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The Prasad conjectures for GSp, and PGSp,
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We use the theta correspondence between GSp,(E) and GO(V') to study the GSp,-distinction problems
over a quadratic extension E/F of nonarchimedean local fields of characteristic 0. With a similar
strategy, we investigate the distinction problem for the pair (GSp,(E), GSp, ;(F)), where GSp, ; is the
unique inner form of GSp, defined over F. Then we verify the Prasad conjecture for a discrete series
representation T of PGSp, (E).
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1. Introduction

Let F be a finite field extension over @, and E be a quadratic extension over F with associated Galois
group Gal(E/F) = {1, o} and associated quadratic character wg,r of F*. Let Wr be the Weil group
of F and WDp be the Weil-Deligne group. Then wg,r is a quadratic character of Wy with kernel Wg.
Let G be a connected reductive group defined over F' and G(F) (resp. G(E)) be the F-rational (resp.
E-rational) points. Let Irr(G(E)) denote the set of irreducible smooth representations of G (E). Given a
representation t € Irr(G(E)) and a character y of G(F), we say that t is (G(F), x)-distinguished or
has a nonzero (G (F), x)-period if

Homg (T, x) # 0.

If x is the trivial character, then t is called G (F)-distinguished. There exists a rich literature, such as
[Beuzart-Plessis 2018; Flicker 1991; Gan and Raghuram 2013; Lu 2017b; Matringe 2011; Prasad 2015],
trying to classify all G (F)-distinguished representations of G(E). The method often used to study the
distinction problems is the relative trace formula, such as in [Beuzart-Plessis 2018; Flicker and Hakim
1994], which is powerful especially for the global period problems. This paper focuses on the local period
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problems for G = GSp,, PGSp, and their inner forms. The main tool in this paper is the local theta
correspondence appearing in [Gan and Takeda 2011b; Kudla and Rallis 1992; Yamana 2011].

Let V be the unique nonsplit quaternion algebra Dg with quadratic form Np, over E, or the split
6-dimensional quadratic space [H]3E over E. Then

GSO40(E) =D (E) x DE(E)/{(t,t7Y):t € EX} if V = Dg,
GSO33(E) =GL4y(E) x EX/{(t7 1, 1% :t e EX}  if V=H3,

and any irreducible representation of GSO(V) must be of the form

GSO(V) = {

o w1 Xy with oy, = wy, if V= Dg;

o MMX p with o = u? ifV=[H]%5.

Here for each i, m; is an irreducible representation of D (E).

Gan and Takeda [2011b] have studied the explicit theta correspondence between GSO(V') and GSp4(E)
and proved that any irreducible representation t of GSp,(FE) falls into one of the following two disjoint
families of representations:

o T =0(m; Xm) with wy, = wr,;

e 7 =0(IT X u) with © = w, and wr = p>

The see-saw identity (sometimes called the local Siegel-Weil identity) plays a vital role in the proof
of our main theorems. More precisely, suppose that G x H is a reductive dual pair, with a Weil
representation wy, over F. Let H' x G’ be another dual pair contained in the same ambient group, with
G C G’ and H' C H. Via a so-called see-saw diagram

G’ H
G H’

dim Homg (®y (x), m) = dim Homg x g (wy,, 7 X x) = dim Hompg (O, (), x)

we have

for a representation 77 € Irr(G) and a character x of H'. Typically, ® (x) is a simpler representation,
such as a degenerate principal series representation of G’, and the multiplicity dim Homg (®y (x), )
has a better chance of being understood; see [Gan 2019]. In order to use the see-saw identity, we need
to study the big theta lift ®(7) to GO(V) of a generic representation T of GSp,(E). In fact, we have
studied the general (almost equal rank) case for the irreducibility of big theta lifts to GO, 41 41 (F) of a
generic representation of GSp,, (F) in Section 3C. After computing the big theta lifts following [Gan
and Ichino 2014; Gan and Takeda 2011b], we use the local theta correspondences between GSp,(E) and
GSO(V) and the see-saw identities to discuss GSp,-period problems, by transferring the period problem
for GSp, to various analogous period problems for GL,, GL4 and their various forms (not necessarily
inner). Then we obtain the following results:
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Theorem 1.1 (Theorem 4.4.9). Suppose that T € Irr(GSp,(E)) with a central character w, and w.|px =1.

(1) If T =06(X) is an irreducible representation of GSp,(E), where X is an irreducible representation
0f GO4,0(E), then the representation t is not GSp,(F)-distinguished.

(i) If T = 0(m W my), where w1 X, is a generic representation of GSO, 2 (E), then

2 ifm; 2 mo are both GL, (F)-distinguished,
1 ifm Zmbutn] =my,
dimHomgsp, ) (t,C) = 1 if m1 = 7 is GLy(F)-distinguished but not (GL(F), wgr)-distinguished,
1 if my is GLy(F)-distinguished and w1 =,
0 otherwise.

Here mo =7 (x1, x2) with x1 % x2, X1|Fx = x2|px =1 is a principal series representation of GL, (F).
Note that these conditions are mutually exclusive.

(iii) Assume that T is not in case (i) or (ii) and that T = 0(I1 X x) is generic, where I1 X x is a
representation of GSO3 3(E). Then

1 if Il is GL4(F)-distinguished,

dim Hom, 7,0) =
1 Gspy(F) (T, ©) {() otherwise.

The full local Langlands conjecture for GSp, (see Theorem 4.4.7) has been proved by Gan and Takeda
[2011a]. Then we can verify the Prasad conjecture for GSp, in Section 6C. More precisely, let Go be a
quasisplit group defined over F (denoted by G°” in [Prasad 2015]) such that

LGy =GSp,(C) x Gal(E/F),
where the nontrivial element o € Gal(E/F) acts on GSp,(C) by
o(g)=sim(g)"'-g.
Here sim: GSp,(C) — C* is the similitude character. Let ¢, be the Langlands parameter of t. Define
F(¢:) = {¢: WDr — "Go | $lwp, = ). (1-1)

Theorem 1.2 (the Prasad conjecture for GSp,). Let © be an irreducible smooth representation of GSp,(E)
with enhanced Langlands parameter (¢, L;) (called the Langlands-Vogan parameter). Assume that the
L-packet Ty, is generic. Then

|F(¢:)| if T is generic, i.e., A; is trivial,

dim Hom T, =
GSpy(F) ( E/F) { 0 otherwise,

where F(¢) is defined in (1-1) and | F (¢;)| denotes the cardinality of the set F (¢;).
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We will prove analogous results for the inner form in Section 5. Let D be the 4-dimensional quaternion
division algebra of F. In a similar way, we study the period problem for the inner form GU» (D) = GSp, 4,
i.e., try to figure out the multiplicity

dim HomGspM(p) (‘L’, ([:)

for a representation v € Irr(GSp,(E)). We will not state the results of the inner form case in the
introduction; the precise results can be found in Theorem 5.3.1.

Combining Theorem 1.1 and its analog for inner forms, we can verify the conjecture of Dipendra
Prasad [2015, Conjecture 2] for PGSp,. Given a quasisplit reductive group G defined over F and a
quadratic extension E/F, assuming the Langlands—Vogan conjectures for G, Prasad [2015] used the
recipes from the Galois side to give a formula for the individual multiplicity

dim Homg,, () (7, XG).
where

e 7 is an irreducible discrete series representation of G(E);
* X 1s a quadratic character of G(F) depending on G and E;
» G, is any pure inner form of G defined over F satisfying G,(E) = G(E).

In Section 7, we will focus on the case G = PGSp,. Then HY(F,G) = {PGSp,4, PGU>(D)} and
x6 = wg/r. The local Langlands correspondences for the quasisplit groups SO, and Sp,, over a
nonarchimedean local field have been verified by Arthur [2013] under certain assumptions which have
been removed by Mceglin and Waldspurger [2016a; 2016b; 2018]. We can use the results from the local
Langlands correspondence for SOs = PGSp, freely. More precisely, if T € Irr(GSp4(E)) with a trivial
central character, then © corresponds to a representation of PGSp,(E), denoted by 7. Given a discrete
series representation 7 of PGSp,(E) with the enhanced L-parameter (¢z, Az), where Az is a character of
the component group mo(Z(¢z)), set

F(¢:) ={¢: WD — Spy(©) | lwp, = ¢z}
Up to the twisting by the quadratic character wg, r, there are several orbits in F'(¢7), denoted by LI7_, O(qgi).
Each orbit O((l;i) corresponds to a unique subset C; of H (W, G). (See Section 6A for more details.)

Theorem 1.3. Let notation be as above. Given a discrete series representation T of PGSp,(E), we have

dim Homg, (¢ (%, wg/r) = ) mOhz, $i)1c,(Ga) /do(@), (1-2)
i=1
where

 1¢, is the characteristic function of the set C;;
o m(rz, ¢) is the multiplicity for the trivial representation contained in the restricted representation

A lrgz@n
o do(¢) = |Coker{mo(Z($)) — mo(Z (7)) NE/F)}| where |—| denotes its cardinality.
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Remark 1.4. We would like to highlight the fact that the square-integrable representation T may be
nongeneric and so T is not PGSp,(F')-distinguished (see Theorem 5.3.1) but T contains a nonzero period
for the pure inner form PGSp, | (F). It is different from the case G = PGL,, that if a representation 77 of
PGL,(E) is PD* (F)-distinguished, then 7 must be PGL, (F)-distinguished (see Lemma 4.4.5).

In fact, we have shown that the equality (1-2) holds for almost all generic representations in Section 7,
except that the Langlands parameter ¢z = 2 xr|w, ® ¢2 with ¢, conjugate-symplectic (in the sense of
[Gan et al. 2012, §3]) and X% = wg/r. However, there is a weaker version of the Prasad conjecture
which determines the sum of dim Homg,, () (T, xG) as G runs over all pure inner forms of G satisfying
G,(E) = G(E). It involves the degree of the base change map

® : Hom(WDrp, Sp,(C)) — Hom(WDg, Sp,(C))

for the exception case, i.e., the identity

. - ) _ - deg ®(¢)
dim Hompgsp, (r) (T, wg/r) +dimHompgsp, | (7)(T, wg/F) = Z m(KfJ/ﬁ)% (1-3)

FeF o) 0
when the L-packet Iy, is generic, which is the original identity formulated by Prasad.

There is a brief introduction to the proof of Theorem 1.3. After introducing the local theta corre-
spondence between quaternionic unitary groups following [Yamana 2011], we use the isomorphism
GU(R) =GSp; | (E) = GSp,(E), where R = Mat, 5 (E) is the split quaternion algebra over E, to embed
the group GSp, | (F) into GSp,(E). Then one can use the see-saw identity to transfer the inner form
GSp; ;-period problem to GOj , or GO7 ; side, which are closely related to GL,-period problems. But
we need to be very careful when we use the see-saw identity for a pair of quaternionic unitary groups.
(See Remark 5.2.4.) Once the see-saw identity for the quaternionic unitary groups has been set up, the
rest of the proof for the inner form case is similar to the case for GSp,-period. Then we obtain the results
for the distinction problems for the automorphic side. For the Galois side, i.e., the right-hand side of (1-3),
it will be checked case by case in Section 7.

Remark 1.5. Raphaél Beuzart-Plessis [2018, Theorem 1] used the local trace formula to deal with the
distinction problems for the Galois pair (G'(E), G'(F)) for the stable square-integrable representations,
where G’ is an inner form of G defined over F, which generalizes [Prasad 1992, Theorem C].

The paper is organized as follows. In Section 2, we set up the notation about the local theta
correspondence. In Section 3, we will study the irreducibility for the big theta lift of a generic representation
in the almost equal rank case, which generalizes the results of [Gan and Ichino 2014, Proposition C.4] for
the tempered representations. The detailed computation for the explicit big theta lift ®(t) to GO(V) will
be given in Section 3E. In Section 4, we will study the distinction problems for GSp, over a quadratic
extension E/F. The proof of Theorem 1.1 will be given in Section 4D. The analogous results for the
inner form GSp, ; will be given in Section 5. In Section 6A, we will introduce the Prasad conjecture for
a reductive quasisplit group G defined over F. Then we will verify the Prasad conjecture for GSp, in
Section 6C. Finally, the proof of Theorem 1.3 will be given in Section 7.
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2. The local theta correspondences for similitudes

In this section, we will briefly recall some results about the local theta correspondence, following [Gan
and Takeda 2011b; Kudla 1996; Roberts 2001].

Let F be a nonarchimedean local field of characteristic zero. Consider the dual pair O(V) x Sp(W).
For simplicity, we may assume that dim V' is even. Fix a nontrivial additive character ¥ of F. Let wy,
be the Weil representation for O(V) x Sp(W). If & is an irreducible smooth representation of O(V)
(resp. Sp(W)), the maximal m-isotypic quotient of wy, has the form

7 X Oy ()

for some smooth representation ®y, (r) of Sp(W) (resp. some smooth representation ®, () of O(V)).
We call ©y () or Oy w,y () the big theta lift of 7. It is known that ®, () is of finite length and hence
is admissible. Let 0y () or Oy, w y (7r) be the maximal semisimple quotient of ®y (7), which is called
the small theta lift of 7.

Theorem 2.1 (Howe duality conjecture [Gan and Takeda 2016a; 2016b]).

o Oy (m) is irreducible whenever ©y, (1) is nonzero.
o The map  + 0y () is injective on its domain.
This has been proved by Waldspurger [1990] when p # 2.

We extend the Weil representation to the case of similitude groups. Let Ay and Ay be the similitude
factors of GO(V) and GSp(W) respectively. We shall consider the group

R =GO(V) x GSpT (W),

where GSp™ (W) is the subgroup of GSp(W) consisting of elements g such that Ay (g) lies in the image
of Ay. Define

Ro={(h,g) € R|Av(M)Aw(g) =1}
to be the subgroup of R. The Weil representation wy, extends naturally to the group R via

& dim V-dim W

wy (g, )¢ = |Av(h)| w(gr, D(goh™),

where |—|F is the absolute value on F and

A -1
g1=g<W(§) 1)esp(W).

Here the central elements (7, t~!) € Ry acts by the quadratic character xv (WM W/2 which is slightly
different from the normalization used in [Roberts 2001].
Now we consider the compactly induced representation

Q=ind} wy.
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As a representation of R, 2 depends only on the orbit of ¢ under the evident action of ImAy C F*. For
example, if Ay is surjective, then €2 is independent of yr. For any irreducible representation 7 of GO(V)
(resp. GSp™(W)), the maximal 7 -isotropic quotient of  has the form

where ® () is some smooth representation of GSp™ (W) (resp. GO(V)). Similarly, we let 0y () be
the maximal semisimple quotient of ®y (7). Note that though ®, (77) may be reducible, it has a central
character wg (1) given by

(dim W)/2
We, () = Xy Wy .

There is an extended Howe conjecture for similitude groups, which says that 6y, (7r) is irreducible whenever
Oy () is nonzero and the map 7 + 60y (7r) is injective on its domain. It was shown by Roberts [1996]

that this follows from Theorem 2.1.
If Ay is surjective, we have GSp™ (W) = GSp(W).

Proposition 2.2 [Gan and Takeda 2011a, Proposition 2.3]. Suppose that w is a supercuspidal repre-
sentation of GO(V) (resp. GSp(W)). Then ®., () is either zero or is an irreducible representation of
GSpt (W) (resp. GO(V)).

2A. First occurrence indices for pairs of orthogonal Witt towers. Let W,, (n > 1) be the 2n-dimensional
symplectic vector space with associated symplectic group Sp(W,) and consider the two towers of
orthogonal groups attached to the quadratic spaces with trivial discriminant. More precisely, let H be the
split 2-dimensional quadratic space over F' and D be the quaternion division algebra over F. Let

Vi =H and V,, =D(F)®H,

and denote the orthogonal groups by O(V;;) =0, and O(V,,) = O, 44, respectively. For an irreducible
representation 7w of Sp(W,,), one may consider the theta lifts 9;; (7r) and 0, () to O(V;) and O(V,,)
respectively, with respect to a fixed nontrivial additive character ¥r. Set

r¥(m) =inf{r: 6 () #0},

r~(m) =inf{r : 6, () # 0}.
Then Kudla and Rallis [2005] and Sun and Zhu [2015] showed:
Theorem 2.3 (conservation relation). For any irreducible representation w of Sp(W,,), we have

rt()+r (m) =2n=dim W,.

On the other hand, one may consider the mirror situation, where one fixes an irreducible representation
of O(V,,) and consider its theta lift 6, (;7) to the tower of symplectic groups Sp(W,,). Then, with n ()
defined in the analogous fashion

n(r) =inf{n: 6,(w) # 0},
one has
n(mw) +n(mr ®det) =2r =dim V,,.
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For similitude groups, this implies that
n(m)+n(mv) =2r,
where v is the nontrivial character of GO(V,,)/GSO(V>,).

3. The irreducibility of the big theta lift

Let T be an irreducible representation of Sp,, (F). Gan and Ichino [2014, Proposition C.4] showed that the
big theta lift @;n 2 (t) to Op41,n+1(F) (called the almost equal rank case) is irreducible if 7 is tempered.
This includes the case p = 2 since the Howe duality conjecture has been proved in [Gan and Takeda
2016b]. We will use the generalized standard module [Heiermann 2016, Theorem 3.2] to study the case
when ITy, is generic (see Theorem 3.2).

In Section 3C, we mainly study the big theta lift to the split group O+ ,+1(F) from a representation t
of Sp,, (F) when the associated L-packet Iy, is generic. Then we will focus on the computation for n =2.

3A. Notation. Let us introduce the notation used in this section.

e |—|F (resp. |—|g) is an absolute value defined on F (resp. E).

P; (resp. Qj) is a parabolic subgroup of Sp,, (resp. O,+1,,+1) defined over F.

¢ is the Langlands parameter or L-parameter of 7 and ¢’ is the dual parameter of ¢,.

7" is the contragredient representation of t.

[Ty, is the L-packet containing 7.

W, is the symplectic vector space over E of dimension 2r.

Z is aline in W, and Y is a maximal isotropic subspace in W.

Q(Z) (resp. P(Y)) is the Klingen (resp. Siegel) parabolic subgroup of GSp,(E) = GSp(Ws).
B (resp. By) is the Borel subgroup of GSp,(E) (resp. GL4(E)).

P is the parabolic subgroup of GL4(E) with Levi component GL,(E) x GLy(E).

@;(I) (resp. ®¢(7)) is the big theta lift to GO, (E) (resp. GSO33(E)) of v of GSpy(E).
Qg(r) (resp. 6(7)) is the small theta lift to GO3 3(E) (resp. GSO33(E)) of T of GSp,(E).

3B. The standard module conjecture. Let G be a quasisplit reductive group defined over F. Fix a Borel
subgroup B = TU of G. Let & be an irreducible smooth representation of G(F). If there exists a
nondegenerate character Yy of U (F) such that Homy r) (7, Yv) # 0, then we say 7 is yryy-generic or
generic. If the L-packet Il contains a generic representation, then we call Iy, a generic L-packet.
Let P = MN be a standard parabolic subgroup of G. Suppose that there exists a generic tempered
representation p of M (F) such that 7 is isomorphic to the Langlands quotient J(p, x), where x is a
character of M (F) and lies in the positive Weyl chamber with respect to P(F'). (See [Heiermann and
Opdam 2013, p. 777] for more details.)
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Theorem 3.1 (the standard module conjecture). If m = J(p, x) is a generic representation of G(F), then
Indggg (p ® x) (normalized induction) is irreducible. Moreover, for any irreducible representation p’ of
M (F) lying inside the L-packet Tl , Indgg; (' ® x) is irreducible.

Heiermann and Opdam [2013] proved the standard module conjecture. Later Heiermann [2016,
Theorem 3.2] proved its generalized version i.e., the “moreover” part of Theorem 3.1. The following
subsection will focus on the cases G = Sp,,, and G = O, | y+1-

3C. Theta lift from Sp,, (F) to Op41,,+1(F). Suppose that 7 is a generic irreducible admissible rep-
resentation of Sp,, (F). Assume that there exists a parabolic subgroup P; = M;N; of Sp,, and an
irreducible representation 7} ® 12 ® - - - ® 7, ® 79 of Mj;(F) = GL,,, (F) X - -+ x GL,,, (F) x Spy,,(F)
(for ny +ny + - - - +n, +no = n) such that t is the unique irreducible quotient of the standard module

Ind“;’)gz(}(f () |—7 ® - ® 7, |-} ® 7p) (normalized induction), (3-1)

where 51 > s, > - -- >, > 0, n > ng, each 7; is a tempered representation of GL,,, (F') and 79 is a tempered
representation of Sp,, (F). Moreover, the Langlands parameter ¢; : WD — SO2,+1(C) is given by

d’r :¢rr1|_?@"'@4571,'_;«C@¢ro®¢y\r/,|_|;“sr@"'®¢7\1/1|_|1_7S1,

where each ¢, is the Langlands parameter of 7; and ¢, is the Langlands parameter of 7o. Here we
identify the characters of F* and the characters of the Weil group Wg by the local class field theory.
Due to Theorem 3.1, the generic representation t is isomorphic to the standard module, i.e., the standard
module is irreducible. Thanks to [Gan and Ichino 2014, Proposition C.4], the small theta lift 0;;1 p(0)is
the unique irreducible quotient of the standard module

Oil n F r
Ind) P |- - @~ © O, (W), (3-2)

where Q; (F) is the parabolic subgroup of O, ,+1(F) with Levi component GL,,, (F) x - - - X GL,, (F) x

Ong+1,n+1(F). We will show that (3-2) equals 9;; +2(r) under certain conditions.

Theorem 3.2. Let P; (resp. Q) be a parabolic subgroup of Sp,,, (resp. On11.4+1) defined as above. If
the irreducible representation t is generic and so T is isomorphic to the standard module (3-1), and the

standard L-function of T is regular at s = 1, then @;rn o(7) is irreducible.
There is another key input in the proof of Theorem 3.2.

Theorem 3.3. Let G be Sp,, or SO,11+1. Let w be an irreducible representation of G(F). The
L-packet Iy is generic if and only if the adjoint L-function L(s, ¢, Ad) is regular at s = 1.

Proof. See [Liu 2011, Theorem 1.2; Jantzen and Liu 2014, Theorem 1.5]. O

Proof of Theorem 3.2. We will show that ®;n +2(‘L’) SO 41,041 (F) 18 irreducible. If n = ng, then it follows

from [Gan and Ichino 2014, Proposition C.4]. Assume that s; > 0. Then there exists a surjection

Outi.n F S Sy
Ind o O (- [H @ -+ @ |~ [ ® O3, (7)) — O3, (7).
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Due to [Gan and Ichino 2014, Proposition C.4], if 1y is tempered, then ot ,(70) is irreducible and

2no+
generic. Moreover, if

¢t() . WDF - SOZn()-i-l((C)

is the Langlands parameter of 7y, then ¢92+ ) = ¢, ® C due to [Gan and Ichino 2014, Theorem C.5].
Ilo

Assume that ¢, = ¢y @ ¢, @ ¢; With ¢, tempered and ¢g = €D, ¢, |—|*. Then due to [Gan and Ichino

2014, Proposition C.4], we have Pos () = P0 D (¢, © C) @ ¢, . Observe that

L(Sv AdSOzn+2 O¢92';+2(7:)) = L(Sv Ad502n+1 o¢1’) : L(S, ¢T9 Std)’

where L (s, ¢, Std) is the standard L-function of t. By [Liu 2011, Theorem 1.2] and the assumption that t
is generic, we obtain that L(s, Adso,,,, op.) is regular at s = 1. So L(s, Adso,,., o¢)92+n+2 (r)) 1s regular at
s = 1. Thanks to [Jantzen and Liu 2014, Theorem 1.5], the L-packet Mg, + o is generic. By the
generalization of the standard module conjecture [Heiermann 2016, Theorem 3.2] that the standard
module with a generic quotient is irreducible,

On n F i’
63,15(1) = 03, () =Indy 15" V(i |- [1 @ - @ 7, [~ 1} ® O3, 45 (70)),

ie., ©F ,(7) is irreducible. O

2n+
Remark 3.4. Similarly, if X is a generic representation of O, ,(F) and L(s, X, Std) is regular at s =1,
then the big theta lift ®,(X) to Sp,,(F) is irreducible. However, if 7 is a generic representation of
Sp,, (F) and L(s, 7, Std) is regular at s = 1, the big theta lift to nonsplit group O(Vr) may be reducible
when Vp is a (2n + 2)-dimensional quadratic space over F with nontrivial discriminant. (See [Lu 2017b,

Proposition 3.8(iii)].)

Remark 3.5. There exists an isomorphism between the characters Ay o) = = Aoy () the latter of which

2n0+2

is given in [Atobe and Gan 2017, Theorem 4.3] in terms of the character Azy> conjectured in [Prasad 1993].

Corollary 3.6. Let Iy be the L-packet of Sp,,(F) containing t. Suppose that I1g_ is generic. If the
standard L-function L(s, ¢, Std) is a factor of the adjoint L-function L(s, Ad o¢,), then the big theta
lift ®2n+2(‘[) 10 Opy1,041(F) is irreducible for any T € Iy,

For the rest of this section, we will compute the big theta lifts between GSp,(E) and GO(V) explicitly
when dimg V =4 or 6.

3D. Representations of GO(V). Let ; be an irreducible representations of GL,(E) with central char-
acter wy, and wy, = wy,. Then 7y M is an irreducible representation of the similitude group

GSO,5(E) = GLy(E) x GLy(E)/{(t,t™ ") 11 € EX}.

If 7| # mp, then ¥ = Indggé’j(j;) (1 W my) is an irreducible smooth representation of GO, 2(E) and

X = X ®v, where v|o,,(r) = det. If 71 = m3, then there are two extensions (771 X 71)* and only one of
them participates in the theta lift between GSp,(E) and GO, »(E), denoted by (7 Xm;)™ = . Moreover,
we have (r; X 7)™ ®@v = (my W)™, (See [Gan and Takeda 2011b, §6].)
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Any irreducible representation of
GSO;33(E) = GL4(E) x GL{(E)/{(t,t ™) :t € E*}

is of the form
Xy,

where IT is a representation of GL4(E) with central character wry, x is a character of E* and %= or.

3E. Representations of GSp4(E). Assume that T = 6 () X m,) is a representation of GSp,(E) and
1 My € Irr(GSO, 2 (E)). Then 7 is generic if and only if 7y X 5 is generic due to [Gan and Takeda
2011b, Corollary 4.2(ii)]. We follow the notation in [Gan and Takeda 2011b] to describe the nondiscrete
series representations of GSp,(E). Thanks to [Gan and Takeda 2011b, Proposition 5.3], the nondiscrete
series representations of GSp, (E) fall into the following three families:

o 7 Igz)(x|—I%". ) with x a unitary character, s > 0 and 7 a discrete series representation of
GL,(E) up to twist;

o 7= Ipwy)(|—|z’, x) with x an arbitrary character, s > 0 and 7 a unitary discrete series represen-
tation of GL(Y);

o T Ig(xil—1%", x2l—I%"; x), where xi, x> are unitary and s; > s, > 0.

Note that if 7 itself is generic and nontempered, then those embeddings are in fact isomorphisms due to
the standard module conjecture for GSp,, except

T — IQ(Z)(I, JT).
For instance, T = Jp(y)(7w|—[%, x) with s > 0. If 7 is generic, then Ip(y) (||}, x) is irreducible and so

T =Ipwy( =I5, x) = Ipe) (Y =15, xwr|—13)

with s > 0. (See [Gan and Takeda 2011b, Lemma 5.2].)
If the big theta lift @gr (r) to GO3 3(E) of 7 is irreducible, the restricted representation @;(r) |Gs0s 5(E)
is irreducible due to [Prasad 1993, §5, p. 282]. We use O¢(7) to denote the big theta lift to GSO3 3(E) of 7.

Proposition 3.7. Let © be a generic irreducible representation of GSpy(E). Then the big theta lift
Op(7) to GSO3 3(E) of T is an irreducible representation unless T = Ig(z)(|—|g, ) with  essentially
square-integrable. If t = Ioz)(|—|Eg, ), then O¢(t) = Ip(7w|—|g, ) Ky |—|£ is reducible.

Proof. If 7 is a tempered representation, then ®§(t) is irreducible due to [Gan and Ichino 2014,
Proposition C.4] (which holds even for p =2 since the Howe duality conjecture holds) and so ®¢(7) is
irreducible. Assume that the generic representation t is not essentially tempered. There are 4 cases:

o If T = Ig(x1, x2; x) is irreducible, then none of the characters xi, x2, X1/X2, X1 X2 1S |—|?5El and so
I,(1, x2, x1, x1x2) has a generic quotient where By is a Borel subgroup of GL4(E). Thus ®¢(7) =
Ip, (1, x2, x1, x1x2) - x X X2 Xx1x2 is irreducible due to the standard module conjecture for GL4.
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o If T = Ipw)(m, x), then O¢(7) is a quotient of
IQ(ls T[’ a)ﬂ) : X ngza)ﬂa

where Q is a parabolic subgroup of GL4(E) with Levi subgroup GL(E) x GL2(E) x GL{(E). Due
to [Gan and Takeda 2011b, Proposition 13.2], the adjoint L-function L(s, As o ¢;) is regular at s = 1.
Since the standard L-function L(s, 7, Std) is a factor of L(s, Ad o¢;), we have L(s, t, Std) is regular
at s = 1. Then Ip(1, 7, wy) is irreducible and so O¢ (1) = Io(1, 7, wy) - x X x 2wy is irreducible.

o If T =1p(z)(x,m) with x # 1, then there is an epimorphism
Ip(m - x, m) Mg x — BOg(7)

of GSOs3 3(E)-representations, where P is a parabolic subgroup of GL4(E) with Levi subgroup
GL;(E) x GL(E). Gan and Takeda [2011b, Proposition 13.2] have proved that Ip (7 - x, ) is
irreducible if Ip(z)(x, m) is irreducible and x # |—|g. If x = |—|g and 7 is essentially square-
integrable, applying [Gan and Takeda 2011b, Corollary 4.4] that t is generic implies that O¢(7) is
generic, then Og(t) = Ip(- x, m)Xw, x and Og(t) = Jp (7 - x, m) Xw, x is the Langlands quotient.

o If T — Ipz)(1, ), then ®O¢(7) is either zero or Ip(m, m) K w,, where P is a parabolic subgroup
of GL4(FE) with Levi subgroup GL,(E) x GLy(E). In fact, ®¢(t) = 0 only when t is a nongeneric
constituent representation of o (z)(1, 7).

This finishes the proof of Proposition 3.7. ]

Remark 3.8. Similarly one can prove that if X is a generic representation of GSO; 2(E) and L(s, X, Std)
is regular at s = 1, then the big theta lift ®,(%) to GSp,(E) is an irreducible representation.

Let us turn the table around. The rest of this subsection focuses on the computation of local theta lifts
to GO22(E) from GSp,(E).

Proposition 3.9. Let t be a generic irreducible representation of GSp,(E). Assume that 9; (r) #0.

() If t =1lozy(1, (1, 2)), then the big theta lift @I(r) to GOy (E) of T is Extéozz(E)(EJr, 7)),
where F are two distinct extensions of (1, o) ¥ (g, pa) from GSOz2(E) to GO, 2(E).

(1) If T #lozy(A, w (1, K2)), then @I (t) is an irreducible representation of GOy 7 (E).

Proof. (1) If © = Igz)(1, w (11, 2)), then the small theta lift «9: (t) equals T by the Howe duality,
where X1 is the extension to GOy 2 (E) of (i1, o) X (uy, ua). Let ¥y be a nondegenerate character
of the standard unipotent subgroup U of GO, »(E). Then

dim Homy (©] (v), ¥) = dim Hom g o, xspom) (T, 0y) = 2, (3-3)

where Wr = Z@W,®Z*, H(W)) is the Heisenberg group of 1V, equipped with the Weil representation w.,
and t is the representation of GSp(WV,). Thus the big theta lift @I (t) to GO, 2 (E) is reducible. There is
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a short exact sequence of GO, > (E)-representations
et —— 0 (1) — T ——0. (3-4)
However, we can not determine ®I (7) at this moment. Note that

dim Extés0, , () (7 (1 p2) R (e, o), 7w (w1, o) R (o, p2)) = 1

due to [Adler and Prasad 2012, Theorem 1]. Here Ext! is the extension functor defined on the category
of all smooth representations with a fixed central character. Then dim ExtéOZ2 ( E)(E+, Y@ Et)=1by
Frobenius reciprocity, which implies that either Extéol2 (E) (ZT, =) or Extéoz_2 (E) (=T, =1) is zero. As-
sume that B is the Borel subgroup of GSO,2(E). Set B = B x i to be a subgroup of GO 2(E) and
BNGSO,,(E) = B. Since

w(wy, wa) R (uy, o) = InngOZ’Z(E) x (normalized induction),

there are two extensions x* to B of x of B. We may assume without loss of generality that ¥ 1 =

Indgoz’z(E) xTand ™= InngZ'Z(E)
of GO, »(E)-representations

x ~. Note that Ext%( x 1, x7) #0. Then there is a short exact sequence

GOz x(E)

0—— £~ —— Ind; (Extz(x*, x 7)) —— T ——0,

which is not split. Hence Extéo2 5 E)(ZJF, ¥.7) # 0. Together with (3-3) and (3-4), one can obtain the
desired equality ©F (1) = Extéo(z,z)( E)(Z+, 7).
(i) If 7 is a (essentially) discrete series representation, then it follows from [Atobe and Gan 2017,

Proposition 5.4].

o If T = Igz)(po, (1, n2)) with o # 1, then there exists only one orbit in the double coset
O(Z)\GSp4(E)/H(W1) x Sp(W)) that contributes to the multiplicity

dim HomH(Wl)NSp(Wl) (t, CU://),

and so @I(t) is irreducible.

o If T C Igz)(1, w) with 7 square-integrable, then 7 is tempered. Due to [Atobe and Gan 2017,
Proposition 5.5], @j(t) is tempered. Note that 9: (7) is a discrete series representation which is
projective in the category of the tempered representations. Thus @I (v) = 9; (t) is irreducible.
Otherwise, it will contradict the Howe duality conjecture (see Theorem 2.1).

o If T = Ip(y) (7, x), then dim Homy (®] (1), ¥y) = 1 and so ® (r) is irreducible.

This finishes the proof of Proposition 3.9. ]
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4. The GSp4(F)-distinguished representations

This section focuses on the proof of Theorem 1.1. First, we will introduce the see-saw identity in the
similitude group in Section 4B. Then we will study the filtrations of various degenerate principal series rep-
resentations restricted to reductive subgroups in Section 4C, which involves the complicated computation
for the double coset decompositions. The proof of Theorem 1.1 will be given in the last subsection.

4A. Notation.

C or 1 is the trivial representation.

H (resp. Hg) is the split 2-dimensional quadratic space over F (resp. E).

e (—, —)g is the Hilbert symbol on E* x E*.

* Resg,rV is a quadratic space over F' while V is a quadratic space over E.

» GSp(W,,) = GSp,,,(F) is the symplectic similitude group.

» GUy(D) = GSp, ; is the unique inner form of GSp,.

e Aw (resp. Ay) is the similitude character of GSp,(E) (resp. GO(V)).

. GSp4(E)t ={g € GSp4(E) | Aw(g) € F*} is the subgroup of GSp,(E) and similarly for GOZ’Z(E)D.
e P’ (resp. PY) is a parabolic (resp. Siegel parabolic) subgroup of GSp,(E)* and Q" is the Siegel
parabolic subgroup of GO,2(E)". And R, (resp. Rp:) is the Jacquet functor with respect to the
parabolic subgroup opposite to P’ (resp. P?).

« ind denotes the compact induction.

e R, (1) is the big theta lift to GO4 4(F) of the trivial representation of GSp(W,).

e R™"(1) is the big theta lift to GSpg(F') of the trivial representation of GOy, ,,(F).
e X is a generic representation of GO(V).

» O, is the Siegel parabolic subgroup of H, = GO, ,(F).

o/ g: (s) is the degenerate Siegel principal series of H,.

e X4 = Q4\ Hy is the projective variety.

» Z(s) is the degenerate Siegel principal series of GSpg(F).

e Mat,, ,(F) is the matrix space over F consisting of all m x n matrices.

4B. See-saw identity for orthogonal-symplectic dual pairs. Following the notation in [Prasad 1996], for
a quadratic space (V, g) of even dimension over E, let Resg,rV be the same space V but now thought
of as a vector space over F with a quadratic form

qr(v) = 3 trp/r q(v).

If Wy is a symplectic vector space over F, then Wy ® r E is a symplectic vector space over E. Then we
have the following isomorphism of symplectic spaces over F:

Resg/r[(Wo ®F E) Qe VI= Wy ®r Resg/pV =1 W.
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There is a pair
(GSp(Wp), GO(Resg,rV)) and (GSp(Wo®p E), GO(V))

of similitude dual reductive pairs in the symplectic similitude group GSp(W). A pair (G, H) and (G', H')
of dual reductive pairs in a symplectic similitude group is called a see-saw pair if H C G’ and H' C G.
The following lemma is quite useful in this section. See [Prasad 1996, Lemma, p. 6].

Lemma 4.2.1. For a see-saw pair of dual reductive pairs (G, H) and (G’, H'), let w be an irreducible

representation of H and v’ of H'. Then we have the following isomorphism:
Hompy (©y (1), 7) = Hompy (O (), 7).

Let GSp(Wo®F E ) be the subgroup of GSp(Wy ® r E) where the similitude factor takes values in F'*.
Similarly we define
GO(V)" = {h € GO(V) | Ay (h) € F*}.

Then we have a see-saw diagram

GSp(Wo ®F E)"* GO(Resg/rV)

=

GSp(Wp) GO(V)*

Replace Wy by a 4-dimensional symplectic space W, over F with a symplectic similitude group
GSp,(F). Then there is a see-saw pair

(GSp4(E)*, GO(V)?) and (GSp,4(F), GO(Resg,rV))
in the similitude symplectic group GSp(W), where W = Resg,r((W2 ®@F E) ® V) and
GSp4(E)* = {g € GSp4(E)|Aw(g) € F*}.

Remark 4.2.2. Let Vr be a quadratic space over F. If the image of the similitude character Ay, is not sur-
jective, then we need to consider the dual pair R =GSp,,, (F)™ x GO(VF). Moreover, GSp,,, (F) x GO(VF)
is not a dual pair in the usual sense. However, for our purpose (see Lemma 4.4.1), we will consider the
induction in stages (see [Gan 2011, §9.7])

Inngp4'l(F)XGO(VF)Qw — InngpM(F)XGO(VF) indgo ww’
where Qy (resp. wy ) is the Weil representation of R (resp. Ry) defined in Section 2. Suppose that
Vr ® E is a split quadratic space over E. Then

GSps, (F)xGO(Vr)
Homgo(v,) (O (1), x) = Homgsp, (£y:xco(v,) (Indg Pt QTR X)

GSpy, (F)
= Homgs,, (r): (IndGSgL( Oy (X0, T)

for a representation t € Irr(GSp,,, (E )%) and a character x of GO(Vr).
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In order to use Lemma 4.2.1, we need to figure out the discriminant and Hasse invariant of the quadratic
space Resg,rV over F.

Assume that E = F(v/d) is a quadratic field extension of F, where d € F*\ F x2 Let D £ be the nonsplit
quaternion algebra with involution * defined over E with a norm map Np,, which is a 4-dimensional
quadratic space V over E. More precisely, Dg is a noncommutative E-algebra generated by 1,/ and j,
denoted by (%), where i2 = a, j2 =b,ij=—ji,a,be EX and (a,b)g = —1. Here (—, —)g is the
Hilbert symbol defined on E* x E*. Then there is an isomorphism for the vector space Resg,rV,

Resg/r D = Spang{1,Vd, i, /di, j,~/dj,ij, dij}
as F-vector spaces. Given a vector v € V, set
qr(v) = S trgypoNp, (v) and  (v;, v;) =qr (Vi +v;) —qr (V) — gr(v)).

Lemma 4.2.3. The quadratic space Resg,r Dg with quadratic form % trg/r oNp, over F has dimension 8,

discriminant 1 and Hasse-invariant —1.

Proof. The nonsplit quaternion algebra over a nonarchimedean local field is unique. We may assume that
i*=aeF~

and j2 =b=by +byv/d, Ng/p(b) = b} —b3d, b; € F.
For an element v = x| 4+ x3 +x3j + x4ij in Dg with x; € E, we have

1(v,v) = Np, (v) = vv* = x{ — ax3 — bxj +abx}

and the corresponding matrix for the quadratic space (Resg,rDpg, qr) is

20 O 0 0 0 0 0
02d 0 0 0 0 0 0
00 —2a O 0 0 0 0
00 0 —2ad O 0 0 0
00 O 0 —=2bp —2bd O 0
00 O 0 —2byd -2b1d O 0
00 O 0 0 0 2ab; 2dab,
00 O 0 0 0  2dab; 2dab;

The discriminant algebra of Resg,r D is trivial in F*/F <2 1f by = 0, then the Hasse-invariant is
(—d,a)=-1

since (bZ\/E, a)g = —1, where (—, —) is the Hilbert symbol defined on F* x F*. If b; # 0, then the
Hasse-invariant is

Ng/r(b)d
9 _bl

Ng/r(b)d

Clb]

(d,d)(—a,—ad)<—b1 )(NE/F(b)d,—l)(ab1, )Z(a»NE/F(b)):(a,b)E:_l,

because (a, b)g = (a, Ng/r(b)) foralla € F* and b € E*. [l
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Now let V be the split 2n-dimensional quadratic space H'; over E. There is a basis {e;, e;}lfi’ j<n for
the quadratic space V satisfying (e;, e;.) = §;; and the other inner products are zero. Then we fix the basis

{ei, Vdei, e, e /N d}i<i j<n

i€
for Resg/pV. It is straightforward to check that the vector space Resg,rV is isomorphic to the split

4n-dimensional quadratic space H*" over F.

4C. The structure of degenerate principal series. In this subsection, we follow the notation in [Gan and
Ichino 2011; Kudla 1996]. Let H, = GO(H") be the orthogonal similitude group. Define the quadratic
character v to be

v(h) = det(h) - ;" (h) for h € GO(H")

so that v|pg) = det. Define
GSO(H") =kerv = {h € GO(H")|1(h)" = det(h)}.

Assume that Q,, is the standard Siegel parabolic subgroup of H,, i.e.,

-1
On= {(A AAt) (I )](> ) A eGL,(F), X € Mat, ,(F) and X + X' :0}

with modular character |det A| },f" |A|;"("71)/ 2. Then 0,\H, is a projective variety and a homogenous

space equipped with H,-action. Each point on Q,\ H, corresponds to an isotropic subspace in H" of
dimension n. Set the degenerate principal series representation / g’: (s) as

157(s) = {f : Hy — C| f(xg) =80, (x)" >/ f(g) for x € Q. g € Hy}.

Let W, be the symplectic space with a symplectic similitude group GSp(W,). Set 1y to be the trivial
representation of GSp(W,)). Then the big theta lift ®,(1y) to H, of the trivial representation 1y is
isomorphic to a subrepresentation of g: (s0), where

so=r—3(n—1).
The image of ®,(1y) in Ig: (so) is denoted by R, (1), i.e.,
O, (1w) = R (1) C Iy (s0).
Let us come back to the GSp,-cases. Assume that r =2 and n = 4.
Proposition 4.3.1. There is an exact sequence of Hy-modules
0—— R(1) — I} (3) — R ®v —— 0.

Proof. Note that Ry(1)|o, 4(r) 1s isomorphic to the big theta lift of the trivial representation 1y from
Sps(F) to O4 4(F), and similarly for the big theta lift R;(1). There is only one orbit for the double coset

O4\H4/044(F) = (Q4 N O4 4(F))\O4,4(F)/O44(F).
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Applying Mackey theory, we have I gj (3)l0sar =1 8%8?4 ") (3)- Then the sequence is still the same

when restricted to the orthogonal group O4 4(F). The sequence is exact when restricted to the orthogonal
group Oy 4(F) due to the structure of degenerate principal series (see [Gan and Ichino 2014, Proposi-
tion 7.2]). By the construction of the extended Weil representation, the sequence is exact as H-modules. [

Similarly, let P, = M4N4 be the Siegel parabolic subgroup of GSp(W4) = GSpg(F) where My =
GL(F) x GL4(F) is the Levi part of the parabolic subgroup. Let Z(s) be the degenerate normalized
induced representation of GSpg(F') associated to Py, i.e.,

I(s) = {f : GSpg(F) — C| f(pg) = 8p,(p)/2+/3 £ (g) for p € Py, g € GSpg(F)}.
Then we have:

Proposition 4.3.2. There is an exact sequence of GSpg(F)-modules

0—— R33(1) (%) R*0(1) —— 0,

where Z(s) is the degenerate normalized induced representation of GSpg(F) and R33(1) (resp. R*%(1))
is the big theta lift to GSpg(F') of the trivial representation of GO3 3(F) (resp. GO4,0(F)).

Now we use Mackey theory to study / gj (%) lGo, ,(E): Which involves the computation for the double
coset Q4\H4/GOy2(E )% Denote X4 = 04\ Hy as the projective variety.

4C1. Double cosets. Now let us consider the double coset
Q4\Hy /GO, 2(E)".
Assume that V = [H]% with basis {e;, e/j}lsi,jfz and {e;, e;.) = §;;. Fix the basis
{e1, Vdey, er, Vdes, e, e/l/«/g, e, e/z/\/g}
for Vi =Resg,rV. The inner product ({(—, —)) on V is given by

((x,y)) == 3 trp/r((x, ¥))

for x, y € V. Let us fix an embedding i : GO, 2(E)* — GSOy4 4(F).

The double coset decomposition for the case at hand can be obtained from more general case. Assume
that V is a symplectic space or a split quadratic space over E of dimension 2n, with a nondegenerate
bilinear form B : V x V — E. Let U (V) be the isometry group, i.e.,

U(V)={geGL(V) | B(gx,gy) = B(x, y) forall x, y € V}

which is a symplectic group or an orthogonal group. Then Resg,rV is a vector space over F of
dimension 4n with a nondegenerate bilinear form % trg/F oB.
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Lemma 4.3.3. Let P be a Siegel parabolic subgroup of U(Resg,rV). Then each point in the homo-
geneous space X = P\U(Resg,rV) corresponds to a 2n-dimensional maximal isotropic subspace in
Resg,rV and the finite double cosets X /U (V) can be parametrized by a pair

(dimg E - L, By),

where L C Resg,rV is a maximal isotropic subspace with respect to the inner product ((—, —)) over F,

E-L:={e-x|eecE,xel}
is a linear E-subspace in V and

Br:L/Lox L/Lo— ~d-F -1
is a nondegenerate bilinear form inherited from V, where

Lo={xeL:B(x,y)=0 forally e L}.

Moreover, if L = Ly, then L lies in the closed orbit. If Lo =0, then L lies in the open orbit.

Proof. Under a suitable basis for L, the bilinear form for B|; corresponds to a matrix Jd - T, where
T € M,,(F). Moreover, we can choose T such that it is a diagonal (resp. an anti-diagonal) matrix if
B(x,y) = B(y, x) (resp. B(y, x) = —B(x, y)). Then

dimg E- L =n+ 1 -rank(7),
which is invariant under U (V)-action. The bilinear form B;, corresponds to a matrix v/d - T', i.e.,
000

T=|0T0
000

where T’ is invertible and rank(7") = rank(7").
Assume that there are two isotropic subspaces L and L, satisfying
dimEE-ledimEE-Lzzl and BngBLz-
This means that there exists g € GL;(E) such that g: E - L1 — E - L, satisfying

Br,(x,y) =Br,(gx, gy).

It is easy to lift g to gg € U(V) such that ggL| = L».

g1 0

o gz) lies in a subgroup of GL;(E), which can be regarded as a Levi subgroup of U (V), and

In fact, g = (

Br(gx, gy) = Br(g2x', 82))
when x —x’, y — y' € Lo. Then g = (g' & gi‘) € U(V), where g} depends on g; and V. U

Remark 4.3.4. There is only one closed orbit in the double coset P\U(Resg;rV)/U(V). When
T =0, the subspace E - L is the maximal isotropic subspace of V and so U (V) acts on the subvariety
{L:L =Ly} C X transitively.
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Consider the double coset decomposition of

04\H3/GO0,»(E)".

There are several F-rational orbits in Q4\ Hs/GO, 2 (E )e By Lemma 4.3.3, there are two invariants for
the orbit GO, »(E)" - L:

e the dimension dimg(E - L), and
o the bilinear form By (defined in (4-1)) up to scaling in F*.
By the classification of 4-dimensional quadratic spaces over F, there are 4 elements lying in the kernel
ker{H'(F,04) — H'(E, Oy},
which are
« the split quaternion algebra Mat, »(F) with g(v) = det(v) for v € Mat 2(F),
o the quaternion division algebra D(F) with the norm map Np,r,
o the nonsplit 4-dimensional quadratic space V3 = E @ H with g(e, x, y) = Ng/r(e) — xy, and
e Vy=eV3withe € F*\ Ng/p(E™).

However, we consider the double coset

04\H1/GO, 1 (E)"

for the similitude groups and observe that V3 and Vj are in the same orbit in Q4\ Hy/GO,,»(E)" More pre-
cisely, Mat »(F), D(F) and E @H are three representatives in the union of the open orbits GO, > (E Y.L
in X4/GO,,(E)".

Proposition 4.3.5. Pick a point L € X4/GO,,(E)* lying in an open orbit. Then the stabilizer of L in
GOM(E)u is isomorphic to the similitude group GO(L).

Proof. For g € GO, »(E)" with g(L) = L, we have
(8l1, 8l2) = (g) - (I, I2)
and so ((gly, glb)) = A(g) - {{l1, [2)). This means g € GO(L). Conversely, if » € GO(L, (1/\/3)6]5|L), set
hg xQer> h(x) Qe
forx ee LEZ=L-E=YV. Then hg(L) =L and
(hp(x1 ®e1), hp(x ®er)) = ererr(h){(x1, x2)) = A(h)(x1 ® €1, x2 @ €2),

i.e., hg € GOy, (E)". Then we get a bijection between the similitude orthogonal group GO(L) and the
stabilizer of L in GO, »(E)". Observe that the map & — hg is a group homomorphism. Then GO(L)
is isomorphic to the stabilizer of L via the map & — hg. U



The Prasad conjectures for GSp, and PGSp, 2437

There are three F-rational open orbits GO, > (E )% . L where L represents one of Mat, 2 (F), D(F) or
E @& H, whose stabilizers are GO, 2(F), GO4,0(F) and GO3 | (F) respectively. There is one closed orbit
GO, (E)" - L which has stabilizer

Al %

b —. i~
GO22(E)" N Qs =: 0 —{( 0 AA!

) | A€GLyE) 1 e FX}.
There are two intermediate orbits with representatives L, L, and dimg(E - L;) = 3. The stabilizers are
isomorphic to

(GL1(E) x GOy,1(F)) -Matp 2(F) and  (GLi(E) x GO(VEg)) - Maty »(F),
where Vg is the 2-dimensional quadratic space over F' whose discriminant algebra is E.
Remark 4.3.6. For (g, 1) € GLo(F) x F*, we set

B((g, 1) =(g,0(g) 1) € GLy(E) x GLy(E).

Then g : GSO3 1 (F) = GSO, 2 (E ) is an embedding due to the exact sequences

il

1 E*

GLy(E) x F* ——— GSO3 1(F) —— 1

| l
1 —— EX —2 GLy(E) x GLy(E) — GSO,2(E) — 1

where i1(e) = (¢, Ng/r(e) 1) and iz(e) = (e, e ") fore € E*.

There are several orbits for X4/GO 2 (E )4 By Mackey theory, there is a decreasing filtration of
GO, 2 (E) -modules for 1) (5)Go, (k-

4C2. Filtration. Consider the filtration
154(s) = I(s) D I1(s) D Io(s) D0

of [ gj (5)|Go,,(E): With a sequence of subquotients

. 1GO2 2 (E)" . 1GO2 2 (E) . GO (E)
Io(s) =indg,, () CHIndge, () C®indgo () €

b
L($)/1i(s) = indZ?”(E) 5th1’
where QF is the Siegel parabolic subgroup of GO2»(E)* with modular character 85 and

~ . GO (E)" 145 e=3 o (GO2a(E) (345 3
11(s)/1o(s) = ind G () xGo, | (F))-N (Sé 8,7 @®ind, 8& 78,7

where Q" = (GL;(E) x GO(VE)) - N, N = Mat, »(F) and
8i(t,h) = |Ng/p(t?) - Ay (h) 2| F

fort € GL{(E) and h € GOy | (F) or GO(VE), where Vg is the nonsplit 2-dimensional quadratic space.
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Remark 4.3.7. We would like to highlight the fact that on the open orbits related to Iy(s), the group
embedding GO, »(F) < GO, »(E)” (and similarly for the other two group embeddings) is not induced
from the geometric embedding i : GO(L) — GO(L ®F E), but the composite map Ad,,;s oi of the adjoint
map Adys and the geometric embedding i where

h = <‘/3 1) € GO(2,2)(E).

However, it does not affect the results when we consider the distinction problems for the similitude
groups. In Section 4D, we will show that the results on the open orbits determine the distinction problems
dim Homgo, ,(g): (/ gj(%), T) when ¥ is a generic representation.

Recall that
GSp,(E)" = {g € GSpy(E) | Aw(g) € F*}.
When we deal with the case

GSpg(F) os/5
IndP4 8 6P4 |GSp4(E)t7

where Pj is the Siegel parabolic subgroup of GSpg(F) with modular character 8 p,, the above results still
hold. More precisely, set

I(s) = {f : GSpg(F) — C | f(xg) = 8p,(x)/PF/ f(g) for x € Py, g € GSpg(F)}.
There is a filtration
To(s) CZi(s) CIals) =Z(s)|Gsp,(E):
of Z(s)|gsp,(k): such that
« To(s) = indge 5’ €.,
o T1(5)/To(s) = indbs(E §1/2HCD 12 gng
o To(s)/Ti (5) = ind P 56D

where P is the Siegel parabolic subgroup of GSp,(E)"%,
M/zGLl(E) x GL,(F), N’%Matl,l(E)@Matg,g(F)

and
Surn'(t, 8) = INg/r)* - Aw ()Y F

for (¢, g) € GL{(E) x GLa(F). Here the group embedding GSp,(F) — GSp4(E)u in Zy(s) is the
composition map Adgs oi "where i’ : GSp(W>) < GSp(W, ®F E) is the geometric embedding and

g = (\/Z 1) € GSpy(E).
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4D. The distinction problem for GSp,. Let us recall what we have obtained. Let 7 € Irr(GSp,(E)).
Since 7|sp, (k) is multiplicity-free due to [Adler and Prasad 2006, Theorem 1.4], T|gsp, (£): is multiplicity-
free. Assume that T = 0(r; W ;) participates in the theta correspondence with GSO; 7 (E). Then the
see-saw identity implies that

Homgsy, (r) (T, C) C Homgsp,(r)(02(%), C) = Homgo, , (g): (R2(1), X),

where R>(1) is the image of the big theta lift to Hy of the trivial representation of GSp,(F) in / gj (%)
and ¥ is the irreducible representation of GO, (E) such that 7 = 6(X). In fact, if 7; 22 75, then
z = Indgg&z’(j‘)@)(m X 75). If w1 = 7y, then there are two extensions to GO, (E) of w; X m,. The
representation X is the unique extension of 7y X r; which participates into the theta correspondence with

GSp,(E), denoted by (71 X 7y)™.

Lemma 4.4.1. Assume that w1 Xy € Irr(GSO,2(E)). Let X € Irr(GO2 2 (E)) such that X|Gso,,(E) D
w1 Wy and ¥ has a nonzero theta lift to GSp,(E). Then

dim HomGo(L) (E s C) =dim HomGSO(L) (7‘[1 X ), G:),

where GO(L) — GO(L®F E) =G0, 2(E) and the 4-dimensional quadratic space L is one of Maty 2 (F),
D(F) or E ® Hp.

Proof. If my # my, then it follows from Frobenius reciprocity. If 71 = 7> and L is either Mat »(F) or
D(F), then we consider the see-saw diagram

GO, 2 (E)* GSp,(F)
GO(L) GSp,(E)*

where Gsz(E)t ={g € GSp,(E)|Aw(g) € F*}. We have
Homgo(r) (2 ® v, C) = Homgo(r) (X, v) = Homgsy, (£y: (O2(v), 1) =0,

because the big theta lift ®,(v) to GSp4(F) is zero by the conservation relation. If 71 = mp and L is

E ® Hp, then
GSpy(F)

HomGO(L)(E, 1)) = HomGSPQ(E)u (IndGSp4(F)+

®,w),C)=0.
(See Remark 4.2.2.) Hence
Homgso(z) (1 X 712, C) = Homgo) (X @ (X ® v), C) = Homgoz) (X, ©).
This finishes the proof. O

Lemma 4.4.2. Given a representation T € Irt(GSp,(E)) with w.|px =1, we have
dim Homgsp, (r) (4, C) = dim Homgsp,(r) (7, C) = dim Homggp, (r)(t ", C),

where T8(x) = t(gxg™") for g € GSp,(E).
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Proof. Note that ¢ = 7 and so dim Homgsp, (r) (74, C) = dim Homgsy,(r) (7, C). Since w;|px is trivial
and 7V = 1 ® w; !, we have

Homgsp,(r)(t", C) = Homgsp,(r)(t ® ; ', C) = Homgsp, (r) (T, 0| rx) = Homgsp, () (7, C). O

Remark 4.4.3. We have a similar statement for the group GO(V) when V is a 4-dimensional split
quadratic space over E.

There is another key input for the GL4-distinction problems in our proof of Theorem 1.1.

Theorem 4.4.4 [Matringe 2011, Theorem 5.2]. Given a generic representation w of GL,(E) with a
Langlands parameter ¢ = A1 @ A2y @ --- @ Ay with A; : WD — GL,, (C) irreducible and Z§:1 n;i =n,
then 1 is GL, (F)-distinguished if and only if there is a reordering of Als and an integer r between 1

and %t such that A7, | = A} fori=1,3,...,2r — 1 and A; is conjugate-orthogonal for i > 2r.

Lemma 4.4.5. Let w be a square-integrable representation of GLy(E). Then v is GLy(F)-distinguished
if and only if v is D* (F)-distinguished. If 1 = (x ™", x°), then 7 is both GL, (F)-distinguished and
D> (F)-distinguished. Let mo = 7w (X1, x2) with x1 # x2, X1|Fx = x2|Fx = 1 be an irreducible smooth
representation of GLy(E). Then g is GLy (F)-distinguished but not D* (F)-distinguished. These exhaust
all generic GL, (F)-distinguished representations of GLy(E).

Proof. If r is square-integrable, then it follows from [Prasad 1992, Theorem C]. Let w9 = 7w (1, x2). By
Mackey theory, we know that

1 if g |
dim Hompx () (19, C) = dim Homgx (x1 x5 , C) = X =5
0 otherwise.

If x1 # x2 and xi1|px = x2lrx =1, then x; x5 # 1. Thus mg is not D> (F)-distinguished. Since the
Langlands parameter ¢, = x ' @ x° (resp. ¢y,) is conjugate-orthogonal in the sense of [Gan et al.
2012, §3],  (resp. mp) is GLo(F)-distinguished due to [Gan and Raghuram 2013, Theorem 6.2] or
Theorem 4.4.4. The last claim follows from Theorem 4.4.4. O

Lemma 4.4.6. Let w be an essentially discrete series representation of GLo(E). Let 11 = Jp(w|—|g, )

be the nongeneric representation of GL4(E). Then the following statements are equivalent:
(1) ITis either GL4(F)-distinguished or (GL4(F), wg,r)-distinguished.
(i) MV =T11°.
(ii1) Ip(mw|—|g, ) is both GL4(F)-distinguished and (GL4(F), w)-distinguished.
Proof. See [Gurevich et al. 2018, Theorem 6.5]. |

4D1. The Langlands correspondence for GSp,. In this part, we will recall the Langlands correspondence
for GSp, which has been set up in [Gan and Takeda 2011a].

Let IT(GSp,) be the set of (equivalence classes of) irreducible smooth representation of GSp,(F’). Let
Hom(WDp, GSp,(C)) be the set of (equivalence classes of) admissible homomorphisms

WDy — GSp,(C).
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Theorem 4.4.7 (Gan—Takeda). There is a surjective finite to one map
L : T1(GSp,) — Hom(WDp, GSp,(C))

with the following properties:

(1) 7 is a (essentially) discrete series representation of GSp4(F) if and only if its L-parameter ¢ = L(7)
does not factor through any proper Levi subgroup of GSp4(C).

(ii) For an L-parameter ¢ € Hom(WDp, GSp4(C)), its fiber I14 can be naturally parametrized by the

set of irreducible characters of the component group

wo(Z(Im(p))/ Zgsp,(c))-

This component group is either trivial or equal to Z/27. When it is Z /27, exactly one of the two repre-
sentations in Iy is generic and it is the one indexed by the trivial character of wo(Z (Im(¢)) / ZGsp,(c))-

(iii) The similitude character sim(¢.) of ¢, equals the central character w, of t. Here sim:GSp,(C) — C*
is the similitude character of GSp4(C).

(iv) The L-parameter of T @ (x o Aw) is equal to ¢ @ x. Here Ay : GSp4(F) — F* is the similitude
character of GSp4(F), and we have regarded x as both a character of F* and a character Wg by
local class field theory.

Definition 4.4.8. An irreducible representation T of GSp,(E )¥ occurs on the boundary of Z(s) if
HomGSp4(E)ﬂ(Ii+1(S)/Ii (s), )20 fori=0or1.

In [Lu 2017a], we have verified the Prasad conjecture for GSp, when 7 is a tempered representation
by showing that 7 does not occur on the boundary of Z (%) After discussing with Dmitry Gourevitch,
we realized that [Gourevitch et al. 2019, Proposition 4.9] can imply the Prasad conjecture for GSp, when
the L-packet Iy, is generic. Thus we will give a slightly different proof of Theorem 1.1 from the one
in [Lu 2017a].

We repeat the statements of Theorem 1.1 as below.
Theorem 4.4.9. Assume that Tt € Irr(GSp,(E)) with a central character w, satisfying w.|gx = 1.

(1) If T =6(X) is an irreducible representation of GSp,(E), where X is an irreducible representation of
GOy4,0(E), then T is not GSp,(F)-distinguished.

(i) Suppose ¥ = (711X 1) is an irreducible representation of GOy 2(E) and X = Indgg&zfé)(m Xs)

ifmy #m. If Tt =0(X) is generic, then
2 ifm; 2w are both GL, (F)-distinguished,
ifm 2my butrr{’%rrzv,
if my = my is GLy(F)-distinguished but not (GLy(F), wg/r)-distinguished,
if m is GLy (F)-distinguished and 7\ = my,

otherwise.

dimHomgsp, () (r,C) =

O = = =
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Here mo = (X1, x2) with x1 # x2, x1lrx = x2lpx = 1.

(iii) Assume that t is not in case (i) or (ii), so that T = 0(I1 X x ), where I1 X x is a representation of
GSOs33(E). If T is generic, then

. 1 if ¢ is conjugate-orthogonal,
dim HomGSp4(F)(7:’ (D) == .
0 otherwise.

Proof. (1) If X is a representation of GO4,0(E), then 7 =0(X) = ©(X) and
Homgsp, (7 (©(X), C) = Homgo, £y (Ow,p .y (1), =),

where D’ =Resg JFDE=D(F) @H? is the 8-dimensional quadratic vector space over F with determinant 1
and Hasse invariant —1 due to Lemma 4.2.3 and ®w p y (1) is the big theta lift to GO(V’) of the trivial
representation 1. Note that the first occurrence of the trivial representation is dimg W =4 in the Witt
tower D @ H’, which is bigger than 2. Thus ®y p (1) = 0. Hence

Homgsp, (7 (©(X),C) =0
and so T = 6(X) is not GSp, (F)-distinguished.
(i1) By Proposition 4.3.1, there is an exact sequence
0—— Ry(1) — I (3) — v®Ri(1) —— 0 (4-2)

of Hj-representations, where R; (1) is the big theta lift to H, of the trivial representation 1 of GSp,; (F).
We take the right exact contravariant functor Homgo, ,(g):(—, £) with respect to (4-2) and get a short
exact sequence

0— HomGolz(E)t(Rl (1)) XV, E) —> HomGozvz(E)t(Ig: (%), Z) —> HomGOlz(E)t(RZ(l)’ Z) (4-3)

Consider the following double see-saw diagrams:

GSp,(E)" Hy GSp, (E)*

GSpy(F) GO, 2 (E)" GLy(F)

Note that Homgo, , (£y: (R2(1), ) = Homgsp, (r) (7, C). There is a key observation due to Wee Teck Gan
that GOz,z(E)D is a subgroup of GSO4 4(F). One has

Homgo, , (gy: (R1(1) ® v, £) = Homgo, , (£y: (R1(1), £) = Homgsp, (F)(O1(%), C).
Here ©1(X) is the big theta lift to GSp,(E) of X, which is zero unless 7; = m;. Then

dim Homgsp, () (7, C) + dim Homgsp, (r) (©2(Z), €) = dim Homgo, , ): (I (3). ) (4-4)
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Observe that GO, >(E)" is the fixed point of a involution on Hj, which is given by the scalar matrix
h=~/d € GOy»(E)" C Hy

acting on Hy by conjugation. Due to [Olafsson 1987, Theorem 2.5], there exists a polynomial f on Hj
such that the complements of the open orbits in the double coset Q4\ H4/GO52(E)" is the zero set of f.
. .. T . Hy (1 .
Thanks to [Gourevitch et al. 2019, Proposition 4.9], the multiplicity dim Homgo, , (£): (I Q:(E)’ Z) is at
least dim Homg, ,(£): (Io(%), E) where the submodule / corresponds to the open orbits. More precisely,

1\ ~ :_ 1GO22(E)* . GOy 2(E)* . 1GOy 2 (E)"
Ig(z) =indgo, () CO®indgo,,r COHIndgo () C

and

dim Homgo, , () (1) (%) =)

. . 1GOyo(E)" . 1GOy2(E)! . GO, (E)E
2dlmHomGoz.z(E)”(lndGO:(z)(F) CEBdeO;z(F) Co®indgo. () C T). 45

Together with (4-4), we have
dim HomGsp4(F) (7, C)+dim HomGspz(F) (0,2(2),0)

> dimHomgo, , (g): (Igf (3).2)

. GOy, (E)" . 1GOy,(E)" . GOy (E)E
ZHomGOz,z(E)“(deom(F) (E@deOM(F) C@lndGO&l(F) C, E)

= dimHomGoM(F) (2, C)+dimH0mGom(F) (E, C)—l—dimHomGo}Yl(F) (Z s C)

= dimHomGSO‘LO(F) (1 Xy, C)"‘dimHomGSOz_z(F) (11 Xy, C)+dim HOIIIGSO&l (F) (mXmp, C).  (4-6)
The last equality of (4-6) holds due to Lemma 4.4.1, which also equals

dimHompxr) (71, C) dim Hompx gy (2, C) + dim Homg,(r) (1, C) dim Homgy, ) (772, C)
+ dim Homgy, (r) (7] , 775).

In order to get the upper bound for the multiplicity dim Homgsp,(r) (7, C), let us turn the table around.
There is an exact sequence

0—— R¥31) —— Z(3) — R*°1) — 0

of GSpg(F)-representations, where Z(s) is the degenerate principal series of GSpg(F) and R"™"(1) is
the big theta lift to GSpg(F) of the trivial representation 1 of GO,, ,(F). There is only one open orbit in
the double coset decomposition P4\GSpg(F)/GSp,(E)". In a similar way, by Lemma 4.4.2, [Olafsson
1987, Theorem 2.5] and [Gourevitch et al. 2019, Proposition 4.9],
dim Homggy, (r) (7, C) = dim Homggp, (£y: (Io(%), ‘L’) < dim Homggy,, (£): (I(%), r)
< dim Homggy, (:(R*> (1), 7) + dim Homgg,,, (5): (R**(1), T)
= dim Homgo, ,(r) (¢ (1), C) + dim Homgo, ,(r) (O] (1), C). 4-7)
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Now we separate them into two cases: m; 2 75 and 71 = m5.

(A) If my 22 mo, then the theta lift ® (%) to GSp,(FE) of X is zero,
Homgo, ) (R1(1) ® v, £) = Homgsp,(r)(©1(X), C) =0

and ¥ = Indggg(’zz,)z(fé)(m X m,). There are several subcases:

(Al) If m; (i =1, 2) are both D> (F)-distinguished, which implies that ¢, are conjugate-orthogonal and
so that 77; are both GL, (F')-distinguished due to Lemma 4.4.5, then nlv Z mj. Otherwise, 7y = nlv =n7,

which contradicts the assumption 7| 2 m,. Then the inequality (4-6) can be rewritten as
dim Homgsy, () (7, C) = dim Homgo, gy (15 (3). ) = 2. (4-8)
Flicker [1991] proved that (GL,(E), GL, (F)) is a Gelfand pair, which implies that
1 > Homgso, ,(r) (O (1), C) = Homgo, ,(r) (O (1), C).

Thus
dim HomGsp4(p)(r, C)<1+1 (4-9)

due to the upper bound (4-7). Then (4-8) and (4-9) imply
dim HomGsp4(F)(t, C) =2.

(A2) Ity =7 (x1, x2), X1 Z X2, X1|Fx = x2|px =1 and 7y is GL, (F)-distinguished, then Lemma 4.4.5
implies that both ¢, and ¢, are conjugate-orthogonal, ;" 2 7§ and

H0mG04,O(F)(E, Q:) =0= HOIIIGOM(F)(E, G:)
Moreover, HomGsom(F)(@g(t), C) #0. Since
dim Homgo, , £y (lg:(%), T) > dimHomgo,2) (/) (2, C) +0=1,

the desired equality dim Homgsp,(r) (7, C) = 1 follows from (4-6) and (4-7).

(A3) If 77 = )/, then Lemma 4.4.1 implies
dim Homgo, ,(r) (%, C) = dimHomgso, ,(r) (71 K72, C) = 1.
By the previous arguments, we know that Homgo, ,(r)(2, C) = 0 in this case. Therefore
dim Homgsp,(r) (7, C) = 1.
In other cases, if 7 2 ;" and either ¢, or ¢, is not conjugate-orthogonal, then
dim Homgsp,(r) (7, C) = 0.

If not, then
dim Homggsy, (r) (7, C) = dim Homgso, ,(r)(Of (1), C) = 1.
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Set [IX y = @g’(r) lGsos 5 (E) as a representation of GSO3 3(E), which is irreducible due to Proposition 3.7.
Then IT is GL4(F')-distinguished and so ¢py is conjugate-orthogonal.
We consider the following cases:

o If ¢, is conjugate-orthogonal, then ¢, is conjugate-orthogonal by Theorem 4.4.4.

o If ¢y, is irreducible, by the assumption 77 2 7r,” and Theorem 4.4.4, then ¢, is conjugate-orthogonal,
which will imply that ¢, is conjugate-orthogonal as well.

» Now suppose that both ¢, and ¢, are reducible and that neither ¢, nor ¢, is conjugate-orthogonal.
Assume that ¢, = x;1 + xi2 (i =1, 2). Then

dn=xu+xi2+xa+x2  xuxiz=xuxp:E*/F*—C*.

Thanks to Theorem 4.4.4, x11x7;, = 1 and x12 # x22 but x12|px = 1 = x22/Fx. Furthermore,
X21x22 - (X21 x22)7 = 1 implies
x3ix21 = 1.

Similarly x7; x11 =1. Thus, x7, = X2_11 and x11 = x21. This implies that x12 = x22 which contradicts
the condition 1o # x22.

Hence the Langlands parameter ¢ can not be conjugate-orthogonal. Thus Homgsp,(r) (7, C) = 0 if
my 2wy and either ¢y, or ¢, is not conjugate-orthogonal.

(B) If m; = m, is a discrete series representation, then ®;(X) = m; due to [Atobe and Gan 2017,
Proposition 5.4]. If m; = m, is an irreducible principal series representation, applying the functor
Homgo, g)(—, ) on the Kudla filtration (see [Gan and Takeda 2011b, Theorem Al]), we have

01(X)=m
except for m; = (x, x). If m; = 7w (x, x), then there is an exact sequence
T — @1(7‘[1 Xﬂ]) — T —0

of GL,(E)-representations, where we can not deduce ®1 (7w X 1) directly. There are two choices that
©1(r) X my) is either 7y or Extgr,g) (w1, 71). We will show that ®; (7 X ) has a unique Whittaker
model which can imply that ®(7; X m) =m;. Let N = {((1) '1‘) |ne E} be the subgroup of GSp,(E).
Let ¥ be a nontrivial character of N. Consider the Whittaker model of ®(;r| X 7¢),

dim Homy (®1(ry M 7y), ¥n) = dim Hompgy, k) (1 X7y, C) < 1

due to [Lu 2017b, Proposition 3.4], which implies that ®;(X) = ;. Therefore the exact sequence (4-3)
implies the inequality

dim Homgsp,(r) (7, C) > dim Homgo, , (£y: (Ig:(%), E) — dim Homgsp, (r) (11, C). (4-10)

We separate them into the following cases:
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(B1) If mry is D* (F)-distinguished, then dim Homgo, , (£): (Io(%), 2) = 3. Again, we consider the upper
bound (4-7) and the lower bound (4-10) to obtain the equality

dim HomGsp4(@)(‘c, (E) =2.
(B2) If my = 7o =7 (x1, x2) With x1 # x2 and x1|rx = x2|Fx =1, then
dim HomGO4Y0(p)(Z, ([:) =0.

In a similar way, we can get dim Homgsy, (r) (7, C) = 1.

(B3) If 7y is not GL,(F)-distinguished but (GLy(F), wg,r)-distinguished, then

HomGsz(F)(nla C) =0and HOl’IlGo3_l(F)(E, G:) ;é 0,

which implies that dimHomGoz‘z(E)t(Ig;l (3). =) = 1 = dimHomgso, ,(r)(OF (), C). Thus we can

deduce that dim Homgsp,(r) (7, C) = 1.

(iii) If 7 is not in case (i) or (ii), then the first occurrence index of t of GSp,(E) in the Witt tower H',

is 3. Observe that @g (7)|Gs0s5(E) 1 irreducible unless T = Indgig“)w)(x, ) with x = |—|g.

Suppose that T # Indgs(%‘)(E)(l—| g, ). Consider the double see-saw diagrams

GOy,»(E)" GSpg(F) GO3 3(E)"

> | >

GO4,0(F) GSpy(E)* GO 3(F)

By [Kudla and Rallis 1992, p. 211] and Proposition 4.3.1, there are two exact sequences

0— R*3(1) — Z(3) — R*°) — 0

and

0—— R*YM) @R (1) — I(—3) — B> (D NRPA) —— 0

1
2

of GSpg(F)-modules, where Z(s) is the degenerate principal series of GSpg(F) and R™"(1) is the big
theta lift to GSpg(F') of the trivial representation 1 of GO,, ,(F). Assume that T is generic and its theta
lift to GO, 2(E) is zero. Then

Homgsy, (zy:(R**(1), T) = Homgo, o) (O] (1), C) =0,

so that

)s ‘L’) =dim HOI’nGSPA(E)t(RS’I(l) N R3’3(1), ‘[).

dlm HomGsp4(E)t (I(—%
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Thus applying Lemma 4.4.2,

2) 7)
< dimHomGSp4(E)t(R 3(1), 1)
= dim Homgo, ,(r)(OF (1), C)
= dim Homgo, ,(r) (MK x)*, C) 4-11)

dim Homgsy, (r) (t, C) = dim Homgg, ()2 (Zo(
1
2)

< dim HomGsp4(E)f( (

where (ITX )T are two extensions to GO3 3(E) of I1X x. On the other hand, one has
Homgo, ;) (MK x) ™, C) = Homgo, ;(r)(OF (1) ® v, C) = Homgg), (£):(O(v), ) =0
Then we have an inequality
dim Homgsp,(r) (7, C) < dim Homgso, ;(r)(ITX x, C) = dim Homgy, () (IT, C). 4-12)
Now we want to obtain the reverse inequality. Note that
l— R NR3A) — R¥31Q) — R¥?2(1) —— 1

is exact (see [Gan and Ichino 2014, Proposition 7.2]). There is an injection

Homgsy, (gy:(R>? (1), T) < Homgsy, (gy:(R>' (1) N R*>(1), 1) = Homggy, p): (Z(—3).7)  (4-13)

since the theta lifts to GO, 2 (E) and GOy ¢(E) of T are both zero by the assumption.
We will show that T does not occur on the boundary of Z (— %) under the assumptions. If 7 is nondiscrete,
then T = Jo(z)(x, ), x # 1, due to [Gan and Takeda 2011b, Table 1]. Note that

. GSp,(E)"
Ti(s)/Zo(s) = ind g’ Gsp, (ryynr X

where N’ = E @ Maty »(F) and x'(t, g) = |NE/F(r)S+% A(g) 3 F. Set
= (GL{(E) x GSp,(E)") - N'.
Thanks to the second adjoint theorem due to Bernstein, we have
Hom(Z; (—1)/Zo(—1). 1) = Homps xsp, i<+ (1@ indg () C® | =172, R (Joizy (x. 7)) =

because Ry (J(x,m))=x Qm + x '®my and x # 1. Moreover, the cuspidal supports of Jo(z)(x, )
and Z,(—3)/Zi (—3) are disjoint. Therefore T = Jg(z)(x, 7) does not occur on the boundary of Z(—3)
and so

dim Homgg,, () (I(—%), ‘L') < dim Homggsy,, (g): (IO(—%), r) = dim Homggy, (r) (7, C).
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Note that if 7 is a discrete series representation, then we have

Homgsy, (£y: (Zi+1(—3)/Zi(—3), 1) =0

for i =0, 1. If not, then we will get a contradiction. Suppose that

Homgsp, (&) (Z1 (= 3)/Zo(—3), T) #0.

Then Homgy, (£)(1, R5/(7)) # 0, which contradicts Casselman’s criterion [Casselman and Mili¢i¢ 1982]
for the discrete series representation that

Homgr, () (| =1, Rp/(7)) #0
implies s < 0. Similarly,
Homgs,, (gy: (Z2(—3)/Z1 (= %), T) = Homg, £)x (3%6, Rp: (7)) =0

and so
dimHomGSp4(E)t (I(—%), T) S dlm HomGsp4(E)t (I()(—%), 'L'). (4-14)

Therefore one can combine (4-12)—(4-14) to obtain that

dim Homgsp, (r) (7, €) = dim Homggp, (£): (Zo(=3). )
= dim HomGSOlg(F)(@g_ (1), C)
= dim Homgp,(r)(I1, C). (4-15)

Thus the left-hand side is 1 if and only if IT is GL4(F')-distinguished.

Ifr= Indgs(%‘)(E)
that Ip(w|—|g, ) is GL4(F)-distinguished if and only if ¢ is conjugate-self-dual. This follows from
Lemma 4.4.6.

Hence we have finished the proof. U

(|—|g, m) is irreducible, then O¢(t) = Jp(r|—|g, 7)) K w; |—|g. It suffices to show

Remark 4.4.10. We can also show that if 7 = 6 (1) X mp) with 7" = nJ is generic, then ¢ = ¢y, @ ¢r,
is not only conjugate-orthogonal but also conjugate-symplectic. Keeping this fact in mind will be helpful
when we verify the Prasad conjecture for GSp, in Section 6C.

Corollary 4.4.11. The pair (GSp,(E)*, GSp,(F)) is not a Gelfand pair.
For a generic representation T of GSp,(E) with w;|px = X%, we may consider the multiplicity
dim Homgsp, (r) (77, XF)

which is equal to dim Homgsp, (r) (77 ® Xgl, C), where g is a character of E* and xr = xg|px. We
will focus on the case xr = wg,r when we verify the Prasad conjecture for GSp, in Section 6C.
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5. The GSp, ; (F)-distinguished representations

5A. Notation.

5B.

e D (resp. Dg) is a quaternion division algebra over F (resp. E) with a standard involution .
o D% is the Jacquet-Langlands lift to D (E) of 7 and 7 P2 W PF is a representation of GSO4o(E).

o 2 (resp. V) is a right skew-Hermitian (resp. left Hermitian) D-vector space with isometry group
U () (resp. U (°0)).

e 4* is the dual D-vector space of il in Resg,p V.
» WRp Y is a symplectic F-vector space.

. GO;O =GL(Dy) x Gm/{(t_l, %)} (resp. GO;,) is the inner form of GO3 3 (resp. GOy, 2,) defined
over F' and Dy is the division F-algebra of degree 4.

e J(s) (resp. I(s)) is the degenerate principal series of GSp, ,(F) (resp. GO;z(F ).
. GSO;0 is the inner form of GSOj3 ; defined over F.

e GOs | =GLy(DE) x G /{71, 1?)} is the pure inner form of GO3 3 defined over E and MP X x is
a representation of GSOs | (E).

B is the minimal parabolic subgroup of GL,(DEg)(E).
* GSp, o= D™ (resp. Sp, ) is the inner form of GL; (resp. SL»).
o P(Yp) (resp. L) is the Siegel parabolic subgroup of GU(Y) (resp. GO§’2(F ).

e R3(1) (resp. R2(1)) is the big theta lift to GSp, ,(F) of the trivial representation of GO3 ((F)
(resp. GO} | (F)) and SR'-/ (1) is the big theta lift to GO} ,(F) from GSp, ;(F).

o 0, (7) (resp. ®, (1)) is the small (resp. big) theta lift to GOs | (E) of T of GSp,(E).
o Ogy s,y () is the big theta lift to GU(Y) of 7 of GU(QY).
o yr is the Weil index and yg (¥ og) € ug for the character of second degree x — ¥ (g (x, x)), where ¢

is a nondegenerate symmetric F'-bilinear form.

Theta lifts for quaternionic unitary groups. In order to study the GSp, ;-distinction problems, we

need to introduce the local theta lift for quaternionic unitary groups, following [Gan and Tantono 2014;
Gurevich and Szpruch 2015; Yamana 2011].

5B

1. Morita equivalence. Let R = Mat; »(E) be the split quaternion algebra over E. Any left Hermitian

(resp. right skew-Hermitian) free R-module (Wg, hg) corresponds to a symplectic (resp. orthogonal)

space (Wg, hg) over E and

dimg Wg =2 -dimg Wg, Aut(Wg, hg) = Aut(Wg, hg).

See [Gurevich and Szpruch 2015, §2.1] for more details.
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5B2. Dual pairs. Let D be the unique nonsplit quaternion algebra over F, with a standard involution .
Then D @ p E = R. There is a D-linear map

tl‘R/DZR—>D

such that trg,p(d) = 2d for d € D. Given a 4-dimensional symplectic space (W, hg) over E, corre-
sponding to a 2-dimensional left Hermitian space (Wg, hg), we set

hp(x,y) =1 tg/p(hr(x,y)) € D

for all x, y € Wg. Then hp is a nondegenerate Hermitian form on U = Resg,p Wx and dimp U = 4.
Given a left Hermitian space (*U, hp) and a right skew-Hermitian space (2, sp), the tensor product
space 20 ® p U admits a symplectic form defined by

(W v, w®V) = g trpr((w, w) - (v, ).
This gives an embedding of F-groups
U) x U(CY) — Sp(W ®p V).

Then we can define the Weil representation wy, on U(20) x U (*0), using the complete polarization
Y=Yp+Y} of V.

Theorem 5.2.1 [Gan and Sun 2017, Theorem 1.2]. The Howe duality conjecture holds for the dual pair
U () x UY).

We can extend it to the similitude group GU(2J) x GU(®J) following Roberts. (See [Gan and Tantono
2014, §31.)

5B3. The see-saw diagram. Let us fix the polarization Wg = Y + Y;g. Then
‘II:ResR/DWR =Yp+ Yl.*)'
Consider the following see-saw diagram:

GU() GOy 2 (E)"

>

GU(Wg)* GO} | (F)

Here GU(Wg)* = GSp,(E)".

Proposition 5.2.2 [Gurevich and Szpruch 2015, Theorem 8.2]. Let T be an irreducible representation of
GSpW»h) = GU(Wg). Assume that 1 is an irreducible representation of GO’f,1 (F). Then

Homgy(w,: (O, (), T) = Homgoy (1) (O7 (7), 7).
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Assume that Vg is a skew-Hermitian free module over R of rank 2, associated to the anisotropic
4-dimensional quadratic space over E given by (Dg, Np,) such that

GU(VR) =GOy, 0(E).

Then Resg/p Vg is a 4-dimensional skew-Hermitian D-vector space with trivial discriminant. There is a
natural embedding

SU(VR) = S04,0(E) — SO5 ,(F) = SU(Resg,p V).

Given a 1-dimensional Hermitian vector space 20| over D, we consider the theta lift from GU(U;) =
GSp, o(F) to GO;Z(F) and the theta lift from GSOy4 ¢(E) to GU(R ®p U1) = GL,(E). Consider the
see-saw diagram

GU(Resg,pV) GL,(E)*
GSO4,0(E)D GSPl,o(F)

which is different from the situation in [Gurevich and Szpruch 2015, Theorem 8.2], since there does not
exist a natural polarization in the symplectic F-vector space V = (Resg,pVg) ® p V.
Assume that V = X @ Y is a polarization. Set the group

Mp(V)y = Sp(V) x C*

with group law

(g1,21)(g2, 22) = (8182, 2122 - 2v (&1, £2)),

where zy(g1, 82) = VF(%‘ﬁ oq(Y, gy v, gIY)) is a 2-cocycle (called Rao cocyle) associated to Y and
q(Y, gz’l\(, g1Y) is the Leray invariant. (See [Kudla 1996, §1.3].)
Suppose that V = X' @ Y’ is another polarization of V. There is an isomorphism

SX) = S8X).

Given ¢ € S(X) and ¢’ € S(X'), due to [Ichino and Prasanna 2016, Lemma 3.3], we have
o= [ wley) - ey
YAY\Y

where x" € X and y’ € Y are given by x'+y =x+y e V.

Lemma 5.2.3 (local Siegel-Weil identity). Assume that 7 is an irreducible discrete series representation
of GL,(E) so that the big theta lift © (1) to GSO4 o(E) is isomorphic to aPe R 7w PE where wPE is the
Jacquet—Langlands lift to D, (E) of . Let ¢ be an irreducible representation of GSp, o(F). Then

dim Homggg, ,(£):(©(0), nPrx nDE) =dim HomGspl_O(F) (m, 0),

where ©(p) is the big theta lift to GO;Z(F) of o.
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Proof. It suffices to show that two splittings of SO4,0(E) x Sp; o(F) in Mp(V) are compatible. Let us fix
two polarizations Resg,p Vg = U@ U* and R®p V1 =X @Y. Then

V=XY=URpV)®UWRpV;) and V=X'@OY =(Dg QR X)D (D QrY).

Choose a fixed element i € Sp(V) such that

X' =hoX and Y =hgY.
By [Ichino and Prasanna 2016, Appendix B.4], there is an isomorphism ¢ : Mp(V)y — Mp(V)y via

(h, 2) = (ao(h), 2),
where ag(h) =h~!-g-hforall h e Sp(V). Moreover,
zy'(hi, hy) = zy(ao(h1), ao(h2)).
Now we fix the splitting iy : O;Z(F) x Spy o(F) = Mp(V)y and
v : SO40(E) X Spy(E) <> Mp(V)y,

where the splitting iv(y, z) = ((y, 2), By (z)) is defined in [Kudla 1994, Theorem 3.1].
We will show that iy (h) = g oiy/(h) for all h = (y, z) € SO4,0(E) X Spy o(F). Consider

S04,0(E) x Spy o(F)—— O3 ,(F) x Spy o(F) —— Mp(V)y

|

S04,0(E) x Spy o(F)—— SO4,0(E) x Sp,(E) SRLEN Mp(V)y/

Set iy (h) = (h, By(h)). Then By(z) =1 for all z € Spy ((F). Similarly, we have
By (y) =1
for all y € SO4 9(E). In order to show that
Bv(h) = By (h)
for all h = (y, z) € SO4,0(E) x Spy o(F), we will show that By (y) =1 = By/(z).
« If y €S04,0(E) CO3,(F) = |_|l.2:0 LVw;* BV, say y € Pw;*V, where P is the Siegel parabolic subgroup
of O;z(F), wo = 14 (the identity matrix in 03,2(F))’

1 1

W] = 11 and w, = 1 ,

1 1
then By (y) = (—1)'. Since w; switches a pair of vectors e; and e} in a basis {ey, e, €/, €}, which
corresponds to an element & € Oy o(E) with determinant —1, where ‘P stabilizes the maximal
isotropic subspace {e1, e»}, it follows that

SO4,0(E) NPw P =2,
ie, By(y) = 1.
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e If z € Sp; o(F) and s0 z = g € SLo(E), then By () = yr (x(2), 1) - yr (39 o Np,)* = 1, where

20 . .
x(g) _ NE/F(a21) (mod FXZ) lfg = (Z;: ZZ) with ani 7& Oa
NEg/r(ax) (mod F*7)  otherwise.

Therefore we have finished the proof. ]

Remark 5.2.4. From the proof above, we can see that the see-saw identity does not hold if one replaces
SO4,0(E) by O4,9(E) in this case.

Let V be a free R-module of rank 2 corresponding to the quadratic space IH]% by the Morita equivalence.
Then Resg,pV is a skew-Hermitian D-vector space of dimension 4.

Lemma 5.2.5. Let X be an irreducible representation of GO, 2(E). Let o be an irreducible representation
of GSp, ;(F) for j =0or 1. Then

dim Homgo, (£ (©(0), £) = dim Homgsp, ,#)(©O14,(Z -v'*/), ),
where v is the nontrivial character of GO, 3(E)/GSO22(E) and vo,, k) = det.

Proof. Consider the see-saw diagram

GO3 ,(F) GSpy49, (E)*
GO22(E) GSp, ;(F)

Assume that 20 = Resg,p V. Let us fix the polarization 20 = 4 + {* and |]-|]2E =Y +Y*, where Y* is the
dual space of Y. Let U be a Hermitian D-vector space with isometric group GSp; ;(F). Then there exists
a natural polarization

WRpV=URp V+U" ®@p Y.

Similarly, I]-I]% QEWi4+j =Y Qe Wiy +Y*® Wiy j, where W, is the symplectic vector space over E of
dimension 2r. Set Y =* ® p U and Y’ = Y* @ g W)+ ;. Then we have the splitting iy and iy defined in
[Kudla 1994, Theorem 3.1]. For instance, iv/(y, z) = ((y, 2), By’ (y)) for (¥, 2) € O 2(E) X Sp2+2j (E) and

iv(y,2) = ((y, 2, Bv(y)) € Mp(W ®p V)v
for y € O;z(F) and z € Splﬁj(F). Note that By/(y) =1 for y € O 2(E) and
Pv(y) = (=D
if y € PP, where O3 ,(F) = U; PP and P is the Siegel parabolic subgroup of 03 ,(F). Thus

By (h) = By (h) - (W(h))' ™
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for h € Oy 2(E). Hence

dim Homgo, ,(£):(© (), £) = dim Homgo, , (g):xGsp, ,(F) (@y.v. T ® 0)
=dim HomGOz,z(E)uxGSplvj(F) (a)w’y/, Y- 1)1+/- ® Q)

= dim Homgsp, . (7)(®14;(% - vy, 0),

where wy, v (resp. wy y) is the Weil representation on Mp(20 ® p U) emphasizing the splitting Y + Y*
(resp. Y’ + Y'®). This finishes the proof. O

5B4. Degenerate principal series. Let us fix the complete polarization
BV=Yp+7Y}.

Suppose dimp U = 4. Assume that J(s) is the degenerate principal series of GU(U) = GSp, ,(F)
associated to a Siegel parabolic subgroup P(Yp), i.e.,

3) = {f :GUD) — C| f(pg) = bpry) (/2D f(g) forall p € P(Yp), g € GUWW)},
where 8p(y,,) is the modular character. Similar to Proposition 4.3.1, we have

Lemma 5.2.6. Assume that R3(1) is the big theta lift to GU(D) of the trivial representation of GO;O(F ).

Then there is an exact sequence

0—— R 3(3) R2(1) —— 0,
where R%(1) is the big theta lift to GU(D) of the trivial representation ofGOT’1 (F).

Proof. By [Yamana 2011, Theorem 1.4], we may give a similar proof as in Proposition 4.3.1. So we omit
it here. (]

5BS. Double cosets. Assume that P(Yp) is the Siegel parabolic subgroup of GU(U) = GSp, ,(F). Then
the homogeneous space Xp = P(Yp)\GSp, ,(F) corresponds to the set of maximal isotropic subspaces
in 2. We consider the double coset X p/GU(Wg)* = X p/GSp,(E)?, similar to Lemma 4.3.3.

Proposition 5.2.7. In the double cosets X p/GSp,(E)®, there are
e one closed orbit with stabilizer P(Yp) N GSp4(E)”,
e one open orbit with stabilizer GU(D)(F) = GSp, 1(F) C GSp4(E)u and

« one intermediate orbit with a representative

L:Dr(«/ge+f)+D(e—%f> € Xp,

which is a nonfree R-module with stabilizer (GL1(E) x GSpy ((F))- N, N = E & D, where r =

(ég)zrzeRandWR=Re+Rf with hg(e, f) = 1.
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Lemma 5.2.8. Let T be an irreducible representation of GU(Wg)" = GSp4(E)u and GSp4(E)u —
GSp, ,(F) be a natural embedding. Then

dim HomGsp4(E)t(’J(%), 7) > dim Homgsp, ,(r)(z", C).

Proof. Note that there are three orbits for P(Yp)\GSp, ,(F) /GSp4(E)”. There is a filtration for
3(%) |GSp4(E)h as follows:

. GSpy(E)’ - ~ - ~
desgi(f}v) C=3(3) CTi(3) C(z) = J(%)|GSp4(E)t’

~ ~ ~ «_ 1GSpy(E)? 1/2 ~ ~ ~ . 4GSpy(E) 3/5 o—1/2
where Jz(%)/Jl(%):mdmp“ SP/J and Jl(%)/Jo(%):mde,“ (SP/(YD)(S3 /,where

M Z=GL|(E)xGSp, o(F), N=D®E and 8t x)=|Ng/r@®)* ra(x)*F

for (¢, d) € M. There exists an involution on GSp, , (F) such that the fixed points coincides with GSp,(E )4,
Applying [Olafsson 1987, Theorem 2.5; Gourevitch et al. 2019, Proposition 4.9], we obtain the inequality

dim Homggp, () (3(%), ‘L’) > dim Homggp, (£): (30(%), 1:) = dim Homgsp, ,(r) (7", ©).
This finishes the proof. O

5C. The distinction problem for GSp, ;. Let GUx(D) = GSp, ; be the inner form of GSp, defined over
F, whose E-points coincide with GSp,(E). Assume that v € Irr(GSp,(E)) with w;|rx = 1. In this
subsection, we will study the multiplicity

dim HomGSp]', (1, 0).
Theorem 5.3.1. Let t be an irreducible representation of GSp4(E) such that 1y, is generic.

(1) If Tt = 0(m W my) is a nongeneric tempered representation of GSp,(E), where w1 X m, is an
irreducible smooth representation of GSO4,0(E), then dim HOTUGSpu( r)(t, C) = 1 if and only if one
of the following holds:

o m Z o but w) =7y
e 1 = 1y are both (D*(F), wg r)-distinguished.

(1) If t =0(m Kmy) =0y X my) is generic, then

2 fm=m=n(x"",x",

if m1 = my are square-integrable and D> (F)-distinguished,
dim HOITIGSPH(F)('L', C) = if w1 is D> (F)-distinguished and 7, = 7,
if 1 # 1y are both D* (F)-distinguished,

otherwise.

O N = =

Here my = mw(x1, x2) with x1 # X2, X1lFx = x21px = 1. Note that these conditions are mutually

exclusive.
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(iii) Assume that T is not as in case (i) or (ii), so that T = 0(I1P X x) is generic, where TIP X x is an
irreducible representation of GSOs 1 (E). Then dim Homgsp, ,(r) (7, C) = 1 if and only if one of the
following holds:

e ¢ is irreducible and conjugate-orthogonal or

o =y +dpu with p® = p¥u,

where T1 = JL(ITP) is the Jacquet—Langlands lift to GL4(E) of T1P.
Proof. The proof is very similar to the proof of Theorem 4.4.9.

(i) Assume that Vg is a skew-Hermitian free module over R of rank 2, corresponding to Dg by the
Morita equivalence. Then Resg,/p Vi is a 4-dimensional skew-Hermitian vector space over D with trivial
discriminant. Fix a polarization Resg,pV = U ® U* Consider the diagram

GSpy(E)" GO;3 ,(F) GLy(E)*

> | > |

GSp, | (F) GOy 0(E)" GSp, o(F)

There is an exact sequence of GO; ,(F)-representations

0 —— RL(1) 1(3) R01) —0,

where [ (s) is the degenerate principal series of GO;Z(F ) and PR/ (1) is the theta lift to GO;Z(F ) the
trivial representation of GSp; j(F ). Set T = ©,(X), where

GO40(E .
- Indngf_f)(Z-)(m X)) if m 2o,

(i Xa)™ if T = my.
Note that GO4,9(E) is an anisotropic group. Using the contravariant exact functor
Homgo, (gy: (—, %),
we obtain a short exact sequence
0 — Homgo, ,(gy:(R"0(1), £) = Homgo, ,(x): (1 (3), =) = Homgo, oz (R (1), ) — 0.
Applying Lemma 5.2.5, we have
0 — Homgsp, ,(7)(©1(Z ® v), C) = Homgo, o5y (1(5). £) = Homgsp, (7, C) = 0, (5-1)
where ©1(X ®v) is the big theta lift to GL,(E) of ¥ ®v. There are no F -rational points on the nonidentity
connected component of GO , (see [Meeglin et al. 1987, pp. 21-22]), so that
GO} ,(F) =GS0} ,(F) = Q- GOy (E)",

where 9 is the Siegel parabolic subgroup of GO3 ,(F). Then

. 1GO40(E)*
HomGO4_0(E)D (1(%), E) = HomG04,0(E)t(lndG0§.EEF; C, E) = HOl'nGOZO(F)(E, (]:) (5-2)



The Prasad conjectures for GSp, and PGSp, 2457

Here GSOj ,(F) sits in the exact sequence

i

1 EX D} (E) x F* ——— GSO} o(F) — 1

] |

| —— EX —— DX(E) X D} (E) — GSOy4(E) — 1

where i(e) = (e, NE/p(e)_l) and the embedding GSO?O(F) < GSO4(E) is given by
(x, 1) > (x,1-x7)

for x € D(E) and t € F*. The o-action on Dz (E) is induced from the isomorphism Dg(E) =
Dp(E)®g (E, 0). There are two subcases:

o If 11 22 my, then y X, does not participate in theta correspondence with GL,(E). The short exact
sequence (5-1) implies that

dim Homgsy, ,(r) (7, C) = dim Homgg, ,(g): (1(%), E) =dim HomGSOZO(F)(m X, C). (5-3)
Hence one can get
dim Homgsy, ,(r) (7, C) = dim Hom yx ) (70", 7)),
where 77 = JL™1(JL(71)%).
e If 7; = m,, then the short exact sequence (5-1) implies that
dim Homgsp, , (r)(7, C) = dimHomgo, ,(£): (1(%), Z) = dim HomGO;O(F)(E, (5]
because ®; (X ® v) = 0. Note that
dim HomGSO;O(F) (7'[1 X n, C) =dim Homgozo(p) (2, C) + dim HomGo;O(F) (2 Rv, (C)

In a similar way, dim Homgos () (2 ® v, C) = dimHomgsp, ((r)(JL (1), C). Therefore, if JL (1)
is D* (F)-distinguished, then 7 = 7r," and so

dim Homgsos ,(r) (71 K771, CO=1= dim Homgos ((r) (2 Q@ v, C).

Then dim Homgsp, , (r) (7, C) =dim Homgos () (2, C) =0if JL(7ry) is D™ (F)-distinguished. Also,
7 is GSpy | (F)-distinguished if and only if JL(r1)" = JL(7r1)° which is not D* (F)-distinguished.
Thus 7 is GSp, ; (F)-distinguished if and only if JL(ry) is (D*(F), wg,F)-distinguished, in which

case ¢, is conjugate-symplectic.
(Similarly, one can show that
dim Homgsp, | (F) (T, wg/F) = dimHomDE(E)(nzv, 77) —dimHompx 7y (01 (X ®v), WE/F)-

Here we use the fact

wg/F o Aylgos ) = 1.
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Hence dim Homgsp, , (F) (t, wg/r) =1if and only if either JL (7r1) = JL (7r2) are both D* (F')-distinguished
or w1 2 1, but 7 = 7§ . It will be useful when we verify the Prasad conjecture for PGSp, in Section 7.)
(ii)) We will use a similar argument. Assume that V corresponds to [H]2E by the Morita equivalence. By

the conversation relation, we have 6, () = 0. Via the see-saw diagrams

GOs 1 (E)" GSp, 5 (F) GOy,2(E)"

> | >

GOj3 o(F) GSp4(E)" GOJ | (F)

applying Lemma 5.2.6 and Proposition 5.2.2, we have
dim Homggp, () (3(%), 1:) = dim Homggp, (g): (R2(1), 7) = dim HOIHGOT’I(F)(®I (1), 0),
where J(s) is the degenerate principal series of GSp, ,(F). Due to Lemma 5.2.8,
dim Homgsp, , (7 (7, C) < dim Homgsy, (2 (3(3), T) = dim Homgo () (O] (), C).
We want to get the reverse inequality. Consider the diagrams

GSpy(E)* GO;3 ,(F) GL,(E)*

> | > |

GSp, | (F) GO, (E)" GSp, o(F)

There is an exact sequence of GO3 ,(F)-representations
0 —— RO —— I(-1) — RAD) —— 0.

Note that dim HomGOz‘z(E)t(SRLO(l), ¥) =dim Homgsp, () (©1(X Q@ v), C) = 0. Thanks to [Olafsson
1987, Theorem 2.5; Gourevitch et al. 2019, Proposition 4.9], we have
dim Homgsp, ,(r)(z, ) = dim Homgo, ,(z):(R"' (1), 2)

= dim Homgo, ,g): (1 (—3). T)

GO3,2(E)*

GO}, (F) C. %)

> dim HOInGOzvz(E)t (lnd

=dim HOII]G()T’ L (F) (Z s C) .

Therefore dim HomGSpu( (7, C) =dim Homgo: ( F)(G)I(r), C) unless @I(r) is reducible. There is no
F-rational points on the nonidentity connected component of GOY |, so that

GO} |(F) = GSO} | (F).

There are two cases: 1 Z 7 and 71 = 75.
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Assume that 71 2 ,. Since
GO7 | (F) =GSO7 | (F) =GLy(F) x D*(F)/{(t, ™Yt e FXY,
for 1 # m, one can obtain that ®j{(r) = Indggéz(é%)z()fg)(nl X ) and
Homgo; (r) (2, €) = Homgoy; () (11 W72, €) @ Homgo: | () (12 K71, ©). (5-4)
There are two subcases:
o If 7; (i =1, 2) are both D* (F)-distinguished, then (5-4) implies that
dim HomGSpM(F)(t, C) = dim HomGO»f'](F)(Z, C)=2.

o If m; is D*(F)-distinguished and 7w, = w(x1, x2) With x1 # x2, x1lFx = x2lpx = 1, then 7, is
GL, (F)-distinguished but not D> (F)-distinguished (see Lemma 4.4.5). So (5-4) implies that

dim Homgspl‘l(p)(‘[, C) =1.

If 7, = m, are both square-integrable representations, then
1 if my is D*(F)-distinguished,
Homgo: | (r) (2, C) = Homgsor  (r) (11 W71, €) = : ¢
: : 0 otherwise.

Ifm=m=n(x"", x°), then ®I(t) is reducible. We will show that T = Ip(z)(1, 1) does not occur
on the boundary of TJ(%) and hence that

dim Homgsp, , (r) (7, C) = dimHomgo: | (r) (O (1), 0).

There is a filtration

. GSpy(E)" ~ ~ ~ ~
deSgT (7 ©=T0(s) CT1(s) CTa(s) =T(S)|Gsp,(E):
0
of 3(5)|gsp,ky: such that Jo(s)/F1 (s) = ind 5P 8507 and

~ ~ . GSpy(E)" o(1/2)+(s/5) g—1/2
31(5)/To(s) = indpy* ™ 85T 712,

where 83(7, x) = |Ng/r ()*A(d)~*|F for (1, x) € M = GL{(E) x GSp, (F). If
Homgsy, &y (31(3)/30(3). ) #0,

then
Homgy, (g)(I—1£, Rp,(Igz)(1, 1)) # 0,

which is impossible, where P” = (GL;(E) x GLy(E)?) x N is a parabolic subgroup of GSp,(E)" and R,

denotes the Jacquet functor associate to the parabolic opposite to P”. So

~ (1Y /~ (1
Homgsp, z):(31(3)/%0(3), 7) =0.
It is quite straightforward to see that

. GSp,(E)" .1/2
Homgsp, () (indpe ™ * 812, 1121, 1)) = 0

by applying the Jacquet functor. Hence 7 = Ig(z)(1, 1) does not occur on the boundary of 3(%)
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The big theta lift to GSO, 2 (E) of t = Ig(z)(1, 1) of GSpy(E) is
From the see-saw pairs diagram

GSOs 1 (E)" GSp,,(F) GSO, »(E)"

| > >

GO3 o(F) GSp4(E)" GO7 ,(F)

one can use the fact 6, (t) = 0 to obtain that
dim Homgsp, , () (7, €) = dim Homgsor: () (Extgso, , () (11 By, 71 K1), €) = 2.

(iii) Assume that 92’ () = 0. Note that 0 — R2(1) — 3(—%) — M3(1) — 0 is exact. Then we can use

the same method appearing in (ii) to show that
dim HOm(_‘,o;‘O(F) (@; (‘L’), C) =dim HOmGSp4(E)t (%3(1), 'E)
=dim Homgg,, () (’J(—%), ‘L') > dim Homgsp, | (r) (7, C).
We will show that 7 does not occur on the boundary of J (—%) in this case. Then

dimHomGSm(E)n (3(—%) 7:) < dim HomGsp4(E)q (’JO(—%), ‘E) =dim HomGspu(F)(T, 0
and so
dim HomGSpL](F)(fv G:) =dim HOIIlGSp4(E)J (j(—%), ‘L').

In order to show that T does not occur on the boundary of 3(—%), we separate them into two cases.

o If T =1Ipz)(x, ) with x # 1, then

~ 1\ /~ 1 - 1GSpy(E)* (1/6
HomGSp4(E)1(JZ(_E)/JI(_E)’ ‘L’) = HOl’l’IGsz‘(E)tl(IIldPJ 4 8P/t , ‘L') =0.

If Homgs,, (5y: (31 (—1)/Jo(—3). ) #0, then Homg, (£)(1. Rp()) # 0 which is impossible since
Rp/(1)=xQn ® x '®@myx and x # 1, where P” = (GL{(E) x GLy(E)") x N.

o If 7 is square-integrable, then Homgy, (£)(1, Rp, (7)) = O due to the Casselman criterion in [Cas-
selman and Mili¢i¢ 1982] for a discrete series representation that Homgy, (g)(|—|%, R/ (7)) #0
implies that s < 0. Hence Homgsy, (:(31(—3)/Jo(—3). T) = 0. In a similar way,

Homgsp, gy (32(—3)/31(—1). 7) = HomaL, ey > (8, Rp: (1)) = 0.

Hence t does not occur on the boundary of 3(— %) Moreover, if T # 1oz (|—|E, p), then ©5 (7) = MMPXy

is irreducible. Then there exists an identity
dim Homgsp, , () (7, €) = dim Homgoy (TP K x, C) = dim HomD;(F)(HD, 0),

where D; is the division algebra over F of degree 4.



The Prasad conjectures for GSp, and PGSp, 2461

o If IT = JL(ITP) is a square-integrable representation of GL4(E), then [Beuzart-Plessis 2018,
Theorem 1] and Theorem 4.4.4 imply that
: ) 1 if ¢ is conjugate-symplectic,
D
dim Homg, () (I1, wg F) = d1mH0mD4x(F)(l'[ ,WE/F) = {0 otherwise.
Thus dim Hom D (F) (P, C) =1 if and only if ¢y is conjugate-orthogonal.
o If ITP is an induced representation 7 (pp, (pp)" ® ) with u # w,,, then we use the orbit decom-
position Bj\GL,(Dg)(E)/GL1(D4)(F) and Mackey theory to get that
dimHomDI(F)(HD, C) = dimHomDE(E)(,og ® pph -, C) = dimHomDE(E)(pg, op- i hH
1 if pf = ppu~,
0 otherwise.

(5-5)

In this case, p° = pu~! where p = JL(pp) is the Jacquet—Langlands lift to GL,(E) and ¢ =
b, @ ¢; - 1, which is conjugate-orthogonal due to Theorem 4.4.4.

o If TP = Sp(pD|—|2/2) is a generalized Speh representation and T = Ig(z)(|—|£, p), then
Lif p7 = pVI=I5,

dim H , ©) = dim Homgos (1) (®; (7), ©) =
im Homgsp, ) (7, ©) = dim Homgos ) (9 (7). ©) {O otherwise. O

6. The Prasad conjecture for GSp,

6A. The Prasad conjecture. In this subsection, we give a brief introduction to the Prasad conjecture
[2015, Conjecture 2]. One may refer to [Prasad 2015, §13] for more details.

Let G be a quasisplit reductive group defined over a local field F with characteristic zero. Let W be the
Weil group of F and WD be the Weil-Deligne group of F. Let E be a quadratic extension over F. A qua-
dratic character x¢ is introduced in [Prasad 2015, §8] and another quasisplit reductive group G°7 defined
over F isintroduced in [Prasad 2015, §7]. Then there is a relation between the fibers of the base change map

® : Hom(WDpF, LGPy - Hom(WDg, L GP)

from the Galois side and the xg-distinction problems for G(E)/G(F) from the automorphic side.

More precisely, assume the Langlands—Vogan conjecture in [Vogan 1993]. Given an irreducible
representation 7 of G (E) with an enhanced L-parameter (¢, ), where A is an irreducible representation
of the component group mo(Z(¢,)) and the L-packet Iy is generic, we have

Y dimHomg, () (. x6) = )_m(h. §) deg ®(@:)/do().
where “ !
e o € H'(Wp, G) runs over all pure inner forms of G satisfying G (E) = G(E);
. qg,- € Hom(WDF, L G°P) runs over all parameters of Lgor satisfying q;,- lwpy = P
o m(, $) = dim Homﬂo(z@)(l, A) is the multiplicity of the trivial representation contained in the
restricted representation A, 7))
» do(¢) = |Coker({mo(Z($)) — mo(Z () P/ P},
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Remark 6.1.1. If H'(F, G) is trivial such as G = GSp,,,, then the automorphic side contains only one

term. The Prasad conjecture gives a precise formula for the multiplicity
dim Homg (7, x¢).

Remark 6.1.2. There exists a counterexample even for GL, when Iy is not generic. Let G = GL,,
X6 = wg,r and m = 1 be the trivial representation. Then the automorphic side is zero however the Galois

side is nonzero.

Remark 6.1.3. If ¢ comes from a square-integrable representation, then deg ®(¢) = 1. The reason, due
to Prasad, is that ¢ represents a singleton in Hom(WDg, L GP).

If 7 is square-integrable, then we have a refined version, i.e., the formula for each dimension
dim Homg, (r) (7, xG).
Let Z(G°) be the center of the dual group G°P. There is a perfect pairing
HY(Gal(E/F), Z(G®)"*) x H'(Gal(E/F), G(E)) — Q/Z
for Prasad’s studies [2015, §11] of the character twists. Set Qg (E) = Hl(Gal(E/F), Z(@”P)WE). Given
a parameter q~> e HY(Wg, Gor ), we consider the stabilizer Qg(qg, E) C Qg (E) under the pairing

H'(Wr, Z(G?)) x H'(Wg, G) — H'(Wr, G).
Set N
AG($) C H'(Gal(E/F), G(E)) = Qg (E)’
to be the annihilator of the stabilizer g (¢, E). Then there is another perfect pairing
Q6(E)/Q6(9, E) x Ag($) — Q/Z,

meaning that in the orbit Qg (E)/ Qg((j;, E) of character twists of qNS (which go to a particular parameter
under the base change to E) there are exactly as many parameters as there are certain pure inner forms
of G over F which trivialize after base change to E.
Consider
F(¢x) ={¢: WDp — "G | plwp, = ¢z} = LU[_,O($).
Each orbit (9((/5,-) of Qg (E)-actionon F (¢, ) is associated to a coset C; of Ag ((/5,-) in H (Gal(E/F), G(E))
defining a set of certain pure inner forms G, of G over F such that G, (E) = G(E). Then

dim Homg,,, (7, 06) = Y _ m(., §i) - 1¢,(Ga) /do (),
i=1
where

o 1, is the characteristic function of the coset C;;

« m(X, $) is the multiplicity for the trivial representation contained in the restricted representation

Alﬂo(z(@), which may be zero;

e do(¢) = | Coker{mo(Z(p)) — 7o(Z () SHE/PY.
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6B. The Prasad conjecture for GL,. Before we give the proof of Theorem 1.2, let us recall the Prasad
conjecture for G = GLy = GSp,. Set G = GL,. Then xg = wg/r and G? =U(2, E/F) is the quasisplit
unitary group, where E is a quadratic field extension over a p-adic field F. Denote

LG = GLy(C) (o),
where o-action on GL,(C) is given by
o(g) = wo(g) ' =g -det(g)”",

wy = (_1 1) and g € GL,(C), g’ denotes its transpose matrix. Given an irreducible representation 7 of
GL,(E) with ¢ = ¢, irreducible (for simplicity), there is no other pure inner form for GL,. Then

dim Homgy,r) (7w, wg/r) = |F(P)],

where F(¢) = {(5 :WDp — LGP | ‘IS|WDE = ¢} and | F(¢)| denotes its cardinality.
Proposition 6.2.1. The following statements are equivalent:

(1) dimHomgy,r) (7, wg/r) = 1.

(i1) The Langlands parameter ¢ is conjugate-symplectic.
(iii) There is only one extension (13 € F(¢).
Proof. We only prove the direction (ii)=>(iii) and the rest follows from Flicker’s results [1991]. If ¢ is
conjugate-symplectic, then

¢ =9 = (detp) ™,
where s € Wr \ Wg is fixed. There exists A € GL,(C) such that
¢(sts™) =¢ () = A-p(D) det(@(1)) " - A7

for all t € WDpE. Set
ps)=A-c

and ¢(1) = ¢ (¢) for t € WDg. Then
P(sts™) =p(s)-p(t) - (s)"

and qz(sz) = ¢(s2) = (<;~5(s))2 due to the sign of ¢. More precisely, assuming that (—, —) is the WDg-
equivariant bilinear form associated to ¢ : WDg — GSp(V, (—, —)), we define

B:VxV—->C
by B(vy, v2) = (v1, Aflvz) for vy, v € V. Then
B(§(1)v1, ¢* (v2) = ($(v1, ¢ (DA™ v2) = B(vi, v2)
and so B gives a conjugate-self-dual bilinear form on V. By Schur’s lemma, B has sign —1, i.e.,

B(vi, ¢ (s)v2) = —B(v2, v1)
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for all vy, v € V. Thus B(Avy, ¢ (s>)v2) = —B(v2, Avy), i.e.,
(Avi, A7 p(sH)v2) = —(v2, A7 Avi) = (vi, v2)

for all v; € V. Then det(A) - A 2¢(s?) = 1, i.e., p(s2) = A - det(A) "' A = (¢(s))2.
Therefore ¢ € F (o). If there are two extensions ¢; with A; € GL,(C) such that ¢ lwp, = ¢, then
AlAz_1 € Z(¢) = C* by Schur’s lemma, so that ¢; = ¢». O

Remark 6.2.2. This method will appear again when we study the Prasad conjecture for G = GSp, in
Section 6C1 The key idea is to choose a proper element A such that the lift

é:WDr — LG,
satisfies ¢(s) = A - o and (,z~S|WDE = ¢.
6C. The Prasad conjecture for GSp,. The aim of this subsection is to verify the Prasad conjecture

for GSp,. Now we consider the generic representation T = 6(ITX x) of GSp,(E), with ¢ conjugate-
symplectic and x|rx = 1. Note that the Langlands parameter ¢pj is equal to i o ¢,, where

i : GSp,(C) — GL4(C)

is the embedding between L-groups. Furthermore, x is the similitude character of ¢,. If ¢y is
conjugate-symplectic (resp. conjugate-orthogonal), we say that ¢, is conjugate-symplectic (resp. conjugate-
orthogonal). There are two cases: ¢rq is irreducible and ¢pg is reducible.

Lemma 6.3.1. Assume that v =0(I1X x) is a generic representation of GSp,(E) and w.|px = 1. Then t
is (GSp4(F), wg,F)-distinguished if and only if ¢y is conjugate-symplectic.
Proof. Due to Theorem 4.4.9, the following are equivalent:

7 is GSp, (F)-distinguished.

e IT is GL4(F)-distinguished.

 ¢p is conjugate-orthogonal.

Fix a character xg of E™ such that xg|rx = wg/r. Then 7 is (GSp4(F'), wg,r)-distinguished if and only
if T ® xg o Aw is GSp,(F)-distinguished, which is equivalent to that ¢; ® xg is conjugate-orthogonal.
Note that )(El is conjugate-symplectic. Hence t is (GSpy(F), wg,r)-distinguished if and only if ¢y is
conjugate-symplectic. O

Recall that if G = GSp,,,, then xg = wg,r and
GOP(F) = {g € GSPZ;z(E)la(g) = G(g)},

where 0(g) = )\W(g)_1 g is the involution. Note that the o -actions on GSp,(E) and GSp,(C) are totally
different. (We hope that this will not confuse the reader.) Observe that H!(Gal(E/F), Z(@"p YWey =1,
which corresponds to the fact that the pure inner form of GSp,,, is trivial.
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According to Theorem 4.4.9, we will divide the proof of Theorem 1.2 into four parts:

i o ¢ is irreducible;

iopp, =p®pv withv #1;

the endoscopic case i o ¢ = ¢, D ¢z, and T is generic;
e i o = ¢r, ® ¢, and T is nongeneric.
See Section 6C1-Section 6C4.

6C1. The irreducible L-parameter ¢.. Given a conjugate-symplectic L-parameter ¢ = ¢, which is
irreducible, we want to extend ¢ to

¢:WDr — LGy =GSp,(C) x (o),

where o acts on GSp,(C) by
o(g) =g-sim(g)~".

Let s € Wr \ Wg. The parameter ¢ is conjugate-symplectic, so that ¢¥ = ¢* and ¢ = ¢ x ~!. Hence
there exists an element A € GSp,(C) such that

psts =g ) =A-¢p)x (1) - A (6-1)

for all t € WDg. Set _ _
¢(s)=A-0 and @) =¢()

for t € WDg. Then ¢ (sts™') = Ap (1) x "L () A" = ¢(s) - ¢ (¢) - d(s)~ L. Moreover, we will show that
$(s7) = ¢ (s*) = ()",
Then (/5 € Hom(WDy, L Gg) and &lWDE =¢.
Assume that (—, —) is the WDg-equivariant bilinear form associated to

Set
B(v, w) = (v, A" w)

for v, w € V. Then (6-1) implies that
B(¢(t)v, ¢(sts~Hw) = (p()v, p()x (A w) = x (1) - (v, x "' (DA™ ' w) = B(v, w).
Thus B is a conjugate-self-dual bilinear form on ¢ and hence it has sign —1 by Schur’s lemma, i.e.,
—B(w, v) = B(v, ¢ (sHw).
Therefore we have
(v, w) = —(w, v) = —=B(w, Av) = B(Av, ¢(s*)w)
= (Av, A" ¢ (sDHw) = (v, sim(A)A 2 (s> w)
and so ¢ (s2) = A -sim(A) "' A = (¢(s))2.
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Proposition 6.3.2. Assume that T =60 (I1X x) with ¢ irreducible. Then there exists at most one extension
q~5 : WDr — LGg such that ()£|WDE = ¢-.

Proof. If there are two extensions ¢~S,~ (i =1, 2) such that &i (s) =A;-o with A; € GSp,(C) and
Gi(sts™) = i (s) - ¢ (1) - pi ()™
forallt € WDg, then A Agl commutes with ¢;. So A Agl is a scalar by Schur’s lemma. Thus b=y O

Hence, if 7 = 6(I1X x) with ¢ irreducible and conjugate-symplectic, then there is one extension

$ € F(g,) and
dim Homgsp, (r) (T, wg/F) = 1.

If ¢ = ¢, is conjugate-symplectic and reducible, then there are several cases.

6C2. ¢, = p+ pv withv # 1 and p irreducible. If ¢r1 = p + pv with p irreducible and y = v -detp
conjugate-orthogonal, then x x* = 1. Thanks to Theorem 4.4.4, there are two subcases:
» p and pv are both conjugate-symplectic or
« pf=pVv L.
(i) If p and pv are both conjugate-symplectic, then v is conjugate-orthogonal and there exist
pi : WDp — GL,(C) x (o)

such that p1|wp, = p, P2lwp, = pv and p;(s) = A; - o for A; € GL,(C) due to Proposition 6.2.1. Note
that p is irreducible. Then given t € WDg,

B OV (1) = 5(1) = Ao (p(H)v(1)) (A20) ™" = Azp¥ (AT -v(1)

andso A; -0 - ,o(t)a_lAl_1 = A2,<)V(t)A2_1 (since vv* = 1) which implies A1A2_1 e C*. Set

H(s) = (A1 A1>.o— € GSp,(C) x (o) and (1) = (p(’) p(t)v(t)>

for t € WDg. Then q~> € F(¢) is the unique extension of ¢;.
(i) If p* = pVv~!, there exists an A € GL,(C) such that
P (Ov(0) = (detp(0) ™' - Ap()A™
for t € WDg. Then
det p* -detp - 1> =1,
which implies that v = v*. Observe that
0% (sts Hv(sts™) = (det p(sts™)) ' Ap(stsTHAT!
=detp* () "A-v(@) detp(t) 'Ap()AT! - A7
=v(@) Mdetp®(t) " det p(t) ' AZp (1) A2,



The Prasad conjectures for GSp, and PGSp, 2467

Then p(s?)p(1)p(s?)~" = A%p(t) A~? since the character v det p is conjugate-orthogonal. Note that p is
irreducible. Then A~2p(s?) is a scalar. Choose a proper A such that A=2p(s?) = 1. Set

- (A 7o _ (PO
¢(S)_( A.det(A—l))"’ and ‘Z’U)_( p(t)v(t))

for t € WDg. Then

= =1 (A p () o (AT

() ¢1)- 9(5) _< A-det(A)—1>'“'( p(v)u(r))'(“ ( A—ldet(A)»
_ (4 pY (v~ ot (AT
- A -det(A)~! PV (1) A~ det(A)

ApY (H)v(t) 1A~ ) B (pS(,) ) _ % )
( ApY (A T p* (v (1) =0 ©2)

and (<;~5(s))2 = ¢(s?). Thus é is @ homomorphism from WDF to LGy and &lWDE = ¢.

Remark 6.3.3. The key point here is to find a proper element ¢~>(s) such that qNS e Hom(WDp, L Gg). Hence
we always need to check the following two conditions: &5 (1) = d(s) - p (1) - p(s)" and (@ (s))% = ¢ (12).
Following the definition, the computation like (6-2) is quite straightforward and we may skip it sometimes.

6C3. Endoscopic case. If ¢, = p; + p> is the endoscopic case, then det p; = det p, are both conjugate-
orthogonal. There are several subcases. Assume that = 6 (71 X m2) is generic, p; = ¢, (i =1, 2) and

Po = X1+ x2, with x1 # x2 and x1|rx = x2|px = wg,r. There are also 2 cases: p1 # p> and p; = p>.
Assume that p; # p>. Then

(i) If p; and p, are both conjugate-symplectic and p; % po (i = 1,2), so that both 77; and 7, are
(D*(F), wg,F)-distinguished due to Lemma 4.4.5, then

dim Homgsp, (r) (T, wg/F) = 2.

Thanks to Proposition 6.2.1, there exist p; and p, of U(2, E/F) such that p;|wp, = p;. (Here we need to
choose A; properly such that det A} =det A, if p;(s) = A;-0.)
If p; and p, are both irreducible, then every lift of ¢ should be of the form

A1p1(s)
> ( . (S)) € GSp,(C) x (o)

with )L% = )%. It is known that q~§ = WE/F ¢Z as parameters of LG since

ori=( )il )"

Thus there are two lifts q~§1 = p1 + 02 and (/52 = p1wE/F + p2 such that qS,- lwp, = ¢.
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If py = x '+ x*, then the centralizer ZgL, ) (p1) is C* x C* or GL,(C). Moreover,

- 1
pi(s) = ( X(Sz)) ‘0.

In this case, p1 + 02 # p1wE/F + p2, which will be a different story if p; = po.

(i) If p; = po and ps is conjugate-symplectic, then 5y (s) = (' _,)-o. Because

(7 5)=COC )

where a = ( 1), we have qsl = q}z.

-1

(i) If ,01v = p3, then there exists an A € SL,(C) such that
A7 o) (DA = p3(1)
for t € WDg. Set

. 2
(s) = (A—l Apa(s )) 0 €Spy(C) xo.

Then ¢(sts™') = ¢(s) - d(t) - p(s~ ') and

e A,Oz(S2)>2 _ (Apz(szml ) _ <pf(s2) ) _ 2
0P =4 - pris?)) = pis)) P

The last equality holds because det p; is conjugate-orthogonal and so det p; (s?) = 1.
Now we assume p; = pp. According to p;, we still separate it into 3 cases in a similar way.

(i) If p; is conjugate-symplectic but p; # pg, then q~51 = p1 + o1 and ¢~>2 = p1 + p1wg/F, where pj :
WDF — GL,(C) x (o) satisfies p1|wp, = p1.

@ii) If p; = po, there is only one lift = p1+pi.

(iii) If p; is not conjugate-symplectic but conjugate-orthogonal, set

~ —A

o(s) = (A ) -0 € GSp,(C) x (o)
where A € GL,(C) satisfies A,olv(z‘)A_1 = pj (). Let us verify

P (s?) = ¢(s7) = B(s)%,

ie., —A%det(A)~' = pi(s?).
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» Suppose that p; is irreducible. Let (—, —) be the WDg-equivariant bilinear form associated to
p1: WDg — GSp(V, (—, —)). Set
B(m,n) = (m, A" 'n)
for m,n € V. We have
B(pi(t)m, p}(t)n) = (p1(t)m, p) (1)A~'n) = B(m, n).

Note that p; is conjugate-orthogonal. By Schur’s lemma, the conjugate-self-dual bilinear form B
has sign 1, i.e.,
B(m, pi(s*)n) = B(n, m)

for all m, n € V. Replacing m by Am, we have
(Am, A" pi(s*)n) = (n, A™' Am) = (n, m) = (m, —n).

Therefore det(A) - A=2p;(s?) = —1. In this case,

—1
coa o A\ (o) @) —A
$)$(N(s) " = ( 4 ) ( 1 p1v<z>> (A )

Vv —1

ApY (A~
forall t € WDg.
o If p1 = w1 + po with wyu3 = 1, then p; is conjugate-symplectic, which contradicts the assumption.
o If py = 1 + o with @y # wp and | px = ua|px =1, then A = (l _1) and A2 =1=p;(s?).
6C4. Nongeneric tempered. Let T be an irreducible nongeneric tempered representation of GSp,(E) and

T =6 (m ¥ my), where each m; is an irreducible representations of DE (E). If the enhanced L-parameter
of t is (¢, 1), where ¢, = p1 + p2, pi = ¢, and A is the nontrivial character of the component group

0(Zy, / Zasp,(c)), then
dim Homgsp,(r) (7, wg,/r) = 0.

On the Galois side, if ¢, = p; + p2, then for arbitrary parameter é satisfying ¢~’|WDE = ¢, the restricted
representation Alno Z@)) does not contain the trivial character 1, i.e.,

m(i, §) =0.
Finally we can prove Theorem 1.2.

Proof of Theorem 1.2. 1t is obvious if T is a nongeneric tempered representation of GSp,(E). (See
Section 6C4.) Since the Levi subgroup of a parabolic subgroup in GSp, are GL-type, [Prasad 2015,
Lemma 10] implies that deg ®(¢) = 1 in our case. By the above discussions, we know that if 7 is generic,
then the multiplicity dim Homgsp, (r) (T, @wg/F) equals to the number of inequivalent lifts |F(¢.)[. [
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7. Proof of Theorem 1.3

This section focuses on the Prasad conjecture for PGSp,. Let T be a representation of PGSp,(E), i.e., a
representation T of GSp,(E) with trivial central character. If the multiplicity

dim Hompgsp, (r) (T, @g,/r) = dim Homgsyp, () (T, wE/F)

is nonzero, then we say 7 is (PGSp,(F), wg,r)-distinguished. Let PGSp, ; = PGUy(D) be the pure
inner form of PGSp, defined over F. Similarly,

dim Hompgsp, ,(r)(T, @g/r) = dimHomgsp, | () (T, @E/F)
for a representation 7 of GSp,(E) with trivial central character.

7A. Notation.

e 7,7, w77, " and 7~ are representations of PGSp,(E).

s € Wrp\ Wg and ¢S (t) = ¢, (sts~!) for t € WDg.

S¢ = mo(Z(¢)) is the component group associated to ¢.
é:WDp — Sp4(C) and é; are Langlands parameters of PGSp,(F).

e C; 1s a coset of A(;(q;i) in H'(F, PGSp,) and 1¢, denotes its characteristic function.

» PGSp, | (resp. P D*) is the pure inner form of PGSp, (resp. PGL,) defined over F.

7B. The Prasad conjecture for PGL,. If G =PGL,, then xg = wg/r and G = PGL,.

Theorem 7.2.1. Let m be a generic irreducible representation of PGL,(E). Then the following are

equivalent:
(1) dimHompgr,(r) (7, wg/r) = 1.
(ii) The Langlands parameter ¢ is conjugate-symplectic.
(ii1) There exists a parameter ¢~) : WDr — SLy(C) such that q;IWDE = @z.
(iv) w is (PD*(F), wg,r)-distinguished or 1 = (X, Xgl) with xg|px = wg,F and X% # 1.
Proof. See [Gan and Raghuram 2013, Theorem 6.2; Lu 2017b, Main Theorem (local)]. O
7C. The Prasad conjecture for PGSp,. Recall that if G =PGSp,, then G= Sping(C) =Sp,(C), G =

PGSp, and xg = wg/r. Let T be a representation of PGSp,(E) with enhanced L-parameter (¢, A7).
Assume that the L-packet ITy. is generic. The Prasad conjecture for PGSp, implies the following:

P() If 7 is (PGSp4(F), wg,F)-distinguished, then
o Ilgs = I,y an equality of L-packets and
o Pp; = ¢~5|WDE for some parameter q; : WDEp — Sp,(0).
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P(ii) If T is generic and there exists é:WDp — Sp4(C) such that qNSIWDE = ¢z, then we have that T is
(PGSp4(F), wg,F)-distinguished.

P(iii) Assume that ¢; = d~>|WDE for some parameter ¢~> : WDr — Spy(C). If T is a discrete series
representation, then we set

F(pe) ={$: dlwp, = ¢z} =| | 0@,

where O(ggl-) = {q;[, WE/F - (/5,-} which may be a singleton. Given a parameter <]3,- : Wi — Sps(C)
with ¢; its restriction to WDg and qgi “WE/F = q~5i, there exists an element g; € Z(¢z) such that

(i - E/F)(x) = gidi (D)g; !

for all x € WD and so g; normalizes Z(q~5,~). Then Hompgsp, (r) (T, wg/r) # 0 if A7(g;) = 1 and
HO]’Ilstle(F) (7, C()E/F) # 0if Az (g;) = —1. In this case, A(;((];,‘) C HI(F, PGSp4) is trivial and
_ {{PGSp4} if Ae(e) =1,
ClpGSpy b ifas(e) = 1.

If ¢; # & - wg/F, then Ag(¢;) = H'(F, PGSp,) and C; = {PGSp,, PGSp, ,}. Set G, to be PGSp,

or PGSp, ;. Then

dim Homg, (1) (T, wg/r) = Y _ m(he, i)1c,(Ga) /do($0),
i

where m (Az, ¢;) is the multiplicity of the trivial representation contained in the restricted represen-

tation Az |, 7))
P(iv) If Iy, is generic, then we have (1-3), i.e.,
deg @ (¢)

dim Hompgsp, (r) (T, wg/F) +dimHompgsp, | (7) (T, wg/F) = Z m()\f,ﬁﬂ)'W~

peF (¢7)

Let us start to verify the Langlands functoriality lift in the Prasad conjecture for PGSpy,, i.e., part P(i)

and P(ii) listed above. Part P(iii) is the same with Theorem 1.3. Part P(iv) will be studied in detail in the
next subsection.

Theorem 7.3.1. Let T be a generic representation of PGSpy(E). It is (PGSpy(F), wg/r)-distinguished
if and only if there exists a parameter ¢ : WDp — Sp4(C) such that q§|WDE = ¢z.

Proof. Assume that t =0(I1X x) with x =1, i.e., o; =1. Fix s € Wg\ Wg.

() If 7 is (PGSpy(F), wg,r)-distinguished, then ¢ is conjugate-symplectic and so Ty = Igv = I,
If ¢ is irreducible, then we can repeat the process in Section 6C1 to obtain that there exists a parameter
q~5 : WDF — Sp,(C) such that $|WDE = ¢;. If o1 = p1 @ p» is reducible and p; is irreducible, then

P1® pr=p) ®p) = p| D p;

and either p{ = p5 or both p; and p, are conjugate-symplectic.
1 2 Jjug ymp
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o If p} = p,/, then there are two subcases. If p,’ = p, then pj = p,. Set b= Indvvggg,ol if p; # po.
If p1 = p» = p), then pj = p; and so there exists a parameter p; : WDr — GL,(C) such that
ptlwpy = p1. Set ¢ = p1 @ py. If py # pa, then p,’ = p1. Thus p = p; and ¢ = p; @ p’.

« If both p; and p; are conjugate-symplectic, then

5 {Ind%gm if p} = p2 # p1,
pas o =pi
If neither p; nor p; is irreducible, then ¢; belongs to the endoscopic case. Thanks to Theorem 4.4.9(ii),

either pj = p,’ or both p; and p, are conjugate-symplectic. The argument is similar and we omit it here.
Therefore, there exists ¢ : WDy — Sp4(C) such that d?lWDE = ¢z.

(i1) Conversely, if there exists (Z) : WDr — Spy(C) such that ¢~S|WDE = ¢, then it suffices to show
that ¢ is conjugate-symplectic. (See Lemma 6.3.1.) The nongeneric member in the L-packet Iy, is not
(GSp4(F), wg,r)-distinguished due to Theorem 4.4.9(i) if [Ty, | = 2. Assume that

¢z : WDE — Sp(V, (=, —=)) =Sp4(C) and ¢pg=io¢:: WDg — GL(V),
where i : Sp,(C) — GL(V) is the embedding between the L-groups. Then we set
B(m,n) = (m, §(s)"'n)
for m,n € V. Itis easy to check that B(¢r(t)m, ¢f;(t)n) = B(m, n) and

B(m, ¢ri(sPn) = (m, $(s)n) = —(¢(s)n, m) = —(n, (s)~'m) = —=B(n, m).
Therefore, the bilinear form B on V implies that ¢ is conjugate-symplectic.
We have finished the proof. ([l

However, in order to verify (1-3), we will need many more results from Theorems 4.4.9 and 5.3.1. We
will give the full detail in the next subsection.

7D. Proof of Theorem 1.3. This subsection focuses on the proof of Theorem 1.3. Before we give the
proof of Theorem 1.3, we will use the results in Theorems 4.4.9 and 5.3.1 to study the equality (1-3) in
detail. Then Theorem 1.3 will follow automatically. According to the Langlands parameter ¢z, we divide
them into three cases:

« the endoscopic case,

« the discrete series but nonendoscopic case and

e pr =p+pvwithv#1and vdetp =1.

Set Sy = mo(Z(¢)) to be the component group. We identify the characters of Wy and the characters
of F* via the local class field theory.
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7D1. Endoscopic case. Given ¢: = ¢ D ¢», there are two cases: ¢; = ¢ and ¢; # ¢p».

(A) If ¢ = ¢ = p are irreducible, then the L-packet Iy, equals {m*, 7~} and S¢. equals Z/27,
where 7~ (resp. 1) is a nongeneric (resp. generic) representation of PGSp,(E). There are two subcases:

(A1) If p is conjugate-orthogonal, then
dim Hompgsp, |, (F) (nt, wg/F) =0=dim Hompgsp, (r) (77, wE/F)

and
dim Hompgsp, () (7, wg/r) = 1 = dim Hompgsp, (r) (nt, wg/r).

On the Galois side, there is only one extension ¢ = 5 @ p - wg /F with
deg®(¢) =2 and S5={1} > Sy,
where p : WD — GLy(C) x W with det p = wg,r. Note that qNS = q~5 -wg/r. Then 7" supports a period
on the trivial pure inner form and 7~ supports a period on a nontrivial pure inner form.
(A2) If p is conjugate-symplectic, then
dim Hompgspl_l(F) (7™, wg/r) =0=dim Homstp4(F)(7t_, WE/F)

and
dimHompGSpl’l(F)(T[Jr, wE/p) = 1, dimHomstp4(F)(JT+, a)E/p) =2.

In this case, p has two extensions p and p - wg,F, where p : WD — SL,(C). There are three choices for
the extension qE : WDg — Sp,(C) with deg <I>(q§) =1:

« §TT=p@p with S5, =7/27 = Sy,

c Pt =pdp -wg/F With S¢~)+, =7/20 x Z/2Z — Sp.(sum map);

o ¢77 =/3a)E/F@15a)E/F W]th S",, =Z/22§S¢f

The parameters ¢+t and ¢~ are in the same orbit under the twisting by wg /F» which corresponds to
both pure inner forms. The parameter ¢ 1~ is fixed under twisting by wg,r, which supports a period on
the trivial pure inner form.

(A3) If p is not conjugate-self-dual, then both the Galois side and the automorphic side are 0.

(B) If ¢ # ¢ are both irreducible, then the L-packet of PGSp, is [Ty, = {n ™+, 7=~} and
Ss. =2/27 x 7)21.

(B1) If ¢ and ¢, both extend to L-parameters of PGL,(F), i.e., both are conjugate-symplectic, then one
has ¢ # ¢,

dim Hompgsp, ,(r) (", wg/r) = 2 = dim Hompgsp, () (", wg/F)
and
dim Hompgsp, ,(F) (™, wg/r) = 0 = dim Hompgsp, () (T ™, @g/F)-
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On the Galois side, there are also four ways of extending ¢z. For each such extension ¢, one has
deg ®(¢) = 1 and the equality of component group

S~

5= Sp =Z/2Z x Z/2L.

Therefore only the representation 7 ™ in the L-packet can support a period. And there are 2 orbits in
F (¢37) under twisting by wg, r, each of size 2.

(B2) If ¢ and ¢, do not extend to L-parameters of PGL,(F), but ¢} = ¢» = ¢,/ then

dim Hompgsp, , () (", wg/r) = 0 = dim Hompgsp,(r) (T~ wg /)
and
dim Hompgsp, ,(r) (™, wg/r) = 1 = dim Hompgsp, () (", wg/F)

There is a unique way of extending ¢; = ¢ @ ¢, to g5 : WDF — Sp,(C). Namely, q~5 = Indvvgggqb] is an
irreducible 4-dimensional symplectic representation, with a component group

Sy =12/2Z — S4.(diagonal embedding).

And Sdial(E/ Ry 2 Thus 71 supports a period on the trivial pure inner form and 7~ supports a
period on the nontrivial pure inner form.

O Iftg1=x1® x; ! is reducible, then there is only one element in the L-packet, i.e., [T1y.| = 1. There
are two cases: ¢ = ¢, and @1 # ¢s.

(C1) If ¢ = ¢, there are three subcases.
(CL.y) If x1 = x{ = xrlw,. then Sy. =1 and
dim HOIanSle(F)(‘L_', CL)E/F) =2 =dim HompGSp4(p)(f, a)E/p).

o If X% # wg/r, then there are two ways to extend L-parameters of PGL,(F), denoted by p and
p - wg/r. Thus there are 3 ways of extending ¢z, which are ¢+, ¢~ and 7. Moreover,
deg ®(ptt) =1 =deg ®(¢~ ") and deg P (p1~) = 2.

o If X% = wg/F, then there is only one way to extend ¢z. Denote it by é. Then
deg ®(¢) =4.
(CLii) If x1 # x; ' but x1|px = wg/r, then Sy, = 1 and
dimHOl’l’lPGSp].l(F)(f, wg/r) =0 and dim Hompgsp,(r) (T, wg/r) = 1.
There is only one way to extend ¢, denoted by

p =TIndyp! x1 : WDF — SLy(C).
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Then ¢ = p & p with S = 7/27 and deg ®(¢) = 1. Note that b - WE/F = é. Then ¢ supports a period
on the trivial pure inner form.

(Cl.iii) If x; # Xl_l but xi|rx =1, then Sy. =1 and
dim Homstpl,l(F)(f, a)E/F) =0 and dim Homstp4(F)(f, a)E/F) =1.
On the Galois side, there is only one choice b=p®pand S 5= 1, where
— WDFp .
p =1Indyp x1: WDF — GL,(O)

with det p = wg/F. Since $ = ¢3 -wg/F, it picks up only the trivial pure inner form.

(C2) If ¢1 # ¢o, there are several subcases:
(C2.1) If x1 = x{ = xrlw; and ¢ is irreducible and conjugate-symplectic, then Sy. = Z/2Z and
dim Homstle(p)(f, wg/F) =2 =dim HOIHPGSP4(F)(‘L_’, WE/F)-
o If X% # wg/F, then there are four ways of extending ¢z and for each such extension QE, one has
Sy = Z2/2Z = Sy, . There are two orbits under the twisting by wg, r, each of size 2.

o If X% = wg/F, then there are two ways of extending ¢z. For each such extension &, one has
deg ®(¢) = 2. There is one orbit under the twisting by wg /F-

In this case, the identity

deg ()

- (7-1)
do (i)

dimHomg, (r) (7, xc) = Zm(k, in)lc,(Ga) :

1

holds for G, = PGSp, and PGSp ;.
(C2ii) If 1 = x{ = xrlw, and x2 = X3 = Xy, where ¢po = x2 @ x; ', then Sy, = 1 and
dim Homstle(F)(f, wg/r) =2 = dim Hompgsp, (r)(T, WE/F).
o If neither X% nor x }2 equals wg, r, then there are four ways of extending ¢z. There are two orbits
under the twisting by wg,r, each of size 2.

o If X% =wg/r and x }2 # wg/F, then there are two ways to extend ¢z and for each such extension
$, one has S 3 = 1= Sy and deg ®(¢) = 2. There is one orbit under the twisting by wg /F» Which
corresponds to both pure inner forms.

o If X% = X? = wg/F, then there is only one way to extend ¢;z. For this extension $, one has
deg ®(p) =4.

(C2uii) If x1 # x, Ubut x; is conjugate-symplectic, and ¢, is irreducible and conjugate-symplectic, then
S¢. =27/27 and

dim Hompgsp, | (r) (T, wg/r) = 1 = dim Hompgsp, (F) (T, ®E/F).
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There are two extensions d; = p1@ P2 or p1 D prwg,F With S¢; =7/27 xZ /27, where p; : WD — SL,(C)
satisfies p;|wp, = ¢;. Here the map Sd3 — Sy. is given by

(x,y) > x+y.

There is one orbit under the twisting by wg,r, which corresponds to both pure inner forms.

(C2.iv) If x1 # xfl but x; is conjugate-symplectic, and x> = x5 = x|w, where ¢ = x» ® Xgl, then
S¢. =1 and

dim Hompgsp, | (#)(T, wg/r) = 1 = dim Hompgsp, (r) (T, @E/F).

o If Xﬁ # wg/F, then there are two ways to extend ¢;. Set b=p®porpd prwg/F With
S; = £/2Z. There is one orbit under the twisting by wg,r, which corresponds to both pure inner
forms.

o If X? = wg/F, there is one way to extend ¢z. Set d=p Xr ® XpwE/F, and
deg () =2.
Note that the identity (7-1) fails in this case while the identity (1-3) still holds.
(C2.v) If ¢ and ¢, are reducible and four different characters xi, x, ! x2 and x, ! satisfy
Xilpx = wg/F = x2lpx,

then Sy. is trivial,

dim Hompgsp, | (F)(T, wg/r) =0,
and dim Hompgsp, (F)(T, wg/r) = 1. There is only one extension q; = p1 @ py with Sq,; =7/27 x7/27.
Since ¢ = ¢ - wg /F, it picks up the trivial pure inner form.

(C2.vi) If ¢} = ¢, = ¢ and ¢, is not conjugate-symplectic, then Sg. = 1 and
dim Hompgsp, ,(r) (T, @g/F) =0,  dim Hompgsp,(r) (T, @g/r) = 1.

There is only one extension

¢ =Indyp- 1 : WD — Sp,(C)
with the component group S; = Z/27. Since d=0¢ wg /F, it picks up the trivial pure inner form.
It is easy to check that the identity (1-3) holds when ITy. is generic, i.e.,

deg ®(4) .

dim Hompgsp, (r) (T, wg/F) +dim Hompgsp, | (7) (T, wE/F) = Z m., ). do(9)
0

PEF (¢7)
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7D2. Discrete and nonendoscopic case. Assume that ¢z is irreducible and so Iy, is a singleton. Given
a parameter ¢z, which is nonendoscopic, the theta lift ®I (r) from PGSp,(E) to PGSO, »(E) is zero.
If ¢; is conjugate-symplectic, then

dim Hompgsp, | (r) (T, wg/r) = 1 = dim Hompgsp, (F) (T, ®E/F).

There are two extensions ¢ and ¢ - wg ,F With a component group S 5= S¢: = Z/2Z. There is one orbit
under the twisting by wg,r, which corresponds to both pure inner forms.

TD3. Generic but neither discrete nor endoscopic case. If ¢z = p @ pv, detp =v~! # 1, then Sp. = 1.
There are two cases:

o If ¢; is conjugate-symplectic and p* = p, then
dim HomPGSpL](F)('E’ a)E/F) =1 =dim HOIIlpGSP4(F)(‘E, a)E/F).

There are two extensions ¢ = g+ 5 and ¢ - wg sF where p : WD — GL(C) satisfies p|lwp, = p.

o If ¢: is conjugate-symplectic and p* # p, then
dim Homstp4(p)(f, a)E/F) =1 and dimHomstpl’l(p) (‘E, a)E/p) =0.
There is only one extension ¢ = Ind%gg o such that ¢|wp, = ¢z.

Proof of Theorem 1.3. It follows from the discussions in the endoscopic cases (B)enumz in Section 7D1
and the discrete and nonendoscopic case in Section 7D2. (I

7E. Further discussion. Let E be a quadratic extension over a nonarchimedean local field F. Let G
be a quasisplit reductive group defined over F. Let t be an irreducible representation of G(E) with an
enhanced L-parameter (¢, ). Assume that F(¢;) = I_I,-O(qgi) where d;i lwpy = Pr.

If for each orbit O((/Si), the coset C; C H' (W, G) contains all pure inner forms satisfying G, (E) =
G(E), then ¢, is called a “full” L-parameter of G(E), in which case 1¢,(Gy) =1 in (7-1).

Assume that 7 belongs to a generic L-packet with Langlands parameter ¢, : WDz — LG and that ¢
is “full”. Then there is a conjectural identity

dim Home, (7, xg) = 3 m(x, ) - SE2) (7-2)

, do(;)

for any pure inner form G, € H'(Wg, G) satisfying G, (E) = G(E).
If H'(Wg, G) is trivial, then any L-parameter ¢, is “full”’. So the conjectural identity (7-2) holds for
G = GL;. In fact, it holds for G = PGL, as well.
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