\(H±)6∞ ×G(A∞)/K .
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Let R be a finite set of places of F away from which K is hyperspecial maximal.4 Let TR be the Hecke
monoid away from R [Liu 2019, Notation 3.1] (that is, the commutative monoid generated by Tq, Sq, S−1

q

with the relation SqS−1
q = 1 for all primes q 6∈ R). Then 5 induces a homomorphism

φR
5 : Z[TR

] →OE

by its Hecke eigenvalues. For every prime λ of E, we have an attached Galois representation

ρ5,λ : GF = Gal(Fac/F)→ GL2(OEλ) (4-1)

which is unramified outside R∪ Rλ, where Rλ denotes the subset of all places of F with the same residue
characteristic as λ. The Galois representation ρ5,λ is normalized so that if σq denotes an arithmetic
Frobenius element at q for a place q /∈ R∪ Rλ, then the characteristic polynomial of ρ5,λ(σq) is given by

X2
−φR

5(Tq)X +NF/Q(q)φ
R
5(Sq).

Let mR
5,λ be the kernel of the composite map Z[TR

]
φ5
−→OE→OE/λ.

Assumption 4.1. Let ` be the underlying rational prime of λ. We propose the following assumptions
on λ:

(1) ` is coprime to 5, R, disc F , and the cardinality of F×\A∞,×F /(A
∞,×
F ∩ K ).

(2) `≥ g+ 2.

(3) The image of ρ5,λ := ρ5,λ mod λ contains a subgroup conjugate to SL2(F`).

(4) ρ5,λ satisfies the condition (LIInd ρ5,λ) in [Dimitrov 2005, Proposition 0.1].

(5) Hg(Sh(G, K )Qac,OE/λ)/m
R
5,λ has dimension 2g dim(5∞B )

K over OE/λ, where 5B is the automor-
phic representation of G(A) whose Jacquet–Langlands transfer to GL2(AF ) is 5.

Remark 4.2. We have the following remarks concerning Assumption 4.1:

(1) Assumption 4.1(3) is equivalent to saying that ρ5,λ is absolutely irreducible and that ` divides the
image of ρ5,λ.

(2) Assumption 4.1(3) (and the part ` 6= 5 in (1)) is used to guarantee Ihara’s lemma for Shimura curves
over totally real fields [Manning and Shotton 2019].

(3) If 5 is not dihedral (that is, not a theta series) and not isomorphic to a twist by a character of any of
its internal conjugates, then Assumption 4.1(3) and (4) hold for all but finitely many λ by [Dimitrov
2005, Proposition 0.1]. In particular, for such a 5, the entire Assumption 4.1 holds for all but finitely
many λ.

(4) In general, the dimension of Hg(Sh(G, K )Qac,OE/λ)/m
R
5,λ is at least 2g dimE(5

∞

B )
K over OE/λ.

4The meaning of R changes from here; in particular, it contains the ramification set of B, which it previously stood for.
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Let p be a rational prime inert in F , coprime to R∪{2, `}. Denote by p the unique prime of F above p.
To ease notation, we put

φ := φ
R∪{p}
5 : Z[TR∪{p}

] →OE, m :=m
R∪{p}
5,λ ⊆ Z[TR∪{p}

].

For a Z[TR∪{p}
]-module M , we denote by Mm its localization at m. Write K = K p K p where K p is a

hyperspecial maximal subgroup of G(Qp) as p 6∈ R. We have the integral model Sh(G, K p) over Zp

defined in Section 2E for the Shimura variety Sh(G, K p)= Sh(G, K ). Put B :=B(∅, (g− 1)/2), the
set of periodic semimeanders attached to S=∅ with g-nodes and (g−1)/2-arcs. We note that k0 defined
in Section 3A is Fp2g in the current case. Then Theorem 3.13 asserts that

Sh(G, K p)ss
Fp
⊗ Fp2g =

⋃
a∈B

W∅,∅(a),

where each W∅,∅(a) is equipped with a (g− 1)/2-th iterated P1-fibration

πa : W∅,∅(a)→ Sh(GSmax, K p)Fp2g .

Let
Sh(G, K p)

sp
Fp
⊆ Sh(G, K p)Fp

be the superspecial locus as in Definition 3.15. By Theorem 3.16, each W∅,∅(a) for a ∈ B contains
Sh(G, K p)

sp
Fp2g

, and the morphism πa induces an isomorphism

Sh(G, K p)
sp
Fp2g

∼
−→ Sh(GSmax, K p)Fp2g

which is equivariant under prime-to-p Hecke correspondences, and independent of a.
Consider the set B× Sh(GSmax, K p)(Fac

p ), equipped with the diagonal action by GFp . The Hecke
monoid TR∪{p} acts through the second factor. We have a Chow cycle class map

0(B×Sh(GSmax, K p)(Fac
p ),Z)→ CH(g+1)/2(Sh(G, K p)Fac

p
) (4-2)

sending a function f on B×Sh(GSmax, K p)(Fac
p ) to the Chow class of

∑
a,s f (a, s)π−1

a (s).

Lemma 4.3. The map (4-2) is equivariant under both TR∪{p} and GFp .

Proof. The equivariance of πa under prime-to-p Hecke correspondences follows from Theorem 3.16. The
equivariance under GFp follows from the definition of GFp -action on Sh(GSmax, K p)(Fac

p ). �

Lemma 4.4. Under the notation above, the following statements hold:

(1) There exists a canonical isomorphism

Hg(Sh(G, K p)Fac
p
,OEλ)m

∼
−→ Hg(Sh(G, K )Qac,OEλ)m

compatible with Galois actions. In particular, we have a canonical isomorphism

H1(Fph ,Hg(Sh(G, K p)Fac
p
,OE/λ((g+ 1)/2))m)∼= H1

unr(Qph ,Hg(Sh(G, K )Qac,OE/λ((g+ 1)/2))m)

for every integer h ≥ 1.
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(2) Suppose that ` satisfies Assumption 4.1. We have Hi (Sh(G, K p)Fac
p
,OEλ)m = 0 unless i = g.

(3) Suppose that ` satisfies Assumption 4.1. We have that Hg(Sh(G, K p)Fac
p
,OEλ)m is a finite free

OEλ-module.

Proof. By [Lan and Stroh 2018, Corollary 4.6], no matter whether the Shimura variety Sh(G, K p) is
proper over Z(p), the canonical maps

Hi (Sh(G, K p)Fac
p
,OEλ)

∼
−→ Hi (Sh(G, K p)Qac

p
,OEλ)

∼
←− Hi (Sh(G, K p)Qac,OEλ)

for all i ≥ 0 are isomorphisms compatible with Hecke and Galois actions. One gets thus Statement (1)
by localizing the Hecke action at m. Statements (2) and (3) follow from Assumption 4.1 and [Dimitrov
2005, Theorem 0.3]. We remark that although Dimitrov’s theorem is stated for Hilbert modular varieties,
the same argument there applies to our situation without change. �

To ease notation, put G′ := Gal(Fac
p /Fp2g ). Lemma 4.3 induces the following map

0(B×Sh(GSmax, K p)(Fac
p ),Z)G

′

→ CH(g+1)/2(Sh(G, K p)Fp2g ) (4-3)

which is equivariant under both TR∪{p} and Gal(Fp2g/Fp). On the other hand, one has a cycle class map

CH(g+1)/2(Sh(G, K p)Fp2g )→ Hg+1(Sh(G, K p)Fp2g ,OEλ((g+ 1)/2)).

However, by the Hochschild–Serre spectral sequence and Lemma 4.4(2), we have a canonical isomorphism

Hg+1(Sh(G, K p)Fp2g ,OEλ((g+ 1)/2))m ∼= H1(Fp2g ,Hg(Sh(G, K p)Fac
p
,OEλ((g+ 1)/2))m).

Therefore, composing with (the localization of) (4-3) and modulo λ, we obtain a morphism

8m : 0(B×Sh(GSmax, K p)(Fac
p ),OE/λ)

G′
m → H1(Fp2g ,Hg(Sh(G, K p)Fac

p
,OE/λ((g+ 1)/2))m), (4-4)

called the unramified level raising map at m. It is equivariant under the action of Gal(Fp2g/Fp).

Definition 4.5. We say that a rational prime p is a λ-level raising prime (with respect to 5, B, K , R) if

(L1) p is inert in F , and coprime to R∪ {2, `};

(L2) ` -
∏g

i=1(p
2gi
− 1);

(L3) φR
5(Tp)

2
≡ (pg

+ 1)2 mod λ and φR
5(Sp)≡ 1 mod λ.

Remark 4.6. We have the following remarks concerning level raising primes:

(1) By a similar argument of [Liu 2019, Lemma 4.11], one can show there are infinitely many λ-level
raising primes with positive density, as long as there exist rational primes inert in F and λ satisfies
Assumption 4.1.

(2) By the Eichler–Shimura congruence relation, Definition 4.5(L3) is equivalent to saying that ρ5,λ(σp)
is conjugate to ±

( 1
0

0
pg

)
.
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(3) By the Eichler–Shimura congruence relation and the Chebotarev’s density theorem, we know that
the canonical map

Hg(Sh(G, K )Qac,OE/λ)/m→ Hg(Sh(G, K )Qac,OE/λ)/m
R
5,λ

is an isomorphism of OE/λ[GQ]-modules.

Theorem 4.7 (arithmetic level raising). Let λ be a prime of OE satisfying Assumption 4.1, and p a λ-level
raising prime. Then G′ acts trivially on 0(B×Sh(GSmax, K p)(Fac

p ),OE/λ)m and the induced map

0(B×Sh(GSmax, K p)(Fac
p ),OE/λ)/m→ H1(Fp2g ,Hg(Sh(G, K p)Fac

p
,OE/λ((g+ 1)/2))/m) (4-5)

is surjective.

4B. Proof of arithmetic level raising. This section is devoted to the proof of Theorem 4.7. We assume
that we are not in the case where F =Q and B is the matrix algebra, since this is already known by Ribet.

For a ∈ B, denote τ(a) ∈ 6∞ the end point of the unique semiline in a. By the construction in
Section 3G, for each a ∈B, the stratum W∅,∅(a) fits into the following commutative diagram

W∅,∅(a)
� � //

��

Z∅,∅(a)
� � //

πa

��

Sh(G, K p)Fp2g

Sh(G∅a,∅′a, K p)Fp2g ,τ (a)

∼=

��

� � // Sh(G∅a,∅′a, K p)Fp2g

Sh(GSmax, K p)Fp2g ,

(4-6)

where the square is Cartesian. Here, ∅a is the set Sa defined by (3-3) with S=∅ and ∅′a is the subset
defined by (3-8) with T = ∅, and we used slightly different notations to avoid confusion. Note that
Sh(G∅a,∅a, K p) is a proper Shimura curve over OF,p (with F regarded as a subfield of Qac determined
by a), and Sh(G∅a,∅a, K p)Fp2g ,τ (a)

∼= Sh(GSmax, K p)Fp2g is exactly its supersingular locus in the sense of
[Carayol 1986, Section 6.7]. Similarly to (4-3), we have a Chow class map

0(Sh(GSmax, K p)(Fac
p ),Z)→ CH1(Sh(G∅a,∅′a, K p)Fac

p
),

which induces an unramified level raising map for the Shimura curve Sh(G∅a,∅′a, K p):

8m(a) : 0(Sh(GSmax, K p)(Fac
p ),OE/λ)

G′
m → H1(Fp2g ,H1(Sh(G∅a,∅′a, K p)Fac

p
,OE/λ(1))m). (4-7)

The following is an analogue of Theorem 4.7 for Shimura curves.

Proposition 4.8. Under the hypothesis of Theorem 4.7, the map 8m(a) is surjective.

To prove this proposition, we need some preparation. We fix an isomorphism G∅a(Qp)∼= GL2(Fp)

so that K p is identified with GL2(OFp). Let Iwp ⊆ K p be the standard upper triangular Iwahori sub-
group. Let Sh(G∅a, K p Iwp) be the Shimura curve attached to G∅a of level K p Iwp. By [Carayol
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1986], Sh(G∅a,∅′a, K p Iwp) admits an integral model Sh(G∅a,∅′a, K p Iwp) over OF,p with semistable
reduction. The special fiber Sh(G∅a,∅′a, K p Iwp)Fpg consists of two copies of Sh(G∅a,∅′a, K p Iwp)Fpg

cutting transversally at supersingular points. There are two natural degeneracy maps

π1, π2 : Sh(G∅a,∅′a, K p Iwp)→ Sh(G∅a,∅′a, K p)

whose restrictions to generic fibers are described as in [Tian and Xiao 2019, (2.14.1)]. We note the
following generalization of Ihara’s lemma to Shimura curves over totally real fields.

Lemma 4.9. Under the hypothesis of Theorem 4.7, the canonical map

π∗1 +π
∗

2 : H1(Sh(G∅a,∅′a, K p)Qac,OE/λ)
⊕2
m → H1(Sh(G∅a,∅′a, K p Iwp)Qac,OE/λ)m

is injective.

Proof. This follows from [Manning and Shotton 2019, Theorem 6.5], under Assumption 4.1(1) and (3). �

Proof of Proposition 4.8. To simplify notation, let us put X := Sh(G∅a,∅a, K p) viewed as a proper
smooth scheme over OF,p, denote the supersingular locus as

X ss
Fp2g
:= Sh(G∅a,∅′a, K p)Fp2g ,τa

∼= Sh(GSmax, K p)Fp2g ,

and put X0(p) := Sh(G∅a,∅a, K p Iwp). We put also kλ := OE/λ. Consider the canonical short exact
sequence

H0(XFac
p
, kλ)→ H0(X ss

Fac
p
, kλ)→ H1

c(X
ord
Fac

p
, kλ)→ H1(XFac

p
, kλ)→ 0

equivariant under the action of G(Fac
p /Fpg )×Z[TR∪{p}

], where Xord
Fac

p
:= XFac

p
− X ss

Fac
p

is the ordinary locus.
The first term vanishes after localizing at m by Assumption 4.1(3). Taking Galois cohomology Hi (Fp2g ,−),
one deduces a boundary map

8∗m(a) : H1(XFac
p
, kλ)G

′

m → H1(Fp2g ,H0(X ss
Fac

p
, kλ)m).

By the Poincaré duality and the duality of Galois cohomology over finite fields, it is easy to see that
8∗m(a) is identified with the dual map of 8m(a). Therefore, to finish the proof of Proposition 4.8, it
suffices to show that 8∗m(a) is injective.

Recall that X0(p)Fpg consists of two copies of XFpg . Let i1 : XFpg → X0(p)Fpg be the copy such that
π1 ◦ i1 is the identity, and i2 : XFpg → X0(p)Fpg be the one such that π2 ◦ i2 is the identity. Then π2 ◦ i1

is the Frobenius endomorphism of XFpg relative to Fpg composed with the Hecke action S(g−1)/2
p ; and

π1 ◦ i2 is the Frobenius endomorphism of XFpg relative to Fpg composed with the Hecke action S(g+1)/2
p .

Consider the normalization map

δ : X̃0(p)Fpg := XFpg

∐
XFpg

i1
∐

i2
−−−→ X0(p)Fpg .

Then one has an exact sequence of étale sheaves

0→ kλ→ δ∗kλ→ i ss
∗

kλ→ 0
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on X0(p)Fpg , where i ss
: X ss

Fpg→ X0(p)Fpg denotes the closed immersion of the singular locus of X0(p)Fpg ,
and the second map δ∗kλ→ i ss

∗
kλ is given as follows: If x ∈ X ss

Fpg (F
ac
p ) is a supersingular geometric point

with preimage δ−1(x)= (x1, x2) with x j ∈ i j (X (Fac
p )) for j = 1, 2, then (δ∗kλ)x = kλ,x1 ⊕ kλ,x2 → kλ,x

is given by (a, b) 7→ a− b. By the functoriality of cohomology, we get

0= H0(XFac
p
, kλ)m→ H0(X ss

Fac
p
, kλ)m→ H1(X0(p)Fac

p
, kλ)m

(i∗1 ,i
∗

2 )−−−→ H1(XFac
p
, kλ)⊕2

m → 0. (4-8)

Consider the map

π∗1 +π
∗

2 : H1(XFac
p
, kλ)⊕2

m → H1(X0(p)Fac
p
, kλ)m (4-9)

induced by the two degeneracy maps π1, π2 : X0(p)→ X . If Frp denotes the action on H1(XFac
p
, kλ)

induced by the Frobenius endomorphism of XFpg relative to Fpg , then Frp = σ−1
p and the composite map

θ : H1(XFac
p
, kλ)⊕2

m
π∗1+π

∗

2−−−→ H1(X0(p)Fac
p
, kλ)m

(i∗1 ,i
∗

2 )−−−→ H1(XFac
p
, kλ)⊕2

m

is given by the matrix (
1 Frp S(g−1)/2

p

Frp S(g+1)/2
p 1

)
.

By Definition 4.5(L3), the Hecke operator Sp acts trivially on H1(XFac
p
, kλ)m since the trivial action is

the only lifting of the trivial action modulo m by Assumption 4.1(1). We see that ker θ is identified with
the image of the injective morphism

H1(XFac
p
, kλ)

Fr2
p=1

m
(−Frp,Id)
−−−−−→ H1(XFac

p
, kλ)⊕2

m .

However, by Ihara’s Lemma 4.9 and the proper base change, the map π∗1 +π
∗

2 in (4-9) is injective. Thus,
it induces an injection

8∗ : H1(XFac
p
, kλ)

Fr2
p=1

m
∼= ker θ→ ker(i∗1 , i∗2 )∼= H0(X ss

Fac
p
, kλ)m.

To finish the proof of Proposition 4.8, it suffices to show the following claims:

(1) The action of Fr2
p on H0(X ss

Fac
p
, kλ)m is trivial so that the natural projection

H0(X ss
Fac

p
, kλ)m→ H1(Fp2g ,H0(X ss

Fac
p
, kλ)m)∼= H0(X ss

Fac
p
, kλ)m/(Fr2

p−1)

is an isomorphism.

(2) The morphism 8∗ is identified with 8∗m(a).

Claim (1) follows from Assumption 4.1(1), Definition 4.5(L3) and the observation that Fr2
p acts through

the Hecke translation by (1, . . . , 1, p, 1, . . .) ∈ A
∞,×
F where p is placed at the prime p.
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To prove Claim (2), consider the following commutative diagram:

H1
c(X

ord
Fac

p
, kλ)m //

π∗2−π
∗

1 Frp
��

H1(XFac
p
, kλ)

π∗2−π
∗

1 Frp
��

// 0

0 // H0(X ss
Fac

p
, kλ)m //

1

��

H1
c(X

ord
Fac

p
, kλ)⊕2

m
// H1(X0(p)Fac

p
, kλ)m //

(i∗1 ,i
∗

2 )

��

0

0 // H0(X ss
Fac

p
, kλ)⊕2

m
// H1

c(X
ord
Fac

p
, kλ)⊕2

m
// H1(XFac

p
, kλ)⊕2

m
// 0

where 1 is the diagonal map, and horizontal rows are exact. Then the coboundary isomorphism
ker(i∗1 , i∗2 )∼= H0(X ss

Fac
p
, kλ)m given by (4-8) coincides with

ker(i∗1 , i∗2 )
∼
−→ coker1 ∼

←− H0(X ss
Fac

p
, kλ)m,

where the first isomorphism is deduced from the commutative diagram above by the snake lemma, and
the second is induced by the injection H0(X ss

Fac
p
, kλ)m ↪→ H0(X ss

Fac
p
, kλ)⊕2

m to the second component.

Now take x ∈H1(XFac
p
, kλ)

Fr2
p=1

m
∼= ker θ , and let x̃ ∈H1

c(X
ord
Fac

p
, kλ)m be a lift of x that is fixed by Sp. This

is possible as the action of Sp on H1
c(X

ord
Fac

p
, kλ) is semisimple. Then π∗2 (x̃)−π

∗

1 Frp(x̃) ∈ H1
c(X

ord
Fac

p
, kλ)⊕2

is an element lifting π∗2 (x)−π
∗

1 Frp(x) ∈ ker(i∗1 , i∗2 ), and π∗2 (x̃)−π
∗

1 Frp(x̃) lies actually in the image of
H0(X ss

Fac
p
, kλ)⊕2

m . Note that

π∗2 (x̃)−π
∗

1 Frp(x̃)= (S−1
p Frp(x̃), x̃)− (Frp(x̃),Fr2

p(x̃))= (0, (1−Fr2
p)(x̃)).

Since8∗(x) is by definition the image of π∗2 (x̃)−π
∗

1 Frp(x̃) in coker1∼=H1(X ss
Fac

p
, kλ)m, we get8∗(x)=

(1−Fr2
p)(x̃). However, this is nothing but the image of x ∈H1(XFac

p
, kλ)G

′

m via the coboundary map 8∗m(a).
This finishes the proof of claim, hence also the proof of Proposition 4.8. �

Recall that we have, for each a ∈B, an algebraic correspondence

Sh(G∅a,∅′a, K p)Fp2g
πa
←− Z∅,∅(a)

ia
−→ Sh(G, K p)Fp2g .

Let 3 be OEλ , OE/λ or Qac
` . We define Gysa(3) to be the composite map

H1(Sh(G∅a,∅′a, K p)Fac
p
,3)m

π∗a−→ H1(W∅,∅(a)Fac
p
,3)m

Gysin
−−→ Hg(Sh(G, K p)Fac

p
,3((g− 1)/2))m,

where the first map is an isomorphism since πa is a (g−1)/2-th iterated P1-fibrations, and the second
map is the Gysin map induced by the closed immersion ia. Taking sum, we get a map

Gys(3) :=
∑
a

Gysa(3) :
⊕
a∈B

H1(Sh(G∅a,∅′a, K p)Fac
p
,3)m→ Hg(Sh(G, K p)Fac

p
,3((g− 1)/2))m.
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Proposition 4.10. Under the assumption of Theorem 4.7, we have that

(1) the map Gys(3) is injective for 3=OEλ,OE/λ,Qac
` ;

(2) the induced map

Gys(OE/λ)/m :
⊕
a∈B

H1(Sh(G∅a,∅′a, K p)Fac
p
,OE/λ)/m→ Hg(Sh(G, K p)Fac

p
,OE/λ((g− 1)/2))/m

is injective.

Before giving the proof of the proposition, we introduce some notation. Let Rm be the set of all
automorphic representations that contribute to Hg(Sh(G, K p)Fac

p
,3((g− 1)/2))m. Then it is the same as

the set of all automorphic representations that contribute to H1(Sh(G∅a,∅a, K p)Fac
p
,3)m for every a by

the Jacquet–Langlands correspondence. It is finite and contains 5. We may enlarge E such that every
automorphic representation 5′ ∈ Rm is defined over E. Fix an embedding Eλ ↪→Qac

` . Let α5′, β5′ ∈ Zac
`

be the eigenvalues of ρ5′,λ(σp), where Zac
` denotes the ring of integers of Qac

` . By Remark 4.6(2), we
may assume that α2

5′ and β2
5′ are respectively congruent to 1 and p2g (modulo the maximal ideal of Zac

` );
in particular, α5′/β5′ is not congruent to any i-th root of unity for 1≤ i ≤ 2g by Definition 4.5(L2).

Proof of Proposition 4.10. Following [Tian and Xiao 2019], we consider the composite map

Resa(3) : Hg(Sh(G, K p)Fac
p
,3)m

i∗a−→ Hg(W∅,∅(a)Fac
p
,3)m

πa!
−→ H1(Sh(G∅a,∅′a, K p),3)m

for each a ∈B, and put

Res(3) :=
⊕
a∈B

Resa(3) : Hg(Sh(G, K p)Fac
p
,3)m→

⊕
a∈B

H1(Sh(G∅a,∅′a, K p)Fac
p
,3)m.

To prove that Gys(3) is injective, it suffices to show that the composite map Res(3) ◦Gys(3), which is
an endomorphism of

⊕
a∈B H1(Sh(G∅a,∅′a, K p)Fac

p
,3)m, is injective.

It follows from Lemma 4.4 that

Hg(Sh(G, K p)Fac
p
,3)m = Hg(Sh(G, K p)Fac

p
,OEλ)m⊗OEλ

3, (4-10)

and it is a finite free 3-module. Note that we have

Hg(Sh(G, K p)Fac
p
,Qac

` )m =
⊕
5′∈Rm

Hg(Sh(G, K p)Fac
p
,Qac

` )[5
′∞
]

as modules over Z[TR∪{p}
]. Then it was shown in the proof of [Tian and Xiao 2019, Theorem 4.4(2)] that

on each 5′∞-isotypic component, det(Res(3) ◦Gys(3)) is equal to a power of

±p(g−1)/2·( g
(g−1)/2)[(α5′ −β5′)

2/(α5′β5′)]
tg,(g−1)/2

for 3=Qac
` , where tg,(g−1)/2 =

∑(g−1)/2−1
i=0

(g
i

)
. By (4-10), it is clear that the same formula also holds for

3=OEλ . Therefore, we see that det(Res(OEλ)◦Gys(OEλ)) is nonvanishing modulo λ by Definition 4.5(L2).
It follows that Res(3) ◦Gys(3) is an isomorphism for all choices of 3, hence Gys(3) is injective and
(1) follows.
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The above argument also implies (2). �

We can now finish the proof of Theorem 4.7. The assertion that G′ acts trivially on 0(B ×

Sh(GSmax, K p)(Fac
p ),OE/λ)m follows from Theorem 3.13(2) and Definition 4.5(L3). We focus now

on the surjectivity of 8m (4-4).
We write kλ =OE/λ for simplicity as before. Under the canonical isomorphism

0(B×Sh(GSmax, K p)(Fac
p ), kλ)m ∼=

⊕
a∈B

0(Sh(GSmax, K p)Fac
p
, kλ)m,

the map (4-5) is identified with the composite map

⊕
a∈B 0(Sh(GSmax, K p)Fac

p
, kλ)/m

⊕a8m(a)/m
//

8m/m ,,

⊕
a∈B H1(Fp2g ,H1(Sh(G∅a,∅′a, K p)Fac

p
, kλ(1)/m)

Gys
��

H1(Fp2g ,Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m),

where the vertical map Gys is simply H1(Fp2g , (Gys(kλ)/m)(1)). Here, we use the fact that the canonical
maps

H1(Fp2g ,H1(Sh(G∅a,∅′a, K p)Fac
p
, kλ(1))/m→ H1(Fp2g ,H1(Sh(G∅a,∅′a, K p)Fac

p
, kλ(1)/m)

H1(Fp2g ,Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2)))/m→ H1(Fp2g ,Hg(Sh(G, K p)Fac

p
, kλ((g+ 1)/2))/m)

are both isomorphisms since H2(Fp2g ,−) vanishes. By Proposition 4.8, the map⊕a8m(a)/m is surjective.
To prove that 8m/m is surjective, it suffices to show that so is Gys.

First, we have a description of H1(Sh(G∅a,∅′a, K p), kλ(1))/m in terms of ρ5,λ, which is the residue rep-
resentation of (4-1) as we recall. Since ρ5,λ is absolutely irreducible by Remark 4.2(1), the kλ[GF ]-module
H1(Sh(G∅a,∅a, K p)Qac, kλ(1))/m is isomorphic to r copies of ρ∨5,λ(1)∼= ρ5,λ with r ≥ dim(5∞B )

K by
[Boston et al. 1991] and the theory of old forms. By Remark 4.6(2), one has an isomorphism of
kλ[G′]-modules

ρ5,λ ∼= kλ⊕ kλ(1).

In particular, H1(Sh(G∅a,∅a, K p)Fac
p
, kλ(1))/m is the direct sum of the eigenspaces of σ 2

p with eigenval-
ues 1 and p2g both with multiplicity r .

By [Brylinski and Labesse 1984], Remarks 4.2(4) and 4.6(3) and the similar argument as above,
the (generalized) eigenvalues of σ 2

p on Hg(Sh(G, K p)Fac
p
,Qac

` ((g+ 1)/2))/m are pg(g+1)α−2i
5 β

−2(g−i)
5

with multiplicity
(g

i

)
dim(5∞B )

K . Note that pg(g+1)α−2i
5 β

−2(g−i)
5 has image pg(1+2i−g) in Fac

` , which are
distinct for different i under Definition 4.5(L2). For every µ ∈ kλ, let

(Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)σ

2
p≈µ ⊆ Hg(Sh(G, K p)Fac

p
, kλ((g+ 1)/2))/m
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denote the generalized eigenspace of σ 2
p with eigenvalue µ, that is, the maximal subspace annihilated by

(σ 2
p −µ)

`N
for N = 1, 2, . . .. Then by the base change property (4-10), one has a canonical decomposition

Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m=

g⊕
i=0

(Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)σ

2
p≈pg(1+2i−g)

,

where the i-th direct summand has dimension
(g

i

)
dim(5∞B )

K over kλ. The direct summand with σ 2
p ≈ 1

corresponds to the term with i = (g− 1)/2, and it has dimension
( g
(g−1)/2

)
dim(5∞B )

K . Note that

H1(Fp2g , (Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)σ

2
p≈pg(1+2i−g)

)= 0

for i 6= (g− 1)/2. It follows that the natural map

(Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)σ

2
p≈1
→ H1(Fp2g ,Hg(Sh(G, K p)Fac

p
, kλ((g+ 1)/2))/m) (4-11)

is surjective. One gets a commutative diagram:⊕
a∈B(H

1(Sh(G∅a,∅′a,K
p)Fac

p
, kλ(1))/m)σ

2
p=1

(Gys(kλ)/m)(1)∼=

��

∼=
//
⊕

a∈B H1(Fp2g ,H1(Sh(G∅a,∅′a,K
p)Fac

p
, kλ(1))/m)

Gys
��

(Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)σ

2
p≈1 (4-11)

// H1(Fp2g ,Hg(Sh(G, K p)Fac
p
, kλ((g+ 1)/2))/m)

Here, (Gys(kλ)/m)(1) is injective by Proposition 4.10(2), and we deduce that it is an isomorphism for
dimension reasons. It follows immediately that Gys is surjective. This finishes the proof of Theorem 4.7.

5. Selmer groups of triple product motives

In this section, we study Selmer groups of certain triple product motives of elliptic curves in the context
of the Bloch–Kato conjecture, which can be viewed as an application of the level raising result established
in the previous section.

From now on, we fix a cubic totally real number field F , and let F̃ be the normal closure of F in C.

5A. Main theorem. Let E be an elliptic curve over F . We have the Q-motive ⊗ IndF
Q h1(E) (with

coefficient Q) of rank 8, which is the multiplicative induction of the F-motive h1(E) to Q. The cubic-
triple product motive of E is defined to be

M(E) := (⊗ IndF
Q h1(E))(2).

It is canonically polarized. For every prime p, the p-adic realization of M(E), denoted by M(E)p,
is a Galois representation of Q of dimension 8 with Qp-coefficients. In fact, up to a twist, it is the
multiplicative induction from F to Q of the rational p-adic Tate module of E .

Now we assume that E is modular. Then it gives rise to an irreducible cuspidal automorphic represen-
tation 5E of (ResF/Q GL2,F )(A) with trivial central character. In particular, the set 6(5E , τ ) defined in
Section 1C contains∞. We have L(s,M(E))= L

(
s+ 1

2 ,5E , τ
)

(again see Section 1C).
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Put 1[ :=6(5E , τ )−{∞}. Let 1 (resp. 1′, 1′′) be the set of primes of F above 1[ that is of degree
either 1 or 3 (resp. unramified of degree 2, ramified of degree 2). We write the conductor of E as cc′c′′c+

such that c (resp. c′, c′′, c+) has factors in 1 (resp. 1′, 1′′, elsewhere).

Assumption 5.1. We consider the following assumptions:

(E0) The cardinality of 6(5E , τ ) is odd and at least 3.

(E1) For every finite place w of F over some prime in 6(5E , τ ), the elliptic curve E has either good or
multiplicative reduction at w.

(E2) For distinct embeddings τ1, τ2 : F ↪→ F̃ , the F̃-elliptic curve E ⊗F,τ1 F̃ is not isogenous to any
(possibly trivial) quadratic twist of E ⊗F,τ2 F̃ .

Remark 5.2. Assumption 5.1(E0) implies that 1 is not empty. Assumption 5.1(E1) implies that E has
multiplicative reduction at w ∈1. Together, they imply that the geometric fiber E⊗F Fac does not admit
complex multiplication.

We now assume that E is modular and satisfies Assumption 5.1. Then Assumption 5.1(E1) implies
that cc′ is square-free, and c′′ =OF by [Liu 2019, Lemma 4.8]. We take an ideal r of OF contained in
Nc+ for some integer N ≥ 4 and coprime to 1[.

Assumption 5.1(E0) implies that 1 is a nonempty finite set of even cardinality. Let B be a quaternion
algebra over F , unique up to isomorphism, with ramification set 1, and O ⊆ B be an OF -maximal
order. Let r0 and r1 be two ideals of OF such that r0, r1 and 1 are mutually coprime. We recall the
definition of the Hilbert modular stack X (1)r0,r1 over Spec(Z[NF/Q(r0r1)

−1(disc F)−1
]) defined in [Liu

2019, Definition B.3]. For every Z[NF/Q(r0r1)
−1(disc F)−1

]-scheme T , X (1)r0,r1(T ) is the groupoid of
quadruples (A, ιA,CA, αA) where

• A is a projective abelian scheme over T ;

• ιA : O→ End(A) is an injective homomorphism satisfying

Tr(ιA(b)|Lie(A))= TrF/Q Tr◦B/F (b)

for all b ∈O;

• CA is an O-stable finite flat subgroup of A[r0] which is étale locally isomorphic to (OF/r0)
2 as

O/r0O ∼=M2(OF/r0)-modules;

• αA : (OF/r1)
2
T → A is an O-equivariant injective homomorphism of group schemes over T .

If r1 = OF , αA is trivial and we usually omit it from the notation. If r1 is contained in NOF for some
integer N ≥ 4, then X (1)r0,r1 is a scheme.

We put Xr := X (1)c′,r. Let D(r, c+) be the set of all ideals of OF containing r(c+)−1 as in [Liu 2019,
Notation A.5]. For every d ∈D(r, c+), we have the following composite map

δ̃d : Xr = X (1)c′,r→ X (1)c′r,OF
δd
−→ X (1)c′c+,OF (5-1)
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which is a finite étale morphism of Deligne–Mumford stacks, where δd is the degeneracy map defined as
follows. If (A, ιA,CA) is an object of X (1)c′r,OF (T ) for some Spec(Z[NF/Q(c

′r)−1 disc(F)−1
])-scheme

T , then its image by δd is given by the object (A′, ιA′,CA′), where

• A′ is the quotient A by the finite flat subgroup CA[d],

• ιA′ is the induced O-action on A′ from A,

• CA′ is the unique subgroup scheme of CA/CA[d] étale locally isomorphic to (OF/c
′c+)2.

See [Liu 2019, Section B.1] for more details.

Remark 5.3. The requirement that |6(5E , τ )| ≥ 3, that is, 1 6= ∅ is not essential. The reason we
require this is not to make the relevant Shimura variety Xr proper. In fact, it is used to obtain a refinement
(Proposition 5.13) of Theorem 4.7 so that the map (4-5) is also injective in order to deduce Lemma 5.18
which is needed for the first explicit reciprocity law back in [Liu 2019], through a trick using Jacquet–
Langlands correspondence. However, it is not clear to us what are optimal conditions for the map (4-5) to
be injective.

From now on, we fix an element w ∈ 1. Let B be the totally definite quaternion algebra over F ,
ramified exactly at 1 \ {w}. Put

Yr := B×\B̂×/K0,1(wc′, r)

where K0,1(wc′, r)⊆ B̂× is an open compact subgroup defined similarly as in Example 2.12.
For every ideal s contained in c+, we let R(s) be the union of primes dividing s and primes above 1[.

In particular, we have the homomorphism

φs := φ
R(s)
5E
: Z[TR(s)

] → Z

such that φs(Tq)= aq(E) and φs(Sq)= 1 for every prime q 6∈ R(s). Here we recall that TR is the Hecke
monoid away from R [Liu 2019, Notation 3.1].

Let p be a rational prime.5 Let ms
p be the kernel of the composite map Z[TR(s)

]
φs
−→ Z→ Fp. We also

have an induced Galois representation

ρ5E ,p : GF → GL(Tp(E))∼= GL2(Zp),

where Tp(E) is the p-adic Tate module of E . Put ρ5E ,p := ρ5E ,p mod p.

Definition 5.4 (perfect pair). We say that:

(1) p is generic if (IndQ
F ρ5E ,p)|GF̃

has the largest possible image, which is isomorphic to G(SL2(Fp)×

SL2(Fp)×SL2(Fp)).

(2) The pair (p, r) is s-clean, for an ideal s of OF contained in r, if:

(a) The space 0(Yr,Zp)/m
s
p has dimension |D(r, c+)| over Fp.

5The readers may notice that we switch the roles of p and ` (or λ) in Section 5 from Section 4. This is due to a different
convention in the study of Selmer groups.
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(b) H3(X (1)c′c+,OF ⊗Qac,Zp)/m
s
p has dimension 8 over Fp, and the canonical map⊕

d∈D(r,c+)

δ̃d
∗
: H3(Xr⊗Qac,Zp)/m

s
p→

⊕
d∈D(r,c+)

H3(X (1)c′c+,OF ⊗Qac,Zp)/m
s
p

is an isomorphism.

(3) The pair (p, r) is perfect if:

(a) p ≥ 11 and p 6= 13, 19.
(b) p is coprime to1[ and r·|(Z/r∩Z)×|·µ(r, c+)·|Cl(F)r|·disc F , where disc F is the discriminant

of F , Cl(F)r is the ray class group of F with respect to r, and

µ(r, c+)= NF/Q(r(c
+)−1)

∏
q

(
1+

1
NF/Q(q)

)
with q running through the prime ideals of OF dividing r but not c+.

(c) p is generic.
(d) It is r-clean.
(e) ρ5E ,p is ramified at w.

Remark 5.5. Note that the condition that p is generic implies that the condition (LIIndρ5E ,p
) in [Dimitrov

2005, Proposition 0.1] is satisfied. Consequently, H3(Xr⊗Qac,Zp)ms
p

is finite free over Zp for any ideal
s of OF containing r by [loc. cit., Theorem 0.3].

Let B[ be a quaternion algebra over Q, unique up to isomorphisms, with ramification set 1[ so that
B ∼= B[⊗Q F . We have similarly a moduli scheme X [

r := X (1[)Z,r∩Z attached to B[. Then we obtain a
canonical morphism

θ : X [
r → Xr

over Z[(r disc F)−1
] similar to [Liu 2019, (4.1.1)]. It is a finite morphism. Denote by 2p,r the image of

θ∗[X
[
r ⊗Q] ∈ CH2(Xr⊗Q) under the Abel–Jacobi map

AJp : CH2(Xr⊗Q)→ H1(Q,H3(Xr⊗Qac,Qp(2))/ kerφr).

By [loc. cit., Lemma 4.6], we have H1(Qv,M(E)p) = 0 for all primes v - p. Thus, we recall the
following definition.

Definition 5.6 [Bloch and Kato 1990; Liu 2019, Definition 4.7]. The Bloch–Kato Selmer group for the
representation M(E)p is the subspace H1

f (Q,M(E)p) consisting of classes s ∈ H1(Q,M(E)p) such that

locp(s) ∈ H1
f (Qp,M(E)p) := ker[H1(Qp,M(E)p)→ H1(Qp,M(E)p⊗Qp Bcris)].

Theorem 5.7. Let E be a modular elliptic curve over F satisfying Assumption 5.1. For a rational prime
p, if there exists a perfect pair (p, r) (Definition 5.4) such that 2p,r 6= 0, then

dimQp H1
f (Q,M(E)p)= 1.
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Remark 5.8. By an argument similar to [Liu 2019, Lemma 4.10], given an ideal r of OF contained in
Nc+ for some integer N ≥ 4 and coprime to 1[, there exists a finite set PE,r of rational primes such that
(p, r) is a perfect pair for every p 6∈ PE,r. An upper bound for PE,r can be computed effectively.

Remark 5.9. Assuming the (conjectural) triple product version of the Gross–Zagier formula and the
Beilinson–Bloch conjecture on the injectivity of the Abel–Jacobi map, the following two statements
should be equivalent:

• L ′(0,M(E)) 6= 0 (note that L(0,M(E))= 0 by Assumption 5.1(E0)).

• There exists some r0 such that for every other r contained in r0, we have 2p,r 6= 0 as long as (p, r)
is a perfect pair.

Here, we need to use (the proof of) [Liu 2019, Proposition 4.9]. Then Theorem 5.7 implies that if
L ′(0,M(E)) 6= 0, that is, ords=0 L(s,M(E)) = 1, then dimQp H1

f (Q,M(E)p) = 1 for all but finitely
many p.

5B. A refinement of arithmetic level raising. From now on, we fix a perfect pair (p, r) (Definition 5.4),
and put ms

:=ms
p for short.

Definition 5.10. Let ν ≥ 1 be an integer. We say that a prime ` is (pν, r)-admissible if:

(A1) ` is inert in F (with l= `OF ), unramified in F̃ , and coprime to R(r)∪ {2, p}.

(A2) (p, r) is rl-clean.

(A3) p -(`18
− 1)(`6

+ 1).

(A4) φr(Tl)≡ `
3
+ 1 mod pν .

Notation 5.11. For now on, we fix an integer ν ≥ 1 and put 3 := Z/pν . Let ρ : GF → GL(Nρ) be
the reduction of ρ5E ,p modulo pν , where Nρ = Tp(E) ⊗ 3. We have the multiplicatively induced
representation ρ] : GQ→ GL(N]

ρ) with N]
ρ = N⊗3

ρ .

Lemma 5.12. Let ` be a (pν, r)-admissible prime. Then the cohomology groups

H1
unr(Q`,H3(X (1)c′c+,OF ⊗Qac,3(2))/ kerφrl), H1

unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl)

are free 3-modules of ranks 1 and |D(r, c+)|, respectively.

Proof. By Definition 5.10(A2), Nakayama’s lemma and [Brylinski and Labesse 1984], we have isomor-
phisms of 3[GQ`

]-modules

H3(X (1)c′c+,OF ⊗Qac
` ,3(2))/ kerφrl ∼= N]

ρ(−1), H3(Xr⊗Qac
` ,3(2))/ kerφrl ∼= N]

ρ(−1)⊕|D(r,c
+)|.

If σl ∈ GF denotes an arithmetic Frobenius element at l, then ρ(σl) is conjugate to
( 1

0
0
`3

)
by

Definition 5.10(A4). Hence, the 3[GQ`
]-module N]

ρ(−1) is unramified and isomorphic to 3(−1)⊕
3⊕ R⊕3(1)⊕ R(1)⊕3(2), where R ∼= 3⊕2 is the rank 2 unramified representation of GQ`

with
the action of the arithmetic Frobenius σ` given by

( 0
1
−1
−1

)
. By Definition 5.10(A3), it follows that

H1
unr(Q`,N]

ρ(−1))∼= H1
unr(Q`,3), which is free of rank 1 over 3. �
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Let ` be a (pν, r)-admissible prime. Then Xr⊗Z(`) is canonically isomorphic to Sh(G, K0,1(c
′, r)`)

with G = ResF/Q B× considered in Section 2E (See Remark 2.5 on the issue of polarizations and
Example 2.12 for the open compact subgroup K0,1(c

′, r)), and X [
r ⊗Z(`) is canonically isomorphic to

Sh(G[, K0,1(Z, r∩Z)`)with G[
= (B[)×. Put Xr :=Xr⊗F`. As before, we denote by X sp

r the superspecial
locus of Xr. By Theorem 3.16, we may identify X sp

r (F
ac
` ) with Sh(GSmax, K0,1(c

′, r)`)(Fac
` ).

The following proposition is a refinement of Theorem 4.7 in our situation.

Proposition 5.13. Let ` be a (pν, r)-admissible prime. Then the level raising map

0(B× X sp
r (F

ac
` ),3)/ kerφrl→ H1(F`6,H3(Xr⊗ Fac

` ,3(2))/ kerφrl) (5-2)

defined similarly as (4-5) is an isomorphism.

Proof. In the proof of Lemma 5.12, we have seen that, as a 3[GF`]-module, H3(Xr⊗ Fac
` ,3(2))/ kerφrl

is isomorphic to |D(r, c+)|-copies of

N]
ρ(−1)∼=3(−1)⊕3⊕R⊕3(1)⊕R(1)⊕3(2).

We get thus an isomorphism of 3[Gal(F`6/F`)]-modules

H1(F`6,H3(Xr⊗ Fac
` ,3(2))/ kerφrl)∼= H1(F`6,3⊕R)⊕|D(r,c

+)| ∼= (3⊕R)⊕|D(r,c
+)|, (5-3)

which is free of rank 3|D(r, c+)| over 3. By Theorem 4.7 and Nakayama’s lemma, the map (5-2) is
surjective. Thus it suffices to show that 0(X sp

r (F
ac
` ),3)/ kerφrl is a free 3-module of rank |D(r, c+)|.

By Nakayama’s lemma, it suffices to show that 0(X sp
r (F

ac
` ), Fp)/m

rl has dimension |D(r, c+)| over Fp.
Recall that so far, we have three quaternion algebras over F in the story: B ramified at 6∞∪1\{w}, B

ramified at 1, and BSmax ramified at 6∞∪{l}∪1. Now we let B ′ be the fourth quaternion algebra over F
ramified at 6∪{l}∪1\{w} where 6 is a fixed subset of 6∞ of cardinality 2. Let C be the corresponding
proper Shimura curve over F (with the embedding into Qac given by the unique element in 6∞ \6) of
the similarly defined level K0,1(wc′, r). As in Step 4 of the proof of [Liu 2019, Proposition 3.32], C has
a natural strictly semistable model at l. The corresponding weight spectral sequence provides us with a
canonical isomorphism

0(Yr,Zp)/m
rl
' H1

sing(Q`6,H1(C ⊗Qac,Zp)/m
rl)

as in the proof of [Liu 2019, Proposition 3.32]. By Definition 5.10(A2), H1
sing(Q`6,H1(C⊗Qac,Zp)/m

rl)

has dimension |D(r, c+)|. By [Boston et al. 1991], we conclude that H1(C ⊗Qac,Zp)/m
rl is isomorphic

to ρ⊕|D(r,c
+)|

5E ,p as an Fp[GF ]-module. In particular, H1(C ⊗Qac,Zp)/m
rl has dimension 2|D(r, c+)|.

Now consider the semistable reduction of C at w. Let C0 be the proper Shimura curve over F associated
to B ′ of the level K0,1(c

′, r). Then H1(C0⊗Qac,Zp)/m
rl
= 0 by Definition 5.4(3e). Therefore, we have

a canonical isomorphism

H1(Iw,H1(C ⊗Qac,Zp)/m
rl)' 0(X sp

r (F
ac
` ), Fp)/m

rl
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from the weight spectral sequence, as the supersingular set of C at w is also X sp
r (F

ac
` ). Therefore,

0(X sp
r (F

ac
` ), Fp)/m

rl has dimension |D(r, c+)|. The proposition follows. �

5C. Second explicit reciprocity law. Let ` be a (pν, r)-admissible prime, and l = `OF . Recall that
6∞ denotes the set of archimedean places of F . For every ideal s of OF coprime to 1 ∪ {l}, let
S`,s := S(6∞∪1∪{l})s be the set of isomorphism classes of oriented OF -Eichler orders of discriminant
6∞∪1∪{l} and level s (see [Liu 2019, Definition A.1]). It has an action by GF` such that the arithmetic
Frobenius σ` acts by switching the orientation at l.

Lemma 5.14. There is a canonical isomorphism X sp
r (F

ac
` )/Cl(F)r ∼= S`,c′r. Moreover, the induced action

of GF` on S`,c′r factors through Gal(F`2/F`) and is given by the map op` switching the orientation at l.

Proof. It is a special case of [loc. cit., Proposition A.13(1)]. �

Denote by ψ : X sp
r (F

ac
` )→ S`,c′r the canonical projection from the above lemma.

Lemma 5.15. The canonical map

ψ∗ : 0(S`,c′r,3)/ kerφrl→ 0(X sp
r (F

ac
` ),3)/ kerφrl

is an isomorphism.

Proof. It follows similarly to [loc. cit., Lemma 3.24]. �

Proposition 5.16. Under the notation above, the following statements hold:

(1) The action of op` on 0(S`,c′r,3)/ kerφrl is trivial.

(2) There exists a unique isomorphism 8 such that the following diagram is commutative, where the
lower left vertical arrow is the diagonal map:

0(S`,c′r,3)/ kerφrl 8
//

ψ∗

��

H1
unr(Q`,H3(Xr⊗Qac,3(2)/ kerφrl)

∼=

��

0(X sp
r (F

ac
` ),3)/ kerφrl

��

H1
unr(Q`6,H3(Xr⊗Qac,3(2)/ kerφrl))Gal(Q

`6/Q`)
� _

��

0(B× X sp
r (F

ac
` ),3)/ kerφrl

(5-2)
// H1

unr(Q`6,H3(Xr⊗Qac,3(2)/ kerφrl))

Proof. Consider the action of Gal(Q`6/Q`) on both sides of the isomorphism

0(B×S`,c′r,3)/ kerφrl ψ∗
−→ 0(B× X sp

r (F
ac
` ),3)/ kerφrl→ H1(F`6,H3(Xr⊗ Fac

` ,3(2))/ kerφrl).

By (5-3), we obtain an isomorphism

(0(S`,c′r,3)/ kerφrl)op`=1 ∼= H1
unr(Q`,H3(Xr⊗Qac,3(2)/ kerφrl).
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By Lemma 5.12, H1
unr(Q`,H3(Xr⊗Qac,3(2)/ kerφrl) is a free 3-module of rank |D(r, c+)|. Therefore,

the inclusion
(0(S`,c′r,3)/ kerφrl)op`=1

⊆ 0(S`,c′r,3)/ kerφrl

is an isomorphism as both sides are free 3-module of rank |D(r, c+)|. Thus both (1) and (2) follow. �

Denote by 2νp,r the image of θ∗[X
[
r ⊗Q] ∈ CH2(Xr⊗Q) under the Abel–Jacobi map

AJp : CH2(Xr⊗Q)→ H1(Q,H3(Xr⊗Qac,3(2))/ kerφrl).

For any ideal s⊆OF , let S[`,s = S({∞}∪1[ ∪ {`})s∩Z denote the set of isomorphism classes of oriented
Z-Eichler orders of discriminant {∞}∪1[ ∪ {`} and level s∩Z [Liu 2019, Definition A.1]. We have a
natural map given by extension of scalars

ϑ : S[`,r→ S`,c′r. (5-4)

We have a bilinear pairing ( · , · ) : 0(S`,c′r,Z)× 0(S`,c′r,Z)→ Z defined by the formula ( f1, f2) =∑
h∈S`,c′r f1(h) f2(h). It induces a perfect pairing

( · , · ) : 0(S`,c′r,3)/ kerφrl×0(S`,c′r,3)[kerφrl] →3.

Theorem 5.17 (second explicit reciprocity law). Let ` be an (pν, r)-admissible prime. Then loc`(2νp,r)
lies in H1

unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl), and we have

(8−1 loc`2νp,r, f )=
|(Z/r∩Z)×|

(`− 1)2|Cl(F)r|
·

∑
x∈S[`,r

f (ϑ(x))

for every f ∈ 0(S`,c′r,3)[kerφrl]. Here, 8 is the isomorphism in Proposition 5.16.

We note that (`− 1)2|Cl(F)r| is invertible in 3.

Proof. The fact that 2νp,r is unramified follows from the fact that both Xr and X
[
r have good reduction at `.

Recall that Xr=Xr⊗F`. Similarly, we put X [
r :=X [

r⊗F`. Then we have the morphism θ : X [
r→ Xr over F`.

Let 2 be the image of θ∗[X
[
r] ∈ CH2(Xr) in the Galois cohomology H1(F`,H3(Xr⊗ Fac

` ,3(2)/ kerφrl)
defined similarly as for 2νp,r. Then under the canonical identification

H1(F`,H3(Xr⊗ Fac
` ,3(2))/ kerφrl)∼= H1

unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl),

2 coincides with loc`2νp,r.
From Proposition 5.13, we have an isomorphism

0(B× X sp
r (F

ac
` ),3)/ kerφrl =

⊕
a∈B

0(X sp
r (F

ac
` ),3)/ kerφrl ∼=−→ H1(F`6,H3(Xr⊗ Fac

` ,3(2))/ kerφrl).

For each a ∈B, we denote by

9a : H1(F`6,H3(Xr⊗ Fac
` ,3(2))/ kerφrl)→ 0(X sp

r (F
ac
` ),3)/ kerφrl
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the map obtained by taking the inverse of the previous isomorphism followed by the canonical projection
to the direct summand indexed by a. By a similar proof to [Liu 2019, Proposition 4.3], we have the
following commutative diagram:

X [,sp
r (Fac

` )
θ
//

ψ[

��

X sp
r (F

ac
` )

ψ

��

S[`,r
ϑ

// S`,c′r

where ψ[ is obtained similarly as ψ , but for X [
r . Therefore, the theorem will follow if we can show that

for every f ∈ 0(X sp
r (F

ac
` ),3)[kerφrl], we have

(9a2, f )=
1

(`− 1)2
∑

x∈X [,sp
r (Fac

` )

f (θ(x)) (5-5)

since ψ is of degree |Cl(F)r| by Lemma 5.14 and similarly ψ[ is of degree |(Z/r∩Z)×|.
For every a ∈B, we have the following commutative diagram as (4-6):

W∅,∅(a)
� � //

��

Z∅,∅(a)
� � ia

//

πa

��

Sh(G)F
`6
∼= Xr⊗ F`6

X sp
r ⊗ F`6

∼=
// Sh(GSmax)F`6

� � ja
// Sh(G∅a,∅a)F`6

where the square is Cartesian. Here, we omit the away-from-` level structure K0,1(c
′, r)` in the notation.

However, in this case, Z∅,∅(a) coincides with the Goren–Oort divisor Sh(G)F
`6 ,τ (a)

for some τ(a) ∈6∞
determined by a. Thus it is easy to see that the (scheme-theoretical) intersection 0θ ∩ pr∗2 Z∅,∅(a) is
contained in X [,sp

r × X sp
r , where 0θ ⊆ X [

r × Xr is the graph of θ and pr2 : X [
r × Xr→ Xr is the canonical

projection. More precisely, it is the graph of the restricted morphism θ : X [,sp
r → X sp

r . Therefore, we have

πa∗i∗aθ∗[X
[
r] = θa∗[X

[,sp
r ⊗ F`6] (5-6)

in CH1(Sh(G∅a,∅a)F`6 ), where θa is the composite morphism

X [,sp
r ⊗ F`6

θ
−→ X sp

r ⊗ F`6 ∼= Sh(GSmax)F`6
ja
−→ Sh(G∅a,∅a)F`6 .

Recall that we have two morphisms

Gysa = ia! ◦π∗a : H1(Sh(G∅a,∅a)Fac
`
,3(1))/ kerφrl→ H3(Xr⊗ Fac

` ,3(2))/ kerφrl,

Resa = πa! ◦ i∗a : H3(Xr⊗ Fac
` ,3(2))/ kerφrl→ H1(Sh(G∅a,∅a)Fac

`
,3(1))/ kerφrl.

We write B= {a1, a2, a3} with ai−1 = σ(ai ) for all i viewed as elements in Z/3Z, where σ(ai ) means
the translate of ai by the Frobenius as defined just above Definition 3.15. By [Tian and Xiao 2019,
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Theorem 4.3] and the proof of [loc. cit., Theorem 4.4], the intersection matrix (Resai ◦Gysa j
)1≤i, j≤3 is

given by −2` `η−1
1 `η3

`η1 −2` `η−1
2

`η−1
3 `η2 −2`

 ,
where

ηi : H1(Sh(G∅ai ,∅ai
)Fac
`
,3(1))/ kerφrl→ H1(Sh(G∅ai+1 ,∅ai+1

)Fac
`
,3(1))/ kerφrl

is a certain normalized link morphism introduced in [loc. cit., Section 2.25] which commutes with
the Galois action and such that the product ηi+2ηi+1ηi for i ∈ Z/3Z is the endomorphism on
H1(Sh(G∅ai ,∅ai

)Fac
`
,3(1))/ kerφrl given as follows. Let σ` ∈ GF` denotes an arithmetic Frobenius

element. By [Brylinski and Labesse 1984] and Definition 5.10(A4), one has a decomposition of
3[GF

`3
]-modules

H1(Sh(G∅ai ,∅ai
)Fac
`
,3(1))/ kerφrl =M1

i ⊕M`3

i ,

where each Mλ
i for λ= 1, `3 is a finite free 3-module on which the action of σ 3

` −λ is nilpotent. Then the
action of ηi+2ηi+1ηi on M1

i (respectively on M`3

i ) is the multiplication by `−3 (respectively `3). Since the
roles of ai are symmetric, H1(Sh(G∅ai ,∅ai

)Fac
`
,3(1))/ kerφrl for i = 1, 2, 3 must be isomorphic. Thus,

we can identify Mλ
i with λ = 1, `3 for different i and write it commonly as Mλ in such a way that the

morphisms ηi are identified with the same endomorphism η on M1
⊕M`3

, where η acts by `−1 on M1

and by ` on M`3
, respectively. With these identification, the intersection matrix writes as

(Resai ◦Gysa j
)1≤i, j≤3 = `

−2 η−1 η

η −2 η−1

η−1 η −2

 . (5-7)

Note also the isomorphism H1(F`6,H1(Sh(G∅ai ,∅ai
)Fac
`
,3(1))/ kerφrl)∼= H1(F`6,M1) on which η acts

by the scalar `−1.
By the proof of Theorem 4.7 in Section 4B, we have a commutative diagram

H1(F`6,H3(Xr⊗ Fac
` ,3(2))/ kerφrl)

9ai
��

H1(F`6,H1(Sh(G∅ai ,∅ai
)Fac
`
,3(1))/ kerφrl))

Gysai
oo

0(X sp
r (F

ac
` ),3)/ kerφrl 0(Sh(GSmax)(F

ac
` ),3)/ kerφrl

∼=
oo

8ai

OO

where the bottom isomorphism is the one induced by the identification X sp
r ⊗ F`6 ∼= Sh(GSmax)F`6 , and

8ai is the map induced from (4-7). We claim that 8ai is an isomorphism. Indeed, by Proposition 4.8 and
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Nakayama’s lemma, 8ai is surjective. On the other hand, we have a commutative diagram

⊕3
i=1 0(Sh(GSmax)(F

ac
` ),3)/ kerφrl

⊕i8ai
//

(5-2) ,,

⊕3
i=1 H1(F`6,H1(Sh(G∅ai ,∅ai

)Fac
`
,3(1))/ kerφrl))∑

i Gysai
��

H1(F`6,H3(Xr⊗ Fac
` ,3(2))/ kerφrl)

where the composite map is an isomorphism by Proposition 5.13. It follows that each 8ai is injective,
hence an isomorphism.

Now, we have 2=
∑3

i=1 Gysai
◦8ai ◦9ai (2) and

8−1
a1
◦Resa1 2= `(−29a1(2)+ `9a2(2)+ `

−19a3(2))= (`− 1)29a1(2)

by (5-7). Here, the last equality uses 9a1(2)=9a2(2)=9a3(2) by symmetry. On the other hand, by
(5-6), we have

8−1
a ◦Resa2= θ∗1[

for all a ∈B, where 1[ is the characteristic function on X [,sp
r (Fac

` ). Thus (5-5) follows immediately, and
the theorem is proved. �

The following lemma will be needed in the next section.

Lemma 5.18. When s= rl, the map⊕
d∈D(r,c+)

δd
∗
: 0(S`,c′r,3)/ kerφs→

⊕
d∈D(r,c+)

0(S`,c′c+,3)/ kerφs

is an isomorphism of free 3-modules of rank |D(r, c+)|.

Proof. The idea of proof is similar to [Liu 2019, Lemma 3.33]. Recall that we have morphisms δ̃d in
(5-1) for each d ∈D(r, c+). As usual, we put δ̃ := δ̃OF . Form the following pullback square

X d
r

ε
//

εd

��

Xr

δ̃d

��

Xr
δ̃
// X (1)c′c+,OF

of schemes over Z(`), where all morphisms are finite étale. The scheme X d
r has a natural action by TR(rl)

under which the above diagram is equivariant. By an argument similar to [loc. cit., Lemma 3.33], we
obtain a commutative diagram

0(S`,c′r,3)/ kerφrl 8
//

|(OF/r)
×
|·δ∗◦δd∗

��

H1
unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl)

εd∗◦ε
∗

��

0(S`,c′r,3)/ kerφrl 8
// H1

unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl)

(5-8)
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where 8 is the isomorphism in Proposition 5.16. By proper base change, the endomorphism εd
∗
◦ ε∗ of

H3(Xr⊗Qac,3(2)) coincides with the composite map

H3(Xr⊗Qac,3(2)) δ̃d∗−→ H3(X (1)c′c+,OF ⊗Qac,3(2)) δ̃∗
−→ H3(Xr⊗Qac,3(2)).

Definition 5.10(A2) and Proposition 5.16(1) imply that the image of

εd
∗
◦ ε∗ : H1

unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl)→ H1
unr(Q`,H3(Xr⊗Qac,3(2))/ kerφrl)

is a free 3-module of rank 1. Here, we use the fact that δ̃∗ is injective, as p -µ(r, c+) in Definition 5.4(3b).
By the commutative diagram (5-8), we know that the image of

δ∗ ◦ δd
∗
: 0(S`,c′r,3)/ kerφrl→ 0(S`,c′r,3)/ kerφrl

is a free 3-module of rank 1. Since δd
∗

is surjective and δ∗ is injective, 0(S`,c′c+,3)/ kerφrl is a free
3-module of rank 1. Similarly, we may deduce that the map⊕

d∈D(r,c+)

δd
∗
: 0(S`,c′r,3)/ kerφrl→

⊕
d∈D(r,c+)

0(S`,c′c+,3)/ kerφrl (5-9)

is injective. However, since the source of (5-9) a free 3-module of rank |D(r, c+)| by Proposition 5.16,
the map (5-9) has to be an isomorphism. The lemma follows. �

Remark 5.19. Note that since the images of kerφrl in both End3(0(S`,c′r,3)) and End3(0(S`,c′c+,3))
are finite sets, it follows by Chebotarev’s density theorem that for all but finitely many primes l′ of F , the
conclusion of Lemma 5.18 also holds for s= rll′.

5D. First explicit reciprocity law. We keep the notation in Section 5C. Let `= (`, `′) be a pair of distinct
(pν, r)-admissible primes (Definition 5.10) such that Lemma 5.18 holds for s= rll′, where l′ := `′OF

(see Remark 5.19).
Put Xr,` := X (1 ∪ {l, l′})c′,r and X [

r,` := X (1[ ∪ {`, `′})Z,r∩Z (in the notation of [Liu 2019, Defini-
tion B.1]), as schemes over Z(`′). Then we obtain a canonical morphism

θ` : X
[
r,`→ Xr,`. (5-10)

Denote by 2νp,r,` the image of θ`∗[X
[
r,`⊗Q] ∈ CH2(Xr,`⊗Q) under the Abel–Jacobi map

AJp : CH2(Xr,`⊗Q)→ H1(Q,H3(Xr,`⊗Qac,3(2))/ kerφrll
′

).

Theorem 5.20 (first explicit reciprocity law). Let `= (`, `′) be as above:

(1) There is a canonical decomposition of the 3[GQ]-module

H3(Xr,`⊗Qac,3(2))/ kerφrll
′

=

⊕
d∈D(r,c+)

M0

where M0 is isomorphic to N]
ρ(−1) (Notation 5.11) as a 3[GQ]-module.
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(2) There is a canonical isomorphism

H1
sing(Q`′,H3(Xr,`⊗Qac,3(2))/ kerφrll

′

)∼= 0(S`,c′r,3)/ kerφrl,

under which we have

(∂ loc`′ 2νp,r,`, f )= (`′+ 1) ·
|(Z/r∩Z)×|

|Cl(F)r|
·

∑
x∈S[`,r

f (ϑ(x))

for every f ∈ 0(S`,c′r,3)[kerφrl].

Proof. We will use results from [Liu 2019, Sections 3 and 4]. Put ∇[ :=1[ ∪ {∞, `} as in the setup of
[loc. cit., Section 4.1]. By Lemma 5.18, (ρ, c′c+, c′, r) is a perfect quadruple in the sense of [loc. cit.,
Definition 3.2], satisfying [loc. cit., Assumption 4.1]. Moreover, `′ is a cubic-level raising prime for
(ρ, c′c+, c′, r) in the sense of [loc. cit., Definition 3.3].

Note that the morphism (5-10) is nothing but θ : X (`′)[r → X (`′)c′,r in [loc. cit., (4.1.1)]; and the
map (5-4) is nothing but ϑ : S[r → Sc′r in [loc. cit., (4.1.2)]. Therefore, (1) follows from [loc. cit.,
Theorem 3.5(2)]; and (2) follows from [loc. cit., Theorems 3.5(3) and 4.5]. �

5E. Proof of main theorem. Recall that we have the multiplicatively induced representation N]
ρ and the

Z/pν[GQ]-module M0 as in Theorem 5.20. We have a GQ-equivariant pairing

N]
ρ(−1)×M0→ Z/pν(1)

which induces, for every prime power v, a local Tate pairing

〈 · , · 〉v : H1(Qv,N]
ρ(−1))×H1(Qv,M0)→ H2(Qv,Z/pν(1))' Z/pν .

For s ∈ H1(Q,N]
ρ(−1)) and r ∈ H1(Q,M0), we will write 〈s, r〉v rather than 〈locv(s), locv(r)〉v.

Proof of Theorem 5.7. We assume that 2p,r is nonzero. Regard 2p,r as an element in H1
f (Q,H3(Xr⊗

Qac,Zp(2))/ kerφr), which is not torsion. By [Brylinski and Labesse 1984] and the assumption that
(p, r) is r-clean (Definition 5.4), we know that Np := H3(X (1)c′c+,OF ⊗Qac,Zp(2))/ kerφr is a GQ-
stable lattice in M(E)p; and there exists some d ∈ D(r, c+) such that δd

∗
2p,r ∈ H1

f (Q,Np) is not
torsion. Here, H1

f (Q,Np) is by definition of the preimage of H1
f (Q,M(E)p) under the natural map

H1(Q,Np)→ H1(Q,M(E)p). We fix such an element d. Let ν0 ≥ 0 be the largest integer such that
δd
∗
2p,r ∈ pν0H1

f (Q,Np).
We prove by contradiction, hence assume dimQp H1

f (Q,M(E)p) ≥ 2. In what follows, we fix a
sufficiently large integer ν as before, and will give a lower bound on ν for which a contradiction emerges
at the end of proof.

By [Liu 2016, Lemma 5.9], we may find a free Z/pν-submodule S of H1
f (Q,N]

ρ(−1)) of rank 2 with a
basis {s, s ′} such that pν0s= δd

∗
2νp,r. By the same discussion in [Liu 2019, Section 4.3 (after Lemma 4.12)],

we have tower of fields LS/L/Q contained in Qac. Let � be the (finite) set of rational primes that are
either ramified in LS or not coprime to 1 or r disc F . Put ν� :=max{νv | v ∈�} where νv is in [loc. cit.,
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Lemma 4.12(2)]. We choose a prime `0 6∈� such that `0 is (pν, r)-admissible (Definition 5.10), which is
possible by [loc. cit., Lemma 4.11]. Let γ ∈ Gal(L/Q) be the image of Frobw0 under ρ](−1) (the image
of ρ](−1) has been identified with Gal(L/Q)), where w0 is some prime of L above `0. Then γ has order
coprime to p; and (N]

ρ(−1))〈γ 〉 is a free Z/pν-module of rank 1.
By [loc. cit., Lemma 4.16] and (the argument for) [loc. cit., Lemma 4.11], we may choose two

(�, γ )-admissible places (in the sense of [loc. cit., Definition 4.15]) w,w′ of L such that

(1) 9w(s ′)= 0, 9w(s)= t , 9w′(s ′)= t ′ with t, t ′ ∈ (N]
ρ(−1))〈γ 〉 that are not divisible by p;

(2) the underlying prime ` of w and the underlying prime `′ of w′ are distinct (pν, r)-admissible primes,
such that Lemma 5.18 holds for s= rll′ (see Remark 5.19).

Put ` := (`, `′). Then there are elements 2νp,r,` ∈H1(Q,H3(Xr,`⊗Qac,3(2))/ kerφrll
′

) from Section 5D,
and δd

∗
2νp,r,` ∈ H1(Q,M0). We have

(3) locv 2νp,r,` ∈ H1
unr(Qv,M0) for a prime v 6∈�∪ {p, `, `′}, by [Liu 2016, Lemma 3.4];

(4) locp 2
ν
p,r,` ∈ H1

f (Qp,M0), by [Nekovář 2000, Theorem 3.1(ii)].

By [Liu 2019, Lemma 4.6] and [Liu 2016, Lemma 3.4], we have locv(s ′) ∈ H1
unr(Qv,N]

ρ(−1)) for every
prime v 6∈�∪{p, `, `′}. By [Liu 2016, Definition 4.6, Remark 4.7], we have locp(s ′)∈H1

f (Qv,N]
ρ(−1)).

Then by [Liu 2019, Lemma 4.12(2,3,5)] and (3), (4) above, we have

pν−ν� |
∑

v 6∈{`,`′}

〈s ′,2νp,r,`〉v. (5-11)

Since 9w(s ′)= 0 by (1), we also have

〈s ′,2νp,r,`〉` = 0. (5-12)

Let φ0 be a generator of 0(S`,c′c+,Z/pν)[kerφrll
′

] which is a free Z/pν-module of rank 1. Then by
the choice of s, w in (1), and Theorem 5.17, we have∑

S[`,r

φ0(δ
d(ϑ(x))) ∈ pν0Z/pν − pν0+1Z/pν .

By the choice of w′ in (1) and Theorem 5.20, we have

〈s ′,2νp,r,`〉`′ ∈ pν0Z/pν − pν0+1Z/pν . (5-13)

Here, we have used the fact that p is coprime to |(Z/r∩Z)×|, |Cl(F)r|, (`− 1), and `′+ 1.
Take ν ∈ Z such that ν > ν0+ ν�. Then the combination of (5-11), (5-12) and (5-13) contradicts with

the following well-known fact: ∑
v

〈s ′,2νp,r,`〉v = 0

due to the global class field theory and the fact that p is odd, where the sum is taken over all primes v.
Theorem 5.7 is proved. �
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Dedicated to Lindsay Burch

We introduce the notion of Burch ideals and Burch rings. They are easy to define, and can be viewed as
generalization of many well-known concepts, for example integrally closed ideals of finite colength and
Cohen–Macaulay rings of minimal multiplicity. We give several characterizations of these objects. We
show that they satisfy many interesting and desirable properties: ideal-theoretic, homological, categorical.
We relate them to other classes of ideals and rings in the literature.
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1. Introduction

This article introduces and studies a class of ideals and their affiliated rings which we call Burch ideals and
Burch rings. While their definitions are quite simple, our investigation shows that they enjoy remarkable
ideal-theoretic and homological properties. These properties allow us to link them to many classes of ideals
and rings in the literature, and consequently strengthen numerous old results as well as establish new ones.

Let us make a brief remark on our motivation and historical context. The project originated from our
effort to understand a beautiful result by Burch on homological properties of ideals [1968b, Theorem 5(ii)
and Corollary 1(ii)].

Theorem 1.1 (Burch). Let (R,m) be a local ring. Let I be an ideal of R with mI 6=m(I :m).

(1) Let M be a finitely generated R-module. If TorR
n (R/I,M)= TorR

n+1(R/I,M)= 0 for some positive
integer n, then M has projective dimension at most n.

(2) If I has finite projective dimension, then R is regular.

MSC2010: primary 13C13; secondary 13D09, 13H10.
Keywords: Burch ideal, Burch ring, direct summand, fiber product, Gorenstein ring, hypersurface, singular locus, singularity

category, syzygy, thick subcategory, (weakly) m-full ideal.
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Lindsay Burch1 was a PhD student of David Rees, and she wrote several (short) papers that have had a
sizable impact on two active corners of commutative algebra: homological theory and integral closure of
ideals. Perhaps most researchers in the field know of her work via the frequently used Hilbert–Burch
theorem [Burch 1968b], her construction of ideals with only three-generators while possessing arbitrarily
complicated homological behavior [Burch 1968a], and the Burch inequality on analytic spreads [Burch
1972]. The ideas of Burch’s particular result above, while less well-known, have resurfaced in the work of
several authors which also motivated our work; see [Corso et al. 2018; 2006; Kostrikin and Shafarevich
1957; Kustin and Vraciu 2018; Striuli and Vraciu 2011]. However, it has appeared to us that what was
known previously is just the tip of an iceberg, and led us to formally make the following definitions.

Let (R,m) be a local ring. We define an ideal I of R to be a Burch ideal if mI 6=m(I :m). We also
define Burch rings of depth zero to be those local rings whose completions are quotients of regular local
rings by Burch ideals. Then we further define Burch rings of positive depth as local rings which “deform”
to Burch rings of depth zero; see Section 2 for the precise definitions.

It is not hard to see that the class of Burch ideals contains other well-studied classes: integrally closed
ideals of codepth zero (under mild conditions), m-full ideals, weakly m-full ideals, etc.

One of our main results characterizes Burch ideals and Burch rings of depth zero:

Theorem 1.2 (Theorem 4.1). Let (R,m, k) be a local ring and I 6=m an ideal of R. Then I is Burch if
and only if the second syzygy �2

R/I k of k over R/I contains k as a direct summand.

From this, we can quickly deduce a characterization of Gorenstein Burch ideals, which extends results
on integrally closed or m-full ideals in [Goto 1987; Goto and Hayasaka 2002]. In fact, our proofs allow us
to completely characterized modules over Burch rings of depth zero whose some higher syzygies contain
the residue field as a direct summand, as follows:

Theorem 1.3 (Theorem 4.5). Let (R,m, k) be a Burch ring of depth zero. Let M be a finitely generated
R-module. The following are equivalent:

(1) The ideal I(M) generated by all entries of the matrices ∂i , i > 0 in a minimal free resolution (F, ∂)
of M is equal to m.

(2) The R-module k is a direct summand of �r
R M for some r ≥ 2.

Our work reveals some interesting connections between Burch ideals/rings and concepts studied by
other authors in quite different contexts. For instance, we show that in codimension two, artinian almost
Gorenstein rings as introduced by Huneke and Vraciu [2006] (also studied in [Striuli and Vraciu 2011])

1We are grateful to Rodney Sharp and Edmund Robertson for providing us with the following brief biography of Burch.
Lindsay Burch was born in 1939. She did her first degree at Girton College, Cambridge from 1958 to 1961. She then went to
Exeter University to study for a Ph.D. advised by David Rees. She was appointed to Queen’s College, Dundee in 1964 before
the award of her Ph.D., which she received in 1967 for her thesis “Homological algebra in local rings”. At the time she was
appointed to Queen’s College it was a college of the University of St. Andrews but later, in 1967, it became a separate university,
the University of Dundee. Burch continued to work in the Mathematics Department of the University of Dundee until at least
1978. She then took up computing and moved to a computing position at Keele University near Stafford in the north of England.
She remained there until she retired and she still lives near Keele University.
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are Burch; see Proposition 6.10. Over a regular local ring, the “Burchness” of an ideal I imposes a strong
condition on the matrix at the end of a minimal free resolution of I, a condition that also appeared in the
work of Corso, Goto, Huneke, Polini and Ulrich [Corso et al. 2018] on iterated socles. That connection
led us to obtain a refinement of their result in Theorem 6.2.

We also study Burch rings of higher depth, especially their homological and categorical aspects. We
completely classify Burch rings which are fiber products in Proposition 6.15. The Cohen–Macaulay rings
of minimal multiplicity are Burch. Non-Gorenstein Burch rings turn out to be G-regular in Theorem 7.7,
in the sense that all the totally reflexive modules are free. Moreover, we show an explicit result on
vanishing behavior of Tor for any pair of modules.

Theorem 1.4 (Corollary 7.13). Let R be a Burch ring of depth t . Let M, N be finitely generated R-modules.
Assume that there exists an integer l ≥max{3, t+1} such that TorR

i (M, N )= 0 for all l+t ≤ i ≤ l+2t+1.
Then either M or N has finite projective dimension.

To state our last main result in this introduction, recall that the singularity category Dsg(R) is by
definition the triangulated category given as the Verdier quotient of the bounded derived category of
finitely generated R-modules by perfect complexes. Under some assumptions, one can classify all the
thick subcategories of Dsg(R) for a Burch ring R.

Theorem 1.5 (Theorem 7.10). Let R be a singular Cohen–Macaulay Burch ring. Suppose that on the
punctured spectrum R is either locally a hypersurface or locally has minimal multiplicity. Then there is
a one-to-one correspondence between the thick subcategories of Dsg(R) and the specialization-closed
subsets of Sing R.

Next we describe the structure of the paper as well as other notable results. In Section 2 we state our
convention, basic definitions and preliminary results. Section 3 is devoted to giving a sufficient condition
for a module to have a second syzygy having a cyclic direct summand (Proposition 3.4). This is a
generalization of [Kustin and Vraciu 2018, Lemma 4.1], and has an application to provide an exact pair of
zero divisors (Corollary 3.6). These materials are used in Section 4 and are perhaps of independent interest.

In Section 5, we focus on the study of Burch rings of positive depth. We verify that the class of Goren-
stein Burch rings coincides with that of hypersurfaces (Proposition 5.1). Cohen–Macaulay local rings of
minimal multiplicity with infinite residue field are Burch (Proposition 5.2). Quotients of polynomial rings
by perfect ideals with linear resolution are Burch (Proposition 5.6). We also consider the subtle question
of whether the Burch property is preserved by cutting down by any regular sequence consisting of minimal
generators of m. Remarkably, this holds for Cohen–Macaulay local rings of dimension one with minimal
multiplicity (Proposition 5.5). However, the answer turns out to be negative in general (Example 5.8).

In Section 6 we focus more deeply on Burch ideals in a regular local ring. We give a complete
characterization in dimension two and link Burch rings and Burch ideals to various other concepts.
Moreover, we give a characterization of the Burch local rings (R,m, k) with m3

= 0 in terms of a Betti
number of k, the embedding dimension and type of R (Theorem 6.12). We also characterize the Burch
monomial ideals of regular local rings (Proposition 6.4).



2124 Hailong Dao, Toshinori Kobayashi and Ryo Takahashi

In Section 7, we explore the homological and categorical aspects of Burch rings. We find out the
significant property of Burch rings that every module of infinite projective dimension contains a high
syzygy of the residue field in its resolving closure (Proposition 7.6). We apply this and make an analogous
argument as in [Nasseh and Takahashi 2020] to classify various subcategories.

2. Convention, definitions and basic properties of Burch ideals and rings

Throughout this paper, we assume that all rings are commutative and noetherian, that all modules are
finitely generated and that all subcategories are full and strict. For a local ring (R,m, k), we denote by
edim R the embedding dimension of R, by r(R) the (Cohen–Macaulay) type of R, and by KR the Koszul
complex of R, i.e., the Koszul complex of a minimal system of generators of m. We set KR

= 0 when R
is a field. For an R-module M, we denote by `R(M) the length of M, by µR(M) the minimal number of
generators of M, and by βR

i (M) the i-th Betti number of M. The i-th syzygy of M in the minimal free
resolution of M is denoted by �i

R M. We omit subscripts and superscripts if there is no fear of confusion.
The remainder of this section deals with the formal notion of Burch ideals and Burch rings and their

basic properties.

Definition 2.1. Let (R,m) be a local ring. We define a Burch ideal as an ideal I with mI 6=m(I :R m).
Note by definition that any Burch ideal I of R satisfies depth R/I = 0.

Here are some quick examples of Burch ideals. Many more examples will follow from our results later.

Example 2.2. (1) Let (R, x R) be a discrete valuation ring. Then (xn) is a Burch ideal of R for all n≥ 1,
since x(xn)= (xn+1) 6= (xn)= x(xn−1)= x((xn) : (x)).

(2) Let I be an ideal of a local ring (R,m). Put J =mI and suppose J 6= 0. Then m(J :m)= J 6=mJ,
so J is a Burch ideal of R.

(3) By the previous item, if (R,m) has positive depth then I =mt is Burch for any t ≥ 1. More generally,
if mt+1

⊆ I ⊆mt, then I is Burch if and only if I :m 6=mt and Im 6=mt+1. Using this one can show
that the set of Burch ideals is Zariski-open in Grassk(r,mt/mt+1), for each r = dimk I/mt+1.

(4) Let (R,m) be a local ring of positive depth. Let I be an integrally closed ideal of R. Then mI :m= I
by the determinantal trick, so it is Burch. See Proposition 2.3 below.

The following proposition gives some basic characterizations of Burch ideals.

Proposition 2.3. Let (R,m) be a local ring and I an ideal of R. The following are equivalent:

(1) I is a Burch ideal.

(2) (I :m) 6= (mI :m).

(3) Soc(R/I ) ·m/Im 6= 0.

(4) depth R/I = 0 and r(R/mI ) 6= r(R/I )+µ(I ).

(5) I R̂ is a Burch ideal of R̂, where R̂ is the completion of R.
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Proof. (1)⇔ (2): If (I :m)= (mI :m), then m(I :m)=m(mI :m)=mI. Conversely, if mI =m(I :m),
then (mI :m)= (m(I :m) :m)= (I :m).

(1)⇔ (3): As Soc R/I = (I :m)/I, we have Soc R/I ·m/Im= 0 if and only if m(I :m)=mI.

(2)⇔ (4): There are inclusions mI ⊆ I ⊆ (mI : m) ⊆ (I : m), which especially says that (mI : m) 6=
(I : m) implies depth R/I = 0. We have `((I : m)/mI ) = `((I : m)/I )+ `(I/mI ) = r(R/I )+ µ(I )
if depth R/I = 0, and `((mI : m)/mI ) = r(R/mI ). Thus, under the assumption depth R/I = 0, the
equalities (I :m)= (mI :m) and r(R/mI )= r(R/I )+µ(I ) are equivalent.

(1)⇔ (5): It is clear that mI =m(I :R m) if and only if m̂I = m̂(I :R̂ m̂). �

Recall that an ideal I of a local ring (R,m) is m-full (resp. weakly m-full) if (mI : x)= I for some
x ∈ m (resp. (mI : m) = I ). Clearly, every m-full ideal is weakly m-full. The notion of m-full ideals
has been studied by many authors so far; see [Conca et al. 2010; Goto 1987; Goto and Hayasaka 2002;
Watanabe 1987; 1991] for instance. Notably, it is fundamental to figure out the connections between
m-full ideals and another class of ideals. For example, m-primary integrally closed ideals are m-full
or equal to the nilradical of R under the assumption that the residue field k is infinite; see [Goto 1987,
Theorem 2.4]. There are many related classes of ideals, such as ideals satisfying the Rees property,
contracted ideals and basically full ideals. See [Hong et al. 2009; Rush 2013] for the hierarchy of these
classes. The notion of weakly m-full ideals is introduced in [Celikbas et al. 2018, Definition 3.7]. The
class of weakly m-full ideals coincide with that of basically full ideals if they are m-primary; see [Heinzer
et al. 2002, Theorem 2.12]. The following corollary is immediate from the implication (2)⇒ (1) in the
above proposition.

Corollary 2.4. Let (R,m) be a local ring. Let I be an ideal of R such that depth R/I = 0. If I is weakly
m-full, then it is Burch.

Burch ideals have minimal free resolutions of extremal growth.

Remark 2.5. Let (R,m, k) be a local ring. Let I be a Burch ideal of R. Then the equalities cxR I = cxR k
and curvR I = curvR k hold. For the definitions of the complexity cxR M and the curvature curvR M of a
module M over a local ring R, see [Avramov 1998, 4.2].

Proof. We may apply [Avramov 1996, Theorem 4] by letting M = I :m and L = I because they satisfy
L ⊇mM 6=mL . �

Let f : (S, n, k)→ (R,m, k) be a surjective homomorphism of local rings, and set I = Ker f . Choi
[1992] defined the invariant

cR(S, f )= dimk(n(I :S n)/nI ).

Clearly, an ideal I of a local ring (S, n) is Burch if and only if Choi’s invariant cS/I (S, π) is positive, where
π is the canonical surjection S→ S/I. We give a description of Choi’s invariant for a regular local ring.
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Proposition 2.6. Let (R,m, k) be a local ring, (S, n, k) a regular local ring, and f : S→ R a surjective
homomorphism with kernel I. Then

cR(S, f )=
{

dimk Soc R+ dimk H1(KR)− edim R− dimk H1(KR′)+ edim R′ if I 6= n,

dimk n/n
2 if I = n,

where R′ = R/Soc R.

Proof. Put J = (I :S n). We may assume I 6= n, and hence J 6= S. Then there are equalities

cR(S, f )= dimk nJ/nI = `(J/I )+ (`(I/nI )− `(n/n2))− (`(J/nJ )− `(n/n2))

= dimk Soc R+ (dimk H1(KR)− edim R)− (dimk H1(KR′)− edim R′).

Now the proof of the proposition is completed. �

The above result especially says that in the case where I 6= n the number cR(S, f ) is determined by
the target R of the surjection f . Thus the following result is immediately obtained.

Corollary 2.7 (cf. [Choi 1992, Theorem 2.4]). Let R be a local ring that is not a field. Let (S1, n1) and
(S2, n2) be regular local rings, and fi : Si → R surjective homomorphisms for i = 1, 2. Then the equality
cR(S1, f1)= cR(S2, f2) holds. In particular, Ker f1 is Burch if and only if so is Ker f2.

We are now ready to define Burch rings.

Definition 2.8. Let (R,m) be a local ring of depth t . Denote by R̂ the m-adic completion of R. We say
that R is Burch if there exist a maximal R̂-regular sequence x = x1, . . . , xt in R̂, a regular local ring S
and a Burch ideal I of S such that R̂/(x)∼= S/I.

Remark 2.9. If I is a Burch ideal of a local ring (R,m), then R/I is a Burch ring of depth zero. Indeed,
I R̂ is a Burch ideal of R̂ by Proposition 2.3. Take a Cohen presentation R̂ ∼= S/J, where (S, n) is a
regular local ring. Let I ′ be the ideal of S such that I ′ ⊇ J and I ′/J = I R̂. Then one can easily verify
that nI ′ 6= n(I ′ :S n), that is, I ′ is a Burch ideal of S. Note that the completion of the local ring R/I is
isomorphic to S/I ′. Hence R/I is a Burch ring of depth zero.

Let R be a local ring. The codimension and codepth of R are defined by

codim R = edim R− dim R, codepth R = edim R− depth R.

Then R is said to be a hypersurface if codepth R ≤ 1. This is equivalent to saying that the completion R̂
of R is isomorphic to S/( f ) for some regular local ring S and some element f ∈ S.

Example 2.10. If R is a hypersurface, then it is a Burch ring. Indeed, take a regular sequence x in R̂
such that R̂/(x) is an artinian local ring with edim R̂/(x)≤ 1. Then R̂/(x) is isomorphic to the quotient
ring of a discrete valuation ring S by a nonzero ideal I. By Example 2.2(1), the ideal I of S is Burch.

We define the invariant cR of a local ring (R,m, k) by

cR = dimk Soc R+ dimk H1(KR)− edim R− dimk H1(KR′)+ edim R′.
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Here, we set R′= R/Soc R, and adopt the convention that dimk H1(KR′)= 0= edim R′ in the case where
R′ = 0 (i.e., R is a field). Then we can characterize the Burch rings of depth zero:

Lemma 2.11. Let (R,m, k) be a local ring. Then cR = cR̂ , and the following are equivalent:

(1) R is a Burch ring and depth R = 0.

(2) R̂ is a Burch ring and depth R = 0.

(3) cR 6= 0.

(4) cR > 0.

Moreover, if R is not a field but a Burch ring of depth zero and isomorphic to S/I for some regular
local ring (S, n) and some ideal I of S, then I is a Burch ideal of S.

Proof. The numbers dimk Soc R, dimk H1(KR), edim R, dimk H1(KR′), edim R′ are preserved by the
completion of R. In particular, one has cR = cR̂ . Furthermore, take a Cohen presentation R̂ ∼= S/I with a
complete regular local ring S. Letting π : S→ S/I be the natural surjection, we have cR̂ = cR(S, π).
This especially shows that cR is nonnegative. Now we show the equivalence of (1)–(4). It is obvious
that (1) and (3) are equivalent to (2) and (4), respectively. The equivalence of (2) and (3) follows from
Proposition 2.6. Finally, we show the last assertion. Suppose that R is Burch of depth zero and that
R ∼= S/I, where S is a regular local ring and I is an ideal of S. Then R̂ ∼= T/J for some regular local
ring T and a Burch ideal J of T. There are surjections from the regular local rings Ŝ (the completion of S)
and T to the local ring Ŝ/IŜ ∼= R̂ ∼= T/J, and the kernel of the latter is the Burch ideal J. Since R̂ is not a
field, Corollary 2.7 implies that IŜ is a Burch ideal of Ŝ, and I is a Burch ideal of S by Proposition 2.3. �

We end this section by proving an useful characterization of Burch ideals when depth R > 1. The only
if direction is known for m-full ideals; see [Watanabe 1991, Corollary 7].

Lemma 2.12. Let (R,m) be a local ring of depth > 1. An ideal I of R is Burch if and only if there exists
a non-zerodivisor a ∈m such that R/m is a direct summand of the R-module I/aI.

Proof. Assume that I is Burch. Then there exist a ∈m and b ∈ (I :R m) such that ab ∈ I \mI. We have
a 6∈ m2, since otherwise ab ∈ m2(I :R m) = mI. As bm ⊆ I, it holds that abm ⊆ aI. We can define an
R-homomorphism f : R/m→ I/aI by f (1)= ab. As ab 6∈mI, the element ab is a part of a minimal
system of generators of I/aI, and hence f is a split monomorphism.

Conversely, assume that there is a split monomorphism f : R/m→ I/aI, where a ∈ R is a non-
zerodivisor. Let c ∈ I be the preimage of f (1)∈ I/aI. Then cm⊆ aI ⊆ (a). The assumption depth R > 1
implies depth R/(a) > 0. Hence c has to be in (a), that is, there exists b ∈ R with c = ab. Observe
abm= cm⊆ aI. Then a being non-zerodivisor yields bm ∈ I. In other words, b ∈ (I :R m). The image of
ab= c is a part of a minimal system of generators of I/aI, and we have ab 6∈mI. Thus m(I :R m) 6=mI,
which means that I is a Burch ideal. �
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Remark 2.13. It is worth noting that Lemma 2.12 can be used to give a quick proof of Theorem 1.1
when depth R > 1 and n > 1. Namely, if TorR

n (R/I,M) = TorR
n+1(R/I,M) = 0 then it follows that

TorR
n (I/aI,M)= 0, which implies that TorR

n (k,M)= 0.

3. Cyclic direct summands of second syzygies

The main purpose of this section is to study sufficient conditions for an R-module to have a cyclic
direct summand in its second syzygy. They will be used in the proofs of Section 4 and are perhaps of
independent interest. In fact, some of our proofs were motivated by [Kustin and Vraciu 2018; Striuli and
Vraciu 2011] which focused on different but related problems.

We start by some simple criteria for a homomorphism f : R→ M to be a split monomorphism.

Lemma 3.1. Let (R,m) be a local ring of depth zero. Let f : R→ M be a homomorphism of R-modules.
Assume one of the following conditions holds:

(a) R is Gorenstein. (b) M is free. (c) M is a syzygy (i.e., a submodule of a free module).

Then the following are equivalent:

(1) f is a split monomorphism. (2) f is a monomorphism. (3) f (Soc R) 6= 0.

Proof. The implications (1)⇒ (2)⇒ (3) are clear. To show (3)⇒ (1), put C = Coker f .

(a) As R is Gorenstein, we have Soc R ∼= R/m. The equality f (Soc R) 6= 0 implies Ker f ∩ Soc R = 0.
Hence Ker f = 0, and f is injective. As Ext1R(C, R)= 0, the map f is split injective.

(b) If f is not split injective, then Im f is contained in mM by the assumption that M is free. This yields
that the inclusions Ker f ⊇ Ann(mM)⊇ Soc R hold.

(c) Let g :M→ F be a monomorphism with F free. The composition g f : R→ F satisfies g f (Soc R) 6= 0.
By the previous argument, g f is split injective. There is a retraction r : F→ R with rg f = idR . We see
that rg : M→ R is a retraction of f . Therefore f is split injective. �

Next we consider R-homomorphisms from a cyclic R-module to an R-module.

Lemma 3.2. Let R be a ring, I an ideal of R and M an R-module. Consider an R-homomorphism
f : R/I → M. Then f is split injective if and only if the composition map p f : R/I → M/IM is split
injective, where p : M→ M/IM is the natural surjection.

Proof. Suppose f is split injective. Then there is an R-homomorphism g :M→ R/I such that g f = idR/I .
On the other hand, g factor through p : M→ M/IM, that is g = g′ p for some g′ : M/IM→ R/I. So we
see that g′ is a retraction of p f . Next, suppose p f is split injective. Then there is an R-homomorphism
h : R/I → M/IM such that hp f = idR/I . Thus hp : M→ R/I is a retraction of f . �

For a matrix A over R we denote by Ii (A) the ideal of R generated by the i-minors of A. For a linear
map φ of free R-modules, we define Ii (φ) as the ideal Ii (A), where A is a presentation matrix of φ. The
following lemma is well-known; we state it for the convenience of the reader.
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Lemma 3.3. Let Rn d
→ Rm

→ M→ 0 be exact. If I1(d)⊆ I, then M/IM is R/I -free.

Proof. The tensored sequence (R/I )n d⊗R/I
−−−→ (R/I )m→ M/IM→ 0 is exact. Since I1(d) is contained

in I, we see that d ⊗ R/I = 0, and hence M ∼= (R/I )m. �

We generalize [Kustin and Vraciu 2018, Lemma 4.1] as follows.

Proposition 3.4. Let (S, n, k) be a local ring and I ⊆ J ideals of S. Set R = S/I. Let

· · · → Rq C
→ R p B

→ Rn A
→ Rm

→ M→ 0

be a minimal R-free resolution of an R-module M, where A, B,C, . . . are matrices over S. Assume that J
satisfies either of the following conditions:

(a) J ⊇ I1(A)+ I1(C). (b) J ⊇ I1(A) and S/J is Gorenstein.

If (I :S J ) 6⊆ (IJ :S (J :S n) I1(A)), then S/J is a direct summand of �2
R M.

Proof. For each integer i , let Ji be the ideal of S generated by the entries of the i-th column of A. Then
I1(A)= J1+· · ·+ Jn , and (I :S J ) 6⊆ (IJ :S (J :S n) I1(A))= (IJ :S (J :S n)J1)∩· · ·∩ (IJ :S (J :S n)Jn).
Hence (I :S J ) 6⊆ (IJ :S (J :S n)Js) for some s. Choose an element u ∈ (I :S J ) \ (IJ :S (J :S n)Js) and
let v ∈ Rn be the image of u · es , where es is the s-th unit vector of Sn. Since Ju ⊆ I and I1(A)⊆ J, v is
in Ker A =�2

R M =: X. We can define an R-homomorphism f : S/J → X by f (1)= v.
Now we want to show f is split injective. By Lemma 3.2, it is enough to verify so is the induced map

f ′ = p f : S/J → X/J X. By Lemmas 3.1 and 3.3, it suffices to check f ′(Soc S/J ) 6= 0.
Since u 6∈ ((IJ ) :S (J :S n)Js), we can choose an element a ∈ (J :S n) such that au Js 6⊆ IJ. Remark

that a 6∈ J, otherwise one has au ∈ I, which forces au JS to be contained in IJ. Let ā be the image of a in
S/J. We have that 0 6= ā ∈ Soc S/J. If f ′(ā)= 0, then av ∈ J X. Then there exist elements x ∈ J R p and
y ∈ I Rn such that aues = Bx+ y. Observe that au Aes = ABx+ Ay ∈ IJ Rm. So we obtain the inclusion
au Js ⊆ IJ, which is contradiction. Thus f ′(ā) 6= 0 and we conclude that f is split injective. �

As a corollary, we have the following restatement of [Kustin and Vraciu 2018, Lemma 4.1].

Corollary 3.5. Let (S, n, k) be a local ring and I an ideal of S. Set R = S/I and consider a minimal
R-free presentation Rn A

→ Rm
→ M→ 0 of an R-module M, where A is an m× n matrix over S and A

is the corresponding matrix over R. If (I :S n)* (nI :S I1(A)), then k is a direct summand of �2
R M.

Recall that a module M over a ring R is called totally reflexive if the natural map M → M∗∗ is an
isomorphism and ExtiR(M, R) = ExtiR(M

∗, R) = 0 for all i > 0, where (−)∗ = HomR(−, R). Over a
Cohen–Macaulay local ring, a totally reflexive module is a maximal Cohen–Macaulay module, and the
converse holds as well over a Gorenstein local ring.

Also, recall that a pair (x, y) of elements of a ring R is called an exact pair of zerodivisors if the
equalities (0 :R x)= y R and (0 :R y)= x R hold [Bonacho Dos Anjos Henriques and Şega 2011]. This is
equivalent to saying that the sequence · · · x

→ R y
→ R x

→ R y
→ · · · is exact. It is easy to see that for each

exact pair of zerodivisors (x, y) the R-modules R/x R and R/y R are totally reflexive.
The following result is another application of Proposition 3.4.
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Corollary 3.6. Let (S, n, k) be a local ring and I ⊆ J be n-primary ideals of S. Assume that S/I, S/J
are Gorenstein and that (I :S J ) * (IJ ) :S ((J :S n)J ). Then there exist elements a, b ∈ S such that
J = I + (a), (I :S J )= I + (b), and (ā, b̄) is an exact pair of zerodivisors of S/I.

Proof. Put R = S/I. Consider a minimal R-free resolution · · · → Rn A
→ R → S/J → 0 of the

R-module S/J. Clearly, the equality I1(A)+ I = J holds. We can derive from Proposition 3.4 that the
R-module �2

R(S/J ) has a direct summand isomorphic to S/J. Since R is Gorenstein and the R-module
S/J is indecomposable, �2

R(S/J ) is also indecomposable. This implies that �2
R(S/J ) ∼= S/J, that is,

the sequence 0→ S/J → Rn
→ R→ S/J → 0 is exact. We have `(Rn)+ `(S/J ) = `(R)+ `(S/J ),

which yields n = 1. Thus the ideal J/I of R is principal, and we find a ∈ R with J/I = a R. As
(0 :R a)=�1

R(J/I )∼= S/J, the ideal (0 :R a) of R is also principal. Taking a generator b of (0 :R a), we
get an exact pair of zerodivisors (a, b) of R. �

4. Proof of Theorem 4.1 and some applications

This section concerns a surprising characterization of Burch rings of depth zero, and some applications.

Theorem 4.1. Let (R,m, k) be a local ring that is not a field. Then R is a Burch ring of depth zero if and
only if k is isomorphic to a direct summand of its second syzygy �2

Rk.

We shall delay the proof until the end of this section. First, note that we can interpret Corollary 3.5
in terms of Burch rings as follows. Here we use the notation I1(M) for an R-module M to be the ideal
I1(A) where A is a matrix in a minimal free presentation F A

→ G→ M→ 0 of M. Remark that I1(M) is
independent of the choice of A (see [Bruns and Herzog 1998, p. 21] for instance).

Proposition 4.2. Let (R,m, k) be a Burch ring of depth zero that is not a field. Let M be an R-module
with I1(M)=m. Then k is a direct summand of �2

R M. In particular, k is a direct summand of �2
Rk.

Proof. By [Leuschke and Wiegand 2012, Corollary 1.15], the module �2
R M contains k as a direct

summand if and only if so does �2
R M ⊗R R̂ ∼=�2

R̂
(M ⊗R R̂). Hence we may assume that R is complete,

and then there is a regular local ring (S, n) and a Burch ideal I ⊂ n2 such that R ∼= S/I. Consider
a minimal R-free presentation Rn A

→ Rm
→ M → 0 of an R-module M, where A is a matrix over S

and A is A modulo I. Then we see that I1(A) = I1(M) = m, which implies that I1(A) = n. Hence
(I :S n) 6⊆ (nI :S I1(A)), and thus k is a direct summand of �2

R M by Corollary 3.5. �

In the situation of the above proposition, M has extremal behavior in the sense of [Avramov 1996],
that is, it has maximal projective/injective dimension, complexity and curvature.

Here is an immediate consequence of the above proposition.

Corollary 4.3. Let (R,m, k) be an artinian Burch ring. Then there exists an element x ∈ m \m2 such
that k is a direct summand of the ideal (0 :R x) of R.
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Proof. Let x1, . . . , xn be a minimal system of generators of m. There is an exact sequence

0→
n⊕

i=1

(0 : xi )→ Rn ∂
→ Rn

→

n⊕
i=1

R/(xi )→ 0 with ∂ =

x1
x2

. . .
xn

 .
This shows I1(∂)=m and �2

(⊕n
i=1 R/(xi )

)
=
⊕n

i=1(0 : xi ). Proposition 4.2 implies that k is a direct
summand of

⊕n
i=1(0 : xi ). Since R is artinian, it is henselian. The Krull–Schmidt theorem shows that k

is a direct summand of (0 : xi ) for some i . �

The following theorem classifies m-primary Gorenstein Burch ideals.

Theorem 4.4. Let (R,m) be a local ring and I an m-primary ideal. The following are equivalent:

(1) I is a Burch ideal of R and R/I is Gorenstein.

(2) I is weakly m-full and R/I is Gorenstein.

(3) I is m-full and R/I is Gorenstein.

(4) I = (xr
1, x2, . . . , xn) with x1, . . . , xn a minimal system of generators of m and n, r > 0.

Proof. It follows from [Goto and Hayasaka 2002, Proposition 2.4] that (3) is equivalent to (4), while it is
obvious that (3) implies (2) and (2) implies (1). Assume (1) to deduce (4). Remark 2.9 shows that R/I is
a Burch ring. Proposition 4.2 implies that k is a direct summand of �2

R/I k. As �2
R/I k is indecomposable

(see [Yoshino 1990, Lemma 8.17] for instance), we get k ∼=�2
R/I k, whence R/I is a hypersurface. Thus

m/I is cyclic. Choose an element x1 ∈ m such that x1 is a minimal generator of m/I. Then x1 is a
minimal generator of m, and m = I + (x1). There is a unique integer r > 0 with xr

1 ∈ I and xr−1
1 /∈ I.

Choose x2, . . . , xn ∈ I so that x2, . . . , xn is a minimal system of generators of I (R/(x1))=m/(x1). We
see that x1, x2, . . . , xn is a minimal system of generators of m. Clearly, I contains J := (x2, . . . , xn).
Note that every m/J -primary ideal is a power of m/J = ((x1)+ J )/J. As xr

1 ∈ I and xr−1
1 /∈ I, we get

I/J = ((xr
1)+ J )/J. This shows I = (xr

1, x2, . . . , xn). �

We now characterize the modules over a Burch ring having the residue field as a direct summand of
some high syzygy.

Theorem 4.5. Let (R,m, k) be a Burch local ring of depth zero which is not a field. Let M be an
R-module. Take a minimal free resolution (F, ∂) of M. The following are equivalent:

(1)
∑

i>0 I1(∂i )=m. (2) k is a direct summand of �r
R M for some r ≥ 2.

In particular, if
∑

i>0 I1(∂i )=m, then there exists an integer i ≥ 3 such that I1(∂i )=m.

Proof. (2)⇒ (1): The minimal presentation matrix A of �r
R M is equivalent to

(
B 0
0 C

)
, where B and C are

the minimal presentation matrices of k and N, respectively. Hence I1(∂r+1)= I1(A)= I1(B)+ I1(C)=
m+ I1(C)=m, which shows

∑
i>0 I1(∂i )=m.
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(1)⇒ (2): We may assume that R is complete, and hence there is a regular local ring (S, n) and a Burch
ideal I ⊆ S with R∼= S/I. For each i > 0 we identify ∂i with a matrix over R, and let di be a matrix over S
lifting ∂i . Then n =

∑
i>0 I1(di )+ I. The noetherian property shows n = I1(d1)+ · · · + I1(dn)+ I for

some n> 0. Hence (nI : n)= (nI : I1(d1)+· · ·+ I1(dn)+ I )= (nI : I1(d1))∩· · ·∩(nI : I1(dn))∩(nI : I ).
Since I is Burch, we have (I : n)* (nI : n) by Proposition 2.3. In particular I is nonzero, and we see that
(I : n)⊆ n= (nI : I ). We obtain (I : n)* (nI : I1(dt)) for some 1≤ t ≤ n. It follows from Corollary 3.5
that k is a direct summand of the cokernel of ∂t , which is �t+1

R M. �

Let k be a field. A local ring R is said to be a fiber product (over k) provided that it is of the form

R ∼= S×k T = {(s, t) ∈ S× T | πS(s)= πT (t)},

where (S,mS) and (T,mT ) are local rings with common residue field k, and πS : S→ k and πT : T → k
are the natural surjections. The set S ×k T is a local ring with maximal ideal mS×k T = mS ⊕mT and
residue field k. Conversely, a local ring R with decomposable maximal ideal mR = I⊕ J is a fiber product
since R ∼= (R/I )×k (R/J ). These observations are due to Ogoma [1984, Lemma 3.1].

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. The “only if” part is a direct consequence of Proposition 4.2.
We consider the “if” part. Again we may assume that R is complete. Take a Cohen presentation

R ∼= S/I, where (S, n) is a regular local ring and I is an ideal of S contained in n2. If (I :S n)* n2, then
there is an element x ∈ (m∩ Soc R) \m2. One has a decomposition m= J ⊕ (x), which means that R
is of the form S×k T with edim T = 1. Then R is Burch by Example 2.10 and Lemma 6.14. Thus we
may assume that (I :S n)⊆ n2. Suppose that I is not Burch, so that n(I :S n)= nI. We aim to show that
Soc�2

Rk ⊆m�2
Rk. Take minimal generators x1, . . . , xe of n. There is a commutative diagram

0

��

0

��

�2
Sk

��

// �2
Rk

��

0 // I e

��

// Se

��

// Re

��

// 0

0 // I

��

// n

��

// m

��

// 0

I/nI

��

0 0

0
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of S-modules with exact rows and columns. Applying the snake lemma, we get an exact sequence

�2
Sk→�2

Rk δ
→ I/nI → 0, (4.5.1)

where δ sends each element a ∈�2
Rk whose preimage in Se is t(a1, . . . , ae) to the image of

∑
i xi ai in

I/nI. Now consider element a ∈ Soc�2
Rk. This means that the preimage t(a1, . . . , ae) ∈ Se of a satisfies

ai ∈ (I :S n) for all i . Therefore, the element
∑

i xi ai ∈ S is contained in n(I :S n)= nI. This yields that
δ(a)= 0. By the exact sequence (4.5.1), we can take the preimage (a1, . . . , ae)∈ Se of a to be contained in
�2

Sk. We already have t(a1, . . . , ae)∈ (I :S n)Se
⊆n2Se. It follows that t(a1, . . . , ae)∈�

2
Sk∩n2Se

⊆n�2
Sk,

see [Herzog et al. 1983, Theorems 3.7 and 4.1] for the second containment. Consequently, the element a
is contained in m�2

Rk. This allows us to conclude that if Soc�2
Rk 6⊆m�2

Rk then I is a Burch ideal, and
hence R is a Burch ring. �

In view of Theorem 4.1, one may wonder if an artinian local ring R is Burch if the residue field k is a
direct summand of �nk for some n ≥ 3. This is not true in general:

Example 4.6. Let k be a field, and consider the ring R = k[[x, y]]/I, where I = (x4, x2 y2, y4). The
minimal free resolution of k is

0← k← R
(x y)
←−− R2

(
−y xy2 x3 0
x 0 0 y3

)
←−−−−−−−−−− R4


xy2 0 x3 0 0 y3 0 0

y x 0 0 0 0 y2 0
0 0 y x 0 0 0 y2

0 0 0 0 y −x 0 0


←−−−−−−−−−−−−−−− R8

← · · · .

We have Soc�3k = Soc R4
= (x3 y, xy3)R4. The column vector

z := t(x3 y, 0, 0, 0)= y · t(x3, 0, y, 0)− t(0, 0, y2, 0)

is in Soc�3k \m�3k. The assignment 1 7→ z makes a split monomorphism k→�3k, and k is a direct
summand of �3k. However, R is not Burch as one can easily check the equality m(I :m)=mI.

5. Burch rings of positive depth

In this section, we study Burch rings of positive depth. First of all, let us investigate what Gorenstein
Burch rings are.

Proposition 5.1. A local ring is Burch and Gorenstein if and only if it is a hypersurface.

Proof. Let R be a local ring of dimension d . If R is hypersurface, then R is clearly Gorenstein, and it is
also Burch by Example 2.10. Conversely, suppose that R is Burch and Gorenstein. Then there exists
a system of parameters x = x1, . . . , xd such that R̂/(x) is an artinian Gorenstein Burch local ring. By
definition, there exist a regular local ring (S, n) and a Burch ideal I of S such that R̂/(x) ∼= S/I. By
Theorem 4.4, there are a minimal system of generators y1, . . . , yn of n with n > 0 and an integer r > 0
such that I = (yr

1, y2, . . . , yn). In particular, S/I ∼= R̂/(x) is a hypersurface, and so is R. �

A Cohen–Macaulay local ring R is said to have minimal multiplicity if e(R)= codim R+ 1.
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Proposition 5.2. Let (R,m, k) be a Cohen–Macaulay local ring with minimal multiplicity, and assume
that k is infinite. Then R is Burch.

Proof. We can find a general system of parameters x such that A= R/(x) is artinian and still has minimal
multiplicity. This simply means that m2

A = 0, so the first syzygy of k is a k-vector space. Thus A is Burch
by Theorem 4.1 and so is R. �

Remark 5.3. A Cohen–Macaulay local ring with minimal multiplicity is a typical example of a Golod
local ring. In view of Proposition 5.2, the reader may wonder if a Golod local ring is Burch. This is not
true in general; the ring R given in Example 4.6 is not Burch but Golod by [Avramov 2012, 1.4.3 and 2.1].
Neither can we say that Burch ideals are Golod. Indeed, let R= k[x, y, z, w]/mJ, where m= (x, y, z, w)
and J = (x2, y2, z2, w2) in k[x, y, z, w]. This is the example of non-Golod ring R given in [De Stefani
2016, Example 2.1]. However, it is Burch by Example 2.2(2).

We establish a lemma to prove our next result on Burch rings.

Lemma 5.4. Let (R,m, k) be a 1-dimensional Cohen–Macaulay local ring with minimal multiplicity.
Then there exists an isomorphism m∗ ∼=m, where (−)∗ = HomR(−, R).

Proof. If R is a discrete valuation ring, then m∼= R, and hence m∗ ∼=m. So we assume that R is not a
discrete valuation ring. Since R has minimal multiplicity, by [Lipman 1971, Lemma 1.11], there is an
R-regular element x ∈m such that m2

= xm. Let Q be the total quotient ring of R. We have

m∗ = HomR(m, R)∼= HomR(m, x R)∼= (x R :Q m)⊇m,

where the second isomorphism follows from [Kobayashi and Takahashi 2019, Proposition 2.4(1)] for
instance. For each element a

s ∈ (x R :Q m), we have ax ∈ am ⊆ sx R, which implies a ∈ s R as x is
R-regular, and hence a

s ∈ R. Therefore (x R :Q m) is an ideal of R containing m. Since R is not a discrete
valuation ring, it is a proper ideal. We get (x R :Q m)=m, and consequently m∗ ∼=m. �

Cohen–Macaulay rings of dimension 1 with minimal multiplicity have a remarkable property.

Proposition 5.5. Let (R,m, k) be a 1-dimensional Cohen–Macaulay local ring with minimal multiplicity.
Then the quotient artinian ring R/(x) is a Burch ring for any parameter x ∈m \m2.

Proof. If R is regular, then it is a discrete valuation ring, and x is a uniformizer. Hence R/(x) is a field,
and it is Burch. Thus we assume that R is singular. Applying (−)∗ = HomR(−, R) to the natural exact
sequence 0→ m→ R→ k→ 0, we get an exact sequence 0→ R→ m∗→ k⊕r

→ 0, where r is the
type of R. Making the pullback diagram of the map m∗→ k⊕r and the natural surjection R⊕r

→ k⊕r, we
obtain an exact sequence 0→m⊕r

→ R⊕(r+1)
→m∗→ 0. As R is singular, m⊕r does not have a nonzero

free summand by [Dutta 1989, Corollary 1.3]. We get an isomorphism m⊕r ∼=�(m∗). Combining this
with Lemma 5.4 yields m⊕r ∼=�m∼=�2k. Since x is an R-regular element in m\m2, there is a split exact
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sequence 0→ k→m/xm→m/(x)→ 0, which induces m/xm∼= k⊕m/(x). We obtain isomorphisms
of R/(x)-modules

k⊕r
⊕ (m/(x))⊕r ∼= (m/xm)⊕r ∼=�

2k/x�2k ∼=�R/(x)(m/xm)
∼=�R/(x)k⊕�R/(x)(m/(x))∼=�R/(x)k⊕�2

R/(x)k,

where the third isomorphism holds since there is an exact sequence 0→ �2k→ R⊕n
→ m→ 0 with

n = edim R, which induces an exact sequence 0→�2k/x�2k→ (R/(x))⊕n
→m/xm→ 0. As R/(x)

is an artinian local ring, it is henselian. The Krull–Schmidt theorem implies that k is a direct summand of
either �R/(x)k or �2

R/(x)k. In the former case, applying �R/(x)(−) shows that k is a direct summand of
�2

R/(x)k. Theorem 4.1 concludes that R/(x) is a Burch ring. �

Proposition 5.6. Let S = k[x1, . . . , xn] be a polynomial ring over an infinite field and I ⊂ S is a
homogenous ideal such that S/I is Cohen–Macaulay and I has a linear resolution. Then R = (S/I )m is
Burch where m= (x1, . . . , xn).

Proof. Let A = S/I and (l1, . . . , ld) be a general linear system of parameters on A. We write
A/(l1, . . . , ld)A as T/J where T is a polynomial ring in n−d variables over k and J is a zero-dimensional
ideal. Then J still has linear resolution. Assume I (and J ) are generated in degree t , then the regularity
of J is t , but since J is zero-dimensional, the socle degree of J is t − 1. Thus J = nt where n is the
irrelevant ideal of T, and so R is Burch by definition and Example 2.2. �

Example 5.7. There are many examples satisfying the conditions of Proposition 5.6. For example, let
m ≥ n and let I = In ⊂ k[xi j ] = S be the ideal generated by maximal minors in a m by n matrix of
indeterminates. Then it is well-known that S/I is Cohen–Macaulay with dim S/I = (m+ 1)(n− 1) and
the a-invariant of S/I is −m(n−1); see [Bruns and Herzog 1998]. It follows that the regularity of I is n,
so it has linear resolution.

Another source of examples are Stanley–Reisner rings of “facet constructible” or “stacked” simplicial
complexes; see [Dao and Schweig 2019, Theorems 4.1 and 4.4].

We will show in Corollary 7.9 that if x is a regular element of a local ring (R,m) such that R/(x) is
Burch, then x 6∈m2. It is natural to ask whether the quotient ring R/Q of a Burch ring R is again Burch
for any ideal Q generated by regular sequence consisting of elements in m \m2. This is true if R is either
a hypersurface or a Cohen–Macaulay local ring of dimension one with minimal multiplicity, as we saw in
Propositions 5.1 and 5.5. The example below says that the question is not always affirmative.

Example 5.8. Let k be a field, and let R = k[[x, y, z]]/ I2

(
x2

y
y
z2

z2

x2

)
. The Hilbert–Burch theorem implies

that R is a Cohen–Macaulay local ring of dimension 1. The ring R is a Burch ring since so is the artinian
quotient ring R/(x)= k[[y, z]]/(y2, yz2, z4). However, the artinian ring R/(y)= k[[x, z]]/(x4, x2z2, z4)

is not Burch. By Theorem 4.1, the R-module k is a direct summand of �2
R/(x)k, but not a direct summand

of �2
R/(y)k. Incidentally, the module k is a direct summand of �3

R/(y)k by Example 4.6.

To show our next result on Burch rings, we prepare a lemma on cancellation of free summands.
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Lemma 5.9. Let R be a local ring. Let M, N be R-modules having no nonzero free summand. If
M ⊕ R⊕a ∼= N ⊕ R⊕b for some a, b ≥ 0, then M ∼= N and a = b.

Proof. We may assume a ≥ b. Taking the completions, we get isomorphisms M̂⊕ R̂⊕a ∼= N̂⊕ R̂⊕b. Write
M̂ = X⊕ R̂⊕c and N̂ = Y ⊕ R̂⊕d with c, d ≥ 0 integers and X, Y having no nonzero free summand. Then
X⊕ R̂⊕(c+a)∼=Y⊕ R̂⊕(d+b). As R̂ is henselian, we can apply the Krull–Schmidt theorem to deduce X ∼=Y
and c+a= d+b. Hence d= c+(a−b), and we get N̂ =Y⊕ R̂⊕d ∼= X⊕ R̂⊕(c+(a−b))

= M̂⊕ R̂⊕(a−b)∼= L̂ ,
where L := M ⊕ R⊕(a−b). It follows from [Leuschke and Wiegand 2012, Corollary 1.15] that N is
isomorphic to L . Since N has no nonzero free summand, we must have a=b, and therefore M= L∼=N. �

The following result is a higher-dimensional version of the “only if” part of Theorem 4.1.

Proposition 5.10. Let (R,m,k) be a singular Burch ring of depth t . Then�tk is a direct summand of �t+2k.

Proof. We prove the proposition by induction on t . The case t = 0 follows from Lemma 2.11, so let t ≥ 1.
There is an R-sequence x = x1, . . . , xt such that R/(x) is a Burch ring of depth zero. Hence R/(x1) is a
Burch ring of dimension d − 1. The induction hypothesis implies that �t−1

R/(x1)
k is a direct summand of

�t+1
R/(x1)

k. Taking the syzygy over R, we see that �R�
t−1
R/(x1)

k is a direct summand of �R�
t+1
R/(x1)

k. For
each n ≥ 0 there is an exact sequence 0→�n

R/(x1)
k→ Pn−1→ · · · → P1→ P0→ k→ 0 with each Pi

being a direct sum of copies of R/(x1), which gives rise to an exact sequence

0→�R�
n
R/(x1)

k→�R Pn−1⊕ R⊕en−1 → · · · →�R P1⊕ R⊕e1 →�R P0⊕ R⊕e0 →�Rk→ 0

with ei ≥ 0 for 0≤ i ≤ n− 1. Note that each �R Pi is a free R-module. The above sequence shows that
�n+1

R k =�n
R(�Rk) is isomorphic to �R�

n
R/(x1)

k up to free R-summands. We obtain an R-isomorphism
�n+1

R k⊕ R⊕e ∼=�R�
n
R/(x1)

k with e ≥ 0. Thus, for some a, b ≥ 0 we have that �t
Rk⊕ R⊕a is a direct

summand of �t+2
R k⊕ R⊕b. Since R is singular, it follows from [Dutta 1989, Corollary 1.3] that �i

Rk
has no nonzero free summand for all i ≥ 0. Applying Lemma 5.9, we observe that �t

Rk is a direct
summand of �t+2

R k. �

We pose a question asking whether or not the converse of Proposition 5.10 holds true.

Question 5.11. Does there exist a non-Burch local ring (R,m, k) of depth t such that �t k is a direct
summand of �t+2k?

6. Some classes of Burch ideals and rings

In this section, we study Burch ideals in a regular local ring and give a complete characterization in
dimension two. We also give a simple characterization of monomial Burch ideals. We compare Burch
rings to other classes of rings: radical cube zero, almost Gorenstein, nearly Gorenstein, and fiber products.

Over a two-dimensional regular local ring (R,m), the Burch ideals I are characterized in terms of the
minimal numbers of generators of I and mI.

Lemma 6.1. Let (R,m) be a regular local ring of dimension two, and let I be an m-primary ideal of R.
Then I is a Burch ideal of R if and only if µ(mI ) < 2µ(I ).
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Proof. It follows from the Hilbert–Burch theorem that µ(I )= r(R/I )+ 1 and µ(mI )= r(R/mI )+ 1.
The assertion follows from the equivalence (1)⇔ (2) in Proposition 2.3. �

Now we can show the following theorem, which particularly gives a characterization of the Burch
ideals of two-dimensional regular local rings in terms of minimal free resolutions. Compare this theorem
with the result of Corso, Huneke and Vasconcelos [Corso et al. 1998, Lemma 3.6].

Theorem 6.2. Let (R,m) be a regular local ring of dimension d. Let I be an m-primary ideal of R. Take
a minimal free resolution 0→ Fd

ϕd
−→ Fd−1 → · · · → F1

ϕ1
−→ F0 → R/I → 0 of the R-module R/I.

Consider the following conditions:

(1) The ideal I is Burch.

(2) There exist a regular system of parameters x1, . . . , xd and an integer r > 0 such that I1(ϕd) =

(xr
1, x2, . . . , xd).

(3) One has (I :m)2 6= I (I :m).

Then the implication (1)⇒ (2) holds. If R contains a field, then the implication (3)⇒ (2) holds. If d = 2,
then the implication (2)⇒ (1) holds as well.

Proof. We first show that (1) implies (2). We may assume d ≥ 2, so that R has depth greater than 1. By
Lemma 2.12 and its proof, there is a non-zerodivisor x1 ∈m \m

2 such that I/x1 I contains the residue
field R/m as a direct summand. Tensoring R/(x) with the complex F = (0→ Fd→ · · ·→ F0→ 0), we
get a minimal free resolution

(0→ Fd/x1 Fd
ϕd⊗S/(x1)
−−−−−→ Fd−1/Fd−1→ · · · → F2/x1 F2→ F1/x1 F1→ 0)

of I/x1 I over R/(x1). As R/m is a direct summand of I/x1 I, a minimal R/(x1)-free resolution G of
R/m is a direct summand of the above complex. Since G is isomorphic to the Koszul complex KR/(x1)

of R/(x1), the ideal I1(ϕd ⊗ R/(x1)) of R/(x1) contains the maximal ideal m/(x1). Therefore I1(ϕd)

contains elements x2, . . . , xd such that x1, x2, . . . , xd form a regular system of parameters of R. Since
the radical of I1(ϕd) contains I, it is an m-primary ideal. It follows that there is an integer r > 0 such that
xr

1 ∈ I1(ϕd) but xr−1
1 6∈ I1(ϕd). We obtain I1(ϕd)= (xr

1, x2, . . . , xd), and (2) follows.
Next, under the assumption that R contains a field, we prove that (3) implies (2). We use an analogue of

the proof of [Corso et al. 2018, Theorem 2.4]. After completion, we may assume that R is a formal power
series ring over a field k. Suppose that (2) does not hold. Then d ≥ 2 and we can take an ideal L containing
I1(ϕd) such that there is a regular system of parameters x1, . . . , xd with L = (x2

1 , x1x2, x2
2 , x3, . . . , xd).

By [Corso et al. 2018, Proposition 2.1], an isomorphism (I : L)/I ∼= ωR/L ⊗R Fd and its retraction
(I : m)/I ∼= ωR/m ⊗R Fd are given. Note that the canonical module ωR/L of R/L is isomorphic to
(0 :ER(k) L). The module ER(k) is identified with k[x1, x−1

1 , . . . , xd , x−1
d ]/N, where N is the subspace

spanned by the monomials not in k[x−1
1 , . . . , x−1

d ]. Under this identification, ωR/L = (0 : L) is generated
by the monomials x−1

1 and x−1
2 . Set M = {x−1

1 , x−1
2 }. Then x1 M = {1} = x2 M generates ωR/m. Also,

either x1w = 0 or x2w = 0 holds for all w ∈ M. We may apply [Corso et al. 2018, Proposition 2.3] as in
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the proof of [Corso et al. 2018, Theorem 2.4] to get (I :m)2 = I (I :m), contrary to (3). We have shown
that (3) implies (2).

Finally, assuming d = 2, we prove (2) implies (1). As the entries of ϕ2 are contained in m, we have an
exact sequence 0→ F2

ϕ2
−→mF1→mI → 0. This induces an exact sequence

F2/mF2
ϕ2⊗R R/m
−−−−−→mF1/m

2 F1→mI/m2 I → 0.

Suppose that (2) holds. Then ϕ2⊗R R/m 6= 0, and dimR/m(mI/m2 I ) < dimR/m(mF1/m
2 F1). Note that

dimR/m(mI/m2 I )=µ(mI ) and dimR/m(mF1/m
2 F1)= 2µ(I ). Lemma 6.1 shows that I is a Burch ideal,

that is, (1) holds. �

Example 6.3. (1) Let I = (x4, y4, z4, x2 y, y2z, z2x) be an ideal of (R,m) = k[[x, y, z]]. Then one
can check that (I :m)= (x4, x3z, x2 y, xy3, xyz, xz2, y4, y2z, yz3, z4), and so (I :m)2 6= I (I :m).
However, I is not Burch. This gives a counterexample of the implication (3)⇒ (1) in Theorem 6.2.

(2) Let I = (x4, y4, x3 y, xy3) be an ideal of (R,m)= k[[x, y]]. Then (I :m)= (x3, x2 y2, y3). We see
that (I :m)2 = I (I :m) and I is Burch. This shows that the implication (1)⇒ (3) in Theorem 6.2 is
not affirmative, even when R has dimension two.

We provide some characterizations of Burchness for monomial ideals of regular local rings.

Proposition 6.4. Let (R,m) be a regular local ring of dimension d. Let x1, . . . , xd be a regular system of
parameters of R, and let I be a monomial ideal (in the xi s) of R. Then I is Burch if and only if there exist
a monomial m ∈ I \mI and an integer 1≤ i ≤ d such that xi | m and m(x j/xi ) ∈ I for all 1≤ j ≤ d.

Proof. Since I is a Burch ideal, we have mI 6= m(I : m). Therefore, there is a monomial m′ ∈ (I : m)
and an integer i such that xi m′ 6∈ mI. It also holds that x j m′ ∈ I for all j = 1, . . . , d. So the element
m := xi m′ satisfies m(x j/xi ) ∈ I for all j = 1, . . . , d. �

Corollary 6.5. Let (R,m) be a regular local ring of dimension 2 with a regular system of parameters x, y.
Let I = (xa1 yb1, xa2 yb2, . . . , xan ybn ) be a monomial ideal with a1 > a2 > · · ·> an and b1 < b2 < · · ·< bn .
Then I is a Burch ideal of R if and only if ai = ai+1+ 1 or bi = bi+1− 1 for some i = 1, . . . , n.

Proof. By Proposition 6.4, the ideal I is Burch if and only if xai ybi (y/x) ∈ I or xai ybi (x/y) ∈ I for some
i = 1, . . . , n. Equivalently, either xai−1 ybi+1

∈ I or xai+1 ybi−1
∈ I holds for some i = 1, . . . , n. Since

ai+1 ≤ ai − 1< ai < ai + 1≤ ai−1 and bi−1 ≤ bi − 1< bi < bi + 1≤ bi+1, the condition is equivalent to
saying that bi + 1= bi+1 or ai + 1= ai−1 for some i = 1, . . . , n. �

Next, we discuss the relationship between Burch rings and several classes of rings studied previously
in the literature.

Recall that the trace ideal tr M of an R-module M is defined by tr M =
∑

f ∈HomR(M,R) Im f . The
following notions are introduced in [Herzog et al. 2019; Striuli and Vraciu 2011].

Definition 6.6 (Herzog–Hibi–Stamate). Let (R,m) be a Cohen–Macaulay local ring with canonical
module ω. Then R is called nearly Gorenstein if trω contains m.
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Definition 6.7 (Striuli–Vraciu). Let (R,m) be an artinian local ring. Then R is called almost Gorenstein2

if (0 : (0 : I ))⊆ (I :m) for all ideals I of R.

It follows from [Huneke and Vraciu 2006, Proposition 1.1] that artinian nearly Gorenstein local rings
are almost Gorenstein.

We want to consider the relationship of Burchness with near Gorensteinness and almost Gorensteinness.
For this, we establish two lemmas.

Lemma 6.8. Let (R,m, k) be a non-Gorenstein artinian almost Gorenstein local ring. Let Rn A
→ Rm

→

E→ 0 be a minimal R-free presentation of the R-module E = ER(k). One then has I1(A)=m.

Proof. Choose an artinian Gorenstein local ring (S, n) and an ideal I of S such that R ∼= S/I. We
identify E with (0 :S I ) via the isomorphisms E ∼= HomS(R, S)∼= (0 :S I ). Let x1, . . . , xm be a minimal
system of generators of E . By [Striuli and Vraciu 2011, Lemma 1.2] we have

n= ((x1) :S (x2, . . . , xm))+ ((x2, . . . , xm) :S x1).

We find a matrix B over S with m rows such that I1(B)= n and (x1 · · · xm)B = 0. We find a matrix C
over R such that the matrix B over R corresponding to B is equal to AC . We have m= I1(B)= I1(A·C)⊆
I1(A)⊆m, which implies I1(A)=m. �

Lemma 6.9. Let (R,m) be a regular local ring of dimension d, and let I ⊆ m2 be an ideal of R. Take
a minimal free resolution 0→ Fd

ϕd
−→ Fd−1→ · · · → F1

ϕ1
−→ F0→ R/I → 0 of the R-module R/I. If

R/I is artinian, non-Gorenstein and almost Gorenstein, then I1(ϕd)=m.

Proof. Set A = R/I and E = EA(k). Then the sequence (Fd−1/I Fd−1)
∗ (ϕd⊗A)∗
−−−→ (Fd/I Fd)

∗
→ E→ 0

gives a minimal A-free presentation of E , where (−)∗ = HomA(−, A). Note that rankA(Fd/I Fd)
∗
=

r(A)= µ(E). Lemma 6.8 implies I1((ϕd ⊗ A)∗)=m, which shows I1(ϕd)+ I =m. The desired result
follows from Nakayama’s lemma. �

We can show an artinian almost Gorenstein local ring of embedding dimension two is Burch.

Proposition 6.10. Let (R,m) be a regular local ring of dimension 2 and I an ideal of R. Assume that
R/I is a non-Gorenstein artinian almost Gorenstein ring. Then I is a Burch ideal of R.

Proof. Take a minimal free resolution 0→ F2
ϕ2
−→ F1

ϕ1
−→ F0→ R/I → 0 of the R-module R/I. It

follows from Lemma 6.9 that I1(ϕ2) = m. Since R has dimension two, we can use the implication
(2)⇒ (1) in Theorem 6.2 to have that I is Burch. �

Remark 6.11. One may hope a non-Gorenstein nearly Gorenstein local ring is Burch, but this is
not necessarily true. Indeed, let (R,m) be a 1-dimensional nearly Gorenstein local ring (e.g., R =
k[[t3, t4, t5

]] ⊆ k[[t]] with k a field). Take a regular element x ∈m2, and set A = R/(x). Then A is nearly
Gorenstein by [Herzog et al. 2019, Proposition 2.3(b)], but A is not a Burch ring by Corollary 7.9.

2There is another notion of an almost Gorenstein ring; see [Goto et al. 2015].
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Next, we deal with local rings the cube of whose maximal ideal is zero. The following gives a
characterization of Burchness for such rings.

Theorem 6.12. Let (R,m, k) be a local ring with m3
= 0. Then R is a Burch ring if and only if there is

an inequality β2(k) > (edim R)2− r(R).

Proof. Put e= edim R and r = r(R). By Theorem 4.1, the ring R is Burch if and only if k is a direct sum-
mand of �2k, if and only if Soc�2k 6⊆m�2k. There is a short exact sequence 0→�2k→ Re

→m→ 0,
which gives an inclusion �2k ⊆ mRe and an equality Soc�2k = Soc Re. Since m3

= 0, we have an
inclusion m�2k ⊆ Soc�2k. Thus R is Burch if and only if `(Soc�2k) > `(m�2k). There are equalities

β2(k)= `(�2k)− `(m�2k)= `(Re)− `(m)− `(m�2k)= (e− 1)`(m)+ e− `(m�2k)

= (e− 1)(e+ `(m2))+ e− `(m�2k)= e2
+ (e− 1)`(m2)− `(m�2k).

On the other hand, there is an inclusion�2k⊆me, which induces an inclusion m�2k⊆ (m2)e. Thus one has
`(m�2k)≤ e`(m2)≤ er = `(Soc�2k). If `(m2)<`(Soc R)= r , then we see that `(Soc�2k)>`(m�2k).
The above equalities show that β2(k)≥ e2

− `(m2) > e2
− r . Therefore, we may assume `(m2)= r . We

obtain β2(k)= e2
− r + er − `(m�2k). It follows that β2 > e2

− r if and only if er − `(m�2k) > 0. The
latter condition is equivalent to `(Soc�2k) > `(m�2k). �

Let R be a local ring with maximal ideal m. An element x ∈m is called a Conca generator of m if
x2
= 0 and m2

= xm. This notion has been introduced in [Avramov et al. 2008]. Note that the condition
m3
= 0 is necessary for R to possess a Conca generator.

Corollary 6.13. Let (R,m, k) be a local ring with m3
= 0 and Soc R ⊆m2. If R is a Burch ring, then R

has no Conca generator.

Proof. If R has a Conca generator, then the Poincaré series Pk(t)=
∑
βi t i is of the form 1/(1−et+r t2) by

[Avramov et al. 2008, Theorem 1.1]. In particular, β2(k)=e2
−r . Thus R is not Burch by Theorem 6.12. �

Next, we consider the Burchness of a fiber product. Let S, T be local rings having common residue
field k. We say that the fiber product S×k T is nontrivial if S 6= k 6= T. It holds that depth S×k T =
min{depth S, depth T, 1}; see [Lescot 1981, Remarque 3.3]. We compute some invariants.

Lemma 6.14. Let R = S×k T be a nontrivial fiber product, where (S,mS, k) and (T,mT , k) are local
rings. Then the following equalities hold.

(1) edim R = edim S+ edim T.

(2) dimk Soc R = dimk Soc S+ dimk Soc T.

(3) dimk H1(KR)= dimk H1(KS)+ dimk H1(KT )+ edim S · edim T.

(4) cR = cS + cT + edim S · edim T − edim(S/Soc S) · edim(T/Soc T ).

Proof. (1), (2) These equalities can be checked directly.
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(3) One has βR
2 (k)=β

S
2 (k)+β

T
2 (k)+2 edim S·edim T and dimk H1(KR)=βR

2 (k)−
(edim R

2

)
; see [Kostrikin

and Shafarevich 1957; Bruns and Herzog 1998, Theorem 2.3.2] for example. Thus there are equalities

dimk H1(KR)= βR
2 (k)−

(edim R
2

)
= βS

2 (k)+β
T
2 (k)+ 2 edim S · edim T −

(edim R
2

)
= dimk H1(KS)−

(edim S
2

)
+ dimk H1(KT )−

(edim T
2

)
+ 2 edim S · edim T −

(edim R
2

)
= dimk H1(KR1)+ dimk H1(KR2)+ edim S · edim T .

(4) Put R′ = R/Soc R, S′ = S/Soc S and T ′ = T/Soc T. Then R′ ∼= S′ × T ′ unless S = k or T = k.
Using (1), (2) and (3), we can calculate cR as follows:

cR = dimk Soc R+ dim H1(KR)− edim R− dim H1(KR′)+ edim R′

= dimk Soc S+ dimk Soc T + dimk H1(KS)+ dimk H1(KR2)+ edim S · edim T

− edim S− edim T − dimk H1(KS′)− dimk H1(KT ′)− edim S′ · edim T ′+ edim S′+ edim T ′

= cS + cT + edim S · edim T − edim S′ · edim T ′. �

Using the above lemma, we can characterize the Burch fiber products.

Proposition 6.15. Let R = S ×k T be a nontrivial fiber product, where (S,mS, k) and (T,mT , k) are
local rings. Then R is a Burch ring if and only if

(a) depth R > 0, or (b) depth R = 0 and either S or T is a Burch ring of depth zero.

Proof. First we deal with the case where depth R = 0. Lemma 2.11 shows that R is Burch if and only if
cR > 0. Note that the integers cS, cT and N := edim S · edim T − edim(S/Soc S) · edim(T/Soc T ) are
always nonnegative. By Lemmas 6.14(4), the positivity of cS or cT implies that R is Burch. Conversely,
assume that R is Burch. Then by Lemma 6.14(4) again, one of the three integers cS , cT , N is positive.
If cS or cT is positive, then S or T is Burch. When N > 0, either edim S > edim S/Soc S or edim T >
edim T/Soc T holds. Without loss of generality, we may assume that edim S > edim S/Soc S. This
inequality means that there is an element x ∈ (mS ∩ Soc S) \m2

S . Then mS = I ⊕ (x) for some ideal I.
We see that S ∼= S/(x)×k S/I and edim S/I ≤ 1. Example 2.10 implies that S/I is Burch, and so is S.

Next, we consider the case where depth R > 0. In this case, we have depth S > 0, depth T > 0 and
depth R = 1. Take regular elements x ∈mS \m

2
S and y ∈mT \m

2
T . The element x− y ∈mR =mS⊕mT is

also a regular element of R. The equalities xmR = xmS = (x − y)mS show that the image x̄ ∈ R/(x − y)
of x is in Soc R/(x− y). We have mR/(x− y)= (x̄)⊕ I for some ideal I of R/(x− y). Hence R/(x− y)
is isomorphic to the fiber product U ×k V of local rings over their common residue field k such that
edim V ≤ 1. As V is Burch by Example 2.10, it follows that so is R/(x − y), and hence so is R. �

Example 6.16. Let R = k[x, y]/(xa, xy, yb) with k a field and a, b ≥ 1. Then R is a Burch ring. In
fact, R is isomorphic to the fiber product of k[x]/(xa) and k[y]/(yb) over k. By Example 2.10, the rings
k[x]/(xa) and k[y]/(yb) are Burch, and so is R by Proposition 6.15.
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7. Homological and categorical properties of Burch rings

In this section, we explore some homological and categorical aspects of Burch rings. They come in
several flavors. We prove a classification theorem of subcategories over Burch rings. We also prove
that non-Gorenstein Burch rings are G-regular in the sense of [Takahashi 2008], and that nontrivial
consecutive vanishings of Tor over Burch rings cannot happen. We begin with recalling the definition
of resolving subcategories.

Definition 7.1. Let R be a ring. A subcategory X of mod R is resolving if the following hold.

(1) The projective R-modules belong to X .

(2) Let M be an R-module and N a direct summand of M. If M is in X , then so is N.

(3) For an exact sequence 0→ L→ M→ N → 0, if L and N are in X , then so is M.

(4) For an exact sequence 0→ L→ M→ N → 0, if M and N are in X , then so is L .

Note that (1) can be replaced by the condition that X contains R. Also, (4) can be replaced by the
condition that if M is an R-module in X , then so is �M. For an R-module C , we denote by resR C the
resolving closure of C , the smallest resolving subcategory of mod R containing C .

We establish a couple of lemmas to prove Proposition 7.6. The first lemma is used as a base result of
this section, which is essentially shown in [Takahashi 2009, Proposition 4.2]. For an R-module M we
denote by NF(M) the nonfree locus of M, that is, the set of prime ideals p of R such that Mp is nonfree
as an Rp-module.

Lemma 7.2. Let (R,m) be a local ring, M a nonfree R-module, and x an element in m.

(1) There exists a short exact sequence 0→�M→ M(x)→ M→ 0 such that x ∈ I1(M(x))⊆m and
pdR M(x)≥ pdR M. In particular, M(x) belongs to resR M.

(2) For each p ∈ V(x)∩NF(M) one has V(p)⊆ NF(M(x))⊆ NF(M) and D(x)∩NF(M(x))=∅.

Proof. (1) Let · · · d3
−→ F2

d2
−→ F1

d1
−→ F0

π
→ M → 0 be a minimal free resolution of M. Taking the

mapping cone of the multiplication map of the complex F by x , we get an exact sequence

· · · → F3⊕ F2

( d3 x
0 −d2

)
−−−−−→ F2⊕ F1

( d2 x
0 −d1

)
−−−−−→ F1⊕ F0

(
d1 x
0 −π

)
−−−−−→ F0⊕M

(π x)
−−−→ M→ 0.

Set M(x) = Im
( d1

0
x
−π

)
= Coker

(d2
0

x
−d1

)
. The free resolution of M(x) given by truncating the above

sequence is minimal. We see that x ∈ I1(M(x))⊆m as M is nonfree, and that pdR M(x)≥ pdR M. The
following pullback diagram gives an exact sequence as in the assertion.

0 // �M
f

// F0
π

// M // 0

0 // �M // M(x) //

OO

M //

x

OO

0



Burch ideals and Burch rings 2143

(2) The module M(x) fits into the pushout diagram

0 // �M
f

//

x

��

F0
π

//

��

M // 0

0 // �M // M(x) // M // 0

Using the same argument as in the proof of [Takahashi 2009, Proposition 4.2], we observe that V(p)⊆
NF(M(x))⊆ NF(M) and D(x)∩NF(M(x))=∅ hold. �

Lemma 7.3. Let (R,m) be a local ring and M an R-module. Let W ⊆ NF(M) be a closed subset of
Spec R. Then there exists an R-module X such that pdR X ≥ pdR M and NF(X)=W.

Proof. The assertion follows from the proof of [Takahashi 2009, Theorem 4.3] by replacing [Takahashi
2009, Lemma 4.2] used there with our Lemma 7.2. �

Lemma 7.4. Let (R,m) be a local ring and M a nonfree R-module. Then there is an exact sequence
0→ (�M)n→ N → Mn

→ 0 with n ≥ 1, I1(N )=m and pdR N ≥ pdR M. In particular, N ∈ resR M.

Proof. Let x1, . . . , xn be a minimal system of generators of m. According to Lemma 7.2, for each i
there exists an exact sequence 0 → �M → M(xi ) → M → 0 such that xi ∈ I1(M(xi )) ⊆ m and
pdR M(xi )≥pdR M. Putting N =

⊕n
i=1 M(xi ), we obtain an exact sequence 0→ (�M)n→N→Mn

→0
with I1(N )=

∑n
i=1 I1(M(xi ))=m and pdR N ≥ pdR M. �

Lemma 7.5. Let R be a local ring. Let M be an R-module that is locally free on the punctured spec-
trum of R.

(1) For every X ∈ resR̂ M̂ there exists Y ∈ resR M such that X is a direct summand of Ŷ .

(2) Let N be an R-module. If N̂ ∈ resR̂ M̂ , then N ∈ resR M.

Proof. (1) Let C be the subcategory of mod R̂ consisting of direct summands of the completions of modules
in resR M. We claim that C is a resolving subcategory of mod R̂ containing M̂. Indeed, since R,M are
in resR M, the completions R̂, M̂ are in C. For each E ∈ C, there exists D ∈ resR M such that E is a
direct summand of D̂. The module �R̂ E is a direct summand of �R̂ D̂ = �̂R D. As �R D ∈ resR M, we
have �R E ∈ C. Let 0→ A→ B→ C → 0 be an exact sequence of R̂-modules with A,C ∈ C. Then
A,C are direct summands of V̂ , Ŵ for some V,W ∈ resR M, respectively. Writing A⊕ A′ = V̂ and
C ⊕C ′ = Ŵ, we get an exact sequence σ : 0→ V̂ → B ′→ Ŵ → 0, where B ′ = A′⊕ B⊕C ′. The exact
sequence σ corresponds to an element of Ext1R̂(Ŵ , V̂ ) = ̂Ext1R(W, V ). Since M is locally free on the
punctured spectrum of R, so are V and W. Hence Ext1R(W, V ) has finite length as an R-module, and is
complete. This implies that there exists an exact sequence τ : 0→ V →U→W→ 0 of R-modules such
that τ̂ ∼= σ . Therefore U is in resR M and B ′ is isomorphic to Û. Thus B belongs to C, and the claim
follows. The claim shows that C contains resR̂ M̂. Hence X is in C, which shows the assertion.
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(2) By (1) there is an R-module Y ∈ resR M such that N̂ is a direct summand of Ŷ . Thanks to [Leuschke and
Wiegand 2012, Corollary 1.15(i)], the module N is a direct summand of Y. Hence N belongs to resR M. �

Now we can show the proposition below, which yields a significant property of Burch rings. This is
also used in the proofs of Theorems 7.7 and 7.10.

Proposition 7.6. Let R be a Burch local ring of depth t with residue field k. Let M be an R-module of
infinite projective dimension. Then �t k belongs to resR M.

Proof. We begin with proving the proposition when R is complete and t = 0. As M has infinite projective
dimension, Lemma 7.4 gives rise to an R-module N ∈ resR M with I1(N )=m. Proposition 4.2 implies
that k is a direct summand of �2

R N. As �2
R N is in resR M, so is k.

Now, let us consider the case where R is complete and t > 0. By definition, there is a maximal
regular sequence x of R such that R/(x) is a Burch ring of depth 0. Note that �t M ∈ resR M. For all
i > 0 we have TorR

i (�
t M, R/(x)) = TorR

i+t(M, R/(x)) = 0, which says that x is a regular sequence
on �t M. The R/(x)-module �t M/x�t M has infinite projective dimension by [Bruns and Herzog 1998,
Lemma 1.3.5]. The case t = 0 implies that k belongs to resR/(x)�

t M/x�t M. It follows from [Takahashi
2010, Lemma 5.8] that �t

Rk ∈ resR �
t M ⊆ resR M.

Finally, we consider the case where R is not complete. Lemma 7.3 gives an R-module X ∈ resR M
with pdR X =∞ and NF(X)= {m}. As R̂ is Burch and pdR̂ X̂ = pdR X =∞, the above argument yields
�t

R̂
k ∈ resR̂ X̂ . Using Lemma 7.5, we see �t k ∈ resR X, and �t k ∈ resR M. �

Non-Gorenstein Burch rings admit only trivial totally reflexive modules. Recall that a local ring R is
called G-regular if every totally reflexive R-module is free.

Theorem 7.7. Let R be a non-Gorenstein Burch local ring. Then R is G-regular.

Proof. By taking the completion and using [Takahashi 2008, Corollary 4.7], we may assume that R is
complete. Let G be the category of totally reflexive R-modules. Then G is a resolving subcategory of
mod R by [Christensen 2000, (1.1.10) and (1.1.11)]. If R is not G-regular, that is, there is a nonfree
R-module M in G, then Proposition 7.6 shows that G contains the R-module �dk, where d = dim R. In
other words, �dk is totally reflexive. This especially says that the R-module k has finite G-dimension,
and R is Gorenstein; see [Christensen 2000, (1.4.9)]. This contradiction shows that R is G-regular. �

Remark 7.8. The converse of Theorem 7.7 does not necessarily hold. In fact, the nontrivial fiber product
R = S ×k T of non-Burch local rings S, T is non-Burch. However, thanks to [Nasseh and Takahashi
2020, Lemma 4.4], the same argument of the proof of Theorem 7.7 works, and hence R is G-regular.

As a corollary of Theorem 7.7, “embedded deformations” of Burch rings are never Burch.

Corollary 7.9. Let (R,m) be a singular local ring. Let x ∈m2 be an R-regular element. Then the local
ring R/(x) is not Burch.

Proof. The proof of [Takahashi 2008, Proposition 4.6] gives rise to an endomorphism δ : Rn
→ Rn

such that δ2
= x · idRn and Im δ ⊆ mRn. It is easy to see that δ is injective, and we have an exact
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sequence 0→ Rn δ
→ Rn

→ C→ 0 with xC = 0. This induces an exact sequence · · · δ→ (R/(x))n δ
→

(R/(x))n δ
→ (R/(x))n δ

→ · · · of R/(x)-modules whose R/(x)-dual is exact as well. Since Im δ = C ,
the R/(x)-module C is totally reflexive. As Im δ ⊆mRn, we see that C is not R/(x)-free. Hence R/(x)
is not G-regular.

Suppose that R/(x) is Burch. Then Theorem 7.7 implies that R/(x) is Gorenstein. By Proposition 5.1,
the ring R/(x) is a hypersurface. We have

1≥ codepth R/(x)= edim R/(x)− depth R/(x)= edim R− (dim R− 1)= codim R+ 1,

where the second equality follows from the assumption that x is not in m2. We get codim R = 0, which
means that R is regular, contrary to our assumption. �

Let (R,m) be a local ring. We denote by Spec0 R the punctured spectrum of R. For a property P, we
say that Spec0 R satisfies P if Rp satisfies P for all p ∈ Spec0 R. We denote by CM(R) the subcategory
of mod R consisting of maximal Cohen–Macaulay modules. Also, Db(R) stands for the bounded derived
category of mod R, and Dsg(R) the singularity category of R, that is, the Verdier quotient of Db(R)
by perfect complexes. Note that Db(R) and Dsg(R) have the structure of a triangulated category. A
thick subcategory of a triangulated category is by definition a triangulated subcategory closed under
direct summands. The following theorem gives rise to classifications of several kinds of subcategories
over Burch rings; recall that a Cohen–Macaulay local ring R is said to have finite Cohen–Macaulay
representation type if there exist only finitely many isomorphism classes of indecomposable maximal
Cohen–Macaulay R-modules. For the unexplained notations and terminologies appearing in the theorem,
we refer to [Nasseh and Takahashi 2020, §2].

Theorem 7.10. Let (R,m) be a singular Cohen–Macaulay Burch local ring.

(1) Suppose that Spec0 R is either a hypersurface or has minimal multiplicity. Then there is a commuta-
tive diagram of mutually inverse bijections:{

resolving subcategories of
mod R contained in CM(R)

}
NF

//

{
specialization-closed

subsets of Sing R

}
NF−1

CM

oo

IPD−1

��{
thick subcategories of
CM(R) containing R

}
thickmod R

//

thickDsg(R)

��

{
thick subcategories of
mod R containing R

}
restCM(R)

oo

IPD

OO

thickDb(R)

��{
thick subcategories of

Dsg(R)

}
π−1

//

restCM(R)

OO

{
thick subcategories of
Db(R) containing R

}
π

oo

restmod R

OO
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(2) Assume that R is excellent and admits a canonical module ω. Suppose that Spec0 R has finite
Cohen–Macaulay representation type. Then there is a commutative diagram of mutually inverse
bijections:


resolving subcategories
of mod R contained in

CM(R) and containing ω

 NF
//


specialization-closed

subsets of Sing R
containing NG R

NF−1
CM

oo

IPD−1

��
thick subcategories of

CM(R) containing
R and ω

 thickmod R
//

thickDsg(R)

��


thick subcategories of

mod R containing
R and ω

restCM(R)

oo

IPD

OO

thickDb(R)

��{
thick subcategories of
Dsg(R) containing ω

}
π−1

//

restCM(R)

OO


thick subcategories of

Db(R) containing
R and ω

π
oo

restmod R

OO

Proof. The proof of [Nasseh and Takahashi 2020, Theorem 4.5] uses [Nasseh and Takahashi 2020,
Lemma 4.4]. Replace this lemma with our Proposition 7.6. Then the same argument works, and the
theorem follows. �

Example 7.11. We have the following list of examples of non-Gorenstein Cohen–Macaulay local rings
not having isolated singularities, where ◦ and × mean “Yes” and “No” respectively.

Example no. of R dim R Burch
Spec0 R

[Takahashi 2013] hypersurface min. mult. finite CM rep. type

7.1
k[[x, y, z]]
(x2, xz, yz)

1 ◦ ◦ ◦ ◦

7.2
k[[x, y, z]]
(x2, xy, y2)

1 ◦ × ◦ ×

7.3
k[[x, y, z]]

(xy, z2, zw,w3)
1 × × ◦ ×

7.4
k[[x, y, z]]

(x2− yz, xy, y2)
1 ◦ ◦ × ◦

7.5
k[[x, y, z, w]]
(xy, xz, yz)

2 ◦ × ◦ ◦
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The assertions are shown in [Takahashi 2013, Examples 7.1–7.5], except those on the Burch property.
As to the first, second, fourth and fifth rings R are Burch since the quotient of a system of parameters is iso-
morphic to k[x, y]/(x2, xy, y2), which is an artinian Burch ring by Example 6.16. As for the third ring R,
note that (x, y) is an exact pair of zerodivisors. Hence it is not G-regular, and not Burch by Theorem 7.7.

Now we discuss the vanishing of Tor modules over Burch rings. The following result is a simple
consequence of Lemmas 2.11 and 7.4.

Proposition 7.12. Let (R,m, k) be a Burch ring of depth zero, and M, N be R-modules. If TorR
l (M, N )=

TorR
l+1(M, N )= 0 for some l ≥ 3, then either M or N is a free R-module.

Proof. We may assume that R is complete. Assume that M is nonfree. Since depth R=0, the R-module M
has infinite projective dimension. By Lemma 7.4, there is a short exact sequence 0→ (�M)n→ X→
Mn
→ 0, where X satisfies I1(X) = m. It induces an exact sequence 0→ (�3 M)n → �2 X ⊕ F →

(�2 M)n→ 0 with F free. We also have Torl−2(�
2 M, N ) = Torl−2(�

3 M, N ) = 0, which implies that
Torl−2(�

2 X, N )= 0. Proposition 4.2 implies that k is a direct summand of �2 X , as R is Burch. We see
that Torl−2(k, N ) vanishes. This shows that N has finite projective dimension, and so it is R-free. �

We can prove the following by applying a similar argument as in the proof of [Nasseh and Takahashi
2020, Corollary 6.5], where we use Proposition 7.12 instead of [Nasseh and Takahashi 2020, Corollary 6.2].

Corollary 7.13. Let (R,m, k) be a Burch ring of depth t. Let M, N be R-modules. Assume that there
exists an integer l ≥max{3, t+1} such that TorR

i (M, N )= 0 for all l+ t ≤ i ≤ l+2t+1. Then either M
or N has finite projective dimension.

Remark 7.14. Using an analogous argument as in the proof of [Nasseh and Takahashi 2020, Corollary 6.6],
one can also prove a variant of Corollary 7.13 regarding Ext modules.

We state a remark on the ascent of Burchness along a flat local homomorphism.

Remark 7.15. Let (R,m)→ (S, n) be a flat local homomorphism of local rings. Even if the rings R and
S/mS are Burch, S is not necessarily Burch. In fact, consider the natural injection

φ : R = k[x, y]/(x2, xy, y2) ↪→ k[x, y, t]/(x2, xy, y2, t2)= S.

Then φ is a flat local homomorphism. The artinian local rings R and S/mS = k[t]/(t2) are Burch by
Examples 6.16 and 2.2(1). The ring S is not G-regular since (t, t) is an exact pair of zerodivisors of S.
Theorem 7.7 implies that S is not Burch.

In the case when the closed fiber is regular, the ascent of Burchness along a flat local homomorphism
holds.

Remark 7.16. Let (R,m)→ (S, n) be a flat local homomorphism of local rings. If R is Burch and S/m
is regular, then S is Burch.
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Proof. To prove this, we may take the completions, and assume that R (resp. S) is complete with respect
to m-adic (resp. n-adic) topology. Then we get a regular sequence x of R such that R/(x) is a Burch ring
of depth zero. By the flatness of S over R, x is also regular on S, and so it is enough to show that S/(x)
is Burch. Thus we can replace the flat local homomorphism R→ S by R/(x)→ S/(x), and assume that
R is of depth zero. Let y be a sequence of elements in S which forms a regular system of parameters of
S/mS. Then y is regular on S and S/( y) is flat over R (see [Bruns and Herzog 1998, Lemma 1.2.17]
for instance). Therefore replacing R→ S by the composition R→ S→ S/( y), we may assume that
m= n. Thanks to Theorem 4.1, it follows that R/m is a direct summand of �2

R R/m. Tensoring with S
over R, we obtain that S/mS (which is equal to S/n) is a direct summand of (�2

R R/m)⊗R S. By the
flatness of S over R again, (�2

R R/m)⊗R S is isomorphic to �2
S S/n. Hence S/n is isomorphic to a direct

summand of �2
S S/n, and Theorem 4.1 yields that S is Burch. �

A localization of a Burch ring at a prime ideal may not be Burch. Indeed, we have an example below.

Example 7.17. Let R = k[[x, y, z, w]]/(x2, y2, xw, yw, zw) and p be the minimal prime ideal (x, y, w)
of R. Then R is a local ring of depth zero and isomorphic to the fiber product of k[[x, y, z]]/(x2, y2) and
k[[w]] over k. Therefore R is Burch by Proposition 6.15. On the other hand, the localization Rp of R at p
is isomorphic to k((z))[[x, y]]/(x2, y2), which is a complete intersection of codimension two. Thus Rp is
not Burch by Proposition 5.1.
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Sous-groupe de Brauer invariant
et obstruction de descente itérée

Yang Cao

Pour une variété quasi-projective, lisse, géométriquement intègre sur un corps de nombres k, on montre
que l’obstruction de descente itérée est équivalente à l’obstruction de descente. Ceci généralise un résultat
de Skorobogatov, et ceci répond à une question ouverte de Poonen. Les outils principaux sont la notion de
sous-groupe de Brauer invariant et la notion d’obstruction de Brauer–Manin étale invariante pour une
k-variété munie d’une action d’un groupe linéaire connexe.

For a quasi-projective smooth geometrically integral variety over a number field k, we prove that the
iterated descent obstruction is equivalent to the descent obstruction. This generalizes a result of Sko-
robogatov, and this answers an open question of Poonen. Our main tools are the notion of invariant Brauer
subgroup and the notion of invariant étale Brauer–Manin obstruction for a k-variety equipped with an
action of a connected linear algebraic group.
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1. Introduction

Soit k un corps de nombres. Soit Ak l’anneau des adèles de k. Pour une k-variété lisse X , on note
X (Ak) l’ensemble des points adéliques de X . On a le plongement diagonal

X (k)⊂ X (Ak).

C’est une question importante de caractériser l’adhérence des points rationnels dans les points adéliques
(principe de Hasse, approximation faible, approximation forte). Manin [1971] a montré que cette adhérence
est contenue dans un fermé déterminé par le groupe de Brauer de la variété X . Depuis lors, divers auteurs

MSC2010 : primary 11G35; secondary 14G05, 20G35.
Mots-clefs : Hasse principle, Brauer–Manin obstruction, algebraic group.
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(Manin, Colliot-Thélène, Sansuc, Skorobogatov, Harari, Demarche) ont décrit d’autres fermés de X (Ak)

contenant les points rationnels, et se sont attachés à comprendre les inclusions entre ces divers fermés.
On a utilisé pour cela les torseurs sous des groupes linéaires (finis ou non) sur X , et on a utilisé des
combinaisons de ces deux approches pour déterminer des fermés minimaux de X (Ak) contenant X (k).
Harari et Skorobogatov [2002, Definition 4.2] ont décrit une inclusion (cf. (1-2) pour la définition)

X (k)⊂ X (Ak)
descent.

Ensuite Poonen [2017, §8.5.2] a itéré cette inclusion en (cf. (1-3) pour la définition)

X (k)⊂ X (Ak)
descent, descent

⊂ X (Ak)
descent,

et demandé [Poonen 2017, §8.5.4] si la deuxième inclusion raffine la première. Le théorème principal
du présent article (théorème 1.1) permet de répondre à cette question de Poonen : X (Ak)

descent, descent
=

X (Ak)
descent (théorème 1.2 ci-dessous). Ce théorème 1.2 apporte un point final à l’utilisation combinée

du groupe de Brauer et de la descente sous des groupes linéaires dans la détermination de l’adhérence de
X (k) dans X (Ak).

Donnons maintenant des énoncés précis.
On note �k l’ensemble des places du corps de nombres k. Pour chaque v ∈�k , on note kv le complété

de k en v et Ov ⊂ kv l’anneau des entiers (Ov = kv pour v archimédienne).
Pour B un sous-groupe de Br(X), on définit

X (Ak)
B
=

{
(xv)v∈�k ∈ X (Ak) :

∑
v∈�k

invv(ξ(xv))= 0 ∈Q/Z, ∀ξ ∈ B
}
.

Comme l’a remarqué Manin [1971], la théorie du corps de classes donne X (k)⊆ X (Ak)
B .

Soient F un k-groupe algébrique et f : Y → X un F-torseur. Pour tout 1-cocycle σ ∈ Z1(k, F),
on note Fσ , respectivement fσ : Yσ → X le tordu du k-groupe F , respectivement du torseur f , par le
1-cocycle σ . Alors fσ est un Fσ -torseur. La classe d’isomorphisme du k-groupe Fσ , respectivement du
torseur fσ , ne dépend que de la classe de σ dans H 1(k, F). Par abus de notation, étant donnée une classe
[σ ] ∈ H 1(k, F), on note Fσ = F[σ ] et fσ = f[σ ].

Pour une k-variété lisse X , Skorobogatov [1999] et Poonen [2010, §3.3] définissent l’ensemble suivant :

X (Ak)
ét,Br
:=

⋂
f :Y

F
−→X

F fini

⋃
σ∈H1(k,F)

fσ (Yσ (Ak)
Br(Yσ )), (1-1)

où F parcourt les k-groupes finis. Ils obtiennent une inclusion X (k) ⊂ X (Ak)
ét,Br. Ceci définit une

obstruction au principe de Hasse pour X , appelée obstruction de Brauer–Manin étale, étudiée dans le cas
projectif par Skorobogatov, Harari et Demarche, puis dans le cas quasi-projectif [Cao et al. 2019a].

Le résultat principal de cet article est :
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Théorème 1.1. Soient G un k-groupe linéaire quelconque, Z une k-variété lisse et p : X → Z un
G-torseur. Alors :

Z(Ak)
ét,Br
=

⋃
σ∈H1(k,G)

pσ (Xσ (Ak)
ét,Br).

Pour G fini et Z projective, ce théorème avait déjà été établi par Skorobogatov [2009, Theorem 1.1].
Pour G fini et Z quasi-projective, il avait été ensuite établi par Demarche, Xu et l’auteur [Cao et al.
2019a, Proposition 6.6]. Si Z est projective, π1(Z k̄) est fini et G est une extension d’un k-groupe fini par
un tore, Balestrieri [2018, Theorem 1.9] a établi une variante simple, où elle considère l’obstruction de
Brauer–Manin algébrique étale.

Par ailleurs, dans [Poonen 2010, §3.2 ; 2017, §8], on définit deux ensembles

X (Ak)
descent

:=

⋂
f :Y

F
−→X

F linéaire

⋃
σ∈H1(k,F)

fσ (Yσ (Ak)), (1-2)

X (Ak)
descent, descent

:=

⋂
f :Y

F
−→X

F linéaire

⋃
σ∈H1(k,F)

fσ (Yσ (Ak)
descent). (1-3)

On a X (k) ⊂ X (Ak)
descent et X (k) ⊂ X (Ak)

descent, descent. Ceci définit deux nouvelles obstructions au
principe de Hasse pour X , appelées obstruction de descente et obstruction de descente itérée. D’après la
série de travaux [Demarche 2009b ; Skorobogatov 2009 ; Cao et al. 2019a], on a X (Ak)

ét,Br
= X (Ak)

descent

lorsque X est quasi-projective [Cao et al. 2019a, Theorem 1.5]. Du théorème 1.1 on déduit facilement le :

Théorème 1.2. Pour toute variété quasi-projective lisse géométriquement intègre X , on a

X (Ak)
descent, descent

= X (Ak)
descent.

L’idée clé de la démonstration du théorème 1.1 est la notion de sous-groupe de Brauer invariant [Cao
2018, définition 3.1], que nous rappelons ici :

Définition 1.3. Soit G un groupe algébrique connexe.

(1) Soit (X, ρ) une G-variété lisse connexe. Le sous-groupe de Brauer G-invariant de X est le sous-
groupe

BrG(X) := {b ∈ Br(X) : (ρ∗(b)− p∗2(b)) ∈ p∗1Br(G)}

de Br(X), où G× X
p1
−→ G, G× X

p2
−→ X sont les projections et G× X

ρ
−→ X est l’action de G.

(2) Soit X une G-variété lisse quelconque. Le sous-groupe de Brauer G-invariant de X est le sous-
groupe BrG(X)⊂ Br(X) des éléments α vérifiant α|X ′ ∈ BrG(X ′) pour toute composante connexe
X ′ de X .

(3) Soient F un k-groupe fini et X une G-variété lisse quelconque. Un F-torseur Y f
→ X est G-

compatible s’il existe une action de G sur Y telle que f soit un G-morphisme.
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D’après la proposition 3.3, l’action de G sur Y vérifiant les conditions ci-dessus est unique et le
Fσ -torseur fσ est aussi G-compatible pour tout σ ∈ H 1(k, F). On définit la variante de X (Ak)

ét,Br

suivante :
X (Ak)

G-ét,BrG :=

⋂
f :Y

F
−→X G-compatible

F fini

⋃
σ∈H1(k,F)

fσ (Yσ (Ak)
BrG(Yσ )). (1-4)

Alors X (k) ⊂ X (Ak)
ét,Br
⊂ X (Ak)

G-ét,BrG . Ceci définit une obstruction au principe de Hasse pour X ,
appelée obstruction de Brauer–Manin étale invariante.

Le théorème suivant joue un rôle clé dans la démonstration du théorème 1.1.

Théorème 1.4. Soient G un groupe linéaire connexe et X une G-variété lisse. Alors

X (Ak)
G-ét,BrG = X (Ak)

ét,Br.

Dans le cas où X est un G-espace homogène à stabilisateur géométrique connexe, tout torseur G-
compatible sous un k-groupe fini est constant, d’après le corollaire 3.5(4). Donc on peut obtenir facilement
le résultat suivant.

Corollaire 1.5. Soient G un groupe linéaire connexe et X un G-espace homogène à stabilisateur géomé-
trique connexe. Alors

X (Ak)
ét,Br
= X (Ak)

G-ét,BrG = X (Ak)
BrG(X).

Ce résultat particulier peut s’établir aussi via l’approximation forte sur X par rapport à BrG(X) (voir
[Borovoi et Demarche 2013, Theorem 1.4]).

Donnons maintenant la structure de l’article.
Au paragraphe 2, sur un corps k quelconque, s’inspirant de la notion de torseur universel de Colliot-

Thélène et Sansuc, on introduit la notion de torseur universel de n-torsion (définition 2.1). Ensuite, on
utilise cette notion à établir une formule de Künneth spéciale pour la cohomologie étale de degré 2.

Au paragraphe 3, sur un corps k de caractéristique zéro, on considère la donnée d’un k-groupe
algébrique G, d’une G-variété X lisse, d’un k-groupe fini F , d’un torseur Y → X sous F , on donne des
conditions équivalentes pour le relèvement, de façon compatible, de l’action de G sur X en une action
sur Y . Ce relèvement n’est pas toujours possible. On étudie les homomorphismes surjectifs de groupes
algébriques connexes H → G avec une action compatible de H sur Y , et on montre qu’il existe un objet
minimal HY . Étant donné un élément α ∈ Br(X), en utilisant la formule de Künneth ci-dessus, on montre
ensuite qu’il existe un torseur Y → X sous un k-groupe fini commutatif F tel que l’image réciproque de
α dans Br(Y ) soit invariante sous HY .

Au paragraphe 4, on rappelle des notions et des résultats établis dans [Cao 2018, §3], en particulier,
la notion de sous-groupe de Brauer invariant et aussi ses propriétés élémentaires. Ces résultats seront
utilisés dans les paragraphes 5 et 6.

Au paragraphe 5, le corps de base k est un corps de nombres. Dans [Cao 2018], étant donné un torseur
Y → X sous un groupe linéaire connexe G, j’ai développé la méthode de descente des points adéliques
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orthogonaux aux sous-groupes de Brauer invariants. Au paragraphe 5, on donne deux nouvelles variantes
de cette descente. La première (proposition 5.1) traite du cas où G est un k-groupe fini commutatif. La
seconde (proposition 5.5) implique l’obstruction de Brauer–Manin étale invariante.

Les paragraphes 3, 4 et 5 sont utilisés de façon essentielle au paragraphe 6 où l’on établit le théorème 1.4.
Au paragraphe 7, en combinant le théorème 1.4 et la proposition 5.5, on établit les théorèmes 1.1 et 1.2.

Conventions et notations. Soit k un corps quelconque de caractéristique char(k). On note k̄ une clôture
algébrique, ks une clôture séparable et 0k := Gal(ks/k). Si char(k)= 0, on a ks = k̄ et 0k := Gal(k̄/k).

Tous les groupes de cohomologie sont des groupes de cohomologie étale.
Une k-variété X est un k-schéma séparé de type fini. Pour X une telle variété, on note k[X ] son anneau

des fonctions globales, k[X ]× son groupe des fonctions inversibles, Pic(X) := H 1
ét(X,Gm) son groupe de

Picard et Br(X) := H 2
ét(X,Gm) son groupe de Brauer. Notons

Br1(X) := Ker[Br(X)→ Br(X k̄)] et Bra(X) := Br1(X)/ImBr(k).

Le groupe Br1(X) est le sous-groupe “algébrique” du groupe de Brauer de X . Si X est intègre, on note
k(X) son corps des fonctions rationnelles et π1(X, x̄) (ou π1(X)) son groupe fondamental étale, où x̄ est
un point géométrique de X . Soit π1(Xks )

ab le quotient maximal abélien de π1(Xks ). Alors π1(Xks )
ab est

un 0k-module.
Un k-groupe algébrique G est une k-variété qui est un k-schéma en groupes. On note eG l’unité de

G et G∗ := Homks -groupe(Gks ,Gm) le groupe des caractères de Gks . C’est un module galoisien de type
fini. De plus, si G est connexe sur C, le groupe π1(G) est commutatif (cf. [Brion et Szamuely 2013,
Proposition 1.1(2)]).

Un k-groupe fini F est un k-groupe algébrique qui est fini sur k. Dans ce cas, F est déterminé par le
0k-groupe F(ks). Pour toute k-variété lisse connexe X , on a un isomorphisme canonique [SGA 1 1971,
§XI.5] :

H 1(π1(X), F(ks))−→
∼ H 1(X, F) et donc H 1(Xks , F)∼= Homcont(π1(Xks ), F(ks))/∼ (1-5)

où l’action de π1(X) sur F(ks) est induite par celle de 0k et ∼ est induite par la conjugaison.
Soit G un k-groupe algébrique. Une G-variété (X, ρ) (ou X ) est une k-variété X munie d’une action à

gauche G×k X ρ
→ X . Un k-morphisme de G-variétés est appelé G-morphisme s’il est compatible avec

l’action de G.
Comme déjà indiqué ci-dessus, pour tout k-groupe algébrique F , tout F-torseur f : Y → X et tout

σ ∈ H 1(k, F), on note Fσ (resp. fσ : Yσ → X ) le tordu de F (resp. de f ). Ainsi fσ est un Fσ -torseur.

2. Torseur universel de n-torsion et formule de Künneth de degré 2

Dans toute cette section, k est un corps quelconque. Sauf mention explicite du contraire, une variété
est une k-variété. Fixons un entier n ≥ 2 avec char(k)-n et notons − ⊗ − := − ⊗Z/n − .
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Cette section contient deux parties. On introduit d’abord la version de n-torsion de la notion de torseur
universel (Colliot-Thélène et Sansuc) dans la définition 2.1, et aussi la notion de type prolongé d’un
torseur (Harari et Skorobogatov) dans la proposition 2.2. En utilisant ces notions, on considère ensuite
le cup-produit de la cohomologie étale de degré 2 sur un produit de deux variétés quelconques et on
établit une formule de Künneth pour ce produit (proposition 2.6). Cette formule généralise un résultat de
Skorobogatov et Zarhin, qui traite du cas où les deux variétés sont propres.

Soient Sh(k) la catégorie des faisceaux étales sur le petit site de Spec k et D+(k) la catégorie dérivée
bornée à gauche de Sh(k) et Db(k) la catégorie dérivée bornée de Sh(k) (une sous-catégorie pleine
de D+(k)). Pour tout i ∈ Z, on a les sous-catégories canoniques D≥i (k) et D≤i (k) de D+(k) et deux
foncteurs canoniques τ≤i , τ≥i [Kashiwara et Schapira 2006, Definition 12.3.1, Proposition 13.1.5]. Donc
Sh(k)= D≥0(k)∩ D≤0(k) est une sous-catégorie pleine canonique de D+(k). Par abus de notation, pour
un objet M de Sh(k), on note M l’objet de D+(k) représenté par le complexe qui consiste en M en
degré 0.

Soient X une variété géométriquement intègre et p : X→ Spec k le morphisme de structure. Soit SX un
groupe de type multiplicatif tel que S∗X ∼= H 1(Xks , µn) comme 0k-modules. On rappelle que H 1(Xks , µn)

est fini.
Dans D+(k), il existe deux morphismes canoniques Gm→ Rp∗Gm et µn→ Rp∗µn . Soient 1 le cône

de Gm[1] → Rp∗Gm[1] et 1n le cône de µn[1] → Rp∗µn[1]. La suite exacte de Kummer donne un
diagramme commutatif de triangles distingués :

1n[−2] //

ψ

��

µn //

��

Rp∗µn
+1
//

��

1[−2] //

n·
��

Gm //

n·
��

Rp∗Gm
+1
//

n·
��

1[−2] //

+1
��

Gm //

+1
��

Rp∗Gm
+1
//

+1
��

Les faisceaux de cohomologie des complexes 1n et 1 se calculent comme suit :

1n ∈ D≥0(k), H0(1n)∼= H 1(Xks , µn)∼= S∗X ,

1 ∈ D≥−1(k), H−1(1)= ks[X ]×/k×s et H0(1)= Pic(Xks ).

Le morphisme ψ :1n→1 induit un morphisme ψ≤0 := τ≤0ψ : S∗X → τ≤01.
Harari et Skorobogatov montrent que, pour tout groupe de type multiplicatif S, on a une suite exacte

naturelle [2013, Proposition 1.1, où τ≤01 est noté KD′(X)] :

H 1(k, S)→ H 1(X, S)
χ
−→ HomD+(k)(S∗, τ≤01)→ H 2(k, S). (2-1)
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Définition 2.1. Un torseur universel de n-torsion pour X est un SX -torseur TX sur X tel que χ([TX ])=

ψ≤0 : S∗X → τ≤01.

D’après [Harari et Skorobogatov 2013, Proposition 1.3], si X (k) 6=∅, pour chaque x ∈ X (k), il existe
alors un unique torseur universel de n-torsion TX pour X tel que x∗[TX ] = 0 ∈ H 1(k, SX ).

Dans le cas où k est un corps de nombres, il existe un torseur universel de n-torsion pour X lorsque
X (Ak)

Br1(X) 6=∅ [Harari et Skorobogatov 2013, Corollary 3.6].

Proposition 2.2. Soit TX un torseur universel de n-torsion pour X. Soit S un groupe de type multiplicatif
tel que n · S = 0. Alors, pour tout S-torseur Y sur X , il existe un unique homomorphisme φ : SX → S
tel que

φ∗([TX ])− [Y ] ∈ Im(H 1(k, S)→ H 1(X, S)).

Démonstration. Le triangle 1n→1
n·
→1

+1
→ induit une suite exacte

HomD+(k)(S∗,1[−1])→ HomD+(k)(S∗,1n)→ HomD+(k)(S∗,1)
n·
−→ HomD+(k)(S∗,1).

Puisque S∗ ∈ D≤0(k) et n · S∗ = 0, on a

HomD+(k)(S∗,1[−1])= Homk(S∗,H−1(1))= Homk(S∗, k̄[X ]×/k̄×)= 0

et donc Homk(S∗, S∗X ) est isomorphe à

HomD+(k)(S∗, S∗X )
∼
−→ HomD+(k)(S∗,1n)

∼
−→ HomD+(k)(S∗,1) ∼

←− HomD+(k)(S∗, τ≤01).

Alors χ([Y ]) ∈ HomD+(k)(S∗, τ≤01) donne un homomorphisme φ∗ ∈ Homk(S∗, S∗X ), et donc χ([Y ])=
ψ≤0 ◦φ

∗. Soit φ : SX → S l’homomorphisme correspondant. La suite exacte (2-1) implique l’énoncé. �

L’homomorphisme φ dans la proposition 2.2 est appelé le n-type de [Y ].
Soit TX le torseur universel de n-torsion pour Xks , on obtient un isomorphisme de 0k-modules :

τX,S : Homks (SX , S)∼= Homks (S
∗, S∗X )→ H 1(Xks , S) : φ 7→ φ∗([TX ]). (2-2)

En particulier, on a deux 0k-isomorphismes naturels

τX := τX,µn : S
∗

X −→
∼ H 1(Xks , µn) : φ 7→ φ∗(TX ) (2-3)

et
τX (−1) := τX,Z/n : Homks (SX ,Z/n)−→∼ H 1(Xks ,Z/n) : φ 7→ φ∗(TX ). (2-4)

En fait, par définition, τX est exactement l’homomorphisme S∗X →H0(1n) induit par ψ≤0.
Rappelons que, pour tous F1, F2 ∈ Db(k), le produit tensoriel F1⊗

L F2 est bien défini et le cup-produit
est le homomorphisme canonique

∪ j :
⊕

r+s= j H
r (F1)⊗Hs(F2)→H j (F1⊗

L F2)

induit par la suite spectrale de Godement (cf. [Milne 1980, Lemma VI.8.6] ou [Fu 2011, Proposi-
tion 6.4.12]). De plus, Rp∗µn ∈ Db(k) [Fu 2011, Corollary 7.5.6].
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Corollaire 2.3. Supposons que k est séparablement clos. Soit p : X→ Spec k une variété intègre. Alors

(1) le cup-produit ∪ : H 1(X, µn)⊗Hom(µn, S)→ H 1(X, S) : (α, ϕ) 7→ ϕ∗(α) est un isomorphisme ;

(2) pour tout complexe de Z/n-modules (vus comme k-faisceaux) de type fini F avec F ∈D≥0(k)∩Db(k),
on a Rp∗µn ⊗

L F ∈ D≥0(k) et le cup-produit

∪ j (F) :
⊕

r+s= j Rr p∗µn ⊗Hs(F)∼=
⊕

r+s= j H
r (Rp∗µn)⊗Hs(F)→H j (Rp∗µn ⊗

L F)

est un isomorphisme pour j = 0 et j = 1 ;

(3) dans (2), si H0(F) est plat, alors ∪2(F) est un isomorphisme.

Démonstration. Puisque X (k) 6=∅, il existe un torseur universel de n-torsion TX → X . D’après (2-2), on
a le diagramme

Hom(SX , µn)⊗Hom(µn, S)
∼=

−◦−
//

τX⊗id∼=

��

Hom(SX , S)

τX,S∼=

��

H 1(X, µn)⊗Hom(µn, S) ∪
// H 1(X, S)

où − ◦ − : (ψ, φ) 7→ φ ◦ψ . Ce diagramme est commutatif car

τX,S(ϕ ◦φ)= (ϕ ◦φ)∗[TX ] = ϕ∗(φ∗[TX ])
(2-3)
= τX [φ] ∪ϕ

pour tout φ ∈ Hom(SX , µn) et tout ϕ ∈ Hom(µn, S). Donc on a (1).
Pour tout complexe F dans (2), puisque la dimension cohomologique de Rp∗ est finie [SGA 43 1973,

XIV] (cf. [Fu 2011, Corollary 7.5.6]), on a :

(i) D’après [SGA 43 1973, XVII. Theorem 5.2.11], pour tout j < 0, on a H j (Rp∗µn ⊗
L F) = 0 et

donc Rp∗µn ⊗
L F ∈ D≥0(k). Ceci implique le premier énoncé de (2).

(ii) Si F ∼=H0(F) avec H0(F) plat, on a H j (Rp∗µn ⊗
L F)=H j (Rp∗µn)⊗ F et donc ∪ j (F) est un

isomorphisme pour tout j .

(iii) Si F ∼=H0(F), on a Rp∗µn⊗
L F ∼= Rp∗(µn⊗ p∗F) [SGA 43 1973, XVII. (5.2.11.1)] (cf. [Fu 2011,

Corollary 6.5.6]). Puisque X est intègre, ∪0(F) :µn⊗F→ R0 p∗(µn⊗ p∗F) est un isomorphisme,
et d’après l’énoncé (1) et [Milne 1980, Proposition V.1.20], le cup-produit

∪1(F) : R1 p∗µn⊗F ∼= H 1(X, µn)⊗Hom(µn, µn⊗F)
∪
−→ H 1(X, µn⊗F)∼=H1(Rp∗(µn⊗ p∗F))

est un isomorphisme. Ceci vaut seulement pour le cup-produit de degré 1.

Pour tout complexe F dans (2), notons F+ := (τ≥1 F)[1] un objet dans D≥0(k)∩ Db(k). Alors F+
vérifie toutes les hypothèses dans (2).
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Le triangle H0(F)→ F→ F+[−1] +1
−→ donne un diagramme commutatif de suites exactes :

0 // R j (H0(F)) //

∪ j (H0(F))
��

⊕
r+s= j Rr (Hs(F)) //

∪ j (F)
��

⊕
r+s= j−1 Rr (Hs(F+)) //

∪ j−1(F+)
��

0

��

H j−2
µn (F+)

θ j−1
// H j

µn (H0(F)) // H j
µn (F) // H j−1

µn (F+)
θ j

// H j+1
µn (H0(F))

(2-5)

où H j
µn (−) := H j (Rp∗µn ⊗

L
−), Rr (−) := Rr p∗µn ⊗ − et la première ligne est exacte car elle est

scindée.
Montrons l’énoncé (2). D’après (i), on a : H−2

µn
(F+)= H−1

µn
(F+)= 0. D’après (iii), ∪0(H0(F)) est un

isomorphisme. Le lemme des cinq implique : ∪0(F) est un isomorphisme. Ceci donne l’énoncé(2) pour
j = 0. Donc ∪0(F+) est un isomorphisme. D’après (iii), ∪1(H0(F)) est un isomorphisme. Le lemme des
cinq implique : ∪1(F) est un isomorphisme.

Montrons l’énoncé (3). Par hypothèse, H0(F) est plat, et d’après (ii), ∪2(H0(F)) est un isomorphisme.
D’après (2), ∪1(F+) et ∪0(F+) sont des isomorphismes. Donc θ1 = 0 et le lemme des cinq implique :
∪2(F) est un isomorphisme. �

Si X est lisse, d’après (1-5), l’isomorphisme (2-4) donne un 0k-isomorphisme naturel

τX (−1) : Hom(SX ,Z/n)−→∼ H 1(Xks ,Z/n)∼= Homcont
(
π1(Xks )

ab,Z/n
)
: ψ 7→ ψ(ks) ◦ τπ1, (2-6)

où τπ1 : π1(Xks )
ab
→ SX (ks) est l’homomorphisme induit par TX . Ainsi τπ1 induit un isomorphisme de

0k-modules π1(Xks )
ab/n −→∼ SX (ks) et TX est géométriquement intègre.

Corollaire 2.4. Soit X une variété lisse géométriquement intègre. Soient M un Z/n-module et

π1(Xks )
ab θ
−→ M

un homomorphisme surjectif de noyau 0k-invariant. Supposons qu’il existe un torseur universel de n-
torsion pour X. Alors il existe un k-groupe fini commutatif S et un S-torseur T → X tels que T soit lisse
géométriquement intègre, S(ks)= M et que, dans H 1(Xks , S)∼=Homcont

(
π1(Xks )

ab,M
)
, on ait [Tks ] = θ .

Démonstration. Soit TX un torseur universel de n-torsion pour X (un torseur sous le k-groupe SX ). Puisque
Ker(θ) est 0k-invariant, il existe une unique 0k-structure sur M telle que θ soit un 0k-morphisme. Ceci
induit un k-groupe commutatif S et un homomorphisme surjectif θ ′ : SX → S tels que S(ks)= M et que
θ ′(ks) ◦ τπ1 = θ . Alors T := θ ′

∗
TX := TX ×

SX S donne l’énoncé. �

Soient U , V deux variétés géométriquement intègres sur k. On considère le diagramme commutatif

U ×k V
p2

//

p1

��

V

q2

��

U
q1

// Spec k

(2-7)
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Soient M , N deux Z/n-faisceaux finis plats sur le grand site de k. Le cup-produit donne un quasi-
isomorphisme [SGA 41/2 1977, Th. finitude, corolaire 1.11] (cf. [Fu 2011, Corollary 9.3.5]) :

∪ : Rq1,∗M ⊗L Rq2,∗N ∼= R(q1 ◦ p1)∗(M ⊗L N ). (2-8)

Ceci induit le cup-produit [Fu 2011, Proposition 6.4.12] :

∪ j :
⊕

r+s= j Rr q1,∗M ⊗Z/n Rsq2,∗N →H j (Rq1,∗M ⊗L Rq2,∗N )−→∼ R j (q1 ◦ p1)∗(M ⊗L N ).

Lemme 2.5. Le cup-produit ∪ j est un isomorphisme pour j = 0, 1, 2.

Démonstration. On peut supposer que k est séparablement clos. Les Z/n-modules finis M , N sont plats
et donc ils sont des facteurs directs de (Z/n)⊕i pour i assez grand. Puisque tous les foncteurs ci-dessus
commutent avec les sommes directs finies, on peut supposer que M = N = µn . L’énoncé découle du
corollaire 2.3(3) et de (2-8). �

Le résultat ci-dessous généralise [Skorobogatov et Zarhin 2014, Theorem 2.6].

Proposition 2.6. Supposons que k est séparablement clos. Soient U , V deux variétés géométriquement
intègres et F un Z/n-module fini plat. On considère le diagramme (2-7). Alors on a des isomorphismes
naturels

(p∗1, p∗2) : H 1(U, F)⊕ H 1(V, F)−→∼ H 1(U × V, F)

et
(p∗1,∪, p∗2) : H

2(U, F)⊕[H 1(U,Z/n)⊗Z H 1(V, F)]⊕ H 2(V, F)−→∼ H 2(U × V, F),

où ∪ : H 1(U,Z/n)⊗Z H 1(V, F)→ H 2(U × V, F) est le cup-produit.

C’est clair que si U, V sont définis sur un sous-corps k0 ⊂ k avec k/k0 galoisienne et F un Gal(k/k0)-
module, alors les deux isomorphismes ci-dessus sont des isomorphismes de Gal(k/k0)-modules.

Si char(k) = 0, cette proposition découle de [Skorobogatov et Zarhin 2014, Proposition 2.2] et de
[Milne 1980, Theorem III.3.12] (on peut vérifier que l’homomorphisme dans [Skorobogatov et Zarhin
2014, Proposition 2.2] est compatible avec le cup-produit).

Démonstration. On applique le lemme 2.5 au cas U × k et au cas k× V , et on obtient deux diagrammes
commutatifs :

H i (U,Z/n)⊗ H 0(k, F)
∼=

∪U
//

∼=id×q∗2
��

H i (U, F)

p∗1
��

H 0(k,Z/n)⊗ H i (V, F)
∼=

∪V
//

∼=q∗1×id
��

H i (V, F)

p∗2
��

H i (U,Z/n)⊗ H 0(V, F)
∪i
// H i (U × V, F) H 0(U,Z/n)⊗ H i (V, F)

∪i
// H i (U × V, F)

pour i = 1 et 2, où ∪U (resp. ∪V ) est le cup-produit sur U (resp. V ). Donc

p∗1(H
i (U, F))= ∪i

(
H i (U,Z/n)⊗ H 0(V, F)

)
et p∗2(H

i (V, F))= ∪i
(
H 0(U,Z/n)⊗ H i (V, F)

)
.

L’énoncé découle du lemme 2.5. �
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Soient TU (resp. TV ) un torseur universel de n-torsion pour U (resp. pour V ) et SU (resp. SV ) le groupe
correspondant (cf. définition 2.1). Skorobogatov et Zarhin [2014, §5] introduisent un homomorphisme :

ε : Homk(SU , S∗V )→ H 2(U × V, µn) : φ 7→ φ∗[TU ] ∪ [TV ], (2-9)

où ∪ est le cup-produit H 1(U, S∗V )× H 1(V, SV )→ H 2(U × V, µn). Les isomorphismes τV dans (2-3)
et τU (−1) dans (2-4) donnent un diagramme :

(Homks (SU ,Z/n)⊗ S∗V )
0k =

8
//

∼

(τU (−1),τV ) ++

Homk(SU , S∗V )
ε

// H 2(U × V, µn)

��

(H 1(Uks ,Z/n)⊗ H 1(Vks , µn))
0k ∪

// H 2((U × V )k̄, µn),

(2-10)

qui est commutatif parce que, pour tous ϕ ∈ Homks (SU ,Z/n) et φ ∈ S∗V = Homks (SV , µn), on note
φ∗ := Homks (φ, µn) : Z/n→ S∗V le dual de φ, et on a :

ε(8(ϕ⊗φ))= ε(φ∗ ◦ϕ)= (φ∗)∗(ϕ∗[TU ])∪ [TV ]
(1)
= ϕ∗[TU ] ∪φ∗[TV ] = τU (−1)(ϕ)∪ τV (φ),

où (1) découle du diagramme commutatif

H 1(U × V, SV )

φ∗
��

× H 1
(
U × V,Homks (SV , µn)

) ∪
// H 2(U × V, µn)

=

��

H 1(U × V, µn) × H 1
(
U × V,Homks (µn, µn)

) ∪
//

(φ∗)∗=Homks (φ,µn)∗

OO

H 2(U × V, µn).

Si U (k) 6=∅, alors il existe un torseur universel de n-torsion pour U . Pour un point u ∈U (k), notons

H i
u(U, µn) := Ker

(
H i (U, µn)

u∗
−→ H i (k, µn)

)
.

Corollaire 2.7. Sous les notations et hypothèses ci-dessus, supposons que U (k) 6=∅ avec u ∈U (k) et
qu’il existe des torseurs universels de n-torsion TU pour U (sous le groupe SU ) et TV pour V (sous le
groupe SV ). Alors on a un isomorphisme :

H 2
u (U, µn)⊕ H 2(V, µn)⊕Homk(SU , S∗V )

(p∗1 ,p
∗

2 ,ε)
−−−−−→ H 2(U × V, µn).

Démonstration. Notons E i, j
2 (U ) := H i (k, H j (Uks , µn))⇒ H i+ j (U, µn) la suite spectrale de Hochschild–

Serre de U et E i, j
2 (V ) (resp. E i, j

2 (U × V )) celle de V (resp. de U × V ).
Notons H i

u(Uks , µn) := Ker
(
H i (Uks , µn)

u∗
−→ H i (ks, µn)

)
. Alors H 0

u (Uks , µn)= 0 et H i
u(Uks , µn)=

H i (Uks , µn) pour i 6= 0. La suite spectrale de Hochschild–Serre donne canoniquement une suite spectrale :

E i, j
2 (U, u) := H i (k, H j

u (Uks , µn))⇒ H i+ j
u (U, µn).

Soit φi, j
2 : E

i, j
2 (U, u)⊕ E i, j

2 (V )→ E i, j
2 (U × V ) le morphisme de suites spectrales induit par (p∗1, p∗2).

D’après la proposition 2.6, φi, j
2 est un isomorphisme pour j = 0, 1 et φ0,2

2 est injectif. Ainsi φi, j
2 induit
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une suite exacte par le lemme des cinq :

0→ H 2
u (U, µn)⊕ H 2(V, µn)

p∗1 ,p
∗

2
−−−→ H 2(U × V, µn)→ coker(φ0,2

2 ).

D’après la proposition 2.6 et le diagramme (2-10), on a coker(φ0, 2
2 )∼=

(
H 1(Uk̄,Z/n)⊗ H 1(Vk̄, µn)

)0k

et la composition

Homk(SU , S∗V )
ε
−→ H 2(U × V, µn)→ H 2((U × V )k̄, µn

)0k
→ coker(φ0, 2

2 )

est un isomorphisme, d’où le résultat. �

3. Préliminaires sur les torseurs sous un groupe fini

Dans toute cette section, k est un corps quelconque de caractéristique 0. Sauf mention explicite du
contraire, une variété est une k-variété.

Soit G un groupe algébrique connexe et X une G-variété lisse géométriquement intègre. Cette section
traite trois problèmes : pour un torseur H → G sous un k-groupe fini, on montre l’existence et l’unicité
de la structure de groupe sur H dans paragraphe 3A ; pour un torseur Y → X sous un k-groupe fini, on
donne dans paragraphe 3B une condition nécessaire et suffisante pour le relèvement, de façon compatible,
de l’action de G sur X en une action sur Y ; si ce relèvement n’existe pas, on montre dans paragraphe 3C
l’existence d’une isogénie minimale HY → G telle que l’action de HY puisse être relevée en une action
sur Y .

3A. Torseur sur un groupe algébrique. Pour un groupe algébrique connexe G, tout recouvrement étale
fini de G k̄ est une extension centrale de G k̄ [Brion et Szamuely 2013, Proposition 1.1(1)]. Le résultat
suivant généralise ce résultat au corps de base et il est aussi un analogue d’un résultat de Colliot-Thélène
[2008, Theorem 5.6].

Proposition 3.1. Soit G un groupe algébrique connexe, S un k-groupe fini commutatif et ψ : H → G un
S-torseur avec H géométriquement intègre sur k. S’il existe un point eH ∈ H(k) avec ψ(eH )= eG , alors
il existe une unique structure de k-groupe algébrique sur H telle que ψ soit un homomorphisme et que
eH soit l’unité.

De plus, dans ce cas, Ker(ψ)= S et l’action de S sur H est compatible avec la multiplication de H.

Démonstration. L’existence d’une structure de groupe sur H est équivalente à l’existence d’un couple
de morphismes (m H , iH ) satisfaisant certaines relations où m H : H × H → H est la multiplication et
iH : H → H est l’inverse.

Pour l’unicité, s’il existe deux structures de groupe sur H , soient (m H , iH ), (m′H , i ′H ) les couples de
morphismes correspondants. Soient mG la multiplication de G et iG l’inverse de G. Alors

ψ ◦m H = mG ◦ (ψ ×ψ)= ψ ◦m′H , m H (eH × eH )= eH = m′H (eH × eH ),

ψ ◦ iH = iG ◦ψ = ψ ◦ i ′H , iH (eH )= eH = i ′H (eH ).



Sous-groupe de Brauer invariant et obstruction de descente itérée 2163

Puisque ψ est fini étale et H × H est intègre, on a m H = m′H et iH = i ′H [Milne 1980, Corollary I.3.13].
Ceci donne l’unicité de (m H , iH ).

Pour l’existence de la structure de groupe (i.e., l’existence de (m H , iH )), par la descente galoisienne
et l’unicité de (m H , iH ), il suffit d’établir l’existence de (m H , iH ) sur k̄. On peut supposer que k = k̄.
Dans ce cas, ψ est fini étale galoisien avec Aut(H/G) ∼= S(k̄). D’après [Brion et Szamuely 2013,
Proposition 1.1(1)], il existe une structure de groupe sur H telle que ψ : H→G soit une isogénie centrale.
Notons − · − la multiplication et (−)−1 l’inverse de cette structure de groupe. Soit c := eH · eH et
d := eH · c−1. Les points eH , c et d sont dans Ker(ψ) et donc dans le centre de H . Alors les morphismes
m′H : H × H → H : (h1, h2) 7→ d · h1 · h2 et i ′H : H → H : h 7→ c · h−1 définissent sur H une nouvelle
structure de groupe et cette structure vérifie les hypothèses ci-dessus.

Pour le dernier énoncé, puisque S ⊂ Ker(ψ), l’action de S induit une inclusion de 0k-module S(k̄)⊂
Aut(Hk̄/G k̄) et la multiplication de H induit une inclusion Ker(ψ)(k̄) ⊂ Aut(Hk̄/G k̄) de 0k-module.
Puisque #Aut(Hk̄/G k̄)= deg(ψ), les deux inclusions ci-dessus sont isomorphes, d’où le résultat. �

Corollaire 3.2. Soit G un groupe algébrique connexe. Pour tout Z/n-module fini M et tout homomor-
phisme surjectif π1(G k̄)

θ
→ M de noyau 0k-invariant, il existe un unique groupe algébrique connexe H

isogène à G, i.e., muni d’un homomorphisme fini surjectif ψ : H → G, tel que (Ker(ψ))(k̄)∼= M et que
la composition π1(Hk̄)

ψπ1−→ π1(G k̄)
θ
→ M soit nulle.

De plus, pour tout groupe algébrique connexe H1, tout homomorphisme fini surjectif ψ1 : H1→ G
vérifiant θ ◦ψ1,π1 = 0 se factorise par ψ .

Démonstration. Puisque G(k) 6=∅, il existe un unique torseur universel de n-torsion TG (un SG-torseur
sur G) tel que TG |eG

∼= SG .

D’après le corollaire 2.4, il existe un k-groupe fini commutatif S et un S-torseur H
ψ
−→ G tels que

S(k̄)= M et que l’homomorphisme π1(G k̄)→ S(k̄) induit par [Hk̄] soit θ . Donc la composition θ ◦ψπ1

est nulle. Après avoir tordu par un élément de H 1(k, S), on peut supposer que [H ]|eG
= 0 ∈ H 1(k, S).

D’après la proposition 3.1, il existe une structure de groupe sur H telle que ψ soit un homomorphisme et
que Ker(ψ)= S.

Pour tout groupe algébrique connexe H1 et tout homomorphisme fini surjectif ψ1 : H1→ G, le noyau
ψ1 est commutatif et on a une suite exacte de 0k-modules :

π1(H1,k̄)→ π1(G k̄)→ Ker(ψ1)(k̄)→ 0.

Ceci donne un homomorphisme surjectif de 0k-modules θ1 : Ker(ψ1)(k̄) → M ∼= S(k̄) et, puisque
[H1]|eG

= 0 = [H ]|eG
, on a θ1,∗([H1]) = [H ] ∈ H 1(X, S). En utilisant l’action de S, on a un Ker(ψ1)-

morphisme φ : H1 → H au-dessus de G tel que φ(eH1) = eH . Soient χ1, χ2 : H1 × H1 → H deux
morphismes avec χ1(h1, h2) = φ(h1 · h2) et χ2(h1, h2) = φ(h1) · φ(h2) pour tous h1, h2 ∈ H1. Alors
χ1(eH1, eH1)= χ2(eH1, eH1) et ψ ◦χ1 = ψ ◦χ2. Ceci induit :

χ : H1×k H1
χ1,χ2
−−−→ H ×G H ∼= H ×k S

p2
−→ S.
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Puisque H1 est connexe, on a Im(χ)= eS , χ1 = χ2 et φ est un homomorphisme. �

3B. Relèvement d’une action par un torseur. Soient G un groupe algébrique connexe et (X, ρ) une
G-variété lisse géométriquement intègre. Soient F un k-groupe fini et f : Y → X un F-torseur. Notons
p1 : G× X→ G, p2 : G× X→ X les deux projections.

D’après [SGA 1 1971, X.2.2], on a deux suites exactes de groupes fondamentaux

1→ π1(X k̄)→ π1(X)→ 0k→ 1 et 1→ π1((G× X)k̄)→ π1(G× X)→ 0k→ 1.

D’après [SGA 1 1971, XII.5.2], on a π1((G× X)k̄)∼= π1(G k̄)×π1(X k̄), car ceci vaut pour les espaces
topologiques. Alors on a une suite exacte de groupes fondamentaux :

1→ π1(G k̄)→ π1(G× X)
p2, π1
−−−→ π1(X)→ 1

qui admet une section induite par ie : X → G × X : x 7→ (eG, x) et l’action de π1(X) sur π1(G k̄) se
factorise par 0k . D’après (1-5), cette suite exacte induit une suite exacte d’ensembles pointés (voir [Serre
1964, §5.8])

1→ H 1(X, F)
p∗2
−→ H 1(G× X, F)

ι
−→ H 1(G k̄, F)0k (3-1)

et p∗2 admet une section induite par i∗e .

Proposition 3.3. Soient G un groupe algébrique connexe et (X, ρ) une G-variété lisse géométriquement
intègre. Soient F un k-groupe fini et f : Y → X un F-torseur. Alors les hypothèses ci-dessous sont
équivalentes :

(a) on a ρ∗([Y ])= p∗2([Y ]) ∈ H 1(G× X, F) ;

(b) pour ι dans (3-1), on a ι(ρ∗([Y ]))= 0 ∈ H 1(G k̄, F) ;

(c) le F-torseur Y est G-compatible, i.e., l’action de G sur X se relève en une action sur Y ;

(d) il existe un morphisme ρY : G × Y → Y tel que ρY |eG×Y = idY et que ρY soit compatible avec ρ,
i.e., ρ ◦ (idG × f )= f ◦ ρY .

De plus, sous les hypothèses ci-dessus, on a

(1) l’action de G sur Y pour laquelle f est un G-morphisme est unique ;

(2) l’action de G et celle de F commutent ;

(3) pour tout σ ∈ H 1(k, F), le Fσ -torseur Yσ est G-compatible.

Démonstration. Puisque i∗e (p
∗

2([Y ]))= i∗e (ρ
∗([Y ])) dans H 1(X, F), l’équivalence (a)⇔(b) découle de la

suite exacte (3-1).

Lemme 3.4. Pour tout k-schéma de type fini Z et tous morphismes θ1, θ2 : G× Z→ Y , si f ◦ θ1 = f ◦ θ2

et θ1|eG×Z = θ2|eG×Z , alors θ1 = θ2.
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Démonstration. En fait, θ1, θ2 induisent un morphisme

θ : G× Z
(θ1,θ2)
−−−→ Y ×X Y ∼= Y ×k F

prF
−→ F

tel que θ(eG × Z)= eF . Puisque G est intègre, θ(G× Z)= eF et donc θ1 = θ2. �

Pour (a)⇒(d), soient ρ∗Y le pullback de Y par ρ et p∗2Y :=G×Y . Notons MorF (p∗2Y, F) l’ensemble
des morphismes χ : p∗2Y → F tels que χ(a · y)= a ·χ(y) · a−1 pour tous a ∈ F et y ∈ p∗2Y . Définissons
de même MorF (Y, F). Alors Y ∼= eG × Y ⊂ p∗2Y induit un morphisme surjectif MorF (p∗2Y, F) Mor(ie)

−−−→

MorF (Y, F), car il existe une section induite par p2. Par hypothèse, on a un isomorphisme de F-torseur
p∗2Y φ
→ ρ∗Y . Pour tout isomorphisme φ1, l’argument classique montre qu’il existe un χ1 ∈MorF (p∗2Y, F)

tel que φ1 = χ1 · φ. Puisque Mor(ie) est surjectif, on peut supposer que φ|eG×X est l’identité de Y . Le
morphisme ρY : G× Y φ

→ ρ∗Y → Y donne (d).
Pour (d)⇒(c), l’hypothèse (d) donne un diagramme commutatif :

idY : eG × Y

f
��

ie,Y
// G× Y

idG× f
��

ρY
// Y

f
��

idX : eG × X
ie
// G× X

ρ
// X

(3-2)

tel que ρY ◦ ie,Y = idY . Soient θ1, θ2 : G×G× Y → Y les deux morphismes définis par

θ1(g1, g2, y)= g1 · (g2 · y) et θ2(g1, g2, y)= (g1 · g2) · y

pour tous g1, g2 ∈ G et y ∈ Y . Alors θ1(eG, g2, y) = θ2(eG, g2, y) et le lemme 3.4 montre que θ1 = θ2.
Donc ρY est une action et f est un G-morphisme. Ceci donne (c).

Supposons (c) et montrons (1), (2), (3) et (a).
L’hypothèse (c) donne aussi le diagramme commutatif (3-2) avec ρY l’action relevée de G sur Y .
Soient θ1, θ2 deux actions de G sur Y telles que f soit un G-morphisme. Puisque f ◦θ1=ρ◦(idG× f )=

f ◦ θ2, On applique le lemme 3.4 à θ1, θ2 : G× Y → Y et on obtient (1).
Soient θ1, θ2 : G× F × Y → Y les deux morphismes définis par

θ1(g, a, y)= g · (a · y) et θ2(g, a, y)= a · (g · y)

pour tous g ∈ G, a ∈ F et y ∈ Y . Alors

θ1(eG, a, y)= a · y = θ2(eG, a, y) et ( f ◦ θ1)(g, a, y)= g · f (y)= ( f ◦ θ2)(g, a, y).

On applique le lemme 3.4 à θ1, θ2 : G× F × Y → Y et on obtient (2).
Pour le F-torseur p∗2([Y ])= (G× Y → G× X), l’énoncé (2) montre que l’action G× Y → Y est un

F-morphisme compatible avec ρ. Ceci induit un isomorphisme de F-torseurs p∗2([Y ])= ρ
∗([Y ]) et on

a (a).
Puisque l’énoncé (b) est un énoncé sur k̄, on obtient (3). �
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Corollaire 3.5. Soient G un groupe algébrique connexe et (X, ρ) une G-variété lisse géométriquement
intègre. Alors ρ induit un homomorphisme ρπ1 : π1(G k̄)→ π1(X) et, pour tout k-groupe fini F , il induit
ρ∗π1
: H 1(X, F)→ H 1(G k̄, F) et on a :

(1) le sous-groupe Im(ρπ1)⊂ π1(X) est normal et il est contenu dans le centre de π1(X k̄) ;

(2) pour tout α ∈ H 1(X, F), on a ρ∗π1
(α)= ι(ρ∗(α)), où ι est dans (3-1) ;

(3) pour tout 1-cocycle a de π1(X) à valeurs dans F(k̄), l’homomorphisme a ◦ ρπ1 : π1(G k̄)→ F(k̄)
est de noyau 0k-invariant, et il est nul si et seulement si ρ∗π1

([a])= 0 ;

(4) si X est un G-espace homogène à stabilisateur géométrique connexe, alors tout F-torseur G-
compatible est constant, i.e., ce torseur est isomorphe à M ×k X avec M un F-torseur sur k.

Démonstration. L’énoncé (1) vaut car

π1(G k̄)= Ker
(
π1(G× X)

p2,∗
−−→ π1(X)

)
et π1((G× X)k̄)∼= π1(G k̄)×π1(X k̄).

Les énoncés (2) et (3) découlent par définition.
Pour (4), dans ce cas, Im(ρπ1)=π1(X k̄) [Szamuely 2009, Proposition 5.5.4]. D’après la proposition 3.3

et (2), (3) ci-dessus, tout F-torseur G-compatible est trivial sur X k̄ , et donc il provient d’un F-torseur
sur k. �

Corollaire 3.6. Sous les notations et les hypothèses ci-dessus, supposons que f est G-compatible. Alors,
pour tout k-schéma fini étale E , la restriction de Weil V := RX×E/X (Y × E) est un RE/k(F×k E)-torseur
G-compatible sur X.

Démonstration. Notons fV : V → X . Par hypothèse, fV est un torseur sous le groupe

RX×E/X (F × X × E)∼= RE/k(F ×k E).

On considère G × V comme un X -schéma par le morphisme G × V
idG× fV
−−−−→ G × X

ρ
−→ X et G × Y

comme un X -schéma par ρ ◦ (idG × f ). Dans ce cas, tout morphisme ρV ∈MorX (G × V, V ) satisfait
fV ◦ρV = ρ ◦ (idG × fV ). D’après la proposition 3.3(d), il suffit de trouver un ρV ∈MorX (G×V, V ) tel
que ρV |eG×V = idV . Puisque

MorX (V, V )−→∼ MorX×E(V ×E, Y×E) et que MorX (G×V, V )−→∼ MorX×E(G×V ×E, Y×E),

l’identité idV induit un morphisme V × E θ
→ Y × E . Le X×E-morphisme

G× V × E
idG×θ
−−−→ G× Y × E

ρY×idE
−−−−→ Y × E

induit un morphisme ρV ∈MorX (G× V, V ) qui satisfait ρV |eG×V = idV . �

Corollaire 3.7. Soient G un groupe algébrique connexe, Z une variété lisse géométriquement intègre et
p : X→ Z un G-torseur. Pour tout k-groupe fini F et tout F-torseur G-compatible Y → X , il existe un
F-torseur YZ sur Z tel que [Y ] = p∗([YZ ]) ∈ H 1(X, F).
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Démonstration. D’après la proposition 3.3(2), Y est un G×F-torseur sur Z tel que Y/F = X . Alors
YZ := Y/G est un F-torseur sur Z et Y → YZ est un F-morphisme. Donc [Y ] = p∗([YZ ]). �

3C. Le groupe minimal compatible avec un torseur. Soit G un groupe algébrique connexe. Soit CG

la catégorie des groupes algébriques connexes H isogènes à G, i.e., munis d’un homomorphisme fini
surjectif ψ : H → G. C’est clair que si G est linéaire, tout objet dans CG est aussi linéaire.

Soit (X, ρ) une G-variété lisse géométriquement intègre. Soient F un k-groupe fini et f : Y → X un
F-torseur. Soit CG(Y ) la sous-catégorie pleine de CG dont les objets sont les groupes H isogènes à G tels
que f soit H -compatible. D’après la proposition 3.3(1), tout objet H ∈ CG(Y ) admet une unique action
sur Y telle que f soit un H -morphisme. Alors tout morphisme de CG(Y ) est compatible avec les actions
ci-dessus.

Proposition 3.8. La catégorie CG(Y ) admet un objet final (HY
ψY
−→ G), et un objet (H ψ

→ G) ∈ CG(Y )
est final si et seulement si l’action de ker(ψ) sur Y est libre.

Démonstration. Dans la suite exacte (3-1), notons α := ι(ρ∗([Y ])) ∈ H 1(G k̄, F)π1(X). Soit

θ ∈ Homcont(π1(G k̄), F(k̄))

un élément correspondant à α selon (1-5). D’après le corollaire 3.5(3), le noyau Ker(θ) est 0k-invariant.
La fonctorialité de (3-1) et la proposition 3.3 montrent qu’un objet (H ψ

→ G) ∈ CG est contenu
dans CG(Y ) si et seulement si ψ∗(α) = 0 ∈ H 1(Hk̄, F), i.e., θ ◦ψπ1 = 0 (corollaire 3.5(3)), où ψπ1 :

π1(Hk̄)→ π1(G k̄). Puisque π1(G k̄) est abélien [Miyanishi 1972, Theorem 1], le corollaire 3.2 implique
l’existence de l’objet final de CG(Y ).

L’argument ci-dessus montre que la catégorie CG(Y ) est stable par changement de base, i.e., pour toute
G-variété X ′ et tout G-morphisme X ′→ X , on a un F-torseur Y ′ := Y ×X X ′→ X ′ et CG(Y ′)= CG(Y )
comme sous-catégories de CG .

Soit (HY
ψY
→ G) l’objet final de CG(Y ). Il est l’objet final de CG(Y ′) aussi pour tout Y ′→ X ′ ci-dessus.

Pour montrer que l’action de Ker(ψY ) est libre, on peut supposer que k = k̄ et que X est un espace
homogène de G. Dans ce cas, Y est un espace homogène de F×HY (proposition 3.3(2)). Puisque Ker(ψY )

est dans le centre de F × HY , les stabilisateurs de Ker(ψY ) en tous les points x ∈ X sont les mêmes. La
propriété de l’objet final implique que l’action de Ker(ψY ) soit libre.

Soit (H ψ
→ G) ∈ CG(Y ) un objet tel que l’action de ker(ψ) sur Y est libre. Soit φ : H → HY

l’homomorphisme canonique. PuisqueψY ,ψ sont finis surjectifs et que HY est connexe, l’homomorphisme
φ est fini surjectif. La proposition 3.3(1) implique que φ est compatible avec l’action de H et de HY .
Puisque l’action de Ker(ψ) sur Y est libre, φ est un isomorphisme. �

Définition 3.9. L’objet final (HY
ψY
→ G) de CG(Y ) est appelé le groupe minimal compatible avec le

F-torseur Y .

Remarque 3.10. Soit ρπ1 : π1(G k̄)→ π1(X) l’homomorphisme dans le corollaire 3.5 et soit α un 1-
cocycle de π1(X) en F(k̄) qui correspond à [Y ] ∈ H 1(X, F). Alors α|π1(X k̄)

est un homomorphisme.
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Par la démonstration de la proposition 3.8, le groupe minimal compatible au F-torseur Y est déterminé
par Ker(α ◦ ρπ1), où α ◦ ρπ1 : π1(G k̄)→ F(k̄) est un homomorphisme. Donc ceci est déterminé par
Ker(α|Im(ρπ1 )

).

D’après la proposition 3.3(3), HY est aussi le groupe minimal compatible au Fσ -torseur Yσ pour tout
σ ∈ H 1(k, F).

Corollaire 3.11. Sous les notations et les hypothèses ci-dessus, si Y est géométriquement intègre sur k,
alors il existe un homomorphisme injectif φ : Ker(ψY )→ F d’image centrale compatible avec l’action de
Ker(ψY ) et de F sur Y .

Démonstration. L’action de Ker(ψY ) induit un morphisme :

8 : Ker(ψY )× Y
ρHY ,prY
−−−−→ Y ×X Y −→∼ F ×k Y

prF
−→ F,

où ρHY est l’action de HY . Pour tous h ∈ Ker(ψY ), y ∈ Y , on a h · y =8(h, y) · y.
Puisque Y est géométriquement intègre, il existe un morphisme φ : Ker(ψY )→ F tel que 8= φ ◦ p1,

où p1 : Ker(ψY ) × Y → Ker(ψY ) est la projection. Puisque l’action de F sur Y est libre, φ est un
homomorphisme. La proposition 3.3(2) implique que l’image de φ est centrale. D’après la proposition 3.8,
l’action de Ker(ψY ) est libre et donc φ est injectif. �

Rappelons la définition de BrG(X) dans la définition 1.3.

Proposition 3.12. Soient G un groupe algébrique connexe et X une G-variété lisse géométriquement
intègre. Supposons qu’il existe un torseur universel de n-torsion TX

f
→ X sous le groupe SX . Soit H ψ

→ G
le groupe minimal compatible au SX -torseur TX . Alors, pour tout élément de n-torsion α ∈ Br(X) et tout
σ ∈ H 1(k, SX ), on a f ∗σ (α) ∈ BrH (TX,σ ), où f ∗σ : Br(X)→ Br(TX,σ ) est l’homomorphisme induit par
fσ : TX,σ → X.

Démonstration. On peut supposer que σ = 0 ∈ H 1(k, SX ).
Notons ρH : H × TX → TX l’action de H et p1,H : H × TX → H , p2,H : H × TX → TX les deux

projections. Soit TG un torseur universel de n-torsion pour G sous le groupe SG .
Appliquant le corollaire 2.7 à (G, X), on obtient : pour tout α1 ∈ H 2(X, µn), il existe un φ ∈

Hom(SG, S∗X ) et un β ∈ H 2(G, µn) tels que (ρ∗− p∗2)(α1)= ε(φ)+ p∗1(β).
Puisque f ∗([TX ])= 0 ∈ H 1(TX , SX ), on a

(ψ × f )∗(ε(φ))= (ψ × f )∗(φ∗([TG])∪ [TX ])= φ∗(ψ
∗([TG]))∪ f ∗([TX ])= 0.

Alors (ρ∗H − p∗2,H )( f ∗(α1))= (ψ × f )∗((ρ∗− p∗2)(α1))= (ψ × f )∗(p∗1(β))= p∗1,H (ψ
∗(β)).

D’après la suite exacte de Kummer, (ρ∗H − p∗2,H )( f ∗(α))⊂ p∗1,H Br(H), d’où le résultat. �

4. Rappel sur le sous-groupe de Brauer invariant

Dans toute cette section, k est un corps quelconque de caractéristique 0. Sauf mention explicite du
contraire, une variété est une k-variété.
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Dans cette section, on rappelle des notions et des résultats dans [Cao 2018, §3] sur le sous-groupe de
Brauer invariant.

Pour la définition du sous-groupe de Brauer invariant on renvoie le lecteur à la définition 1.3.
Soit AB la catégorie des groupes abéliens. Soit GX la catégorie des couples (G, X) avec G un groupe

algébrique connexe et X une G-variété lisse, et un morphisme (H, Y )→ (G, X) dans GX est un couple
(ψ, f ) avec ψ : H→ G un homomorphisme et f : Y → X un H -morphisme, où l’action de H sur X est
induite par ψ . Par définition,

Br−(−) :GX→ AB : (G, X) 7→ BrG(X)

est un foncteur contravariant.

Exemple 4.1. (1) [Cao 2018, lemme 3.6] Soit G un groupe linéaire connexe. Alors BrG(G)= Br1(G).

(2) [Cao 2018, proposition 3.9(3)] Soient G un groupe linéaire connexe, G0 ⊂ G un sous-groupe fermé
connexe et X := G/G0. Alors

BrG(X)= Br1(X,G) := ker(Br(X)→ Br(G k̄)).

Le groupe Br1(X,G) est défini par Borovoi et Demarche [2013] pour étudier l’approximation forte de X .

(3) Soit A une variété abélienne. L’auteur ne sait pas identifier le groupe BrA(A). Par exemple, l’auteur
ne sait pas si BrA(A)⊂ Br1(A) ou si BrA(A)⊃ Br1(A).

Au vu de l’exemple 4.1(3), dans la suite du présent article, on suppose que G est un groupe linéaire.
Soient G un groupe linéaire connexe et X une G-variété lisse géométriquement intègre. Notons

ρ : G× X→ X l’action et p1 : G× X→ G, p2 : G× X→ X les deux projections.

(1) Puisque Br1(G× X)∼= Bre(G)⊕Br1(X) [Sansuc 1981, lemme 6.6], on peut obtenir facilement [Cao
2018, proposition 3.2(4)] :

Br1(X)⊂ BrG(X). (4-1)

(2) Puisque p∗1 |Bre(G) : Bre(G)→ Br(G× X) est injectif, par la définition de BrG(X), il existe un unique
homomorphisme BrG(X)

λ
→ Bre(G) tel que [Cao 2018, (3.4)]

p∗1 ◦ λ= ρ
∗
− p∗2 : BrG(X)→ Br(G× X).

Le λ : BrG(X)→ Bre(G) est appelé l’homomorphisme de Sansuc [Cao 2018, définition 3.8].

(3) Pour toute extension de corps K/k, et tous x ∈ X (K ), g ∈ G(K ), α ∈ BrG(X), on a [Cao 2018,
proposition 3.9(1)] :

(g · x)∗(α)= g∗(λ(α))+ x∗(α) ∈ Br(K ).

Alors, dans le cas où k est un corps de nombres, on a :

G(Ak)
Bra(G) · X (Ak)

BrG(X) = X (Ak)
BrG(X). (4-2)

La formule (4-1) et [Harari et Skorobogatov 2013, Corollary 3.6] impliquent directement :
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Corollaire 4.2. Soit (G, X) ∈GX un objet. Si X (Ak)
BrG(X) 6=∅, alors, pour tout entier n ≥ 2, il existe

un torseur universel de n-torsion pour X.

Pour un torseur sous un groupe linéaire connexe, Sansuc a construit une suite exacte dans [Sansuc
1981, proposition 6.10], qui est appelée la suite exacte de Sansuc. La proposition suivante dit que les
sous-groupes de Brauer invariant sont compatibles avec la suite exacte de Sansuc.

Proposition 4.3 [Cao 2018, corollaire 3.11(2)]. Soit 1 → N → H ψ
→ G → 1 une suite exacte de

groupes linéaires connexes. Soit (ψ, f ) : (H, Y ) → (G, X) un morphisme dans GX tel que X soit
géométriquement intègre sur k et Y → X soit un N-torseur, où l’action de N sur Y est induite par celle
de H. Alors f ∗ : Br(X)→ Br(Y ) satisfait ( f ∗)−1BrH (Y )= BrG(X) et on a une suite exacte, fonctorielle
en (X, Y, f, N ) :

Pic(Y )→ Pic(N )→ BrG(X)
f ∗
−→ BrH (Y )

λ
−→ Bre(N ),

où λ : BrH (Y )⊂ BrN (Y )→ Bre(N ) est l’homomorphisme de Sansuc.

Pour une fibration f : X→ T et tout t ∈ T (k), on note it : X t ⊂ X la fibre et on a la spécialisation du
groupe de Brauer i∗t : Br(X)→ Br(X t). La proposition suivante dit que, si la fibration f est compatible
avec des actions des groupes linéaires, alors les sous-groupes de Brauer invariants sont compatibles avec
la spécialisation du groupe de Brauer.

Proposition 4.4 [Cao 2018, proposition 3.13]. Soit 1→ G0
φ
→ G ψ

→ T → 1 une suite exacte de groupes
linéaires connexes avec T un tore. Soient X une G-variété lisse géométriquement intègre et X f

→ T un
G-morphisme. Notons Br1(G)

φ∗
−→ Br1(G0) l’homomorphisme induit par φ. Alors, pour tout t ∈ T (k),

on a

(1) la fibre it : X t ⊂ X est G0-invariante ;

(2) on a une suite exacte naturelle

Bre(T )→ BrG(X)
i∗t
−→ BrG0(X t)→ coker(φ∗);

(3) [Cao 2018, lemme 5.5] si k est un corps de nombres et H 3(k, T ∗)= 0, on a coker(φ∗)= 0 et i∗t est
surjectif.

5. La descente par rapport au sous-groupe de Brauer invariant

Dans toute cette section, k est un corps de nombres. Sauf mention explicite du contraire, une variété
est une k-variété.

La méthode de descente des points adéliques est établie par Colliot-Thélène et Sansuc [1987a].
Dans [Cao 2018], l’auteur étudie la méthode de descente des points adéliques orthogonaux aux sous-
groupes de Brauer invariants et établit le résultat : pour un groupe linéaire connexe G, une variété lisse
géométriquement intègre Z et un G-torseur p : X→ Z ,



Sous-groupe de Brauer invariant et obstruction de descente itérée 2171

(1) on a [Cao 2018, théorème 5.9] :

Z(Ak)
Br(Z)
=

⋃
σ∈H1(k,G)

pσ
(
Xσ (Ak)

BrGσ (Xσ )
)
; (5-1)

(2) si G est un tore quasi-trivial, on a [Cao 2018, proposition 5.2]

Z(Ak)
(p∗)−1 B

= p(X (Ak)
B), (5-2)

pour tout sous-groupe B ⊂ BrG(X), où p∗ : Br(Z)→ Br(X) ;

(3) pour tout homomorphisme surjectif ψ : H → G de groupes linéaires connexes, on a [Cao et al.
2019b, Theorem 5.1] :

G(Ak)
Br1(G) = ψ(H(Ak)

Br1(H)) ·G(k). (5-3)

La proposition 5.1 et la proposition 5.5 suivantes sont quelques variantes de ce résultat. Plus précisément,
la proposition 5.1 est une variante de (2) pour G un groupe fini commutatif et sa démonstration utilise
(2) et (3) mais pas (1). La proposition 5.5 est une variante de (1) en remplaçant “Br” par “ét,Br” et en
remplaçant “BrG” par “G-ét,BrG”, donc elle est une version limite de (1) pour tout k-torseur Z ′→ Z
sous un k-groupe fini, et sa démonstration utilise (1) mais pas (2) et (3).

Proposition 5.1. Soient G, H deux groupes linéaires connexes etψ : H→G un homomorphisme surjectif
de noyau S fini. Soient X (resp. Y ) une G-variété (resp. H -variété) lisse géométriquement intègre et
f : Y → X un H-morphisme tels que Y soit un S-torseur sur X , où l’action de S est induite par l’action
de H. Alors, pour tout σ ∈ H 1(k, S), le tordu Yσ est une H-variété et on a :

X (Ak)
BrG(X) =

⋃
σ∈H1(k,S)

fσ
(
Yσ (Ak)

BrH (Yσ )
)
.

Démonstration. On construira les diagrammes ci-dessous

0 // S //

��

y

T0
ϕ
//

��

T

=

��

// 0

H //

ψ
  

H0 //

ψ0
��

T et Y i
//

f ��

Y0
φ
//

f0
��

T

G X

où le diagramme à gauche est un diagramme de groupes algébriques, le diagramme à droite est un
diagramme de variétés lisses, chaque groupe dans le diagramme à gauche agit sur la variété dans le
diagramme à droite avec le même position et ces actions sont compatibles avec tous les morphismes.

Puisque H est connexe, S est contenu dans le centre de H . Donc S est commutatif. Une résolution
coflasque [Colliot-Thélène et Sansuc 1987b, Proposition 1.3] induit une suite exacte

0→ S→ T0
ϕ
−→ T → 0 (5-4)
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où T0 est un tore quasi-trivial et T est un tore coflasque, i.e., H 1(k ′, T ∗) = 0 pour toute extension
k ′/k. Puisque H 3(k, T ∗) ∼=

∏
v∈∞k

H 3(kv, T ∗) ∼=
∏
v∈∞k

H 1(kv, T ∗) [Cao 2018, lemme 5.4], on a
H 3(k, T ∗)= 0.

Soit H0 := H ×S T0. Alors H0 est un groupe linéaire connexe et H ψ
→ G induit une suite exacte

1→ T0→ H0
ψ0
−→ G→ 1.

Soit Y0 := Y ×S T0. Notons i : Y → Y0 l’immersion fermée canonique. Alors Y0 est une H0-variété et f
induit un H0-morphisme Y0

f0
−→ X tels que f0 est un T0-torseur. D’après (5-2) et la proposition 4.3, on a

X (Ak)
BrG(X) = f0(Y0(Ak)

BrH0 (Y0)).

L’isomorphisme Y0 ×
T0 T ∼= Y ×S T0 ×

T0 T ∼= X × T induit un T0-morphisme φ : Y0 → T tel que
φ−1(eT )= i(Y ). D’après des arguments classiques (voir la démonstration de [Cao 2018, théorème 5.9]),
pour tout t ∈ T (k), on a φ−1(t) ∼= Y∂(t) et le morphisme φ−1(t) ↪→ Y0

f0
−→ X est exactement f∂(t),

où ∂ : T (k) → H 1(k, S) est l’homomorphisme induit par (5-4). Puisque H 3(k, T ∗) = 0, d’après la
proposition 4.4, φ−1(t) est une H -variété et l’homomorphisme canonique BrH0(Y0)→ BrH (φ

−1(t)) est
surjectif pour tout t ∈ T (k).

D’après (4-2), Y0(Ak)
BrH0 (Y0) est T0(Ak)

Br1(T0)-invariant. On applique (5-3) à ϕ et on a

T (Ak)
Br1(T ) = ϕ(T0(Ak)

Br1(T0)) · T (k).

Puisque φ(Y0(Ak)
BrH0 (Y0))⊂ T (Ak)

Br1(T ), on a :

Y0(Ak)
BrH0 (Y0) = T0(Ak)

Br1(T0) ·

( ⊔
t∈T (k)

φ−1(t)(Ak)
BrH (φ

−1(t))
)
,

et donc

X (Ak)
BrG(X) = f0

[ ⊔
t∈T (k)

φ−1(t)(Ak)
BrH (φ

−1(t))
]
=

⋃
t∈T (k)

f∂(t)[Y∂(t)(Ak)
BrH (Y∂(t))]. �

Rappelons la définition de X (Ak)
G-ét,BrG dans (1-4).

Pour toute variété lisse X , définissons X (Anc
k ) l’espace des points adéliques de X hors des places

complexes, i.e., on a X (Ak)∼=
(∏

v complexe X (kv)
)
× X (Anc

k ). De plus, on a :

X (Ak)
ob ∼=

( ∏
v complexe

X (kv)
)
× X (Anc

k )
ob (5-5)

pour l’obstruction ob= Br(X) ou ob= Br1(X) ou ob= ét,Br ou, si X est une G-variété pour un groupe
linéaire connexe G, pour ob= BrG(X) ou ob= G-ét,BrG .

Le lemme suivant est bien connu (voir [Demarche 2009a, lemme 2.2.8] pour une variante).
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Lemme 5.2. Soient X une variété lisse et {X i }i∈I les composantes connexes de X telles que X i soit
géométriquement intègre pour tout i ∈ I . Alors on a :

X (Anc
k )

Br1(X) =
∐
i∈I

X i (Anc
k )

Br1(X i ), X (Anc
k )

ét,Br
=

∐
i∈I

X i (Anc
k )

ét,Br

et, si X est une G-variété pour un groupe linéaire connexe G, on a :

X (Anc
k )

BrG(X) =
∐
i∈I

X i (Anc
k )

BrG(X i ) et X (Anc
k )

G-ét,BrG =

∐
i∈I

X i (Anc
k )

G-ét,BrG .

Démonstration. Puisque le groupe de Brauer (resp. le sous-groupe de Brauer G-invariant, resp. l’ensemble
des F-torseurs, resp. l’ensemble des F-torseurs G-compatibles pour un k-groupe fini F) de X est la
somme directe de celui des composantes connexes de X , on obtient l’inclusion ⊃ dans les quatre cas
ci-dessus.

Par ailleurs, soit π0(X) le schéma des composantes connexes géométriques de X , i.e., π0(X) est un
k-schéma fini étale et il existe un k-morphisme surjectif φ : X → π0(X) de fibres géométriquement
intègres. Pour tout k-schéma V fini étale connexe, V (Anc

k ) 6=∅ implique V ∼= Spec k. D’après [Liu et Xu
2015, Proposition 3.3] (un résultat inspiré par Stoll), on a π0(X)(Anc

k )
Br(π0(X)) = π0(X)(k). Par définition,

φ∗(Br(π0(X)))⊂ Br1(X), φ∗(Br(π0(X)))⊂ BrG(X) et donc on obtient l’inclusion ⊂. �

Les deux lemmes suivants sont bien connus.

Lemme 5.3. Soient X une variété lisse, L un groupe linéaire quelconque et h : V → X un L-torseur.
Alors, pour tout x ∈ X (Ak), l’ensemble {σ ∈ H 1(k, L) : x ∈ hσ (Vσ (Ak))} est fini.

Démonstration. Le résultat découle du fait que, pour tout σ ∈ H 1(k, L), l’ensemble X1(k, Lσ ) est fini
[Serre 1964, §III.4.6]. �

Voir [Skorobogatov 2001, Proposition 5.3.2 ; Cao et al. 2019a, Lemma 6.3] pour des résultats similaires.

Lemme 5.4 (M. Stoll [2007], cf. [Cao et al. 2019a, Lemma 7.1]). Soit X une variété lisse géométriquement
intègre, F un k-groupe fini et f : Y → X un F-torseur. Supposons qu’il existe un x ∈ X (Ak)

ét,Br. Alors
il existe un σ ∈ H 1(k, F), un sous-groupe fermé F ′ ⊂ Fσ , une composante connexe Y ′ ⊂ Yσ tels
que Y ′ soit géométriquement intègre et F ′-invariant, f ′ := fσ |Y ′ : Y ′ → X soit un F ′-torseur et que
x ∈ f ′(Y ′(Ak)

Br(Y ′)).

La proposition suivante est une étape intermédiaire importante dans la démonstration du théorème 1.1.

Proposition 5.5. Soient G un groupe linéaire connexe, Z une variété lisse géométriquement intègre et
p : X→ Z un G-torseur. Alors :

Z(Ak)
ét,Br
=

⋃
σ∈H1(k,G)

pσ (Xσ (Ak)
Gσ -ét,BrGσ ).

Démonstration. L’inclusion ⊃ découle du fait que, pour tout torseur V→ Z sous un k-groupe fini, l’image
réciproque X ×Z V → X est G-compatible.
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Pour l’inclusion ⊂, on peut supposer que Z(Ak)
ét,Br
6=∅.

On fixe un point z ∈ Z(Ak)
ét,Br.

Soit 1 l’ensemble des σ ∈ H 1(k,G) tels que p−1
σ (z)∩ Xσ (Ak)

BrGσ (Xσ ) 6=∅. Alors 1 6=∅ par (5-1).
Pour tout σ ∈1, on fixe un point xσ ∈ p−1

σ (z)∩ Xσ (Ak)
BrGσ (Xσ ). Ceci induit un isomorphisme :

9σ : G(Ak)→ p−1
σ (z)(Ak) : g 7→ g · xσ .

Notons :

E0,σ :=9
−1
σ

(
p−1
σ (z)∩ Xσ (Ak)

BrGσ (Xσ )
)

et E0 :=
⊔
σ∈1

E0,σ .

Pour tout σ ∈1, soit Gσ (Ak)
aσ
→ Hom

(
Bra(Gσ ),Q/Z

)
l’homomorphisme induit par l’accouplement

de Brauer–Manin. Donc Ker(aσ )= Gσ (Ak)
Bra(Gσ ). Notons

Ka,1 :=
∏
σ∈1

Ker(aσ ) et G1(Ak) :=
⊔
σ∈1

Gσ (Ak).

Définissons l’action de Ker(aσ ) sur Gσ (Ak) par la multiplication à gauche. Ceci induit une unique action
de Ka,1 sur G1(Ak) telle que l’action de Ker(σ1) sur Gσ2(Ak) soit l’identité pour tous σ1 6= σ2. D’après
(4-2), E0 est Ka,1-invariant.

Soit S l’ensemble des couples (F, V f
→ Z) avec F un k-groupe fini et V f

→ Z un F-torseur tel
que V soit géométriquement intègre. On définit un ordre partiel : pour tous (F1, V1), (F2, V2) ∈ S,
on a (F1, V1) ≤ (F2, V2) si et seulement s’il existe un σ ∈ H 1(k, F1) et un homomorphisme surjectif
φ : F2→ F1,σ tels que φ∗([V2])= [V1,σ ].

Pour tout (δ, σ ) ∈ H 1(k, F)× H 1(k,G), soit Yσ,δ := Xσ ×Z Vδ. On a un diagramme commutatif de
Fδ ×Gσ -variétés et de Fδ ×Gσ -morphismes :

Yσ,δ

�

f σδ
//

pδσ
��

Xσ

pσ
��

Vδ
fδ

// Z ,

tel que toute verticale soit un Gσ -torseur et que toute horizontale soit un Fδ-torseur.
Pour tout (F, V f

→ Z) ∈ S et tout σ ∈1, notons

EF,V,σ :=9
−1
σ

(
p−1
σ (z)∩

[ ⋃
δ∈H1(k,F)

f σδ
(
Yσ,δ(Ak)

BrGσ (Yσ,δ)
)])
⊂ Gσ (Ak) (5-6)

et EF,V :=
⊔
σ∈1 EF,V,σ ⊂ G1(Ak).

Lemme 5.6. Pour tout (F, V f
→ Z) ∈ S, on a :

(1) l’ensemble EF,V est un sous-ensemble non vide fermé Ka,1-invariant de E0 ;

(2) pour tout (F1, V1) ∈ S vérifiant (F, V )≤ (F1, V1), on a EF1,V1 ⊂ EF,V ;

(3) l’ensemble S est un ensemble ordonné filtrant.
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Démonstration. Pour tout δ ∈ H 1(k, F) et tout σ ∈ H 1(k,G), le morphisme f σδ est fini. D’après (4-2),
Yσ,δ(Ak)

BrGσ (Yσ,δ) est Ker(aσ )-invariant et

f σδ (Yσ,δ(Ak)
BrGσ (Yσ,δ))⊂ Xσ (Ak)

BrGσ (Xσ )

est fermé [Conrad 2012, Proposition 4.4] et Ker(aσ )-invariant. Ainsi

9−1
σ

[
p−1
σ (z)∩ f σδ (Yσ,δ(Ak)

BrGσ (Yσ,δ))
]
⊂ E0,σ

est fermé et Ker(aσ )-invariant.
Appliquant (5-1) et le lemme 5.3 à Yσ,δ

pδσ−→ Vδ, il existe au moins un et au plus un nombre fini de
(δ, σ ) ∈ H 1(k, F)× H 1(k,G) tels que

( fδ ◦ pδσ )
−1(z)∩ Yσ,δ(Ak)

BrGσ (Yσ,δ) 6=∅.

Alors p−1
σ (z) ∩ Xσ (Ak)

BrGσ (Xσ ) 6= ∅ et donc un tel σ est dans 1. Alors EF,V 6= ∅ et (1) découle du
premier paragraphe.

L’énoncé (2) découle de la fonctorialité de l’accouplement de Brauer–Manin.
Pour tous (F1, V1), (F2, V2) ∈ S, on a un F1×F2-torseur V1×Z V2→ Z . Par hypothèse, il existe un

(σ1, σ2)∈ H 1(k, F1)×H 1(k, F2) tel que (V1,σ1×Z V2,σ2)(Ak)
Br(V1,σ1×Z V2,σ2 ) 6=∅. D’après le lemme 5.2 et

(5-5), il existe un k-sous-groupe fermé F3 ⊂ F1,σ1× F2,σ2 et une composante connexe V3 ⊂ V1,σ1×Z V2,σ2

tels que V3 soit géométriquement intègre et que V3→ Z soit un F3-torseur compatible avec l’action de
F1,σ1× F2,σ2 sur V1,σ1×Z V2,σ2 . Alors le morphisme h1 : V3 ⊂ V1,σ1×Z V2,σ2→ V1,σ1 est compatible avec
φ1 : F3 ⊂ F1,σ1× F2,σ2→ F1,σ1 . Puisque V1,σ1 est géométriquement intègre, le morphisme h1 est surjectif
et donc φ1 est surjectif. Alors [V1,σ1] = φ1,∗([V3]) et (F1, V1)≤ (F3, V3). Par ailleurs, (F2, V2)≤ (F3, V3),
d’où l’énoncé (3). �

Soient B :=
⊔
σ∈1 Hom

(
Bra(Gσ ),Q/Z

)
et

a1 : G1 =

⊔
σ∈1

Gσ (Ak)

⊔
σ∈1 aσ
−−−−−→

⊔
σ∈1

Hom
(
Bra(Gσ ),Q/Z

)
= B.

En tant qu’ensembles, on a Im(a1)∼= Ka,1\G1. L’espace Hom(Bra(Gσ ),Q/Z) est compact, car Bra(Gσ )

est discret. D’après le lemme 5.3, 1 est fini et donc B est compact. Puisque aσ est continu et ouvert [Cao
2018, lemme 4.1], l’application a1 est ouverte. Donc l’image d’un sous-ensemble fermé Ka,1-invariant
est fermée. Alors a1(EF,V )⊂ B est fermé non vide pour tout (F, V ) ∈ S. Puisque B est compact et que
S est un ensemble ordonné filtrant, d’après le lemme 5.6 (2), l’intersection⋂

(F,V )∈S

a1(EF,V ) 6=∅ et donc E∞ :=
⋂

(F,V )∈S

EF,V 6=∅.

Il existe un σ ∈1 tel que E∞ ∩ Eσ 6=∅.
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Soient g ∈ E∞ ∩ Eσ et x :=9σ (g)= g · xσ . Alors pσ (x)= z et, d’après (5-6), on a

x ∈
⋂

(F,V )∈S

[ ⋃
δ∈H1(k,F)

f σδ
(
Yσ,δ(Ak)

BrGσ (Yσ,δ)
)]
.

D’après le corollaire 3.7, tout torseur G-compatible sous un k-groupe fini sur X provient d’un torseur
sur Z . D’après le lemme de Stoll (lemme 5.4), il suffit de considérer les torseurs géométriquement intègres.
Donc x ∈ Xσ (Ak)

Gσ -ét,BrGσ , d’où le résultat. �

La proposition suivante est une généralisation de [Cao et al. 2019a, Remark 7.5].

Proposition 5.7. Soit X une variété lisse géométriquement intègre. Soit

1→ N → L
ψ
−→ F→ 1

une suite exacte de groupes linéaires avec F fini. Soient V → X un L-torseur et Y := V/N → X le
F-torseur induit par ψ , i.e., [Y ] = ψ∗([V ]). Faisons l’une ou l’autre des hypothèses :

(1) Le groupe N est connexe.

(2) Le groupe L est fini et N est contenu dans le centre de L.

Alors, pour tout σ ∈ H 1(k, F) avec Yσ (Ak)
Br1(Yσ ) 6=∅, il existe un α ∈ H 1(k, L) tel que ψ∗(α)= σ .

Démonstration. Le cas où N est connexe est exactement [Cao et al. 2019a, Remark 7.5].
On considère le cas (2). Dans ce cas, N est un k-groupe fini commutatif. La résolution flasque [Colliot-

Thélène et Sansuc 1987b, Proposition 1.3] donne une suite exacte 0→ N → T → T0→ 0 avec T un
tore et T0 un tore quasi-trivial. Soit L ′ := L ×N T . Alors L ′ est un groupe linéaire, car N est contenu
dans le centre de L . Ceci induit un diagramme commutatif de suites exactes et de colonnes exactes :

1

��

1

��

1 // N //

��

L //

ψ2
��

F

=

��

// 1

1 // T //

��

L ′
ψ1
//

��

F // 1

T0
=
//

��

T0

��

0 0

Appliquons le cas (1) au L ′-torseur ψ2,∗([V ]). On obtient un β ∈ H 1(k, L ′) tel que ψ1,∗(β)= σ . Puisque
H 1(k, T0)= 0, il existe un α ∈ H 1(k, L) tel que ψ2,∗(α)= β et donc ψ∗(α)= σ . �

La proposition 5.7(2) et la formule (4-1) impliquent directement :
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Corollaire 5.8. Sous les hypothèses de la proposition 5.7(2), soit G un groupe linéaire. Pour tout σ ∈
H 1(k, F), s’il existe une action de G sur Yσ telle que Yσ (Ak)

BrG(Yσ ) 6=∅, alors il existe un α ∈ H 1(k, L)
tel que ψ∗(α)= σ .

6. Démonstration du théorème 1.4

Dans toute cette section, k est un corps de nombres. Sauf mention explicite du contraire, une variété
est une k-variété.

Dans toute cette section, G est un k-groupe linéaire connexe et (X, ρ) une G-variété lisse géomé-
triquement intègre.

Pour tout k-groupe fini F et tout F-torseur f : Y → X , soit (HY
ψY
−→G) le groupe minimal compatible

au F-torseur Y (cf. définition 3.9). Pour tout σ ∈ H 1(k, F), le Fσ -torseur fσ : Yσ→ X est HY -compatible,
i.e., il existe une unique action de HY sur Yσ telle que fσ soit un HY -morphisme.

Dans paragraphe 1, on a défini X (Ak)
ét,Br (cf. (1-1)) et X (Ak)

G-ét,BrG (cf. (1-4)). On définit

X (Ak)
ét,BrG :=

⋂
f :Y

F
→X

F fini

⋃
σ∈H1(k,F)

fσ (Yσ (Ak)
BrHY (Yσ )),

X (Ak)
c.c., ét,BrG :=

⋂
f :Y

F
→X

F fini commutatif
Y géo. connexe

⋃
σ∈H1(k,F)

fσ (Yσ (Ak)
BrHY (Yσ )),

où géo. connexe signifie géométriquement connexe et c.c. est une abréviation de commutatif connexe.
On a directement :

X (Ak)
ét,BrG ⊂ X (Ak)

c.c., ét,BrG et X (Ak)
ét,Br
⊂ X (Ak)

ét,BrG ⊂ X (Ak)
G-ét,BrG .

Proposition 6.1. X (Ak)
c.c., ét,BrG ⊂ X (Ak)

Br(X).

Démonstration. Il suffit de montrer que, pour tout α ∈ Br(X) et tout x ∈ X (Ak)
c.c., ét,BrG , on a α(x)= 0.

On fixe un tel x et un tel α.
Il existe un entier n tel que n · α = 0. D’après le corollaire 4.2, il existe un torseur universel de n-

torsion TX
f
→ X (un SX -torseur). Soit H le groupe minimal compatible au SX -torseur TX . Par hypothèse,

il existe un σ ∈ H 1(k, SX ) et un point adélique t ∈ TX,σ (Ak)
BrH (TX,σ ) tels que fσ (t) = x . D’après la

proposition 3.12, f ∗σ (α) ∈ BrH (TX,σ ). Alors α(x)= f ∗σ (α)(t)= 0. �

Le lemme suivant généralise un résultat de Skorobogatov [2009, Theorem 1.1] et il généralise aussi
[Cao et al. 2019a, Proposition 6.6]. Sa démonstration suit l’idée de [Skorobogatov 2009, p. 506] et de
[Stoll 2007, Proposition 5.17].

Lemme 6.2. Soient F un k-groupe fini, f : Y → X un F torseur et (HY
ψY
−→ G) le groupe minimal

compatible au F-torseur Y . Supposons que Y est géométriquement intègre. Alors

(1) on a X (Ak)
ét,BrG =

⋃
σ∈H1(k,F) fσ [Yσ (Ak)

ét,BrHY ] ;
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(2) on a X (Ak)
ét,Br
=
⋃
σ∈H1(k,F) fσ [Yσ (Ak)

ét,Br
] ;

(3) si ψY : HY −→
∼ G est un isomorphisme, on a

X (Ak)
G-ét,BrG =

⋃
σ∈H1(k,F)

fσ [Yσ (Ak)
G-ét,BrG ].

Démonstration. L’inclusion ⊃ dans les trois cas est définie par le pullback des torseurs et la fonctorialité
de l’accouplement de Brauer–Manin. On considère l’inclusion ⊂.

Dans le cas (1), il suffit de montrer que, pour tout x ∈ X (Ak)
ét,BrG , il existe un σ ∈ H 1(k, F) et un

y ∈ Yσ (Ak)
ét,BrHY tels que fσ (y)= x . On fixe un tel x .

Pour tout σ ∈ H 1(k, F), soient

1σ := f −1
σ (x)∩ Yσ (Ak), 6 := {σ ∈ H 1(k, F) : 1σ 6=∅} et 1 :=

⊔
σ∈6

1σ .

D’après le lemme 5.3, 1 et 6 sont finis.
Soit S l’ensemble des X-torseurs sur Y sous k-groupes finis i.e., l’ensemble des quintuples(

σ, E, E
ψ
−→ Fσ , V

hV
−→ X, V

h
−→ Yσ

)
avec σ ∈ H 1(k, F), E un k-groupe fini, ψ un homomorphisme surjectif, V hV

−→ X un E-torseur et h
un E-morphisme sur X . Alors ψ∗([V ])= [Yσ ] ∈ H 1(k, F) et h : V → Yσ est un Ker(ψ)-torseur. Donc
hα : Vα→ Yσ+ψ∗(α) est un Ker(ψα)-torseur pour tout α ∈ H 1(k, E). Soit

1V :=
{

y ∈1 : ∃α ∈ H 1(k, E) tel que y ∈ hα(Vα(Ak)
BrHV (Vα))

}
.

Par l’hypothèse sur x , l’ensemble 1V est non vide.
On définit un ordre partiel de S : pour tous (σ1, E1, ψ1, V1, h1), (σ2, E2, ψ2, V2, h2) ∈ S, on a

(σ1, E1, ψ1, V1, h1)≤ (σ2, E2, ψ2, V2, h2) si et seulement si σ1 = σ2 et s’il existe un α ∈ H 1(k, E1), un
homomorphisme surjectif φ : E2→ E1,α et un E2-morphisme hφ : V2→ V1,α sur Yσ1 . Dans ce cas, on a
1V2 ⊂1V1 .

Puisque 1 est fini, il existe un quintuple (σ, E0, ψ0, V0, h0) dans S tel que 1V0 soit minimal. On fixe
un y ∈1V0 . Après avoir remplacé σ par σ +ψ0,∗(α) pour certain α ∈ H 1(k, E0), on peut supposer que
y ∈ Yσ (Ak).

Pour tout torseur Z f1
−→ Yσ sous un k-groupe fini F1, d’après [Skorobogatov 2009, Proposition 2.3

et (4)], il existe un (σ, E, ψ, hV : V → X, h) ∈ S, un homomorphisme surjectif Ker(ψ)→ F1 et un
Ker(ψ)-morphisme V → Z sur Yσ avec

V := RYσ×k Fσ /Yσ (Z ×k Fσ )∼= RYσ /X (Z)×X Yσ
hV
−→ X. (6-1)

Ceci induit

1V ⊂
⋃

α∈H1(k,Ker(ψ))

hα(Vα(Ak)
BrHV (Vα))⊂

⋃
α∈H1(k,F1)

f1,α(Zα(Ak)
BrHZ (Zα)).
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Par ailleurs, on a :

(σ, E0, ψ0, V0, h0), (σ, E, ψ, V, h)≤
(
σ, E0×Fσ E, ψ0 ◦ (idE0 ×Fσ ψ), V0×Yσ V, h0 ◦ (idV0 ×Yσ h)

)
dans S, et donc 1V0 ⊃ 1V0×Yσ V ⊂ 1V . Puisque 1V0 est minimal, on a 1V0 = 1V0×Yσ V ⊂ 1V . Donc
y ∈ Yσ (Ak)

ét,BrHY , d’où l’on déduit (1).
L’énoncé (2) découle du même argument que l’énoncé (1).
Pour (3), d’après le corollaire 3.6, le torseur V → X dans (6-1) est G-compatible. L’énoncé (3) découle

du même argument que l’énoncé (1). �

La proposition suivante généralise un lemme de Stoll [2007] (cf. lemme 5.4).

Proposition 6.3. Soient G un k-groupe linéaire connexe et (X, ρ) une G-variété lisse géométriquement
intègre. Supposons que X (Ak)

G-ét,BrG 6=∅. Alors, pour tout k-groupe fini F et tout F-torseur Y → X , il
existe un σ ∈ H 1(k, F) tel qu’il existe une composante connexe Y ′ ⊂ Yσ qui est géométriquement intègre.

De plus, dans ce cas, il existe un sous k-groupe fermé F ′ ⊂ Fσ tel que Y ′ soit un F ′-torseur sur X , où
l’action de F ′ sur Y ′ est induite par l’action de Fσ sur Yσ .

Démonstration. Le morphisme G× X ρ
→ X induit un homomorphisme ρπ1 : π1(G k̄)→ π1(X). D’après

le corollaire 3.5, l’image Im(ρπ1) est un sous-groupe normal de π1(X) et elle est contenue dans le centre
de π1(X k̄). Pour tout k-groupe fini F1, d’après (1-5), tout F1-torseur Y1→ X induit un homomorphisme
θ1 : π1(X k̄)→ F1(k̄) à conjugaison près et, d’après la proposition 3.3 et le corollaire 3.5, Y1 est G-
compatible si et seulement si θ1 ◦ ρπ1 = 0.

D’après (1-5), soit α ∈ H 1(π1(X), F(k̄)) un 1-cocycle qui correspond à [Y ] ∈ H 1(X, F). Il existe un
sous-groupe ouvert distingué 1 ⊂ π1(X) tel que α|1 = 0. Soient 1k̄ := 1∩ π1(X k̄) et αk̄ := α|π1(X k̄)

.
Alors αk̄ est un homomorphisme π1(X k̄)→ F(k̄).

Lemme 6.4. Pour trouver Y ′ dans la proposition 6.3, on peut supposer que 1k̄ · Im(ρπ1) = π1(X k̄) et
donc Im(αk̄)= Im(αk̄ ◦ ρπ1).

Démonstration. Le sous-groupe Im(ρπ1) ·1 est ouvert normal dans π1(X). Soit Y2→ X le revêtement
galoisien correspondant. Par construction, Y2→ X est un torseur G-compatible sous un k-groupe constant
F2 = π1(X)/(Im(ρπ1) ·1). Par hypothèse, il existe un σ ∈ H 1(k, F2) tel que Y2,σ (Ak)

BrG(Y2,σ ) 6= ∅.
D’après le lemme 5.2 et (5-5), il existe une composante connexe Y3⊂ Y2 telle que Y3 est géométriquement
intègre. Ainsi Y3→ X est un torseur sous un sous-groupe fermé F3 ⊂ F2,σ et on a

Im(π1(Y3,k̄) ↪→ π1(X k̄))= π1(X k̄)∩ Im(π1(Y2)→ π1(X))= Im(ρπ1) ·1k̄ .

Alors Y3→ X est G-compatible. Par le lemme 6.2(3), après avoir remplacé Y3 par son tordu, on peut
supposer que Y3(Ak)

G-ét,BrG 6=∅.
S’il existe un σ ∈ H 1(k, F) et une composante connexe Y ′3 du Fσ -torseur Yσ ×X Y3→ Y3 tels que Y ′3

soit géométriquement intègre, alors l’image de Y ′3 par le morphisme fini étale Yσ ×X Y3→ Yσ est une
composante connexe Y ′ de Yσ telle que Y ′ soit géométriquement intègre. Donc on peut remplacer X par
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Y3 et, après avoir remplacé X par Y3, on peut supposer que 1k̄ · Im(ρπ1)= π1(X k̄). Puisque αk̄(1k̄)= 0,
on a Im(αk̄)= Im(αk̄ ◦ ρπ1). �

Dans ce cas, puisque π1(G k̄) est commutatif, Im(αk̄) est commutatif. D’après le corollaire 3.5, αk̄

induit un homomorphisme π1(X k̄)
ab
→ F(k̄) de noyau 0k-invariant, car α est défini sur k. D’après le

corollaire 2.4, il existe un k-groupe fini commutatif S et un S-torseur T → X tels que T soit géomé-
triquement intègre, S(k̄)= Im(αk̄) et que, dans

H 1(X k̄, S)∼= Homcont(π1(X k̄), Im(αk̄)),

on ait [Tk̄] = αk̄ .
Soit (HY

ψY
−→G) le groupe minimal compatible au F-torseur Y . D’après la remarque 3.10, (HY

ψY
−→G)

est aussi le groupe minimal compatible au S-torseur T . D’après le corollaire 3.11, Ker(ψY )∼= S. Donc Y4 :=

T ×X Y est une HY -variété et Y4→ X est un (S×F)-torseur HY -compatible. Donc Y5 :=Y4/Ker(ψY )→ X
est un F-torseur G-compatible et on a un F-morphisme fini étale φ5 : Y5→ Y/Ker(ψY ). Par hypothèse,
il existe un σ ∈ H 1(k, F) tel que Y5, σ (Ak)

BrG(Y5,σ ) 6=∅. D’après le lemme 5.2, il existe une composante
connexe Y ′5 de Y5, σ telle que Y ′5 soit géométriquement intègre. Ainsi φ5(Y ′5) est une composante connexe
de (Y/Ker(ψY ))σ , qui est géométriquement intègre. Puisque HY est connexe, les composantes connexes
géométriques de (Y/Ker(ψY ))σ et de Yσ sont les mêmes, d’où le résultat. �

Lemme 6.5. X (Ak)
ét,BrG = X (Ak)

G-ét,BrG .

Démonstration. Il suffit de montrer que, pour tout x ∈ X (Ak)
G-ét,BrG , tout k-groupe fini F et tout F-torseur

Y f
→ X , il existe un σ ∈ H 1(k, F), un y ∈ Yσ (Ak)

BrHY (Yσ ) tels que fσ (y) = x , où (HY
ψY
−→ G) est le

groupe minimal compatible au F-torseur Y .
On fixe de tels x, F, Y, f .
D’après la proposition 6.3, on peut supposer que Y est géométriquement intègre.
D’après le corollaire 3.11, il existe un plongement φ :Ker(ψY )→ F d’image centrale compatible avec

les actions de Ker(ψY ) et de F sur Y . Ceci induit une suite exacte de k-groupes finis

1→ Ker(ψY )
φ
−→ F

φ1
−→ F1→ 1

qui définit F1. Alors Y1 := Y/Ker(ψY )
f1
−→ X est un F1-torseur G-compatible sur X . De plus, Y1 est lisse

et géométriquement intègre.
Par hypothèse, il existe un σ1 ∈ H 1(k, F1) et un y1 ∈ Y1,σ1(Ak)

BrG(Y1,σ1 ) tels que f1,σ1(y1)= x . D’après
le corollaire 5.8, il existe un σ0 ∈ H 1(k, F) tel que φ1,∗(σ0) = σ1. Comme l’image de φ est centrale
dans F , on a Ker(ψY )σ0 = Ker(ψY ).

L’argument ci-dessus donne un Ker(ψY )-torseur Yσ0 → Y1,σ1 compatible avec l’action de HY . D’après
la proposition 5.1, il existe un σ2∈ H 1(k,Ker(ψY )) et un y ∈Yσ (Ak)

BrHY (Yσ ) avec σ :=σ0+σ2∈ H 1(k, F)
tels que fσ (y)= x . �

Lemme 6.6. X (Ak)
ét,Br
= X (Ak)

ét,BrG .
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Démonstration. On peut supposer que X (Ak)
ét,BrG 6=∅. Il suffit de montrer que, pour tout k-groupe fini

F et tout F-torseur f : Y → X , on a

X (Ak)
ét,BrG ⊂

⋃
σ∈H1(k,F)

fσ (Yσ (Ak)
Br(Yσ )).

D’après la proposition 6.3, on peut supposer que Y est géométriquement intègre. L’énoncé découle de la
proposition 6.1 et du lemme 6.2 (1). �

Démonstration du théorème 1.4. D’après le lemme 5.2 et (5-5), on peut supposer que X est géomé-
triquement intègre. On obtient le théorème par combinaison du lemme 6.6 et du lemme 6.5. �

Remarque 6.7. Rappelons les catégories AB et GX dans paragraphe 4. On fixe un objet (G, X) ∈GX.
Soit GXX l’ensemble des objets (H, Y )∈GX tels qu’il existe un morphisme (ψ, f ) : (H, Y )→ (G, X)

dans GX avec ψ, f finis.
Dans toute cette section (paragraphe 6), pour établir le théorème 1.4 de (G, X), l’hypothèse que

G est linéaire et la notion de sous-groupe de Brauer invariant sont utilisés seulement pour appliquer
la proposition 3.12, la proposition 5.1, le corollaire 4.2, le lemme 5.2 et le corollaire 5.8 à l’élément
dans GXX . Donc, cette section a essentiellement montré :

pour tout foncteur contravariant B(−,−) : GX → AB qui associe au couple (H, Y ) un
sous-groupe B(H, Y ) ⊂ Br(Y ), si l’on peut établir la proposition 3.12, la proposition 5.1,
le corollaire 4.2, le lemme 5.2 et le corollaire 5.8 pour tout élément dans GXX (en remplaçant
tout groupe de Brauer invariant par le B(−,−) correspondant), alors on a X (Ak)

ét,Br
=

X (Ak)
G-ét, B(G,−), où X (Ak)

G-ét, B(G,−) est défini de la même façon que X (Ak)
G-ét,BrG .

7. Démonstration des théorèmes 1.1 et 1.2

Dans toute cette section, k est un corps de nombres. Sauf mention explicite du contraire, une variété
est une k-variété.

Démonstration du théorème 1.1. D’après le lemme 5.2 et (5-5), on peut supposer que Z est géomé-
triquement intègre. Si G est connexe, l’énoncé découle du théorème 1.4 et de la proposition 5.5. Si G
est fini, d’après la proposition 6.3, on peut supposer que X est géométriquement intègre, et le résultat
découle du lemme 6.2(2).

Pour établir le cas général, on reprend certains arguments de [Demarche 2009b; Cao et al. 2019a]. Il
existe une suite exacte

1→ N → G
ψ
−→ F→ 1

de k-groupes linéaires avec N un k-groupe linéaire connexe et F un k-groupe fini. Alors

h :U := X/N → Z

est un F-torseur. Notons q : X→U . Pour un z∈ Z(Ak)
ét,Br, il existe un σ ∈H 1(k, F) et un u∈Uσ (Ak)

ét,Br

tels que hσ (u)= z. D’après la proposition 5.7(1), il existe un α0 ∈ H 1(k,G) tel que ψ∗(α0)= σ . Ceci
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induit une suite exacte

1→ N ′
φ
−→ Gα0

ψα0
−−→ Fσ → 1

de k-groupes linéaires. Alors N ′
k̄
∼= Nk̄ et N ′ est un k-groupe linéaire connexe. Ainsi qα0 : Xα0 →Uσ est

un N ′-torseur. Donc il existe un β ∈ H 1(k, N ′) et un x ∈ (Xα0)β(Ak)
ét,Br tels que (qα0)β(x) = u. Soit

α := α0+ φ∗(β). Alors (Xα0)β = Xα et pα = hσ ◦ (qα0)β . Donc x ∈ Xα(Ak)
ét,Br et pα(x) = z, d’où le

résultat. �

Démonstration du théorème 1.2. Ceci découle du théorème 1.1 et de [Cao et al. 2019a, Theorem 1.5]. �

Démonstration du corollaire 1.5. Pour tout k-groupe fini F et tout F-torseur G-compatible f : Y → X ,
d’après le corollaire 3.5(4), il existe un F-torseur M sur k tel que Y ∼= M ×k X comme F-torseurs. Alors
il existe un σ0 ∈ H 1(k, F) tel que Yσ0

∼= F × X . Donc

X (Ak)
BrG(X) ⊂ fσ0(Yσ0(Ak)

BrG(Yσ0 ))⊂
⋃

σ∈H1(k,F)

fσ (Yσ (Ak)
BrG(Yσ )).

Ainsi X (Ak)
G-ét,BrG = X (Ak)

BrG(X) et le résultat découle du théorème 1.4. �
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Most words are geometrically almost uniform
Michael Jeffrey Larsen

If w is a word in d > 1 letters and G is a finite group, evaluation of w on a uniformly randomly chosen
d-tuple in G gives a random variable with values in G, which may or may not be uniform. It is known
that if G ranges over finite simple groups of given root system and characteristic, a positive proportion of
words w give a distribution which approaches uniformity in the limit as |G| →∞. In this paper, we show
that the proportion is in fact 1.

1. Introduction

A word for the purposes of this paper is an element of the free group Fd . For any finite group G, the
word w defines a word map wG : Gd

→ G by substitution; we denote it w when G is understood. If UG

defines the uniform measure on G, we can measure the failure of random values of w to be uniform by
comparing the pushforward w∗UGd to the uniform distribution UG . We say w is almost uniform for an
infinite family of finite groups G if

lim
|G|→∞

‖w∗UGd −UG‖ = 0,

where ‖·‖ denotes the L1 norm, and G ranges over the groups of the family. We are particularly interested
in the family of finite simple groups.

When w is of the form wk
0 for some k ≥ 2, then w is said to be a power word. It is easy to see that

power words are not almost uniform for finite simple groups; for instance, in large symmetric groups,
most elements are not k-th powers at all [Pouyanne 2002]. There has been speculation as to whether all
nonpower words are almost uniform for finite simple groups (see, e.g., [Shalev 2013, Problem 4.7; Larsen
2014, Question 3.1]). Since power words are exponentially thin [Lubotzky and Meiri 2012], one could
ask an easier question: is the set of words which are not almost uniform for finite simple groups thin?
Or, easier still, does it have density 0? Some words are known to be almost uniform for finite simple
groups: primitive words, which are exactly uniform for all groups; the commutator word x1x2x−1

1 x−1
2

by [Garion and Shalev 2009], words of the form xm
1 xn

2 by [Larsen and Shalev 2016], and, recently, all
words of Waring type, i.e., words which can be written as a product of two nontrivial words involving
disjoint variables [Larsen et al. 2019, Theorem 1]. The defining relation of the surface group of genus g
is therefore covered for all g ≥ 1, and, more generally, various words in which some variables appear
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exactly twice can also be treated by combining the idea of Parzanchevski and Schul [2014] with the
method of Liebeck and Shalev [2005]. All of these words, of course, are in some sense rare and atypical.

From the point of view of algebraic geometry, the easiest families of finite simple groups to consider
are those of the form G(Fqn )/Z(G(Fqn )), where G is a simple, simply connected algebraic group over Fq ,
and n ranges over the positive integers. We say that w is geometrically almost uniform for G if it is so for
this family of groups. In [Larsen et al. 2019, Theorem 2], it is proved that this property is equivalent to
an algebro-geometric condition on w, namely that the morphism of varieties wG : Gd

→ G (which by a
theorem of Borel [1983] is dominant) has geometrically irreducible generic fiber. Using this criterion, it
is proved in [Larsen et al. 2019, Theorem 3] that for each d , there exists a set of words of density greater
than 1

3 which are almost uniform for G for all G/Fq . (Note that this does not imply that these words are
almost uniform for the family of all finite simple groups of Lie type.)

The main result of this paper is that for each G the set of words which are geometrically almost uniform
for G has density 1. More explicitly:

Theorem 1.1. Let d ≥ 2, Fq and G be fixed. Let (i1, e1), (i2, e2), . . . be chosen independently and
uniformly from {1, . . . , d}× {±1}. Let w = xe1

i1
· · · xel

il
be a random word of length l defined in this way.

Then the probability that w is geometrically almost uniform for G goes to 1 as l→∞.

The idea of the proof is as follows. In [Larsen et al. 2019, Corollary 2.3], it is proved that if the image
w of w under the abelianization map Fd → Zd is primitive, i.e., if γ (w)= 1, where γ denotes the g.c.d.
of its coordinates, then w is almost uniform for every G, the idea being that wG(Fqn ) is then surjective
for all n, and this implies that wG does not factor through a nonbirational generically finite morphism
X0→ G.

Now, the image of a random walk on Fd under the abelianization map is a random walk on Zd . If Xd,l

is the endpoint of a random walk of length l on Zd , then

lim sup
l→∞

P[γ (Xd,l)= 1]< 1

for all d , so this is not good enough to get a result which covers almost all words. A new idea is needed.
By a probabilistic analysis, we prove that for each d ,

lim
M→∞

lim inf
l→∞

P[1≤ γ (Xd,l)≤ M] = 1.

Thus, it suffices to prove that for each d ≥ 2 and k > 0, in the limit as l goes to infinity, the fraction
of w of length l with γ (w) = k for which w is almost uniform in rank ≤ r goes to 1. For any such w
and any group G, the image of wG contains all k-th powers in G. For k > 1, this no longer implies
geometric irreducibility of the generic fiber of wG , but it puts very strong constraints on which quasifinite
morphisms X0→ G it can factor through.

To see how to exploit such constraints, consider the following toy problem. Suppose a polynomial map
f : A1

→ A1 is defined over Fq ; for all n, f (Fqn ) contains all squares in Fqn ; and for some n0, f (Fqn0 )

contains a nonsquare. We claim this implies f is purely inseparable.
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Indeed, consider the curve C : y2
= f (x). For C to fail to be geometrically irreducible would mean that

f (x)= g(x)2 for some g(x) ∈ Fq [x]. Either g(x) ∈ Fq [x] or f (x)= ah(x)2 for some nonsquare a ∈ Fq

and some h(x) ∈ Fq [x]. In the first case, f (Fqn0 ) contains only squares in Fqn0 , contrary to assumption.
In the second case, for all n ≥ 1, f (Fqn ) contains no nonzero square in Fqn .

Thus, the conditions on the image of f imply that C is geometrically irreducible, so it has (1+o(1))qn

points over Fqn by the Lang–Weil estimate. Consider the y-map, that is, the morphism of degree deg f
from C to the affine line given by the function y. By the Chebotarev density theorem for finite extensions
of Fq(t), in the limit as n→∞, a fixed positive proportion of points in A1(Fqn ) have preimage in C(Fqn )

consisting of degs f points, where degs denotes the separable degree of f . Since the y-map is surjective
on Fqn -points, this implies that f is purely inseparable.

To apply this idea in the word map setting, one needs to find elements in w(G(Fqn )d) which play
the role of nonsquare elements in f (Fqn ). We do not need to find them for all w, just for almost all in
an asymptotic sense. An approach to achieving this is to fix a d-tuple g ∈ G(Fqn )d and estimate the
probability that w(g) is a “nonsquare” element. For large enough n, one can view w(g) as uniformly
distributed in G(Fqn ). In order to get the probability of success to approach 1, it is necessary to use
not a single g but a sufficiently large number of independent choices g1, . . . , gN . The existence of N
elements of G(Fqn )d which are independent in this sense (in the limit n→∞) depends on G(Fqn )N being
d-generated. There is a substantial literature, going back to work of Philip Hall [1936], concerning the
size of minimal generating sets of G N , where G is a finite simple group. We use a recent result of Maróti
and Tamburini Bellani [2013].

2. Varieties over finite fields

Throughout this section, a variety will always mean a geometrically integral affine scheme of finite type
over a finite field. Let A⊂ B be an inclusion of finitely generated Fq -algebras such that X := Spec A and
Y := Spec B are normal varieties. Let φ : Y → X = Spec A correspond to the inclusion A ⊂ B. Let K
and L denote the fraction fields of A and B respectively. Let K0 denote the separable closure of K in L ,
which is a finite extension of K since L is finitely generated. Let A0 denote the integral closure of A in
K0, X0 the spectrum of A0, and ψ : X0→ X the morphism corresponding to the inclusion A ⊂ A0. As
B ⊃ A is integrally closed in L ⊃ K0 it follows that B contains A0, so φ factors through ψ .

Proposition 2.1. For all positive integers n,

φ(Y (Fqn ))⊂ ψ(X0(Fqn )), (2-1)

and |ψ(X0(Fqn ))| − |φ(Y (Fqn ))| = o(qn dim X ). (2-2)

Moreover ψ is an isomorphism if and only if φ has geometrically irreducible generic fiber; if not, there
exists ε > 0 and a positive integer m such that

|ψ(X0(Fqn ))|< (1− ε)qn dim X (2-3)

if m divides n.
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Proof. As A ⊂ A0 ⊂ B, the morphism φ factors through ψ , implying (2-1).
By [EGA IV2 1965, proposition 4.5.9], K = K0 if and only if the generic fiber of φ is geometrically

irreducible. By the same proposition, the generic fiber of Y → X0 is always geometrically irreducible.
By [EGA IV3 1966, théorème 9.7.7], there is a dense open subset of X0 over which the fibers of Y → X0

are all geometrically irreducible. Let C denote the complement of this subset, endowed with its structure
of reduced closed subscheme of X0.

It is well known that the Lang–Weil estimate is uniform in families. There does not seem to be
a canonical reference for this fact, but a proof is sketched, for instance in [Larsen and Shalev 2012,
Proposition 3.4; Tao 2012, Theorem 5]. From this, it follows that if n is sufficiently large, for every point
of X0(Fqn ) over which the morphism Y→ X0 has geometrically irreducible fiber, there exists an Fqn -point
in this fiber. In particular, every point in X0(Fqn ) \C(Fqn ) lies in the image of Y (Fqn )→ X0(Fqn ). By
the easy part of the Lang–Weil bound,

|C(Fqn )| = O(qn dim C)≤ O(qn(dim X0−1)).

Thus, the complement of the image of Y (Fqn )→ X0(Fqn ) has cardinality o(qn dim X ), which implies (2-2).
If φ is not geometrically irreducible, then [K0 : K ]> 1. Let K1 denote the Galois closure of K0/K

in a fixed separable closure K . We choose m so that Fqm contains the algebraic closure of Fq in K1. If
we are content to limit consideration to Fqn -points of X and X0, where m divides n, we may replace X
and X0 by the varieties XFqm and (X0)Fqm respectively, obtained by base change. This has the effect of
replacing K , K0, and K1 by K Fqm , K0Fqm , and K1Fqm = K1 respectively. Replacing q by qm , we may
now assume that Fq is algebraically closed in K1.

Now, Gal(K1/K ) acts faithfully on A1 as Fq-algebra. As A is integrally closed in K and A1 is the
integral closure of A in K1, it follows that

A ⊂ AGal(K1/K )
1 ⊂ A1 ∩ K = A,

so A= AGal(K1/K )
1 ; likewise, A0= AGal(K1/K0)

1 . Geometrically, this means that X and X0 are the quotients
of X1 := Spec A1 by Gal(K1/K ) and Gal(K1/K0) respectively. We denote these quotient maps π and
π0 respectively. Thus we have the diagram

X1

π0

��

π

��

X0

ψ

��

X

As the action of Gal(K1/K ) on X1 is faithful and X1 is irreducible, there is a dense affine open
subvariety of X1 on which Gal(K1/K ) acts freely. Replacing X1 by this subvariety and X and X0

by quotients of this subvariety by Gal(K1/K ) and Gal(K1/K0) respectively affects o(qn dim X ) of the
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Fqn -points of X , X0, and X1, so without loss of generality, we may assume that Gal(K1/K ) acts freely
on X1. Now

ψ(X0(Fqn ))= ψ(X0(Fqn ) \π0(X1(Fqn )))∪π(X1(Fqn )). (2-4)

By Lang–Weil, |X1(Fqn )| = (1+ o(1))qn dim X , so

|π0(X1(Fqn )))| = ([K1 : K0]
−1
+ o(1))qn dim X ,

|π(X1(Fqn ))| = ([K1 : K ]−1
+ o(1))qn dim X .

By (2-4),
|ψ(X0(Fqn ))| ≤ (1− [K1 : K0]

−1
+ [K1 : K ]−1

+ o(1))qn dim X ,

which implies (2-3). �

Lemma 2.2. Let G be a finite group acting transitively on a set S with more than one element and H a
normal subgroup of G such that every element of H has at least one fixed point in S. Then for all s ∈ S,
H StabG(s) is a proper subgroup of G.

Proof. By a classical theorem of Jordan, every nontrivial transitive permutation group contains a derange-
ment, so H must act intransitively. Thus, the orbit of H StabG(s) containing s is a proper subset of S,
which implies the lemma. �

Lemma 2.3. Let K be a field, K a separable closure of K , and K1 and K2 finite extensions of K in K .
Suppose K1 is Galois over K and K2 6= K . If K1 ∩ K2 = K , then there exists an element of Gal(K/K1)

which does not stabilize any K-embedding of K2 in K .

Proof. Let K3 be the Galois closure of K2 in K and define G :=Gal(K1K3/K ). Thus G acts transitively
on the set S of K-embeddings of K2 in K . Let H =Gal(K1K3/K1), which is normal in G since K1/K is
Galois. If every element of Gal(K/K1) fixes at least one element of S, then by Lemma 2.2, H StabG(s)
is a proper subgroup of G, where s denotes the identity embedding of K2 in K . If L is the fixed field
of K1K3 under H StabG(s), then L is a nontrivial extension of K contained in both (K1K3)

H
= K1 and

(K1K3)
StabG(s) = K2. �

Proposition 2.4. Let X be a variety over Fq with coordinate ring A with function field K . Let K ⊂
K0, K2 ⊂ K , and let K1 (resp. K3) denote the Galois closure of K0 (resp. K2) in K . Let Ai for 0≤ i ≤ 3
denote the integral closure of A in Ki , and let X i := Spec Ai . If K1 and K2 satisfy the hypotheses of
Lemma 2.3, then there exists ε > 0 so that for all sufficiently large integers n, there are at least εqn dim X

elements of X(Fqn ) which lie in the image of X i (Fqn )→ X(Fqn ) for i = 0 but not for i = 2.

Proof. Let K13 = K1K3, A13 denote the integral closure of A in K13, and X13 denote Spec A13. Let
G := Gal(K13/K ). The action of G on X13 is faithful, and X13 is irreducible, so there exists a dense
open affine subvariety U 13 ⊂ X13 on which G acts freely. Replacing X13, together with its quotients
by subgroups of G, by U 13 and its corresponding quotients affects only o(qn dim X ) Fqn -points of these
quotients, and therefore does not affect the statement of the proposition. We may therefore assume that we
are in the setting of [Serre 1965, Theorem 6] and can apply the Chebotarev density theorem for varieties.
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By Lemma 2.3, there exists g ∈G such that g acts trivially on K1 but acts without fixed points on the set
of K-embeddings K2→ K or, equivalently, on the geometric points lying over any given geometric point
of X for the covering map X2→ X . This implies that if x ∈ X(Fqn ) and g belongs to the qn-Frobenius
conjugacy class of x , then there is no qn-Frobenius stable point lying over x on X2→ X , i.e., x does not
lie in the image of X2(Fqn )→ X(Fqn ). On the other hand, every geometric point of X0 lying over x is
stable by the qn-Frobenius, so x lies in the image of X0(Fqn )→ X(Fqn ). By Chebotarev density [Serre
1965, Theorem 7], the proposition follows for every ε < |G|−1. �

The main technical result of this section is the following.

Proposition 2.5. Let φ : Y → X be a dominant morphism of normal varieties over Fq . Then there exists
a positive integer m and for every positive integer n, there exist subsets Xn,i ⊂ X(Fqn ), 1≤ i ≤ m, with
the following properties.

(1) For each i from 1 to m, we have lim inf
n

|Xn,i |

|X(Fqn )|
> 0.

(2) If θ : Z→ X is any dominant morphism of normal varieties over Fq such that

(a) for all n ≥ 1, θ(Z(Fqn ))⊃ φ(Y (Fqn )), and
(b) there exists an integer n0 ≥ 1 such that θ(Z(Fqn0 ))∩ Xn0,i is nonempty for each i = 1, . . . ,m,

then the generic fiber of θ is geometrically irreducible.

Proof. Let A, B, C denote the coordinate rings of X , Y , and Z respectively. Let K , L , and M be the fields
of fractions of A, B, and C respectively. We regard B and C as A-algebras via φ and θ respectively, so L
and M are extensions of K . Let K0 and K2 denote the separable closures of K in L and M respectively.
As B and C are finitely generated Fq-algebras, L and M are finitely generated K-extensions, and K0

and K2 are finite separable extensions of K . The claimed generic irreducibility of the generic fiber of θ
amounts to the equality K = K2. We define K , K1, K3, and K13 as in Proposition 2.4.

Let F1, . . . , Fm denote all subfields of K1 over K , excluding K itself. Thus, we have the following
diagram of fields:

L K M

K13

K1 K3

F1 · · · Fm K0 K2

K

(2-5)
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For 0 ≤ i ≤ 3, let Ai denote the integral closure of A in Ki and X i = Spec Ai ; likewise for A13 and
X13. For 1 ≤ i ≤ m, let Di denote the integral closure of A in the field Fi , and let W i := Spec Di . By
(2-5), we have the following diagram of varieties:

Y

��

Z

��

X13

}} !!

X1

��}}vv

X3

��

W 1 · · ·

**

W m

((

X0

!!

X2

}}

X

Let Xn,i denote the complement of the image of W i (Fqn ) in X(Fqn ). By (2-3) and the Lang–Weil
estimate, for 1≤ i ≤ m,

|Xn,i | ≥ εqdim X >
ε

2
|X(Fqn )| (2-6)

if n is sufficiently large, which implies property (1).
Moreover, if θ : Z→ X is a dominant morphism satisfying condition (a), then for all n≥1, θ(Z(Fqn ))⊃

φ(Y (Fqn )), implying that

∣∣im(X1(Fqn )→ X(Fqn )) \ im(X2(Fqn )→ X(Fqn ))
∣∣

≤
∣∣im(X0(Fqn )→ X(Fqn )) \ im(X2(Fqn )→ X(Fqn ))

∣∣
=
∣∣im(Y (Fqn )→ X(Fqn )) \ im(Z(Fqn )→ X(Fqn ))

∣∣+ o(qn dim X )

=
∣∣φ(Y (Fqn )) \ θ(Z(Fqn ))

∣∣+ o(qn dim X )

= o(qn dim X ).

If K2 6= K , Proposition 2.4 implies that K1 ∩ K2 must be a nontrivial extension of K , so Fi ⊂ K2 for
some i ∈ [1,m]. Thus, for n0 as in (b),

θ(Z(Fqn0 ))⊂ im(X2(Fqn0 )→ X(Fqn0 ))⊂ im(W i (Fqn0 )→ X(Fqn0 )),

contrary to the assumption that θ(Z(Fqn0 ))∩ Xn0,i is nonempty for each i . We conclude that K2 = K,
and the proposition follows. �
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3. Random walks

This section does not claim any original results. Its goal is to present well known ideas in probability
theory in the form needed for the proof of Theorem 1.1.

For any positive integer d and nonnegative integer l, we define Xd,l to be the convolution of l i.i.d.
random variables on Zd , each uniformly distributed over the 2d-element set {±e1, . . . ,±ed}, where
e1, . . . , ed are the standard generators of Zd . When d = 2, we write Xl for short.

The main result in this section is the following.

Proposition 3.1. For all d ≥ 2 and ε > 0, there exist M and N such that for l ≥ N ,

P
[
Xd,l ∈

⋃
i>M

iZd
]
< ε.

We begin with a general result.

Lemma 3.2. Let G be a finite group and S a (not necessarily symmetric) set of generators. Let S1, S2, . . .

be i.i.d. random variables on G with support S. Let Gl = S1 · · · Sl . Suppose that there does not exist a
homomorphism from G to any nontrivial cyclic group C mapping S to a single element. Then the limit as
l→∞ of the distribution of Gl is the uniform distribution on G.

Proof. Consider the Markov chain with state space G in which the probability of a transition from g
to hg is P[Si = h]. Since the uniform distribution is stationary, it suffices to check that this Markov
chain is irreducible and periodic [Levin et al. 2009, Theorem 4.9]. Irreducibility is immediate from the
condition that S generates G. If the Markov chain is periodic, then for some proper subset X ⊂ G and
some integer j , s1 · · · s j ∈ StabG(X) for all si ∈ S. Let G j denote the subgroup of G generated by

{s1 · · · s j | s1, . . . , s j ∈ S}.

As G j ⊂ StabG(X)( G, G j is a proper subgroup of G.
Consider the subgroup G̃ of G × Z/jZ generated by {(s, 1) | s ∈ S}. By definition, the kernel of

projection on the second factor is G j . By Goursat’s Lemma, G̃ is the pullback to G×Z/jZ of the graph
of an isomorphism between G/G j and a quotient of Z/jZ. This identifies G/G j with a nontrivial cyclic
group C , and all elements of S map to the same generator of C , contrary to hypothesis. �

The remaining results in this section are needed for the proof of Proposition 3.1.

Lemma 3.3. Let p > 2 be prime, k a positive integer, and ε > 0. For l sufficiently large,

P[Xl ∈ pkZ2
]<

1+ ε
p2k .

Proof. The image under (mod pk) reduction of our random walk on Z2 is a random walk on G= (Z/pkZ)2

with generating set S = {±1, 0), (0,±1)}. As differences between elements of S generate G, there is no
proper coset of G which contains S. By Lemma 3.2, Xl becomes uniformly distributed (mod pk) in the
limit l→∞, which implies the lemma. �
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Lemma 3.4. Let k be a positive integer, and ε > 0. For l sufficiently large,

P[Xl ∈ 2kZ2
]<

2+ ε
4k .

Proof. If l is odd, the probability that Xl ∈ 2Z2 is zero. We therefore assume l = 2l0, so Xl is the sum of
l0 i.i.d. random variables supported on

{(±2, 0), (0,±2), (±1,±1), (0, 0)}.

Reducing (mod 2k), we obtain an irreducible aperiodic random walk on ker(Z/2kZ)2→ Z/2Z, and the
argument proceeds as before by Lemma 3.2. �

Proposition 3.5. For all ε > 0, there exist M and N such that for l ≥ N ,

P
[
Xl ∈

⋃
i>M

iZ2
]
< ε.

Proof. By [Larsen et al. 2019, Proposition 3.2], if p > 2 is prime,

P[Xl ∈ pZ2
\ {(0, 0)}]<

4
(p+ 1)2

.

We choose s ≥ 2 large enough that ∑
p>s

4
(p+ 1)2

<
ε

2

and choose k such that 3s/4k <ε/2, so that if l is sufficiently large, the total probability that Xl ∈ pkZ2 for
some p ≤ s is less than ε/2. Note that this includes the probability that Xl = (0, 0). Let M be larger than
s
∏

p≤s pk . If i > M , then either i has a prime factor greater than s or a prime factor ≤ s with multiplicity
at least k. The probability that there exists i > M such that G ∈ iZ2 is therefore less than ε. �

Proof of Proposition 3.1. The projection of a random walk on Zd onto the first two coordinates gives a
random walk on Z2 where each of the four possible nonzero steps are equally likely, but a zero step is
also possible in the projection if d > 2. Since the projection of an element of iZd is an element of iZ2,
the conditional probability that Xd,l ∈

⋃
i>M iZd if we condition on at least l0 steps which are nonzero

in the projection is less than ε/2 if l0 is large enough. Given l0 the probability that there are less than
l0 steps nonzero in the projection goes to 0 as l goes to infinity, so it can be taken to be less than ε/2,
implying that P

[
Xd,l ∈

⋃
i>M iZd

]
< ε. �

4. Proof of Theorem 1.1

We now prove the main theorem.

Proof. Fix a simple, simply connected algebraic group G over a finite field Fq . We apply Proposition 2.5
in the case X = G, Y = G, Z = Gd , φ is the k-th power map for some positive integer k, and θ is the
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evaluation map w for some w ∈ Fd for which w = (a1, . . . , ad) and γ (a1, . . . , ad)= k. Given w, there
exist integers b1, . . . , bd for which k = a1b1+ · · ·+ adbd , so that

wG(Fqn )(gb1, . . . , gbd )= gk

for all n and all g ∈ G(Fqn ), so φ(G(Fqn ))⊂ θ(G(Fqn )) for all n ≥ 1.
By the main theorem of [Maróti and Tamburini Bellani 2013], for every finite simple group 0,

there exists a 2-element generating set of 0N whenever N ≤ 2
√
|0|. Let n0 be any positive integer.

Defining N0 := qn0 and applying this to 0 := G(Fqn0 )/Z(G(Fqn0 )), we see that 0N0 is d-generated. As
G := G(Fqn0 )N0 is a perfect central extension of 0N0 , lifting any set of d generators of the latter to the
former, we again obtain a generating set.

We denote by
S = {(gi1, . . . , gi N0) | 1≤ i ≤ d}

a generating set of G and consider an l-step random walk on this group with generating set S. By
Lemma 3.2, for all δ > 0, if l sufficiently large, the probability that the walk ends in any subset T ⊂ G is
at least

(1− δ/2)|T |/|G|.

We define T := T0 ∪ · · · ∪ TbN0/mc−1, where

Ti := G(Fqn0 )
im
× Xn0,1× · · ·× Xn0,m ×G(Fqn0 )

N0−(i+1)m,

and Xn0,i are defined as in Proposition 2.5.
To estimate the probability that a uniformly randomly chosen element of G lies in T , we note that

membership in the Ti are independent conditions. The probability of membership in each Ti is
m∏

j=1

|Xn0, j |

|G(Fqn0 )|
≥
εm

2m

by (2-6). Therefore, the probability of membership in T for a uniformly chosen element of G is at least

1− (1− εm/2m)bN0/mc.

Taking n0 (and therefore N0) sufficiently large, we can guarantee this exceeds 1−δ/2. Thus, the probability
that the random walk ends in T is greater than 1− δ.

For 1 ≤ j ≤ N0, let g j = (g1 j , . . . , gd j ). We have seen that for a random word w of length n, the
probability that (w(g1), . . . , w(gN0)) ∈ T is greater than 1− δ. Membership in T implies membership in
some Ti , which implies

w(gim+1) ∈ Xn0,1, . . . , w(gim+m) ∈ Xn0,m,

and therefore, by Proposition 2.5, if γ (w)= k, then w is geometrically almost uniform for G.
Thus, for each k, the probability is ≤ δ that a random word w of length l satisfies γ (w)= k and that w

is not geometrically almost uniform. By Proposition 3.1, for each fixed ε > 0, there exists M such that if
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l is large enough, then the probability that γ (w) is zero or greater than M for a word of length l is less
than ε. Therefore, the probability that w is not geometrically almost uniform for G is less than ε+Mδ.
Choosing first ε and then δ, we can make this quantity as small as we wish, proving the theorem. �

We remark that the proof also shows that almost all words w are almost uniform for the family of
groups {G(Fqn ) | n ≥ 1}. The proof, together with that of [Larsen et al. 2019, Theorem 2], implies that
w is almost always uniform for all finite simple groups with fixed root system and characteristic. For
instance, almost all w are almost uniform for the Suzuki and Ree groups.

5. Questions

Question 5.1. If G is a simple, simply connected group scheme over Z, does the probability that a random
word is almost uniform for all simple groups of the form G(Fq)/Z(G(Fq)) go to 1?

It seems likely that the methods of this paper will allow one to prove this for all characteristics satisfying
some Chebotarev-type condition, but can one do it for all characteristics simultaneously, or even a density
one set of characteristics? Even more optimistically, one can ask:

Question 5.2. Does the probability that a random word is geometrically almost uniform for all simple,
simply connected algebraic groups over finite fields go to 1?

Given an e-tuple of words w1, . . . , we ∈ Fd , for each G we can define a function Gd
→ Ge, and we

can ask about almost uniformity. In geometric families, this reduces again to the question of the geometric
irreducibility of the generic fiber of the morphism Gd

→ Ge for simple, simply connected algebraic
groups over finite fields. In the case that

Zd/SpanZ(w1, . . . , we)∼= Zd−e,

the function G(Fqn )d → G(Fqn )e is surjective. Geometric irreducibility for such words follows as before.

Question 5.3. For e < d, does the probability that a random e-tuple of elements of Fd of length n is
geometrically almost uniform go to 1 as n→∞?

Question 5.2 has an analogue for simple, simply connected compact Lie groups. As a special case, one
can ask:

Question 5.4. Does the probability that for a random word w of length n

lim
m→∞

∥∥w∗USU(m)d −USU(m)
∥∥= 0

go to 1 as n→∞?

Acknowledgements

I would like to thank Aner Shalev for his useful comments on an earlier version of this paper. I also want
to express my gratitude to the referee for pointing out a number of inaccuracies in an earlier draft of this
paper and suggesting several improvements in the exposition.



2196 Michael Jeffrey Larsen

References

[Borel 1983] A. Borel, “On free subgroups of semisimple groups”, Enseign. Math. (2) 29:1-2 (1983), 151–164. MR Zbl

[EGA IV2 1965] A. Grothendieck, “Eléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de
schémas, II”, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 5–231. MR Zbl

[EGA IV3 1966] A. Grothendieck, “Eléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de
schémas, III”, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 5–255. MR Zbl

[Garion and Shalev 2009] S. Garion and A. Shalev, “Commutator maps, measure preservation, and T -systems”, Trans. Amer.
Math. Soc. 361:9 (2009), 4631–4651. MR Zbl

[Hall 1936] P. Hall, “The Eulerian function of a group”, Q. J. Math. Oxford (2) 7 (1936), 134–151.

[Larsen 2014] M. Larsen, “How random are word maps?”, pp. 141–149 in Thin groups and superstrong approximation (Berkeley,
2012), edited by E. Breuillard and H. Oh, Math. Sci. Res. Inst. Publ. 61, Cambridge Univ. Press, 2014. MR Zbl

[Larsen and Shalev 2012] M. Larsen and A. Shalev, “Fibers of word maps and some applications”, J. Algebra 354 (2012), 36–48.
MR Zbl

[Larsen and Shalev 2016] M. Larsen and A. Shalev, “On the distribution of values of certain word maps”, Trans. Amer. Math.
Soc. 368:3 (2016), 1647–1661. MR Zbl

[Larsen et al. 2019] M. Larsen, A. Shalev, and P. H. Tiep, “Probabilistic Waring problems for finite simple groups”, Ann. of
Math. (2) 190:2 (2019), 561–608. MR Zbl

[Levin et al. 2009] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times, Amer. Math. Soc., Providence, RI,
2009. MR Zbl

[Liebeck and Shalev 2005] M. W. Liebeck and A. Shalev, “Fuchsian groups, finite simple groups and representation varieties”,
Invent. Math. 159:2 (2005), 317–367. MR Zbl

[Lubotzky and Meiri 2012] A. Lubotzky and C. Meiri, “Sieve methods in group theory, I: Powers in linear groups”, J. Amer.
Math. Soc. 25:4 (2012), 1119–1148. MR Zbl

[Maróti and Tamburini Bellani 2013] A. Maróti and M. C. Tamburini Bellani, “A solution to a problem of Wiegold”, Comm.
Algebra 41:1 (2013), 34–49. MR Zbl

[Parzanchevski and Schul 2014] O. Parzanchevski and G. Schul, “On the Fourier expansion of word maps”, Bull. Lond. Math.
Soc. 46:1 (2014), 91–102. MR Zbl

[Pouyanne 2002] N. Pouyanne, “On the number of permutations admitting an m-th root”, Electron. J. Combin. 9:1 (2002), art.
id. 3. MR Zbl

[Serre 1965] J.-P. Serre, “Zeta and L functions”, pp. 82–92 in Arithmetical algebraic geometry (West Lafayette, IN, 1963),
edited by O. F. G. Schilling, Harper & Row, New York, 1965. MR Zbl

[Shalev 2013] A. Shalev, “Some results and problems in the theory of word maps”, pp. 611–649 in Erdös centennial, edited by
L. Lovász et al., Bolyai Soc. Math. Stud. 25, János Bolyai Math. Soc., Budapest, 2013. MR Zbl

[Tao 2012] T. Tao, “The Lang–Weil bound”, blog post, 2012, Available at https://tinyurl.com/taolangweil.

Communicated by Ben Green
Received 2019-10-16 Revised 2020-02-17 Accepted 2020-03-25

mjlarsen@indiana.edu Department of Mathematics, Indiana University, Rawles Hall,
Bloomington, IN, United States

mathematical sciences publishers msp

http://msp.org/idx/mr/702738
http://msp.org/idx/zbl/0533.22009
http://www.numdam.org/numdam-bin/item?id=PMIHES_1965__24__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1965__24__5_0
http://msp.org/idx/mr/0199181
http://msp.org/idx/zbl/0135.39701
http://www.numdam.org/numdam-bin/item?id=PMIHES_1966__28__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1966__28__5_0
http://msp.org/idx/mr/0217086
http://msp.org/idx/zbl/0144.19904
http://dx.doi.org/10.1090/S0002-9947-09-04575-9
http://msp.org/idx/mr/2506422
http://msp.org/idx/zbl/1182.20015
http://library.msri.org/books/Book61/files/40lars.pdf
http://msp.org/idx/mr/3220888
http://msp.org/idx/zbl/1341.20030
http://dx.doi.org/10.1016/j.jalgebra.2011.10.040
http://msp.org/idx/mr/2879221
http://msp.org/idx/zbl/1258.20011
http://dx.doi.org/10.1090/tran/6389
http://msp.org/idx/mr/3449221
http://msp.org/idx/zbl/1347.20081
http://dx.doi.org/10.4007/annals.2019.190.2.3
http://msp.org/idx/mr/3997129
http://msp.org/idx/zbl/07107182
https://bookstore.ams.org/mbk-58/
http://msp.org/idx/mr/2466937
http://msp.org/idx/zbl/1160.60001
http://dx.doi.org/10.1007/s00222-004-0390-3
http://msp.org/idx/mr/2116277
http://msp.org/idx/zbl/1134.20059
http://dx.doi.org/10.1090/S0894-0347-2012-00736-X
http://msp.org/idx/mr/2947947
http://msp.org/idx/zbl/1283.20075
http://dx.doi.org/10.1080/00927872.2011.618859
http://msp.org/idx/mr/3010520
http://msp.org/idx/zbl/1287.20020
http://dx.doi.org/10.1112/blms/bdt068
http://msp.org/idx/mr/3161765
http://msp.org/idx/zbl/1322.20015
http://www.combinatorics.org/Volume_9/Abstracts/v9i1r3.html
http://msp.org/idx/mr/1887084
http://msp.org/idx/zbl/0990.05003
http://msp.org/idx/mr/0194396
http://msp.org/idx/zbl/0171.19602
http://dx.doi.org/10.1007/978-3-642-39286-3_22
http://msp.org/idx/mr/3203613
http://msp.org/idx/zbl/1321.20032
https://tinyurl.com/taolangweil
mailto:mjlarsen@indiana.edu
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 14:8 (2020)

https://doi.org/10.2140/ant.2020.14.2197

On a conjecture of Yui and Zagier
Yingkun Li and Tonghai Yang

We prove the conjecture of Yui and Zagier concerning the factorization of the resultants of minimal
polynomials of Weber class invariants. The novelty of our approach is to systematically express differences
of certain Weber functions as products of Borcherds products.

1. Introduction

In his book, Weber [1908] proved the following well-known theorem in the theory of complex multiplica-
tion. For a fundamental discriminant d < 0, let Od =Z[θ ] be the ring of integers of an imaginary quadratic
field Kd =Q(

√
d). Then the CM value of the famous j-invariant j (τ ) at τ = θ is an algebraic integer

generating the Hilbert class field of Kd . The number j (θ) is called singular moduli and plays an important
role in the arithmetic of CM elliptic curves [Gross and Zagier 1985]. Weber also considered some special
modular functions h of higher levels and observed that some of their CM values h(θ) still generate the
Hilbert class field of Kd (for some choices of θ ), not the larger class fields as expected for general h.

These amusing observations were later studied by various authors; see, for example, [Birch 1969; Yui
and Zagier 1997; Gee 1999]. In particular, Gee gave a systematic proof of these facts using Shimura’s
reciprocity law. One of them concerns with the CM values of the three classical Weber functions of
level 48, which are defined by the following quotients of η-functions:

f(τ ) := ζ−1
48
η
(
τ+1

2

)
η(τ)

= q−
1
48

∞∏
n=1

(1+ qn− 1
2 ),

f1(τ ) :=
η
(
τ
2

)
η(τ)

= q−
1

48

∞∏
n=1

(1− qn− 1
2 ), (1-1)

f2(τ ) :=
√

2
η(2τ)
η(τ )

=
√

2q
1
24

∞∏
n=1

(1+ qn).

Together, they form a 3-dimensional, vector-valued modular function for SL2(Z); see (2-4). In fact, the
same holds for integral powers of these modular functions; see [Milas 2007, p. 50]. Furthermore, f2 is a
modular function for 00(2) with character χ of order 24:

f2(γ τ)= χ(γ )f2(τ ), γ ∈ 00(2). (1-2)
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The kernel of χ , denoted by 0χ ⊂ 00(2), is a congruence subgroup containing 0(48); see (2-8). Yui and
Zagier [1997] studied the CM values of these modular functions. The starting point of their work is the
following result.

Proposition 1.1 [Yui and Zagier 1997, Proposition]. Let d < 0 be a discriminant satisfying

d ≡ 1 mod 8 and 3 - d. (1-3)

Denote εd := (−1)(d−1)/8. For each proper ideal a=
[
a, 1

2(−b+
√

d)
]

of the order Od := Z
[ 1

2(1+
√

d)
]

with a > 0, let τa = 1
2a (−b+

√
d) be the associated CM point and

f (a)=


ζ

b(a−c−ac2)
48 f(τa) if 2|(a, c),

εdζ
b(a−c−ac2)
48 f1(τa) if 2|a, 2 - c,

εdζ
b(a−c+a2c)
48 f2(τa) if 2 - a, 2|c.

(1-4)

Then f (a) is an algebraic integer depending only on the class of a in the class group Cl(d) of Od , i.e., it is
a class invariant. Moreover, Hd := Kd( f (a))= Kd( j (τa)) is the ring class field of Kd corresponding Od .

Remark 1.2. The class invariant in [Yui and Zagier 1997] was defined using binary quadratic forms. It
is a standard procedure to go between these and ideals in quadratic fields; see, e.g., [Cox 1989].

Remark 1.3. The sign εd in the definition of f (a) ensures that the class invariants behave nicely under
the action of the Galois group. In particular when d < 0 is fundamental,

σa2( f (a1))= f (a1a
−1
2 ) (1-5)

for any proper Od-ideals a1, a2, where σa ∈ Gal(Hd/Kd) is associated to the ideal class [a] ∈ Cl(d) by
Artin’s map. This was conjectured in [Yui and Zagier 1997] and proved in [Gee 1999, Proposition 22].

This class invariant is much better than the singular moduli in the sense that its minimal polynomial
(class polynomial) has much smaller coefficients. This gives a generator of the Hilbert class field with
small height, which is crucial in the speed of elliptic curve primality test [Atkin and Morain 1993]. For
example, according to [Yui and Zagier 1997], the minimal polynomial of j

( 1
2(1+

√
−55)

)
is

x4
+ 335329 · 134219x3

− 375323 · 101 · 32987x2
+ 395711283 · 101 · 110641x − 31256113293413,

while the minimal polynomial of f (O−55) is simply

x4
+ x3
− 2x − 1.

Yui and Zagier [1997] made conjectures about the prime factorizations of the discriminants and resultants
of such polynomials. The goal of this paper is to prove the conjecture about the factorizations of the
resultants, which also clears the path to prove the conjecture about the discriminant; see Remark 1.13.
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For two co-prime, fundamental discriminants d1 and d2, Gross and Zagier [1985] proved a beautiful
factorization formula for the resultant of the class polynomials of j

( 1
2(d1+

√
d1)
)

and j
( 1

2(d2+
√

d2)
)
,

which is the norm of the difference j
( 1

2(d1+
√

d1)
)
− j

( 1
2(d2+

√
d2)
)
. When

( d1d2
p

)
6= −1, set

ε(p)=


(

d1

p

)
if p - d1,(

d2

p

)
if p - d2.

Define in general ε(n) =
∏

p|n ε(p)
ordp(n), where ordp(n) is the power of p dividing n. For a positive

integer m, if ε(m)=−1, define
F(m)=

∏
nn′=m
n,n′>0

nε(n
′)
∈ N, (1-6)

which is always a prime power. If ε(m)= 1 or is not defined, define F(m)= 1. The result of Gross and
Zagier can be stated as follows.

Theorem 1.4 [Gross and Zagier 1985, Theorem 1.3]. Let d1, d2 < 0 be co-prime, fundamental discrimi-
nants, and w j = |O×d j

|. In the notations above, we have

J (d1, d2)
2
:=

∏
[a j ]∈Cl(d j ), j=1,2

| j (τa1)− j (τa2)|
8/(w1w2) =

∏
m∈N,a∈Z

a2
+4m=d1d2

F(m). (1-7)

Inspired by this beautiful formula, Yui and Zagier [1997] gave a conjectural formula of the resultant of
the minimal polynomials of the Weber class invariants defined above and provided numerical evidence.
This conjecture was originally given using two tables with totally 48 entries (see [Yui and Zagier 1997,
p. 1653]), but can be simplified and formulated in the following elegant way (see, e.g., (14?) in [Yui and
Zagier 1997] for d1 ≡ d2 ≡ 1 mod 24).

Conjecture 1.5 [Yui and Zagier 1997, (14?)]. Let d1, d2 be co-prime, fundamental discriminants satisfy-
ing (1-3) and s | 24. Define the constant

κ3(s) :=


1
2

if
(

d1

3

)
=

(
d2

3

)
=−1 and 3 | s,

1 otherwise,
(1-8)

which only depends on d1, d2 and s. Then

fs(d1, d2) :=
∏

[a j ]∈Cl(d j ), j=1,2

| f (a1)
24/s
− f (a2)

24/s
| =

∏
m,a∈N,r |s

a2
+16mr2

=d1d2
m≡19(d1+d2−1) mod s/r

F(m)κ3(s). (1-9)

Remark 1.6. Because of the relation j (τ )= (f24
2 (τ )− 16)3/f24

2 (τ ), we know that fs(d1, d2) | J (d1, d2)

for any co-prime, fundamental discriminants d1, d2 satisfying (1-3). Since the invariants are algebraic
integers, it is also clear that fs′(d1, d2) | fs(d1, d2) for any s | s ′ | 24. The conjecture above also reflects
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such divisibilities since F(m/r2) | F(m) for all m, r ∈ N; see, e.g., the explicit formula of F(m) on [Yui
and Zagier 1997, p. 1651].

When s = 1, it was suggested in [Yui and Zagier 1997] that one can try to prove this conjecture by
adapting the analytic approach in [Gross and Zagier 1985] with SL2(Z) replaced by 00(2). This was later
carried out in [Roskam 2003]. Yang and Yin [2019] gave another analytic proof of the conjecture for
s = 1, where the new ingredients are Borcherds’ regularized theta lift [1998] and the big CM formula
in [Bruinier et al. 2012]. Although the spirits of the approaches are the same, the one in [Yang and Yin
2019] is conceptually easier to understand and opens the door to attack the conjecture for s > 1. In this
paper, we complete the proof of the conjecture for all s | 24.

Theorem 1.7. Conjecture 1.5 is true for every s | 24.

For s = 1, the proof of Theorem 1.7 in [Yang and Yin 2019] consists of three steps:

(1) Relate f2(z1)
24
− f2(z2))

24 to a Borcherds product on the Shimura variety associated to the rational
quadratic space (M2(Q), det).1

(2) View a pair of CM points (τ1, τ2) as a big CM point on this Shimura variety in the sense of [Bruinier
et al. 2012]. Apply the big CM value formula [Bruinier et al. 2012, Theorem 5.2] and express the
CM value in terms of Fourier coefficients of incoherent Eisenstein series.

(3) Compute the Fourier coefficients in Step (2) and obtain the formula. This is a local calculation.

In the first step for s = 1, one can find a vector-valued modular function F̃1 and identify f2(z1)
24
−f2(z2)

24

with the Borcherds product 9(z1, z2, F̃1) associated to F̃1. Note f2(z)24
= 212(1(2z)/1(z)) is a Haupt-

modul of 00(2), and the Borcherds product 9(z1, z2, F̃1) is well-known in the literature on VOA and
moonshine (see, e.g., [Borcherds 1992; Scheithauer 2008]). In the second step, one suitably identifies the
Galois orbit of CM points with the toric orbit of big CM points, and apply Theorem 5.2 in [Bruinier et al.
2012]. This reduces the proof to the third step, where the local calculations have been completed in many
special cases (see [Yang 2005; Howard and Yang 2012, Section 4.6; Kudla and Yang 2010]) and the most
general result can be found in Appendix A of [Yang et al. 2019].

To execute this strategy for s > 1, we first need to relate f2(z1)
24/s
− f2(z2)

24/s to Borcherds product.
Since the function f2(z)24/s is invariant with respect to 0χ,s := 〈0χ , T s

〉 ⊃ 0(2s), one would hope to find
the analog of F̃1 in M !(ωs), with ωs the Weil representation of SL2(Z) on the finite quadratic module
associated to the lattice Ls (see (3-1)), which is the same as the lattice used in [Yang and Yin 2019] to
produce 9(z1, z2, F̃1), but with the quadratic form scaled by s. We have computationally decomposed
the representation ωs and analyzed the space of vector-valued modular functions. To our surprise, there is
no modular function whose Borcherds product equals to (f2(z1)

24/s
− f2(z2)

24/s)s! Our new idea then is
to express (f2(z1)

24/s
− f2(z2)

24/s)s as a product of Borcherds products, which works out beautifully.

1The Shimura variety is just the product of two modular curves in this case.
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Theorem 1.8 (Theorems 4.4 and 4.5). For every d | 24, there is a vector-valued modular function
F̃d ∈ M !(ωd) with associated Borcherds product 9d(z1, z2) :=9(z1, z2, F̃d) such that

(f2(z1)
24/s
− (εf2(z2))

24/s)s =
∏
d|s

9d(z1, z2)
ε

24
d
, (1-10)

for every s | 24 and any ε =±1.

Remark 1.9. The index r | s in the product on the right-hand side of (1-9) is not directly related to the
index d | s in the product above! Instead, it comes out of local calculation in Section 6.

Remark 1.10. Each Borcherds product9d(z1, z2) comes from a different quadratic space depending on d,
and is a meromorphic function on the Shimura variety X2

d , which admits a natural covering map from X2
s

when d | s (see Section 4). One can then pull back 9d to a function on X2
s . Notice that this decomposes the

divisor of the left-hand side, which is a Heegner divisor on X2
s , into a sum of pullbacks of Heegner divisors

on X2
d with d | s. When s > 1, the product

∏
d|s 9d(z1, z2) is itself not a single Borcherds product on X2

s .

Remark 1.11. Theorem 1.8 naturally leads one to speculate a generalization of the converse theorem in
[Bruinier 2014], namely every principal Heegner divisor on an orthogonal Shimura variety associated to
a lattice of signature (n, 2) with Witt rank greater than or equal to 2 should be the divisor of a product of
Borcherds products.

To arrive at this idea, we took s = 2 and started from the simple observation that

(f2(z1)
12
− f2(z2)

12)2 = (f2(z1)
24
− f2(z2)

24) ·
f2(z1)

12
− f2(z2)

12

f2(z1)12+ f2(z2)12 . (1-11)

We already know that the first factor on the right-hand side is a Borcherds product. If we can realize the
second factor as a Borcherds product, then the left-hand side would be a product of Borcherds products
(with different quadratic forms). To do that, we can read off the divisor of the second factor, and deduce
the principal part of the input to Borcherds’ lift. In this case, it is of the form q−1/2u2 for a suitable
vector u2 in a 64 dimensional vector space C[A2], where SL2(Z) acts via the Weil representation ω2

(see Section 3A for details). Then we find the irreducible representation in ω2 containing u2, which is
3-dimensional, and hope to find the suitable vector-valued modular function F̃2 with this principal part.
Miraculously, this function exists and its three components are the (−24/2)-th power of the three Weber
functions f

√
2
,

f1√
2
,

f2√
2
.

The observation (1-11) generalizes to any s | 24 by substituting X = (ε f2(z2)/f2(z1))
24/s into the

following simple identity in Q(X)

(1− X)s =
∏
d|s

∏
b|d

(1− X s/b)b·µ(d/b), (1-12)

where µ is the Möbius function, and multiplying by f2(z1)
24 on both sides. Note that the identity in (1-12)

holds for any s ∈ N (see Lemma 4.3). Then the miracle continues to happen, and we find a family of
vectors {ud : d | 24} (see (3-12)) and vector-valued modular functions F̃d= q−1/dud+O(q1/(2d)) producing
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the Borcherds lifts 9d (see (2-4) and Remark 3.7). For d > 1, the vector ud satisfies nice invariance
properties (see Proposition 3.5) and is of independent interest, whereas the components of F̃d are simply
the (−24/d)-th power of the three Weber functions f

√
2
,

f1√
2
,

f2√
2
!

Remark 1.12. The ε=±1 in Theorem 1.8 is there for a good reason. To prove the Yui–Zagier conjecture,
we need to choose ε = εd1εd2 = (−1)(d1+d2−2)/8 (see Proposition 5.5 and its proof). It is also amusing to
see that the same ε appears when we calculate the Fourier coefficients of derivatives of certain Eisenstein
series (see Theorem 6.2).

To complete the proof, we can now apply the second step to each Borcherds product, obtain a big CM
value formula, and add them together. Note that the identification of the Galois orbit of (τa1, τa2) used in
defining fs(d1, d2) with the big CM cycle in [Bruinier et al. 2012] depends on the input F̃d in Step (1).
Therefore, it is not a priori clear that this will work out. We prove this in Proposition 5.5, which crucially
depends on Lemma 5.2. This unexpected result was first observed with some computer calculations, and
has been reduced to a computation with finite groups in GL2(Z/3Z) and GL2(Z/16Z). Finally, we apply
the local calculations in [Yang et al. 2019] to finish off Step (3).

Remark 1.13. With Theorem 1.8, one can now replace the big CM value formula in [Bruinier et al.
2012] with the small CM value formula in [Schofer 2009] to prove the conjectural factorization of the
discriminant of the minimal polynomials of the Weber invariants in [Yui and Zagier 1997]. We plan to
carry these out as a sequel to this work [Li and Yang ≥ 2021].

This paper is organized as follows. After setting up notation and defining basic terms in Section 2,
we study in Section 3 the action of certain subgroup H ′d ⊂ SO(Ld)/0Ld on the finite quadratic module
Ad := L∨d /Ld and use it to decompose the Weil representation ωd of SL2(Z) on C[Ad]

H ′d . The goal
and main result is to construct certain element ud ∈ C[Ad]

H ′d satisfying (3-13). This vector generates
a 3-dimensional, H ′d-invariant subrepresentation of ωd, and will be crucial in finding the input F̃d that
produces the Borcherds product 9d. In Section 4, we view product of two modular curves as a Shimura
variety of orthogonal type (2, 2) associated to Ld, construct the Borcherds product 9d, and prove
Theorem 1.8. In Section 5, we view the pair (τa1, τa2) as a big CM point on the product of two modular
curves and study its Galois orbit. The upshot is Proposition 5.5, which relates the left-hand side of
Conjecture 1.5 to the big CM value of Borcherds products. By the second step of strategy, Conjecture 1.5
is reduced to local calculation of certain Eisenstein series and its derivative, which we carry out in
Section 6B using the results in the appendix of [Yang et al. 2019]. Finally in the Appendix, we explicitly
write down the cosets in the finite quadratic module used in constructing the Borcherds products, and
include a numerical example for d1 =−31 and d2 =−127.

2. Preliminaries

2A. Weil representation. Let (L , Q) be an even integral lattice of signature (2, 2) and V := L ⊗Q the
rational quadratic space. Denote L ′ the dual lattice and AL := L ′/L the finite quadratic module. The
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group SL2(Z) acts on UL := C[AL ] via the Weil representation ωL given by

ωL(T )eh = e(−Q(h))eh, ωL(S)eh =
1

√
|AL |

∑
µ∈AL

e((µ, h))eµ, (2-1)

where {eµ : µ ∈AL} is the standard basis of UL and

T :=
(

1 1
0 1

)
, S :=

(
0 −1
1 0

)
. (2-2)

Note that this differs from the convention of Borcherds by complex conjugation.
Let S(L)=

⊕
µ∈L ′/L φµ ⊂ S(V ⊗A f ) with L̂ = L ⊗ Ẑ and

φµ = Char(µ+ L̂).

Under the isomorphism UL → S(L) that maps eµ to φµ, the representation ωL becomes the restriction of
the Weil representation ω=ωV,ψ (with the usual idelic character ψ of Q) from SL2(A) to (the diagonally
embedded) SL2(Z). We will sometimes switch the representation spaces between UL and S(L). Note
that S(L1⊕ L2)= S(L1)⊗ S(L2) for any two sublattices L1, L2 ⊂ L orthogonal to each other.

2B. Weber functions. For any finite-dimensional, C-representation ρ : 0→ V of a finite index subgroup
0 ⊂ SL2(Z), denote M !(ρ, 0) the space of weakly holomorphic, vector-valued modular function with
respect to ρ. We drop ρ (resp. 0) from the notation if ρ is trivial (resp. 0 = SL2(Z)). For example, the
three Weber functions defined by (1-1) form a vector-valued modular functionf2

f1
f

 ∈ M !(%24).

Here, for a positive integer d and j ∈ (Z/2dZ)×, the representation %d, j : SL2(Z)→GL3(C) is defined by

%d, j (T ) :=

ζ
− j
d 0 0
0 0 ζ

j
2d

0 ζ
j

2d 0

, %d, j (S) :=

0 1 0
1 0 0
0 0 1

. (2-3)

We simply write %d for %d,1. Finally, ρ̄(g) := ρ(g). Later, the modular function

Fd(τ ) :=
√

2
24/d

f
−24/d
2 (τ )

f
−24/d
1 (τ )

f−24/d(τ )

 ∈ M !(%d), d | 24 (2-4)

will play an important role for us as the representation %d defined above is a subrepresentation of certain
Weil representation that we will consider.

Remark 2.1. For convenience later, we will denote

√
2

24/d
f
−24/d
2 (τ )=

(
η(τ)

η(2τ)

)24/d

=

∑
l≥−1,l≡−1 mod d

cd(l)ql/d
∈ q−1/dZ[[q]]. (2-5)
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Clearly cd(−1)= 1 for every d | 24. We will also denote c−1(l) the l-th Fourier coefficient of

212f−24
1 (2τ)= f24

2 (τ )= 2121(2τ)
1(τ)

.

Let χ :00(2)→C× be the character defined in (1-2). On the generators T, S2 and TB of 00(2), where

B := ST 2S−1
=

(
1 0
−2 1

)
, (2-6)

the character χ is explicitly given by

χ(T )= ζ24, χ(S2)= 1, and χ(TB)= 1. (2-7)

The kernel of χ is a normal subgroup of 00(2) defined by

0χ := 〈00(2)der, T 24, S2, TB〉 ⊂ 00(2), (2-8)

where 00(2)der is the derived subgroup of 00(2). We remark that 0χ is the group 80
0(24) in [Yang and

Yin 2016]. Furthermore, it contains the congruence subgroup 00(48)∩0(24) and 00(2)/0χ ∼= Z/24.
More generally, for any divisor d | 24, denote the kernel of χ24/d by

0χ,d := 〈0χ , T d
〉 ⊂ 00(2). (2-9)

It has index d in 00(2) and contains 0χ = 0χ,24, as well as the congruence subgroup

0d := 01(2d)∩0(d). (2-10)

In particular, 00(2)= 0χ,1. More generally for d | d′ | 24, we have 0d ⊃ 0d′ . For future convenience, we
also write dp for the p-primary part of d. Then clearly d= d2d3.

3. Decomposition of Weil representations

3A. Lattice. For a divisor d | 24, consider the quadratic lattice

Ld =

{
λ=

(
λ00 λ01

2λ10 λ11

)
: λi j ∈ Z

}
, Qd(λ) := d det(λ). (3-1)

The dual lattice is given by

L ′d =
{
λ=

1
d

(
λ00 λ01/2
λ10 λ11

)
: λi j ∈ Z

}
. (3-2)

The finite quadratic module L ′d/Ld is then isomorphic to

Ad :=
{
h = [h0, h1, h2, h3] : h0, h3 ∈ Z/dZ, h1, h2 ∈ Z/(2dZ)

}
, (3-3)

where the isomorphism is fixed throughout and given by

L ′d/Ld ∼=Ad,
1
d

(
λ00 λ01/2
λ10 λ11

)
+ Ld 7→ [λ00, λ01, λ10, λ11]. (3-4)
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Via this isomorphism, the quadratic form Qd on Ad becomes

Qd(h) :=
2h0h3− h1h2

2d
∈

1
2d

Z/Z (3-5)

for h = [h0, h1, h2, h3] ∈ Ad. We denote Ud := C[Ad], which is acted on by SL2(Z) via the Weil
representation ωd := ωLd .

Now, we can map Ld into L ′d/Ld ∼=Ad via

κd : Ld→ L ′d/Ld, λ 7→
1
d
λ+ Ld, (3-6)

which is compatible with the left and right action of 00(2), i.e.,

g1 · κd(λ · g2)= κd(g1 · λ · g2)= κd(g1 · λ) · g2 (3-7)

for all g1, g2 ∈ 00(2) and λ ∈ Ld. By viewing 0χ,1 = 00(2) as a subset of Ld, we can send it to a subset
in Ad. If we denote

A0
d := {[h0, h1, h2, h3] ∈Ad : h2 = 0 ∈ Z/(2dZ)}, (3-8)

it will be helpful to know the parts of 00(2) that land in A0
d under κd when we simplify the expression of

Borcherds products. For this we need the following lemma, whose proof will follow from combining the
corresponding local results in Lemmas 3.8 and 3.12.

Lemma 3.1. For any j ∈ Z/dZ, we have (viewing 00(2)⊂ Ld)

κd(T j0χ,d)∩A0
d = {d

−1
3 [r, r(2 j + (r2

− 1)), 0, r ] : r ∈ (Z/dZ)×}.

Remark 3.2. Note that r3
− r mod 2d is well-defined for r ∈ (Z/dZ)× when d | 24. Furthermore

r3
− r ≡

{
d mod 2d if 8 | d and r ≡±3 mod 8,
0 mod 2d otherwise.

Let GL2(Q)×GL2(Q) acts on Vd = Ld⊗Q= M2(Q) via

(g1, g2) · X = g1 Xg−1
2 .

This action gives an identification of GSpin(V ) with H = {(g1, g2) : det g1 = det g2}, and a commutative
diagram of exact sequences:

1 // {±1} //

��

SL2×SL2 //

��

SO(V ) //

��

1

1 // Gm // H // SO(V ) // 1.

For the particular lattice Ld, we have

SO(Ld)= 00(2)×00(2)= 00(2)×00(2)/{±(I2, I2)}, (3-9)
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As {±(I2, I2)} does not matter in this paper, we will simply identify SO(Ld) with 00(2)× 00(2) and
drop the overline. Under this identification, we have 0Ld = 0d×0d, where 0d is defined in (2-10). In
particular, we are interested in the action of the subgroup of SO(Ld) generated by the images of (T, T ) and
0χ,d×0χ,d. We let H ′d be its image in Hd := Nd×Nd, where Nd :=00(2)/0d. Let N ′d :=0χ,d/0d. Then

N ′d× N ′d ⊂ H ′d ⊂ Hd = Nd× Nd. (3-10)

Since 00(2)/0χ,d ∼= Z/dZ, the quotient group Hd/H ′d is isomorphic to Z/dZ. For prime p, let Nd,p

denote the quotient of the subgroups generated respectively by 00(2) and 0d in SL2(Zp). Similarly, we
can also define K p for K ∈ {Nd, N ′d, Hd, H ′d}. Since d is only divisible by 2 and 3 in our case, the Chinese
remainder theorem implies

Hd ∼= Hd,2× Hd,3, H ′d ∼= H ′d,2× H ′d,3, N ′d,p× N ′d,p ⊂ H ′d,p ⊂ Hd,p = Nd,p× Nd,p.

For the same reason, we have the decomposition

Ad ∼=Ad,2×Ad,3, Ad,p :=Ad⊗Z Zp. (3-11)

Using this isomorphism, we can write ωd ∼= ωd,2⊗ωd,3 and Ud ∼= Ud,2⊗Ud,3, where ωd,p is the Weil
representation of SL2(Zp) acting on Ud,p associated to Ad,p.

Now, we introduce the vector ud ∈Ud.

ud := ud,2⊗ ud,3 =
∑

j∈Z/dZ

ad( j)
( ∑

h∈κd(T j0χ,d)

eh

)
,

ad( j) :=
( ∑

s∈(Z/dZ)×

ζ
s j
d

)
= µ

(
d

(d, j)

)
ϕ(d)

ϕ(d/(d, j))
∈ Z,

(3-12)

where ud,p = ud,p(1, . . . , 1) ∈ U ′d,p ⊂ Ud,p is the vector defined in (3-23) and (3-33), µ and ϕ are the
Möbius and Euler ϕ-function respectively. Note that ad( j) is defined for any d ∈ N and j ∈ Z/dZ.

Remark 3.3. A natural question is where the element ud,p comes from and what it is good for? In the
next two subsections, we will give some ideas where they come from. For now, we are satisfied to give
its nice properties as below. See Proposition 3.6 below.

Lemma 3.4. For any d, r | 24, the vector ud ∈ Z[Ad] is invariant with respect to 0χ,r × 0χ,r if and
only if d | r .

Proof. If d | r , then 0χ,r ⊂ 0χ,d and we just need to prove the case when r = d. Let (g1, g2) ∈ SO(Ld)

with g j ∈ 0χ,d. Then

(g1, g2) · ud =
∑

j∈Z/dZ

ad( j)
( ∑

h∈κd(g1T j0χ,dg−1
2 )

eh

)
= ud,
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where we have used the fact that 0χ,d is normal in 00(2) with coset representatives {T j
: j ∈Z/dZ}. Simi-

larly, (T, T )·ud= ud. Thus ud is 0χ,d×0χ,d-invariant. If d - r , then (T r , 1)∈ (0χ,r×0χ,r )\(0χ,d×0χ,d).
It is easy to see that

(T r , 1) · ud =
∑

j∈Z/dZ

ad( j − r)
( ∑

h∈κd(T j N ′d)

eh

)
6= ud

since
ad(−r)
ϕ(d)

=
µ(d/(d, r))
ϕ(d/(d, r))

6= 1=
ad(0)
ϕ(d)

when d - r . �

Proposition 3.5. For any d | 24, we have

ωd(g)ud = χ(g)−24/dud (3-13)

for all g ∈ 00(2).

Proof. This follows directly from the local results 3.10 and 3.16 as

ωd(g)ud = (ωd,2(g)ud,2)⊗ (ωd,3(g)ud,3)= χ(g)−24(d2/d3+d3/d2)ud,2⊗ ud,3 = χ(g)−24/dud.

for all g ∈ 00(2). Here we have used 1
d −

( d2
d3
+

d3
d2

)
∈ Z when d | 24. �

Now, define two further vectors

vd := ωd(S)ud, wd := ζ
−1
2d ωd(T )vd. (3-14)

Note that ud, vd and wd are linearly independent for all d | 24. The key to the input of Borcherds lifting is
then constructed using these vectors in the following result.

Proposition 3.6. The representations %d defined in (2-3) is a subrepresentation of the Weil representation
ωd via the map

ιd : C
3
→U

H ′d
d ⊂Ud,

(a
b
c

)
7→ aud+ bvd+ cwd. (3-15)

Let Fd be the modular function defined in (2-4). The function ιd ◦ Fd is then in M !(ωd) and invariant with
respect to the orthogonal group H ′d ⊂ SO(Ld)/0Ld . Furthermore, it has the principal part

ιd ◦ Fd(τ )= q−1/dud+

{
O(q1/2) if d> 1,

O(1) if d= 1,
(3-16)

Remark 3.7. When d= 1, the function ιd◦Fd differs from the input in [Yang and Yin 2019] by a constant
vector. To simplify the notation, we will write

F̃d := ιd ◦ Fd+

{
24(e(0,0)+ e(1/2,0)) if d= 1,

0 if d> 1,
(3-17)

which is an element in M !(ωd) invariant with respect to H ′d.
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Proof. It suffices to check on the generators T, S of SL2(Z). From the definition and Proposition 3.5,
it is clear that

ωd(T )ud = ζ
−1
d ud, ωd(T )vd = ζ2dwd,

ωd(T )wd = ζ
−1
2d ωd(T 2S)ud = ζ

−1
2d ωd(SB)ud = ζ2dωd(S)ud = ζ2dvd,

ωd(S)ud = vd, ωd(S)vd = ud,

ωd(S)wd = ζ
−1
2d ωd(STS)ud = ζ

−1
2d ωd((ST )2 BS2)ud = ζ

−1
2d ωd(S(TS)3)ud = ζ

−1
2d ωd(S)ud =wd. �

In the following two subsections, we work at the 2-part and 3-part separately and construct ud,p for
p = 2, 3. This will shed some light on where ud comes from.

3B. The case p = 3. There are two possibilities for Ad,3. If 3 - d, then Ad,3 is trivial. If 3 | d, we can
identify the groups Ad,3 and A := M2(F3) via

κd,3 : M2(F3)∼=Ad,3,

(
h0 −h1

h2 h3

)
mod 3 7→ h = [h0, h1, h2, h3]⊗Z3, (3-18)

which is just the map κd in (3-6) tensored with Z3. This is an isomorphism of finite quadratic modules
if we equip M2(F3) with the quadratic form Qd,3 := (3d2)

−1 det, which has value in 1
3 Z/Z. Then

H3 ∼= SL2(F3)×SL2(F3), H ′3 = 〈N
′

3× N ′3, (T, T )〉, where

N ′d,3 :=
{( 1

0
0
1

)
,
(
−1
−1
−1
1

)
,
( 0
−1

1
0

)
,
(
−1
1

1
1

)
,
(
−1
0

0
−1

)
,
( 1

1
1
−1

)
,
( 0

1
−1
0

)
,
( 1
−1
−1
−1

)}
=
〈( 0
−1

1
0

)
,
(1

1
1
−1

)〉
⊂ SL2(F3)⊂ M2(F3)

(3-19)

is isomorphic to the group of quaternions. Another way to characterize N ′d,3 is

N ′d,3 =
{
±
( 1

0
0
1

)}
∪
{
g ∈ SL2(F3) : Tr(g)= 0

}
. (3-20)

From this, it is easy to check the following local analog of Lemma 3.1 at 3.

Lemma 3.8. For any j ∈ Z/d3Z, we have

κd,3(T j N ′d,3)∩A
0
d,3 = {±[1,− j, 0, 1]}.

Denote 03 ∈ A the zero matrix. Then Hd,3 acts on the set A\03, and decomposes it into 3 orbits
according to the norm of the elements. The subgroup H ′d,3⊂ Hd,3 acts on A\03 similarly and decomposes
the three orbits into 5 orbits. We denote the sum of elements in each orbit by wi for i = 0, 1, 2, 3, 4. They
are explicitly given as follows:

wi :=

{∑
h∈κd,3(T i N ′d,3)

eh if i = 0, 1, 2.∑
h∈A\03,det(h)≡−i mod 3 eh if i = 3, 4.

(3-21)

This gives U
H ′d,3
d,3
∼= Ce03 +

∑4
j=0 Cw j ⊂ C[A]. Moreover, U

H ′d,3
d,3 contains an SL2(Z)-invariant vector

4e03 +w3, which is also in U Hd,3
d,3 . Its orthogonal complement in U

H ′d,3
d,3 is 5-dimensional and decomposes
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into χ−d2
3 ⊕χ

−d2
3 ⊕ %−d2 , where χ3 and % are irreducible representations of SL2(Z) given by

χ3(T )= ζ3, χ3(S)= 1, %(T )=

1
ζ3

ζ 2
3

 , %(S)= 1
3

−1 2 2
2 −1 2
2 2 −1

 , (3-22)

with respect to the basis {w0−w1,w0−w2, 8e03−w3,w0+w1+w2, 2w4}. For any m ∈ Z, we use %[m]

and χ [m]3 to denote the representations of SL2(Z) defined by

%[m](g) := %(g)m, χ
[m]
3 (g) := χ3(g)m .

Note that %[m] and χ [m]3 are well-defined and only depend on m mod 3. We remark χ3|00(2) = χ
8. In

summary, we have:

Lemma 3.9. (1) The subrepresentation ωHd,3
d,3 ⊂ ωd,3 fixed by Hd,3 decomposes as

ω
Hd,3
d,3
∼= 1⊕ %[−d2]

with respect to the basis {4e03 +w3, 8w0−w3,w0+w1+w2, 2w4}.

(2) Denote U ′d,3 the orthogonal complement of U Hd,3
d,3 in U

H ′d,3
d,3 and ω′d,3 the restriction of ωd,3 to U ′d,3.

Then

U ′d,3 =
{ 2∑

j=0

a jw j : a j ∈ C,
∑

j

a j = 0
}

and ω′d,3 ∼= (χ
[−d2]
3 )⊕2.

(3) Under this identification, M !(ωd,3)
Hd,3 ∼= M !⊕M !(%[−d2]) and

M !(ωd,3)
H ′d,3 ∼= M !(ωd,3)

Hd,3 ⊕M !(χ [−d2]
3 )⊕2.

The analog of ud satisfying Lemma 3.4 and Proposition 3.5 is in the subspace

U ′d,3 = {ud,3(Ec) : Ec = (cs) ∈ Cϕ(d3)},

where

ud,3(Ec) :=
∑

j∈Z/d3Z

( ∑
s∈(Z/d3Z)×

csζ
s j
d3

)( ∑
h∈κd,3(T j N ′d,3)

eh

)
. (3-23)

As a consequence of Lemma 3.4, we have the following local analog of Proposition 3.5 at p = 3.

Proposition 3.10. For any d | 24 and Ec ∈ Cϕ(d3), we have

ωd,3(g)ud,3(Ec)= χ(g)−24d2/d3ud,3(Ec) (3-24)

for all g ∈ 00(2).

Proof. If d3 = 1, this is clear. Otherwise,

ωd,3(g)ud,3(Ec)= χ3(g)−d2ud,3(Ec)= χ(g)−8d2ud,3(Ec). �
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If Ec = (1, . . . , 1) ∈ Cϕ(d3), then we simply denote ud,3(Ec) by ud,3, which is explicitly given by

ud,3 =

{
2w0−w1−w2 if d3 = 3,

e03 if d3 = 1.
(3-25)

3C. The case p = 2. In this case, the finite quadratic module

Ad,2 = Z/d2Z×Z/(2d2)Z×Z/(2d2)Z×Z/d2Z

has the quadratic form

Qd,2([h0, h1, h2, h3]) :=
d−1

3

2d2
(2h0h3− h1h2) ∈

1
2d2

Z/Z. (3-26)

Even though the size of Ad,2 can be large, the number of orbits under the suitable orthogonal group H ′d,2
is much smaller. More precisely, we have Hd,2 = Nd,2× Nd,2 and H ′d,2 ⊃ N ′d,2× N ′d,2, where

Nd,2 :=

{(
a b
2c d

)
∈ SL2(Z/(2d2Z))

}
/〈T d2,Cd2/(2,d2)〉,

N ′d,2 := 〈A,C, D〉 ∼= (Z/(d2(2, d2)/(4, d2))Z×Z/(d2/(2, d2))Z)oZ/(4, d2)Z.

(3-27)

Here A :=
( 3

4
2
3

)
,C :=

( 5
16

4
13

)
, D :=

(
−1
−2

1
1

)
are elements in SL2(Z) projected into Nd,2. The commutation

relation is given by D AD−1
= A3. In particular N ′d,2 has size d2

2 and is abelian for d2 = 1, 2, 4.
The group Nd,2 acts on the left on Ad,2 via (simply coming from matrix multiplication)(

a b
2c d

)
· [h0, h1, h2, h3] := [ah0+ bh2, ah1+ 2(bh3), 2(ch0)+ dh2, ch1+ dh3] (3-28)

for
( a

2c
b
d

)
∈ Nd,2 and [h0, h1, h2, h3] ∈ Ad,2. The same holds for the right action. We can embed Nd,2

into Ad,2 using the map κd,2 : Nd,2→Ad,2 defined by

κd,2

((
a b
2c d

))
:= d−1

3 [a mod d2, 2b, 2c, d mod d2]. (3-29)

It is then easy to check that

κd,2(g1g2)= g1 · κd,2(g2)= κd,2(g1) · g2,

Qd,2(κd,2(g))=
d−1

3 det(g) mod d2

d2
∈

2
2d2

Z/Z

(3-30)

for all g, g1, g2 ∈ Nd,2. From this, when 2 | d, it is easy to check that κd,2 is a two-to-one map since
(d2+ 1)

( 1
1

)
∈ N ′d,2 and

κd,2

(
(d2+ 1)

(
1

1

))
= κd,2

((
1

1

))
.

To better describe κd,2(Nd,2), it is useful to know the smallest additive subgroup of Ad,2 containing it.
We describe it in the following lemma.
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Lemma 3.11. Let A′d,2 ⊂Ad,2 be the smallest (additive) subgroup containing κd,2(N ′d,2).

(1) When 8 | d, A′d,2 ∼= (Z/2Z)2× (Z/8Z)2 is the orthogonal complement of the subgroup generated by
[6, 4, 0, 2], [0, 8, 0, 0], [0, 2, 2, 0] ∈Ad,2, and

κ−1
d,2(A

′

d,2)= N ′d,2 t T 4 N ′d,2.

Furthermore, we can distinguish the elements in N ′d,2 and T 4 N ′d,2 via

N ′d,2 = κ
−1
d,2({[h0, h1, h2, h3] ∈A′d,2 : h

2
0− d2

3 ≡ h1+ h2 mod 16}),

T 4 N ′d,2 = κ
−1
d,2({[h0, h1, h2, h3] ∈A′d,2 : h

2
0− d2

3 ≡ h1+ h2+ 8 mod 16}).
(3-31)

(2) When 8 - d, A′d,2 ∼= (Z/d2Z)2 is generated by κd,2
(( 1

1

))
, κd,2

((
−1
−2

1
1

))
and

κ−1
d,2(A

′

d,2)= N ′d,2.

Proof. This can be verified using the Appendix and some computer calculation. �

In addition, we record the following local analog of Lemma 3.1 at the prime 2.

Lemma 3.12. For any j ∈ Z/d2Z, we have

κd,2(T j N ′d,2)∩A
0
d,2 = {[r, r(2 j + (d3r)2− 1), 0, r ] : r ∈ (Z/d2Z)×}.

Proof. For j = 0, this follows directly from Lemma 3.11. In general, it is easy to check that

T j (κd,2(N ′d,2)∩A
0
d,2)= κd,2(T j N ′d,2)∩A

0
d,2

for any j since the action of T preserves A0
d. �

Since T d2 = 0 ∈ N ′d,2 and H ′d,2 is generated by N ′d,2× N ′d,2 and (T, T ), the index of H ′d,2 in Hd,2 is d2

and the sizes of Hd,2 and H ′d,2 are d6
2/(2, d2) and d5

2/(2, d2) respectively. The dimension of U
H ′d,2
d,2 is the

number of orbits in Ad,2 under the action of H ′d,2. Since the finite group H ′d,2 is explicitly given in (3-27),
it is straightforward to calculate these orbits on a computer in practice. We did this in Sage [2019] and
received the following results:

dim U
H ′d,2
d,2 =


4 if d2 = 1,

16 if d2 = 2,

46 if d2 = 4,

118 if d2 = 8.

(3-32)

With these calculations, one can already explicitly decompose the representation ω
H ′d,2
d,2 on U

H ′d,2
d,2 . To find

the desired vectors, we need to consider the following subspace of U
H ′d,2
d,2 .
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For d2 = 1, the vector e(1/2,0)− e(0,1/2) generates a 1-dimensional SL2(Z)-invariant subspace. Denote
U ′d,2 ⊂ U

H ′d,2
d,2 its orthogonal complement. For d2 ≥ 2, the subgroup H ′d,2 has index 2 in H ′d/2,2 =

〈T d2/2, H ′d,2〉. Denote U ′d,2 ⊂U
H ′d,2
d,2 the orthogonal complement of U

H ′d/2,2
d,2 ⊂U

H ′d,2
d,2 . Then it is clear that

dim U ′d,2 =
1
2

(
numbers of H ′d,2-orbits of Ad,2− numbers of H ′d/2,2-orbits of Ad,2

)
.

The following result comes out of the computer calculations.

Lemma 3.13. For any d | 24, the dimension of U ′d,2 is 3ϕ(d2). Furthermore, the support of any elements
in U ′d,2 is contained in the union of {h ∈Ad,2 : 2Qd(h)=−d−1

3 /d2} and
⋃

j∈Z/d2Z κd,2(T j N ′d,2).

Now for d | 24, define the following vectors

ud,2(Ec) :=
∑

j∈Z/d2Z

( ∑
s∈(Z/d2Z)×

csζ
js

d2

)( ∑
h∈κd,2(T j N ′d,2)

eh

)
,

vd,2(Ec) := ωd,2(S)ud,2(Ec), wd,2(Ec) := ζ
−d3
d2

ωd,2(T )vd,2(Ec)

(3-33)

for all Ec = (cs) ∈ Cϕ(d2). From Lemma 3.13, we can show that these vectors give a basis of U ′d,2.

Lemma 3.14. For any d | 24 with 2 | d and Ec ∈ Cϕ(d2), the vectors vd,2(Ec),wd,2(Ec) have the same support,
which is disjoint from that of ud,2( Ec1) for any Ec1 ∈ Cϕ(d2).

Proof. Since the action of ωd,2(T ) does not change the support, we know that vd,2(Ec) and wd,2(Ec) have
the same support. Now we have by definition

vd,2(Ec)= (2d2
2)
−1

∑
s∈(Z/d2Z)×

cs

∑
µ∈Ad,2

∑
j∈Z/d2Z

ζ
js

d2

( ∑
h∈κd,2(T j N ′d,2)

e((µ, h))eµ

)
.

We want to show that the coefficient of eµ is zero if µ= κd,2(T j ′g′) with j ′ ∈ Z/d2Z and g′ ∈ N ′d,2. Now
if h = κd,2(g) with g ∈ T j N ′d,2, then

(µ, h)=
d−1

3 Tr(g(T j ′g′)−1)

d2

by (3-30). Since N ′d,2 is normal in Nd,2, which contains T, we have T j N ′d,2T− j ′
= T j− j ′N ′d,2. Therefore,

it suffices to show that the sum below vanishes∑
j∈Z/d2Z

ζ
js

d2

∑
h∈κd,2(T j N ′d,2)

e((µ, h))= ζ j ′s
d2

∑
j ′′∈Z/d2Z

ζ
j ′′s

d2

∑
h∈κd,2(T j ′′N ′d,2)

ζ
d−1

3 Tr(h)
d2

with j ′′ := j − j ′. Also for h = [h0, h1, h2, h3] ∈ κd,2(N ′d,2), we have Tr(T j
· h)= Tr(h)+ j · h1. Using

this, we can rewrite∑
j ′′∈Z/d2Z

ζ
j ′′s

d2

∑
h∈κd,2(T j ′′N ′d,2)

ζ
d−1

3 Tr(h)
d2

=

∑
h∈κd,2(N ′d,2)

ζ
d−1

3 Tr(h)
d2

∑
j ′′∈Z/d2Z

ζ
j ′′(s+d−1

3 h1)

d2
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By Lemma 3.11 (or inspecting the Appendix), we know that h1 ∈ 2Z/2d2Z for all h ∈ κd,2(N ′d,2). So
s+ d−1

3 h1 ∈ (Z/d2Z)× and the sum above vanishes. �

Lemma 3.15. For any d | 24 and any basis B of Cϕ(d2), the set⋃
Ec∈B

{ud,2(Ec), vd,2(Ec),wd,2(Ec)} (3-34)

is a basis of U ′d,2.

Proof. We know that dimension of U ′d,2 is 3ϕ(d2) from Lemma 3.13, and need to check linear independence
of the vectors in the set above. Since the vectors ud,2(Ec), vd,2(Ec),wd,2(Ec) are defined linearly, it suffices
to prove the lemma for B = {Ee(s0) : s0 ∈ (Z/d2Z)×} with Ee(s0) ∈ Cϕ(d2) the standard basis vector with 0
everywhere except 1 at the s0-th entry. It is easily checked from the definition that ud,2(Ec), vd,2(Ec),wd,2(Ec)
are in U ′d,2 are eigenvectors of T with eigenvalue ζ−s0

d2
when Ec = Ee(s0). Therefore, it suffices to check

that the three vectors ud,2(Ec), vd,2(Ec),wd,2(Ec) are linearly independent whenever Ec = Ee(s0).
When d2 = 1, this is easily checked by hand. When d2 ≥ 2, it suffices to show that vd,2(Ee(s0))

and wd,2(Ee(s0)) are linearly independent by Lemma 3.14. Let us assume otherwise. Then the restric-
tion of ωd,2 to Cud,2(Ee(s0))+ Cvd,2(Ee(s0)) is a 2-dimensional representation of SL2(Z). In the basis
{ud,2(Ee(s0)), vd,2(Ee(s0))}, it is given by the map

T 7→
(
ζ−1

d2

±ζ2d2

)
, S 7→

(
1

1

)
.

However, (T · S)6 is the identity, whereas((
ζ−1

d2

±ζ2d2

)(
1

1

))6

=

(
±

(
ζ−1

2d2

ζ−1
2d2

))3

is not the identity since 2 | d2. This is a contradiction and finishes the proof. �

Proposition 3.16. For d | 24, let ω′d,2 denote the restriction of ωd,2 to U ′d,2 ⊂U
H ′d,2
d,2 . Then ud,2(Ec) satisfies

ω′d,2(g)ud,2(Ec)= χ(g)−24d3/d2ud,2(Ec) (3-35)

for all g ∈ 00(2) and Ec ∈ Cϕ(d2). Furthermore with respect to the basis in (3-34), we have

ω′d,2
∼= %
⊕ϕ(d2)
d2,d3

(3-36)

Here %d2,d3 is the 3-dimensional representation defined in (2-3).

Remark 3.17. If Ec = (1, . . . , 1) ∈ Cϕ(d2), we simply write ud,2 for ud,2(Ec). They are explicitly given by

ud,2 =

{
e02 if d2 = 1,

2d2/2
(∑

κd,2(N ′d,2)
eh −

∑
κd,2(T d2/2 N ′d,2)

eh
)

if d2 = 2, 4, 8.
(3-37)

Proof. For the first claim, it suffices to prove the cases g = T, S2, TB, which are generators of 00(2).
If g = T, then ω′d,2(T )eh = e(−Qd,2(h))eh . For h ∈ κd,2(T j N ′d,2), we have Qd,2(h) = d−1

3 /d2 =
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d3/d2 ∈
1
d2

Z/Z. Therefore (3-35) holds for g = T. When g = S2, since ωd(S2)eh = e−h for all h ∈ Ad

and −
( 1

1

)
∈ N ′d,2, we know that −κd(T j N ′d,2)= κd(T j N ′d,2) and (3-35) holds for g = S2.

For g = TB = TST 2S−1, it suffices to show the middle equation below

ω′d,2(S)ωd,2(T−1)ud,2(Ec)= ζ
d−1

3
d2

vd,2(Ec)= ωd,2(T 2)vd,2(Ec)= ωd,2(T 2)ω′d,2(S)ud,2(Ec).

This is easily checked by hand when d2 = 1. If 2 | d2, we know by Lemmas 3.13 and 3.14 that the
support of vd,2(Ec) is contained in {h ∈ Ad,2 : 2Qd(h) = −d−1

3 /d2}. It is therefore an eigenvector of
ω′d,2(T

2) with eigenvalue ζ
d−1

3
d2

. This proves the first claim. As in the proof of Proposition 3.6, the vectors
{ud,2(Ec), vd,2(Ec),wd,2(Ec)} generate a 3-dimensional subrepresentation of ωd,2 isomorphic to %d2,d3 . The
second claim then follows from Lemma 3.15. �

4. Borcherds liftings

4A. Brief review of Borcherds liftings. We first set up notation and briefly review the Borcherds lifting,
following [Yang and Yin 2019, Section 3]. Let V = Vd and H be as in Section 3.

Let
L= {w ∈ VC : (w,w)= 0, (w,w) < 0}. (4-1)

and let D be the Hermitian symmetric domain of oriented negative 2-planes in VR = V ⊗Q R. Then one
has an isomorphism

pr : L/C× ∼= D, w = u+ iv 7→ Ru+R(−v).

For the isotropic matrix `=
(

0 −1
0 0

)
∈ L and `′=

( 0 0
1/d 0

)
∈ V with (`, `′)= 1. We also have the associated

tube domain

H`,`′ =

{(
z1 0
0 −z2

)
: y1 y2 > 0

}
, yi = Im(zi ),

together with

w :H`,`′→ L, w

((
z1 0
0 −z2

))
=

(
z1 −dz1z2

1/d −z2

)
.

This gives an isomorphism H`,`′
∼= L/C×. We also identity H2

∪ (H−)2 with H`,`′ by

ψd : z = (z1, z2) 7→

(
z1/d 0

0 −z2/d

)
.

Note that we use this identification in order to have the following compatibility property and it is also the
identification used in the computation of Borcherds products. The following is a special case of [Yang
and Yin 2019, Proposition 3.1].

Proposition 4.1. Define

wd : H
2
∪ (H−)2→ L, wd(z1, z2)= w ◦ψd(z1, z2)=

(
z1/d −z1z2/d
1/d −z2/d

)
.
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Then the composition pr ◦ wd gives an isomorphism between H2
∪ (H−)2 and D. Moreover, wd is

H(R)-equivariant, where H(R) acts on H2
∪ (H−)2 via the usual linear fraction:

(g1, g2)(z1, z2)= (g1(z1), g2(z2)),

and acts on L and D naturally via its action on V. Moreover, one has

(g1, g2)wd(z1, z2)=
j (g1, z1) j (g2, z2)

ν(g1, g2)
wd(g1(z1), g2(z2)), (4-2)

where ν(g1, g2)= det g1 = det g2 is the spin character of H ∼= GSpin(V ), and

j (g, z) := cz+ d, g =
(

a b
c d

)
is the automorphy factor of weight 1.

For a congruence subgroup 0 of SL2(Z), let X0 be the associated open modular curve over Q such
that X0(C)= 0\H. Assume 0 ⊃ 0(M) for some integer M ≥ 1. Let

ν : A× ↪→ GL2(A), ν(d)= diag(1, d).

Let K (0) be the product of ν(Ẑ×) and the preimage of 0/0(M) in GL2(Ẑ) (under the map GL2(Ẑ)→

GL2(Z/MZ)). Let K = (K (0)× K (0))∩ H(A f ). Then one has by the strong approximation theorem

X K ∼= X0 × X0.

In this way, we have identified the product of two copies of a modular curve X0 with a Shimura variety X K .
Suppose that 0 acts on L ′/L trivially, then for each µ ∈ L ′/L and m ∈ Q(µ)+ L , the associated

special divisor Z0(m, µ) is given by

Z0(m, µ)= (0×0)\{(z1, z2) : wd(z1, z2)⊥ x for some x ∈ µ+ L , Q(x)= m}.

More generally, assume 0 ⊃ 0(M) preserves L , and u=
∑

aµeµ ∈C[L ′/L] is 0×0-invariant, the cycle

Z0(M)(m, u)=
∑

aµZ0(M)(m, µ)

descends to a cycle Z0(m, u) in X0 × X0. For our purpose, we will take

d | 24, 0 = 0χ,d ⊃ 0d ⊃ 0(2d)⊃ 0(48)

from now on and write Xd := X0 = X0χ,d . Notice that X1 = X0(2) has two cusps, i∞ and 0. Since
{T j
: 1≤ j ≤ d} are coset representatives of 0χ,d in 0χ,1, the modular curve Xd has the same cusps as X1.

Lemma 4.2 [Yang and Yin 2019, Corollary 3.3]. For d | d′ | 24, let π : X0(2d′) → Xd be the natural
projection. Then

(π×π)∗(X1
d )=

∑
γ∈0/0(2d′)

Z0(2d′)

( 1
d′
,

1
d′
γ + L

)
(4-3)

and the group 0(2d′) can be replaced by 0d′ .
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Since 0 is normal in 00(2)=0χ,1, the action of T =
( 1

0
1
1

)
∈00(2) on H factors through Xd and defines

an isomorphism Xd→ Xd, which we also denote by T. Using this, we can define translates of the diagonal

X1
d ( j) := (T j

×1)∗(X1
d )⊂ Xd× Xd (4-4)

for j ∈ Z/dZ. Equation (4-3) also generalizes to

(π×π)∗(X1
d ( j))=

∑
γ∈0/0(2d′)

Z0(2d′)

( 1
d′
,

1
d′

T jγ + L
)
, (4-5)

where one can replace 0(2d′) with 0d′ . From this, we see that the pull back of X1
d ( j) along natural

projection Xd′ × Xd′→ Xd× Xd is
⋃

l∈dZ/d′Z X1
d′ ( j + l). Before proceeding further to state and prove

the main result of this section, we record the following identity for convenience.

Lemma 4.3. For any d ∈ N, we have the following identity in Q(X)

pd(X) :=
∏

j∈Z/dZ

(1− ζ j
d X)ad( j)

=

∏
b|d

(1− Xd/b)b·µ(d/b), (4-6)

where ad( j) is the constant defined in (3-12). Furthermore for any s ∈ N, we have∏
d|s

pd(X s/d)= (1− X)s . (4-7)

Proof. To prove (4-6), it suffices to check that both sides have the same roots counting multiplicity, since
they agree at X = 0. The multiplicity of X = ζ j

d on the left-hand side is ad(− j)= ad( j), whereas it is∑
b|(d, j) b ·µ(d/b) on the right-hand side. The equality is then a consequence of the identity∑

b|n

b ·µ
(d

b

)
= µ(d/n) ϕ(d)

ϕ(d/n)
, n | d,

which is a standard exercise that we leave, along with (4-7), to the curious readers. �

Now, we can specialize Borcherds’ far reaching lifting theorem [1998, Theorem 13.3] (see also [Yang
and Yin 2019, Theorems 2.1 and 2.2]) to the modular function F̃d in (3-17) and the result below.

Theorem 4.4. For every d | 24, recall the modular function in M !(ωd)
H ′d

F̃d(τ )=
√

2
d
(f
−24/d
2 (τ )ud+ f

−24/d
1 (τ )vd+ f−24/d(τ )wd)+

{
24(e(0,0)+ e(1/2,0)) if d= 1,

0 if d> 1,

defined in (3-17) with ud, vd,wd ∈Ud vectors defined in (3-12) and (3-14). Let 9d(z) be the meromorphic
modular function on Xd× Xd (with some characters) associated to F̃d via Borcherds multiplicative lifting,
i.e., − log‖9d(z)‖2Pet is the regularized theta lift of F̃d with ‖ · ‖Pet a suitably normalized Petersson norm
(see, e.g., Theorem 2.1 in [Yang and Yin 2019]). Then 9d(z) has the following properties:
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(1) On Xd× Xd,

Div(9d(z))=
∑

j∈Z/dZ

ad( j)X1
d ( j).

(2) When d= 1, 9d(z) has a product expansion of the form

91(z)= 212(q1− q2)
∏

m,n≥1

(1− qn
1 qm

2 )
c1(mn)(1− q2n

1 q2m
2 )c−1(2mn)

near the cusp Q` of X K , where q j := e2π i z j and cd(l) are the Fourier coefficients defined in
Remark 2.1.

(3) When d> 1, 9d(z) has a product expansion of the form

9d(z)=
∏
b|d

(q1/b
1 − q1/b

2 )b·µ(d/b)
∏

m,n∈N
mn≡−1 mod d

(∏
b|d

(1− qn/b
1 qm/b

2 )b·µ(d/b)
)cd(mn)(−1)(n

2
−1)/d2

near the cusp Q` of X K , where µ and ϕ are the Möbius and Euler ϕ-function respectively.

Proof. This is a specialization of Borcherds’ result to the input F̃d ∈M !(ωd). For this, we need to substitute
the suitable parameters into Borcherds’ result, which has been specialized to this case in Theorems 2.1
and 2.2 in [Yang and Yin 2019]. Using the specialization there, we see that the divisor of 9d is∑

j∈Z/dZ

ad( j)
∑

µ∈κ(T j N ′d)

Z0d

(
−

1
d
, µ
)
=

∑
j∈Z/dZ

ad( j)
∑

γ∈0/0(2d)

Z0(2d)

(
−

1
d
,

1
d

T jγ + L
)
,

which gives us the first claim after applying Lemma 4.2.
For the second and third claim, we specialize Theorem 2.2 in [Yang and Yin 2019] and use the notations

there. When d= 1, this is rather classical and can be found in [Scheithauer 2008] (see also Proposition 5.3
in [Yang and Yin 2019]).2 For d> 1, the Weyl chambers for F̃d are the same as in the case d= 1, and
we choose the one W = R

{(a
−1

)
: a > 1

}
. Since ud, vd and wd do not have support on any isotropic

vector, the associated form F̃d,P is identically zero, and the Weyl vector ρ(W, F̃d) is 0. Since F̃d does not
have any constant term, the constant C in the product expansion is 1, For the infinite product, suppose
λ= 1

d

(
−m

n

)
with m, n ∈ Z. Then (λ,W ) > 0 if and only if m ≥−n, n ≥ 0 and (m, n) 6= (0, 0).

The set of µ∈ L ′0/L with p(µ)= λ consists then of 1
d

(
−m

0
− j
n

)
with j ∈ 1

2 Z/dZ. For such λ,µ, we have

1− e((λ, z)+ (µ, `′))= 1− ζ j
d qn/d

1 qm/d
2 .

By inspecting the q-expansion of Fd, we notice that

Fd(τ )=

(
q−1/d

+

∑
l∈N,l≡−1 mod d

cd(l)ql/d
)
ud+

∑
µ∈L ′/L ,Qd(µ)∈

{ 1
2d ,

1
2d+

1
2

} Fd,µ(τ )eµ.

2Note that the Fourier expansion of f in [loc. cit.] is incorrect.
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Therefore, the only pairs of (m, n) with m < 0 is m = −n = −1, and the only µ ∈ L ′0/L where Fd,µ

could be nonzero are contained in the support of ud, hence

µ=
1
d

(
−m j

0 n

)
+ L ∈ 1

d
T j ′0χ,d+ L

with mn≡−1 mod d and j ′ :=nj− 1
2(n

2
− 1)∈Z/dZ by Lemma 3.1. The Fourier coefficient c(−Q(λ), µ)

of the input is then cd(mn)ad( j ′). It is easy to check that ad( j ′)= ad( j)(−1)(n
2
−1)/d2 . By Theorem 2.2

in [Yang and Yin 2019], 9d(z) has the product expansion

9d(z)=
∏

m∈Z≥−1,n∈N
mn≡−1 mod d

∏
j∈Z/dZ

(1− ζ j
d qn/d

1 qm/d
2 )cd(mn)ad( j)(−1)(n

2
−1)/8

Finally, applying Lemma 4.3 finishes the proof. �

4B. The Weber function differences as Borcherds liftings. Now, we are ready to state and prove the
following main result of this section.

Theorem 4.5. For d | 24, let9d(z1, z2) be the Borcherds product of F̃d ∈M !(ωd) as in Theorem 4.4. Then
for any s | 24 and ε ∈ {±1}, we have

(f2(z1)
24/s
− (εf2(z2))

24/s)s =
∏
d|s

9d(z1, z2)
ε24/d

. (4-8)

Proof. We first look at their divisors in the open Shimura varieties Xs× Xs . Suppose ε= 1. The left-hand
side clearly has s · [X1

s ] as its divisor, whereas the right-hand side has the divisor

∑
d|s

∑
j∈Z/dZ

ad( j)
∑

l∈dZ/sZ

[X1
s ( j + l)] =

∑
k∈Z/sZ

(∑
d|s

ad(k)
)
[X1

s (k)] = s · [X1
s ],

as ∑
d|s

ad(k)=
∑
d|s

µ(d/(d, k))ϕ(d)/ϕ(d/(d, k))=
{

s if k = 0,
0 otherwise.

When ε = −1, the argument is the same unless 8 | s. In that case, the divisor of the left-hand side is
s · [X1

s (s/2)], whereas the divisor of the right-hand side is

Div
∏
d|s/2

9d(z1, z2)
2
−Div

∏
d|s

9d(z1, z2)= s · ([X1
s ] + [X

1
s (s/2)])− s · [X1

s ] = s · [X1
s (s/2)].

Now let

g(z1, z2)=

∏
d|s ε

24/(d,s)9d(z1, z2)
2

(f2(z1)24/s − (εf2(z2))24/s)s
.



On a conjecture of Yui and Zagier 2219

Then it is holomorphic and has no zeros on Xs × Xs . So

Div(g(z1, z2))= a∞,1({∞}× Xs)+ a∞,2(Xs ×{∞})+ a0,1({0}× Xs)+ a0,2(Xs ×{0})

is supported on the boundary with ai, j ∈ Z. The product expansion of 9d and the definition of f2 imply
that a∞,1 = a∞,2 = 0.

Next, fix z2 ∈ Xs the above argument shows that g(z1, z2), as a function of z1 on Xs ∪ {0,∞} has
only zeros or poles at the cusp {0}, which is impossible. So g(z1, z2) has no zeros or poles in z1, and
is therefore independent of z1, i.e, g(z1, z2)= g(z2) is purely a function of z2 with no zeros or poles in
Xs ∪ {∞}. This implies that g(z1, z2)= g(z2)= C is a constant.

Finally, looking at the q1-leading term of the Fourier expansion, we see C = 1 and this proves the
theorem. The last part of the proof follows from the argument in the proof of [Yang and Yin 2019,
Theorem 3.4]. �

5. Big CM values

5A. Products of CM cycles as big CM cycles. Yang and Yin [2019, Section 3.2] have described how to
view a pair of CM points as a big CM point, which we now briefly review for convenience and set up
necessary notation. We modify a little for use in this paper. For j=1, 2, let d j <0 be co-prime, fundamental
discriminants satisfying (1-3). Denote E j = Q(

√
d j ) with ring of integers O j = Z

[1
2(1+

√
d j )
]
, and

class group Cl(d j ). Let E = E1⊗Q E2 =Q(
√

d1,
√

d2) with ring of integers OE =O1⊗Z O2. Then E
is a biquadratic CM number field with real quadratic subfield F =Q(

√
D) and D = d1d2.

For a positive integer d, we define W =Wd = E with the F-quadratic form QF (x)= dx x̄/
√

D. Let
WQ =W with the Q-quadratic form QQ(x)= TrF/Q QF (x). Let σ1 and σ2 be two real embeddings of F
with σ j (

√
D)= (−1) j−1

√
D. Then W has signature (0, 2) at σ2 and (2, 0) at σ1 respectively, and so WQ

has signature (2, 2). Choose a Z-basis of OE as follows

e1 = 1⊗ 1, e2 =
−1+

√
d1

2
=
−1+

√
d1

2
⊗ 1, e3 =

1+
√

d2

2
= 1⊗

1+
√

d2

2
, e4 = e2e3.

We will drop ⊗ when there is no confusion. Then it is easy to check that

(WQ, QQ)∼= (V, Q)= (M2(Q), d det),
∑

xi ei 7→

(
x3 x1

x4 x2

)
. (5-1)

We will identify (WQ, QQ) with the quadratic space (V, Q)= (M2(Q), d det). Under this identification,
the lattice M2(Z) becomes OE , and the lattice Ld becomes Ze1+Ze2+Ze3+Z2e4 ⊂OE , which we still
denote by L = Ld. Define T to be the maximal torus in H given by the following diagram:

1 // Gm //

��

T //

��

ResF/Q SO(W ) //

��

1

1 // Gm // H // SO(V ) // 1

(5-2)
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Then T can be identified with ([Howard and Yang 2012; Bruinier et al. 2012, Section 6])

T (R)= {(t1, t2) ∈ (E1⊗Q R)×× (E2⊗Q R)× : t1 t̄1 = t2 t̄2},

for any Q-algebra R, and the map from T to SO(W ) is given by (t1, t2) 7→ t1/t̄2. The map from T to H
is explicitly given as follows. Define the embeddings ι j : E j → M2(Q) by

(e1, e2)ι1(r)= (re1, re2), ι2(r)(e3, e1)
t
= (r̄ e3, r̄ e1)

t . (5-3)

Then ι= (ι1, ι2) gives the embedding from T to H. If r j = α j e1+ (−1) j+1β j e j+1 ∈ E j , then

ι j (r j )= α j

(
1 0
0 1

)
+β j

(
0 1

4(d j − 1)
1 −1

)
. (5-4)

Extend the two real embeddings of F into a CM type 6 = {σ1, σ2} of E via

σ1(
√

di )=
√

di ∈ H, σ2(
√

d1)=
√

d1, σ2(
√

d2)=−
√

d2.

Since Wσ2 =W ⊗F,σ2 R⊂ VR has signature (0, 2), it gives two points z±σ2
in D. In this case, the big CM

cycles associated to T as defined in [Bruinier et al. 2012; Yang and Yin 2019] are given by

Z(W, z±σ2
)= {z±σ2

}× T (Q)\T (A f )/KT ∈ Z2(X K ), (5-5)

and

Z(W )= Z(W, z±σ2
)+ σ2(Z(W, z±σ2

)). (5-6)

For simplicity, we will denote zσ2 for z+σ2
. The same calculation as in the proof of [Yang and Yin 2019,

Lemma 3.4] gives the following result.

Lemma 5.1. On H2
∪ (H−)2, one has zσ2 = (τ1, τ2) ∈ H2 and z−σ2

= (τ̄1, τ̄2) ∈ (H
−)2, where

τ j =
1+

√
d j

2
.

For d | 24, let Kd ⊂ H(A f ) be the compact open subgroup generated by (T, T ), (0χ,d×0χ,d)⊗ Ẑ⊂

H(A f ) and (ν(Ẑ×)× ν(Ẑ×))∩ H(A f ). By the choice of 0χ,d, we actually have the following result.

Lemma 5.2. Suppose d j < 0 are discriminants satisfying (1-3) for j = 1, 2. Then for any d | 24, the
preimage ι−1(Kd) is independent of d | 24.

Remark 5.3. We will simply denote ι−1(Kd) by KT .

Remark 5.4. The lemma does not require d j to be fundamental or co-prime.

Proof. Since K24 ⊂ Kd ⊂ K1 for any d | 24, it suffices to check that ι−1(K1)= ι
−1(K24). Furthermore,

we know that 0(48)⊂ 0χ,24 ⊂ 0χ,1 = 00(2), so we only need to check the equality when tensoring with
Z/3Z and with Z/16Z. This then boils down to a short calculation with finite groups.
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To check the case modulo 3, it suffices to show that ι(ι−1(K1)⊗Z/3Z)⊂K24⊂GL2(Z/3Z)×GL2(Z/3Z).
Since 0χ,1⊗Z/3=00(2)⊗Z/3=SL2(Z3), we have ι−1(K1)⊗Z/3= ι−1(H(Z/3Z)). Thus (5-4) implies

ι(ι−1(K1)⊗Z/3)=
{((

α j β j (d j − 1)/4
β j α j −β j

))
j=1,2
∈ H(Z/3Z) : α j , β j ∈ Z/3Z,

}
and we need to show that this is contained in

K24⊗Z/3Z= 〈0χ,24×0χ,24, (T, T ), ν(Ẑ×)× ν(Ẑ×)〉⊗Z/3Z

= 〈0χ,3×0χ,3, (T, T ), ν(Ẑ×)× ν(Ẑ×)〉⊗Z/3Z

=
〈
N ′d,3× N ′d,3, (T, T ),

((1
−1

)
,
( 1
−1

))〉
⊂ H(Z/3Z).

Now given r = (r1, r2) ∈ ι
−1(K1)⊗Z/3Z with ι j (r j )=

(
α j
β j

β j (d j−1)/4
α j−β j

)
, we know that

δ := det(ι j (r j ))= Tr(ι j (r j ))
2
−β2

j d j ∈ (Z/3Z)× (5-7)

is independent of j. If β j = 0, then ι j (r j )=±
( 1

1

)
∈ N ′d,3 and ι(r) ∈ K24⊗Z/3Z. If β1 = 0 and β2 6= 0,

then ι1(r1) ∈ N ′d,3 and δ = 1, which implies Tr(ι2(r2))= 0 by (5-7). That means ι2(r2) ∈ N ′d,3 by (3-20).
Finally suppose β j 6= 0, then we can use 3 - d j to show that ε := α jβ j (δ+ 1) is independent of j. It is
then straightforward to check that T 1−ε

( 1
δ

)
ι j (r j ) ∈ N ′d,3. Therefore ι(r) ∈ K24⊗Z/3Z.

To check the case modulo 16, suppose

r = (r1, r2) ∈ ι
−1(K1)⊗Z/16Z

with r j =α j e1+(−1) j+1β j e j+1, α j , β j ∈Z/16Z. Then simple calculation shows that α j−1, β j ∈2Z/16Z.
Furthermore, det(ι j (r j ))=α j (α j−β j )−β

2
j (d j−1)/4∈ (Z/16Z)× is independent of j since ι(r)∈H(A f ),

and β2
j (d j − 1)/4≡ 0 mod 8 since d j ≡ 1 mod 8 and β j ∈ 2Z/16Z. Therefore,

det(ι j (r j ))
−1
= α−1

j (α j −β j )
−1
+β2

j (d j − 1)/4.

Now r ∈ ι−1(K24) if and only if ι(r)∈ K24⊗Z/16Z, which is generated by ν((Z/16Z)×)×ν((Z/16Z)×),
(T, T )⊗Z/16Z and (0χ,24×0χ,24)⊗Z/16Z∼= (0χ,8/0(16)×0χ,8/0(16)). From the natural surjection
0χ,8/0(16)→ 0χ,8/08 = N ′8 = N ′8,2, we see that the following claim will finish the proof: the element

g j := ν(det(ι j (r j )))
−1T det(ι j (r j )−1)/2ι j (r j )

is in N ′8= N ′8,2 for all r j = α j e j+(−1) j+1β j e j+1 with α j−1, β j ∈ 2Z/16Z. By dropping the subscript j
in d j , g j , α j and β j , we can write

g = α

(
1 α(α−β)−1−β2(d−1)/4

2

0 α−1(α−β)−1
+

β2(d−1)
4

)
+β

(
α(α−β)−1−β2(d−1)/4

2
d−1

4 −
α(α−β)−1−β2(d−1)/4

2
α−1(α−β)−1

−α−1(α−β)−1

)
,
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which is an element in N8=N8,2. Denote h=[h0, h1, h2, h3] :=κ8,2(g)∈A8,2. To show that g∈N ′8=N ′8,2,
it suffices check that h ∈A′8,2, i.e.,

h ⊥ [6, 4, 0, 2], h ⊥ [0, 2, 2, 0]

and h2
0−1≡ h1+h2 mod 16 by Lemma 3.11. All of these can be checked by hand (assuming d≡ 1 mod 8

and α− 1≡ β ≡ 0 mod 2), and we leave the details to the reader. �

By [Yang and Yin 2019, Lemma 3.5], the map

p : T (Q)\T (A f )/KT → Cl(d1)×Cl(d2), [t1, t2] 7→ ([t1], [t2])= ([a1], [a2]) (5-8)

is injective. Here a j is the ideal of E j associated to t j . If d1, d2 are co-prime, then [Yang and Yin
2019, Lemma 3.8] tells us that it is an isomorphism. If d1d2 is not a perfect square, this subgroup can
be identified with Gal(H/E) with H the composite of the ring class fields Hd j associated to the order
of discriminant d j (see Proposition 3.2 in [Li 2018]). This observation and the above lemma give the
following corollary.

Proposition 5.5. Let d j < 0 be co-prime, fundamental discriminants satisfying (1-3). For [a j ] ∈ Cl(d j ),
recall the class invariant f (a j ) defined in (1-4). Then for any s | 24

4s
∑

[a j ]∈Cl(d j ), j=1,2

log | f (a1)
24/s
− f (a2)

24/s
| =

∑
d|s

ε24/d log |9d(Z(W ))|, (5-9)

where ε := εd1εd2 = (−1)(d1+d2−2)/8 and Z(W ) is the big CM cycle defined in (5-6).

Proof. We may assume s = 24 for simplicity, as the other cases are the same. By applying Shimura’s
reciprocity law, Proposition 22 in [Gee 1999] showed that class invariants f (a j ) for [a j ] ∈ Cl(d j ) are
conjugates of each other under the Galois group. In particular, [loc. cit., (18)] implies

f (a j )= εd j (ζ
−1
48 f2(τ j ))

σt j = εd j ζ
−σt j
48 f

σt j
2 (τ

σt j
j )= εd j ζ

−t j t̄ j
48 δ(t j )f2(τ

σt j
j )

where the class t j ∈ (E j ⊗ A f )
× in Cl(d j ) is [a j ]. Here t j t̄ j can be understood to be an integer

modulo 48, and

δ(t j )=
(
√

2)σt j t̄ j

√
2

is an 8-th root of unit depending only on t j t̄ j mod 8, coming from the Fourier coefficients of f2. Note
that
√

2= ζ8+ ζ
−1
8 . Thus for t = (t1, t2) ∈ T (A f ), we have t1 t̄1 = t2 t̄2 and

log | f (a1)− f (a2)| = log |(ζ−1
48 f2(τ1))

σt1 − ε(ζ−1
48 f2(τ2))

σt2 | = log |f2(τ
σt1
1 )− εf2(τ

σt2
2 )|,
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which depends only on the image p(t)= ([a1], [a2]) ∈ Cl(d1)×Cl(d2). So by the isomorphism (5-8),∑
[a j ]∈Cl(d j ), j=1,2

log | f (a1)− f (a2)| =
∑

t∈T (Q)\T (A f )/KT

log |f2(τ
σt1
1 )− εf2(τ

σt2
2 )|

=

∑
(z,t)∈Z(W,σ+2 )

log |f2(z1)− εf2(z2)|(z1z2)=[(z,t)].

As the other three orbits are Galois conjugates of Z(W, σ+2 ), the sums over the other orbits are the same
as this one. Now the desired identity follows from Theorem 4.5. �

6. Incoherent Eisenstein Series and the proof of the Yui–Zagier conjecture

In this section, we will use the big CM value formula of Bruinier, Kudla and Yang [Bruinier et al. 2012]
(see also [Yang and Yin 2019, Theorem 2.6]) to prove the factorization formula for 9d(Z(W )) and the
Yui–Zagier conjecture. To do so, we need to review the associated incoherent Eisenstein series and
compute their Fourier coefficients.

6A. Incoherent Eisenstein series. Let F =Q(
√

D), E =Q(
√

d1,
√

d2), and W = E with F-quadratic
form QF (x) = dx x̄/

√
D as in Section 5. Here D = d1d2. Let χE/F be the quadratic Hecke character

of F associated to E/F. Then there is a SL2(AF )-equivariant map

λ=
∏

λv : S(W (AF ))→ I (0, χE/F ), λ(φ)(g)= ω(g)φ(0). (6-1)

Here I (s, χE/F ) = IndSL2(AF )
BAF

χE/F | · |
s is the principal series, whose sections (elements) are smooth

functions 8 on SL2(AF ) satisfying the condition

8(n(b)m(a)g, s)= χ(a)|a|s+18(g, s), b ∈ AF , a ∈ A×F .

Here B = N M is the standard Borel subgroup of SL2. Such a section is called factorizable if 8=
⊗
8v

with 8v ∈ I (s, χv). It is called standard if 8|SL2(ÔF )SO2(R)2
is independent of s. For a standard section

8 ∈ I (s, χ), its associated Eisenstein series is defined as

E(g, s,8)=
∑

γ∈BF\SL2(F)

8(γ g, s)

for <(s)� 0.
For φ ∈ S(V f )= S(W f ), let 8 f be the standard section associated to λ f (φ) ∈ I (0, χ f ). For each real

embedding σi : F ↪→ R, let 8σi ∈ I (s, χC/R)= I (s, χEσi /Fσi
) be the unique “weight one” eigenvector of

SL2(R) given by
8σi (n(b)m(a)kθ )= χC/R(a)|a|s+1eiθ ,

for b ∈ R, a ∈ R×, and kθ =
( cos θ
− sin θ

sin θ
cos θ

)
∈ SO2(R). We define for Eτ = (τ1, τ2) ∈ H2

E(Eτ , s, φ)= N(Ev)−1/2 E
(

gEτ , s,8 f ⊗

( ⊗
1≤i≤2

8σi

))
,
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where Ev= Im(Eτ), N(Ev)=
∏

i vi , and gEτ = (n(ui )m(
√
vi ))1≤i≤2. It is a (nonholomorphic) Hilbert modular

form of parallel weight 1 for some congruence subgroup of SL2(OF ). Following [Bruinier et al. 2012],
we further normalize

E∗(Eτ , s, φ)=3(s+ 1, χE/F )E(Eτ , s, φ),

where
3(s, χ)= Ds/2(π−(s+1)/20

( 1
2(s+ 1)

))2L(s, χE/F ). (6-2)

According to [Yang and Yin 2019], this Eisenstein series is incoherent in the sense of Kudla, and
E∗(Eτ , 0, φ)= 0 automatically. Write its central derivative via Fourier expansion

E∗,′(Eτ , 0, φ)=
∑
t∈F

a(Ev, t, φ)q t , q t
= e(Tr(tτ)), (6-3)

with Ev the imaginary part of Eτ ∈H2. Then it is known that a(t, φ)= a(Ev, t, φ) is independent of Ev when t
is totally positive. Finally, when φ =

⊗
p φp ∈ S(V f ) is factorizable, one has for t � 0 (the factor −4

comes from [Yang and Yin 2019, Proposition 2.7(1)(2)])

a(t, φ)=−4
d
ds

(∏
p

Wt,p(s, φ)
)∣∣∣∣

s=0
(6-4)

where
Wt,p(s, φ) :=

∫
Fp

ω(wn(b))(φp)(0)|a(wn(b))|spψp(−tb) db (6-5)

are the local Whittaker functions. Specializing Theorem 5.2 in [Bruinier et al. 2012] gives us the
following result.

Theorem 6.1 (Bruinier–Kudla–Yang). Let d j < 0 be fundamental discriminants satisfying d j ≡ 1 mod 8
and 3 - d j . For any 1 6= d | 24, let φd ∈ S(Vd(A f ) be associated to ud. Then we have

− log |9d(Z(W ))|4 = C(W, K )
∑

t∈F×,t�0,Tr(t)=1/d

a(t, φd), (6-6)

where Z(W ) is the big CM 0-cycle associated to d1, d2 defined in (5-6), and

C(W, K )=
deg(Z(W, z±σ2

))

3(0, χ)
= 2.

The rest of this section is to compute a(t, φd) and prove the Yui–Zagier conjecture. Unfortunately, φd

is not factorizable over F at the places dividing (d, 6). Instead, we have

φd = φd,2φd,3⊗p-6 φd,p.

Then for p - 6, the contribution of Wt,p(s, φd) is the same as in the case of Gross-Zagier (see [Yang and
Yin 2019]). Therefore, we are left with the local calculations at 2 and 3. Since 2 splits completely in
E/Q, we denote p1, p2 the two primes in F above 2. Also denote p3, p

′

3 the primes in F above 3. They
are the same if and only if

( D
3

)
=−1. The local calculations in Section 6B lead to the following result.
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Theorem 6.2. Let d j < 0 and d be the same as in Theorem 6.1, and let ε = ε1ε2 = (−1)(d1+d2−2)/8.
Suppose t = (a+

√
D)/(2d

√
D) ∈ F× is totally positive with a ∈Q. Then

a(t, φd)=−d2ε
24/dδ2(d2, t)×

{ ∑
p inert in E/F

p-3

(1+ ordp(t
√

D))ρ(6)(t
√

Dp−1)δ3(d3, t) log(Nm(p))

+ log 3
∑

p inert in E/F
p|3

ρ(2)(t
√

Dp−1)δ′3(d3, t)

}
(6-7)

if a ∈ Z and zero otherwise. The functions δp(dp, t) and δ′3(d3, t) are defined by

δ2(1, t) := 2(v2(Nm(t))− 1), v2(Nm(t))≥ 2,

δ2(2, t) :=
{

1 if v2(Nm(t))= 0,
v2(Nm(t))− 3 if v2(Nm(t))≥ 1,

δ2(4, t) :=


∓1 if Nm(2t)≡±1 mod 4,
1 if v2(Nm(t))= 0,

v2(Nm(t))− 3 if v2(Nm(t))≥ 1,

δ2(8, t) :=



1 if Nm(4t)≡ 3 mod 8,
−1 if Nm(4t)≡ 7 mod 8,
∓1 if Nm(2t)≡±1 mod 4,
1 if v2(Nm(t))= 0,

v2(Nm(t))− 3 if v2(Nm(t))≥ 1,

δ3(1, t) := ρ3(t), v3(Nm(t))≥ 0,

δ3(3, t) :=


2− 3

4

(
1−

( d1
3

))(
1−

( d2
3

))
if Nm(3t)≡ 1 mod 3,

−1 if Nm(3t)≡ 2 mod 3,(
1+

( d1
3

))
v3(Nm(t))+ 1−

(d1
3

)v3(Nm(t))−1 if v3(Nm(3t))≥ 1,

δ′3(d3, t) :=
{
v3(Nm(t))+ 1 if d3 = 1,
2v3(Nm(t))+ 3 if d3 = 3,

and zero otherwise. Here ρ(M)(a) := ρ(a(M)) is the number of integral ideals of E with relative
norm (to F) a(M), ρM(a) := ρ(a/a

(M)), and a(M) is the prime to M part of an ideal a .

Proof. To evaluate a(t, φ), it is convenient to introduce the “Diff” set of Kudla. For a totally positive
t ∈ F×, define

Diff(W, t) := {p :Wp does not represent t}.

Then |Diff(W, t)| is finite and odd. Furthermore if #Diff(W, t) > 1, then a(t, φ) vanishes. This is also
the case with the expression on the right-hand side of (6-7), since δ3(d3, t) = 0 if p3, p

′

3 ∈ Diff(W, t)
and ρ(6)(t

√
Dp) = 0 for every inert p if Diff(W, t) contains two primes coprime to 6. Therefore, we
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can suppose that Diff(W, t)= {p0} for a single prime p0 of F. In that case, every term with p 6= p0 on
the right-hand side of (6-7) vanishes. Given t = (a +

√
D)/(2d

√
D) ∈ F totally positive, the Fourier

coefficient a(t, φ) is given by

a(t, φd)=−4
d
ds

(W ∗t,2(s, φd,2)

γ (W2)

W ∗t,3(s, φd,3)

γ (W3)

∏
p-6∞

W ∗t,p(s, φp)

γ (Wp)

)∣∣∣∣
s=0
,

where γ (Wp) is the Weil index of Wp (see, e.g., Proposition 2.7 in [Yang and Yin 2019]).
Recall that p1, p2 and p3, p

′

3 are primes in F above 2 and 3 respectively. Since p1, p2 splits in E , they
are not in Diff(W, t) for any t . However, p3 and p′3 could appear in some Diff set if they are inert in E/F.
Now, if p0 - 3, then we can proceed as in the proof of Theorem 1.1 in [Yang and Yin 2019] to obtain

a(t, φd)=−2
W ∗t,2(0, φd,2)

γ (W2)

W ∗t,3(0, φd,3)

γ (W3)
ρ(6)(d

√
Dtp−1

0 )(1+ ordp0(t
√

D)) log Nm(p0).

By Lemma 6.5 and (6-13), we can replace 2W ∗t,2(0, φd,2)/γ (W2) with ε24/dd2δ2(d2, t). By Lemmas 6.7,
6.10 and 6.12, we can replace W ∗t,3(0, φd,3)/γ (W3) with δ3(d3, t) and arrive at the right-hand side.

If Diff(W, t)= {p0} with p0 | 3, then
( d j

3

)
=−1 and we can write

a(t, φd)=−4
W ∗t,2(0, φd,2)

γ (W2)

W ∗,′t,3(0, φd,3)

γ (W3)
ρ(6)(d

√
Dt).

We can again replace 2W ∗t,2(0, φd,2)/γ (W2) with ε24/dd2δ2(d2, t) and apply Lemma 6.12 to replace
2W ∗,′t,3(0, φd,3)/γ (W3) with δ′3(3, t) log 3. This finishes the proof. �

Yui and Zagier [1997] derived the conjectural factorization of NmH/Q( f (τ1)
24/s
− f (τ2)

24/s) from
the conjectural factorization of NmH/Q(824/s( f (τ1), f (τ2))), where 8r the r -th cyclotomic polynomial.
Since F(m) is the power of a rational prime `, we can define

F(m)= `γ (m), (6-8)

where γ (m)=
∏

p|m γp(m) with

γp(m) :=


ordp(m)+ 1 if ε(p)= 1,

1 if ε(p)=−1 and 2 | ordp(m),
1
2(ordp(m)+ 1) if ε(p)=−1 and 2 - ordp(m) (i.e., p = `).

(6-9)

The conjecture is then expressed in terms of how γ2(m) and γ3(m) decomposes, which are summarized
in two tables (see [Yui and Zagier 1997, p. 1653]). The theorem above is equivalent to this formulation of
the conjecture. As in [Yui and Zagier 1997], one can give a conjecture with an equivalent, but simplified,
expression. This is the content of Conjecture 1.5, which we prove now.
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Proof of Theorem 1.7. By Proposition 5.5 and Theorems 6.1, 6.2, we can write

4s
∑

[a j ]∈Cl(d j ), j=1,2

log | f (a1)
24/s
− f (a2)

24/s)|4

=−2
∑
d|s

ε24/d
∑

t∈F×,t�0,Tr(t)=1/d

a(t, φd)

= 2
∑
d|s

∑
t∈F×,t�0,Tr(t)=1/d

d2δ2(d2, t)

×

{
log 3

∑
p inert in E/F

p|3

ρ(2)(t
√

Dp−1)δ′3(d3, t)

+

∑
p inert in E/F

p-3

(1+ ordp(t
√

D))ρ(6)(t
√

Dp−1)δ3(d3, t) log(Nm(p))

}

= 2
∑

4
√

Dt̃∈OF ,t̃�0,Tr(t̃)=1/2

∑
d|s

d2δ2
(
d2,

2t̃
d

)
×

{
log 3

∑
p inert in E/F

p|3

ρ(2)
(2t̃

d

√
Dp−1)δ′3(d3,

2t̃
d

)
+

∑
p inert in E/F

p-3

(1+ ordp(t̃
√

D))ρ(6)(t̃
√

Dp−1)δ3
(
d3,

2t̃
d

)
log(Nm(p))

}

By Theorem 6.2, we have∑
d2|s2

d2δ2
(
d2,

2t̃
d

)
=

∑
d2|s2

d2δ2
(
d2,

2t̃
d2

)
,

∑
d2|1

d2δ2
(
d2,

2t̃
d2

)
= 2(v2(Nm(t̃))+ 1)= 2γ2(Nm(t̃)),

∑
d2|2

d2δ2
(
d2,

2t̃
d2

)
= 4

{
1 if v2(Nm(t̃))= 0,

v2(Nm(t̃))− 1 if v2(Nm(t̃))≥ 1,

∑
d2|4

d2δ2
(
d2,

2t̃
d2

)
= 8


1 if v2(Nm(t̃))≡−1 mod 4

or v2(Nm(t̃))= 2,
v2(Nm(t̃))− 3 if v2(Nm(t̃))≥ 3,

∑
d2|8

d2δ2
(
d2,

2t̃
d2

)
= 16


1 if v2(Nm(t̃))= 4

or v2(Nm(t̃))≡ 12 mod 16
or v2(Nm(t̃))≡ 3 mod 8,

v2(Nm(t̃))− 5 if v2(Nm(t̃))≥ 5.
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From this, it is easy to check that∑
d2|s2

d2δ2
(
d2,

2t̃
d

)
= 2s2

∑
r2|s2,m:=DNm(t̃/r2)∈Z,

m≡3 mod s2/r2

γ2(m), (6-10)

where we write s = s2s3 with sp the p-part of s. Similarly, we also have

κ3(s)s3
∑

r3|s3,m:=DNm(t̃/r3)∈Z,
m≡d1+d2−1 mod s3/r3

γ3(m)

=

{
1
2

∑
d3|s3

∑
p|3 ρ3(p

−1 t̃/3)δ′3
(
d3,

2t̃
d

)
if
( d1

3

)
=
(d2

3

)
=−1 and 2 - v3(Nm(t̃)),∑

d3|s3
δ3
(
d3,

2t̃
d

)
otherwise,

(6-11)

where κ3(s) ∈
{
1, 1

2

}
is the constant defined in (1-8). So suppose Diff(W, t̃) = {p0} with ` = Nm(p0).

Then substituting in these gives us

∑
d|s

d2δ2
(
d2,

2t̃
d

){
log 3

∑
p inert in E/F

p|3

ρ(2)
( 2t̃

d

√
Dp−1)δ′3(d3,

2t̃
d

)
+

∑
p inert in E/F

p-3

(1+ ordp(t̃
√

D))ρ(6)(t̃
√

Dp−1)δ3
(
d3,

2t̃
d

)
log(Nm(p))

}

= 4s
∑

r |s,m:=DNm(t̃/r)∈Z
m≡19D mod s/r

log(`)
∏
p|m

γp(m)= 4s
∑

r |s,m:=DNm(t̃/r)∈Z
m≡19D mod s/r

logF(m).

After writing t̃ = (
√

D+ a)/(4
√

D) with a ∈ Z in the summation, we obtain (1-9). �

6B. Local Calculations. We first need to write φd,p as a linear combination of
⊗

p|p φp for some
φp ∈ S(Ep)= S(Wp).

6B1. p = 2. In this subsection, we deal with the case p = 2. Since d j ≡ 1 mod 8, the prime 2 splits
completely. We fix δ, δ j ∈ Z×2 such that

δ2
= D, δ2

j = d j , δ1δ2 = δ. (6-12)

We also denote

δ j := −δ j , δ′ := −δ.

Note that

εd1εd2 =

(2
δ

)
. (6-13)
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For i = 1, 2, let pi be the two primes in F above 2, and Pi ,Pi the two primes in E above pi . Then the
local fields EPi and EPi

are isomorphic to Q2 via the map

σi : Fpi
∼=Q2,

√
D 7→ (−1)iδ,

σi : EPi
∼=Q2,

√
D 7→ (−1)iδ,

√
d j 7→ (−1)(i−1)( j−1)δ j ,

σi : EPi
∼=Q2,

√
D 7→ (−1)iδ,

√
d j 7→ −(−1)(i−1)( j−1)δ j .

Under these identifications, W2 =W ⊗Q Q2 =Wp1 ×Wp2 with

Wpi = Epi = EPi × EPi
∼=Q2

2, Qpi (y1, y2)= (−1)i d
δ

y1 y2.

Now we identify the Q2-quadratic space

σ : (V ⊗Q Q2, Q)∼= (Ep1, Qp1)× (Ep2, Qp2),

(
x3 x1

x4 x2

)
7→ (σ1(x), σ1(x̄), σ2(x), σ2(x̄)), (6-14)

with

x = x1+ x2
−1+
√

d1
2

+ x3
1+
√

d2
2
+ x4
−1+
√

d1
2

1+
√

d2
2
∈W2.

Under this isomorphism, we can identify S(V ⊗Q2) with S(Ep1 × Ep2)
∼= S(Ep1)⊗ S(Ep2), and map the

lattice Ld,2 := Ld⊗Z2 onto

L̃ :=
{

y = (y1, y2, y3, y4) ∈ Z4
2 :
∑

yi ∈ 2Z2

}
,

The Q2-quadratic form Q̃d on L̃ is given by

Q̃d(y) := −
d
δ
(y1 y2− y3 y4)= Qp1(y1, y2)+ Qp2(y3, y3).

Let
L0 = (2Z2)

4
= 2OEp1

× 2OEp2
= M̃1× M̃2

with M̃i being the OFpi
-lattice 2OEpi

. Then

L0 ⊂ L̃ ⊂ L̃ ′ ⊂ L ′0 =
1

4d2
L0 and L̃ ′ =

{
y =

1
2d2

(y1, y2, y3, y4) ∈
1

2d2
Z4

2 : yi + y j ≡ 0 mod 2
}
.

Notice that
φL̃ ◦ σ

−1
=

∑
yi∈Z/2Z∑

yi=0

φ(y1,y2)+M̃1
⊗φ(y3,y4)+M̃2

,

where φA = Char(A) for A⊂W2. To apply the general formula in [Yang et al. 2019], we define Mi = Z2
2

with quadratic form Qi (y1 y2) = (−1)i 4d
δ

y1 y2. Then (Mi , Qi ) ∼= (M̃i , Qpi ) via scaling by 2. For any
µ ∈ (Q2/Z2)

2, we denote
φµ = char(µ+Z2

2)

and view it as an element in S(Mi ) for both i = 1, 2 if µ ∈
( 1

4d2
Z2/Z2

)2.
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Now, we can apply this scaling map to φd,2 ◦ σ
−1, where φd,2 ∈ S(Ld,2) is the Schwartz function

associated to ud,2. We denote the result by φ̃d,2 ∈ S(M1×M2)∼= S(M1)⊗ S(M2), which will depend on
the choice of δ mod d2. We have listed them as follows.

Lemma 6.3. For δ j ∈ Z×2 and δ = δ1δ2 ∈ Z×2 , we have

φ̃d,2=


φL̃ , d2= 1,

φ0⊗φ1,δ+φ1,−δ⊗φ0, d2= 2,

2
(
(φ0+φ1,−δ)⊗φ2,δ+φ2,−δ⊗(φ0+φ1,δ)

)
, d2= 4,(

2
δd3

)
4
(
(φ0+φ1,δ)⊗φ3,δ+φ3,−δ⊗(φ0+φ1,−δ)+φ2,δ⊗φ3,5δ+φ3,−5δ⊗φ2,−δ

)
, d2= 8,

(6-15)

where for j = 1, 2, 3, r ∈ (Z/2 j+1Z)×

φ0 :=
∑

k∈Z/2Z

φ 1
2 (k,k)
−φ 1

2 (k,k+1), φ j,r : =
∑

a∈(Z/2 j+1)×

φµ(a;r, j)−φµ(a;r+2 j ; j),

are elements in S(Mi ) with

µ(a; r, j) :=
1

2 j+1 (a, ra−1) ∈ (Q2/Z2)
2.

Remark 6.4. Note that the support of u24,2 is the support of u8,2 after scaling by d3. This does not
affect φ j,r for j = 1, 2 but introduces the factor

( 2
d3

)
when j = 3, since φ3,rc2 =

( 2
c

)
φ3,r for any odd

integer c. Therefore this factor appears above when d2 = 8.

Proof. One can use Lemma 3.11 to check that the cosets on the right indeed appear. Then we have all of
them by counting. �

Now, we can apply the general Whittaker function formulas in [Yang et al. 2019] to obtain:

Lemma 6.5. Let δ2(d2, t) be defined as in Theorem 6.2. Then we have

W ∗t (0, φ̃d,2)

γ (W2)
=

(
2
δ

)24/d d2

2
δ2(d2, t)

for all totally positive t ∈ F× with Tr(t)= 1
d .

Proof. This can be checked case by case. For d2 = 1, this was already done in [Yang and Yin 2019].
Otherwise, we can apply Propositions 5.3 and 5.7 in [Yang et al. 2019] after scaling the lattice by 2 and
the quadratic form by 4 (i.e., variant 2 in [Yang et al. 2019]). We write ti = σi (t) ∈ Q2 and suppose
o(t1)≥ o(t2) with o(ti ) the 2-adic valuation of ti ∈Q2. The case o(t1)≤ o(t2) will be exactly the same.
Tables 1–6 contain the nonzero values of W ∗ti (0, φµi )/γ (Wpi ) for i = 1.



On a conjecture of Yui and Zagier 2231

o(t1) µ1 = (0, 0)
( 1

2 ,
1
2

) ( 1
2 , 0

)
1 0 1 0

≥ 2 o(t1)− 2 0 1

Table 1. d2 = 2, β =−8d3δ
−1.

o(t1) µ1 = (0, 0)
( 1

2 ,
1
2

) ( 1
2 , 0

) ( a
4 ,−

a−1δ
4

) ( a
4 ,

a−1(−δ+2)
4

)
t1 ∈ d3+ 4Z2 0 0 0 1

2 0
t1 ∈ −d3+ 4Z2 0 0 0 0 1

2

2 0 1 0 0 0

≥ 3 o(t1)− 3 0 1 0 0

Table 2. d2 = 4, β =−16d3δ
−1.

o(t1) µ1 = (0, 0)
( 1

2 ,
1
2

) ( 1
2 , 0

) ( a
4 ,

a−1δ
4

) ( a
4 ,

a−1(δ+2)
4

) ( a
8 ,

a−1δ−1

8

) ( a
8 ,

a−1(δ−1
+4)

8

)
t1 ∈ 1

2 (−d3+ 8Z2) 0 0 0 0 0 1
4 0

t1 ∈ 1
2 (3d3+ 8Z2) 0 0 0 0 0 0 1

4

t1 ∈ 2(−d3+ 4Z2) 0 0 0 1
2 0 0 0

t1 ∈ 2(d3+ 4Z2) 0 0 0 0 1
2 0 0

3 0 1 0 0 0 0 0
≥ 4 o(t1)− 4 0 1 0 0 0 0

Table 3. d2 = 8, β =−32d3δ
−1.

o(t1) µ2 =
( a

4 ,
a−1δ

4

) ( a
4 ,

a−1(δ+2)
4

)
≥ 1 1

2 0

Table 4. d2 = 2, β = 8d3δ
−1.

o(t1) µ2 =
( a

8 ,
a−1δ

8

) ( a
8 ,

a−1(δ+4)
8

)
0 0 1

4

≥ 1 1
4 0

Table 5. d2 = 4, β = 16d3δ
−1.

o(t1) µ2 =
( a

16 ,
a−1δd2

3
16

) ( a
16 ,

a−1(δd2
3+8)

16

) ( a
16 ,

5a−1δd2
3

16

) ( a
16 ,

a−1(5δd2
3+8)

16

)
−1 0 0 1

8 0

≥ 1 1
8 0 0 0

Table 6. d2 = 8, β = 32d3δ
−1.
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For i = 2, we write α(µ2, t2) := βµ2µ2 − t2 in the notation of [Yang et al. 2019]. When d2 = 2,
we have t2 ∈ 1

2(d
−1
3 + 4Z2) if o(t1) ≥ 1, since t1 + t2 = 1/(2d3). Then with β = 8d3δ

−1, we have
α(µ(a; δ, 1), t2)= β a

4
a−1δ

4 − t2 ∈ 2Z2. When d2 = 4, we have

t2 ∈


1
4 d−1

3 + 1+ 2Z2 if o(t1)= 0,
1
4 d−1

3 + 2Z2 if o(t1)≥ 1,

since t1+t2=1/(4d3). Then with β=16d3δ
−1, we have α(µ(a; δ, 2), t2)∈Z×2 , α(µ(a; δ+4, 2), t2)∈2Z2

if o(t1)= 0, and α(µ(a; δ, 2), t2) ∈ 2Z2, α(µ(a; δ+ 4, 2), t2) ∈ Z×2 if o(t1)≥ 1. When d2 = 8, we have

t2 ∈


1
8 d−1

3 +
1
2 d3+ 2Z2 if o(t1)=−1,

1
8 d−1

3 + 2Z2 if o(t1)≥ 1,

since t1+ t2 = 1/(8d3). Then with β = 32d3δ
−1, we have

α(µ(a; δd2
3, 3), t2) ∈

{
1
2 Z×2 if o(t1)=−1,

2Z2 if o(t1)≥ 1,

α(µ(a; 5δd2
3, 3), t2) ∈

{
2Z2 if o(t1)=−1,
1
2 Z×2 if o(t1)≥ 1,

and α(µ(a; δd2
3+ 8, 3), t2), α(µ(a; 5δd2

3+ 8, 3), t2) 6∈ 2Z2.
Putting these together, we see that when d2 = 2, we have

W ∗t (0, φ̃d,2)

γ (W2)
=

{
1 if o(t1)= 1,

o(t1)− 4 if o(t1)≥ 2.

Notice that v2(Nm(t))= o(t1t2)= o(t1)− 1. This proves the lemma for d2 = 2. When d2 = 4, we have

W ∗t (0, φ̃d,2)

γ (W2)
=


∓1 if t1 ∈ ±d3+ 4Z2,

1 if o(t1)= 2,
o(t1)− 5 if o(t1)≥ 3.

Notice that v2(Nm(t)) = o(t1t2) = o(t1)− 2. If t1 ∈ ±d3 + 4Z2, then 4t2 ∈ d−1
3 + 4Z2 and Nm(2t) =

4t1t2 ≡±1 mod 4. This proves the lemma for d2 = 4. Finally when d2 = 8, we have

(
2
δ

)W ∗t (0, φ̃d,2)

γ (W2)
=



1 if t1 ∈ 1
2(−d3+ 8Z2),

−1 if t1 ∈ 1
2(3d3+ 8Z2),

∓1 if t1 ∈ 2(±d3+ 4Z2),

1 if o(t1)= 3,
o(t1)− 6 if o(t1)≥ 4.

Notice that v2(Nm(t))= o(t1t2)= o(t1)−3. If t1 ∈ 1
2(−d3+4Z2), then 8t2 ∈ d−1

3 +4+8Z2 and Nm(4t)=
16t1t2≡ 3 mod 8. Similarly, if t1 ∈ 1

2(3d3+4Z2), then 8t2 ∈ d−1
3 +4+8Z2 and Nm(4t)= 16t1t2≡ 7 mod 8.

If t1 ∈ 2(±d3+4Z2), then 8t2 ∈ d−1
3 +8Z2 and Nm(2t)= 4t1t2≡±1 mod 4. This completes the proof. �
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6B2. p = 3. If d3 = 1, then φd,3 = Char(OE ⊗ Z3) and the calculations have been done before. So
suppose d3 = 3. There are 3 cases to consider.

•

(
di

3

)
= 1. •

(
d1

3

)
6=

(
d2

3

)
. •

(
di

3

)
=−1.

The first case is similar to the case p = 2 considered above. We again fix δi ∈ Z×3 square roots of di

and denote δ := δ1δ2. Then the analog of the map in (6-14) for p = 3, which we also call σ , identifies
Ld,3 = M2(Z3) with L̃3 := Z4

3, which has the quadratic form Q̃d(y) = −3d2
δ
(y1 y2 − y3 y4). Denote

φ̃d,3 := φd,3 ◦ σ
−1
∈ S(L̃3), where φd,3 is the Schwartz function associated to ud,3 ∈ C[Ad,3]. Then the

analog of Lemma 6.3 is as follows.

Lemma 6.6. For δi ∈ Z×3 and δ = δ1δ2 ≡±1 mod 3, we have

φ̃d,3 = φ0⊗φδ +φ−δ ⊗φ0+ 2φδ ⊗φ−δ,

where

φ0 := 2φ(0,0)− (φ 1
3 (0,1)
+φ 1

3 (1,0)
+φ 1

3 (0,2)
+φ 1

3 (0,2)
), φ±1 := φ 1

3 (1,±1)+φ 1
3 (2,±2).

are in S(Z2
3).

Proof. This follows from a straightforward calculations as in the case p = 2. �

Lemma 6.7. Suppose
( di

3

)
= 1. Then we have

W ∗t (0, φ̃d,3)

γ (W3)
=

{
2 if v3(Nm(t))=−2,

2v3(Nm(t)) if v3(Nm(t))≥−1,

for all totally positive t ∈ F× with Tr(t)= 1
d .

Proof. Apply Lemma 6.6 and Propositions 5.3, 5.7 in [Yang et al. 2019]. �

In the second case, the prime 3 is inert in F and splits into two primes P,P in E . We therefore fix
δ ∈Q3 such that δ2

= D, and denote Fδ :=Q3(δ) the quadratic extension of Q3 with Oδ ⊂ Fδ its ring
of integers, where 3 is inert. For any choice of δ j ∈ Fδ such that δ2

j = d j and δ1δ2 = δ, we can identify
W ⊗Q3 with Fδ × Fδ via

(a1+ b1
√

d1)⊗ (a2+ b2
√

d2) 7→ ((a1+ b1δ1)(a2+ b2δ2), (a1− b1δ1)(a2− b2δ2)).

This identifies the Q3-vector spaces V ⊗Q3 and Fδ × Fδ. The Z3-lattice L3d2 ⊗Z3 and its dual lattice
L ′3d2
⊗Z3 in V ⊗Q3 are then mapped to

L̃3 :=Oδ ×Oδ and L̃ ′3 := 3−1Oδ × 3−1Oδ,

respectively. The finite Z3-modules (L ′3d2
/L3d2)⊗Z3 and Oδ/3Oδ×Oδ/3Oδ are explicitly identified via

1
3d2

(
x3 x1

x4 x2

)
⊗Z3 7→

(
d−1

2 (x1+ x2− x3− x4+ (x4− x2)δ1− (x3+ x4)δ2+ x4δ),

d−1
2 (x1+ x2− x3− x4− (x4− x2)δ1+ (x3+ x4)δ2+ x4δ)

)
. (6-16)
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The latter can be viewed as the finite quadratic module of the Oδ-lattice OE ⊗Z3 ∼= Oδ ×Oδ with the
Fδ-quadratic form Qd,δ(y) := − 3d2

δ
y1 y2 for y = (y1, y2) ∈ Fδ × Fδ . Note that Oδ/3Oδ = (Z/3Z)[δ] is a

finite field of size 9.
Now let φ̃d,3 ∈ S(OE ⊗Z3) be the Schwartz function associated to φd,3 ∈ S(Ld,3) under the map in

(6-16). It is easy to check by hand the following lemma.

Lemma 6.8. Let δ, δ1, δ2 ∈Q3 be as above. Then

φ̃d,3 = 2
∑
µ∈S0

φµ−
∑
µ∈S1

φµ−
∑
µ∈S−1

φµ, (6-17)

where S j :=
{
µ ∈

( 1
3 Z/Z

)
[δ]×

( 1
3 Z/Z

)
[δ] : Qd,δ(µ)=

1
3(−d2+ jδ) ∈

( 1
3 Z/Z

)
[δ]
}

for j = 0,±1.

Remark 6.9. The size of S j is 8 for every j.

We can now apply Proposition 5.3 in [Yang et al. 2019] to find the value of the Whittaker function.

Lemma 6.10. Suppose
( d1

3

)
6=
( d1

3

)
. Then we have

W ∗t (0, φ̃d,3)

γ (W3)
=

{
2 if Nm(3t)≡ 1 mod 3,

−1 if Nm(3t)≡ 2 mod 3,

for all totally positive t ∈ F× with Tr(t)= 1
d .

Proof. First, β = −3d2/δ, the normalizing L-factor is L(1, χ) = 9
8 and the volume vol(OE , dβx) = 1

9 .
Suppose t = (δ+ a)/(6d2δ) ∈ Fδ. For µ ∈ S j , the quantity 3α(µ, t) is

3α(µ, t) := 3(Qd,δ(µ)− t)≡ (−d2+ jδ)− 2(d2δ)
−1(δ+ a)≡ ( j − d2a)δ mod 3

since δ2
= D ≡ 2 mod 3. Now 3α(µ, t) ≡ 0 mod 3 if and only if 3 | ( j − d2a). This happens when

3 | ( j, a), in which case µ ∈ S0 and Nm(3t)≡ 1+ a2
≡ 1 mod 3. The value of W ∗t (0, φ̃d,3)/γ (W3) is 2.

Otherwise if 3 -a and 3 | ( j−d2a), then µ∈ Sd2a and Nm(3t)≡2 mod 3. The value of W ∗t (0, φ̃d,3)/γ (W3)

is then −1. This finishes the proof. �

In the last case, we need to calculate both the value and derivative of the Whittaker function at s = 0
since 3 splits into the product of two inert primes p1, p2 in F. As in the setup of the previous two cases, we
fix δ, δi ∈Q3 such that δ2

i = di and δ = δ1δ2 ∈ Z3. Denote Ẽ :=Q3(δ1)=Q3(δ2) the quadratic extension
of Q3 with ring of integers Õ. This gives an identification

σi : F ⊗Q3 ∼=Q3 :
√

D 7→ (−1)iδ, σi : Epi
∼= Ẽ :

√
d j 7→ (−1)(i−1)( j−1)δ j .

Then the isomorphism in (5-1) induces V ⊗Q3 ∼=W ⊗Q3 = Ep1× Ep2
∼= Ẽ× Ẽ , with the quadratic form

on y ∈ Epi given by Qi (y) := (−1)i−1(3d2)/(
√

D)Nm(y). The lattice Ld,3 is then isometric to

L̃d,3 := Õ× Õ ⊂ Ẽ × Ẽ,

whose dual lattice is L̃ ′d,3 :=
1
3Õ ×

1
3Õ ⊂ Ẽ × Ẽ , with respect to the quadratic form Q̃d,δ(y) :=

−(3d2/δ)(Nm(y1)−Nm(y2)) for y = (y1, y2) ∈ Ẽ × Ẽ . Under this identification, the Schwartz function
φ̃d,3 ∈ S(L̃d,3) associated to φd,3 ∈ S(Ld,3) has the following decomposition.
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Lemma 6.11. Let δ, δ1, δ2 ∈Q3 be as above. Then

φ̃d,3 = 2
∑
µ∈S1

φµ⊗φ0+ 2
∑
µ∈S−1

φ0⊗φµ−
∑

µ1∈S−1,µ2∈S1

φµ1 ⊗φµ2 (6-18)

where S j :=
{
µ ∈ 1

3Õ/Õ : −
3
δ
Nm(µ)≡ j

3 mod Z3
}

for j =±1.

Now, we can again apply Proposition 5.3 in [Yang et al. 2019] to calculate the values and derivatives
of the Whittaker function.

Lemma 6.12. Suppose
( d1

3

)
=
(d1

3

)
=−1. Then we have

W ∗t (0, φd,3)

γ (W3)
=


−1 if v3(Nm(t))=−2,

2 if v3(Nm(t))≥ 0 is even,

0 otherwise,

W ∗,′t(0, φd,3)

γ (W3)
=

(
v3(Nm(t))+ 3

2

)
log 3 if v3(Nm(t))≥−1 is odd,

for all totally positive t ∈ F× with Tr(t)= 1
d .

Proof. Denote ti := σi (t) ∈ Q3 and o(ti ) its valuation. Since Tr(t) = 1/(3d2), either o(ti ) = −1
for both i = 1, 2, or o(ti ) ≥ 0 for exactly one of i = 1, 2. In the first case, it is easy to check that
Wti (s, φµ ⊗ φ0) and Wti (s, φ0 ⊗ φµ) are identically zero by Proposition 5.7 in [Yang et al. 2019]. If
we write t1 = (δ − a)/(2d23δ), t2 = (δ + a)/(2d23δ) with a ∈ Z3, then we must have a ∈ 3Z3 since
δ2
= D ∈ 1+ 3Z3 and

−2= o(t1)+ o(t2)= o(t1t2)=−2+ o(δ2
− a2)=−2+ o(1− a2).

That means for µ1 ∈ S−1 and µ2 ∈ S1, we have

α(µ1, t1)=−
3d2

δ
Nm(µ1)− t1 ≡−

d2

3
−
δ− a
2d23δ

≡ 0 mod Z3,

α(µ2, t2)=
3d2

δ
Nm(µ2)− t2 ≡−

d2

3
−
δ+ a
2d23δ

≡ 0 mod Z3.

By Proposition 5.3 in [Yang et al. 2019], γ (W3)
−1Wti (0, φµ1 ⊗φµ2)=

1
16 for any (µ1, µ2) ∈ S−1× S1.

Since S j has size 4 for j =±1, we obtain

Wt(0, φd,3)

γ (W3)
=−1

when v3(Nm(t))= o(t1)+ o(t2)=−2.
In the second case, suppose o(t1)≥ 0. Then Propositions 5.3 and 5.7 in [Yang et al. 2019] imply that

Wti (s, φµ1 ⊗φµ2) vanishes identically for (µ1, µ2) ∈ S−1× S1 and

W ∗t1(0, φ0)

γ (Wp1)
=

1+ (−1)o(t1)−1

2
,

W ∗t2(0, φµ)
γ (Wp2)

= L(1, χp2)3
−1
=

1
4
,
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W ∗,′t1(0, φ0)

γ (Wp1)
=

2o(t1)+ 1
2

log(3) when 2 | o(t1)

whenµ∈ S1 as α(µ, t2)=−(d2Nm(µ))/(3δ)−t2∈ d2
3 −t2+Z3=Z3. Since v3(Nm(t))=o(t1t2)=o(t1)−1,

we obtain the lemma when o(t1)≥ 0. The case o(t2)≥ 0 holds similarly. �

Appendix

We record here the set κd,2(N ′d,2)⊂Ad,2=Z/d2Z×Z/2d2Z×Z/2d2Z×Z/d2Z. Note that the group N ′d,2
and the map d3 · κd,2 only depend on d2. This helps with checking Lemma 3.11.

κ1,2(N ′1,2)= κ3,2(N ′3,2)= {[0, 0]}, κ2,2(N ′2,2)= κ6,2(N ′6,2)= {[1, 0, 0, 1], [1, 2, 2, 1]},

κ4,2(N ′4,2)= κ12,2(N ′12,2)={
[1, 2, 6, 3], [1, 6, 2, 3], [1, 0, 0, 1], [1, 4, 4, 1], [3, 6, 2, 1], [3, 2, 6, 1], [3, 0, 0, 3], [3, 4, 4, 3]

}
.

κ8,2(N ′8,2)={
[1, 2, 14, 7], [1, 6, 10, 7], [1, 10, 6, 7], [1, 14, 2, 7], [1, 0, 0, 1], [1, 4, 12, 1], [1, 8, 8, 1], [1, 12, 4, 1],

[3, 14, 10, 5], [3, 2, 6, 5], [3, 6, 2, 5], [3, 10, 14, 5], [3, 8, 0, 3], [3, 12, 12, 3], [3, 0, 8, 3], [3, 4, 4, 3],

[5, 2, 6, 3], [5, 6, 2, 3], [5, 10, 14, 3], [5, 14, 10, 3], [5, 8, 0, 5], [5, 12, 12, 5], [5, 0, 8, 5], [5, 4, 4, 5],

[7, 14, 2, 1], [7, 2, 14, 1], [7, 6, 10, 1], [7, 10, 6, 1], [7, 0, 0, 7], [7, 4, 12, 7], [7, 8, 8, 7], [7, 12, 4, 7]
}
.

κ24,2(N ′24,2)= κ24,2(N ′8,2)= 3−1
· κ8,2(N ′8,2)={

[3, 6, 10, 5], [3, 2, 14, 5], [3, 14, 2, 5], [3, 10, 6, 5], [3, 0, 0, 3], [3, 12, 4, 3], [3, 8, 8, 3], [3, 4, 12, 3],

[1, 10, 14, 7], [1, 6, 2, 7], [1, 2, 6, 7], [1, 14, 10, 7], [1, 8, 0, 1], [1, 4, 4, 1], [1, 0, 8, 1], [1, 12, 12, 1],

[7, 6, 2, 1], [7, 2, 6, 1], [7, 14, 10, 1], [7, 10, 14, 1], [7, 8, 0, 7], [7, 4, 4, 7], [7, 0, 8, 7], [7, 12, 12, 7],

[5, 10, 6, 3], [5, 6, 10, 3], [5, 2, 14, 3], [5, 14, 2, 3], [5, 0, 0, 5], [5, 12, 4, 5], [5, 8, 8, 5], [5, 4, 12, 5]
}
.

Here we also include an explicit example for Theorem 1.7. Let d1 = −31, d2 = −127, which have
class numbers 3 and 5 respectively and satisfy d j ≡ 17 mod 24. Then the minimal polynomials of the
invariants f

([
1, 1

2(1+
√

d j )
])

are

g1(x)= x3
+ x − 1, g2(x)= x5

− x4
− 2x3

+ x2
+ 3x − 1. (6-19)

Table 7 lists the values of F(m) for various m. By the Gross–Zagier theorem, one obtains J (d1, d2) by
simply takes the product of all the numbers in the fourth column. For fs(d1, d2), one takes product of
the entries F

( m
4r2

)
over all the m’s in the table and r | s satisfying m ≡ 4 · 19(d1+ d2− 1) mod 4sr . This

congruence condition eliminates many entries, especially if s is large. For example, we have

f24(d1, d2)=
(
F
(

2235

4

)
F
(

2433

4·22

)
F
(

2235

4·32

)
F
(

2433

4·62

))1/2
= 34

by Theorem 1.7. One can then immediately check that this is the absolute value of the resultant of the
minimal polynomials g1, g2 in (6-19).
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a m m mod 96 F(m) F
(m

22

)
F
(m

42

)
F
(m

82

)
F
( m

162

)
F
(m

62

)
F
( m

122

)
F
( m

242

)
F
( m

482

)
1 23

· 3 · 41 24 38 34 1 1 1 1 1 1 1

3 2 · 491 22 4912 1 1 1 1 1 1 1 1

5 2 · 3 · 163 18 34 1 1 1 1 1 1 1 1

7 22
· 35 12 39 33 1 1 1 32 1 1 1

9 22
· 241 4 2413 241 1 1 1 1 1 1 1

11 2 · 32
· 53 90 532 1 1 1 1 1 1 1 1

13 2 · 3 · 157 78 34 1 1 1 1 1 1 1 1

15 25
· 29 64 296 294 292 1 1 1 1 1 1

17 24
· 3 · 19 48 310 36 32 1 1 1 1 1 1

19 2 · 3 · 149 30 34 1 1 1 1 1 1 1 1

21 2 · 19 · 23 10 234 1 1 1 1 1 1 1 1

23 22
· 3 · 71 84 36 32 1 1 1 1 1 1 1

25 22
· 32
· 23 60 233 23 1 1 1 23 1 1 1

27 2 · 401 34 4012 1 1 1 1 1 1 1 1

29 2 · 32
· 43 6 432 1 1 1 1 1 1 1 1

31 23
· 3 · 31 72 38 34 1 1 1 1 1 1 1

33 23
· 89 40 894 892 1 1 1 1 1 1 1

35 2 · 3 · 113 6 34 1 1 1 1 1 1 1 1

37 2 · 3 · 107 66 34 1 1 1 1 1 1 1 1

39 22
· 151 28 1513 151 1 1 1 1 1 1 1

41 22
· 3 · 47 84 36 32 1 1 1 1 1 1 1

43 2 · 32
· 29 42 292 1 1 1 1 1 1 1 1

45 2 · 239 94 2392 1 1 1 1 1 1 1 1

47 24
· 33 48 310 36 32 1 1 33 3 1 1

49 27
· 3 0 38 36 34 32 1 1 1 1 1

51 2 · 167 46 1672 1 1 1 1 1 1 1 1

53 2 · 3 · 47 90 34 1 1 1 1 1 1 1 1

55 22
· 3 · 19 36 36 32 1 1 1 1 1 1 1

57 22
· 43 76 433 43 1 1 1 1 1 1 1

59 2 · 3 · 19 18 34 1 1 1 1 1 1 1 1

61 2 · 33 54 34 1 1 1 1 1 1 1 1

Table 7. Values of F for (d1, d2)= (−31,−127).
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On iterated product sets with shifts, II
Brandon Hanson, Oliver Roche-Newton and Dmitrii Zhelezov

The main result of this paper is the following: for all b ∈ Z there exists k = k(b) such that

max{|A(k)|, |(A+ u)(k)|} ≥ |A|b,

for any finite A ⊂ Q and any nonzero u ∈ Q. Here, |A(k)| denotes the k-fold product set {a1 · · · ak :

a1, . . . , ak ∈ A}.
Furthermore, our method of proof also gives the following l∞ sum-product estimate. For all γ > 0

there exists a constant C = C(γ ) such that for any A ⊂ Q with |AA| ≤ K |A| and any c1, c2 ∈ Q \ {0},
there are at most K C

|A|γ solutions to

c1x + c2 y = 1, (x, y) ∈ A× A.

In particular, this result gives a strong bound when K = |A|ε , provided that ε > 0 is sufficiently small,
and thus improves on previous bounds obtained via the Subspace Theorem.

In further applications we give a partial structure theorem for point sets which determine many
incidences and prove that sum sets grow arbitrarily large by taking sufficiently many products.

We utilize a query-complexity analogue of the polynomial Freiman–Ruzsa conjecture, due to Pälvölgyi
and Zhelezov (2020). This new tool replaces the role of the complicated setup of Bourgain and Chang
(2004), which we had previously used. Furthermore, there is a better quantitative dependence between the
parameters.

1. Introduction

1.1. Background and statement of main results. Let A be a finite set of rational numbers and let u ∈Q

be nonzero. In this article we wish to investigate the sizes of the k-fold product sets

A(k) := {a1 · · · ak : a1, . . . , ak ∈ A} and (A+ u)(k) = {(a1+ u) · · · (ak + u) : a1, . . . , ak ∈ A}.

This is an instance of a sum-product problem. Recall that the Erdős and Szemerédi [1983] sum-product
conjecture states that, for all ε > 0 there exists a constant c(ε) > 0 such that

max{|A+ A|, |AA|} ≥ c(ε)|A|2−ε

holds for any A ⊂ Z. Here A+ A := {a+ b : a, b ∈ A} is the sum set of A, and AA is another notation
for A(2). Erdős and Szemerédi also made the more general conjecture that for any finite A ⊂ Z,

max{|k A|, |Ak
|} ≥ c(ε)|A|k−ε,

MSC2010: primary 11B99; secondary 11D72.
Keywords: sum-product problem, S-units, weak Erdős–Szemerédi, unbounded growth conjecture, subspace theorem.
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where k A := {a1+· · ·+ak : a1, . . . , ak ∈ A} is the k-fold sum set. Both of these conjectures are wide open,
and it is natural to also consider them for the case when A is a subset of R or indeed other fields. The
case when k = 2 has attracted the most interest. See, for example, [Konyagin and Shkredov 2015; 2016;
Solymosi 2009; Tao and Vu 2006] for more background on the original Erdős–Szemerédi sum-product
problem.

Most relevant to our problem is the case of general (large) k. Little is known about the Erdős–Szemerédi
conjecture in this setting, with the exception of the remarkable series of work of Chang [2003] and
Bourgain and Chang [2004]. This culminated in the main theorem of [Bourgain and Chang 2004]: for all
b ∈ R there exists k = k(b) ∈ Z such that

max{|k A|, |Ak
|} ≥ |A|b (1)

holds for any A ⊂Q. On the other hand, it appears that we are not close to proving such a strong result
for A ⊂ R.

In the same spirit as the Erdős–Szemerédi conjecture, it is expected that an additive shift will destroy
multiplicative structure present in A. In particular, one expects that, for a nonzero u, at least one of |A(k)|
or |(A+ u)(k)| is large. The k = 2 version of this problem was considered in [Garaev and Shen 2010]
and [Jones and Roche-Newton 2013]. The main result of this paper is the following analogue of the
Bourgain–Chang theorem.

Theorem 1.1. For all b ∈ Z, there exists k = k(b) such that for any finite set A ⊂ Q and any nonzero
rational u,

max{|Ak
|, |(A+ u)k |} ≥ |A|b.

This paper is a sequel to [Hanson et al. 2019], in which the main result was the following:

Theorem 1.2. For any finite set A ⊂Q with |AA| ≤ K |A|, any nonzero u ∈Q and any positive integer k,

|(A+ u)(k)| ≥
|A|k

(8k4)kK .

The proof of this result was based on an argument that Chang [2003] introduced to give similar bounds
for the k-fold sum set of a set with small product set. Theorem 1.2 is essentially optimal when K is of
the order c log|A|, for a sufficiently small constant c = c(k). However, the result becomes trivial when K
is larger, for example if K = |A|ε and ε > 0. The bulk of this paper is devoted to proving the following
theorem, which gives a near optimal bound for the size of (A+ u)(k) when K = |A|ε, for a sufficiently
small but positive ε.

Theorem 1.3. Given 0 < γ < 1
2 , there exists a positive constant C = C(γ, k) such that for any finite

A ⊂Q with |AA| = K |A| and any nonzero rational u,

|(A+ u)(k)| ≥
|A|k(1−γ )−1

K Ck .
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In fact, we prove a more general version of Theorem 1.3 in terms of certain weighted energies and so-
called 3-constants (see Theorem 3.6 for the general statement that implies Theorem 1.3 — see Sections 2
and 3 for the relevant definitions of energy and 3-constants). This more general result is what allows us
to deduce Theorem 1.1.

1.2. A subspace type theorem — an l∞ sum-product estimate. It appears that Theorem 1.1, as well as
the forthcoming generalized form of Theorem 1.3, lead to some interesting new applications. To illustrate
the strength of these sum-product results, we present three applications in this paper.

Our main application concerns a variant of the celebrated subspace theorem by Evertse, Schmidt and
Schlikewei [Evertse et al. 2002] which, after quantitative improvements by Amoroso and Viada [2009],
reads as follows: Suppose a1, . . . , ak ∈ C∗, α1, . . . , αr ∈ C∗ and define

0 = {α
z1
1 · · ·α

zr
r , zi ∈ Z},

so 0 is a free multiplicative group of rank r .1 Consider the equation

a1x1+ a2x2+ · · ·+ ak xk = 1 (2)

with ai ∈ C∗ viewed as fixed coefficients and xi ∈ 0 as variables. A solution (x1, . . . , xk) to (2) is called
nondegenerate if for any nonempty J ( {1, . . . , k}∑

i∈J

ai xi 6= 0.

Theorem 1.4 (the subspace theorem [Evertse et al. 2002; Amoroso and Viada 2009]). The number A(k, r)
of nondegenerate solutions to (2) satisfies the bound

A(k, r)≤ (8k)4k4(k+kr+1). (3)

The subspace theorem dovetails nicely to the following version of the Freiman lemma.

Theorem 1.5. Let (G, ·) be a torsion-free abelian group and A ⊂ G with |AA| < K |A|. Then A is
contained in a subgroup G ′ < G of rank at most K .

Now assume for simplicity that A ⊂ Q and |AA| ≤ K |A|. Let us call such sets (this definition
generalizes of course to an arbitrary ambient group) K -almost subgroups.2

We now show that it is natural to expect that the subspace theorem generalizes to K -almost subgroups
with K taken as a proxy for the group rank. A straightforward corollary of Theorems 1.5 and 1.4 is as
follows.

1The original theorem is formulated in a more general setting, namely for the division group of 0, but we will stick to the
current formulation for simplicity.

2One could have used a more general framework of K -approximate subgroups introduced by Tao. We decided to introduce a
simpler definition in order to avoid technicalities. However, in the abelian setting the definitions are essentially equivalent.
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Corollary 1.6 (subspace theorem for K -almost subgroups). Let A be a K -almost subgroup. Then the
number A(k, K ) of nondegenerate solutions (x1, x2, . . . , xk) ∈ Ak to

c1x1+ c2x2+ · · ·+ ck xk = 1

with fixed coefficients ci ∈ C∗ is bounded by

A(k, K )≤ (8k)4k4(k+kK+1).

Similarly to (1), the bound of Corollary 1.6 becomes trivial when A is large and K is larger than
c log|A| for some small c > 0.

We conjecture that a much stronger polynomial bound holds.

Conjecture 1. There is a constant c(k) such that Corollary 1.6 holds with the bound

A(k, K )≤ K c(k).

We can support Conjecture 1 with a special case k = 2 and A ⊂Q, ci ∈Q and a somewhat weaker
estimate, which we see as a proxy for the Beukers–Schlikewei theorem [Beukers and Schlickewei 1996].

Theorem 1.7 (weak Beukers–Schlikewei for K -almost subgroups). For any γ > 0 there is C(γ ) > 0 such
that for any K -almost subgroup A ⊂ Q and fixed nonzero c1, c2 ∈ Q the number A(2, K ) of solutions
(x1, x2) ∈ A2 to

c1x1+ c2x2 = 1

is bounded by

A(2, K )≤ |A|γ K C .

One can view Theorem 1.7 as an l∞ version of the weak Erdős–Szemerédi sum-product conjecture.
The weak Erdős–Szemerédi conjecture is the statement that, if |AA| ≤ K |A| then |A+ A| ≥ K−C

|A|2 for
some positive absolute constant C . For A ⊂ Z, this result was proved in [Bourgain and Chang 2004], but
the conjecture remains open over the reals.

A common approach to proving sum-product estimates is to attempt to show that, for a set A with
small product set, the additive energy of A, which is defined as the quantity

E+(A) := |{(a, b, c, d) ∈ A4
: a+ b = c+ d}|,

is small. Indeed, this was the strategy implemented in [Chang 2003] and [Bourgain and Chang 2004], the
latter of which showed that,3 for all γ > 0, there is a constant C = C(γ ) such that for any A ⊂Q with
|AA| ≤ K |A|,

E+(A)≤ K C
|A|2+γ . (4)

3This is something of an over-simplification, as [Bourgain and Chang 2004] in fact proved a much more general result which
bounded the multifold additive energy with weights attached.
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Since there are at least |A|2 trivial solutions when {a, b} = {c, d}, this bound is close to best possible. It
then follows from a standard application of the Cauchy–Schwarz inequality that

|A+ A| ≥
|A|2−γ

K C .

Defining the representation function rA+A(c)= |{(a1, a2) ∈ A× A : a1+ a2 = c}|, it follows that

E+(A)=
∑

x

rA+A(x)2,

and so bounds for the additive energy can be viewed as l2 estimates for this representation function.
Theorem 1.7 gives the stronger l∞ estimate: it says that, if |AA| ≤ K |A| then rA+A(c)≤ K C

|A|γ for
all c 6= 0. This implies (4), and thus in turn the weak Erdős–Szemerédi sum-product conjecture. We prove
Theorem 1.7 in Section 4.

Remark. It is highly probable that our method can be combined with the ideas of [Bourgain and Chang
2009] which would generalize Theorem 1.7 to K -almost subgroups consisting of algebraic numbers of
degree at most d (though not necessarily contained in the same field extension). The upper power C is
going to depend on d then, so the putative bound (using the notation of Theorem 1.7) is

A(2, K )≤ C ′(d)|A|γ K C(γ,d)

with some C,C ′ > 0. We are going to consider this matter in detail elsewhere. Note, however, that
proving a similar statement with no dependence on d seems to be a significantly harder problem.

1.3. Further applications.

1.3.1. An inverse Szemerédi–Trotter theorem. Theorem 1.7 can be interpreted as a partial inverse to the
Szemerédi–Trotter theorem. The Szemerédi–Trotter theorem states that, if P is a finite set of points and L
is a finite set of lines in R2, then the number of incidences I (P, L) between P and L satisfies the bound

I (P, L) := |{(p, l) ∈ P × L : p ∈ l}| = O(|P|2/3|L|2/3+ |P| + |L|). (5)

The term |P|2/3|L|2/3 above is dominant unless the sizes of P and L are rather imbalanced. The
Szemerédi–Trotter theorem is tight, up to the multiplicative constant.

It is natural to consider the inverse question: for what sets P and L is it possible that I (P, L) =
�(|P|2/3|L|2/3)? The known constructions of point sets which attain many incidences appear to all have
some kind of lattice like structure. This perhaps suggests the loose conjecture that point sets attaining
many incidences must always have some kind of additive structure, although such a conjecture seems to
be far out of reach to the known methods.

However, with an additional restriction that P = A× A with A⊂Q, Theorem 1.1 leads to the following
partial inverse theorem, which states that if A has small product set then I (P, L) cannot be maximal.
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Theorem 1.8. For all γ ≥ 0 there exists a constant C = C(γ ) such that the following holds. Let A be a
finite set of rationals such that |AA| ≤ K |A| and let P = A× A. Then, for any finite set L of lines in the
plane, I (P, L)≤ 3|P| + |A|γ K C

|L|.

In fact, not only does this show that I (A× A, L) cannot be maximal when |AA| is small, but better still
the number of incidences is almost bounded by the trivial linear terms in (5). The insistence that the point
set is a direct product is rather restrictive. However, since many applications of the Szemerédi–Trotter
Theorem make use of direct products, it seems likely that Theorem 1.8 could be useful. The proof is
given in Section 5.

1.3.2. Improved bound for the size of an additive basis of a set with small product set. Theorem 1.7
also yields the following application concerning the problem of bounding the size of an additive basis
considered in [Shkredov and Zhelezov 2018]. We can significantly improve the bound in the rational
setting, pushing the exponent in (6) from 1

2 +
1

442 − oε(1) to 2
3 − oε(1) in the limiting case K = |A|ε .

Theorem 1.9. For any γ > 0 there exists C(γ ) such that for an arbitrary A ⊂Q with |AA| = K |A| and
B, B ′ ⊂Q,

S := |{(b, b′) ∈ B× B ′ : b+ b′ ∈ A}| ≤ 2|A|γ K C min{|B|1/2|B ′| + |B|, |B ′|1/2|B| + |B ′|}.

In particular, for any γ > 0 there exists C(γ ) such that if A ⊂ B+ B then

|B| ≥ |A|2/3−γ K−C . (6)

The proof of Theorem 1.9 is given in Section 5.

Remark. During the preparation of the manuscript we became aware that Cosmin Pohoata has indepen-
dently proved Theorem 1.9 using an earlier result of Chang and by a somewhat different method.

1.3.3. Unlimited growth for products of difference sets. It was conjectured in [Balog et al. 2017] that for
any b ∈ R there exists k = k(b) ∈ N such that for all A ⊂ R

|(A− A)k | ≥ |A|b.

In another application of Theorem 1.1, we give a positive answer to this question under the additional
restriction that A ⊂Q. In fact, we prove the following stronger statement.

Theorem 1.10. For any b ∈ R there exists k = k(b) ∈N such that for all A⊂Q and B ⊂Q with |B| ≥ 2,

|(A+ B)k | ≥ |A|b.

The proof is given in Section 5.

1.4. Asymptotic notation. Throughout the paper, the standard notation �, � is applied to positive
quantities in the usual way. Saying X � Y or Y � X means that X ≥ cY , for some absolute constant
c > 0. The expression X ≈ Y means that both X � Y and X � Y hold.
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1.5. The structure of the rest of this paper. In Section 2, we introduce a new kind of mixed energy, and
establish some initial bounds on this energy which are strong when the set A is defined by relatively few
primes (c log|A| for a sufficiently small constant c). The structure of these arguments are similar to those
introduced by Chang [2003], and also used by the authors in [Hanson et al. 2019].

The goal of Section 3 is to prove the main technical result of the paper, Theorem 3.6. The statement
uses the language of 3-constants, which is a robust generalization of additive energy, and so we must
first define what these constants are and identify some of their crucial properties. We also introduce the
notion of query complexity, which is nicely tuned in to the techniques used and results established in
Section 2. An essential tool in converting the bounds from Section 2 into strong bounds for 3-constants
is a deep new result of Zhelezov and Pálvölgyi [2020].

In Section 4, we use Theorem 3.6 to conclude the proofs of the main results of this paper, Theorems 1.1,
1.3 and 1.7. Finally, in Section 5, we give proofs of further applications of our main results.

2. A Chang-type bound for the mixed energy

Different kinds of energies play a pivotal role in the work of Chang [2003] and Bourgain and Chang
[2004], as well as [Hanson et al. 2019]. In [Chang 2003], it was proved that, for any finite set of rationals
A with |AA| ≤ K |A|, the k-fold additive energy, which is defined as the number of solutions to

a1+ · · ·+ ak = ak+1+ · · · a2k, (a1, . . . , a2k) ∈ A2k, (7)

is at most (2k2
− k)kK

|A|k . A simple application of the Cauchy–Schwarz inequality then implies that the
k-fold sum set satisfies the bound

|k A| ≥
|A|k

(2k2− k)kK .

Bound (7) is close to optimal when K = c log|A|, but becomes trivial when K = |A|ε. In [Bourgain and
Chang 2004], (a weighted version of) this bound was used as a foundation, and developed considerably
courtesy of some intricate decoupling arguments, in order to prove a bound for the k-fold additive energy
which remains very strong when K is of the order |A|ε.

In [Hanson et al. 2019], we followed a similarly strategy to that of [Chang 2003], proving that for any
finite set of rationals A with |AA| ≤ K |A| and any nonzero rational u, the k-fold multiplicative energy of
A+ u, which is defined as the number of solutions to

(a1+ u) · · · (ak + u)= (ak+1+ u) · · · (a2k + u), (a1, . . . , a2k) ∈ A2k, (8)

is at most (Ck2)kK
|A|k . Unfortunately, in adapting the approach of [Chang 2003] in order to bound

the number of solutions to (8) in [Hanson et al. 2019], we encountered some difficulties with dilation
invariance which made the argument rather more complicated, and we were unable to marry our methods
with those of [Bourgain and Chang 2004] to obtain a strong bound when K is of order |A|ε.



2246 Brandon Hanson, Oliver Roche-Newton and Dmitrii Zhelezov

In this paper, we modify the approach of [Hanson et al. 2019] by working with a different form of
energy. Consider the following representation function:

rk(x, y)= |{(a1, . . . , ak) ∈ Ak
: a1 · · · ak = x, (a1+ u) · · · (ak + u)= y}|.

Then, because rk is supported on A(k)× (A+ u)(k), it follows from the Cauchy–Schwarz inequality that

|A|2k
=

( ∑
(x,y)∈A(k)×(A+u)(k)

rk(x, y)
)2

≤ |A(k)||(A+ u)(k)|
∑

(x,y)∈A(k)×(A+u)(k)

rk(x, y)2. (9)

The latter sum is the quantity

Ẽk(A; u) :=
∣∣∣∣{(a1, . . . , ak, b1, . . . , bk) ∈ A2k

:

k∏
i=1

ai =

k∏
i=1

bi ,

k∏
i=1

(ai + u)=
k∏

i=1

(bi + u)
}∣∣∣∣.

We summarize this in the following lemma.

Lemma 2.1. For any finite set A ⊂ R, any u ∈ R \ {0} and any integer k ≥ 2, we have

|A|2k
≤ |A(k)||(A+ u)(k)|Ẽk(A; u).

In particular,
|A|k

Ẽk(A; u)1/2
≤max{|A(k)|, |(A+ u)(k)|}.

Our goal is to estimate this energy and to show that, at least for sets of rationals, it cannot ever be too
big.

In this section we seek to give an initial upper bound for Ẽk(A; u). The strategy is close to that of
Chang [2003]. There are also clear similarities with the prequel to this paper [Hanson et al. 2019].

To do this, as in [Hanson et al. 2019], we will write Ẽk(A; u) in terms of Dirichlet polynomials. In
this case, our Dirichlet polynomials will be functions of the form

F(s1, s2)=
∑

(a,b)∈Q2

f (a, b)
as1bs2

where f :Q2
→ C is some function of finite support. It will also be more convenient to count weighted

energy. For wa a sequence of nonnegative weights on A, let

Ẽk,w(A; u)=
∑

a1···ak=b1···bk
(a1+u)···(ak+u)=(b1+u)···(bk+u)

wa1 · · ·wakwb1 · · ·wbk .

Lemma 2.2. Let A be a finite set of rational numbers and let u be a nonzero rational number. Then, for
any integer k ≥ 2, we have

Ẽk,w(A; u)= lim
T→∞

1
T 2

∫ T

0

∫ T

0

∣∣∣∣∑
a∈A

waai t1(a+ u)i t2

∣∣∣∣2k

dt1dt2.
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Proof. Expanding, the double integral on the right hand side is equal to∑
a1,...,ak∈A

∑
b1,...,bk∈A

wa1 · · ·wakwb1 · · ·wbk

·

∫ T

0
(a1 · · · akb−1

1 · · · b
−1
k )i t1 dt1

∫ T

0
((a1+ u) · · · (ak + u)(b1+ u)−1

· · · (bk + u)−1)i t2 dt2.

Now
1
T

∫ T

0
(u/v)i t dt =

{
1 if u = v,
Ou,v(T−1) if u 6= v.

From this, the lemma follows. �

Let ‖·‖2k be the standard norm in L2k([0, T ]2), normalized such that ‖1‖2k = 1. So,

‖ f ‖2k :=

(
1

T 2

∫ T

0

∫ T

0
| f (t)|2kdt

)1/2k

.

Lemma 2.3. Let J be a set of integers and decompose it as J = J1 ∪ · · · ∪ JN . For each j ∈ J let
f j :R×R→C be a function belonging to L2k(R2) for every integer k ≥ 2. Then, for every integer k ≥ 2,

lim
T→∞

(
1

T 2

∫ T

0

∫ T

0

∣∣∣∣∑
j∈J

f j (t1, t2)
∣∣∣∣2k

dt1dt2

)1/k

≤ N
N∑

n=1

lim
T→∞

(
1

T 2

∫ T

0

∫ T

0

∣∣∣∣∑
j∈Jn

f j (t1, t2)
∣∣∣∣2k

dt1dt2

)1/k

. (10)

Proof. It suffices to prove the inequality for all sufficiently large T , which we assume fixed for now. Then(
1

T 2

∫ T

0

∫ T

0

∣∣∣∣∑
j∈J

f j (t1, t2)
∣∣∣∣2k

dt1dt2

)1/k

=

(∥∥∥∥ N∑
n=1

∑
j∈Jn

f j

∥∥∥∥
2k

)2

≤

( N∑
n=1

∥∥∥∥∑
j∈Jn

f j

∥∥∥∥
2k

)2

, (11)

by the triangle inequality. By the Cauchy–Schwarz inequality, (11) is bounded by

N
N∑

n=1

∥∥∥∥∑
j∈Jn

f j

∥∥∥∥2

2k
. (12)

Letting T →∞ we get the claim of the lemma. �

Corollary 2.4. Let A be a finite set of rational numbers, partitioned as A = A1 ∪ · · · ∪ AN , let w be a set
of nonnegative weights, and let u be a nonzero rational number. Then for any integer k ≥ 2

Ẽk,w(A; u)1/k
≤ N

N∑
j=1

Ẽk,w(A j ; u)1/k .

Now let p be a fixed prime. For a ∈ Q, let vp(a) denote the p-adic valuation of a. For a set A of
rational numbers and an integer t , we let At = {a ∈ A : vp(a)= t}.
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Lemma 2.5. Let p be a prime number. Suppose A is a finite set of rational numbers and let u be a
nonzero rational number. Then for any w, a set of nonnegative weights on A, and any integer k ≥ 2,

Ẽk,w(A; u)1/k
≤ 2

(2k
2

)∑
d∈Z

Ẽk,w(Ad; u)1/k .

Proof. First, let A = A+ ∪ A− where A+ = {a ∈ A : vp(a)≥ vp(u)} and A− = {a ∈ A : vp(a) < vp(u)}.
By Corollary 2.4, we have

Ẽk,w(A; u)1/k
≤ 2Ẽk,w(A+; u)1/k

+ 2Ẽk,w(A−; u)1/k . (13)

These two terms will be dealt with in turn, starting with Ek,w(A+; u)1/k . To do this, we first set up some
more notation. For an integer d, define the function

fd(t1, t2) :=
∑
a∈Ad

waai t1(a+ u)i t2 .

Then, by Lemma 2.2

Ẽk,w(A+; u)= lim
T→∞

1
T 2

∫ T

0

∫ T

0

∣∣∣∣ ∑
d≥vp(u)

fd(t1, t2)
∣∣∣∣2k

dt1dt2.

Expanding this expression, as in the proof of Lemma 2.2, we obtain that Ẽk,w(A+; u) is equal to∑
d1,...,d2k≥vp(u)

lim
T→∞

1
T 2

∫ T

0

∫ T

0
fd1(t1, t2) · · · fdk (t1, t2) fdk+1(t1, t2) · · · fd2k (t1, t2) dt1dt2. (14)

For fixed d1, . . . , d2k , the quantity

lim
T→∞

1
T 2

∫ T

0

∫ T

0
fd1(t1, t2) · · · fdk (t1, t2) fdk+1(t1, t2) · · · fd2k (t1, t2) dt1dt2.

gives a weighted count of the number of solutions to the system of simultaneous equations

a1 · · · ak = ak+1 · · · a2k (15)

(a1+ u) · · · (ak + u)= (ak+1+ u) · · · (a2k + u), (16)

such that ai ∈ Adi .
We claim that there are no solutions to (16), and thus also no solutions to the above system, if all of

the di are distinct. Indeed, suppose we have a solution

(a1+ u) · · · (ak + u)= (ak+1+ u) · · · (a2k + u)

and so
(a1u−1

+ 1) · · · (aku−1
+ 1)= (bk+1u−1

+ 1) · · · (b2ku−1
+ 1). (17)

Since vp(ai u−1)≥ 0, expanding out both sides of (17) and simplifying gives

u−1(a1+ · · ·+ ak)+ higher terms= u−1(bk+1+ · · ·+ b2k)+ higher terms. (18)
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If all of the di are distinct, then there is some unique smallest di , and thus a unique smallest value of vp(ai ).
But then the left hand side and the right hand side are divisible by distinct powers of p, a contradiction.

So returning to (14), we need only consider the cases in which one or more of the di are repeated.
There are three kinds of ways in which this can happen:

(1) di = d ′i with 1≤ i ≤ k and k+ 1≤ i ′ ≤ 2k. There are k2 possible positions for such a pair (i, i ′).

(2) di = d ′i with 1≤ i, i ′ ≤ k. There are
(k

2

)
possible positions for such a pair (i, i ′).

(3) di = d ′i with k+ 1≤ i, i ′ ≤ 2k. There are
(k

2

)
possible positions for such a pair (i, i ′).

Suppose we are in situation (1) above. Specifically, suppose that d1 = d2k . The other k2
− 1 cases can

be dealt with by the same argument. Then these terms in (14) can be rewritten as∑
d1≥vp(u)

lim
T→∞

1
T 2

∫ T

0

∫ T

0
fd1(t1, t2) fd1(t1, t2)∑

d2,...,d2k−1≥vp(u)

fd2(t1, t2) · · · fdk (t1, t2) fdk+1(t1, t2) · · · fd2k−1(t1, t2) dt1dt2

=

∑
d≥vp(u)

lim
T→∞

1
T 2

∫ T

0

∫ T

0
| fd(t1, t2)|2

∣∣∣∣ ∑
d≥vp(u)

fd(t1, t2)
∣∣∣∣2(k−1)

dt1dt2. (19)

Suppose we are in situation (2). Specifically, suppose that d1 = d2. The other
(k

2

)
− 1 cases can be

dealt with by the same argument. Then these terms in (14) can be rewritten as∑
d1≥vp(u)

lim
T→∞

1
T 2

∫ T

0

∫ T

0
f 2
d1
(t1, t2)

∑
d3,...,d2k≥vp(u)

fd3(t1, t2) · · · fdk (t1, t2) fdk+1(t1, t2) · · · fd2k (t1, t2) dt1dt2

≤

∑
d≥vp(u)

lim
T→∞

1
T 2

∫ T

0

∫ T

0
| fd(t1, t2)|2

∣∣∣∣ ∑
d≥vp(u)

fd(t1, t2)
∣∣∣∣k−2∣∣∣∣∑

d

¯fd(t1, t2)
∣∣∣∣kdt1dt2

=

∑
d≥vp(u)

lim
T→∞

1
T 2

∫ T

0

∫ T

0
| fd(t1, t2)|2

∣∣∣∣ ∑
d≥vp(u)

fd(t1, t2)
∣∣∣∣2(k−1)

dt1dt2.

The same argument also works in case (3). Returning to (14), we then have

Ẽk,w(A+; u)≤
(2k

2

) ∑
d≥vp(u)

lim
T→∞

1
T 2

∫ T

0

∫ T

0
| fd(t1, t2)|2

∣∣∣∣ ∑
d≥vp(u)

fd(t1, t2)
∣∣∣∣2(k−1)

dt1dt2

≤

(2k
2

) ∑
d≥vp(u)

Ẽk,w(Ad; u)1/k Ek,w(A+; u)1−1/k,

the last inequality being Hölder’s. It therefore follows that

Ẽk,w(A+; u)1/k
≤

(2k
2

) ∑
d≥vp(u)

Ẽk,w(Ad; u)1/k . (20)



2250 Brandon Hanson, Oliver Roche-Newton and Dmitrii Zhelezov

Now we proceed to Ek,w(A−; u)1/k . For any solution to the pair of equations

a1 · · · ak = ak+1 · · · a2k and (a1+ u) · · · (ak + u)= (ak+1+ u) · · · (a2k + u)

we have a solution to the equation

(1+ ua−1
1 ) · · · (1+ ua−1

k )= (1+ ua−1
k+1) · · · (1+ ua−1

2k ).

Again, we expand and simplify, using this time that vp(ua−1
i ) is positive, and get

u(a−1
1 + · · · a

−1
k )+ higher terms= u(a−1

k+1+ · · · a
−1
2k )+ higher terms.

As in the previous case,4 we cannot have a unique smallest vp(ua−1
i ). We can therefore repeat the

arguments that gave us (20) in order to deduce that

Ẽk,w(A−; u)1/k
≤

(2k
2

) ∑
d<vp(u)

Ẽk,w(Ad; u)1/k . (21)

Inserting (20) and (21) into (13) completes the proof. �

Next, this is used as a base case to give an analogous result with more primes.

Lemma 2.6. Let p1, . . . , pK be a prime numbers. Suppose A is a finite set of rational numbers and let u
be a nonzero rational number. For a vector d = (d1, . . . , dK ), define

Ad = {a ∈ A : vp1(a)= d1, . . . , vpK (a)= dK }.

Then for any w, a set of nonnegative weights on A, and for any integer k ≥ 2,

Ẽk,w(A; u)1/k
≤

(
2
(2k

2

))K ∑
d∈ZK

Ẽk,w(Ad; u)1/k .

Proof. The aim is to prove that

lim
T→∞

(
1

T 2

∫ T

0

∫ T

0

∣∣∣∣∑
d∈ZK

∑
a∈Ad

waai t1(a+ u)i t2
∣∣∣∣2k

dt1dt2

)1/k

≤

(
2
(2k

2

))K ∑
d∈ZK

lim
T→∞

(
1

T 2

∫ T

0

∫ T

0

∣∣∣∣∑
a∈Ad

waai t1(a+ u)i t2

∣∣∣∣2k

dt1dt2

)1/k

. (22)

4Note that here we have used the information that a1 · · · ak = ak+1 · · · a2k , whereas we did not use this when bounding
Ẽk,w(A+; u).
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We proceed by induction on K , the base case K = 1 being given by Lemma 2.5. Then

lim
T→∞

(
1

T 2

∫ T

0

∫ T

0

∣∣∣∣∑
d∈ZK

∑
a∈Ad

waai t1(a+ u)i t2
∣∣∣∣2k

dt1dt2

)1/k

= lim
T→∞

(
1

T 2

∫ T

0

∫ T

0

∣∣∣∣∑
dK∈Z

( ∑
d ′∈ZK−1

∑
a∈A(d′,d)

waai t1(a+ u)i t2

)∣∣∣∣2k

dt1dt2

)1/k

≤ 2
(

2k
2

) ∑
dK∈Z

lim
T→∞

(
1

T 2

∫ T

0

∫ T

0

∣∣∣∣ ∑
d ′∈ZK−1

∑
a∈A(d′,d)

waai t1(a+ u)i t2

∣∣∣∣2k

dt1dt2

)1/k

≤ 2
(2k

2

) ∑
dK∈Z

(
2
(2k

2

))K−1 ∑
d ′∈ZK−1

lim
T→∞

(
1

T 2

∫ T

0

∫ T

0

∣∣∣∣ ∑
a∈A(d′,d)

waai t1(a+ u)i t2

∣∣∣∣2k

dt1dt2

)1/k

=

(
2
(2k

2

))K ∑
d∈ZK

lim
T→∞

(
1

T 2

∫ T

0

∫ T

0

∣∣∣∣∑
a∈Ad

waai t1(a+ u)i t2

∣∣∣∣2k

dt1dt2

)1/k

.

The first inequality above follows from an application of Lemma 2.5. The second inequality follows from
the induction hypothesis. �

3. Lambda-constants and query complexity

3.1. Lambda constants. In order to extract as much as possible from the Lemma 2.6, it will be convenient
to use the language of 3-constants. The main motivation behind 3-constants is the stability property
given by the forthcoming Corollary 3.2, which is absent in the nonweighted version of the energy.

We also encourage the interested reader to consult our preceding paper [Hanson et al. 2019] for a
slightly more gentle introduction to 3-constants in the setting of Dirichlet polynomials and more in-depth
motivation behind this concept.

Let A ⊂Q be a finite set and let u be a nonzero rational. Define

3k(A; u) :=max Ẽk,w(A; u)1/k,

where the maximum is taken over all weights w on A such that∑
a∈A

w(a)2 = 1. (23)

An equivalent definition is

3k(A; u) :=max lim
T→∞

∥∥∥∥∑
a∈A

waai t1(a+ u)i t2

∥∥∥∥2

2k
.

where the maximum is taken over the same range of weights.
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Lemma 3.1. Let A ⊂Q be a finite set with some nonnegative real weights wa assigned to each element
a ∈ A and let u be a nonzero rational. Then∥∥∥∥∑

a∈A

waai t1(a+ u)i t2
∥∥∥∥2

2k
≤3k(A; u)

(∑
a∈A

w2
a

)
+ oT→∞(1). (24)

Proof. If
∑

a∈A w
2
a = 0 the claim of the lemma is trivial. Otherwise, define new weights

w′a :=
wa(∑

a∈A w
2
a
)1/2

which satisfy (23). It thus suffices to show that∥∥∥∥∑
a∈A

w′aai t1(a+ u)i t2
∥∥∥∥2

2k
≤3k(A; u)+ oT→∞(1),

which is a straightforward consequence of our definition of 3k(A; u). �

We will use the following stability property of 3-constants which helps us to work with subsets.

Corollary 3.2. Suppose that A ⊂Q, that u is a nonzero rational and A′ ⊂ A. Then

3k(A′; u)≤3k(A; u).

In particular,
Ẽ1/k

k (A′; u)≤3k(A; u)|A′| and Ẽk(A; u)≤3k
k(A; u)|A|

k .

Proof. The first claim follows from the observation that any set of weights {wa}a∈A′ with
∑
w2

a = 1 can
be trivially extended to a set of weights {wa}a∈A by assigning zero weight to the elements in A \ A′. Next
observe that Ek is just Ek,w with all the weights being one and apply Lemma 3.1. �

3.2. Query complexity. The ideas of Section 2 dovetail perfectly with the notion of the query-complexity
of a set of rationals. Given a set A ⊂Q, we define its query complexity q(A) to be the smallest integer t
such that there are functions fi : Z→ P, i = 1, . . . , t − 1 and a fixed prime p0 such that the vectors

(vp0(a), vp1(a), . . . , vpt−1(a)), a ∈ A

are pairwise distinct, with the primes pi defined recursively as

pi = fi (vpi−1(a)). (25)

In the language of computational complexity, suppose that Alice and Bob agree on a set A ⊂Q, and
then Alice secretly chooses an element a ∈ A. Bob can recover the value a ∈ A by querying Alice
iteratively at most t times, at step i evaluating pi using (25) and asking Alice for vpi (a).

The following result was recently proven by Zhelezov and Pálvölgyi [2020], building on work of
Matolsci, Ruzsa, Shakan and Zhelezov [Matolcsi et al. 2020].5

5We state a version of the result which is geared towards the particular considerations of our problem; see [Zhelezov and
Pálvölgyi 2020, Theorem 1.1] for a more general statement.
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Theorem 3.3. For any ε > 0, and any set A ⊂ Q with |AA| ≤ K |A|, there exists a subset A′ ⊂ A with
|A′| ≥ K−2/ε

|A| and q(A)≤ ε log2|A|.

The next lemma records that any set with small query complexity also has a small 3-constant.

Lemma 3.4. Let A ⊂Q with q(A)≤ t . Then for any u ∈Q \ {0}

3k(A; u)≤
(

2
(2k

2

))t

.

Proof. Write t = q(A). Let w be any set of weights on A that satisfy (23). Let a ∈ A be arbitrary. In the
notation of Lemma 2.6, we have a list of primes p1, p2, . . . , pt defined by (25) such that the set

Ad = {a′ ∈ A : vp1(a
′)= vp1(a), . . . , vpt (a

′)= vpt (a)}

has cardinality exactly 1. For any singleton {a} ∈ A, Ẽk,w({a}; u)= w2k
a . Therefore, by Lemma 2.6,

Ẽk,w(A′; u)1/k
≤

(
2
(2k

2

))t ∑
a∈A′

w2
a =

(
2
(2k

2

))t

. �

The following result is important generalization of the previous one; it shows that if A contains a large
subset with small query complexity then A itself has small 3-constant.

Lemma 3.5. Let A ⊂ Q∗ be a finite set with |AA| ≤ K |A| and let u be a nonzero rational number.
Suppose that A′ ⊂ A and q(A′)= t . Then

3k(A; u)≤ K 4
(
|A|
|A′|

)2(
2
(2k

2

))t

.

Proof. Let w be an arbitrary set of weights on A such that
∑

a∈A w(a)
2
= 1. We seek a suitable upper

bound for ∥∥∥∥∑
a∈A

waai t1(a+ u)i t2

∥∥∥∥2

2k
.

For a fixed z ∈ A/A′, define a set of weights w(z) on z A′ by taking w(z)(za′) = w(za′) if za′ ∈ A and
w(z)(za′)= 0 otherwise. Define

R(A/A′),A′(x) := |{(s, a) ∈ (A/A′)× A′ : sa = x}|

and note that R(A/A′),A′(x)≥ |A′| for all x ∈ A. This is because, for all a′ ∈ A′, x = (x/a′)a′. Therefore,∥∥∥∥ ∑
z∈A/A′

∑
a′∈A′

w(z)(za′)(za′)i t1(za′+ u)i t2
∥∥∥∥

2k
=

∥∥∥∥∑
a∈A

R(A/A′),A′(a)w(a)ai t1(a+ u)i t2

∥∥∥∥
2k

≥ |A′|
∥∥∥∥∑

a∈A

waai t1(a+ u)i t2

∥∥∥∥
2k
.
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On the other hand, by the triangle inequality and Lemma 3.1∥∥∥∥ ∑
z∈A/A′

∑
a′∈A′

w(z)(za′)(za′)i t1(za′+ u)i t2
∥∥∥∥

2k
≤

∑
z∈A/A′

∥∥∥∥∑
a′∈A′

w(z)(za′)(za′)i t1(za′+ u)i t2

∥∥∥∥
2k

≤

∑
z∈A/A′

3k(z A′; u)1/2+ oT→∞(1).

Since q(A′)= t , it follows from Lemma 3.4 that 3k(z A′; u)=3k(A′; u/z)≤
(
2
(2k

2

))t . We also have

|A/A′| ≤ |A/A| ≤
|AA|2

|A|
≤ K 2

|A|,

by the Ruzsa triangle inequality (see [Tao and Vu 2006]). It therefore follows that∥∥∥∥∑
a∈A

waai t1(a+ u)i t2
∥∥∥∥

2k
≤ K 2

(
|A|
|A′|

)(
2
(2k

2

))t/2

+ oT→∞(1),

and the result follows. �

Combining this with Theorem 3.3 gives the following, which is our main result concerning3-constants.

Theorem 3.6. Given 0 < γ < 1
2 , there exists a positive constants C = C(γ, k) such that for any finite

A ⊂Q∗ with |AA| = K |A| and any nonzero rational u,

3k(A; u)≤ K C
|A|γ .

Proof. Apply Theorem 3.3 with ε = γ /log2(4k). There exists A′ ⊂ A with |A′| ≥ K−2/ε
|A| and

q(A)≤ ε log2|A|. Then by Lemma 3.5

3k(A; u)≤ K 4
(
|A|
|A′|

)2(
2
(2k

2

))ε log2|A|

≤ K 4+4/ε
|A|ε log2(4k). �

Observe that we can in fact take C(γ, k) in Theorem 3.6 to be 4+ 4 log2(4k)/γ .

4. Concluding the proofs

In this section we conclude the proof of Theorem 1.1, which is the main theorem of this paper, and
Theorem 1.7 announced in the introduction.

We will use the Plünnecke–Ruzsa theorem. See [Petridis 2012] for a simple inductive proof. Following
convention, we state it using additive notation, although it will be used in the multiplicative setting.

Theorem 4.1. Let A be a subset of a commutative additive group G with |A+ A| ≤ K |A|. Then for any
h ∈ N,

|h A| ≤ K h
|A|.

For the convenience of the reader, we restate Theorem 1.1.
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Theorem 4.2. For all b ∈ Z, there exists k = k(b) such that for any finite set A ⊂ Q∗ and any nonzero
rational u,

max{|A(k)|, |(A+ u)(k)|} ≥ |A|b

Proof. Fix b and assume that
|A(k)|< |A|b

for some sufficiently large k = 2l . The value of l (and thus also that of k) will be specified at the end of
the proof. Since |A(2

l )
|< |A|b, it follows that

|A(2
l )
|

|A(2l−1)|

|A(2
l−1)
|

|A(2l−2)|
· · ·
|A(2)|
|A|

< |A|b−1

and thus there is some integer l0 ≤ l such that

|A(2
l0+1)
|

|A(2l0 )|
< |A|(b−1)/ l .

Therefore, writing k0 = 2l0 and B = A(k0), we have

|B B|< |B||A|(b−1)/ l .

Also, for any nonzero λ ∈Q, |(λB)(λB)|< |B||A|(b−1)/ l . Therefore, by Theorem 3.6,

3h(λB; u)≤ |A|C(b−1)/ l
|B|γ ≤ |A|C(b−1)/ l+γ b

where C = C(h, γ ) and h, γ will be specified later.
Now, for some λ ∈Q, we have A ⊂ λB, and thus by Corollary 3.2 and Lemma 2.1

|A|2

max{|A(h)|, |(A+ u)(h)|}2/h ≤ Ẽ1/h
h (A; u)≤ |A|3h(λB; u)≤ |A|1+C(b−1)/ l+γ b.

This rearranges to
max{|A(h)|, |(A+ u)(h)|} ≥ |A|h/2(1−C(b−1)/ l−γ b).

Choose γ = 1/100b and h = 4b. Then C = C(h, γ )= C(b) and we have

max{|A(h)|, |(A+ u)(h)|} ≥ |A|h/2(99/100−C(b)(b−1)/ l).

Then choose l = (b− 1)4C to get

max{|A(h)|, |(A+ u)(h)|} ≥ |A|h/4 = |A|b.

Note that the choice of l depends only on b and thus k = 24C(b−1)
= k(b). In particular, since k > h, we

conclude that
max{|A(k)|, |(A+ u)(k)|} ≥ |A|b,

as required. �
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If we use the value of C(γ, k) indicated at the end of the proof of Theorem 3.6 to keep track of the
constants in this argument, it follows that we can take k = 2O(b2 log b). To be even more precise, it gives

k = (16b)1616b2
.

This compares favorably with the dependency in the corresponding sum-product bound of Bourgain and
Chang [2004], where they commented that it was possible to take k = 2O(b4). A similar quantitative
improvement for the classical iterated sum-product problem is possible by studying the recent paper of
Zhelezov and Pálvölgyi [2020] and filling in some extra details.

Theorem 3.6 also implies Theorem 1.3. The statement is repeated below for the convenience of the
reader.

Theorem 4.3. Given 0< γ < 1
2 and any integer k ≥ 2, there exists a positive constant C = C(γ, k) such

that for any finite A ⊂Q∗ with |AA| = K |A| and any nonzero rational u,

|(A+ u)(k)| ≥
|A|k(1−γ )−1

K Ck .

Proof. Define w(a)= 1/|A|1/2 for all a ∈ A and note that (23) is satisfied. Furthermore, for this set of
weights w,

Ẽk,w(A; u)=
Ẽk(A; u)
|A|k

≥
|A|k

|A(k)||(A+ u)(k)|
, (26)

where the inequality comes from Lemma 2.1. It follows from Theorem 3.6 that there exists a constant
C = C(γ, k) such that for any u ∈ Q \ {0}, 3k(A; u) ≤ K C

|A|γ . Consequently, by the definition of
3k(A; u),

Ẽk,w(A; u)≤ K Ck
|A|γ k .

Combining this with (26), it follows that

|A(k)||(A+ u)(k)| ≥
|A|k(1−γ )

K Ck . (27)

Finally, since |AA| ≤ K |A|, it follows from the Plünnecke–Ruzsa Theorem that |A(k)| ≤ K k
|A|. Inserting

this into (27) completes the proof. �

We now turn to the proof of Theorem 1.7. Recall its statement.

Theorem 4.4. For any γ > 0 there is C(γ ) > 0 such that for any K -almost subgroup A ⊂Q∗ and fixed
nonzero c1, c2 ∈Q the number A(2, K ) of solutions (x1, x2) ∈ A2 to

c1x1+ c2x2 = 1

is bounded by

A(2, K )≤ |A|γ K C .
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Proof. Let S ⊂ A be the set of x1 ∈ A such that c1x1+ c2x2 = 1 for some x2 ∈ A. Since the projection
(x1, x2)→ x1 is injective, it suffices to bound the size of S.

Since S ⊂ A, by Theorem 3.6 and Corollary 3.2 for any nonzero u

Ẽk(S; u)≤ K kC(γ ′,k)
|A|kγ

′

|S|k

with the parameters 0< γ ′ < 1
2 , k ≥ 2 to be taken in due course.

In particular, by Lemma 2.1

|S|k ≤ (K kC(γ ′,k)
|A|kγ

′

|S|k)1/2 max{|Sk
|, |(S− 1/c1)

k
|}.

On the other hand, S ⊆ A and (S− 1/c1)⊆−(c2/c1)A, so by the Plünnecke–Ruzsa inequality

max{|Sk
|, |(S− 1/c1)

k
|} ≤ |A(k)| ≤ K k

|A|.

We then have

|S| ≤ |A|γ
′
+2/k K C+2,

and taking k = b2/γ ′c+ 1 and γ ′ = γ /2, the claim follows. �

5. Further applications

Proof of Theorem 1.8. Recall that Theorem 1.8 is the following statement. For all γ ≥ 0 there exists a
constant C = C(γ ) such that for any finite A ⊂Q with |AA| ≤ K |A| and any finite set L of lines in the
plane, I (P, L)≤ 3|P| + |A|γ K C

|L|, where P = A× A.
First of all, observe that horizontal and vertical lines contribute a total of at most 2|P|. This is because

each point p ∈ P can belong to at most one horizontal and one vertical line. Similarly, lines through the
origin contribute at most |P| + |L| incidences, since each point aside from the origin belongs to at most
one such line, and the origin itself may contribute |L| incidences.

It remains to bound incidences with lines of the form y = mx + c, with m, c 6= 0. Let lm,c denote
the line with equation y = mx + c. Note that, if m /∈ Q then lm,c contains at most one point from P .
Indeed, suppose lm,c contains two distinct points (x, y) and (x ′, y′) from P . In particular, since A ⊂Q,
x, y, x ′, y′ ∈Q. Then lm,c has direction m = (y− y′)/(x − x ′). Therefore, lines lm,c with irrational slope
m contribute at most |L| incidences.

Next, suppose that m ∈ Q and c /∈ Q. Then lm,c does not contain any points from P , since if it did
then we would have a solution to y = mx + c, but the left hand side is rational and the right hand side is
irrational.

It remains to consider the case when m, c∈Q∗. An application of Theorem 1.7 implies that |lm,c∩P| ≤
K C
|A|γ . Therefore, these lines contribute a total of at most |L|K C

|A|γ incidences.
Adding together the contributions from these different types of lines completes the proof. �
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Proof of Theorem 1.9. Recall that Theorem 1.9 states that, for any γ > 0 there exists C(γ ) such that for
an arbitrary A ⊂Q with |AA| = K |A| and B, B ′ ⊂Q,

S := |{(b, b′) ∈ B× B ′ : b+ b′ ∈ A}| ≤ 2|A|γ K C min{|B|1/2|B ′| + |B|, |B ′|1/2|B| + |B ′|}.

We will prove that

S ≤ 2|A|γ K C(|B ′|1/2|B| + |B ′|). (28)

Since the roles of B and B ′ are interchangeable, (28) also implies that S ≤ 2|A|γ K C(|B|1/2|B ′| + |B|),
and thus completes the proof.

Let γ > 0 and C(γ ), given by Theorem 1.7, be fixed. Without loss of generality assume that S ≥ 2|B ′|
as otherwise the claimed bound is trivial.

For each b ∈ B define

Sb := {b′ ∈ B ′ : b+ b′ ∈ A},

and similarly for b′ ∈ B ′

Tb′ := {b ∈ B : b′+ b ∈ A}.

It follows from Theorem 1.7 that for b1, b2 ∈ B with b1 6= b2

|Sb1 ∩ Sb2 | ≤ |A|
γ K C

since each x ∈ Sb1 ∩ Sb2 gives a solution (a, a′) := (b1+ x, b2+ x) to

a− a′ = b1− b2

with a, a′ ∈ A.
On the other hand, by double-counting and the Cauchy–Schwarz inequality,∑

b∈B

|Sb| +
∑

b1,b2∈B:b1 6=b2

|Sb1 ∩ Sb2 | =

∑
b′∈B ′
|Tb′ |

2
≥ |B ′|−1(

∑
b′∈B ′
|Tb′ |)

2
= |B ′|−1S2.

Therefore, ∑
b1,b2∈B:b1 6=b2

|Sb1 ∩ Sb2 | ≥ |B
′
|
−1S2
−

∑
b∈B

|Sb| = |B ′|−1S2
− S ≥ 1

2 |B
′
|
−1S2

by our assumption.
The left-hand side is at most |B|2|A|γ K C , and so

S ≤ (2|A|γ K C)1/2|C |1/2|B ′|,

which completes the proof. �

Proof of Theorem 1.10. Recall that Theorem 1.10 states that for all b there exists k such that for all
A, B ⊂Q with |B| ≥ 2, |(A+ B)k | ≥ |A|b.
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Since |B| ≥ 2, there exist two distinct elements b1, b2 ∈ B. Apply Theorem 1.1 to conclude that for all
b there exists k = k(b) with

|(A+ B)k | ≥max{|(A+ b1)
k
|, |((A+ b1)+ (b2− b1))

k
|} ≥ |A|b. �
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[Erdős and Szemerédi 1983] P. Erdős and E. Szemerédi, “On sums and products of integers”, pp. 213–218 in Studies in pure
mathematics, edited by P. Erdős, Birkhäuser, Basel, 1983. MR Zbl

[Evertse et al. 2002] J.-H. Evertse, H. P. Schlickewei, and W. M. Schmidt, “Linear equations in variables which lie in a
multiplicative group”, Ann. of Math. (2) 155:3 (2002), 807–836. MR Zbl

[Garaev and Shen 2010] M. Z. Garaev and C.-Y. Shen, “On the size of the set A(A+ 1)”, Math. Z. 265:1 (2010), 125–132. MR
Zbl

[Hanson et al. 2019] B. Hanson, O. Roche-Newton, and D. Zhelezov, “On iterated product sets with shifts”, Mathematika 65:4
(2019), 831–850. MR Zbl

[Jones and Roche-Newton 2013] T. G. F. Jones and O. Roche-Newton, “Improved bounds on the set A(A+ 1)”, J. Combin.
Theory Ser. A 120:3 (2013), 515–526. MR Zbl

[Konyagin and Shkredov 2015] S. V. Konyagin and I. D. Shkredov, “On sum sets of sets having small product set”, Proc. Steklov
Inst. Math. 290:1 (2015), 288–299. MR Zbl

[Konyagin and Shkredov 2016] S. V. Konyagin and I. D. Shkredov, “New results on sums and products in R”, Proc. Steklov Inst.
Math. 294:1 (2016), 78–88. Zbl

[Matolcsi et al. 2020] D. Matolcsi, I. Ruzsa, G. Shakan, and D. Zhelezov, “An analytic approach to cardinalities of sumsets”,
preprint, 2020. arXiv

[Petridis 2012] G. Petridis, “New proofs of Plünnecke-type estimates for product sets in groups”, Combinatorica 32:6 (2012),
721–733. MR Zbl

http://dx.doi.org/10.1215/00127094-2009-056
http://msp.org/idx/mr/2582101
http://msp.org/idx/zbl/1234.11081
http://dx.doi.org/10.37236/7050
http://msp.org/idx/mr/3691531
http://msp.org/idx/zbl/1373.52021
http://dx.doi.org/10.4064/aa-78-2-189-199
http://msp.org/idx/mr/1424539
http://msp.org/idx/zbl/0880.11034
http://dx.doi.org/10.1090/S0894-0347-03-00446-6
http://msp.org/idx/mr/2051619
http://msp.org/idx/zbl/1034.05003
http://dx.doi.org/10.1007/s11854-009-0033-0
http://msp.org/idx/mr/2585396
http://msp.org/idx/zbl/1246.11021
http://dx.doi.org/10.4007/annals.2003.157.939
http://msp.org/idx/mr/1983786
http://msp.org/idx/zbl/1055.11017
http://dx.doi.org/10.1007/978-3-0348-5438-2_19
http://msp.org/idx/mr/820223
http://msp.org/idx/zbl/0526.10011
http://dx.doi.org/10.2307/3062133
http://dx.doi.org/10.2307/3062133
http://msp.org/idx/mr/1923966
http://msp.org/idx/zbl/1026.11038
http://dx.doi.org/10.1007/s00209-009-0504-0
http://msp.org/idx/mr/2606952
http://msp.org/idx/zbl/1237.11004
http://dx.doi.org/10.1112/s0025579319000081
http://msp.org/idx/mr/3952508
http://msp.org/idx/zbl/07058188
http://dx.doi.org/10.1016/j.jcta.2012.11.001
http://msp.org/idx/mr/3007133
http://msp.org/idx/zbl/1267.11011
http://dx.doi.org/10.1134/S0081543815060255
http://msp.org/idx/mr/3488800
http://msp.org/idx/zbl/1366.11054
http://dx.doi.org/10.1134/S0081543816060055
http://msp.org/idx/zbl/1371.11027
http://msp.org/idx/arx/2003.04075
http://dx.doi.org/10.1007/s00493-012-2818-5
http://msp.org/idx/mr/3063158
http://msp.org/idx/zbl/1291.11127


2260 Brandon Hanson, Oliver Roche-Newton and Dmitrii Zhelezov

[Shkredov and Zhelezov 2018] I. D. Shkredov and D. Zhelezov, “On additive bases of sets with small product set”, Int. Math.
Res. Not. 2018:5 (2018), 1585–1599. MR Zbl

[Solymosi 2009] J. Solymosi, “Bounding multiplicative energy by the sumset”, Adv. Math. 222:2 (2009), 402–408. MR Zbl

[Tao and Vu 2006] T. Tao and V. Vu, Additive combinatorics, Cambridge Stud. Adv. Math. 105, Cambridge Univ. Press, 2006.
MR Zbl

[Zhelezov and Pálvölgyi 2020] D. Zhelezov and D. Pálvölgyi, “Query complexity and the polynomial Freiman–Ruzsa conjec-
ture”, preprint, 2020. arXiv

Communicated by Andrew Granville
Received 2020-01-28 Revised 2020-03-30 Accepted 2020-05-01

brandon.w.hanson@gmail.com Department of Mathematics, University of Georgia,
Boyd Graduate Studies Research Center, Athens, GA, United States

o.rochenewton@gmail.com Johann Radon Institute for Computational and Applied Mathematics,
Linz, Austria

dzhelezov@gmail.com Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest, Hungary

mathematical sciences publishers msp

http://dx.doi.org/10.1093/imrn/rnw291
http://msp.org/idx/mr/3800633
http://msp.org/idx/zbl/07013435
http://dx.doi.org/10.1016/j.aim.2009.04.006
http://msp.org/idx/mr/2538014
http://msp.org/idx/zbl/1254.11016
http://dx.doi.org/10.1017/CBO9780511755149
http://msp.org/idx/mr/2289012
http://msp.org/idx/zbl/1127.11002
http://msp.org/idx/arx/2003.04648
mailto:brandon.w.hanson@gmail.com
mailto:o.rochenewton@gmail.com
mailto:dzhelezov@gmail.com
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 14:8 (2020)

https://doi.org/10.2140/ant.2020.14.2261

The dimension growth conjecture,
polynomial in the degree and
without logarithmic factors

Wouter Castryck, Raf Cluckers, Philip Dittmann and Kien Huu Nguyen

We study Heath-Brown’s and Serre’s dimension growth conjecture (proved by Salberger) when the degree
d grows. Recall that Salberger’s dimension growth results give bounds of the form OX,ε(Bdim X+ε) for the
number of rational points of height at most B on any integral subvariety X of Pn

Q of degree d ≥ 2, where
one can write Od,n,ε instead of OX,ε as soon as d ≥ 4. We give the following simplified and strengthened
forms of these results: we remove the factor Bε as soon as d ≥ 5, we obtain polynomial dependence
on d of the implied constant, and we give a simplified, self-contained approach for d ≥ 16. Along the
way, we improve the well-known bounds due to Bombieri and Pila on the number of integral points of
bounded height on affine curves and those by Walsh on the number of rational points of bounded height
on projective curves. This leads to a slight sharpening of a recent estimate due to Bhargava, Shankar,
Taniguchi, Thorne, Tsimerman and Zhao on the size of the 2-torsion subgroup of the class group of a
degree d number field. Our treatment builds on recent work by Salberger, who brings in many primes in
Heath-Brown’s variant of the determinant method, and on recent work by Walsh and by Ellenberg and
Venkatesh who bring in the size of the defining polynomial. We also obtain lower bounds showing that
one cannot do better than polynomial dependence on d .

1. Introduction and main results

1.1. Following a question raised by Heath-Brown [1983, page 227] in the case of hypersurfaces, Serre
[1992, page 27; 1989, page 178] twice formulated a question about rational points on a projective variety
X of degree d, which was dubbed the dimension growth conjecture by Browning [2009]. The question
puts forward concrete upper bounds on the number of such points with height at most B, as a function
of B. This dimension growth conjecture is now a theorem due to Salberger [2013] (and others under
various conditions on d); moreover, for d ≥ 4 Salberger obtains complete uniformity in X , keeping only
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d and the dimension of the ambient projective space fixed, thereby confirming a variant that had been
proposed by Heath-Brown.

We remove from these bounds the factors of the form Bε when the degree d is at least 5, without
creating a factor log B, while moreover obtaining polynomial dependence on d of the constants. The
approach with polynomial dependence on d is implemented in all auxiliary results as well, and this has
the pleasant consequence of yielding a more direct and self-contained proof of the dimension growth
conjecture for d at least 16 (our treatment of dimension growth for 5 ≤ d ≤ 15 is not self-contained
and uses [Browning et al. 2006] when d > 5 and [Salberger 2013] for d = 5). Theorems 2 and 3 below
give such improvements to bounds by Walsh [2015] on the number of rational points of bounded height
on integral projective curves, and to bounds of Bombieri and Pila [1989, Theorem 5] on the number of
integral points of bounded height on affine irreducible curves, with rather low powers of d, compared
to [Walkowiak 2005]. Polynomial dependence on d for projective curves as in Theorem 2 is useful
for effective versions of Hilbert’s irreducibility theorem and for Malle’s conjecture; see [Dèbes and
Walkowiak 2008; Motte 2018; Walkowiak 2005].

The possibility of polynomial dependence on d came to us via a question raised by Yomdin (see
below Remark 3.8 of [Burguet et al. 2015]) in combination with the determinant method with smooth
parametrizations as in [Pila 2010], refined in [Cluckers et al. 2020b], and via the work by Binyamini and
Novikov [2019, Theorem 6]. The removal of the factor Bε without needing log B was recently achieved
by Walsh [2015, Theorems 1.1, 1.2, 1.3] who combines ideas by Ellenberg and Venkatesh [2005] with the
determinant method based on p-adic approximation (rather than on smooth maps) due to Heath-Brown
[2002], refined in [Salberger 2013]. In fact, polynomial dependence on d for the case of projective curves
was also achieved in [Motte 2018] and [Walkowiak 2005], with a higher exponent. One cannot achieve
dependence on d better than polynomial, as shown by the lower bounds from Proposition 5 below. Let
us mention that positive characteristic analogues, over Fq [t], are obtained in [Cluckers et al. 2020a] and
[Sedunova 2017] for curves, and in [Vermeulen 2020] for dimension growth.

1.2. Let us make all this more precise. We study the number

N (X, B)

of rational points of height at most B on subvarieties X of Pn defined over Q. Here, the height H(x) of a
Q-rational point x in Pn is given by

H(x)=max(|x0|, . . . , |xn|)

for an (n+1)-tuple (x0, . . . , xn) of integers xi which are homogeneous coordinates for x and have greatest
common divisor equal to 1.

Salberger [2013] proved the so-called dimension growth conjecture raised as a question by Serre [1992,
page 27] following a question of Heath-Brown [1983, page 227].
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Dimension growth [Salberger 2013, Theorem 0.1]. If X is an integral projective variety of degree d ≥ 2
defined over Q, then

N (X, B)≤ OX,ε(Bdim X+ε).

One should compare the bound for N (X, B) from this theorem to the trivial upper bound Od,n(Bdim X+1)

that follows from Lemma 4.1.1 below.
A variant of this question from [Serre 1989, page 178] replaces the factor Bε by log(B)c for some c

depending on X , see Section 1.4 below.
Heath-Brown [2002] introduces a form of this conjecture with uniformity in X for fixed d and n, and

he develops a new variant of the determinant method using p-adic approximation instead of smooth
parametrizations as in [Bombieri and Pila 1989; Binyamini and Novikov 2019; Pila 2010; Cluckers et al.
2020b]. In [Salberger 2013], Salberger proves this uniform version of the dimension growth conjecture
for d ≥ 4.

Uniform dimension growth [Salberger 2013, Theorem 0.3]. For X ⊆ Pn
Q

an integral projective variety
of degree d ≥ 4, one has

N (X, B)≤ Od,n,ε(Bdim X+ε).

Almost all situations of this uniform dimension growth had been obtained previously in [Heath-Brown
2002] and [Browning et al. 2006], including the case d = 2 but without the (difficult) cases d = 4 and
d = 5. Our main contributions are to make the dependence on d polynomial, to remove the factor Bε

without having to use factors log B, and to provide relatively self-contained proofs for large degree, with
main result as follows.

Theorem 1 (uniform dimension growth). Given n > 1, there exist constants c = c(n) and e = e(n), such
that for all integral projective varieties X ⊆ Pn

Q
of degree d ≥ 5 and all B ≥ 1 one has

N (X, B)≤ cde Bdim X . (1-2-1)

As mentioned earlier, one cannot do better than polynomial dependence on d, see the lower bounds
from Proposition 5 and Section 6 below.

We heavily rework results and methods of Salberger, Walsh, Ellenberg and Venkatesh, Heath-Brown,
and Browning, and use various explicit estimates for Hilbert functions, for certain universal Noether
polynomials as in [Ruppert 1986], and for solutions of linear systems of equations over Z from [Bombieri
and Vaaler 1983].

1.3. Rational points on curves and hypersurfaces. Let us make precise some of our improvements for
counting points on curves and surfaces, which are key to Theorem 1. We obtain the following improvement
of Walsh’s Theorem 1.1 [2015].
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Theorem 2 (projective curves). Given n > 1, there exists a constant c = c(n) such that for all d > 0 and
all integral projective curves X ⊆ Pn

Q
of degree d and all B ≥ 1 one has

N (X, B)≤ cd4 B2/d .

In view of Proposition 5 below, the exponent 4 of d in Theorem 2 can perhaps be lowered, but cannot
become lower than 2 in general. Several adaptations of results and proofs of [Walsh 2015] are key to our
treatment and are developed in Section 3.

For affine counting we use the following notation for a variety X ⊆ An
Q

and a polynomial f in
Z[y1, . . . , yn]:

Naff(X, B) := #{x ∈ Zn
| |xi | ≤ B for each i and x ∈ X (Q)},

and
Naff( f, B) := #{x ∈ Zn

| |xi | ≤ B for each i and f (x)= 0}.

By a careful elaboration of the argument from [Ellenberg and Venkatesh 2005, Remark 2.3] and an
explicit but otherwise classical projection argument, we find the following improvement of bounds by
Bombieri and Pila [1989, Theorem 5] and later sharpenings by Pila [1995; 1996], Walkowiak [2005],
Ellenberg and Venkatesh [2005, Remark 2.3], Binyamini and Novikov [2019, Theorem 6], and others.

Theorem 3 (affine curves). Given n > 1, there exists a constant c = c(n) such that for all d > 0, all
integral affine curves X ⊆ An

Q
of degree d, and all B ≥ 1 one has

Naff(X, B)≤ cd3 B1/d(log B+ d).

A variant of Theorem 3 is given in Section 4, where log B is absent and instead the size of the
coefficients of the polynomial f defining the affine planar curve comes in.

It is well-known that Theorems 1, 2, and 3 imply similar bounds for varieties defined and integral over
Q (instead of Q), by intersecting with a Galois conjugate and using a trivial bound, see Lemma 4.1.3.
The following improves Theorem 0.4 of [Salberger 2013] and is key to Theorem 1. It can be seen as an
affine form of the dimension growth theorem, for hypersurfaces.

Theorem 4 (affine hypersurfaces). Given n > 2, there exist constants c= c(n) and e= e(n), such that for
all polynomials f in Z[y1, . . . , yn] whose homogeneous part of highest degree h( f ) is irreducible over Q

and whose degree d is at least 5, one has

Naff( f, B)≤ cde Bn−2.

One should compare the bound from this theorem to the trivial upper bound Od,n(Bn−1) from
Lemma 4.1.1.

1.4. Example and a question. In Serre’s example [1989, page 178] of the degree 2 surface in P3 given
by the equation xy = zw, the logarithmic factor log B cannot be dispensed with in the upper bound.
Hence, (1-2-1) of Theorem 1 cannot hold for d = 2 in general. For d = 3, the bound from (1-2-1) remains
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wide open since already uniformity in X ⊆Pn of degree 3 is not known for the uniform dimension growth
with Od,n,ε(Bdim X+ε) as upper bound (see [Salberger 2015; 2013] for subtleties when d = 3). For d = 4,
one may investigate whether (1-2-1) of Theorem 1 remains true, that is, without involving a factor Bε or
log B.

1.5. Lower bounds. In Section 6 we discuss the necessity of the polynomial dependence on d in the
above theorems.

Proposition 5. For each integer d > 0 there is an integral projective curve X ⊆ P2 of degree d and an
integer B ≥ 1 such that

1
5 d2 B2/d

≤ N (X, B).

In particular, in the statement of Theorem 2 it is impossible to replace the factor d4 with an expression in
d which is o(d2).

Similarly we show that it is impossible to replace the quartic dependence on d of the bound from
Theorem 3 by a function in o(d2/ log d). We also show that in Theorems 1 and 4 we cannot take e< 1 or
e < 2, respectively.

1.6. An application. Our bounds with improved exponent can be used as substitutes for those by Sal-
berger, Bombieri and Pila, and Walsh upon which they improve, potentially leading to stronger statements.
A very recent example of such an application is Bhargava, Shankar, Taniguchi, Thorne, Tsimerman and
Zhao’s bound [Bhargava et al. 2020, Theorem 1.1] on the number h2(K ) of 2-torsion elements in the
class group of a degree d > 2 number field K , in terms of its discriminant 1K . Precisely, they show that

h2(K )≤ Od,ε(|1K |
1/2−1/(2d)+ε),

thereby obtaining a power saving over the trivial bound coming from the Brauer–Siegel theorem. This
power saving is mainly accounted for by an application of Bombieri and Pila’s bound [1989, Theorem 5].
In Section 4 we explain how our improved bound stated in Theorem 3, or rather its refinement stated
in Corollary 4.2.4, allows for removal of the factor |1K |

ε as soon as d is odd; if d is even then we can
replace it by log|1K |.

Theorem 6. For all degree d > 2 number fields K we have

h2(K )≤ Od(|1K |
1/2−1/(2d)(log|1K |)

1−(d mod 2)).

It is possible to make the hidden constant explicit, but targeting polynomial growth seems of lesser
interest since |1K | is itself bounded from below by an exponential expression in d, coming from
Minkowski’s bound.

1.7. Structure of the paper. In Section 2 we render several results of Salberger [2007] explicit in terms
of the degrees and dimensions involved. In Section 3 we similarly adapt the results of Walsh [2015].
Section 4 completes the proofs of our main results in the hypersurface case, which is complemented by
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Section 5, in which we discuss projection arguments from [Browning et al. 2006], explicit in the degrees
and dimensions, and thus finish the proofs of our main theorems. Finally, in Section 6, we provide lower
bounds showing the necessity of polynomial dependence on d in our main results.

2. The determinant method for hypersurfaces

With the aim of improving the results of [Walsh 2015] in the next section, we sharpen some results from
Salberger’s global determinant method. The main result of this section is Corollary 2.9, which improves
on [Salberger 2013, Lemmas 1.4, 1.5] (see also [Walsh 2015, Theorem 2.2]). This mainly depends on
making [Salberger 2007, Main Lemma 2.5] in the case of hypersurfaces explicit in its independence of
the degree.

Let f be an absolutely irreducible homogeneous polynomial in Z[x0, . . . , xn+1] which is primitive,
and let X be the hypersurface in Pn+1

Q
defined by f . For p a prime number, let X p denote the reduction

of X modulo p, i.e., the hypersurface in Pn+1
Fp

described by the reduction of f mod p.

Lemma 2.1 (Lemma 2.3 of [Salberger 2007], explicit for hypersurfaces). Let A be the stalk of X p at some
Fp-point P of multiplicity µ and let m be the maximal ideal of A. Let gX,P : Z>0→ Z be the function
given by gX,P(k)= dimA/mmk/mk+1 for k > 0. Then one has

g(k)=
(n+k

n

)
for k < µ

and

g(k)=
(n+k

n

)
−

(n+k−µ
n

)
for k ≥ µ.

In particular,

g(k)≤
µkn−1

(n− 1)!
+ On(kn−2)

for all k ≥ 1, where the implied constant depends only on n, as indicated.

Proof. The function g is identical to the Hilbert function of the projectivized tangent cone of X p at P ,
which is a degree µ hypersurface in Pn . This gives the explicit expression for g, so it only remains to
prove the estimate.

Consider first k < µ. Then

g(k)=
(n+k

n

)
=

kn

n!
+
(n+ 1)kn−1

2(n− 1)!
+ On(kn−2).

Since µ > k, for k ≥ n we immediately obtain the desired inequality, and the k between 1 and n are
covered by choosing the constant large enough.

Now consider k ≥ µ. Write p(X) for the polynomial
(n+X

n

)
and ai for its coefficients. Then

p(k)− p(k−µ)= an(kn
− (k−µ)n)+ an−1(kn−1

− (k−µ)n−1)+ On(kn−2).
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Observe that an = 1/n!, an−1 = (n+ 1)/(2(n− 1)!)= an(n+ 1)n/2, and write

kn
− (k−µ)n = µ(kn−1

+ (k−µ)kn−2
+ · · ·+ (k−µ)n−1)

as well as

kn−1
− (k−µ)n−1

= µ(kn−2
+ · · ·+ (k−µ)n−2).

Considering µ≥ n(n+ 1)/2, we have

(k−µ)i kn−1−i
+
(n+ 1)n

2
(k−µ)i−1kn−1−i

≤ kn−1

for i ≥ 1, and hence

an(kn
− (k−µ)n)+ an−1(kn−1

− (k−µ)n−1)≤
µ

n!
(kn−1

+ · · ·+ kn−1)= µ
kn−1

(n− 1)!

as desired.
For µ less than n(n + 1)/2, one simply bounds kn−1

− (k − µ)n−1
≤ On(kn−2) and the statement

follows. �

Lemma 2.2. Let c, n, µ > 0 be integers. Let g : Z≥0→ Z>0 be a function with g(0)= 1 and satisfying
g(k)≤ µkn−1/(n− 1)! + cµkn−2 for k > 0. Let (ni )i≥1 be the nondecreasing sequence of integers m ≥ 0
where m occurs exactly g(m) times. Then for any s ≥ 0 we have

n1+ · · ·+ ns ≥

(
n!
µ

)1/n n
n+ 1

s1+1/n
− On,c(s).

This statement is implicitly contained in the proof of [Salberger 2007, Main Lemma 2.5], but we give
the full proof to stress that the error term does not depend on µ.

Proof. Note that replacing g by a function which is pointwise larger than g at any point only strengthens
the claim, so we may as well assume that

g(k)=
µ

n!
(kn
− (k− 1)n)+ cµ(kn−1

− (k− 1)n−1)

for k > 0. Let G : Z≥0→ Z≥0 be given by G(k)= g(0)+ · · ·+ g(k)= µ
n!k

n
+ cµkn−1

+ 1. Now(
n!
µ

)1/n n
n+ 1

G(k)1+1/n
=

µkn+1

(n− 1)!(n+ 1)
+ On,c(µkn),

and

0g(0)+ · · ·+ kg(k)≥
µ

(n− 1)!

∑
i≤k

(in
+ On(cin−1))=

µ

(n− 1)!(n+ 1)
kn+1
+ On,c(µkn).

This proves the lemma for s = G(k).



2268 Wouter Castryck, Raf Cluckers, Philip Dittmann and Kien Huu Nguyen

To deduce the result for general s > 0, let k be the unique integer with G(k− 1) < s ≤ G(k), and use

n1+ · · ·+ ns ≥ n1+ · · ·+ nG(k)− kg(k)≥
(

n!
µ

)1/n n
n+ 1

G(k)1+1/n
− On,c(µkn)

≥

(
n!
µ

)1/n n
n+ 1

s1+1/n
− On,c(s). �

Lemma 2.3. Consider A as in Lemma 2.1, and let (ni (A))i≥1 be the nondecreasing sequence of integers
m ≥ 0 where m occurs exactly dimA/mmk/mk+1 times. Write A(s)= n1(A)+ · · ·+ ns(A). Then

A(s)≥
(

n!
µ

)1/n( n
n+ 1

)
s1+1/n

− On(s),

where the implied constant only depends on n.

Proof. This is immediate from the last two lemmas. �

As usual, write Z(p) for the localization of Z at (the complement of) the prime ideal (p).

Lemma 2.4 (Lemma 2.4 of [Salberger 2007], cited as in the Appendix of [Browning et al. 2006]).
Let R be a noetherian local ring containing Z(p), A = R/pR, and consider ring homomorphisms
ψ1, . . . , ψs : R→Z(p). Let r1, . . . , rs be elements of R. Then the determinant of the s×s-matrix (ψi (r j ))

is divisible by pA(s).

Corollary 2.5 (Main Lemma 2.5 of [Salberger 2007]). Let X → Spec Z be the hypersurface in Pn+1
Z cut

out by the homogeneous polynomial f as above, so X is the generic fiber of X and X p is the special fiber
of X over p.

Let P be an Fp-point of multiplicity µ on X p and let ξ1, . . . , ξs be Z-points on X , given by some
primitive integer tuples, with reduction P. Let F1, . . . , Fs be homogeneous polynomials in x0, . . . , xn+1

with integer coefficients.
Then det(F j (ξi )) is divisible by pe where

e ≥
(

n!
µ

)1/n n
n+ 1

s1+1/n
− On(s).

Proof. Let P ′ be the image of P under the closed embedding X p ↪→ X , and R the stalk of X at P ′. Then
R is a noetherian local ring containing Z(p), and R/pR is the stalk of X p at P . Since P ′ is a specialization
of all the ξi (this is precisely what it means that the ξi have reduction P), it makes sense to evaluate an
element of R at each ξi , giving s ring homomorphisms R→ Z(p).

The Fi induce Z(p)-valued polynomial functions on an affine neighborhood of P ′, and hence give
elements of R. The statement now follows from the preceding two lemmas. �

Proposition 2.6. Let X be as above. Let ξ1, . . . , ξs be Z-points on X , and F1, . . . , Fs be homogeneous
polynomials in n+1 variables with integer coefficients. Then the determinant 1 of the s × s-matrix
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(Fi (ξ j )) is divisible by pe, where

e ≥ (n!)1/n n
n+ 1

s1+1/n

n1/n
p
− On(s),

and where n p is the number of Fp-points on X p, counted with multiplicity.

Proof. This is identical to the proof of [Salberger 2013, Lemma 1.4], see also the appendix of [Walsh
2015] — but we have eliminated the dependence of the constant on d . �

Lemma 2.7. In the situation above, if p > 27d4 and X p is geometrically integral, i.e., the defining
polynomial f has absolutely irreducible reduction modulo p, then n p ≤ pn

+ On(d2 pn−1/2).

Proof. By [Cafure and Matera 2006, Corollary 5.6] the number of Fp-points of X p counted without
multiplicity is bounded by

pn+1
+ (d − 1)(d − 2)pn+1/2

+ (5d2
+ d + 1)pn

− 1
p− 1

≤ pn
+ On(d2 pn−1/2).

(This uses the lower bound on p and the condition on X p.)
The singular points of X p all lie in the algebraic set cut out by f and ∂ f

∂x0
, which can be assumed to be

nonzero without loss of generality. This is an algebraic set all of whose components have codimension 2
and the sum of the degrees of these components is bounded by d2. The standard Lang–Weil estimate
yields that there are On(d2 pn−1)≤ On(dpn−1/2) points on this algebraic set and hence at most that many
singular points, each of which has multiplicity at most d. Adding this term to the number of points
counted without multiplicity yields the claim. �

Lemma 2.8. In the situation above, with p > 27d4 and X p geometrically integral, we have n1/n
p /p−1≤

On(d2 p−1/2).

Proof. Apply the general inequality x1/n
− 1≤ x − 1 for x ≥ 1. �

We immediately obtain the following from Proposition 2.6.

Corollary 2.9. The determinant 1 from Proposition 2.6 is divisible by pe, where

e ≥ (n!)1/n n
n+ 1

s1+1/n

p+ On(d2 p1/2)
− On(s).

This is stated as Theorem 2.2 in [Walsh 2015], but our statement is more precise in terms of the implied
constants.

3. Points on projective hypersurfaces à la Walsh

3.1. Formulation of main result. The following result is the goal of this section and an improvement to
Theorem 1.3 of [Walsh 2015]. Call a polynomial f over Z primitive if the greatest common divisor of its
coefficients equals 1. For any f , we write ‖ f ‖ for the maximum of the absolute values of the coefficients
of f .
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Theorem 3.1.1. Let n> 0 be an integer. Then there exists c (depending on n) such that the following holds
for all choices of f, d, B. Let f be a primitive irreducible homogeneous polynomial in Z[x0, . . . , xn+1] of
degree d ≥ 1, and write X for the hypersurface in Pn+1

Q
cut out by f . Choose B ≥ 1. Then there exists a

homogeneous g in Z[x0, . . . , xn+1] of degree at most

cB(n+1)/(nd1/n) d4−1/nb( f )
‖ f ‖1/n·1/d1+1/n + cd1−1/n log B+ cd4−1/n,

not divisible by f , and vanishing at all points on X of height at most B.

Here the quantity b( f ) is defined in Definition 3.2.1; it always satisfies b( f )≤O(max(d−2 log‖ f ‖, 1)).
The main improvement over [Walsh 2015] lies in the polynomial dependence on the degree d.

We also immediately obtain the following, which is the essential tool for proving Theorem 2.

Corollary 3.1.2. For any primitive irreducible polynomial f ∈ Z[x0, x1, x2] homogeneous of degree d
and any B ≥ 1 we have

N ( f, B)≤ cB2/d d4b( f )
‖ f ‖1/d2 + cd log B+ cd4

≤ c′d4 B2/d ,

where c, c′ are absolute constants.

Proof. Apply Theorem 3.1.1 to obtain a polynomial g, and then apply Bézout’s theorem to the curves
defined by f and g. This yields the first inequality. For the second inequality we can use that b( f )/‖ f ‖1/d

2

is bounded because b( f )≤ O(max(d−2 log‖ f ‖, 1)). �

3.2. A determinant estimate. In this section we want to use the results of Section 2 for a number of
primes simultaneously. It is useful to introduce the following measure of the set of primes modulo which
an absolutely irreducible polynomial over the integers ceases to be absolutely irreducible.

Definition 3.2.1. For an integer polynomial f in an arbitrary number of variables we set b( f )= 0 if f
is not absolutely irreducible, and

b( f )=
∏

p

exp
(

log p
p

)
otherwise, where the product is over those primes p > 27d4 such that the reduction of f modulo p is not
absolutely irreducible.

For now we work with a degree d hypersurface in Pn+1 defined by a primitive polynomial f ∈
Z[x0, . . . , xn+1] which is absolutely irreducible. We first establish a basic estimate on b( f ), showing in
particular that it is finite.

Theorem 3.2.2 (explicit Noether polynomials, [Ruppert 1986, Satz 4]). Let d ≥ 2, n ≥ 3. There is a
collection of homogeneous polynomials 8 in

(n+d
n

)
variables over Z of degree d2

− 1, such that

‖8‖1 ≤ d3d2
−3
[(n+d

n

)
3d
]d2
−1
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(where ‖·‖1 denotes the sum of the absolute values of the coefficients), and such that the following holds
for any polynomial F in n+1 variables homogeneous of degree d over any field:

• If F is not absolutely irreducible, then all the8 vanish when applied to the coefficients of F , reducing
modulo the characteristic of the ground field if necessary.

• If F is absolutely irreducible over a field of characteristic 0, then one of the 8 does not vanish when
applied to the coefficients of F.

Corollary 3.2.3. b( f )≤ O(max(d−2 log‖ f ‖, 1)).

Proof. Write P for the set of prime numbers p > 27d4 modulo which f is not absolutely irreducible.
There exists a Noether form8 with coefficients in Z such that8 applied to the coefficients of f is nonzero,
but is divisible by any prime in P . In particular, the product of such p is bounded by c := ‖8‖1‖ f ‖deg8.
Now

log b( f )=
∑
p∈P

log p
p

≤

∑
27d4<p≤log c

log p
p
+

∑
log c<p∈P

log p
log c

≤max(log log c− 4 log d, 0)+ O(1)+
log c
log c

≤max(log log c− 4 log d, 0)+ O(1)

≤max(log(deg8 log‖ f ‖)− 4 log d, log log‖8‖1− 4 log d, 0)+ O(1),

where we have used that the function log x −
∑

p≤x log p/p is bounded (Mertens’ first theorem). Since
log log‖8‖1− 4 log d is bounded above, the claim follows. �

We now adapt [Walsh 2015, Theorem 2.3], keeping track of the dependency on the degree and on
b( f ).

Lemma 3.2.4. For any x > 0,
∑

p≤x log p ≤ 2x , where the sum extends over prime numbers not
exceeding x.

Proof. This is a classical estimate on the first Chebyshev function. �

Lemma 3.2.5. As x varies over positive real numbers we have
∑

p>x log p/p3/2
= O(x−1/2), where the

sum extends over prime numbers greater than x.

Proof. Estimate the density of prime numbers using the prime number theorem and compare the sum
with an integral. �

Proposition 3.2.6. Let (ξ1, . . . , ξs) be a tuple of rational points in X , let Fli ∈Z[x0, . . . , xn+1], 1≤ l ≤ L ,
1 ≤ i ≤ s, be homogeneous polynomials with integer coefficients, and write 1l for the determinant of
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(Fli (ξ j ))i j . Let 1 be the greatest common divisor of the 1l , and assume that 1 6= 0. Then we have the
bound

log|1| ≥
n!1/n

n+ 1
s1+1/n(log s− On(1)− n(4 log d + log b( f ))).

This is a more explicit variant of [Walsh 2015, Theorem 2.3].

Proof. Let P be the collection of prime numbers p such that either p ≤ 27d4 or X p is not geometrically
integral.

We now apply Corollary 2.9 to all prime numbers p ≤ s1/n not in P , yielding

log|1| ≥
n!1/nn
n+ 1

s1+1/n
∑

P 63p≤s1/n

log p
p+ On(d2 p1/2)

− On(s)
∑

p≤s1/n

log p.

The last term is bounded by On(1)s1+1/n .
In estimating the main term, we may use that 1/(p+On(d2 p1/2))≥ 1/p−On(d2)/p3/2. We can then

bound ∑
P 63p≤s1/n

log p
p+ On(d2 p1/2)

≥

∑
p≤s1/n

log p
p
−

∑
p∈P

log p
p
− On(d2)

∑
P 63p≤s1/n

log p
p3/2

≥
log s

n
−

∑
p≤27d4

log p
p
− log b( f )− O(1)− On

(
d2

∑
p>27d4

log p
p3/2

)

≥
log s

n
− log(27d4)− log b( f )− O(1)− On(d2(27d4)−1/2)

≥
log s

n
− 4 log d − log b( f )− On(1). �

3.3. The main estimates. We first establish that we can reduce to the case of absolutely irreducible f in
the proof of Theorem 3.1.1.

Lemma 3.3.1. If f ∈ Z[x0, . . . , xn+1] is homogeneous of degree d ≥ 1 and irreducible but not absolutely
irreducible, then there exists another polynomial g ∈ Z[x0, . . . , xn+1] of degree d, not divisible by f ,
which vanishes on all rational zeroes of f .

Proof. This is established in the first paragraph of Section 4 of [Walsh 2015]. �

Let us now work with a restricted class of homogeneous polynomials f , namely those which are
absolutely irreducible and for which the leading coefficient c f , i.e., the coefficient of the monomial xd

n+1,
satisfies

c f ≥ ‖ f ‖C−nd1+1/n

for some positive constant C which is allowed to depend on n (for this reason the factor n in the exponent
is in fact superfluous, but it simplifies the proof write-up below).

The two main results are the following:



The dimension growth conjecture, polynomial in the degree and without logarithmic factors 2273

Lemma 3.3.2. For f as above, and B satisfying ‖ f ‖ ≤ B2d(n+1), there exists a homogeneous polynomial
g not divisible by f , vanishing at all zeroes of f of height at most B, and of degree

M = On(1)B(n+1)/(nd1/n) d4−1/nb( f )
‖ f ‖n−1d−1−1/n + d1−1/n log B+ On(d2).

Lemma 3.3.3. For f as above, and B satisfying ‖ f ‖ ≥ B2d(n+1), there exists a homogeneous polynomial
g not divisible by f , vanishing at all zeroes of f of height at most B, and of degree

M = On(d4−1/n).

These two lemmas together clearly imply the statement of Theorem 3.1.1, at least for polynomials f
satisfying the condition on leading coefficients.

We follow the exposition in [Walsh 2015, Section 4], and prove the two lemmas together. We shall
need the following.

Theorem 3.3.4 [Bombieri and Vaaler 1983, Theorem 1]. Let
∑r

k=1 amk xk = 0 (m = 1, . . . , s) be a system
of s linearly independent equations in r > s variables x1, . . . , xr , with coefficients amk ∈ Z. Then there
exists a nontrivial integer solution (x1, . . . , xr ) satisfying

max
1≤i≤r
|xi | ≤ (D−1

√
|det(AA>)|)1/(r−s).

Here A = (amk) is the matrix of coefficients and D is the greatest common divisor of the determinants of
the s× s minors of A.

Proof of Lemmas 3.3.2 and 3.3.3. Fix B ≥ 1, and let S be the set of rational points on the hypersurface
described by f of height at most B. Let M > 0 be such that there is no homogeneous polynomial g of
degree M , not divisible by f , which vanishes on all points in S; we shall show that M is bounded in
terms of n, B, d, ‖ f ‖ as stated. Let us assume in the following that M is bigger than some constant (to
be specified later) times d2.

Given an integer D, write B[D] for the set of monomials of degree D in n+ 2 variables, so |B[D]| =(D+n+1
n+1

)
. Write 4⊆ S for a maximal subset which is algebraically independent over monomials of degree

M , in the sense that applying all monomials in B[M] to 4 yields s = |4| linearly independent vectors.
Let A be the s × r matrix whose rows are these vectors, where r = |B[M]| =

(M+n+1
n+1

)
; each entry of

A is bounded in absolute value by B M . Since all polynomials in f · B[M − d] vanish on 4, and no
polynomials of degree M not divisible by f do by assumption on M , we have s = |B[M]| − |B[M − d]|.

Now A describes a system of linear equations whose solutions correspond to (the coefficients of)
homogeneous polynomials of degree M vanishing on all points in 4 and therefore all points in S; by
assumption, these polynomials are multiples of f and therefore have one coefficient of size at least
c f ≥ ‖ f ‖C−nd1+1/n

by the assumption on f . Hence Theorem 3.3.4 yields

1≤
√
|det(AA>)|(‖ f ‖C−nd1+1/n

)s−r ,
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where we write 1 for the greatest common divisor of the determinants of the s× s minors of A. Taking
logarithms, using the estimate |det(AA>)| ≤ s!(r B M)s obtained by estimating the size of the coefficients
of AA>, and using the estimate for 1 obtained from Proposition 3.2.6, this expands as follows:

n!1/n

n+ 1
s1+1/n(log s− On(1)− n(4 log d + log b( f )))

≤
log s!

2
+

s
2

log r + s M log B− (r − s)(log‖ f ‖− nd1+1/n On(1))

We can use the estimates log s! ≤ s log s and log r ≤ log(M + 1)n+1
≤ On(log M)≤ On(log s) to see

that the first two terms on the right-hand side are both in On(s1+1/n) and can hence be neglected by
adjusting the constant On(1) on the left-hand side. Dividing by Ms now yields:

n!1/n

n+ 1
s1/n

M
(log s− On(1)− n(4 log d + log b( f )))≤ log B−

r − s
Ms

(log‖ f ‖− nd1+1/n On(1)) (3-3-1)

The term s =
(M+n+1

n+1

)
−
(M−d+n+1

n+1

)
is a polynomial in M and d . We can write

s =
d Mn

n!
+ On(d2 Mn−1),

in particular log s = log d + n log M − On(1). By rearranging and applying the binomial series, which is
legal since d2/M is bounded above by an adjustable absolute constant, we also obtain

s1/n

M
=

d1/n

n!1/n + On

(
d2

M

)
.

Thus the left-hand side of the inequality above can be replaced by

d1/nn
n+ 1

(
log M − On(1)−

((
4−

1
n

)
log d +

(
1+ On

(
d2−1/n

M

))
log b( f )

))
,

where we have dropped terms On(d2−1/n log M/M) and On(d2−1/n log d/M) by adjusting the constant
in On(1).

Let us now estimate (r − s)/(Ms). We have r − s = (Mn+1)/((n+ 1)!)+ On(d Mn), so

r − s
Ms
=

1
d(n+ 1)

1+ On(d/M)
1+ On(d/M)

=
1

d(n+ 1)
+ On

(
1
M

)
.

Therefore inequality (3-3-1) becomes

d1/nn
n+ 1

(
log M − On(1)−

((
4−

1
n

)
log d +

(
1+ On

(
d2−1/n

M

))
log b( f )

))
≤ log B−

log‖ f ‖
d(n+ 1)

− On

(
log‖ f ‖

M

)
. (3-3-2)

Let us now assume that ‖ f ‖ ≤ B2d(n+1) and M ≥ d1−1/n log B. Then log‖ f ‖ ≤ 2d(n+ 1) log B ≤
On(d1/n M), so we can drop the last term on the right-hand side, as well as the On(log b( f )/M) on the
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left-hand side. Rearranging yields that

log M ≤ On(1)+
n+ 1
d1/nn

log B−
log‖ f ‖
nd1+1/n +

(
4−

1
n

)
log d + log b( f ),

so we obtain Lemma 3.3.2.
Now, on the other hand, assume that ‖ f ‖ ≥ B2d(n+1) and M ≥ 4d(n + 1). Rearranging inequality

(3-3-2) yields

log M ≤ On(1)+
(

4−
1
n

)
log d + (1+ On(d−1/n)) log b( f )−

log‖ f ‖
4nd1+1/n

≤ On(1)+max
{

3 log d,
(

4−
1
n

)
log d

}
,

where we have used

On(1) log b( f )−
log‖ f ‖

4nd1+1/n ≤ On(1)max(log log‖ f ‖− 2 log d, 0)−
log‖ f ‖

4nd1+1/n

≤max(0,−2 log d + log(On(1)4nd1+1/n))

≤ On(1)

by Corollary 3.2.3 and the lemma below. This establishes Lemma 3.3.3. �

Lemma 3.3.5. Let c > 0. For any x > 1 we have log log x − log(x)/c ≤ log c+ O(1).

Proof. Let C = supx>1(log log x−log x); note that the supremum exists, since it is taken over a continuous
function on ]1,∞[ which tends to −∞ at both ends of the interval. Now log log x − log(x)/c =
log c+ log log x1/c

− log x1/c
≤ log c+C . �

3.4. Finishing the proof. We use ideas from [Walsh 2015, Section 3] to finish the proof of Theorem 3.1.1.

Lemma 3.4.1. Let f ∈ C[x] be a polynomial of degree ≤ d, and write ‖ f ‖ for the maximal absolute
value among the coefficients. There exists an integer a, 0≤ a ≤ d , such that | f (a)| ≥ 3−d

‖ f ‖.

Proof. This is a statement about the ‖·‖∞-operator norm of the inverse of the Vandermonde matrix with
nodes 0, . . . , d , which can be deduced from [Gautschi 1962, Theorem 1]. �

Lemma 3.4.2. Let f ∈ C[x0, . . . , xn+1] be homogeneous of degree d. There exist integers a0, . . . , an

with 0≤ ai ≤ d such that | f (a0, . . . , an, 1)| ≥ 3−(n+1)d
‖ f ‖.

Proof. Dehomogenize by setting xn+1 = 1, and then use induction with the preceding lemma. �

Proof of Theorem 3.1.1. Take a nonzero f ∈ Z[x0, . . . , xn+1] homogeneous of degree d. Consider
a0, . . . , an as in the last lemma and let A = I + A0 ∈ SLn+2(Z), where I is the (n + 2) × (n + 2)
identity matrix and A0 has its last column equal to (a0, . . . , an, 0) and zero everywhere else. Note that
A−1
= I − A0.
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Let f ′ = f ◦ A. By construction, the xd
n+1-coefficient of f ′ is ≥ 3−(n+1)d

‖ f ‖. Because of the
boundedness of the entries of A, we furthermore see that

‖ f ′‖ ≤ dd(n+ 2)d
(

n+ d + 1
n+ 1

)
‖ f ‖ ≤ exp(On(d1+1/n))‖ f ‖.

In particular, the xd
n+1-coefficient of f ′ is greater than C−nd1+1/n

‖ f ′‖ for some constant C depending
only on n. The polynomial f ′ is primitive if and only if f is, since they are related by the matrices A,
A−1 with integer coefficients, and b( f ) = b( f ′). Furthermore, if g′ is a homogeneous polynomial in
Z[x0, . . . , xn+1] vanishing on all zeroes of f ′ up to a certain height B ′, then g = g′ ◦ A−1 is a polynomial
of the same degree vanishing on all zeroes of f up to height B = B ′/(d + 1).

Since either Lemma 3.3.2 or Lemma 3.3.3 applies to f ′ and B ′, we obtain the desired statement
for f . �

4. Proofs of Theorems 1, 2, 3, 4, 6

4.1. On trivial bounds. In this subsection, we extend our notation to varieties defined over any field K
containing Q, and we write N (X, B) for the number of points in Pn(Q)∩ X (K ) of height at most B,
when X is a subvariety of Pn

K , and similarly we write Naff(Y, B) for the number of points in Zn
∩Y (K )∩

[−B, B]n , when Y ⊆ An
K .

Lemma 4.1.1. Let X ⊆ An
Q

be a (possibly reducible) variety of pure dimension m and degree d defined
over Q. Then the number Naff(X, B) of integral points on X of height at most B is bounded by d(2B+1)m .

When X is a hypersurface, this is the well-known Schwarz–Zippel bound, and even the general case
appears in many places in the literature, albeit often without making the bound completely explicit.

Proof. This is an easy inductive argument using intersections with shifts of coordinate hyperplanes.
In fact, the proof of [Browning and Heath-Brown 2005, Theorem 1] automatically gives this stronger
statement. �

Corollary 4.1.2. For an irreducible affine variety X in An of degree d and dimension < n there exists a
tuple (a1, . . . , an) of integers not on X , with |ai | ≤ d for every i . For every irreducible projective variety
X in Pn of degree d and dimension < n there exists a point in Pn(Q) of height at most d not on X.

Proof. The affine version is implied by the preceding lemma, and the projective version follows by
considering the affine cone. �

Lemma 4.1.3. Let X ⊆ An
Q

be an absolutely irreducible variety of dimension m and degree d not
defined over Q. Then the number Naff(X, B) of integral points on X of height at most B is bounded by
d2(2B+ 1)m−1.

By considering the affine cone over a projective variety, this result also applies to projective varieties
of dimension m, with bound d2(2B+ 1)m .
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Proof. For every field automorphism σ of Q, there is a conjugate variety Xσ . Since X is not defined
over Q, there exists a σ with Xσ

6= X . All Q-points of X necessarily also lie on Xσ . Since Xσ has
degree d , it is the intersection of hypersurfaces of degree≤ d , see for instance [Heintz 1983, Proposition 3].
Let Y be a hypersurface of degree ≤ d containing Xσ and not containing X . Then X ∩ Y is a variety of
pure dimension m− 1 and degree at most d2. Now Lemma 4.1.1 gives the result. �

The following allows us to reduce to the geometrically irreducible situation when counting points on
varieties.

Corollary 4.1.4. Let X ⊆ An be an irreducible variety over Q of dimension m and degree d which is not
geometrically irreducible. Then for any B ≥ 1 we have Naff(X, B)≤ d2(2B+ 1)m−1.

As above, this also applies to projective varieties.

Proof. Let K/Q be a finite Galois extension over which X splits into absolutely irreducible components,
and let Y be one of the components. Since all components are Galois-conjugate, the Q-points on X in
fact also lie on Y . Now the preceding lemma applied to Y gives the result. �

Remark 4.1.5. Note that this trivially proves Theorems 1 and 3 for irreducible, but not geometrically
irreducible varieties, and similarly for absolutely irreducible varieties defined over Q but not over Q. The
same applies for Theorem 2 by considering a projective curve as the union of an affine curve with a finite
number of points.

Thus we henceforth only need to concern ourselves with absolutely irreducible varieties defined over Q.

4.2. Affine counting. Our results for projective hypersurfaces from the last section yield the follow-
ing result for affine hypersurfaces, by refining the technique given in [Ellenberg and Venkatesh 2005,
Remark 2.3].

Proposition 4.2.1. Fix an integer n > 0. Then there exist c and e such that the following holds for all
f, B, d. Let f ∈ Z[x1, . . . , xn+1] be irreducible, primitive and of degree d. For each i write fi for the
degree i homogeneous part of f . Fix B ≥ 1. Then there is a polynomial g in Z[x1, . . . , xn+1] of degree at
most

cB1/d1/n
d2−1/n min(log‖ fd‖+ d log B+ d2, d2b( f ))

‖ fd‖
1/n·1/d1+1/n + cd1−1/n log B+ cd4−1/n,

not divisible by f , and vanishing on all points x in Zn+1 satisfying f (x)= 0 and |xi | ≤ B.

To prove Proposition 4.2.1 we need the following lemmas:

Lemma 4.2.2 [Browning et al. 2006, Lemma 5]. Let f ∈ Z[x1, . . . , xn+2] be a primitive absolutely
irreducible polynomial, homogeneous of degree d, defining a hypersurface Z in Pn+1. Let B ≥ 1. Then
either the height of the coefficients of f is bounded by On(Bd(d+n+1

n+1 )), or there exists a homogeneous
polynomial g of degree d vanishing on all points of Z of height at most B.
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Lemma 4.2.3. For F ∈ Z[x1, . . . , xn+2] an irreducible primitive homogeneous polynomial and 1≤ y ≤
‖F‖ we have

d4−1/n b(F)
‖F‖1/n·1/d1+1/n ≤ On(1)d2−1/n log y+ d2

y1/n·1/d1+1/n .

Proof. The function

x 7→
log x

x1/n·1/d1+1/n

on (1,∞) is monotonically increasing up to its maximum when x1/n·1/d1+1/n
= e, and monotonically

decreasing thereafter.
Let us write x = ‖F‖ and use d2b(F)≤ On(1)(log x + d2) by Corollary 3.2.3. By the monotonicity

considered above, there is nothing to show when y1/n·1/d1+1/n
≥ e. Otherwise,

2d2−1/n log y+ d2

y1/n·1/d1+1/n ≥ 2d2−1/n d2

y1/n·1/d1+1/n ≥ d4−1/n
(

1
e
+

1
y1/n·1/d1+1/n

)
,

and the left-hand side of the inequality in the statement is always bounded by

On(1)d2−1/n log x + d2

x1/n·1/d1+1/n ≤ On(1)d2−1/n
(

nd1+1/n

e
+

d2

x1/n·1/d1+1/n

)
,

yielding the claim. �

As mentioned above, the following proof follows [Ellenberg and Venkatesh 2005, Remark 2.3]; but
additionally we bring in the idea of forming the homogeneous polynomial FH for primes H in the range
(B/2; B] to control primitivity.

Proof of Proposition 4.2.1. By applying Lemma 3.3.1 to the homogenization of f , we may assume that
f is absolutely irreducible. For each natural number H , consider the polynomial FH ∈ Z[x1, . . . , xn+2]

given by FH (x1, . . . , xn+2)=
∑d

i=0 H i fi xd−i
n+2. Then FH is an irreducible homogeneous polynomial of

degree d. On the other hand, each integral point (x1, . . . , xn+1) ∈ Z( f )(Z) gives us a rational point
(x1, . . . , xn+1, H) in Z(FH )(Q), where Z( f ) stands for the hypersurface in An+1 given by f and Z(FH )

stands for the hypersurface in Pn+1 given by FH .
If B is bounded by some polynomial expression in d (to be determined later), then B1/(nd1/n) is bounded

by a constant depending only on n; hence we use Theorem 3.1.1 for F1, by which there exists a number c
depending only on n along with a homogeneous polynomial G1 in Z[x1, . . . , xn+2] of degree at most

cB1/d1/n
d4−1/n b(F1)

‖F1‖1/n·1/d1+1/n + cd1−1/n log B+ cd4−1/n,

not divisible by F1, and vanishing at all points on Z(F1)(Q) of height at most B. Since b(F1)= b( f )
and ‖F1‖ ≥ ‖ fd‖, by Lemma 4.2.3 we obtain

d4−1/n b(F1)

‖F1‖1/n·1/d1+1/n ≤ On(d2−1/n)
min(d2b( f ), log‖ f ‖+ d2)

‖ fd‖
1/n·1/d1+1/n .
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Hence the polynomial g(x1, . . . , xn+1)= G1(x1, . . . , xn+1, 1) satisfies our proposition.
For any B ≥ 2 Bertrand’s postulate guarantees the existence of a prime B ′ in the interval (B/2, B].

Moreover, if B ′ - f0, then FB ′ is primitive. By Theorem 3.1.1 for FB ′ , there exists a number c depending
only on n along with a homogeneous polynomial G B ′ in Z[x1, . . . , xn+2] of degree at most

cB(n+1)/nd1/n
d4−1/n b(FB ′)

‖FB ′‖
1/n·1/d1+1/n + cd1−1/n log B+ cd4−1/n,

not divisible by FB ′ , and vanishing at all points on Z(FB ′)(Q) of height at most B.
It is clear that ‖FB ′‖ ≥ B ′d‖ fd‖ ≥ 2−d Bd

‖ fd‖, so by Lemma 4.2.3 we have

d4−1/n b(FB ′)

‖FB ′‖
1/n·1/d1+1/n ≤ On(1)

(
B
2

)−1/(nd1/n)

d2−1/n log‖ fd‖+ d log B+ d2

‖ fd‖
1/n·1/d1+1/n .

Furthermore b(FB ′) agrees with b(F1) up to a factor of exp(log B ′/B ′)≤ O(1). Hence we in fact have

d4−1/n b(FB ′)

‖FB ′‖
1/n·1/d1+1/n ≤ On(1)B−1/(nd1/n)d2−1/n min(log‖ fd‖+ d log B+ d2, b( f ))

‖ fd‖
1/n·1/d1+1/n .

Thus the polynomial g(x1, . . . , xn+1)= G B ′(x1, . . . , xn+1, B ′) is as desired.
From now on, we suppose that B > 2 and B ′ | f0 for all primes B ′ in the interval (B/2, B]. Then we

have ( ∏
B ′ prime

B/2<B ′≤B

B ′
)
| f0

If f0 6= 0 then we deduce that ∑
B ′prime,B/2<B ′≤B

log B ′ ≤ log| f0|.

By Lemma 4.2.2, we are done if f0 is large compared to Bd(d+n+1
n+1 ), so in the remaining case we have∑

B ′prime,B/2<B ′≤B

log B ′ ≤ d
(

d + n+ 1
n+ 1

)
log B− On(1)

Because of the well-known estimate

lim
x 7→+∞

∑
p≤x log p

x
= 1,

we see that B is necessarily bounded by a certain polynomial in d in this case, so we are done by the
discussion above.

If f (0) = 0, then by Corollary 4.1.2 there exists an integer point A = (a1, . . . , an+1) with
f (a1, . . . , an+1) 6=0 and |ai |≤d for all 1≤ i ≤n+1. We consider the shifted polynomial f̃ (x)= f (x+A),
for which f̃ (0) 6= 0, ‖ fd‖= ‖ f̃d‖, and b( f̃ )= b( f ). We apply the above discussion for f̃ and B̃ = B+d
to obtain a polynomial g̃(x) vanishing on all zeroes of f̃ of height at most B̃, and take g(x)= g̃(x − A).
This satisfies the required degree bound since g̃ does. �
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Corollary 4.2.4. There exists a constant c such that for all d > 0 and all irreducible affine curves X ⊆A2
Q

of degree d, cut out by an irreducible primitive polynomial f ∈ Z[x1, x2], and all B ≥ 1 one has

Naff(X, B)≤ cB1/d min(d2 log‖ fd‖+ d3 log B+ d4, d4b( f ))
‖ fd‖

1/d2 + cd log B+ cd4.

Proof. Take n = 1 in Proposition 4.2.1 and apply Bézout’s theorem. �

If the absolute irreducibility of f can be explained by the indecomposability of its Newton polytope,
e.g., in the sense of [Gao 2001], then this allows for good bounds on b( f ) which get rid of the factor
log B. The following instance will be used to prove Theorem 6:

Corollary 4.2.5. There exists a constant c such that for all affine curves X ⊆ A2
Q

cut out by a polynomial
f ∈ Z[x1, x2] of the form

cd xd
1 + cd ′xd ′

2 +
∑
i,i ′

id ′+i ′d<dd ′

ci j x i
1x i ′

2

with d > d ′ > 0 coprime integers and cd , cd ′ 6= 0, and for all B ≥ 1, one has

Naff(X, B)≤ cd4(log|cdcd ′ | + 1)B1/d .

Proof. By dividing out by the greatest common divisor of the coefficients, we may suppose that f is
primitive. The presence of the edge (d, 0)–(0, d ′) in the Newton polytope of f is enough to guarantee
absolute irreducibility in any characteristic [Gao 2001, Theorem 4.11]. Therefore we can bound

b( f )≤
∏

p|cd cd′

exp
(

log p
p

)
≤ log|cdcd ′ | + 1

through Mertens’ first theorem as in Corollary 3.2.3. �

4.3. Proofs of our main results. We can now prove our main theorems, subject to the following proposi-
tions; they allow us to reduce to the case of hypersurfaces throughout, and will be established in Section 5
by projection arguments.

Proposition 4.3.1. Given a geometrically integral affine variety X in An of dimension m and degree d,
there exists a geometrically integral affine variety X ′ in Am+1 birational to X , also of degree d , such that
for any B ≥ 1 we have

Naff(X, B)≤ d Naff(X ′, cnden B),

where cn, en are constants depending only on n.
For m = 1, we can even achieve

Naff(X, B)≤ Naff(X ′, cnden B)+ d2.
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Proposition 4.3.2. Given a geometrically integral projective variety X in Pn of dimension m and degree d ,
there exists a geometrically integral projective variety X ′ in Pm+1 birational to X , also of degree d , such
that for any B ≥ 1 we have

N (X, B)≤ d N (X ′, cnden B),

where cn, en are constants depending only on n.
For m = 1, we can even achieve

N (X, B)≤ N (X ′, cnden B)+ d2.

Proof of Theorem 2. In the case of a planar curve, i.e., for n = 2, Corollary 3.1.2 gives the claim. For the
general case, we may assume that the given curve is geometrically integral by Remark 4.1.5, and then
reduce to n = 2 by applying Proposition 4.3.2 (where m = 1). �

Proof of Theorem 3. We may assume that the curve X is geometrically integral by Remark 4.1.5. In the
case of a planar curve, i.e., for n = 2, Corollary 4.2.4 yields that

N (X, B)≤ On((d3 log B+ d4)B1/d),

by observing that
d2 log‖ fd‖+ d3 log B+ d4

‖ fd‖
1/d2 ≤ d3 log B+ 2d4.

We can reduce the general case to n = 2 by applying Proposition 4.3.1 (where m = 1), yielding the same
estimate. �

Proof of Theorem 6. In the penultimate step of their proof of Theorem 1.1, Bhargava et al. [2020] establish
the bound

h2(K )≤ Od,ε(|1K |
1/4+ε)+

∑
β∈B

Naff( fβ, |1K |
1/2)

where B ⊆OK is a set of size Od(|1K |
1/2−1/d) and

fβ = y2
− NK/Q(x −β)= y2

− xd
− lower order terms in x .

Theorem 3 implies that

Naff( fβ, |1K |
1/2)≤ Od(|1K |

1/(2d) log|1K |),

yielding the desired result when d is even. If d is odd then instead of Theorem 3 we apply Corollary 4.2.5
with d ′ = 2, cd =−1, cd ′ = 1 to get rid of the factor log|1K |. �

For the proof of Theorem 4, we need the following explicit form of Proposition 1 of [Browning et al.
2006] with D = 1.
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Proposition 4.3.3. There exists a constant c such that for all d ≥ 3 and all polynomials f ∈ Z[x1, x2, x3]

of degree d such that the highest degree part h( f )= fd of f is irreducible, all finite sets I of curves C of
A3

Q
of degree 1 and lying on the hypersurface defined by f , and all B ≥ 1 one has

Naff

(
X ∩

(⋃
C∈I

C
)
, B
)
≤ cd6 B+ #I.

Proof. We write I = I1 ∪ I2 where I1 = {L ∈ I | Naff(L , B) ≤ 1} and I2 = {L ∈ I | Naff(L , B) > 1}. It
is clear that Naff

(
X ∩

⋃
L∈I1

L
)
≤ #I1. If L ∈ I2, then there exist a = (a1, a2, a3), v = (v1, v2, v3) ∈ Z3

such that H(a)≤ B, v is primitive and L(Q)= {a+ λv | λ ∈Q}. Since v is primitive we deduce that

L(Z)∩ [−B, B]3 = {a+ λv | λ ∈ Z, H(a+ λv)≤ B}.

So
#(L(Z)∩ [−B, B]3)≤ 1+

2B
H(v)

.

Since L ∈ I2 we have H(v) ≤ 2B and fd(v) = 0. On the other hand, for each point v with fd(v) = 0,
there are at most d(d − 1) lines L ∈ I2 in the direction of v, since each such line intersects a generic
hyperplane in A3 in a point which is simultaneously a zero of f and of the directional derivative of f in
the direction of v. Put Ai = {v ∈ P2(Q) | fd(v)= 0, H(v)= i} and ni = #Ai . Then, by Corollary 3.1.2,
there exists a constant c independent of f such that

∑
1≤i≤k ni ≤ cd4k2/d . By our discussion,

Naff

(
X ∩

(⋃
C∈I

C
)
, B
)
≤ #I1+ (d − 1)d

2B∑
i=1

ni

(
1+

2B
i

)
.

On the other hand, summation by parts gives the following:

2B∑
i=1

ni

(
1+

2B
i

)
=

2B−1∑
k=1

( k∑
i=1

ni

)(
2B
k
−

2B
k+ 1

)
+

( 2B∑
i=1

ni

)(
1+

2B
2B

)

≤ cd4
(2B−1∑

k=1

k2/d 2B
k(k+ 1)

+ 2(2B)2/d
)
.

Since d ≥ 3, one has
∑

k≥1 k2/d
· 1/(k(k+ 1)) <+∞ and B2/d

≤ B. Thus, by enlarging c, we have

Naff

(
X ∩

(⋃
C∈I

C
)
, B
)
≤ cd6 B+ #I

as desired. �

In order to prove Theorem 4, we now first consider the case of a surface in P3, with proof inspired by
the proof of Corollary 7.3 of [Salberger 2013] in combination with the improvements developed above.

Proposition 4.3.4. There exists a constant c such that for all polynomials f in Z[y1, y2, y3] whose
homogeneous part of highest degree fd is irreducible over Q and whose degree d is least 5, one has
Naff( f, B)≤ cd14 B.
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Proof of Proposition 4.3.4 for d ≥ 16. For any prime modulo which fd is absolutely irreducible, the
reduction of f is likewise absolutely irreducible, so b( f ) ≤ b( fd). Applying the usual estimate from
Corollary 3.2.3, Proposition 4.2.1 yields for each B ≥ 1 a polynomial g of degree at most

cd7/2 B1/
√

d , (4-3-1)

not divisible by f and vanishing on all points x in Zn satisfying f (x)= 0 and |xi | ≤ B, with c an absolute
constant. Let C be an irreducible component of the (reduced) intersection of f = 0 with g = 0. Call this
intersection C. If C is of degree δ > 1, then

Naff(C, B)≤ c′δ3 B1/δ(log B+ δ) (4-3-2)

by Theorem 3, for some absolute constant c′.
By Proposition 4.3.3, the total contribution of integral curves D of C of degree 1 is at most

c′′d6 B (4-3-3)

for some absolute constant c′′.
Suppose that C1, . . . ,Ck are irreducible components of the intersection of f = 0 and g = 0 and

deg(Ci )> 1 for all i . Furthermore, we assume that deg(Ci )≤ log B for all 1≤ i ≤m and deg(Ci )> log B
for all i > m. Since the function δ 7→ 4 logB(δ)+ 1/δ is decreasing in (0, log B/4) and increasing in
(log B/4,+∞), by enlarging c′, for all 1≤ i ≤ m we have

Naff(Ci , B)≤ c′B1/2(log B+ 1). (4-3-4)

On the other hand, if δ > log B then B1/δ is bounded, so (4-3-1) and (4-3-2) imply∑
m+1≤i≤k

Naff(Ci , B)≤ c′′′d14 B4/
√

d (4-3-5)

for some c′′′ independent of d and B.
Putting the estimates (4-3-1), (4-3-3), (4-3-4), (4-3-5) together proves the proposition when d is at

least 16. �

To give a proof of Proposition 4.3.4 for lower values of d than 16, one could try to get a form of
Theorem 3 with a lower exponent of the degree and repeat the above proof. We proceed differently: we
treat the values for d going from 6 up to 15 by inspecting the proof of [Browning et al. 2006, Theorem 2]
in combination with some of the above refinements, and the case of d = 5 by using [Salberger 2013,
Theorem 7.2] (at the cost of being less self-contained).

Proof of Proposition 4.3.4 with 6 ≤ d ≤ 15. Fix 6 ≤ d ≤ 15, let f ∈ Z[y1, y2, y3] be of degree d with
absolutely irreducible homogeneous part of highest degree, and let X be the surface described by f .

In [Browning et al. 2006, Theorem 2], the estimate Naff( f, B)≤ Od,ε(B1+ε) is established for every
ε > 0. However, using our Theorem 2 and Proposition 4.3.3, we shall show that their proof [Browning
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et al. 2006, pages 568–570] in fact gives the bound Naff( f, B)≤ Od(B), without any ε, which is sufficient
for our purposes.

Specifically, they first consider the case in which Lemma 4.2.2 applies, so all the rational points on
X of height up to B lie on a union of irreducible curves with sum of degrees at most d2. Applying
Theorem 2 to those curves of degree ≥ 2 and Proposition 4.3.3 for the contribution of curves of degree 1
yields the claim in this case.

In the remaining case, it is argued that there is an open subset U ⊆ X (specifically consisting of those
nonsingular points on X which have multiplicity at most 2 on the tangent plane section at the point) whose
complement consists of Od(1) integral components of degree Od(1); by the same argument as in the
preceding paragraph, the contribution of this complement is Od(B), so it suffices to estimate Naff(U, B).

Further, it is argued that the points on U of height at most B are covered by a certain collection
of irreducible curves. The subcollection I consisting of those curves of degree at most 2 satisfies
|I | ≤ Od,ε(B2/

√
d+2ε), so our Proposition 4.3.3 and [Browning et al. 2006, Proposition 1] gives a

contribution Od,ε(B+ B2/
√

d+3ε)≤ Od(B).
The remaining curves, of which there are no more than Od,ε(B2/

√
d), all contribute at most B1/3−1/(2

√
d)

[Browning et al. 2006, Proposition 2], so their total contribution is

Od,ε(B3/(2
√

d)+1/3+ε)≤ Od(B). �

Theorem 4.3.5 [Salberger 2013, Theorem 7.2]. Let X be a geometrically integral surface in P3
Q

of degree
d and Xns its nonsingular locus. Suppose that the hyperplane defined by x0 = 0 intersects X properly, and
identify A3 with the open subset of P3 given by x0 6= 0. There exists a positive constant c bounded solely
in terms of d such that the following holds: for every B ≥ 1 there exists a set of Od(B1/

√
d log B + 1)

geometrically integral curves Dλ on X of degree Od(1) such that

Naff

(
Xns \

⋃
λ

Dλ, B
)
≤ Od(B2/

√
d+c/ log(1+log B)).

Proof of Proposition 4.3.4 for d = 5. Suppose that the degree d of f is exactly 5, and let X be the surface
in A3

Q
given by f . We may assume that B ≥ 2. By Theorem 4.3.5, there is c> 0 such that for each B ≥ 2

there is a set C of at most

cB1/
√

d log B

geometrically integral curves C ⊆ A3
Q

of degree at most c and lying on X such that

Naff

(
Xns \

⋃
C∈C

C, B
)
≤ O(B2/

√
d+c/ log(log B))≤ O(B),

where Xns is the open subvariety of nonsingular points.
The complement of Xns in X is a union of irreducible curves the sum of whose degrees is bounded by

a constant. Applying Theorem 2 to those curves of degree ≥ 2 and Proposition 4.3.3 for the contribution
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of curves of degree 1 yields that the complement of Xns contributes at most O(B) points, which is
satisfactory for our purposes.

Similarly, the curves in C of degree 1 contribute at most O(cB1/
√

d log B + B) ≤ O(B) points by
Proposition 4.3.3, and the curves in C of degree ≥ 2 each contribute at most O(B1/2+ε) by Theorem 3,
again giving a contribution of size O(B). This proves the claim. �

Remark 4.3.6. We see that Proposition 4.3.4 for fixed d ≥ 6, and therefore also Theorems 1 and 4 for
fixed degree, already follow from combining [Browning et al. 2006] with the results of [Walsh 2015] and
Proposition 4.3.3. Similarly, for fixed degree d ≥ 5 one can use the results of [Salberger 2013]. However,
keeping track of the dependence on d in Section 3 permits us to use a considerably simpler argument for
fixed d ≥ 16 than in the works cited, and to furthermore obtain polynomial dependence on d .

It remains to prove Theorems 1 and 4. This closely follows [Browning et al. 2006, Lemma 8, Theorem 3].
The proofs are based on Proposition 4.3.4 and the following lemma.

Lemma 4.3.7. Let n ≥ 3 and X ⊆ Pn
Q

be a geometrically integral hypersurface of degree d. Then there
exists a nonzero form F ∈ Z[y0, . . . , yn] of degree at most (n+ 1)(d2

− 1) such that F(A)= 0 whenever
the hyperplane section HA ∩ X is not geometrically integral, where A ∈ (Pn)∗ and HA ⊆ Pn denotes the
hyperplane cut out by the linear form associated with A.

Proof. Suppose that X is given by f , a geometrically irreducible form of degree d . For A ∈ (Pn)∗ write
A = (a0 : a1 : · · · : an) ∈ (P

n)∗. Assuming a0 6= 0, one has that HA ∩ X is not geometrically integral if
and only if

f
(
−

a1

a0
x1− · · ·−

an

a0
xn, x1, . . . , xn

)
is reducible. Since n ≥ 3 and since X is geometrically integral, we have for a generic choice of B ∈ (Pn)∗

that HB ∩ X is also geometrically integral. Hence Theorem 3.2.2 implies that there exists a nonzero
form F0 in Z[y1, . . . , yn] of degree at most d2

− 1 such that F0(a1, . . . , an)= 0. Similarly, if ai 6= 0, we
produce a nonzero form Fi in Z[y0, . . . , yi−1, yi+1, . . . , yn] such that Fi (a0, . . . , ai−1, ai+1, . . . , an)= 0.
So F =

∏n
i=0 Fi is as we want. �

Proof of Theorem 4. Let n ≥ 3 and X ⊆ An
Q

be a geometrically integral hypersurface of degree d ≥ 5
described by a polynomial f ∈ Z[x1, . . . , xn] with absolutely irreducible highest degree part. We proceed
by induction on n, where the base case n = 3 is Proposition 4.3.4.

Now assume that n > 3 and the theorem holds for all lower n. Let fd = h( f ) be the homogeneous
part of highest degree, which describes a hypersurface in Pn−1. By Lemma 4.3.7 and Corollary 4.1.2,
there exists A = (a1, . . . , an) such that the hyperplane section { fd = 0} ∩ {

∑
ai xi = 0} is geometrically

integral of degree d , with all ai having absolute value at most n(d2
− 1).

Now

Naff( f, B)≤
∑

|k|≤n2(d2−1)B

Naff

(
{ f = 0} ∩

{∑
ai xi = k

}
, B
)
.
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For each k, the variety { f = 0}∩
{∑

ai xi = k
}

is a hypersurface in the affine plane
{∑

ai xi = k
}
, which

after a change of variables is described by a polynomial g ∈ Z[x1, . . . , xn−1] whose homogeneous part of
highest degree is absolutely irreducible by the construction of A. Now the induction hypothesis finishes
the proof. �

Proof of Theorem 1. We may assume that the variety in question is geometrically irreducible by
Remark 4.1.5, and can reduce to consideration of a hypersurface by Proposition 4.3.2. Hence let
n ≥ 3 and consider an absolutely irreducible polynomial f ∈ Z[x0, . . . , xn] homogeneous of degree d ≥ 5.

Then f defines not only a projective hypersurface X in Pn , but also an affine hypersurface in An+1,
the cone of X . We now trivially have

N ( f, B)≤ Naff( f, B),

so Theorem 4 finishes the proof. �

Remark 4.3.8. Using the explicit exponents obtained in Proposition 4.3.4 and in the proof of
Proposition 4.3.2 in Section 5, we can conservatively estimate e(n) ≤ 2n + 8 for the exponent in
Theorem 4, and e(n)≤ 2n3 for the exponent in Theorem 1.

5. Reduction to hypersurfaces via projection

In this section we prove Propositions 4.3.1 and 4.3.2, which allowed us to reduce to the case of hypersur-
faces in the proofs of our main theorems. This is an elaboration of familiar projection arguments, which
classically show that every variety is birational to a hypersurface, and which are used in the proofs of
[Browning et al. 2006, Theorem 1] and [Pila 1995, Theorem A]. The additional difficulty for us is that we
have to keep track of the dependence on the degree of the variety throughout. Our main auxiliary result is:

Lemma 5.1. Given a geometrically irreducible subvariety X ⊆ Pn of dimension m < n− 1 and degree d ,
one can find an (n−m− 2)-plane 3 disjoint from X and an (m+1)-plane 0, both defined over Q, such
that 3∩0 =∅, such that the corresponding projection map p3,0 : Pn

\3→ 0 satisfies

H(p3,0(P))≤ cnd2(n−m−1)2 H(P) (5-1)

for all P ∈ Pn(Q) \3, and such that p3,0|X is birational onto its image. Here cn is an explicit constant
depending only on n.

Because 3 is disjoint from X , the statement that p3,0|X is birational onto its image is equivalent to
saying that p3,0(X) is again a variety of degree d; see [Harris 1992, Example 18.16].

In order to prove Lemma 5.1, we first concentrate on finding an appropriate 3, which we think of as
living in the Grassmannian G(n−m− 2, n) consisting of all (n−m− 2)-planes in Pn . It is well-known
that the latter has the structure of an (m+2)(n−m−1)-dimensional irreducible projective variety through
the Plücker embedding

Pn−m−2,n : G(n−m− 2, n) ↪→ Pν :3 7→ det(P1, . . . , Pn−m−1),
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where ν =
( n+1

n−m−1

)
− 1 and (P1, . . . , Pn−m−1) is the (n − m − 1) × (n + 1) matrix whose rows are

coordinates for n −m − 1 independent points Pi ∈ 3. Here and throughout this section, for a matrix
M whose number of rows does not exceed its number of columns, we write det(M) to denote the tuple
consisting of its maximal minors, with respect to some fixed ordering.

Fixing such a 3 ∈ G(n−m− 2) and independent points P1, . . . , Pn−m−1 ∈3, we can also consider
the map

π3 : P
n
\3→ Pµ : P 7→ det(P, P1, . . . , Pn−m−1),

where µ =
(n+1

n−m

)
− 1. Writing π3 = (π3,0, . . . , π3,µ) we see that the nonzero π3, j can be viewed as

linear forms whose coefficients are coordinates of Pn−m−2,n(3), modulo sign flips. Note that π3, j (P)= 0
for all j if and only if P ∈3. In particular π3 is well-defined and easily seen to factor as

Pn
\3

p3,0
−−→ 0 ↪→ Pµ (5-2)

for all (m+1)-planes 0 such that 0 ∩3=∅.
Another theoretical ingredient we need is the Chow point FX associated with an irreducible m-

dimensional degree d variety X ⊆Pn . This is an irreducible multihomogeneous polynomial of multidegree
(d, d, . . . , d) in m + 1 sets of n + 1 variables such that for all tuples (H1, H2, . . . , Hm+1) of m + 1
hyperplanes in Pn one has FX (H1, . . . , Hm+1) = 0 if and only if H1 ∩ H2 ∩ · · · ∩ Hm+1 ∩ X 6= ∅. See
e.g., [Gelfand et al. 1994, Chapter 4].

Lemma 5.2. Let X be a geometrically irreducible degree d subvariety of Pn having dimension m < n−1
and consider

G X = {3 ∈ G(n−m− 2, n) |3∩ X =∅ and π3|X is birational onto its image}

with π3 as above. This is a dense open subset of G(n−m− 2, n) whose complement, when viewed under
the Plücker embedding, is cut out by hypersurfaces of degree less than (m+ 1)2d2.

Proof. Given a hyperplane H ⊆ Pµ we abusively write H ◦ π3 for π−1
3 (H) ∪ 3, since this is the

hyperplane in Pn cut out by the precomposition of π3 with the linear form associated with H . Define a
multihomogeneous degree (d, d, . . . , d) polynomial RX,3 in m+ 1 sets of µ+ 1 variables by letting

RX,3(H1, H2, . . . , Hm+1)= FX (H1 ◦π3, H2 ◦π3, . . . , Hm+1 ◦π3).

Note that its coefficients are degree (m+1)d polynomial expressions in the coordinates of Pn−m−2,n(3).
We will show that

G X = {3 ∈ G(n−m− 2, n) | RX,3 is absolutely irreducible}, (5-3)

which implies that the complement of G X is precisely the vanishing locus of the Noether irreducibility
polynomials from Theorem 3.2.2 evaluated in these coefficients. This indeed yields expressions in the
coordinates of Pn−m−2,n(3) of degree less than (m+ 1)2d2, where we note that not all these expressions
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can vanish identically, since generic 3’s do not meet X and generic projections are known to be birational
[Harris 1992, page 224].

We now prove (5-3). First note that 3∩ X 6= ∅ implies that RX,3 vanishes identically. Indeed, if
P ∈3 then all hyperplanes of the form H ◦π3 pass through P , so if moreover P ∈ X we see that RX,3

is identically zero. We can therefore assume that 3∩ X =∅. This ensures that π3(X) is an irreducible
projective variety of dimension m; see [Harris 1992, page 134], so we can consider its Chow point Fπ3(X),
which is an irreducible multihomogeneous polynomial of multidegree

(deg(π3(X)), deg(π3(X)), . . . , deg(π3(X)))

in the same m+ 1 sets of µ+ 1 variables as in the case of RX,3. It has the property that for all tuples
(H1, . . . , Hm+1) of hyperplanes in Pµ we have Fπ3(X)(H1, . . . , Hm+1)=0 if and only if H1∩· · ·∩Hm+1∩

π3(X) 6= ∅. But in this case π−1
3 (H1)∩ · · · ∩ π

−1
3 (Hm+1)∩ X 6= ∅ so that RX,3(H1, . . . , Hm+1) = 0.

Conversely, if RX,3(H1, . . . , Hm+1)= 0 then there exists a point P ∈ H1◦π3∩· · ·∩Hm+1◦π3∩X , which
since3∩X =∅ implies that π3(P)∈H1∩· · ·∩Hm+1∩π3(X) and hence that Fπ3(X)(H1, . . . , Hm+1)=0.
We conclude that Fπ3(X) and RX,3 have the same vanishing locus and because the former polynomial is
irreducible there must exist some r ≥ 1 such that

RX,3 = Fr
π3(X).

In particular RX,3 is irreducible if and only if r = 1. But this is true if and only if π3(X) has degree d,
which as we know holds if and only if π3|X is birational onto its image. �

Lemma 5.3. Using the assumptions and notation from Lemma 5.2, there exists an (n −m − 2)-plane
3 ∈ G X (Q) such that

H(3)≤ ((m+ 1)2d2)n−m−1(n−m− 1)!

when considered under the Plücker embedding.

Proof. Consider the rational map

π : (Pn)n−m−1 99K Pν : (P1, . . . , Pn−m−1) 7→ det(P1, . . . , Pn−m−1)

which is well-defined on the open U consisting of tuples of independent points. Observe that π(U )=
G(n −m − 2, n). By Lemma 5.2 there exists a polynomial F of degree less than (m + 1)2d2 which
vanishes on the complement of G X but which does not vanish identically on G(n − m − 2, n). The
polynomial

Q := F

det


x10 x11 . . . x1n

x20 x21 . . . x2n
...

...
. . .

...

xn−m−1,0 xn−m−1,1 . . . xn−m−1,n




is multihomogeneous of multidegree (deg(F), . . . , deg(F)) in the n−m− 1 blocks of n+ 1 variables
corresponding to the rows of the displayed matrix. Clearly Q vanishes on the complement of U , while it is
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not identically zero because Q(P1, . . . , Pn−m−1)= F(π(P1, . . . , Pn−m−1)) for any tuple of independent
points Pi .

Write

Q =
∑

j

Q j (x10, . . . , x1n)R j (x20, . . . , xn−m−1,n)

for nonzero Q j and linearly independent polynomials R j . Lemma 4.1.1 helps us to find a point P1∈Pn(Q)

of height at most deg(F) such that Q1(P1) 6= 0. By the linear independence of the R j one sees that
Q(P1, x20, . . . , xn−m−1,n) is not identically zero. Repeating the argument eventually yields a tuple of
points P1, P2, . . . , Pn−m−1 of height at most deg(F) such that Q(P1, . . . , Pn−m−1) 6= 0. In particular this
tuple of points belongs to U , i.e., they are independent, and π(P1, P2, . . . , Pn−m−1) ∈ G X (Q). From this
the lemma follows easily. �

Proof of Lemma 5.1. Let 3 be the Q-rational (n−m− 2)-plane produced by the proof of Lemma 5.3.
In particular 3∩ X =∅ and π3|X is birational onto its image. Then for all (m+ 1)-planes 0 such that
0∩3=∅ the projection map p3,0|X is also birational onto its image, thanks to the factorization from (5-2).

The proof of Lemma 5.3 moreover shows that 3 can be assumed to be the linear span of rational
points P1, . . . , Pn−m−1 ∈ Pn satisfying H(Pi ) ≤ (m + 1)2d2

=: B1. By Lemma 5.4 below we can find
linear forms L1, L2, . . . , Ln−m−1 with integral coefficients whose absolute value is bounded by

B2 :=
√
(n−m− 2)!(n+ 1)Bn−m−2

1

such that L i vanishes on P1, . . . , Pi−1, Pi+1, . . . , Pn−m−1 but not on Pi . Together these linear forms cut
out an (m+ 1)-plane 0 such that 0 ∩3=∅. Furthermore

p3,0(P)= P −
L1(P)
L1(P1)

P1− · · ·−
Ln−m−1(P)

Ln−m−1(Pn−m−1)
Pn−m−1 (5-4)

for all P ∈ Pn
\3. So we have

H(p3,0(P))≤ (n−m)((n+ 1)B1 B2)
n−m−1 H(P)= cd2(n−m−1)2 H(P) (5-5)

for some constant c that is easily bounded by an expression purely in n. �

Lemma 5.4. Let B, r, s ∈Z≥1 be integers such that s<r . Consider a linear system of linearly independent
equations

∑r
k=1 aik xk = 0 for i = 1, . . . , s, where all ai j are integers satisfying |ai j | ≤ B. There exists

a nonzero tuple of integers (x1, x2, . . . , xr ) violating the first equation but satisfying all other equations
such that

|xi | ≤
√
(s− 1)!r Bs−1 (5-6)

for all i .

Proof. This follows from [Bombieri and Vaaler 1983, Theorem 2], which strengthens Theorem 3.3.4. It
ensures the existence of r − s+ 1 linearly independent tuples of integers (x1, x2, . . . , xr ) satisfying the
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last s− 1 equations and meeting the bound (5-6). Since the space of solutions to the full linear system of
s equations has dimension r − s, at least one of these tuples must violate the first equation. �

We can now prove Propositions 4.3.1 and 4.3.2, reducing the situation of a general variety to a
hypersurface.

Proof of Proposition 4.3.2. Let X be a geometrically integral projective variety in Pn of dimension m
and degree d, where we may assume that n > m+ 1. We consider a projection p3,0 as in Lemma 5.1.
By dropping appropriately chosen coordinates, its image X ′ can be viewed as a hypersurface in Pm+1,
birational to X and hence also of degree d. In each fiber of p3,0 there are at most d points. The height
relation from Lemma 5.1 now immediately implies

N (X, B)≤ d N (X ′, cnd2(n−m−1)2 B)

for all B ≥ 1. This proves the claim for m > 1. For m = 1, consider the normalization X̃ → X and
compose it with the morphism X → X ′ induced by p3,0 to find a resolution of singularities X̃ → X ′.
The latter map is one-to-one away from the singular points of X ′, which together have no more than
(d − 1)(d − 2) preimages by [Kunz 2005, Theorem 17.7(b)]. But then the same claims must apply to
X→ X ′, yielding the stronger bound

N (X, B)≤ N (X ′, cnd2(n−2)2 B)+ d2,

as wanted. �

Proof of Proposition 4.3.1. Let X be a geometrically integral affine variety in An of dimension m and
degree d, where we may assume that m < n− 1. Let Z be the projective closure of X in Pn; we apply
Lemma 5.1 and shall argue later that we can take the (n−m−2)-plane3 to be contained in the hyperplane
Pn−1 at infinity. Let Z ′ ⊆ 0 be the image of Z under the projection p3,0. As above, by dropping some
coordinates we can view 0 as Pm+1

=Am+1
tPm where p3,0(Pn−1

\3) corresponds to Pm . In particular
p3,0 maps X to the affine part X ′0 = Z ′ ∩Am+1 of Z ′.

Consider P1, P2, . . . , Pn−m−1 and L1, L2, . . . , Ln−m−1 as in the proof of Lemma 5.1. Let P ∈ X be a
point having integer coordinates; when considered as a projective point of Z its coordinate at infinity is 1.
Since the coordinates at infinity of the Pi are 0, the projection formula (5-4) shows that p3,0(P) ∈ Z ′

admits integer coordinates such that the coordinate at infinity is

L1(P1)L2(P2) · · · Ln−m−1(Pn−m−1),

regardless of the choice of P . As a consequence, this is a multiple of the denominators appearing among
the coordinates of p3,0(P) when viewed as an affine rational point of X ′0. Therefore, postcomposing
with a coordinate scaling map Am+1

→ Am+1, we obtain another variety X ′ in Am+1 such that every
integral point P of X is mapped to an integral point of X ′ whose height satisfies the same upper bound as
in (5-5). All fibers of this map X→ X ′ have at most d points, and in the case of curves the map is even
one-to-one away from the singular points on X ′. So we can conclude as in the proof of Proposition 4.3.2.
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It remains to argue why we can take3 in the hyperplane at infinity. We first claim that the “good set” G Z

from Lemma 5.2 has a nonempty intersection with the Grassmannian parametrizing (n−m−2)-planes 3
contained in Pn−1. Indeed, it is apparent that the generic such3 does not intersect the (m−1)-dimensional
set Z ∩Pn−1 and hence satisfies 3∩ Z =∅. Furthermore, the argument from [Harris 1992, page 224]
showing that generic projections are birational leaves enough freedom to draw the same conclusion when
restricting to projections from planes at infinity. More precisely, if m = n− 2 then it suffices to project
from a point outside the cone spanned by Z and some random point q ∈ Z . Since this cone is irreducible
of dimension at most m+ 1= n− 1 and since Z 6⊆ Pn−1, the generic point at infinity indeed meets this
requirement. If m < n− 2 then the desired conclusion follows by applying the foregoing argument to
n−m− 1 successive projections from points.

So we can redo the proof of Lemma 5.3 starting from a polynomial F of degree less than (m+ 1)2d2

which vanishes on the complement of G X but which does not vanish identically on the Grassmannian of
(n−m− 2)-planes that are contained in the hyperplane at infinity; we just argued that such an F exists.
Then one can proceed with the same polynomial Q as before, but with zeroes substituted for the variables
x10, x20, . . . , xn−m−1,0. �

6. Lower bounds

We conclude with some lower bounds showing that one cannot make the dependence on d subpolynomial.
Our main auxiliary tool is the following lemma.

Lemma 6.1. For each pair of integers d ≥ 1, n ≥ 2 there exists an absolutely irreducible degree
d polynomial f ∈ Q[x1, x2, . . . , xn] which vanishes at all integral points (r1, r2, . . . , rn) for which
|ri | ≤ b(d − 1)/2nc for all i .

Proof. The lemma is immediate if d = 1, so we can assume that d ≥ 2. We claim that there exists a
polynomial

xd
1 + xd

2 + · · ·+ xd
n−1+ xd−1

n +

∑
0≤i1,...,in≤b(d−1)/nc

ai1,...,in x i1
1 x i2

2 · · · x
in
n

which vanishes simultaneously at the integral points (r1, r2, . . . , rn) satisfying⌊
d − 1

2n

⌋
−

⌊
d − 1

n

⌋
≤ ri ≤

⌊
d − 1

2n

⌋
for all i . From this the lemma follows, because indeed b(d − 1)/2nc− b(d − 1)/nc ≤ −b(d − 1)/2nc
and because the polynomial is absolutely irreducible, as its Newton polytope is indecomposable; see e.g.,
[Gao 2001, Theorem 4.11]. To verify the claim, note that every point (r1, r2, . . . , rn) imposes a linear
condition on the coefficients ai1,...,in , together resulting in a linear system of (b(d−1)/nc+1)n equations
in the same number of unknowns. It suffices to see that the matrix corresponding to its linear part is
nonsingular. But this matrix is the n-th Kronecker power of the Vandermonde matrix (r i )r,i where r and
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i range over {⌊
d − 1

2n

⌋
−

⌊
d − 1

n

⌋
, . . . ,

⌊
d − 1

2n

⌋}
and

{
0, . . . ,

⌊
d − 1

n

⌋}
,

respectively. Therefore its determinant is a power of the determinant of this Vandermonde matrix, from
which the desired conclusion follows. �

Proof of Proposition 5. If d = 1, 2 then we let X be a line or conic through a coordinate point, respectively,
so that we can take B = 1. If d ≥ 3 then we consider the affine curve defined by the polynomial f from
the proof of the foregoing lemma for n = 2. Let X be its projective closure, which has an extra height 1
point at infinity. With B = b(d − 1)/2c− b(d − 1)/4c one observes that

N (X, B)≥
(⌊

d − 1
2

⌋
+ 1

)2

+ 1≥
d2

4
=

d2

5
·

5
4
≥

d2

5
· B2/d . �

Note that using the same f and B one also finds that

Naff( f, B)≥
(⌊

d − 1
2

⌋
+ 1

)2

≥
d2

4 log d
B1/d log B

for all d ≥ 3, confirming our claim that, in the statement of Theorem 3, it is impossible to replace the
quartic dependence on d by any expression which is o(d2/ log d). In arbitrary dimension, the same
reasoning shows that there exists a positive constant c = c(n) such that for all integers d > 0 we can find
an absolutely irreducible degree d polynomial f ∈Q[x1, x2, . . . , xn] along with an integer B ≥ 1 such
that

Naff( f, B)≥ cd2 Bn−2 and N (X, B)≥ cd Bdim X ,

where X ⊆ Pn
Q

denotes the integral degree d hypersurface defined by the homogenization of f . This
shows that Theorems 1 and 4 cannot hold with e < 1 or e < 2, respectively.
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