Vol. 14, No. 8, 2020

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Sous-groupe de Brauer invariant et obstruction de descente itérée

Yang Cao

Vol. 14 (2020), No. 8, 2151–2183
DOI: 10.2140/ant.2020.14.2151
Abstract

Pour une variété quasi-projective, lisse, géométriquement intègre sur un corps de nombres k, on montre que l’obstruction de descente itérée est équivalente à l’obstruction de descente. Ceci généralise un résultat de Skorobogatov, et ceci répond à une question ouverte de Poonen. Les outils principaux sont la notion de sous-groupe de Brauer invariant et la notion d’obstruction de Brauer–Manin étale invariante pour une k-variété munie d’une action d’un groupe linéaire connexe.

For a quasi-projective smooth geometrically integral variety over a number field k, we prove that the iterated descent obstruction is equivalent to the descent obstruction. This generalizes a result of Skorobogatov, and this answers an open question of Poonen. Our main tools are the notion of invariant Brauer subgroup and the notion of invariant étale Brauer–Manin obstruction for a k-variety equipped with an action of a connected linear algebraic group.

Keywords
Hasse principle, Brauer–Manin obstruction, algebraic group
Mathematical Subject Classification 2010
Primary: 11G35
Secondary: 14G05, 20G35
Milestones
Received: 23 July 2019
Revised: 10 February 2020
Accepted: 12 April 2020
Published: 18 September 2020
Correction: 24 March 2023
Authors
Yang Cao
IAZD, Leibniz Universität Hannover
Germany