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We use the theta correspondence between GSp4(E) and GO(V ) to study the GSp4-distinction problems
over a quadratic extension E/F of nonarchimedean local fields of characteristic 0. With a similar
strategy, we investigate the distinction problem for the pair (GSp4(E),GSp1,1(F)), where GSp1,1 is the
unique inner form of GSp4 defined over F . Then we verify the Prasad conjecture for a discrete series
representation τ̄ of PGSp4(E).
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1. Introduction

Let F be a finite field extension over Qp and E be a quadratic extension over F with associated Galois
group Gal(E/F) = {1, σ } and associated quadratic character ωE/F of F×. Let WF be the Weil group
of F and WDF be the Weil–Deligne group. Then ωE/F is a quadratic character of WF with kernel WE .
Let G be a connected reductive group defined over F and G(F) (resp. G(E)) be the F-rational (resp.
E-rational) points. Let Irr(G(E)) denote the set of irreducible smooth representations of G(E). Given a
representation τ ∈ Irr(G(E)) and a character χ of G(F), we say that τ is (G(F), χ)-distinguished or
has a nonzero (G(F), χ)-period if

HomG(F)(τ, χ) 6= 0.

If χ is the trivial character, then τ is called G(F)-distinguished. There exists a rich literature, such as
[Beuzart-Plessis 2018; Flicker 1991; Gan and Raghuram 2013; Lu 2017b; Matringe 2011; Prasad 2015],
trying to classify all G(F)-distinguished representations of G(E). The method often used to study the
distinction problems is the relative trace formula, such as in [Beuzart-Plessis 2018; Flicker and Hakim
1994], which is powerful especially for the global period problems. This paper focuses on the local period
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problems for G = GSp4,PGSp4 and their inner forms. The main tool in this paper is the local theta
correspondence appearing in [Gan and Takeda 2011b; Kudla and Rallis 1992; Yamana 2011].

Let V be the unique nonsplit quaternion algebra DE with quadratic form NDE over E , or the split
6-dimensional quadratic space H3

E over E . Then

GSO(V )∼=
{

GSO4,0(E)= D×E (E)× D×E (E)/{(t, t−1) : t ∈ E×} if V = DE ,

GSO3,3(E)= GL4(E)× E×/{(t−1, t2) : t ∈ E×} if V = H3
E ,

and any irreducible representation of GSO(V ) must be of the form

• π1 �π2 with ωπ1 = ωπ2 if V = DE ;

• 5�µ with ω5 = µ2 if V = H3
E .

Here for each i , πi is an irreducible representation of D×E (E).
Gan and Takeda [2011b] have studied the explicit theta correspondence between GSO(V ) and GSp4(E)

and proved that any irreducible representation τ of GSp4(E) falls into one of the following two disjoint
families of representations:

• τ = θ(π1 �π2) with ωπ1 = ωπ2 ;

• τ = θ(5�µ) with µ= ωτ and ω5 = µ2.

The see-saw identity (sometimes called the local Siegel–Weil identity) plays a vital role in the proof
of our main theorems. More precisely, suppose that G × H is a reductive dual pair, with a Weil
representation ωψ over F. Let H ′×G ′ be another dual pair contained in the same ambient group, with
G ⊂ G ′ and H ′ ⊂ H. Via a so-called see-saw diagram

G ′ H

G H ′

we have

dim HomG(2ψ(χ), π)= dim HomG×H ′(ωψ , π �χ)= dim HomH ′(2ψ(π), χ)

for a representation π ∈ Irr(G) and a character χ of H ′. Typically, 2ψ(χ) is a simpler representation,
such as a degenerate principal series representation of G ′, and the multiplicity dim HomG(2ψ(χ), π)

has a better chance of being understood; see [Gan 2019]. In order to use the see-saw identity, we need
to study the big theta lift 2(τ) to GO(V ) of a generic representation τ of GSp4(E). In fact, we have
studied the general (almost equal rank) case for the irreducibility of big theta lifts to GOn+1,n+1(F) of a
generic representation of GSp2n(F) in Section 3C. After computing the big theta lifts following [Gan
and Ichino 2014; Gan and Takeda 2011b], we use the local theta correspondences between GSp4(E) and
GSO(V ) and the see-saw identities to discuss GSp4-period problems, by transferring the period problem
for GSp4 to various analogous period problems for GL2,GL4 and their various forms (not necessarily
inner). Then we obtain the following results:
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Theorem 1.1 (Theorem 4.4.9). Suppose that τ ∈ Irr(GSp4(E)) with a central character ωτ and ωτ |F× =1.

(i) If τ = θ(6) is an irreducible representation of GSp4(E), where 6 is an irreducible representation
of GO4,0(E), then the representation τ is not GSp4(F)-distinguished.

(ii) If τ = θ(π1 �π2), where π1 �π2 is a generic representation of GSO2,2(E), then

dimHomGSp4(F)(τ,C)=



2 if πi �π0 are both GL2(F)-distinguished,
1 if π1�π2 but πσ1 ∼=π

∨

2 ,

1 if π1∼=π2 is GL2(F)-distinguished but not (GL2(F),ωE/F)-distinguished,
1 if π2 is GL2(F)-distinguished and π1∼=π0,

0 otherwise.

Here π0=π(χ1, χ2) with χ1 6=χ2, χ1|F× =χ2|F× = 1 is a principal series representation of GL2(F).
Note that these conditions are mutually exclusive.

(iii) Assume that τ is not in case (i) or (ii) and that τ = θ(5 � χ) is generic, where 5 � χ is a
representation of GSO3,3(E). Then

dim HomGSp4(F)(τ,C)=

{
1 if 5 is GL4(F)-distinguished,
0 otherwise.

The full local Langlands conjecture for GSp4 (see Theorem 4.4.7) has been proved by Gan and Takeda
[2011a]. Then we can verify the Prasad conjecture for GSp4 in Section 6C. More precisely, let G0 be a
quasisplit group defined over F (denoted by Gop in [Prasad 2015]) such that

L G0 = GSp4(C)oGal(E/F),

where the nontrivial element σ ∈ Gal(E/F) acts on GSp4(C) by

σ(g)= sim(g)−1
· g.

Here sim: GSp4(C)→ C× is the similitude character. Let φτ be the Langlands parameter of τ . Define

F(φτ )= {φ̃ :WDF →
L G0 | φ̃|WDE = φτ }. (1-1)

Theorem 1.2 (the Prasad conjecture for GSp4). Let τ be an irreducible smooth representation of GSp4(E)
with enhanced Langlands parameter (φτ , λτ ) (called the Langlands-Vogan parameter). Assume that the
L-packet 5φτ is generic. Then

dim HomGSp4(F)(τ, ωE/F )=

{
|F(φτ )| if τ is generic, i.e., λτ is trivial,

0 otherwise,

where F(φτ ) is defined in (1-1) and |F(φτ )| denotes the cardinality of the set F(φτ ).
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We will prove analogous results for the inner form in Section 5. Let D be the 4-dimensional quaternion
division algebra of F. In a similar way, we study the period problem for the inner form GU2(D)=GSp1,1,
i.e., try to figure out the multiplicity

dim HomGSp1,1(F)(τ,C)

for a representation τ ∈ Irr(GSp4(E)). We will not state the results of the inner form case in the
introduction; the precise results can be found in Theorem 5.3.1.

Combining Theorem 1.1 and its analog for inner forms, we can verify the conjecture of Dipendra
Prasad [2015, Conjecture 2] for PGSp4. Given a quasisplit reductive group G defined over F and a
quadratic extension E/F, assuming the Langlands–Vogan conjectures for G, Prasad [2015] used the
recipes from the Galois side to give a formula for the individual multiplicity

dim HomGα(F)(τ, χG),

where
• τ is an irreducible discrete series representation of G(E);

• χG is a quadratic character of G(F) depending on G and E ;

• Gα is any pure inner form of G defined over F satisfying Gα(E)= G(E).

In Section 7, we will focus on the case G = PGSp4. Then H 1(F, G) = {PGSp4,PGU2(D)} and
χG = ωE/F . The local Langlands correspondences for the quasisplit groups SOn and Sp2n over a
nonarchimedean local field have been verified by Arthur [2013] under certain assumptions which have
been removed by Mœglin and Waldspurger [2016a; 2016b; 2018]. We can use the results from the local
Langlands correspondence for SO5 = PGSp4 freely. More precisely, if τ ∈ Irr(GSp4(E)) with a trivial
central character, then τ corresponds to a representation of PGSp4(E), denoted by τ̄ . Given a discrete
series representation τ̄ of PGSp4(E) with the enhanced L-parameter (φτ̄ , λτ̄ ), where λτ̄ is a character of
the component group π0(Z(φτ̄ )), set

F(φτ̄ )= {φ̃ :WDF → Sp4(C) | φ̃|WDE = φτ̄ }.

Up to the twisting by the quadratic character ωE/F , there are several orbits in F(φτ̄ ), denoted by tr
i=1O(φ̃i ).

Each orbit O(φ̃i ) corresponds to a unique subset Ci of H 1(WF , G). (See Section 6A for more details.)

Theorem 1.3. Let notation be as above. Given a discrete series representation τ̄ of PGSp4(E), we have

dim HomGα(F)(τ̄ , ωE/F )=

r∑
i=1

m(λτ̄ , φ̃i )1Ci (Gα)/d0(φ̃i ), (1-2)

where
• 1Ci is the characteristic function of the set Ci ;

• m(λτ̄ , φ̃) is the multiplicity for the trivial representation contained in the restricted representation
λτ̄ |π0(Z(φ̃));

• d0(φ̃)= |Coker{π0(Z(φ̃))→ π0(Z(φτ̄ ))Gal(E/F)
}|, where |−| denotes its cardinality.
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Remark 1.4. We would like to highlight the fact that the square-integrable representation τ̄ may be
nongeneric and so τ̄ is not PGSp4(F)-distinguished (see Theorem 5.3.1) but τ̄ contains a nonzero period
for the pure inner form PGSp1,1(F). It is different from the case G = PGL2 that if a representation π̄ of
PGL2(E) is PD×(F)-distinguished, then π̄ must be PGL2(F)-distinguished (see Lemma 4.4.5).

In fact, we have shown that the equality (1-2) holds for almost all generic representations in Section 7,
except that the Langlands parameter φτ̄ = 2χF |WE ⊕ φ2 with φ2 conjugate-symplectic (in the sense of
[Gan et al. 2012, §3]) and χ2

F = ωE/F . However, there is a weaker version of the Prasad conjecture
which determines the sum of dim HomGα(F)(τ̄ , χG) as Gα runs over all pure inner forms of G satisfying
Gα(E)= G(E). It involves the degree of the base change map

8 : Hom(WDF ,Sp4(C))→ Hom(WDE ,Sp4(C))

for the exception case, i.e., the identity

dim HomPGSp4(F)(τ̄ , ωE/F )+ dim HomPGSp1,1(F)(τ̄ , ωE/F )=
∑

φ̃∈F(φτ̄ )

m(λτ̄ , φ̃)
deg8(φ̃)

d0(φ̃)
(1-3)

when the L-packet 5φτ̄ is generic, which is the original identity formulated by Prasad.
There is a brief introduction to the proof of Theorem 1.3. After introducing the local theta corre-

spondence between quaternionic unitary groups following [Yamana 2011], we use the isomorphism
GU2(R)=GSp1,1(E)∼=GSp4(E), where R∼=Mat2,2(E) is the split quaternion algebra over E , to embed
the group GSp1,1(F) into GSp4(E). Then one can use the see-saw identity to transfer the inner form
GSp1,1-period problem to GO∗3,0 or GO∗1,1 side, which are closely related to GLn-period problems. But
we need to be very careful when we use the see-saw identity for a pair of quaternionic unitary groups.
(See Remark 5.2.4.) Once the see-saw identity for the quaternionic unitary groups has been set up, the
rest of the proof for the inner form case is similar to the case for GSp4-period. Then we obtain the results
for the distinction problems for the automorphic side. For the Galois side, i.e., the right-hand side of (1-3),
it will be checked case by case in Section 7.

Remark 1.5. Raphaël Beuzart-Plessis [2018, Theorem 1] used the local trace formula to deal with the
distinction problems for the Galois pair (G ′(E),G ′(F)) for the stable square-integrable representations,
where G ′ is an inner form of G defined over F, which generalizes [Prasad 1992, Theorem C].

The paper is organized as follows. In Section 2, we set up the notation about the local theta
correspondence. In Section 3, we will study the irreducibility for the big theta lift of a generic representation
in the almost equal rank case, which generalizes the results of [Gan and Ichino 2014, Proposition C.4] for
the tempered representations. The detailed computation for the explicit big theta lift 2(τ) to GO(V ) will
be given in Section 3E. In Section 4, we will study the distinction problems for GSp4 over a quadratic
extension E/F . The proof of Theorem 1.1 will be given in Section 4D. The analogous results for the
inner form GSp1,1 will be given in Section 5. In Section 6A, we will introduce the Prasad conjecture for
a reductive quasisplit group G defined over F. Then we will verify the Prasad conjecture for GSp4 in
Section 6C. Finally, the proof of Theorem 1.3 will be given in Section 7.
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2. The local theta correspondences for similitudes

In this section, we will briefly recall some results about the local theta correspondence, following [Gan
and Takeda 2011b; Kudla 1996; Roberts 2001].

Let F be a nonarchimedean local field of characteristic zero. Consider the dual pair O(V )× Sp(W ).
For simplicity, we may assume that dim V is even. Fix a nontrivial additive character ψ of F . Let ωψ
be the Weil representation for O(V )× Sp(W ). If π is an irreducible smooth representation of O(V )
(resp. Sp(W )), the maximal π -isotypic quotient of ωψ has the form

π �2ψ(π)

for some smooth representation 2ψ(π) of Sp(W ) (resp. some smooth representation 2ψ(π) of O(V )).
We call 2ψ(π) or 2V,W,ψ(π) the big theta lift of π . It is known that 2ψ(π) is of finite length and hence
is admissible. Let θψ(π) or θV,W,ψ(π) be the maximal semisimple quotient of 2ψ(π), which is called
the small theta lift of π .

Theorem 2.1 (Howe duality conjecture [Gan and Takeda 2016a; 2016b]).

• θψ(π) is irreducible whenever 2ψ(π) is nonzero.

• The map π 7→ θψ(π) is injective on its domain.

This has been proved by Waldspurger [1990] when p 6= 2.
We extend the Weil representation to the case of similitude groups. Let λV and λW be the similitude

factors of GO(V ) and GSp(W ) respectively. We shall consider the group

R = GO(V )×GSp+(W ),

where GSp+(W ) is the subgroup of GSp(W ) consisting of elements g such that λW (g) lies in the image
of λV . Define

R0 = {(h, g) ∈ R | λV (h)λW (g)= 1}

to be the subgroup of R. The Weil representation ωψ extends naturally to the group R0 via

ωψ(g, h)φ = |λV (h)|
−

1
8 dim V ·dim W

F ω(g1, 1)(φ ◦ h−1),

where |−|F is the absolute value on F and

g1 = g
(
λW (g)−1 0

0 1

)
∈ Sp(W ).

Here the central elements (t, t−1) ∈ R0 acts by the quadratic character χV (t)(dim W )/2, which is slightly
different from the normalization used in [Roberts 2001].

Now we consider the compactly induced representation

�= indR
R0
ωψ .
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As a representation of R, � depends only on the orbit of ψ under the evident action of Im λV ⊂ F×. For
example, if λV is surjective, then � is independent of ψ . For any irreducible representation π of GO(V )
(resp. GSp+(W )), the maximal π -isotropic quotient of � has the form

π ⊗2ψ(π),

where 2ψ(π) is some smooth representation of GSp+(W ) (resp. GO(V )). Similarly, we let θψ(π) be
the maximal semisimple quotient of 2ψ(π). Note that though 2ψ(π) may be reducible, it has a central
character ω2ψ (π) given by

ω2ψ (π) = χ
(dim W )/2
V ωπ .

There is an extended Howe conjecture for similitude groups, which says that θψ(π) is irreducible whenever
2ψ(π) is nonzero and the map π 7→ θψ(π) is injective on its domain. It was shown by Roberts [1996]
that this follows from Theorem 2.1.

If λV is surjective, we have GSp+(W )= GSp(W ).

Proposition 2.2 [Gan and Takeda 2011a, Proposition 2.3]. Suppose that π is a supercuspidal repre-
sentation of GO(V ) (resp. GSp(W )). Then 2ψ(π) is either zero or is an irreducible representation of
GSp+(W ) (resp. GO(V )).

2A. First occurrence indices for pairs of orthogonal Witt towers. Let Wn (n≥1) be the 2n-dimensional
symplectic vector space with associated symplectic group Sp(Wn) and consider the two towers of
orthogonal groups attached to the quadratic spaces with trivial discriminant. More precisely, let H be the
split 2-dimensional quadratic space over F and D be the quaternion division algebra over F. Let

V+2r = Hr and V−2r = D(F)⊕Hr ,

and denote the orthogonal groups by O(V+2r )=Or,r and O(V−2r )=Or+4,r , respectively. For an irreducible
representation π of Sp(Wn), one may consider the theta lifts θ+2r (π) and θ−2r (π) to O(V+2r ) and O(V−2r )

respectively, with respect to a fixed nontrivial additive character ψ . Set{
r+(π)= inf{r : θ+2r (π) 6= 0},
r−(π)= inf{r : θ−2r (π) 6= 0}.

Then Kudla and Rallis [2005] and Sun and Zhu [2015] showed:

Theorem 2.3 (conservation relation). For any irreducible representation π of Sp(Wn), we have

r+(π)+ r−(π)= 2n = dim Wn.

On the other hand, one may consider the mirror situation, where one fixes an irreducible representation π
of O(V2r ) and consider its theta lift θn(π) to the tower of symplectic groups Sp(Wn). Then, with n(π)
defined in the analogous fashion

n(π)= inf{n : θn(π) 6= 0},

one has
n(π)+ n(π ⊗ det)= 2r = dim V2r .
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For similitude groups, this implies that

n(π)+ n(π ⊗ ν)= 2r,

where ν is the nontrivial character of GO(V2r )/GSO(V2r ).

3. The irreducibility of the big theta lift

Let τ be an irreducible representation of Sp2n(F). Gan and Ichino [2014, Proposition C.4] showed that the
big theta lift 2+2n+2(τ ) to On+1,n+1(F) (called the almost equal rank case) is irreducible if τ is tempered.
This includes the case p = 2 since the Howe duality conjecture has been proved in [Gan and Takeda
2016b]. We will use the generalized standard module [Heiermann 2016, Theorem 3.2] to study the case
when 5φτ is generic (see Theorem 3.2).

In Section 3C, we mainly study the big theta lift to the split group On+1,n+1(F) from a representation τ
of Sp2n(F) when the associated L-packet5φτ is generic. Then we will focus on the computation for n= 2.

3A. Notation. Let us introduce the notation used in this section.

• |−|F (resp. |−|E ) is an absolute value defined on F (resp. E).

• PEn (resp. Q En) is a parabolic subgroup of Sp2n (resp. On+1,n+1) defined over F.

• φτ is the Langlands parameter or L-parameter of τ and φ∨τ is the dual parameter of φτ .

• τ∨ is the contragredient representation of τ .

• 5φτ is the L-packet containing τ .

• Wr is the symplectic vector space over E of dimension 2r .

• Z is a line in W2 and Y is a maximal isotropic subspace in W2.

• Q(Z) (resp. P(Y )) is the Klingen (resp. Siegel) parabolic subgroup of GSp4(E)= GSp(W2).

• B (resp. B0) is the Borel subgroup of GSp4(E) (resp. GL4(E)).

• P is the parabolic subgroup of GL4(E) with Levi component GL2(E)×GL2(E).

• 2+2r (τ ) (resp. 26(τ )) is the big theta lift to GOr,r (E) (resp. GSO3,3(E)) of τ of GSp4(E).

• θ+6 (τ ) (resp. θ6(τ )) is the small theta lift to GO3,3(E) (resp. GSO3,3(E)) of τ of GSp4(E).

3B. The standard module conjecture. Let G be a quasisplit reductive group defined over F. Fix a Borel
subgroup B = TU of G. Let π be an irreducible smooth representation of G(F). If there exists a
nondegenerate character ψU of U(F) such that HomU(F)(π, ψU ) 6= 0, then we say π is ψU -generic or
generic. If the L-packet 5φπ contains a generic representation, then we call 5φπ a generic L-packet.
Let P = MN be a standard parabolic subgroup of G. Suppose that there exists a generic tempered
representation ρ of M(F) such that π is isomorphic to the Langlands quotient J (ρ, χ), where χ is a
character of M(F) and lies in the positive Weyl chamber with respect to P(F). (See [Heiermann and
Opdam 2013, p. 777] for more details.)
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Theorem 3.1 (the standard module conjecture). If π = J (ρ, χ) is a generic representation of G(F), then
IndG(F)

P(F)(ρ⊗χ) (normalized induction) is irreducible. Moreover, for any irreducible representation ρ ′ of
M(F) lying inside the L-packet 5φρ , IndG(F)

P(F)(ρ
′
⊗χ) is irreducible.

Heiermann and Opdam [2013] proved the standard module conjecture. Later Heiermann [2016,
Theorem 3.2] proved its generalized version i.e., the “moreover” part of Theorem 3.1. The following
subsection will focus on the cases G = Sp2n and G = On+1,n+1.

3C. Theta lift from Sp2n(F) to On+1,n+1(F). Suppose that τ is a generic irreducible admissible rep-
resentation of Sp2n(F). Assume that there exists a parabolic subgroup PEn = MEn NEn of Sp2n and an
irreducible representation π1⊗ π2⊗ · · · ⊗ πr ⊗ τ0 of MEn(F) ∼= GLn1(F)× · · · ×GLnr (F)× Sp2n0

(F)
(for n1+ n2+ · · ·+ nr + n0 = n) such that τ is the unique irreducible quotient of the standard module

IndSp2n(F)
PEn(F)

(π1|−|
s1
F ⊗ · · ·⊗πr |−|

sr
F ⊗ τ0)(normalized induction), (3-1)

where s1> s2> · · ·> sr > 0, n≥ n0, each πi is a tempered representation of GLni (F) and τ0 is a tempered
representation of Sp2n0

(F). Moreover, the Langlands parameter φτ :WDF → SO2n+1(C) is given by

φτ = φπ1 |−|
s1
F ⊕ · · ·⊕φπr |−|

sr
F ⊕φτ0 ⊕φ

∨

πr
|−|
−sr
F ⊕ · · ·⊕φ

∨

π1
|−|
−s1
F ,

where each φπi is the Langlands parameter of πi and φτ0 is the Langlands parameter of τ0. Here we
identify the characters of F× and the characters of the Weil group WF by the local class field theory.
Due to Theorem 3.1, the generic representation τ is isomorphic to the standard module, i.e., the standard
module is irreducible. Thanks to [Gan and Ichino 2014, Proposition C.4], the small theta lift θ+2n+2(τ ) is
the unique irreducible quotient of the standard module

IndOn+1,n+1(F)
Q En(F)

(π1|−|
s1
F ⊗ · · ·⊗πr |−|

sr
F ⊗2

+

2n0+2(τ0)), (3-2)

where Q En(F) is the parabolic subgroup of On+1,n+1(F) with Levi component GLn1(F)×· · ·×GLnr (F)×
On0+1,n0+1(F). We will show that (3-2) equals θ+2n+2(τ ) under certain conditions.

Theorem 3.2. Let PEn (resp. Q En) be a parabolic subgroup of Sp2n (resp. On+1,n+1) defined as above. If
the irreducible representation τ is generic and so τ is isomorphic to the standard module (3-1), and the
standard L-function of τ is regular at s = 1, then 2+2n+2(τ ) is irreducible.

There is another key input in the proof of Theorem 3.2.

Theorem 3.3. Let G be Sp2n or SOn+1,n+1. Let π be an irreducible representation of G(F). The
L-packet 5φπ is generic if and only if the adjoint L-function L(s, φπ ,Ad) is regular at s = 1.

Proof. See [Liu 2011, Theorem 1.2; Jantzen and Liu 2014, Theorem 1.5]. �

Proof of Theorem 3.2. We will show that 2+2n+2(τ )|SOn+1,n+1(F) is irreducible. If n = n0, then it follows
from [Gan and Ichino 2014, Proposition C.4]. Assume that s1 > 0. Then there exists a surjection

IndOn+1,n+1(F)
Q En(F)

(π1|−|
s1
F ⊗ · · ·⊗πr |−|

sr
F ⊗2

+

2n0+2(τ0)) // // 2+2n+2(τ ).
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Due to [Gan and Ichino 2014, Proposition C.4], if τ0 is tempered, then 2+2n0+2(τ0) is irreducible and
generic. Moreover, if

φτ0 :WDF → SO2n0+1(C)

is the Langlands parameter of τ0, then φθ+2n0+2(τ0)
= φτ0 ⊕C due to [Gan and Ichino 2014, Theorem C.5].

Assume that φτ = φ0⊕φτ0 ⊕φ
∨

0 with φτ0 tempered and φ0 =
⊕

i φπi |−|
si . Then due to [Gan and Ichino

2014, Proposition C.4], we have φθ+2n+2(τ )
= φ0⊕ (φτ0 ⊕C)⊕φ∨0 . Observe that

L(s,AdSO2n+2 ◦φθ+2n+2(τ )
)= L(s,AdSO2n+1 ◦φτ ) · L(s, φτ ,Std),

where L(s, φτ ,Std) is the standard L-function of τ . By [Liu 2011, Theorem 1.2] and the assumption that τ
is generic, we obtain that L(s,AdSO2n+1 ◦φτ ) is regular at s = 1. So L(s,AdSO2n+2 ◦φθ+2n+2(τ )

) is regular at
s = 1. Thanks to [Jantzen and Liu 2014, Theorem 1.5], the L-packet 5φ

θ
+

2n+2(τ )
is generic. By the

generalization of the standard module conjecture [Heiermann 2016, Theorem 3.2] that the standard
module with a generic quotient is irreducible,

θ+2n+2(τ )=2
+

2n+2(τ )= IndOn+1,n+1(F)
Q En(F)

(π1|−|
s1
F ⊗ · · ·⊗πr |−|

sr
F ⊗2

+

2n0+2(τ0)),

i.e., 2+2n+2(τ ) is irreducible. �

Remark 3.4. Similarly, if 6 is a generic representation of On,n(F) and L(s, 6,Std) is regular at s = 1,
then the big theta lift 2n(6) to Sp2n(F) is irreducible. However, if τ is a generic representation of
Sp2n(F) and L(s, τ,Std) is regular at s = 1, the big theta lift to nonsplit group O(VF ) may be reducible
when VF is a (2n+ 2)-dimensional quadratic space over F with nontrivial discriminant. (See [Lu 2017b,
Proposition 3.8(iii)].)

Remark 3.5. There exists an isomorphism between the characters λθ+2n+2(τ )
∼=λθ+2n0+2(τ0)

, the latter of which
is given in [Atobe and Gan 2017, Theorem 4.3] in terms of the character λτ0 , conjectured in [Prasad 1993].

Corollary 3.6. Let 5φτ be the L-packet of Sp2n(F) containing τ . Suppose that 5φτ is generic. If the
standard L-function L(s, φτ ,Std) is a factor of the adjoint L-function L(s,Ad ◦φτ ), then the big theta
lift 2+2n+2(τ ) to On+1,n+1(F) is irreducible for any τ ∈5φτ .

For the rest of this section, we will compute the big theta lifts between GSp4(E) and GO(V ) explicitly
when dimE V = 4 or 6.

3D. Representations of GO(V ). Let πi be an irreducible representations of GL2(E) with central char-
acter ωπi and ωπ1 = ωπ2 . Then π1 �π2 is an irreducible representation of the similitude group

GSO2,2(E)∼= GL2(E)×GL2(E)/{(t, t−1) : t ∈ E×}.

If π1 6= π2, then 6 = IndGO2,2(E)
GSO2,2(E)(π1 � π2) is an irreducible smooth representation of GO2,2(E) and

6 ∼=6⊗ ν, where ν|O2,2(E) = det. If π1 = π2, then there are two extensions (π1 �π1)
± and only one of

them participates in the theta lift between GSp4(E) and GO2,2(E), denoted by (π1�π1)
+
=6. Moreover,

we have (π1 �π1)
+
⊗ ν ∼= (π1 �π1)

−. (See [Gan and Takeda 2011b, §6].)
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Any irreducible representation of

GSO3,3(E)= GL4(E)×GL1(E)/{(t, t−2) : t ∈ E×}

is of the form
5�χ,

where 5 is a representation of GL4(E) with central character ω5, χ is a character of E× and χ2
= ω5.

3E. Representations of GSp4(E). Assume that τ = θ(π1 �π2) is a representation of GSp4(E) and
π1 �π2 ∈ Irr(GSO2,2(E)). Then τ is generic if and only if π1 �π2 is generic due to [Gan and Takeda
2011b, Corollary 4.2(ii)]. We follow the notation in [Gan and Takeda 2011b] to describe the nondiscrete
series representations of GSp4(E). Thanks to [Gan and Takeda 2011b, Proposition 5.3], the nondiscrete
series representations of GSp4(E) fall into the following three families:

• τ ↪→ IQ(Z)(χ |−|
−s
E , π) with χ a unitary character, s ≥ 0 and π a discrete series representation of

GL2(E) up to twist;

• τ ↪→ IP(Y )(π |−|
−s
E , χ) with χ an arbitrary character, s ≥ 0 and π a unitary discrete series represen-

tation of GL(Y );

• τ ↪→ IB(χ1|−|
−s1
E , χ2|−|

−s2
E ;χ), where χ1, χ2 are unitary and s1 ≥ s2 ≥ 0.

Note that if τ itself is generic and nontempered, then those embeddings are in fact isomorphisms due to
the standard module conjecture for GSp4, except

τ ↪→ IQ(Z)(1, π).

For instance, τ = JP(Y )(π |−|
s
E , χ) with s ≥ 0. If τ is generic, then IP(Y )(π |−|

s
E , χ) is irreducible and so

τ = IP(Y )(π |−|
s
E , χ)

∼= IP(Y )(π
∨
|−|
−s
E , χωπ |−|

2s
E )

with s ≥ 0. (See [Gan and Takeda 2011b, Lemma 5.2].)
If the big theta lift 2+6 (τ ) to GO3,3(E) of τ is irreducible, the restricted representation 2+6 (τ )|GSO3,3(E)

is irreducible due to [Prasad 1993, §5, p. 282]. We use26(τ ) to denote the big theta lift to GSO3,3(E) of τ .

Proposition 3.7. Let τ be a generic irreducible representation of GSp4(E). Then the big theta lift
26(τ ) to GSO3,3(E) of τ is an irreducible representation unless τ = IQ(Z)(|−|E , π) with π essentially
square-integrable. If τ = IQ(Z)(|−|E , π), then 26(τ )= IP(π |−|E , π)�ωπ |−|E is reducible.

Proof. If τ is a tempered representation, then 2+6 (τ ) is irreducible due to [Gan and Ichino 2014,
Proposition C.4] (which holds even for p = 2 since the Howe duality conjecture holds) and so 26(τ ) is
irreducible. Assume that the generic representation τ is not essentially tempered. There are 4 cases:

• If τ = IB(χ1, χ2;χ) is irreducible, then none of the characters χ1, χ2, χ1/χ2, χ1χ2 is |−|±1
E and so

IB0(1, χ2, χ1, χ1χ2) has a generic quotient where B0 is a Borel subgroup of GL4(E). Thus 26(τ )=

IB0(1, χ2, χ1, χ1χ2) ·χ �χ2χ1χ2 is irreducible due to the standard module conjecture for GL4.
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• If τ = IP(Y )(π, χ), then 26(τ ) is a quotient of

IQ(1, π, ωπ ) ·χ �χ2ωπ ,

where Q is a parabolic subgroup of GL4(E) with Levi subgroup GL1(E)×GL2(E)×GL1(E). Due
to [Gan and Takeda 2011b, Proposition 13.2], the adjoint L-function L(s, As ◦φτ ) is regular at s = 1.
Since the standard L-function L(s, τ,Std) is a factor of L(s,Ad ◦φτ ), we have L(s, τ,Std) is regular
at s = 1. Then IQ(1, π, ωπ ) is irreducible and so 26(τ )= IQ(1, π, ωπ ) ·χ �χ2ωπ is irreducible.

• If τ = IQ(Z)(χ, π) with χ 6= 1, then there is an epimorphism

IP(π ·χ, π)�ωπχ // // 26(τ )

of GSO3,3(E)-representations, where P is a parabolic subgroup of GL4(E) with Levi subgroup
GL2(E)×GL2(E). Gan and Takeda [2011b, Proposition 13.2] have proved that IP(π · χ, π) is
irreducible if IQ(Z)(χ, π) is irreducible and χ 6= |−|E . If χ = |−|E and π is essentially square-
integrable, applying [Gan and Takeda 2011b, Corollary 4.4] that τ is generic implies that 26(τ ) is
generic, then26(τ )= IP(π ·χ, π)�ωπχ and θ6(τ )= JP(π ·χ, π)�ωπχ is the Langlands quotient.

• If τ ↪→ IQ(Z)(1, π), then 26(τ ) is either zero or IP(π, π)�ωπ , where P is a parabolic subgroup
of GL4(E) with Levi subgroup GL2(E)×GL2(E). In fact, 26(τ )= 0 only when τ is a nongeneric
constituent representation of IQ(Z)(1, π).

This finishes the proof of Proposition 3.7. �

Remark 3.8. Similarly one can prove that if6 is a generic representation of GSO2,2(E) and L(s, 6,Std)
is regular at s = 1, then the big theta lift 22(6) to GSp4(E) is an irreducible representation.

Let us turn the table around. The rest of this subsection focuses on the computation of local theta lifts
to GO2,2(E) from GSp4(E).

Proposition 3.9. Let τ be a generic irreducible representation of GSp4(E). Assume that θ+4 (τ ) 6= 0.

(i) If τ = IQ(Z)(1, π(µ1, µ2)), then the big theta lift 2+4 (τ ) to GO2,2(E) of τ is Ext1GO2,2(E)(6
+, 6−),

where 6± are two distinct extensions of π(µ1, µ2)�π(µ1, µ2) from GSO2,2(E) to GO2,2(E).

(ii) If τ 6= IQ(Z)(1, π(µ1, µ2)), then 2+4 (τ ) is an irreducible representation of GO2,2(E).

Proof. (i) If τ = IQ(Z)(1, π(µ1, µ2)), then the small theta lift θ+4 (τ ) equals 6+ by the Howe duality,
where 6+ is the extension to GO2,2(E) of π(µ1, µ2)�π(µ1, µ2). Let ψU be a nondegenerate character
of the standard unipotent subgroup U of GO2,2(E). Then

dim HomU (2
+

4 (τ ), ψU )= dim HomH(W1)oSp(W1)(τ, ωψ)= 2, (3-3)

where W2= Z⊕W1⊕Z∗, H(W1) is the Heisenberg group of W1 equipped with the Weil representation ωψ
and τ is the representation of GSp(W2). Thus the big theta lift 2+4 (τ ) to GO2,2(E) is reducible. There is
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a short exact sequence of GO2,2(E)-representations

6−⊕6+ // 2+4 (τ )
// 6+ // 0. (3-4)

However, we can not determine 2+4 (τ ) at this moment. Note that

dim Ext1GSO2,2(E)(π(µ1, µ2)�π(µ1, µ2), π(µ1, µ2)�π(µ1, µ2))= 1

due to [Adler and Prasad 2012, Theorem 1]. Here Ext1 is the extension functor defined on the category
of all smooth representations with a fixed central character. Then dim Ext1GO2,2(E)(6

+, 6−⊕6+)= 1 by
Frobenius reciprocity, which implies that either Ext1GO2,2(E)(6

+, 6−) or Ext1GO2,2(E)(6
+, 6+) is zero. As-

sume that B is the Borel subgroup of GSO2,2(E). Set B̃ = B oµ2 to be a subgroup of GO2,2(E) and
B̃ ∩GSO2,2(E)= B. Since

π(µ1, µ2)�π(µ1, µ2)= IndGSO2,2(E)
B χ(normalized induction),

there are two extensions χ± to B̃ of χ of B. We may assume without loss of generality that 6+ =
IndGO2,2(E)

B̃
χ+ and6−= IndGO2,2(E)

B̃
χ−. Note that Ext1B̃(χ

+, χ−) 6=0. Then there is a short exact sequence
of GO2,2(E)-representations

0 // 6− // IndGO2,2(E)
B̃

(Ext1B̃(χ
+, χ−)) // 6+ // 0,

which is not split. Hence Ext1GO2,2(E)(6
+, 6−) 6= 0. Together with (3-3) and (3-4), one can obtain the

desired equality 2+4 (τ )= Ext1GO(2,2)(E)(6
+, 6−).

(ii) If τ is a (essentially) discrete series representation, then it follows from [Atobe and Gan 2017,
Proposition 5.4].

• If τ = IQ(Z)(µ0, π(µ1, µ2)) with µ0 6= 1, then there exists only one orbit in the double coset
Q(Z)\GSp4(E)/H(W1)oSp(W1) that contributes to the multiplicity

dim HomH(W1)oSp(W1)(τ, ωψ),

and so 2+4 (τ ) is irreducible.

• If τ ⊂ IQ(Z)(1, π) with π square-integrable, then τ is tempered. Due to [Atobe and Gan 2017,
Proposition 5.5], 2+4 (τ ) is tempered. Note that θ+4 (τ ) is a discrete series representation which is
projective in the category of the tempered representations. Thus 2+4 (τ ) = θ

+

4 (τ ) is irreducible.
Otherwise, it will contradict the Howe duality conjecture (see Theorem 2.1).

• If τ = IP(Y )(π, χ), then dim HomU (2
+

4 (τ ), ψU )= 1 and so 2+4 (τ ) is irreducible.

This finishes the proof of Proposition 3.9. �
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4. The GSp4(F)-distinguished representations

This section focuses on the proof of Theorem 1.1. First, we will introduce the see-saw identity in the
similitude group in Section 4B. Then we will study the filtrations of various degenerate principal series rep-
resentations restricted to reductive subgroups in Section 4C, which involves the complicated computation
for the double coset decompositions. The proof of Theorem 1.1 will be given in the last subsection.

4A. Notation.
• C or 1 is the trivial representation.

• H (resp. HE ) is the split 2-dimensional quadratic space over F (resp. E).

• (−,−)E is the Hilbert symbol on E×× E×.

• ResE/F V is a quadratic space over F while V is a quadratic space over E .

• GSp(Wn)= GSp2n(F) is the symplectic similitude group.

• GU2(D)= GSp1,1 is the unique inner form of GSp4.

• λW (resp. λV ) is the similitude character of GSp4(E) (resp. GO(V )).

• GSp4(E)
\
= {g ∈GSp4(E) | λW (g) ∈ F×} is the subgroup of GSp4(E) and similarly for GO2,2(E)\.

• P ′ (resp. P\) is a parabolic (resp. Siegel parabolic) subgroup of GSp4(E)
\ and Q\ is the Siegel

parabolic subgroup of GO2,2(E)\. And R P̄ ′ (resp. RP\) is the Jacquet functor with respect to the
parabolic subgroup opposite to P ′ (resp. P\).

• ind denotes the compact induction.

• Rr (1) is the big theta lift to GO4,4(F) of the trivial representation of GSp(Wr ).

• Rm,n(1) is the big theta lift to GSp8(F) of the trivial representation of GOm,n(F).

• 6 is a generic representation of GO(V ).

• Qr is the Siegel parabolic subgroup of Hr = GOr,r (F).

• I Hr
Qr
(s) is the degenerate Siegel principal series of Hr .

• X4 = Q4\H4 is the projective variety.

• I(s) is the degenerate Siegel principal series of GSp8(F).

• Matm,n(F) is the matrix space over F consisting of all m× n matrices.

4B. See-saw identity for orthogonal-symplectic dual pairs. Following the notation in [Prasad 1996], for
a quadratic space (V, q) of even dimension over E , let ResE/F V be the same space V but now thought
of as a vector space over F with a quadratic form

qF (v)=
1
2 trE/F q(v).

If W0 is a symplectic vector space over F , then W0⊗F E is a symplectic vector space over E . Then we
have the following isomorphism of symplectic spaces over F :

ResE/F [(W0⊗F E)⊗E V ] ∼=W0⊗F ResE/F V =:W .
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There is a pair (
GSp(W0),GO(ResE/F V )

)
and

(
GSp(W0⊗F E),GO(V )

)
of similitude dual reductive pairs in the symplectic similitude group GSp(W). A pair (G, H) and (G ′, H ′)
of dual reductive pairs in a symplectic similitude group is called a see-saw pair if H ⊂ G ′ and H ′ ⊂ G.
The following lemma is quite useful in this section. See [Prasad 1996, Lemma, p. 6].

Lemma 4.2.1. For a see-saw pair of dual reductive pairs (G, H) and (G ′, H ′), let π be an irreducible
representation of H and π ′ of H ′. Then we have the following isomorphism:

HomH (2ψ(π
′), π)∼= HomH ′(2ψ(π), π

′).

Let GSp(W0⊗F E)\ be the subgroup of GSp(W0⊗F E) where the similitude factor takes values in F×.
Similarly we define

GO(V )\ = {h ∈ GO(V ) | λV (h) ∈ F×}.

Then we have a see-saw diagram

GSp(W0⊗F E)\ GO(ResE/F V )

GSp(W0) GO(V )\

Replace W0 by a 4-dimensional symplectic space W2 over F with a symplectic similitude group
GSp4(F). Then there is a see-saw pair(

GSp4(E)
\,GO(V )\

)
and

(
GSp4(F),GO(ResE/F V )

)
in the similitude symplectic group GSp(W), where W = ResE/F ((W2⊗F E)⊗E V ) and

GSp4(E)
\
= {g ∈ GSp4(E)|λW (g) ∈ F×}.

Remark 4.2.2. Let VF be a quadratic space over F. If the image of the similitude character λVF is not sur-
jective, then we need to consider the dual pair R=GSp4n(F)

+
×GO(VF ). Moreover, GSp4n(F)×GO(VF )

is not a dual pair in the usual sense. However, for our purpose (see Lemma 4.4.1), we will consider the
induction in stages (see [Gan 2011, §9.7])

IndGSp4n(F)×GO(VF )

R �ψ = IndGSp4n(F)×GO(VF )

R indR
R0
ωψ ,

where �ψ (resp. ωψ ) is the Weil representation of R (resp. R0) defined in Section 2. Suppose that
VF ⊗E E is a split quadratic space over E . Then

HomGO(VF )(2ψ(τ ), χ)= HomGSp2n(E)\×GO(VF )(IndGSp4n(F)×GO(VF )

R �ψ , τ �χ)

= HomGSp2n(E)\(IndGSp4n(F)
GSp4n(F)+

2ψ(χ), τ )

for a representation τ ∈ Irr(GSp2n(E)
\) and a character χ of GO(VF ).
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In order to use Lemma 4.2.1, we need to figure out the discriminant and Hasse invariant of the quadratic
space ResE/F V over F .

Assume that E= F(
√

d) is a quadratic field extension of F, where d ∈ F×\F×2. Let DE be the nonsplit
quaternion algebra with involution ∗ defined over E with a norm map NDE , which is a 4-dimensional
quadratic space V over E . More precisely, DE is a noncommutative E-algebra generated by 1, i and j,
denoted by

(a,b
E

)
, where i2

= a, j2
= b, i j = − j i, a, b ∈ E× and (a, b)E = −1. Here (−,−)E is the

Hilbert symbol defined on E×× E×. Then there is an isomorphism for the vector space ResE/F V ,

ResE/F DE ∼= SpanF
{
1,
√

d, i,
√

di, j,
√

d j, i j,
√

di j
}

as F-vector spaces. Given a vector v ∈ V , set

qF (v)=
1
2 trE/F ◦NDE (v) and (vi , v j )= qF (vi + v j )− qF (vi )− qF (v j ).

Lemma 4.2.3. The quadratic space ResE/F DE with quadratic form 1
2 trE/F ◦NDE over F has dimension 8,

discriminant 1 and Hasse-invariant −1.

Proof. The nonsplit quaternion algebra over a nonarchimedean local field is unique. We may assume that

i2
= a ∈ F×

and j2
= b = b1+ b2

√
d, NE/F (b)= b2

1− b2
2d, bi ∈ F .

For an element v = x1+ x2i + x3 j + x4i j in DE with xi ∈ E , we have

1
2(v, v)= NDE (v)= vv

∗
= x2

1 − ax2
2 − bx2

3 + abx2
4

and the corresponding matrix for the quadratic space (ResE/F DE , qF ) is

2 0 0 0 0 0 0 0
0 2d 0 0 0 0 0 0
0 0 −2a 0 0 0 0 0
0 0 0 −2ad 0 0 0 0
0 0 0 0 −2b1 −2b2d 0 0
0 0 0 0 −2b2d −2b1d 0 0
0 0 0 0 0 0 2ab1 2dab2

0 0 0 0 0 0 2dab2 2dab1


.

The discriminant algebra of ResE/F DE is trivial in F×/F×2. If b1 = 0, then the Hasse-invariant is

(−d, a)=−1

since (b2
√

d, a)E = −1, where (−,−) is the Hilbert symbol defined on F×× F×. If b1 6= 0, then the
Hasse-invariant is

(d,d)(−a,−ad)
(
−b1,

NE/F (b)d
−b1

)
(NE/F (b)d,−1)

(
ab1,

NE/F (b)d
ab1

)
= (a,NE/F (b))= (a,b)E =−1,

because (a, b)E = (a, NE/F (b)) for all a ∈ F× and b ∈ E×. �
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Now let V be the split 2n-dimensional quadratic space Hn
E over E . There is a basis {ei , e′j }1≤i, j≤n for

the quadratic space V satisfying 〈ei , e′j 〉 = δi j and the other inner products are zero. Then we fix the basis

{ei ,
√

dei , e′j , e′j/
√

d}1≤i, j≤n

for ResE/F V . It is straightforward to check that the vector space ResE/F V is isomorphic to the split
4n-dimensional quadratic space H2n over F .

4C. The structure of degenerate principal series. In this subsection, we follow the notation in [Gan and
Ichino 2011; Kudla 1996]. Let Hn = GO(Hn) be the orthogonal similitude group. Define the quadratic
character ν to be

ν(h)= det(h) · λ−n
V (h) for h ∈ GO(Hn)

so that ν|O(Hn) = det. Define

GSO(Hn)= ker ν = {h ∈ GO(Hn)|λ(h)n = det(h)}.

Assume that Qn is the standard Siegel parabolic subgroup of Hn , i.e.,

Qn =

{(
A−1

λAt

)(
I X

I

) ∣∣∣ A ∈ GLn(F), X ∈Matn,n(F) and X + X t
= 0

}
with modular character |det A|1−n

F |λ|
−n(n−1)/2
F . Then Qn\Hn is a projective variety and a homogenous

space equipped with Hn-action. Each point on Qn\Hn corresponds to an isotropic subspace in Hn of
dimension n. Set the degenerate principal series representation I Hn

Qn
(s) as

I Hn
Qn
(s)=

{
f : Hn→ C | f (xg)= δQn (x)

1/2+s/(n−1) f (g) for x ∈ Qn, g ∈ Hn
}
.

Let Wr be the symplectic space with a symplectic similitude group GSp(Wr ). Set 1W to be the trivial
representation of GSp(Wr ). Then the big theta lift 2r (1W ) to Hn of the trivial representation 1W is
isomorphic to a subrepresentation of I Hn

Qn
(s0), where

s0 = r − 1
2(n− 1).

The image of 2r (1W ) in I Hn
Qn
(s0) is denoted by Rr (1), i.e.,

2r (1W )= Rr (1)⊂ I Hn
Qn
(s0).

Let us come back to the GSp4-cases. Assume that r = 2 and n = 4.

Proposition 4.3.1. There is an exact sequence of H4-modules

0 // R2(1) // I H4
Q4

( 1
2

)
// R1(1)⊗ ν // 0.

Proof. Note that R2(1)|O4,4(F) is isomorphic to the big theta lift of the trivial representation 1W from
Sp4(F) to O4,4(F), and similarly for the big theta lift R1(1). There is only one orbit for the double coset

Q4\H4/O4,4(F)= (Q4 ∩O4,4(F))\O4,4(F)/O4,4(F).
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Applying Mackey theory, we have I H4
Q4

( 1
2

)
|O4,4(F)

∼= I O4,4(F)
Q4∩O4,4(F)

( 1
2

)
. Then the sequence is still the same

when restricted to the orthogonal group O4,4(F). The sequence is exact when restricted to the orthogonal
group O4,4(F) due to the structure of degenerate principal series (see [Gan and Ichino 2014, Proposi-
tion 7.2]). By the construction of the extended Weil representation, the sequence is exact as H -modules. �

Similarly, let P4 = M4 N4 be the Siegel parabolic subgroup of GSp(W4) = GSp8(F) where M4 ∼=

GL1(F)×GL4(F) is the Levi part of the parabolic subgroup. Let I(s) be the degenerate normalized
induced representation of GSp8(F) associated to P4, i.e.,

I(s)=
{

f : GSp8(F)→ C | f (pg)= δP4(p)
(1/2)+(s/5) f (g) for p ∈ P4, g ∈ GSp8(F)

}
.

Then we have:

Proposition 4.3.2. There is an exact sequence of GSp8(F)-modules

0 // R3,3(1) // I
( 1

2

)
// R4,0(1) // 0,

where I(s) is the degenerate normalized induced representation of GSp8(F) and R3,3(1) (resp. R4,0(1))
is the big theta lift to GSp8(F) of the trivial representation of GO3,3(F) (resp. GO4,0(F)).

Now we use Mackey theory to study I H4
Q4

(1
2

)
|GO2,2(E)\ which involves the computation for the double

coset Q4\H4/GO2,2(E)\. Denote X4 = Q4\H4 as the projective variety.

4C1. Double cosets. Now let us consider the double coset

Q4\H4/GO2,2(E)\.

Assume that V = H2
E with basis {ei , e′j }1≤i, j≤2 and 〈ei , e′j 〉 = δi j . Fix the basis

{e1,
√

de1, e2,
√

de2, e′1, e′1/
√

d, e′2, e′2/
√

d}

for VF = ResE/F V. The inner product 〈〈−,−〉〉 on VF is given by

〈〈x, y〉〉 := 1
2 trE/F (〈x, y〉)

for x, y ∈ V. Let us fix an embedding i : GO2,2(E)\→ GSO4,4(F).
The double coset decomposition for the case at hand can be obtained from more general case. Assume

that V is a symplectic space or a split quadratic space over E of dimension 2n, with a nondegenerate
bilinear form B : V × V → E . Let U (V ) be the isometry group, i.e.,

U (V )=
{
g ∈ GL(V ) | B(gx, gy)= B(x, y) for all x, y ∈ V

}
which is a symplectic group or an orthogonal group. Then ResE/F V is a vector space over F of
dimension 4n with a nondegenerate bilinear form 1

2 trE/F ◦B.
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Lemma 4.3.3. Let P be a Siegel parabolic subgroup of U (ResE/F V ). Then each point in the homo-
geneous space X = P\U (ResE/F V ) corresponds to a 2n-dimensional maximal isotropic subspace in
ResE/F V and the finite double cosets X/U (V ) can be parametrized by a pair

(dimE E · L , BL),

where L ⊂ ResE/F V is a maximal isotropic subspace with respect to the inner product 〈〈−,−〉〉 over F,

E · L := {e · x | e ∈ E, x ∈ L}

is a linear E-subspace in V and

BL : L/L0× L/L0→
√

d · F (4-1)

is a nondegenerate bilinear form inherited from V, where

L0 = {x ∈ L : B(x, y)= 0 for all y ∈ L}.

Moreover, if L = L0, then L lies in the closed orbit. If L0 = 0, then L lies in the open orbit.

Proof. Under a suitable basis for L , the bilinear form for B|L corresponds to a matrix
√

d · T, where
T ∈ M2n(F). Moreover, we can choose T such that it is a diagonal (resp. an anti-diagonal) matrix if
B(x, y)= B(y, x) (resp. B(y, x)=−B(x, y)). Then

dimE E · L = n+ 1
2 · rank(T ),

which is invariant under U (V )-action. The bilinear form BL corresponds to a matrix
√

d · T ′, i.e.,

T =

0 0 0
0 T ′ 0
0 0 0


where T ′ is invertible and rank(T )= rank(T ′).

Assume that there are two isotropic subspaces L1 and L2 satisfying

dimE E · L1 = dimE E · L2 = l and BL1
∼= BL2 .

This means that there exists g ∈ GLl(E) such that g : E · L1→ E · L2 satisfying

BL1(x, y)= BL2(gx, gy).

It is easy to lift g to gE ∈U (V ) such that gE L1 = L2.
In fact, g=

( g1
0

0
g2

)
lies in a subgroup of GLl(E), which can be regarded as a Levi subgroup of U (V ), and

BL(gx, gy)= BL(g2x ′, g2 y′)

when x − x ′, y− y′ ∈ L0. Then gE =

( g1 g2
g∗1

)
∈U (V ), where g∗1 depends on g1 and V . �

Remark 4.3.4. There is only one closed orbit in the double coset P\U (ResE/F V )/U (V ). When
T = 0, the subspace E · L is the maximal isotropic subspace of V and so U (V ) acts on the subvariety
{L : L = L0} ⊂ X transitively.
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Consider the double coset decomposition of

Q4\H4/GO2,2(E)\.

There are several F-rational orbits in Q4\H4/GO2,2(E)\. By Lemma 4.3.3, there are two invariants for
the orbit GO2,2(E)\ · L:

• the dimension dimE(E · L), and

• the bilinear form BL (defined in (4-1)) up to scaling in F×.

By the classification of 4-dimensional quadratic spaces over F , there are 4 elements lying in the kernel

ker{H 1(F,O4)→ H 1(E,O4)},

which are

• the split quaternion algebra Mat2,2(F) with q(v)= det(v) for v ∈Mat2,2(F),

• the quaternion division algebra D(F) with the norm map ND/F ,

• the nonsplit 4-dimensional quadratic space V3 = E ⊕H with q(e, x, y)= NE/F (e)− xy, and

• V4 = εV3 with ε ∈ F× \ NE/F (E×).

However, we consider the double coset

Q4\H4/GO2,2(E)\

for the similitude groups and observe that V3 and V4 are in the same orbit in Q4\H4/GO2,2(E)\. More pre-
cisely, Mat2,2(F), D(F) and E⊕H are three representatives in the union of the open orbits GO2,2(E)\ ·L
in X4/GO2,2(E)\.

Proposition 4.3.5. Pick a point L ∈ X4/GO2,2(E)\ lying in an open orbit. Then the stabilizer of L in
GO2,2(E)\ is isomorphic to the similitude group GO(L).

Proof. For g ∈ GO2,2(E)\ with g(L)= L , we have

〈gl1, gl2〉 = λ(g) · 〈l1, l2〉

and so 〈〈gl1, gl2〉〉 = λ(g) · 〈〈l1, l2〉〉. This means g ∈GO(L). Conversely, if h ∈GO(L , (1/
√

d)qE |L), set

hE : x ⊗ e 7→ h(x)⊗ e

for x ⊗ e ∈ L ⊗ E ∼= L · E = V. Then hE(L)= L and

〈hE(x1⊗ e1), hE(x2⊗ e2)〉 = e1e2λ(h)〈〈x1, x2〉〉 = λ(h)〈x1⊗ e1, x2⊗ e2〉,

i.e., hE ∈ GO2,2(E)\. Then we get a bijection between the similitude orthogonal group GO(L) and the
stabilizer of L in GO2,2(E)\. Observe that the map h 7→ hE is a group homomorphism. Then GO(L)
is isomorphic to the stabilizer of L via the map h 7→ hE . �
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There are three F-rational open orbits GO2,2(E)\ · L where L represents one of Mat2,2(F), D(F) or
E ⊕H, whose stabilizers are GO2,2(F),GO4,0(F) and GO3,1(F) respectively. There is one closed orbit
GO2,2(E)\ · L which has stabilizer

GO2,2(E)\ ∩ Q4 =: Q\ ∼=

{(
A−1

∗

0 λAt

) ∣∣∣ A ∈ GL2(E), λ ∈ F×
}
.

There are two intermediate orbits with representatives L1, L2 and dimE(E · L i )= 3. The stabilizers are
isomorphic to

(GL1(E)×GO1,1(F)) ·Mat2,2(F) and (GL1(E)×GO(VE)) ·Mat2,2(F),

where VE is the 2-dimensional quadratic space over F whose discriminant algebra is E .

Remark 4.3.6. For (g, t) ∈ GL2(E)× F×, we set

β((g, t))= (g, σ (g) · t) ∈ GL2(E)×GL2(E).

Then β : GSO3,1(F)→ GSO2,2(E)\ is an embedding due to the exact sequences

1 // E×
i1

// GL2(E)× F× //

β

��

GSO3,1(F)

��

// 1

1 // E×
i2
// GL2(E)×GL2(E) // GSO2,2(E) // 1

where i1(e)= (e, NE/F (e)−1) and i2(e)= (e, e−1) for e ∈ E×.

There are several orbits for X4/GO2,2(E)\. By Mackey theory, there is a decreasing filtration of
GO2,2(E)\-modules for I H4

Q4
(s)|GO2,2(E)\ .

4C2. Filtration. Consider the filtration

I H4
Q4
(s)= I2(s)⊃ I1(s)⊃ I0(s)⊃ 0

of I H4
Q4
(s)|GO2,2(E)\ with a sequence of subquotients

I0(s)= indGO2,2(E)\

GO2,2(F) C⊕ indGO2,2(E)\

GO4,0(F) C⊕ indGO2,2(E)\

GO3,1(F) C,

I2(s)/I1(s)∼= indGO2,2(E)\

Q\ δs+1
Q\ ,

where Q\ is the Siegel parabolic subgroup of GO2,2(E)\ with modular character δQ\ and

I1(s)/I0(s)∼= indGO2,2(E)\

(GL1(E)×GO1,1(F))·N δ
1
2+

s
3

Q δ
−

1
2

1 ⊕ indGO2,2(E)\

Q′ δ
1
2+

s
3

Q δ
−

1
2

2

where Q′ = (GL1(E)×GO(VE)) · N , N ∼=Mat2,2(F) and

δi (t, h)= |NE/F (t2) · λV (h)−2
|F

for t ∈ GL1(E) and h ∈ GO1,1(F) or GO(VE), where VE is the nonsplit 2-dimensional quadratic space.
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Remark 4.3.7. We would like to highlight the fact that on the open orbits related to I0(s), the group
embedding GO2,2(F) ↪→ GO2,2(E)\ (and similarly for the other two group embeddings) is not induced
from the geometric embedding i :GO(L) ↪→GO(L⊗F E), but the composite map Adhδ ◦i of the adjoint
map Adhδ and the geometric embedding i where

hδ =
(√

d
1

)
∈ GO(2, 2)(E).

However, it does not affect the results when we consider the distinction problems for the similitude
groups. In Section 4D, we will show that the results on the open orbits determine the distinction problems
dim HomGO2,2(E)\

(
I H4

Q4

(1
2

)
, 6
)

when 6 is a generic representation.

Recall that

GSp4(E)
\
= {g ∈ GSp4(E) | λW (g) ∈ F×}.

When we deal with the case

IndGSp8(F)
P4

δ
s/5
P4
|GSp4(E)\,

where P4 is the Siegel parabolic subgroup of GSp8(F) with modular character δP4 , the above results still
hold. More precisely, set

I(s)=
{

f : GSp8(F)→ C | f (xg)= δP4(x)
(1/2)+(s/5) f (g) for x ∈ P4, g ∈ GSp8(F)

}
.

There is a filtration

I0(s)⊂ I1(s)⊂ I2(s)= I(s)|GSp4(E)\

of I(s)|GSp4(E)\ such that

• I0(s)∼= indGSp4(E)
\

GSp4(F)
C,

• I1(s)/I0(s)∼= indGSp4(E)
\

M ′N ′ δ
(1/2)+(s/5)
P4

δ
−1/2
M ′N ′ and

• I2(s)/I1(s)∼= indGSp4(E)
\

P\ δ
(s+1)/3
P\ ,

where P\ is the Siegel parabolic subgroup of GSp4(E)
\,

M ′ ∼= GL1(E)×GL2(F), N ′ ∼=Mat1,1(E)⊕Mat2,2(F)

and

δM ′N ′(t, g)= |NE/F (t)4 · λW (g)−4
|F

for (t, g) ∈ GL1(E) × GL2(F). Here the group embedding GSp4(F) ↪→ GSp4(E)
\ in I0(s) is the

composition map Adgδ ◦i ′ where i ′ : GSp(W2) ↪→ GSp(W2⊗F E) is the geometric embedding and

gδ =
(√

d
1

)
∈ GSp4(E).
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4D. The distinction problem for GSp4. Let us recall what we have obtained. Let τ ∈ Irr(GSp4(E)).
Since τ |Sp4(E) is multiplicity-free due to [Adler and Prasad 2006, Theorem 1.4], τ |GSp4(E)\ is multiplicity-
free. Assume that τ = θ(π1 �π2) participates in the theta correspondence with GSO2,2(E). Then the
see-saw identity implies that

HomGSp4(F)(τ,C)⊂ HomGSp4(F)(22(6),C)∼= HomGO2,2(E)\(R2(1),6),

where R2(1) is the image of the big theta lift to H4 of the trivial representation of GSp4(F) in I H4
Q4

( 1
2

)
and 6 is the irreducible representation of GO2,2(E) such that τ = θ(6). In fact, if π1 � π2, then
6 = IndGO2,2(E)

GSO2,2(E)(π1 � π2). If π1 ∼= π2, then there are two extensions to GO2,2(E) of π1 � π2. The
representation 6 is the unique extension of π1 �π1 which participates into the theta correspondence with
GSp4(E), denoted by (π1 �π1)

+.

Lemma 4.4.1. Assume that π1 � π2 ∈ Irr(GSO2,2(E)). Let 6 ∈ Irr(GO2,2(E)) such that 6|GSO2,2(E) ⊃

π1 �π2 and 6 has a nonzero theta lift to GSp4(E). Then

dim HomGO(L)(6,C)= dim HomGSO(L)(π1 �π2,C),

where GO(L) ↪→GO(L⊗F E)=GO2,2(E) and the 4-dimensional quadratic space L is one of Mat2,2(F),
D(F) or E ⊕HF .

Proof. If π1 6= π2, then it follows from Frobenius reciprocity. If π1 = π2 and L is either Mat2,2(F) or
D(F), then we consider the see-saw diagram

GO2,2(E)\ GSp4(F)

GO(L) GSp2(E)
\

where GSp2(E)
\
= {g ∈ GSp2(E)|λW (g) ∈ F×}. We have

HomGO(L)(6⊗ ν,C)= HomGO(L)(6, ν)= HomGSp2(E)\(22(ν), π1)= 0,

because the big theta lift 22(ν) to GSp4(F) is zero by the conservation relation. If π1 = π2 and L is
E ⊕HF , then

HomGO(L)(6, ν)= HomGSp2(E)\(IndGSp4(F)
GSp4(F)+

22(ν),C)= 0.

(See Remark 4.2.2.) Hence

HomGSO(L)(π1 �π2,C)= HomGO(L)(6⊕ (6⊗ ν),C)= HomGO(L)(6,C).

This finishes the proof. �

Lemma 4.4.2. Given a representation τ ∈ Irr(GSp4(E)) with ωτ |F× = 1, we have

dim HomGSp4(F)(τ
g,C)= dim HomGSp4(F)(τ,C)= dim HomGSp4(F)(τ

∨,C),

where τ g(x)= τ(gxg−1) for g ∈ GSp4(E).
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Proof. Note that τ g ∼= τ and so dim HomGSp4(F)(τ
g,C)= dim HomGSp4(F)(τ,C). Since ωτ |F× is trivial

and τ∨ ∼= τ ⊗ω−1
τ , we have

HomGSp4(F)(τ
∨,C)= HomGSp4(F)(τ ⊗ω

−1
τ ,C)= HomGSp4(F)(τ, ωτ |F×)= HomGSp4(F)(τ,C). �

Remark 4.4.3. We have a similar statement for the group GO(V ) when V is a 4-dimensional split
quadratic space over E .

There is another key input for the GL4-distinction problems in our proof of Theorem 1.1.

Theorem 4.4.4 [Matringe 2011, Theorem 5.2]. Given a generic representation π of GLn(E) with a
Langlands parameter φπ =41⊕42⊕· · ·⊕4t with 4i :WDE→GLni (C) irreducible and

∑t
i=1 ni = n,

then π is GLn(F)-distinguished if and only if there is a reordering of 4′i s and an integer r between 1
and 1

2 t such that 4σi+1 =4
∨

i for i = 1, 3, . . . , 2r − 1 and 4i is conjugate-orthogonal for i > 2r .

Lemma 4.4.5. Let π be a square-integrable representation of GL2(E). Then π is GL2(F)-distinguished
if and only if π is D×(F)-distinguished. If π = π(χ−1, χσ ), then π is both GL2(F)-distinguished and
D×(F)-distinguished. Let π0 = π(χ1, χ2) with χ1 6= χ2, χ1|F× = χ2|F× = 1 be an irreducible smooth
representation of GL2(E). Then π0 is GL2(F)-distinguished but not D×(F)-distinguished. These exhaust
all generic GL2(F)-distinguished representations of GL2(E).

Proof. If π is square-integrable, then it follows from [Prasad 1992, Theorem C]. Let π0 = π(χ1, χ2). By
Mackey theory, we know that

dim HomD×(F)(π0,C)= dim HomE×(χ1χ
σ
2 ,C)=

{
1 if χ1χ

σ
2 = 1,

0 otherwise.

If χ1 6= χ2 and χ1|F× = χ2|F× = 1, then χ1χ
σ
2 6= 1. Thus π0 is not D×(F)-distinguished. Since the

Langlands parameter φπ = χ−1
⊕ χσ (resp. φπ0) is conjugate-orthogonal in the sense of [Gan et al.

2012, §3], π (resp. π0) is GL2(F)-distinguished due to [Gan and Raghuram 2013, Theorem 6.2] or
Theorem 4.4.4. The last claim follows from Theorem 4.4.4. �

Lemma 4.4.6. Let π be an essentially discrete series representation of GL2(E). Let 5= JP(π |−|E , π)

be the nongeneric representation of GL4(E). Then the following statements are equivalent:

(i) 5 is either GL4(F)-distinguished or (GL4(F), ωE/F )-distinguished.

(ii) 5∨ ∼=5σ .

(iii) IP(π |−|E , π) is both GL4(F)-distinguished and (GL4(F), ω)-distinguished.

Proof. See [Gurevich et al. 2018, Theorem 6.5]. �

4D1. The Langlands correspondence for GSp4. In this part, we will recall the Langlands correspondence
for GSp4 which has been set up in [Gan and Takeda 2011a].

Let 5(GSp4) be the set of (equivalence classes of) irreducible smooth representation of GSp4(F). Let
Hom(WDF ,GSp4(C)) be the set of (equivalence classes of) admissible homomorphisms

WDF → GSp4(C).
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Theorem 4.4.7 (Gan–Takeda). There is a surjective finite to one map

L :5(GSp4)→ Hom(WDF ,GSp4(C))

with the following properties:

(i) τ is a (essentially) discrete series representation of GSp4(F) if and only if its L-parameter φτ = L(τ )
does not factor through any proper Levi subgroup of GSp4(C).

(ii) For an L-parameter φ ∈ Hom(WDF ,GSp4(C)), its fiber 5φ can be naturally parametrized by the
set of irreducible characters of the component group

π0(Z(Im(φ))/ZGSp4(C)
).

This component group is either trivial or equal to Z/2Z. When it is Z/2Z, exactly one of the two repre-
sentations in5φ is generic and it is the one indexed by the trivial character of π0(Z(Im(φ))/ZGSp4(C)

).

(iii) The similitude character sim(φτ ) of φτ equals the central characterωτ of τ . Here sim:GSp4(C)→C×

is the similitude character of GSp4(C).

(iv) The L-parameter of τ ⊗ (χ ◦ λW ) is equal to φτ ⊗ χ . Here λW : GSp4(F)→ F× is the similitude
character of GSp4(F), and we have regarded χ as both a character of F× and a character WF by
local class field theory.

Definition 4.4.8. An irreducible representation τ of GSp4(E)
\ occurs on the boundary of I(s) if

HomGSp4(E)\(Ii+1(s)/Ii (s), τ ) 6= 0 for i = 0 or 1.

In [Lu 2017a], we have verified the Prasad conjecture for GSp4 when τ is a tempered representation
by showing that τ does not occur on the boundary of I

( 1
2

)
. After discussing with Dmitry Gourevitch,

we realized that [Gourevitch et al. 2019, Proposition 4.9] can imply the Prasad conjecture for GSp4 when
the L-packet 5φτ is generic. Thus we will give a slightly different proof of Theorem 1.1 from the one
in [Lu 2017a].

We repeat the statements of Theorem 1.1 as below.

Theorem 4.4.9. Assume that τ ∈ Irr(GSp4(E)) with a central character ωτ satisfying ωτ |F× = 1.

(i) If τ = θ(6) is an irreducible representation of GSp4(E), where 6 is an irreducible representation of
GO4,0(E), then τ is not GSp4(F)-distinguished.

(ii) Suppose6= (π1�π1)
+ is an irreducible representation of GO2,2(E) and6= IndGO2,2(E)

GSO2,2(E)(π1�π2)

if π1 6= π2. If τ = θ(6) is generic, then

dimHomGSp4(F)(τ,C)=



2 if πi �π0 are both GL2(F)-distinguished,
1 if π1�π2 but πσ1 ∼=π

∨

2 ,

1 if π1∼=π2 is GL2(F)-distinguished but not (GL2(F),ωE/F)-distinguished,
1 if π2 is GL2(F)-distinguished and π1∼=π0,

0 otherwise.



2442 Hengfei Lu

Here π0 = π(χ1, χ2) with χ1 6= χ2, χ1|F× = χ2|F× = 1.

(iii) Assume that τ is not in case (i) or (ii), so that τ = θ(5� χ), where 5� χ is a representation of
GSO3,3(E). If τ is generic, then

dim HomGSp4(F)(τ,C)=

{
1 if φ5 is conjugate-orthogonal,
0 otherwise.

Proof. (i) If 6 is a representation of GO4,0(E), then τ = θ(6)=2(6) and

HomGSp4(F)(2(6),C)∼= HomGO4,0(E)\(2W,D′,ψ(1),6+),

where D′=ResE/F DE =D(F)⊕H2 is the 8-dimensional quadratic vector space over F with determinant 1
and Hasse invariant −1 due to Lemma 4.2.3 and 2W,D′,ψ(1) is the big theta lift to GO(V ′) of the trivial
representation 1. Note that the first occurrence of the trivial representation is dimF W = 4 in the Witt
tower D⊕Hr, which is bigger than 2. Thus 2W,D′,ψ(1)= 0. Hence

HomGSp4(F)(2(6),C)= 0

and so τ = θ(6) is not GSp4(F)-distinguished.

(ii) By Proposition 4.3.1, there is an exact sequence

0 // R2(1) // I H4
Q4

( 1
2

)
// ν⊗ R1(1) // 0 (4-2)

of H4-representations, where Ri (1) is the big theta lift to H4 of the trivial representation 1 of GSp2i (F).
We take the right exact contravariant functor HomGO2,2(E)\(−, 6) with respect to (4-2) and get a short
exact sequence

0→ HomGO2,2(E)\(R1(1))⊗ ν,6)→ HomGO2,2(E)\
(
I H4

Q4

( 1
2

)
, 6
)
→ HomGO2,2(E)\(R2(1),6). (4-3)

Consider the following double see-saw diagrams:

GSp4(E)
\ H4 GSp2(E)

\

GSp4(F) GO2,2(E)\ GL2(F)

Note that HomGO2,2(E)\(R2(1),6)∼=HomGSp4(F)(τ,C). There is a key observation due to Wee Teck Gan
that GO2,2(E)\ is a subgroup of GSO4,4(F). One has

HomGO2,2(E)\(R1(1)⊗ ν,6)= HomGO2,2(E)\(R1(1),6)∼= HomGSp2(F)(21(6),C).

Here 21(6) is the big theta lift to GSp2(E) of 6, which is zero unless π1 = π2. Then

dim HomGSp4(F)(τ,C)+ dim HomGSp2(F)(22(6),C)≥ dim HomGO2,2(E)\
(
I H4

Q4

( 1
2

)
, 6
)
. (4-4)



The Prasad conjectures for GSp4 and PGSp4 2443

Observe that GO2,2(E)\ is the fixed point of a involution on H4, which is given by the scalar matrix

h =
√

d ∈ GO2,2(E)\ ⊂ H4

acting on H4 by conjugation. Due to [Ólafsson 1987, Theorem 2.5], there exists a polynomial f on H4

such that the complements of the open orbits in the double coset Q4\H4/GO2,2(E)\ is the zero set of f .
Thanks to [Gourevitch et al. 2019, Proposition 4.9], the multiplicity dim HomGO2,2(E)\

(
I H4

Q4

( 1
2

)
, 6
)

is at
least dim HomGO2,2(E)\

(
I0
( 1

2

)
, 6
)

where the submodule I0 corresponds to the open orbits. More precisely,

I0
( 1

2

)
∼= indGO2,2(E)\

GO4,0(F) C⊕ indGO2,2(E)\

GO2,2(F) C⊕ indGO2,2(E)\

GO3,1(F) C

and

dim HomGO2,2(E)\
(
I H4

Q4

( 1
2

)
, 6
)

≥ dim HomGO2,2(E)\
(
indGO2,2(E)\

GO4,0(F) C⊕ indGO2,2(E)\

GO2,2(F) C⊕ indGO2,2(E)\

GO3,1(F) C, 6
)
. (4-5)

Together with (4-4), we have

dimHomGSp4(F)(τ,C)+dimHomGSp2(F)(22(6),C)

≥ dimHomGO2,2(E)\
(
I H4

Q4

( 1
2

)
,6
)

≥HomGO2,2(E)\
(
indGO2,2(E)\

GO4,0(F) C⊕indGO2,2(E)\

GO2,2(F) C⊕indGO2,2(E)\

GO3,1(F) C,6
)

= dimHomGO4,0(F)(6,C)+dimHomGO2,2(F)(6,C)+dimHomGO3,1(F)(6,C)

= dimHomGSO4,0(F)(π1�π2,C)+dimHomGSO2,2(F)(π1�π2,C)+dimHomGSO3,1(F)(π1�π2,C). (4-6)

The last equality of (4-6) holds due to Lemma 4.4.1, which also equals

dim HomD×(F)(π1,C) dim HomD×(F)(π2,C)+ dim HomGL2(F)(π1,C) dim HomGL2(F)(π2,C)

+ dim HomGL2(F)(π
σ
1 , π

∨

2 ).

In order to get the upper bound for the multiplicity dim HomGSp4(F)(τ,C), let us turn the table around.
There is an exact sequence

0 // R3,3(1) // I
( 1

2

)
// R4,0(1) // 0

of GSp8(F)-representations, where I(s) is the degenerate principal series of GSp8(F) and Rm,n(1) is
the big theta lift to GSp8(F) of the trivial representation 1 of GOm,n(F). There is only one open orbit in
the double coset decomposition P4\GSp8(F)/GSp4(E)

\. In a similar way, by Lemma 4.4.2, [Ólafsson
1987, Theorem 2.5] and [Gourevitch et al. 2019, Proposition 4.9],

dim HomGSp4(F)(τ,C)= dim HomGSp4(E)\
(
I0
( 1

2

)
, τ
)
≤ dim HomGSp4(E)\

(
I
( 1

2

)
, τ
)

≤ dim HomGSp4(E)\(R
3,3(1), τ )+ dim HomGSp4(E)\(R

4,0(1), τ )

= dim HomGO3,3(F)(2
+

6 (τ ),C)+ dim HomGO4,0(F)(2
+

4 (τ ),C). (4-7)
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Now we separate them into two cases: π1 � π2 and π1 ∼= π2.

(A) If π1 � π2, then the theta lift 21(6) to GSp2(E) of 6 is zero,

HomGO2,2(E)\(R1(1)⊗ ν,6)= HomGSp2(F)(21(6),C)= 0

and 6 = IndGO(2,2)(E)
GSO(2,2)(E)(π1 �π2). There are several subcases:

(A1) If πi (i = 1, 2) are both D×(F)-distinguished, which implies that φπi are conjugate-orthogonal and
so that πi are both GL2(F)-distinguished due to Lemma 4.4.5, then π∨1 6∼= π

σ
2 . Otherwise, πσ1 ∼= π

∨

1
∼= πσ2 ,

which contradicts the assumption π1 � π2. Then the inequality (4-6) can be rewritten as

dim HomGSp4(F)(τ,C)≥ dim HomGO2,2(E)\
(
I H4

Q4

( 1
2

)
, 6
)
≥ 2. (4-8)

Flicker [1991] proved that (GLn(E),GLn(F)) is a Gelfand pair, which implies that

1≥ HomGSO3,3(F)(2
+

6 (τ ),C)= HomGO3,3(F)(2
+

6 (τ ),C).

Thus
dim HomGSp4(F)(τ,C)≤ 1+ 1 (4-9)

due to the upper bound (4-7). Then (4-8) and (4-9) imply

dim HomGSp4(F)(τ,C)= 2.

(A2) If π1 = π(χ1, χ2), χ1 6= χ2, χ1|F× = χ2|F× = 1 and π2 is GL2(F)-distinguished, then Lemma 4.4.5
implies that both φπ1 and φπ2 are conjugate-orthogonal, π∨1 � π

σ
2 and

HomGO4,0(F)(6,C)= 0= HomGO3,1(F)(6,C).

Moreover, HomGSO3,3(F)(2
+

6 (τ ),C) 6= 0. Since

dim HomGO2,2(E)\
(
I H4

Q4

(1
2

)
, 6
)
≥ dim HomGO(2,2)(F)(6,C)+ 0= 1,

the desired equality dim HomGSp4(F)(τ,C)= 1 follows from (4-6) and (4-7).

(A3) If πσ1 ∼= π
∨

2 , then Lemma 4.4.1 implies

dim HomGO3,1(F)(6,C)= dim HomGSO3,1(F)(π1 �π2,C)= 1.

By the previous arguments, we know that HomGO2,2(F)(6,C)= 0 in this case. Therefore

dim HomGSp4(F)(τ,C)= 1.

In other cases, if πσ1 � π
∨

2 and either φπ1 or φπ2 is not conjugate-orthogonal, then

dim HomGSp4(F)(τ,C)= 0.

If not, then
dim HomGSp4(F)(τ,C)= dim HomGSO3,3(F)(2

+

6 (τ ),C)= 1.
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Set5�χ =2+6 (τ )|GSO3,3(E) as a representation of GSO3,3(E), which is irreducible due to Proposition 3.7.
Then 5 is GL4(F)-distinguished and so φ5 is conjugate-orthogonal.

We consider the following cases:

• If φπ1 is conjugate-orthogonal, then φπ2 is conjugate-orthogonal by Theorem 4.4.4.

• If φπ1 is irreducible, by the assumption πσ1 �π
∨

2 and Theorem 4.4.4, then φπ1 is conjugate-orthogonal,
which will imply that φπ2 is conjugate-orthogonal as well.

• Now suppose that both φπ1 and φπ2 are reducible and that neither φπ1 nor φπ2 is conjugate-orthogonal.
Assume that φπi = χi1+χi2 (i = 1, 2). Then

φ5 = χ11+χ12+χ21+χ22, χ11χ12 = χ21χ22 : E×/F×→ C×.

Thanks to Theorem 4.4.4, χ11χ
σ
21 = 1 and χ12 6= χ22 but χ12|F× = 1 = χ22|F× . Furthermore,

χ21χ22 · (χ21χ22)
σ
= 1 implies

χσ21χ21 = 1.

Similarly χσ11χ11= 1. Thus, χσ21= χ
−1
21 and χ11= χ21. This implies that χ12= χ22 which contradicts

the condition χ12 6= χ22.

Hence the Langlands parameter φ5 can not be conjugate-orthogonal. Thus HomGSp4(F)(τ,C) = 0 if
πσ1 � π

∨

2 and either φπ1 or φπ2 is not conjugate-orthogonal.

(B) If π1 = π2 is a discrete series representation, then 21(6) = π1 due to [Atobe and Gan 2017,
Proposition 5.4]. If π1 = π2 is an irreducible principal series representation, applying the functor
HomGO4(E)(−, 6) on the Kudla filtration (see [Gan and Takeda 2011b, Theorem A1]), we have

21(6)= π1

except for π1 = π(χ, χ). If π1 = π(χ, χ), then there is an exact sequence

π1 // 21(π1 �π1) // π1 // 0

of GL2(E)-representations, where we can not deduce 21(π1 �π1) directly. There are two choices that
21(π1 �π1) is either π1 or ExtGL2(E)(π1, π1). We will show that 21(π1 �π1) has a unique Whittaker
model which can imply that 21(π1 �π1)= π1. Let N =

{( 1
0

n
1

)
| n ∈ E

}
be the subgroup of GSp2(E).

Let ψN be a nontrivial character of N. Consider the Whittaker model of 21(π1 �π1),

dim HomN (21(π1 �π1), ψN )= dim HomPGL2(E)(π1 �π1,C)≤ 1

due to [Lu 2017b, Proposition 3.4], which implies that 21(6)= π1. Therefore the exact sequence (4-3)
implies the inequality

dim HomGSp4(F)(τ,C)≥ dim HomGO2,2(E)\
(
I H4

Q4

( 1
2

)
, 6
)
− dim HomGSp2(F)(π1,C). (4-10)

We separate them into the following cases:
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(B1) If π1 is D×(F)-distinguished, then dim HomGO2,2(E)\
(
I0
( 1

2

)
, 6
)
= 3. Again, we consider the upper

bound (4-7) and the lower bound (4-10) to obtain the equality

dim HomGSp4(C)
(τ,C)= 2.

(B2) If π1 ∼= π0 = π(χ1, χ2) with χ1 6= χ2 and χ1|F× = χ2|F× = 1, then

dim HomGO4,0(F)(6,C)= 0.

In a similar way, we can get dim HomGSp4(F)(τ,C)= 1.

(B3) If π1 is not GL2(F)-distinguished but (GL2(F), ωE/F )-distinguished, then

HomGSp2(F)(π1,C)= 0 and HomGO3,1(F)(6,C) 6= 0,

which implies that dim HomGO2,2(E)\
(
I H4

Q4

( 1
2

)
, 6
)
≥ 1 = dim HomGSO3,3(F)(2

+

6 (τ ),C). Thus we can
deduce that dim HomGSp4(F)(τ,C)= 1.

(iii) If τ is not in case (i) or (ii), then the first occurrence index of τ of GSp4(E) in the Witt tower Hr
E

is 3. Observe that 2+6 (τ )|GSO3,3(E) is irreducible unless τ = IndGSp4(E)
Q(Z) (χ, π) with χ = |−|E .

Suppose that τ 6= IndGSp4(E)
Q(Z) (|−|E , π). Consider the double see-saw diagrams

GO2,2(E)\ GSp8(F) GO3,3(E)\

GO4,0(F) GSp4(E)
\ GO3,3(F)

By [Kudla and Rallis 1992, p. 211] and Proposition 4.3.1, there are two exact sequences

0 // R3,3
(
1
)

// I
( 1

2

)
// R4,0(1) // 0

and

0 // R4,0(1)⊕ R2,2
(
1
)

// I
(
−

1
2

)
// R5,1(1)∩ R3,3(1) // 0

of GSp8(F)-modules, where I(s) is the degenerate principal series of GSp8(F) and Rm,n(1) is the big
theta lift to GSp8(F) of the trivial representation 1 of GOm,n(F). Assume that τ is generic and its theta
lift to GO2,2(E) is zero. Then

HomGSp4(E)\(R
4,0(1), τ )= HomGO4,0(F)(2

+

4 (τ ),C)= 0,

so that

dim HomGSp4(E)\
(
I
(
−

1
2

)
, τ
)
= dim HomGSp4(E)\(R

5,1(1)∩ R3,3(1), τ ).
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Thus applying Lemma 4.4.2,

dim HomGSp4(F)(τ,C)= dim HomGSp4(E)\
(
I0
( 1

2

)
, τ
)

≤ dim HomGSp4(E)\
(
I
( 1

2

)
, τ
)

≤ dim HomGSp4(E)\(R
3,3(1), τ )

= dim HomGO3,3(F)(2
+

6 (τ ),C)

= dim HomGO3,3(F)((5�χ)+,C) (4-11)

where (5�χ)± are two extensions to GO3,3(E) of 5�χ . On the other hand, one has

HomGO3,3(F)((5�χ)−,C)= HomGO3,3(F)(2
+

6 (τ )⊗ ν,C)∼= HomGSp4(E)\(2(ν), τ )= 0.

Then we have an inequality

dim HomGSp4(F)(τ,C)≤ dim HomGSO3,3(F)(5�χ,C)= dim HomGL4(F)(5,C). (4-12)

Now we want to obtain the reverse inequality. Note that

1 // R5,1(1)∩ R3,3(1) // R3,3(1) // R2,2(1) // 1

is exact (see [Gan and Ichino 2014, Proposition 7.2]). There is an injection

HomGSp4(E)\(R
3,3(1), τ ) ↪→ HomGSp4(E)\(R

5,1(1)∩ R3,3(1), τ )= HomGSp4(E)\
(
I
(
−

1
2

)
, τ
)

(4-13)

since the theta lifts to GO2,2(E) and GO4,0(E) of τ are both zero by the assumption.
We will show that τ does not occur on the boundary of I

(
−

1
2

)
under the assumptions. If τ is nondiscrete,

then τ = JQ(Z)(χ, π), χ 6= 1, due to [Gan and Takeda 2011b, Table 1]. Note that

I1(s)/I0(s)= indGSp4(E)
\

(E××GSp2(F))N ′
χ ′,

where N ′ ∼= E ⊕Mat2,2(F) and χ ′(t, g)= |NE/F (t)s+
1
2 · λ(g)−2s−3

|F . Set

P ′ = (GL1(E)×GSp2(E)
\) · N ′.

Thanks to the second adjoint theorem due to Bernstein, we have

Hom
(
I1
(
−

1
2

)
/I0

(
−

1
2

)
, τ
)
= HomE××Sp2(E)×F×

(
1⊗ indSp2(E)

Sp2(F)
C⊗ |−|−2

F , R P̄ ′(JQ(Z)(χ, π))
)
= 0,

because R P̄ ′(J (χ, π))= χ ⊗π +χ
−1
⊗πχ and χ 6= 1. Moreover, the cuspidal supports of JQ(Z)(χ, π)

and I2
(
−

1
2

)
/I1

(
−

1
2

)
are disjoint. Therefore τ = JQ(Z)(χ, π) does not occur on the boundary of I

(
−

1
2

)
and so

dim HomGSp4(E)\
(
I
(
−

1
2

)
, τ
)
≤ dim HomGSp4(E)\

(
I0
(
−

1
2

)
, τ
)
= dim HomGSp4(F)(τ,C).
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Note that if τ is a discrete series representation, then we have

HomGSp4(E)\
(
Ii+1

(
−

1
2

)
/Ii
(
−

1
2

)
, τ
)
= 0

for i = 0, 1. If not, then we will get a contradiction. Suppose that

HomGSp4(E)\
(
I1
(
−

1
2

)
/I0

(
−

1
2

)
, τ
)
6= 0.

Then HomGL1(E)(1, R P̄ ′(τ )) 6= 0, which contradicts Casselman’s criterion [Casselman and Miličić 1982]
for the discrete series representation that

HomGL1(E)(|−|
s
E , R P̄ ′(τ )) 6= 0

implies s < 0. Similarly,

HomGSp4(E)\
(
I2
(
−

1
2

)
/I1

(
−

1
2

)
, τ
)
= HomGL2(E)×F×(δ

1/6
P\ , RP\(τ ))= 0

and so

dim HomGSp4(E)\
(
I
(
−

1
2

)
, τ
)
≤ dim HomGSp4(E)\

(
I0
(
−

1
2

)
, τ
)
. (4-14)

Therefore one can combine (4-12)–(4-14) to obtain that

dim HomGSp4(F)(τ,C)= dim HomGSp4(E)\
(
I0
(
−

1
2

)
, τ
)

= dim HomGSO3,3(F)(2
+

6 (τ ),C)

= dim HomGL4(F)(5,C). (4-15)

Thus the left-hand side is 1 if and only if 5 is GL4(F)-distinguished.
If τ = IndGSp4(E)

Q(Z) (|−|E , π) is irreducible, then θ6(τ ) = JP(π |−|E , π)�ωπ |−|E . It suffices to show
that IP(π |−|E , π) is GL4(F)-distinguished if and only if φ5 is conjugate-self-dual. This follows from
Lemma 4.4.6.

Hence we have finished the proof. �

Remark 4.4.10. We can also show that if τ = θ(π1 �π2) with π∨1 ∼= π
σ
2 is generic, then φ5 = φπ1⊕φπ2

is not only conjugate-orthogonal but also conjugate-symplectic. Keeping this fact in mind will be helpful
when we verify the Prasad conjecture for GSp4 in Section 6C.

Corollary 4.4.11. The pair (GSp4(E)
\,GSp4(F)) is not a Gelfand pair.

For a generic representation τ of GSp4(E) with ωτ |F× = χ2
F , we may consider the multiplicity

dim HomGSp4(F)(π, χF )

which is equal to dim HomGSp4(F)(π ⊗ χ
−1
E ,C), where χE is a character of E× and χF = χE |F× . We

will focus on the case χF = ωE/F when we verify the Prasad conjecture for GSp4 in Section 6C.
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5. The GSp1,1(F)-distinguished representations

5A. Notation.

• D (resp. DE ) is a quaternion division algebra over F (resp. E) with a standard involution ∗.

• πDE is the Jacquet–Langlands lift to D×E (E) of π and πDE �πDE is a representation of GSO4,0(E).

• W (resp. V) is a right skew-Hermitian (resp. left Hermitian) D-vector space with isometry group
U (W) (resp. U (V)).

• U∗ is the dual D-vector space of U in ResR/DVR .

• W⊗D V is a symplectic F-vector space.

• GO∗3,0 =GL1(D4)×Gm/{(t−1, t2)} (resp. GO∗r,r ) is the inner form of GO3,3 (resp. GO2r,2r ) defined
over F and D4 is the division F-algebra of degree 4.

• I(s) (resp. I (s)) is the degenerate principal series of GSp2,2(F) (resp. GO∗2,2(F)).

• GSO∗2,0 is the inner form of GSO3,1 defined over F.

• GO5,1 = GL2(DE)×Gm/{(t−1, t2)} is the pure inner form of GO3,3 defined over E and 5D �χ is
a representation of GSO5,1(E).

• B1 is the minimal parabolic subgroup of GL2(DE)(E).

• GSp1,0 = D× (resp. Sp1,0) is the inner form of GL2 (resp. SL2).

• P(YD) (resp. Q) is the Siegel parabolic subgroup of GU(V) (resp. GO∗2,2(F)).

• R3(1) (resp. R2(1)) is the big theta lift to GSp2,2(F) of the trivial representation of GO∗3,0(F)
(resp. GO∗1,1(F)) and R1, j (1) is the big theta lift to GO∗2,2(F) from GSp1, j (F).

• θ−2 (τ ) (resp. 2−2 (τ )) is the small (resp. big) theta lift to GO5,1(E) of τ of GSp4(E).

• 2W,V,ψ(π) is the big theta lift to GU(V) of π of GU(W).

• γF is the Weil index and γF (ψ ◦q)∈µ8 for the character of second degree x 7→ψ(q(x, x)), where q
is a nondegenerate symmetric F-bilinear form.

5B. Theta lifts for quaternionic unitary groups. In order to study the GSp1,1-distinction problems, we
need to introduce the local theta lift for quaternionic unitary groups, following [Gan and Tantono 2014;
Gurevich and Szpruch 2015; Yamana 2011].

5B1. Morita equivalence. Let R =Mat2,2(E) be the split quaternion algebra over E . Any left Hermitian
(resp. right skew-Hermitian) free R-module (WR, h R) corresponds to a symplectic (resp. orthogonal)
space (WE , hE) over E and

dimE WE = 2 · dimR WR,Aut(WR, h R)= Aut(WE , hE).

See [Gurevich and Szpruch 2015, §2.1] for more details.
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5B2. Dual pairs. Let D be the unique nonsplit quaternion algebra over F , with a standard involution ∗.
Then D⊗F E ∼= R. There is a D-linear map

trR/D : R→ D

such that trR/D(d) = 2d for d ∈ D. Given a 4-dimensional symplectic space (W2, hE) over E , corre-
sponding to a 2-dimensional left Hermitian space (WR, h R), we set

hD(x, y)= 1
2 trR/D(h R(x, y)) ∈ D

for all x, y ∈WR . Then hD is a nondegenerate Hermitian form on V= ResR/DWR and dimD V= 4.
Given a left Hermitian space (V, hD) and a right skew-Hermitian space (W, sD), the tensor product

space W⊗D V admits a symplectic form defined by

〈w⊗ v,w′⊗ v′〉 := 1
2 trD/F ((w,w

′) · (v, v′)∗).

This gives an embedding of F-groups

U (W)×U (V)→ Sp(W⊗D V).

Then we can define the Weil representation ωψ on U (W)× U (V), using the complete polarization
V= YD + Y ∗D of V.

Theorem 5.2.1 [Gan and Sun 2017, Theorem 1.2]. The Howe duality conjecture holds for the dual pair
U (W)×U (V).

We can extend it to the similitude group GU(W)×GU(V) following Roberts. (See [Gan and Tantono
2014, §3].)

5B3. The see-saw diagram. Let us fix the polarization WR = YR + Y ∗R . Then

V= ResR/DWR = YD + Y ∗D.

Consider the following see-saw diagram:

GU(V) GO2,2(E)\

GU(WR)
\ GO∗1,1(F)

Here GU(WR)
\
= GSp4(E)

\.

Proposition 5.2.2 [Gurevich and Szpruch 2015, Theorem 8.2]. Let τ be an irreducible representation of
GSp(W2)∼= GU(WR). Assume that π is an irreducible representation of GO∗1,1(F). Then

HomGU(WR)\(2W,V,ψ(π), τ )= HomGO∗1,1(F)(2
+

4 (τ ), π).
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Assume that VR is a skew-Hermitian free module over R of rank 2, associated to the anisotropic
4-dimensional quadratic space over E given by (DE , NDE ) such that

GU(VR)∼= GO4,0(E).

Then ResR/DVR is a 4-dimensional skew-Hermitian D-vector space with trivial discriminant. There is a
natural embedding

SU(VR)∼= SO4,0(E) ↪→ SO∗2,2(F)= SU(ResR/DVR).

Given a 1-dimensional Hermitian vector space V1 over D, we consider the theta lift from GU(V1) =

GSp1,0(F) to GO∗2,2(F) and the theta lift from GSO4,0(E) to GU(R⊗D V1) = GL2(E). Consider the
see-saw diagram

GU(ResR/DV ) GL2(E)\

GSO4,0(E)\ GSp1,0(F)

which is different from the situation in [Gurevich and Szpruch 2015, Theorem 8.2], since there does not
exist a natural polarization in the symplectic F-vector space V= (ResR/DVR)⊗D V1.

Assume that V= X⊕Y is a polarization. Set the group

Mp(V)Y = Sp(V)×C×

with group law
(g1, z1)(g2, z2)= (g1g2, z1z2 · zY(g1, g2)),

where zY(g1, g2)= γF
( 1

2ψ ◦ q(Y, g−1
2 Y, g1Y)

)
is a 2-cocycle (called Rao cocyle) associated to Y and

q(Y, g−1
2 Y, g1Y) is the Leray invariant. (See [Kudla 1996, §I.3].)

Suppose that V= X′⊕Y′ is another polarization of V. There is an isomorphism

S(X)∼= S(X′).

Given ϕ ∈ S(X) and ϕ′ ∈ S(X′), due to [Ichino and Prasanna 2016, Lemma 3.3], we have

ϕ(x)=
∫

Y∩Y′\Y

ψ
(1

2〈x
′, y′〉− 1

2〈x, y〉
)
ϕ′(x ′) dy

where x ′ ∈ X′ and y′ ∈ Y′ are given by x ′+ y′ = x + y ∈ V.

Lemma 5.2.3 (local Siegel–Weil identity). Assume that π is an irreducible discrete series representation
of GL2(E) so that the big theta lift 2(π) to GSO4,0(E) is isomorphic to πDE �πDE , where πDE is the
Jacquet–Langlands lift to D×E (E) of π . Let % be an irreducible representation of GSp1,0(F). Then

dim HomGSO4,0(E)\(2(%), π
DE �πDE )= dim HomGSp1,0(F)(π, %),

where 2(%) is the big theta lift to GO∗2,2(F) of %.



2452 Hengfei Lu

Proof. It suffices to show that two splittings of SO4,0(E)×Sp1,0(F) in Mp(V) are compatible. Let us fix
two polarizations ResR/DVR = U⊕U∗ and R⊗D V1 = X ⊕ Y. Then

V= X⊕Y = (U⊗D V1)⊕ (U
∗
⊗D V1) and V= X′⊕Y′ = (DE ⊗E X)⊕ (DE ⊗E Y ).

Choose a fixed element h0 ∈ Sp(V) such that

X′ = h0X and Y′ = h0Y.

By [Ichino and Prasanna 2016, Appendix B.4], there is an isomorphism α0 :Mp(V)Y′→Mp(V)Y via

(h, z) 7→ (α0(h), z),

where α0(h)= h−1
· g · h for all h ∈ Sp(V). Moreover,

zY′(h1, h2)= zY(α0(h1), α0(h2)).

Now we fix the splitting iY : O∗2,2(F)×Sp1,0(F) ↪→Mp(V)Y and

iY′ : SO4,0(E)×Sp2(E) ↪→Mp(V)Y′,

where the splitting iY(y, z)= ((y, z), βY(z)) is defined in [Kudla 1994, Theorem 3.1].
We will show that iY(h)= α0 ◦ iY′(h) for all h = (y, z) ∈ SO4,0(E)×Sp1,0(F). Consider

SO4,0(E)×Sp1,0(F)
� � // O∗2,2(F)×Sp1,0(F)

iY
// Mp(V)Y

SO4,0(E)×Sp1,0(F)
� � // SO4,0(E)×Sp2(E)

iY′
// Mp(V)Y′

α0

OO

Set iY(h)= (h, βY(h)). Then βY(z)= 1 for all z ∈ Sp1,0(F). Similarly, we have

βY′(y)= 1

for all y ∈ SO4,0(E). In order to show that

βY(h)= βY′(h)

for all h = (y, z) ∈ SO4,0(E)×Sp1,0(F), we will show that βY(y)= 1= βY′(z).

• If y ∈ SO4,0(E)⊂O∗2,2(F)=
⊔2

i=0 PωiP, say y ∈PωiP, where P is the Siegel parabolic subgroup
of O∗2,2(F), ω0 = 14 (the identity matrix in O∗2,2(F)),

ω1 =

 1
1

1
1

 and ω2 =

 1
1

1
1

 ,
then βY(y)= (−1)i . Since ω1 switches a pair of vectors e1 and e′1 in a basis {e1, e2, e′1, e′2}, which
corresponds to an element h ∈ O4,0(E) with determinant −1, where P stabilizes the maximal
isotropic subspace {e1, e2}, it follows that

SO4,0(E)∩Pω1P=∅,
i.e., βY(y)= 1.
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• If z ∈ Sp1,0(F) and so z = g ∈ SL2(E), then βY′(z)= γF
(
x(g), 1

2ψ
)4
· γF

( 1
2ψ ◦ NDE

)4
= 1, where

x(g)=

{
NE/F (a21) (mod F×2

) if g =
(a11

a21

a12
a22

)
with a21 6= 0,

NE/F (a22) (mod F×2
) otherwise.

Therefore we have finished the proof. �

Remark 5.2.4. From the proof above, we can see that the see-saw identity does not hold if one replaces
SO4,0(E) by O4,0(E) in this case.

Let V be a free R-module of rank 2 corresponding to the quadratic space H2
E by the Morita equivalence.

Then ResR/DV is a skew-Hermitian D-vector space of dimension 4.

Lemma 5.2.5. Let6 be an irreducible representation of GO2,2(E). Let % be an irreducible representation
of GSp1, j (F) for j = 0 or 1. Then

dim HomGO2,2(E)\(2(%),6)= dim HomGSp1, j (F)(21+ j (6 · ν
1+ j ), %),

where ν is the nontrivial character of GO2,2(E)/GSO2,2(E) and ν|O2,2(E) = det.

Proof. Consider the see-saw diagram

GO∗2,2(F) GSp2+2 j (E)
\

GO2,2(E)\ GSp1, j (F)

Assume that W= ResR/DV. Let us fix the polarization W= U+U∗ and H2
E = Y + Y ∗, where Y ∗ is the

dual space of Y. Let V be a Hermitian D-vector space with isometric group GSp1, j (F). Then there exists
a natural polarization

W⊗D V= U⊗D V+U∗⊗D V.

Similarly, H2
E⊗E W1+ j = Y ⊗E W1+ j+Y ∗⊗E W1+ j , where Wr is the symplectic vector space over E of

dimension 2r . Set Y = U∗⊗D V and Y′ = Y ∗⊗E W1+ j . Then we have the splitting iY and iY′ defined in
[Kudla 1994, Theorem 3.1]. For instance, iY′(y, z)= ((y, z), βY′(y)) for (y, z)∈O2,2(E)×Sp2+2 j (E) and

iY(y, z)= ((y, z), βY(y)) ∈Mp(W⊗D V)Y

for y ∈ O∗2,2(F) and z ∈ Sp1, j (F). Note that βY′(y)= 1 for y ∈ O2,2(E) and

βY(y)= (−1)(1+ j)i

if y ∈PωiP, where O∗2,2(F)=
⋃

i PωiP and P is the Siegel parabolic subgroup of O∗2,2(F). Thus

βY(h)= βY′(h) · (ν(h))1+ j
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for h ∈ O2,2(E). Hence

dim HomGO2,2(E)\(2(%),6)= dim HomGO2,2(E)\×GSp1, j (F)(ωψ,Y, 6⊗ %)

= dim HomGO2,2(E)\×GSp1, j (F)(ωψ,Y
′, 6 · ν1+ j

⊗ %)

= dim HomGSp1, j (F)(21+ j (6 · ν
1+ j ), %),

where ωψ,Y (resp. ωψ,Y′) is the Weil representation on Mp(W⊗D V) emphasizing the splitting Y+Y∗

(resp. Y′+Y′
∗). This finishes the proof. �

5B4. Degenerate principal series. Let us fix the complete polarization

V= YD + Y ∗D.

Suppose dimD V = 4. Assume that I(s) is the degenerate principal series of GU(V) = GSp2,2(F)
associated to a Siegel parabolic subgroup P(YD), i.e.,

I(s)=
{

f : GU(V)→ C | f (pg)= δP(YD)(p)
(1/2)+(s/5) f (g) for all p ∈ P(YD), g ∈ GU(V)

}
,

where δP(YD) is the modular character. Similar to Proposition 4.3.1, we have

Lemma 5.2.6. Assume that R3(1) is the big theta lift to GU(V) of the trivial representation of GO∗3,0(F).
Then there is an exact sequence

0 // R3(1) // I
(1

2

)
// R2(1) // 0,

where R2(1) is the big theta lift to GU(V) of the trivial representation of GO∗1,1(F).

Proof. By [Yamana 2011, Theorem 1.4], we may give a similar proof as in Proposition 4.3.1. So we omit
it here. �

5B5. Double cosets. Assume that P(YD) is the Siegel parabolic subgroup of GU(V)=GSp2,2(F). Then
the homogeneous space X D = P(YD)\GSp2,2(F) corresponds to the set of maximal isotropic subspaces
in V. We consider the double coset X D/GU(WR)

\
= X D/GSp4(E)

\, similar to Lemma 4.3.3.

Proposition 5.2.7. In the double cosets X D/GSp4(E)
\, there are

• one closed orbit with stabilizer P(YD)∩GSp4(E)
\,

• one open orbit with stabilizer GU2(D)(F)= GSp1,1(F)⊂ GSp4(E)
\ and

• one intermediate orbit with a representative

L = Dr(
√

de+ f )+ D
(

e−
1
√

d
f
)
∈ X D,

which is a nonfree R-module with stabilizer (GL1(E)×GSp1,0(F)) · N , N ∼= E ⊕ D, where r =( 1
0

0
0

)
= r2
∈ R and WR = Re+ R f with h R(e, f )= 1.
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Lemma 5.2.8. Let τ be an irreducible representation of GU(WR)
\
= GSp4(E)

\ and GSp4(E)
\ ↪→

GSp2,2(F) be a natural embedding. Then

dim HomGSp4(E)\
(
I
( 1

2

)
, τ
)
≥ dim HomGSp1,1(F)(τ

∨,C).

Proof. Note that there are three orbits for P(YD)\GSp2,2(F)/GSp4(E)
\. There is a filtration for

I
( 1

2

)∣∣
GSp4(E)\

as follows:

indGSp4(E)
\

GSp1,1(F)
C= I0

( 1
2

)
⊂ I1

( 1
2

)
⊂ I2

( 1
2

)
= I

( 1
2

)∣∣
GSp4(E)\

,

where I2
( 1

2

)
/I1

(1
2

)
∼= indGSp4(E)

\

P\ δ
1/2
P\ and I1

( 1
2)/I0

(1
2

)
∼= indGSp4(E)

\

M N δ
3/5
P(YD)

δ
−1/2
3 , where

M ∼= GL1(E)×GSp1,0(F), N ∼= D⊕ E and δ3(t, x)= |NE/F (t)4 · λ(x)−4
|F

for (t, d)∈M. There exists an involution on GSp2,2(F) such that the fixed points coincides with GSp4(E)
\.

Applying [Ólafsson 1987, Theorem 2.5; Gourevitch et al. 2019, Proposition 4.9], we obtain the inequality

dim HomGSp4(E)\
(
I
( 1

2

)
, τ
)
≥ dim HomGSp4(E)\

(
I0
( 1

2

)
, τ
)
= dim HomGSp1,1(F)(τ

∨,C).

This finishes the proof. �

5C. The distinction problem for GSp1,1. Let GU2(D)=GSp1,1 be the inner form of GSp4 defined over
F , whose E-points coincide with GSp4(E). Assume that τ ∈ Irr(GSp4(E)) with ωτ |F× = 1. In this
subsection, we will study the multiplicity

dim HomGSp1,1(F)(τ,C).

Theorem 5.3.1. Let τ be an irreducible representation of GSp4(E) such that 5φτ is generic.

(i) If τ = θ(π1 � π2) is a nongeneric tempered representation of GSp4(E), where π1 � π2 is an
irreducible smooth representation of GSO4,0(E), then dim HomGSp1,1(F)(τ,C)= 1 if and only if one
of the following holds:

• π1 � π2 but π∨1 ∼= π
σ
2 ;

• π1 ∼= π2 are both (D×(F), ωE/F )-distinguished.

(ii) If τ = θ(π1 �π2)= θ(π2 �π1) is generic, then

dim HomGSp1,1(F)(τ,C)=



2 if π1 = π2 = π(χ
−1, χσ ),

1 if π1 = π2 are square-integrable and D×(F)-distinguished,
1 if π1 is D×(F)-distinguished and π2 = π0,

2 if π1 6= π2 are both D×(F)-distinguished,
0 otherwise.

Here π0 = π(χ1, χ2) with χ1 6= χ2, χ1|F× = χ2|F× = 1. Note that these conditions are mutually
exclusive.
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(iii) Assume that τ is not as in case (i) or (ii), so that τ = θ(5D � χ) is generic, where 5D � χ is an
irreducible representation of GSO5,1(E). Then dim HomGSp1,1(F)(τ,C)= 1 if and only if one of the
following holds:
• φ5 is irreducible and conjugate-orthogonal or
• φ5 = φρ +φρµ with ρσ ∼= ρ∨µ−1,

where 5= JL(5D) is the Jacquet–Langlands lift to GL4(E) of 5D.

Proof. The proof is very similar to the proof of Theorem 4.4.9.

(i) Assume that VR is a skew-Hermitian free module over R of rank 2, corresponding to DE by the
Morita equivalence. Then ResR/DVR is a 4-dimensional skew-Hermitian vector space over D with trivial
discriminant. Fix a polarization ResR/DV = U⊕U∗. Consider the diagram

GSp4(E)
\ GO∗2,2(F) GL2(E)\

GSp1,1(F) GO4,0(E)\ GSp1,0(F)

There is an exact sequence of GO∗2,2(F)-representations

0 // R1,1(1) // I
( 1

2

)
// R1,0(1) // 0,

where I (s) is the degenerate principal series of GO∗2,2(F) and R1, j (1) is the theta lift to GO∗2,2(F) the
trivial representation of GSp1, j (F). Set τ =22(6), where

6 =

{
IndGO4,0(E)

GSO4,0(E)(π1 �π2) if π1 � π2,

(π1 �π1)
+ if π1 ∼= π2.

Note that GO4,0(E) is an anisotropic group. Using the contravariant exact functor

HomGO4,0(E)\(−, 6),

we obtain a short exact sequence

0→ HomGO4,0(E)\(R
1,0(1),6)→ HomGO4,0(E)\

(
I
( 1

2

)
, 6
)
→ HomGO4,0(E)\(R

1,1(1),6)→ 0.

Applying Lemma 5.2.5, we have

0→ HomGSp1,0(F)(21(6⊗ ν),C)→ HomGO4,0(E)\
(
I
( 1

2

)
, 6
)
→ HomGSp1,1(F)(τ,C)→ 0, (5-1)

where21(6⊗ν) is the big theta lift to GL2(E) of6⊗ν. There are no F-rational points on the nonidentity
connected component of GO∗2,2 (see [Mœglin et al. 1987, pp. 21–22]), so that

GO∗2,2(F)= GSO∗2,2(F)=Q ·GO4,0(E)\,

where Q is the Siegel parabolic subgroup of GO∗2,2(F). Then

HomGO4,0(E)\
(
I
(1

2

)
, 6
)
= HomGO4,0(E)\(indGO4,0(E)\

GO∗2,0(F)
C, 6)= HomGO∗2,0(F)(6,C). (5-2)
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Here GSO∗2,0(F) sits in the exact sequence

1 // E× i
// D×E (E)× F× //

��

GSO∗2,0(F)� _

��

// 1

1 // E× // D×E (E)× D×E (E) // GSO4,0(E) // 1

where i(e)= (e, NE/F (e)−1) and the embedding GSO∗2,0(F) ↪→ GSO4,0(E) is given by

(x, t) 7→ (x, t · xσ )

for x ∈ D×E (E) and t ∈ F×. The σ -action on D×E (E) is induced from the isomorphism DE(E) ∼=
DE(E)⊗E (E, σ ). There are two subcases:

• If π1 � π2, then π1 �π2 does not participate in theta correspondence with GL2(E). The short exact
sequence (5-1) implies that

dim HomGSp1,1(F)(τ,C)= dim HomGO4,0(E)\
(
I
( 1

2

)
, 6
)
= dim HomGSO∗2,0(F)(π1 �π2,C). (5-3)

Hence one can get

dim HomGSp1,1(F)(τ,C)= dim HomD×E (E)
(π∨2 , π

σ
1 ),

where πσ1 = JL−1(JL(π1)
σ ).

• If π1 = π2, then the short exact sequence (5-1) implies that

dim HomGSp1,1(F)(τ,C)= dim HomGO4,0(E)\
(
I
( 1

2

)
, 6
)
= dim HomGO∗2,0(F)(6,C)

because 21(6⊗ ν)= 0. Note that

dim HomGSO∗2,0(F)(π1 �π1,C)= dim HomGO∗2,0(F)(6,C)+ dim HomGO∗2,0(F)(6⊗ ν,C).

In a similar way, dim HomGO∗2,0(F)(6⊗ ν,C)= dim HomGSp1,0(F)(JL(π1),C). Therefore, if JL(π1)

is D×(F)-distinguished, then πσ1 ∼= π
∨

1 and so

dim HomGSO∗2,0(F)(π1 �π1,C)= 1= dim HomGO∗2,0(F)(6⊗ ν,C).

Then dim HomGSp1,1(F)(τ,C)=dim HomGO∗2,0(F)(6,C)=0 if JL(π1) is D×(F)-distinguished. Also,
τ is GSp1,1(F)-distinguished if and only if JL(π1)

∨ ∼= JL(π1)
σ which is not D×(F)-distinguished.

Thus τ is GSp1,1(F)-distinguished if and only if JL(π1) is (D×(F), ωE/F )-distinguished, in which
case φπ1 is conjugate-symplectic.

(Similarly, one can show that

dim HomGSp1,1(F)(τ, ωE/F )= dim HomD×E (E)
(π∨2 , π

σ
1 )− dim HomD×(F)(21(6⊗ ν), ωE/F ).

Here we use the fact
ωE/F ◦ λV |GO∗2,0(F) = 1.
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Hence dim HomGSp1,1(F)(τ, ωE/F )=1 if and only if either JL(π1)= JL(π2) are both D×(F)-distinguished
or π1 � π2 but π∨1 = π

σ
2 . It will be useful when we verify the Prasad conjecture for PGSp4 in Section 7.)

(ii) We will use a similar argument. Assume that VR corresponds to H2
E by the Morita equivalence. By

the conversation relation, we have θ−2 (τ )= 0. Via the see-saw diagrams

GO5,1(E)\ GSp2,2(F) GO2,2(E)\

GO∗3,0(F) GSp4(E)
\ GO∗1,1(F)

applying Lemma 5.2.6 and Proposition 5.2.2, we have

dim HomGSp4(E)\
(
I
( 1

2

)
, τ
)
= dim HomGSp4(E)\(R

2(1), τ )= dim HomGO∗1,1(F)(2
+

4 (τ ),C),

where I(s) is the degenerate principal series of GSp2,2(F). Due to Lemma 5.2.8,

dim HomGSp1,1(F)(τ,C)≤ dim HomGSp4(E)\
(
I
( 1

2

)
, τ
)
= dim HomGO∗1,1(F)(2

+

4 (τ ),C).

We want to get the reverse inequality. Consider the diagrams

GSp4(E)
\ GO∗2,2(F) GL2(E)\

GSp1,1(F) GO2,2(E)\ GSp1,0(F)

There is an exact sequence of GO∗2,2(F)-representations

0 // R1,0(1) // I
(
−

1
2

)
// R1,1(1) // 0.

Note that dim HomGO2,2(E)\(R
1,0(1),6) = dim HomGSp1,0(F)(21(6⊗ ν),C) = 0. Thanks to [Ólafsson

1987, Theorem 2.5; Gourevitch et al. 2019, Proposition 4.9], we have

dim HomGSp1,1(F)(τ,C)= dim HomGO2,2(E)\(R
1,1(1),6)

= dim HomGO2,2(E)\
(
I
(
−

1
2

)
, 6
)

≥ dim HomGO2,2(E)\(indGO2,2(E)\

GO∗1,1(F)
C, 6)

= dim HomGO∗1,1(F)(6,C).

Therefore dim HomGSp1,1(F)(τ,C)= dim HomGO∗1,1(F)(2
+

4 (τ ),C) unless 2+4 (τ ) is reducible. There is no
F-rational points on the nonidentity connected component of GO∗1,1, so that

GO∗1,1(F)= GSO∗1,1(F).

There are two cases: π1 � π2 and π1 = π2.



The Prasad conjectures for GSp4 and PGSp4 2459

Assume that π1 � π2. Since

GO∗1,1(F)= GSO∗1,1(F)∼= GL2(F)× D×(F)/{(t, t−1) : t ∈ F×},

for π1 6= π2 one can obtain that 2+4 (τ )= IndGO(2,2)(E)
GSO(2,2)(E)(π1 �π2) and

HomGO∗1,1(F)(6,C)= HomGO∗1,1(F)(π1 �π2,C)⊕HomGO∗1,1(F)(π2 �π1,C). (5-4)

There are two subcases:

• If πi (i = 1, 2) are both D×(F)-distinguished, then (5-4) implies that

dim HomGSp1,1(F)(τ,C)= dim HomGO∗1,1(F)(6,C)= 2.

• If π1 is D×(F)-distinguished and π2 = π(χ1, χ2) with χ1 6= χ2, χ1|F× = χ2|F× = 1, then π2 is
GL2(F)-distinguished but not D×(F)-distinguished (see Lemma 4.4.5). So (5-4) implies that

dim HomGSp1,1(F)(τ,C)= 1.

If π1 = π2 are both square-integrable representations, then

HomGO∗1,1(F)(6,C)= HomGSO∗1,1(F)(π1 �π1,C)=

{
1 if π1 is D×(F)-distinguished,
0 otherwise.

If π1 = π2 = π(χ
−1, χσ ), then 2+4 (τ ) is reducible. We will show that τ = IQ(Z)(1, π1) does not occur

on the boundary of I
( 1

2

)
and hence that

dim HomGSp1,1(F)(τ,C)= dim HomGO∗1,1(F)(2
+

4 (τ ),C).

There is a filtration
indGSp4(E)

\

GSp1,1(F)
C= I0(s)⊂ I1(s)⊂ I2(s)= I(s)|GSp4(E)\

of I(s)|GSp4(E)\ such that I2(s)/I1(s)= indGSp4(E)
\

P\ δ
(s+1)/3
P\ and

I1(s)/I0(s)= indGSp4(E)
\

M N δ
(1/2)+(s/5)
P(YD)

δ
−1/2
3 ,

where δ3(t, x)= |NE/F (t)4λ(d)−4
|F for (t, x) ∈ M = GL1(E)×GSp1,0(F). If

HomGSp4(E)\
(
I1
( 1

2

)
/I0

( 1
2

)
, τ
)
6= 0,

then
HomGL1(E)(|−|E , RP ′′(IQ(Z)(1, π1))) 6= 0,

which is impossible, where P ′′= (GL1(E)×GL2(E)\)nN is a parabolic subgroup of GSp4(E)
\ and RP ′′

denotes the Jacquet functor associate to the parabolic opposite to P ′′. So

HomGSp4(E)\
(
I1
( 1

2

)
/I0

( 1
2

)
, τ
)
= 0.

It is quite straightforward to see that

HomGSp4(E)\(indGSp4(E)
\

P\ δ
1/2
P\ , IQ(Z)(1, π1))= 0

by applying the Jacquet functor. Hence τ = IQ(Z)(1, π1) does not occur on the boundary of I
( 1

2

)
.
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The big theta lift to GSO2,2(E) of τ = IQ(Z)(1, π1) of GSp4(E) is

Ext1GSO(2,2)(E)(π1 �π1, π1 �π1).

From the see-saw pairs diagram

GSO5,1(E)\ GSp2,2(F) GSO2,2(E)\

GO∗3,0(F) GSp4(E)
\ GO∗1,1(F)

one can use the fact θ−2 (τ )= 0 to obtain that

dim HomGSp1,1(F)(τ,C)= dim HomGSO∗1,1(F)(Ext1GSO2,2(E)(π1 �π1, π1 �π1),C)= 2.

(iii) Assume that θ+4 (τ )= 0. Note that 0→R2(1)→ I
(
−

1
2

)
→R3(1)→ 0 is exact. Then we can use

the same method appearing in (ii) to show that

dim HomGO∗3,0(F)(2
−

2 (τ ),C)= dim HomGSp4(E)\(R
3(1), τ )

= dim HomGSp4(E)\
(
I
(
−

1
2

)
, τ
)
≥ dim HomGSp1,1(F)(τ,C).

We will show that τ does not occur on the boundary of I
(
−

1
2

)
in this case. Then

dim HomGSp4(E)\
(
I
(
−

1
2

)
, τ
)
≤ dim HomGSp4(E)\

(
I0
(
−

1
2

)
, τ
)
= dim HomGSp1,1(F)(τ,C)

and so
dim HomGSp1,1(F)(τ,C)= dim HomGSp4(E)\

(
I
(
−

1
2

)
, τ
)
.

In order to show that τ does not occur on the boundary of I
(
−

1
2

)
, we separate them into two cases.

• If τ = IQ(Z)(χ, π) with χ 6= 1, then

HomGSp4(E)\
(
I2
(
−

1
2

)
/I1

(
−

1
2

)
, τ
)
= HomGSp4(E)\(indGSp4(E)

\

P\ δ
1/6
P\ , τ )= 0.

If HomGSp4(E)\
(
I1
(
−

1
2

)
/I0

(
−

1
2

)
, τ
)
6= 0, then HomGL1(E)(1, RP ′′(τ )) 6= 0 which is impossible since

RP ′′(τ )= χ ⊗π ⊕χ
−1
⊗πχ and χ 6= 1, where P ′′ = (GL1(E)×GL2(E)\)o N.

• If τ is square-integrable, then HomGL1(E)(1, RP ′′(τ )) = 0 due to the Casselman criterion in [Cas-
selman and Miličić 1982] for a discrete series representation that HomGL1(E)(|−|

s
E , RP ′′(τ )) 6= 0

implies that s < 0. Hence HomGSp4(E)\
(
I1
(
−

1
2

)
/I0

(
−

1
2

)
, τ
)
= 0. In a similar way,

HomGSp4(E)\
(
I2
(
−

1
2

)
/I1

(
−

1
2

)
, τ
)
= HomGL2(E)×F×(δ

1/6
P\ , RP\(τ ))= 0.

Hence τ does not occur on the boundary of I
(
−

1
2

)
. Moreover, if τ 6= IQ(Z)(|−|E , ρ), then2−2 (τ )=5

D�χ

is irreducible. Then there exists an identity

dim HomGSp1,1(F)(τ,C)= dim HomGO∗3,0(F)(5
D �χ,C)= dim HomD×4 (F)

(5D,C),

where D4 is the division algebra over F of degree 4.
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• If 5 = JL(5D) is a square-integrable representation of GL4(E), then [Beuzart-Plessis 2018,
Theorem 1] and Theorem 4.4.4 imply that

dim HomGL4(F)(5,ωE/F )= dim HomD×4 (F)
(5D, ωE/F )=

{
1 if φ5 is conjugate-symplectic,
0 otherwise.

Thus dim HomD×4 (F)
(πD,C)= 1 if and only if φ5 is conjugate-orthogonal.

• If 5D is an induced representation π(ρD, (ρD)
∨
⊗µ) with µ 6= ωρD , then we use the orbit decom-

position B1\GL2(DE)(E)/GL1(D4)(F) and Mackey theory to get that

dim HomD×4 (F)
(5D,C)= dim HomD×E (E)

(ρσD ⊗ ρ
∨

D ·µ,C)= dim HomD×E (E)
(ρσD, ρD ·µ

−1)

=

{
1 if ρσD ∼= ρDµ

−1,

0 otherwise.
(5-5)

In this case, ρσ = ρµ−1 where ρ = JL(ρD) is the Jacquet–Langlands lift to GL2(E) and φ5 =
φρ ⊕φ

∨
ρ ·µ, which is conjugate-orthogonal due to Theorem 4.4.4.

• If 5D
= Sp(ρD|−|

1/2
E ) is a generalized Speh representation and τ = IQ(Z)(|−|E , ρ), then

dim HomGSp1,1(F)(τ,C)= dim HomGO∗3,0(F)(2
−

2 (τ ),C)=

{
1 if ρσ ∼= ρ∨|−|−1

E ,

0 otherwise. �

6. The Prasad conjecture for GSp4

6A. The Prasad conjecture. In this subsection, we give a brief introduction to the Prasad conjecture
[2015, Conjecture 2]. One may refer to [Prasad 2015, §13] for more details.

Let G be a quasisplit reductive group defined over a local field F with characteristic zero. Let WF be the
Weil group of F and WDF be the Weil–Deligne group of F. Let E be a quadratic extension over F. A qua-
dratic character χG is introduced in [Prasad 2015, §8] and another quasisplit reductive group Gop defined
over F is introduced in [Prasad 2015, §7]. Then there is a relation between the fibers of the base change map

8 : Hom(WDF ,
L Gop)→ Hom(WDE ,

L Gop)

from the Galois side and the χG-distinction problems for G(E)/G(F) from the automorphic side.
More precisely, assume the Langlands–Vogan conjecture in [Vogan 1993]. Given an irreducible

representation π of G(E) with an enhanced L-parameter (φπ , λ), where λ is an irreducible representation
of the component group π0(Z(φπ )) and the L-packet 5φπ is generic, we have∑

α

dim HomGα(F)(π, χG)=
∑

i

m(λ, φ̃i ) deg8(φ̃i )/d0(φ̃i ),

where

• α ∈ H 1(WF , G) runs over all pure inner forms of G satisfying Gα(E)= G(E);
• φ̃i ∈ Hom(WDF ,

L Gop) runs over all parameters of L Gop satisfying φ̃i |WDE = φπ ;
• m(λ, φ̃) = dim Homπ0(Z(φ̃))(1, λ) is the multiplicity of the trivial representation contained in the

restricted representation λ|π0(Z(φ̃));

• d0(φ̃)= |Coker{π0(Z(φ̃))→ π0(Z(φπ ))Gal(E/F)
}|.
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Remark 6.1.1. If H 1(F, G) is trivial such as G = GSp2n , then the automorphic side contains only one
term. The Prasad conjecture gives a precise formula for the multiplicity

dim HomG(F)(π, χG).

Remark 6.1.2. There exists a counterexample even for GL2 when 5φπ is not generic. Let G = GL2,
χG = ωE/F and π = 1 be the trivial representation. Then the automorphic side is zero however the Galois
side is nonzero.

Remark 6.1.3. If φ̃ comes from a square-integrable representation, then deg8(φ̃)= 1. The reason, due
to Prasad, is that φ̃ represents a singleton in Hom(WDF ,

L Gop).

If π is square-integrable, then we have a refined version, i.e., the formula for each dimension

dim HomGα(F)(π, χG).

Let Z(Ĝop) be the center of the dual group Ĝop. There is a perfect pairing

H 1(Gal(E/F), Z(Ĝop)WE )× H 1(Gal(E/F), G(E))→Q/Z

for Prasad’s studies [2015, §11] of the character twists. Set �G(E)= H 1(Gal(E/F), Z(Ĝop)WE ). Given
a parameter φ̃ ∈ H 1(WF , Ĝop), we consider the stabilizer �G(φ̃, E)⊂�G(E) under the pairing

H 1(WF , Z(Ĝop))× H 1(WF , Ĝop)→ H 1(WF , Ĝop).

Set
AG(φ̃)⊂ H 1(Gal(E/F), G(E))∼=�G(E)∨

to be the annihilator of the stabilizer �G(φ̃, E). Then there is another perfect pairing

�G(E)/�G(φ̃, E)× AG(φ̃)→Q/Z,

meaning that in the orbit �G(E)/�G(φ̃, E) of character twists of φ̃ (which go to a particular parameter
under the base change to E) there are exactly as many parameters as there are certain pure inner forms
of G over F which trivialize after base change to E .

Consider
F(φπ )= {φ̃ :WDF →

L Gop
| φ̃|WDE = φπ } = t

r
i=1O(φ̃i ).

Each orbit O(φ̃i ) of�G(E)-action on F(φπ ) is associated to a coset Ci of AG(φ̃i ) in H 1(Gal(E/F), G(E))
defining a set of certain pure inner forms Gα of G over F such that Gα(E)= G(E). Then

dim HomGα(F)(π, ωG)=

r∑
i=1

m(λ, φ̃i ) · 1Ci (Gα)/d0(φ̃i ),

where

• 1Ci is the characteristic function of the coset Ci ;

• m(λ, φ̃) is the multiplicity for the trivial representation contained in the restricted representation
λ|π0(Z(φ̃)), which may be zero;

• d0(φ̃)= |Coker{π0(Z(φ̃))→ π0(Z(φπ ))Gal(E/F)
}|.
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6B. The Prasad conjecture for GL2. Before we give the proof of Theorem 1.2, let us recall the Prasad
conjecture for G =GL2 =GSp2. Set G =GL2. Then χG = ωE/F and Gop

=U(2, E/F) is the quasisplit
unitary group, where E is a quadratic field extension over a p-adic field F. Denote

L Gop
= GL2(C)o 〈σ 〉,

where σ -action on GL2(C) is given by

σ(g)= ω0(gt)
−1
ω−1

0 = g · det(g)−1,

ω0 =
(
−1

1) and g ∈ GL2(C), gt denotes its transpose matrix. Given an irreducible representation π of
GL2(E) with φ = φπ irreducible (for simplicity), there is no other pure inner form for GL2. Then

dim HomGL2(F)(π, ωE/F )= |F(φ)|,

where F(φ)= {φ̃ :WDF →
L Gop

| φ̃|WDE = φ} and |F(φ)| denotes its cardinality.

Proposition 6.2.1. The following statements are equivalent:

(i) dim HomGL2(F)(π, ωE/F )= 1.

(ii) The Langlands parameter φ is conjugate-symplectic.

(iii) There is only one extension φ̃ ∈ F(φ).

Proof. We only prove the direction (ii)⇒(iii) and the rest follows from Flicker’s results [1991]. If φ is
conjugate-symplectic, then

φs
= φ∨ = φ(detφ)−1,

where s ∈WF \WE is fixed. There exists A ∈ GL2(C) such that

φ(sts−1)= φs(t)= A ·φ(t) det(φ(t))−1
· A−1

for all t ∈WDE . Set
φ̃(s)= A · σ

and φ̃(t)= φ(t) for t ∈WDE . Then

φ̃(sts−1)= φ̃(s) ·φ(t) · φ̃(s)−1

and φ̃(s2) = φ(s2) = (φ̃(s))2 due to the sign of φ. More precisely, assuming that 〈−,−〉 is the WDE -
equivariant bilinear form associated to φ :WDE → GSp(V, 〈−,−〉), we define

B : V × V → C

by B(v1, v2)= 〈v1, A−1v2〉 for v1, v2 ∈ V. Then

B(φ(t)v1, φ
s(t)v2)= 〈φ(t)v1, φ

∨(t)A−1v2〉 = B(v1, v2)

and so B gives a conjugate-self-dual bilinear form on V. By Schur’s lemma, B has sign −1, i.e.,

B(v1, φ(s2)v2)=−B(v2, v1)
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for all v1, v2 ∈ V. Thus B(Av1, φ(s2)v2)=−B(v2, Av1), i.e.,

〈Av1, A−1φ(s2)v2〉 = −〈v2, A−1 Av1〉 = 〈v1, v2〉

for all vi ∈ V. Then det(A) · A−2φ(s2)= 1, i.e., φ(s2)= A · det(A)−1 A = (φ̃(s))2.
Therefore φ̃ ∈ F(σ ). If there are two extensions φ̃i with Ai ∈ GL2(C) such that φ̃i |WDE = φ, then

A1 A−1
2 ∈ Z(φ)∼= C× by Schur’s lemma, so that φ1 = φ2. �

Remark 6.2.2. This method will appear again when we study the Prasad conjecture for G = GSp4 in
Section 6C1 The key idea is to choose a proper element A such that the lift

φ̃ :WDF →
L G0

satisfies φ̃(s)= A · σ and φ̃|WDE = φ.

6C. The Prasad conjecture for GSp4. The aim of this subsection is to verify the Prasad conjecture
for GSp4. Now we consider the generic representation τ = θ(5�χ) of GSp4(E), with φ5 conjugate-
symplectic and χ |F× = 1. Note that the Langlands parameter φ5 is equal to i ◦φτ , where

i : GSp4(C)→ GL4(C)

is the embedding between L-groups. Furthermore, χ is the similitude character of φτ . If φ5 is
conjugate-symplectic (resp. conjugate-orthogonal), we say that φτ is conjugate-symplectic (resp. conjugate-
orthogonal). There are two cases: φ5 is irreducible and φ5 is reducible.

Lemma 6.3.1. Assume that τ = θ(5�χ) is a generic representation of GSp4(E) and ωτ |F× = 1. Then τ
is (GSp4(F), ωE/F )-distinguished if and only if φ5 is conjugate-symplectic.

Proof. Due to Theorem 4.4.9, the following are equivalent:

• τ is GSp4(F)-distinguished.

• 5 is GL4(F)-distinguished.

• φ5 is conjugate-orthogonal.

Fix a character χE of E× such that χE |F× = ωE/F . Then τ is (GSp4(F), ωE/F )-distinguished if and only
if τ ⊗χE ◦ λW is GSp4(F)-distinguished, which is equivalent to that φ5⊗χE is conjugate-orthogonal.
Note that χ−1

E is conjugate-symplectic. Hence τ is (GSp4(F), ωE/F )-distinguished if and only if φ5 is
conjugate-symplectic. �

Recall that if G = GSp2n , then χG = ωE/F and

Gop(F)= {g ∈ GSp2n(E)|σ(g)= θ(g)},

where θ(g)= λW (g)−1g is the involution. Note that the σ -actions on GSp4(E) and GSp4(C) are totally
different. (We hope that this will not confuse the reader.) Observe that H 1(Gal(E/F), Z(Ĝop)WE )= 1,
which corresponds to the fact that the pure inner form of GSp2n is trivial.
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According to Theorem 4.4.9, we will divide the proof of Theorem 1.2 into four parts:

• i ◦φτ is irreducible;

• i ◦φτ = ρ⊕ ρν with ν 6= 1;

• the endoscopic case i ◦φτ = φπ1 ⊕φπ2 and τ is generic;

• i ◦φτ = φπ1 ⊕φπ2 and τ is nongeneric.

See Section 6C1–Section 6C4.

6C1. The irreducible L-parameter φτ . Given a conjugate-symplectic L-parameter φ = φτ , which is
irreducible, we want to extend φ to

φ̃ :WDF →
L G0 = GSp4(C)o 〈σ 〉,

where σ acts on GSp4(C) by
σ(g)= g · sim(g)−1.

Let s ∈WF \WE . The parameter φ is conjugate-symplectic, so that φ∨ = φs and φ∨ = φχ−1. Hence
there exists an element A ∈ GSp4(C) such that

φ(sts−1)= φs(t)= A ·φ(t)χ−1(t) · A−1 (6-1)

for all t ∈WDE . Set
φ̃(s)= A · σ and φ̃(t)= φ(t)

for t ∈WDE . Then φ(sts−1)= Aφ(t)χ−1(t)A−1
= φ̃(s) ·φ(t) · φ̃(s)−1. Moreover, we will show that

φ̃(s2)= φ(s2)= (φ̃(s))2.

Then φ̃ ∈ Hom(WDF ,
L G0) and φ̃|WDE = φ.

Assume that 〈−,−〉 is the WDE -equivariant bilinear form associated to

φτ :WDE → GSp4(C)= GSp(V, 〈−,−〉).

Set
B(v,w)= 〈v, A−1w〉

for v,w ∈ V . Then (6-1) implies that

B(φ(t)v, φ(sts−1)w)= 〈φ(t)v, φ(t)χ−1(t)A−1w〉 = χ(t) · 〈v, χ−1(t)A−1w〉 = B(v,w).

Thus B is a conjugate-self-dual bilinear form on φ and hence it has sign −1 by Schur’s lemma, i.e.,

−B(w, v)= B(v, φ(s2)w).

Therefore we have

〈v,w〉 = −〈w, v〉 = −B(w, Av)= B(Av, φ(s2)w)

= 〈Av, A−1φ(s2)w〉 = 〈v, sim(A)A−2φ(s2)w〉

and so φ(s2)= A · sim(A)−1 A = (φ̃(s))2.
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Proposition 6.3.2. Assume that τ = θ(5�χ) with φ5 irreducible. Then there exists at most one extension
φ̃ :WDF →

L G0 such that φ̃|WDE = φτ .

Proof. If there are two extensions φ̃i (i = 1, 2) such that φ̃i (s)= Ai · σ with Ai ∈ GSp4(C) and

φ̃i (sts−1)= φ̃i (s) ·φτ (t) · φ̃i (s)−1

for all t ∈WDE , then A1 A−1
2 commutes with φτ . So A1 A−1

2 is a scalar by Schur’s lemma. Thus φ̃1= φ̃2. �

Hence, if τ = θ(5� χ) with φ5 irreducible and conjugate-symplectic, then there is one extension
φ̃ ∈ F(φτ ) and

dim HomGSp4(F)(τ, ωE/F )= 1.

If φ = φτ is conjugate-symplectic and reducible, then there are several cases.

6C2. φτ = ρ + ρν with ν 6= 1 and ρ irreducible. If φ5 = ρ + ρν with ρ irreducible and χ = ν · det ρ
conjugate-orthogonal, then χχ s

= 1. Thanks to Theorem 4.4.4, there are two subcases:

• ρ and ρν are both conjugate-symplectic or

• ρs
= ρ∨ν−1.

(i) If ρ and ρν are both conjugate-symplectic, then ν is conjugate-orthogonal and there exist

ρ̃i :WDF → GL2(C)o 〈σ 〉

such that ρ̃1|WDE = ρ, ρ̃2|WDE = ρν and ρ̃i (s)= Ai · σ for Ai ∈ GL2(C) due to Proposition 6.2.1. Note
that ρ is irreducible. Then given t ∈WDE ,

ρ̃s
1(t)ν

s(t)= ρ̃s
2(t)= A2σ(ρ(t)ν(t))(A2σ)

−1
= A2ρ

∨(t)A−1
2 · ν

−1(t)

and so A1 · σ · ρ(t)σ−1 A−1
1 = A2ρ

∨(t)A−1
2 (since ννs

= 1) which implies A1 A−1
2 ∈ C×. Set

φ̃(s)=
(

A1

A1

)
· σ ∈ GSp4(C)o 〈σ 〉 and φ̃(t)=

(
ρ(t)

ρ(t)ν(t)

)
for t ∈WDE . Then φ̃ ∈ F(φ) is the unique extension of φτ .

(ii) If ρs ∼= ρ∨ν−1, there exists an A ∈ GL2(C) such that

ρs(t)ν(t)= (det ρ(t))−1
· Aρ(t)A−1

for t ∈WDE . Then
det ρs

· det ρ · ν2
= 1,

which implies that ν = νs . Observe that

ρs(sts−1)ν(sts−1)= (det ρ(sts−1))−1 Aρ(sts−1)A−1

= det ρs(t)−1 A · ν(t)−1 det ρ(t)−1 Aρ(t)A−1
· A−1

= ν(t)−1 det ρs(t)−1 det ρ(t)−1 A2ρ(t)A−2.
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Then ρ(s2)ρ(t)ρ(s2)−1
= A2ρ(t)A−2 since the character ν det ρ is conjugate-orthogonal. Note that ρ is

irreducible. Then A−2ρ(s2) is a scalar. Choose a proper A such that A−2ρ(s2)= 1. Set

φ̃(s)=
(

A
A · det(A−1)

)
· σ and φ̃(t)=

(
ρ(t)

ρ(t)ν(t)

)
for t ∈WDE . Then

φ̃(s) ·φ(t) · φ̃(s)−1
=

(
A

A · det(A)−1

)
· σ ·

(
ρ(t)

ρ(v)ν(t)

)
·

(
σ−1
·

(
A−1

A−1 det(A)

))

=

(
A

A · det(A)−1

)(
ρ∨(t)ν(t)−1

ρ∨(t)

)
· σ · σ−1

·

(
A−1

A−1 det(A)

)

=

(
Aρ∨(t)ν(t)−1 A−1

Aρ∨(t)A−1

)
=

(
ρs(t)

ρs(t)ν(t)

)
= φ̃s(t) (6-2)

and (φ̃(s))2 = φ(s2). Thus φ̃ is a homomorphism from WDF to L G0 and φ̃|WDE = φ.

Remark 6.3.3. The key point here is to find a proper element φ̃(s) such that φ̃∈Hom(WDF ,
L G0). Hence

we always need to check the following two conditions: φ̃s(t)= φ̃(s) ·φ(t) · φ̃(s)−1 and (φ̃(s))2 = φ(t2).
Following the definition, the computation like (6-2) is quite straightforward and we may skip it sometimes.

6C3. Endoscopic case. If φτ = ρ1+ ρ2 is the endoscopic case, then det ρ1 = det ρ2 are both conjugate-
orthogonal. There are several subcases. Assume that τ = θ(π1 �π2) is generic, ρi = φπi (i = 1, 2) and
ρ0 = χ1+χ2, with χ1 6= χ2 and χ1|F× = χ2|F× = ωE/F . There are also 2 cases: ρ1 6= ρ2 and ρ1 = ρ2.

Assume that ρ1 6= ρ2. Then

(i) If ρ1 and ρ2 are both conjugate-symplectic and ρi 6= ρ0 (i = 1, 2), so that both π1 and π2 are
(D×(F), ωE/F )-distinguished due to Lemma 4.4.5, then

dim HomGSp4(F)(τ, ωE/F )= 2.

Thanks to Proposition 6.2.1, there exist ρ̃1 and ρ̃2 of U(2,E/F) such that ρ̃i |WDE = ρi . (Here we need to
choose Ai properly such that det A1 = det A2 if ρ̃i (s)= Ai · σ .)

If ρ1 and ρ2 are both irreducible, then every lift of φ should be of the form

s 7→
(
λ1ρ̃1(s)

λ2ρ̃2(s)

)
∈ GSp4(C)o 〈σ 〉

with λ2
1 = λ

2
2. It is known that φ̃ = ωE/F · φ̃ as parameters of L G0 since

ωE/F · φ̃ =

(
1
−1

)
φ̃

(
1
−1

)−1

.

Thus there are two lifts φ̃1 = ρ̃1+ ρ̃2 and φ̃2 = ρ̃1ωE/F + ρ̃2 such that φ̃i |WDE = φ.
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If ρ1 = χ
−1
+χ s , then the centralizer ZGL2(C)(ρ1) is C××C× or GL2(C). Moreover,

ρ̃1(s)=
(

1
χ(s2)

)
· σ.

In this case, ρ̃1+ ρ̃2 6= ρ̃1ωE/F + ρ̃2, which will be a different story if ρ1 = ρ0.

(ii) If ρ1 = ρ0 and ρ2 is conjugate-symplectic, then ρ̃1(s)=
(1
−1

)
· σ . Because(

ωE/F ρ̃1

ρ̃2

)
=

(
a

1

)(
ρ̃1

ρ̃2

)(
a−1

1

)
,

where a =
(
−1

1), we have φ̃1 = φ̃2.

(iii) If ρ∨1 = ρ
s
2, then there exists an A ∈ SL2(C) such that

A−1ρ∨1 (t)A = ρ
s
2(t)

for t ∈WDE . Set

φ̃(s)=
(

Aρ2(s2)

A−1

)
· σ ∈ Sp4(C)o σ.

Then φ̃(sts−1)= φ̃(s) · φ̃(t) · φ̃(s−1) and

[φ̃(s)]2 =
(

Aρ2(s2)

A−1

)2

=

(
Aρ2(s2)A−1

ρ2(s2)

)
=

(
ρ∨1 (s

2)

ρ2(s2)

)
= φ(s2).

The last equality holds because det ρ1 is conjugate-orthogonal and so det ρ1(s2)= 1.

Now we assume ρ1 = ρ2. According to ρ1, we still separate it into 3 cases in a similar way.

(i) If ρ1 is conjugate-symplectic but ρ1 6= ρ0, then φ̃1 = ρ̃1 + ρ̃1 and φ̃2 = ρ̃1 + ρ̃1ωE/F , where ρ̃1 :

WDF → GL2(C)o 〈σ 〉 satisfies ρ̃1|WDE = ρ1.

(ii) If ρ1 = ρ0, there is only one lift φ̃ = ρ̃1+ ρ̃1.

(iii) If ρ1 is not conjugate-symplectic but conjugate-orthogonal, set

φ̃(s)=
(
−A

A

)
· σ ∈ GSp4(C)o 〈σ 〉

where A ∈ GL2(C) satisfies Aρ∨1 (t)A
−1
= ρs

1(t). Let us verify

φ(s2)= φ̃(s2)= φ̃(s)2,

i.e., −A2 det(A)−1
= ρ1(s2).
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• Suppose that ρ1 is irreducible. Let 〈−,−〉 be the WDE -equivariant bilinear form associated to
ρ1 :WDE → GSp(V, 〈−,−〉). Set

B(m, n)= 〈m, A−1n〉

for m, n ∈ V. We have

B(ρ1(t)m, ρs
1(t)n)= 〈ρ1(t)m, ρ∨1 (t)A

−1n〉 = B(m, n).

Note that ρ1 is conjugate-orthogonal. By Schur’s lemma, the conjugate-self-dual bilinear form B
has sign 1, i.e.,

B(m, ρ1(s2)n)= B(n,m)

for all m, n ∈ V. Replacing m by Am, we have

〈Am, A−1ρ1(s2)n〉 = 〈n, A−1 Am〉 = 〈n,m〉 = 〈m,−n〉.

Therefore det(A) · A−2ρ1(s2)=−1. In this case,

φ̃(s)φ̃(t)φ̃(s)−1
=

(
−A

A

)(
ρ∨1 (t)

ρ∨1 (t)

)(
−A

A

)−1

=

(
Aρ∨1 (t)A

−1

Aρ∨1 (t)A
−1

)
= φ̃s(t)

for all t ∈WDE .

• If ρ1 = µ1+µ2 with µ1µ
s
2 = 1, then ρ1 is conjugate-symplectic, which contradicts the assumption.

• If ρ1 = µ1+µ2 with µ1 6= µ2 and µ1|F× = µ2|F× = 1, then A =
( 1
−1

)
and A2

= 1= ρ1(s2).

6C4. Nongeneric tempered. Let τ be an irreducible nongeneric tempered representation of GSp4(E) and
τ = θ(π1 �π2), where each πi is an irreducible representations of D×E (E). If the enhanced L-parameter
of τ is (φτ , λ), where φτ = ρ1+ ρ2, ρi = φπi and λ is the nontrivial character of the component group
π0(Zφτ /ZGSp4(C)

), then
dim HomGSp4(F)(τ, ωE/F )= 0.

On the Galois side, if φπ = ρ1+ ρ2, then for arbitrary parameter φ̃ satisfying φ̃|WDE = φτ , the restricted
representation λ|π0(Z(φ̃)) does not contain the trivial character 1, i.e.,

m(λ, φ̃)= 0.

Finally we can prove Theorem 1.2.

Proof of Theorem 1.2. It is obvious if τ is a nongeneric tempered representation of GSp4(E). (See
Section 6C4.) Since the Levi subgroup of a parabolic subgroup in GSp4 are GL-type, [Prasad 2015,
Lemma 10] implies that deg8(φ̃)= 1 in our case. By the above discussions, we know that if τ is generic,
then the multiplicity dim HomGSp4(F)(τ, ωE/F ) equals to the number of inequivalent lifts |F(φτ )|. �
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7. Proof of Theorem 1.3

This section focuses on the Prasad conjecture for PGSp4. Let τ̄ be a representation of PGSp4(E), i.e., a
representation τ of GSp4(E) with trivial central character. If the multiplicity

dim HomPGSp4(F)(τ̄ , ωE/F )= dim HomGSp4(F)(τ, ωE/F )

is nonzero, then we say τ̄ is (PGSp4(F), ωE/F )-distinguished. Let PGSp1,1 = PGU2(D) be the pure
inner form of PGSp4 defined over F. Similarly,

dim HomPGSp1,1(F)(τ̄ , ωE/F )= dim HomGSp1,1(F)(τ, ωE/F )

for a representation τ of GSp4(E) with trivial central character.

7A. Notation.

• τ̄ , π++, π−−, π+ and π− are representations of PGSp4(E).

• s ∈WF \WE and φs
τ (t)= φτ (sts−1) for t ∈WDE .

• Sφ = π0(Z(φ)) is the component group associated to φ.

• φ̃ :WDF → Sp4(C) and φ̃i are Langlands parameters of PGSp4(F).

• Ci is a coset of AG(φ̃i ) in H 1(F,PGSp4) and 1Ci denotes its characteristic function.

• PGSp1,1 (resp. P D×) is the pure inner form of PGSp4 (resp. PGL2) defined over F.

7B. The Prasad conjecture for PGL2. If G = PGL2, then χG = ωE/F and Gop
= PGL2.

Theorem 7.2.1. Let π̄ be a generic irreducible representation of PGL2(E). Then the following are
equivalent:

(i) dim HomPGL2(F)(π̄, ωE/F )= 1.

(ii) The Langlands parameter φπ̄ is conjugate-symplectic.

(iii) There exists a parameter φ̃ :WDF → SL2(C) such that φ̃|WDE = φπ̄ .

(iv) π̄ is (P D×(F), ωE/F )-distinguished or π̄ = π(χE , χ
−1
E ) with χE |F× = ωE/F and χ2

E 6= 1.

Proof. See [Gan and Raghuram 2013, Theorem 6.2; Lu 2017b, Main Theorem (local)]. �

7C. The Prasad conjecture for PGSp4. Recall that if G=PGSp4, then Ĝ=Spin5(C)
∼=Sp4(C), Gop

=

PGSp4 and χG = ωE/F . Let τ̄ be a representation of PGSp4(E) with enhanced L-parameter (φτ̄ , λτ̄ ).
Assume that the L-packet 5φτ̄ is generic. The Prasad conjecture for PGSp4 implies the following:

P(i) If τ̄ is (PGSp4(F), ωE/F )-distinguished, then

• 5φs
τ̄
=5φ∨τ̄

, an equality of L-packets and
• φτ̄ = φ̃|WDE for some parameter φ̃ :WDF → Sp4(C).
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P(ii) If τ̄ is generic and there exists φ̃ :WDF → Sp4(C) such that φ̃|WDE = φτ̄ , then we have that τ̄ is
(PGSp4(F), ωE/F )-distinguished.

P(iii) Assume that φτ̄ = φ̃|WDE for some parameter φ̃ : WDF → Sp4(C). If τ̄ is a discrete series
representation, then we set

F(φτ̄ )= {φ̃ : φ̃|WDE = φτ̄ } =
⊔

i

O(φ̃i ),

where O(φ̃i ) = {φ̃i , ωE/F · φ̃i } which may be a singleton. Given a parameter φ̃i : WF → Sp4(C)

with φτ̄ its restriction to WDE and φ̃i ·ωE/F = φ̃i , there exists an element gi ∈ Z(φτ̄ ) such that

(φ̃i ·ωE/F )(x)= gi φ̃i (x)g−1
i

for all x ∈WDF and so gi normalizes Z(φ̃i ). Then HomPGSp4(F)(τ̄ , ωE/F ) 6= 0 if λτ̄ (gi )= 1 and
HomPGSp1,1(F)(τ̄ , ωE/F ) 6= 0 if λτ̄ (gi )=−1. In this case, AG(φ̃i )⊂ H 1(F,PGSp4) is trivial and

Ci =

{
{PGSp4} if λτ̄ (gi )= 1,
{PGSp1,1} if λτ̄ (gi )=−1.

If φ̃i 6= φ̃i ·ωE/F , then AG(φ̃i )= H 1(F,PGSp4) and Ci = {PGSp4,PGSp1,1}. Set Gα to be PGSp4

or PGSp1,1. Then

dim HomGα(F)(τ̄ , ωE/F )=
∑

i

m(λτ̄ , φ̃i )1Ci (Gα)/d0(φ̃i ),

where m(λτ̄ , φ̃i ) is the multiplicity of the trivial representation contained in the restricted represen-
tation λτ̄ |π0(Z(φ̃i ))

.

P(iv) If 5φτ̄ is generic, then we have (1-3), i.e.,

dim HomPGSp4(F)(τ̄ , ωE/F )+ dim HomPGSp1,1(F)(τ̄ , ωE/F )=
∑

ϕ∈F(φτ̄ )

m(λτ̄ , ϕ) ·
deg8(ϕ)

d0(ϕ)
.

Let us start to verify the Langlands functoriality lift in the Prasad conjecture for PGSp4, i.e., part P(i)
and P(ii) listed above. Part P(iii) is the same with Theorem 1.3. Part P(iv) will be studied in detail in the
next subsection.

Theorem 7.3.1. Let τ̄ be a generic representation of PGSp4(E). It is (PGSp4(F), ωE/F )-distinguished
if and only if there exists a parameter φ̃ :WDF → Sp4(C) such that φ̃|WDE = φτ̄ .

Proof. Assume that τ = θ(5�χ) with χ = 1, i.e., ωτ = 1. Fix s ∈WF \WE .

(i) If τ̄ is (PGSp4(F), ωE/F )-distinguished, then φ5 is conjugate-symplectic and so 5φs
τ̄
=5φ∨τ̄

=5φτ̄ .
If φ5 is irreducible, then we can repeat the process in Section 6C1 to obtain that there exists a parameter
φ̃ :WDF → Sp4(C) such that φ̃|WDE = φτ̄ . If φ5 = ρ1⊕ ρ2 is reducible and ρ1 is irreducible, then

ρ1⊕ ρ2 = ρ
∨

1 ⊕ ρ
∨

2 = ρ
s
1⊕ ρ

s
2

and either ρs
1 = ρ

∨

2 or both ρ1 and ρ2 are conjugate-symplectic.
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• If ρs
1 = ρ

∨

2 , then there are two subcases. If ρ∨2 = ρ2, then ρs
1 = ρ2. Set φ̃ = IndWDF

WDE
ρ1 if ρ1 6= ρ2.

If ρ1 = ρ2 = ρ
∨

2 , then ρs
1 = ρ1 and so there exists a parameter ρ̃1 : WDF → GL2(C) such that

ρ̃1|WDE = ρ1. Set φ̃ = ρ̃1⊕ ρ̃
∨

1 . If ρ∨2 6= ρ2, then ρ∨2 = ρ1. Thus ρs
1 = ρ1 and φ̃ = ρ̃1⊕ ρ̃

∨

1 .

• If both ρ1 and ρ2 are conjugate-symplectic, then

φ̃ =

{
IndWDF

WDE
ρ1 if ρs

1 = ρ2 6= ρ1,

ρ̃1⊕ ρ̃
∨

1 if ρs
1 = ρ1.

If neither ρ1 nor ρ2 is irreducible, then φτ̄ belongs to the endoscopic case. Thanks to Theorem 4.4.9(ii),
either ρs

1 = ρ
∨

2 or both ρ1 and ρ2 are conjugate-symplectic. The argument is similar and we omit it here.
Therefore, there exists φ̃ :WDF → Sp4(C) such that φ̃|WDE = φτ̄ .

(ii) Conversely, if there exists φ̃ : WDF → Sp4(C) such that φ̃|WDE = φτ̄ , then it suffices to show
that φ5 is conjugate-symplectic. (See Lemma 6.3.1.) The nongeneric member in the L-packet 5φτ̄ is not
(GSp4(F), ωE/F )-distinguished due to Theorem 4.4.9(i) if |5φτ̄ | = 2. Assume that

φτ̄ :WDE → Sp(V, 〈−,−〉)= Sp4(C) and φ5 = i ◦φτ̄ :WDE → GL(V ),

where i : Sp4(C)→ GL(V ) is the embedding between the L-groups. Then we set

B(m, n)= 〈m, φ̃(s)−1n〉

for m, n ∈ V. It is easy to check that B(φ5(t)m, φs
5(t)n)= B(m, n) and

B(m, φ5(s2)n)= 〈m, φ̃(s)n〉 = −〈φ̃(s)n,m〉 = −〈n, φ̃(s)−1m〉 = −B(n,m).

Therefore, the bilinear form B on V implies that φ5 is conjugate-symplectic.

We have finished the proof. �

However, in order to verify (1-3), we will need many more results from Theorems 4.4.9 and 5.3.1. We
will give the full detail in the next subsection.

7D. Proof of Theorem 1.3. This subsection focuses on the proof of Theorem 1.3. Before we give the
proof of Theorem 1.3, we will use the results in Theorems 4.4.9 and 5.3.1 to study the equality (1-3) in
detail. Then Theorem 1.3 will follow automatically. According to the Langlands parameter φτ̄ , we divide
them into three cases:

• the endoscopic case,

• the discrete series but nonendoscopic case and

• φτ̄ = ρ+ ρν with ν 6= 1 and ν det ρ = 1.

Set Sφ = π0(Z(φ)) to be the component group. We identify the characters of WF and the characters
of F× via the local class field theory.
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7D1. Endoscopic case. Given φτ̄ = φ1⊕φ2, there are two cases: φ1 = φ2 and φ1 6= φ2.

(A) If φ1 = φ2 = ρ are irreducible, then the L-packet 5φτ̄ equals {π+, π−} and Sφτ̄ equals Z/2Z,
where π− (resp. π+) is a nongeneric (resp. generic) representation of PGSp4(E). There are two subcases:

(A1) If ρ is conjugate-orthogonal, then

dim HomPGSp1,1(F)(π
+, ωE/F )= 0= dim HomPGSp4(F)(π

−, ωE/F )

and
dim HomPGSp1,1(F)(π

−, ωE/F )= 1= dim HomPGSp4(F)(π
+, ωE/F ).

On the Galois side, there is only one extension φ̃ = ρ̄⊕ ρ̄ ·ωE/F with

deg8(φ̃)= 2 and Sφ̃ = {1} → Sφτ̄ ,

where ρ̄ :WDF→GL2(C)×WF with det ρ̄ = ωE/F . Note that φ̃ = φ̃ ·ωE/F . Then π+ supports a period
on the trivial pure inner form and π− supports a period on a nontrivial pure inner form.

(A2) If ρ is conjugate-symplectic, then

dim HomPGSp1,1(F)(π
−, ωE/F )= 0= dim HomPGSp4(F)(π

−, ωE/F )

and
dim HomPGSp1,1(F)(π

+, ωE/F )= 1, dim HomPGSp4(F)(π
+, ωE/F )= 2.

In this case, ρ has two extensions ρ̄ and ρ̄ ·ωE/F , where ρ̄ :WDF→ SL2(C). There are three choices for
the extension φ̃ :WDF → Sp4(C) with deg8(φ̃)= 1:

• φ̃++ = ρ̄⊕ ρ̄ with Sφ̃++ = Z/2Z∼= Sφτ̄ ;

• φ̃+− = ρ̄⊕ ρ̄ ·ωE/F with Sφ̃+− = Z/2Z×Z/2Z→ Sφτ̄ (sum map);

• φ̃−− = ρ̄ ·ωE/F ⊕ ρ̄ ·ωE/F with Sφ̃−− = Z/2Z∼= Sφτ̄ .

The parameters φ̃++ and φ−− are in the same orbit under the twisting by ωE/F , which corresponds to
both pure inner forms. The parameter φ̃+− is fixed under twisting by ωE/F , which supports a period on
the trivial pure inner form.

(A3) If ρ is not conjugate-self-dual, then both the Galois side and the automorphic side are 0.

(B) If φ1 6= φ2 are both irreducible, then the L-packet of PGSp4 is 5φτ̄ = {π
++, π−−} and

Sφτ̄ = Z/2Z×Z/2Z.

(B1) If φ1 and φ2 both extend to L-parameters of PGL2(F), i.e., both are conjugate-symplectic, then one
has φs

1 6= φ2,

dim HomPGSp1,1(F)(π
++, ωE/F )= 2= dim HomPGSp4(F)(π

++, ωE/F )

and
dim HomPGSp1,1(F)(π

−−, ωE/F )= 0= dim HomPGSp4(F)(π
−−, ωE/F ).
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On the Galois side, there are also four ways of extending φτ̄ . For each such extension φ̃, one has
deg8(φ̃)= 1 and the equality of component group

Sφ̃ = Sφτ̄ = Z/2Z×Z/2Z.

Therefore only the representation π++ in the L-packet can support a period. And there are 2 orbits in
F(φτ̄ ) under twisting by ωE/F , each of size 2.

(B2) If φ1 and φ2 do not extend to L-parameters of PGL2(F), but φs
1 = φ2 = φ

∨

2 , then

dim HomPGSp1,1(F)(π
++, ωE/F )= 0= dim HomPGSp4(F)(π

−−, ωE/F )

and
dim HomPGSp1,1(F)(π

−−, ωE/F )= 1= dim HomPGSp4(F)(π
++, ωE/F )

There is a unique way of extending φτ̄ = φ1⊕φ2 to φ̃ :WDF → Sp4(C). Namely, φ̃ = IndWDF
WDE

φ1 is an
irreducible 4-dimensional symplectic representation, with a component group

Sφ̃ = Z/2Z ↪→ Sφτ̄ (diagonal embedding).

And SGal(E/F)
φτ̄

= Sφ̃ . Thus π++ supports a period on the trivial pure inner form and π−− supports a
period on the nontrivial pure inner form.

(C) If φ1 = χ1⊕χ
−1
1 is reducible, then there is only one element in the L-packet, i.e., |5φτ̄ | = 1. There

are two cases: φ1 = φ2 and φ1 6= φ2.

(C1) If φ1 = φ2, there are three subcases.

(C1.i) If χ1 = χ
s
1 = χF |WE , then Sφτ̄ = 1 and

dim HomPGSp1,1(F)(τ̄ , ωE/F )= 2= dim HomPGSp4(F)(τ̄ , ωE/F ).

• If χ2
F 6= ωE/F , then there are two ways to extend L-parameters of PGL2(F), denoted by ρ̄ and

ρ̄ · ωE/F . Thus there are 3 ways of extending φτ̄ , which are φ̃++, φ̃−− and φ̃+−. Moreover,
deg8(φ̃++)= 1= deg8(φ̃−−) and deg8(φ̃+−)= 2.

• If χ2
F = ωE/F , then there is only one way to extend φτ̄ . Denote it by φ̃. Then

deg8(φ̃)= 4.

(C1.ii) If χ1 6= χ
−1
1 but χ1|F× = ωE/F , then Sφτ̄ = 1 and

dim HomPGSp1,1(F)(τ̄ , ωE/F )= 0 and dim HomPGSp4(F)(τ̄ , ωE/F )= 1.

There is only one way to extend φ1, denoted by

ρ̄ = IndWDF
WDE

χ1 :WDF → SL2(C).
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Then φ̃ = ρ̄⊕ ρ̄ with Sφ̃ = Z/2Z and deg8(φ̃)= 1. Note that φ̃ ·ωE/F = φ̃. Then φ̃ supports a period
on the trivial pure inner form.

(C1.iii) If χ1 6= χ
−1
1 but χ1|F× = 1, then Sφτ̄ = 1 and

dim HomPGSp1,1(F)(τ̄ , ωE/F )= 0 and dim HomPGSp4(F)(τ̄ , ωE/F )= 1.

On the Galois side, there is only one choice φ̃ = ρ̄⊕ ρ̄ and Sφ̃ = 1, where

ρ̄ = IndWDF
WDE

χ1 :WDF → GL2(C)

with det ρ = ωE/F . Since φ̃ = φ̃ ·ωE/F , it picks up only the trivial pure inner form.

(C2) If φ1 6= φ2, there are several subcases:

(C2.i) If χ1 = χ
s
1 = χF |WE and φ2 is irreducible and conjugate-symplectic, then Sφτ̄ = Z/2Z and

dim HomPGSp1,1(F)(τ̄ , ωE/F )= 2= dim HomPGSp4(F)(τ̄ , ωE/F ).

• If χ2
F 6= ωE/F , then there are four ways of extending φτ̄ and for each such extension φ̃, one has

Sφ̃ = Z/2Z∼= Sφτ̄ . There are two orbits under the twisting by ωE/F , each of size 2.

• If χ2
F = ωE/F , then there are two ways of extending φτ̄ . For each such extension φ̃, one has

deg8(φ̃)= 2. There is one orbit under the twisting by ωE/F .

In this case, the identity

dim HomGα(F)(τ̄ , χG)=
∑

i

m(λ, φ̃i )1Ci (Gα) ·
deg8(φ̃i )

d0(φ̃i )
(7-1)

holds for Gα = PGSp4 and PGSp1,1.

(C2.ii) If χ1 = χ
s
1 = χF |WE and χ2 = χ

s
2 = χ

′

F |WE , where φ2 = χ2⊕χ
−1
2 , then Sφτ̄ = 1 and

dim HomPGSp1,1(F)(τ̄ , ωE/F )= 2= dim HomPGSp4(F)(τ̄ , ωE/F ).

• If neither χ2
F nor χ ′F

2 equals ωE/F , then there are four ways of extending φτ̄ . There are two orbits
under the twisting by ωE/F , each of size 2.

• If χ2
F = ωE/F and χ ′2F 6= ωE/F , then there are two ways to extend φτ̄ and for each such extension

φ̃, one has Sφ̃ = 1= Sφτ̄ and deg8(φ̃)= 2. There is one orbit under the twisting by ωE/F , which
corresponds to both pure inner forms.

• If χ2
F = χ

′2
F = ωE/F , then there is only one way to extend φτ̄ . For this extension φ̃, one has

deg8(φ̃)= 4.

(C2.iii) If χ1 6= χ
−1
1 but χ1 is conjugate-symplectic, and φ2 is irreducible and conjugate-symplectic, then

Sφτ̄ = Z/2Z and

dim HomPGSp1,1(F)(τ̄ , ωE/F )= 1= dim HomPGSp4(F)(τ̄ , ωE/F ).
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There are two extensions φ̃= ρ̄1⊕ρ̄2 or ρ̄1⊕ρ̄2ωE/F with Sφ̃ =Z/2Z×Z/2Z, where ρ̄i :WDF→SL2(C)

satisfies ρ̄i |WDE = φi . Here the map Sφ̃→ Sφτ̄ is given by

(x, y) 7→ x + y.

There is one orbit under the twisting by ωE/F , which corresponds to both pure inner forms.

(C2.iv) If χ1 6= χ
−1
1 but χ1 is conjugate-symplectic, and χ2 = χ

s
2 = χ

′

F |WE where φ2 = χ2⊕χ
−1
2 , then

Sφτ̄ = 1 and

dim HomPGSp1,1(F)(τ̄ , ωE/F )= 1= dim HomPGSp4(F)(τ̄ , ωE/F ).

• If χ ′2F 6= ωE/F , then there are two ways to extend φτ̄ . Set φ̃ = ρ̄1 ⊕ ρ̄2 or ρ̄1 ⊕ ρ̄2ωE/F with
Sφ̃ = Z/2Z. There is one orbit under the twisting by ωE/F , which corresponds to both pure inner
forms.

• If χ ′2F = ωE/F , there is one way to extend φτ̄ . Set φ̃ = ρ̄1⊕χ
′

F ⊕χ
′

FωE/F , and

deg8(φ̃)= 2.

Note that the identity (7-1) fails in this case while the identity (1-3) still holds.

(C2.v) If φ1 and φ2 are reducible and four different characters χ1, χ
−1
1 , χ2 and χ−1

2 satisfy

χ1|F× = ωE/F = χ2|F×,

then Sφτ̄ is trivial,

dim HomPGSp1,1(F)(τ̄ , ωE/F )= 0,

and dim HomPGSp4(F)(τ̄ , ωE/F )= 1. There is only one extension φ̃ = ρ̄1⊕ ρ̄2 with Sφ̃ = Z/2Z×Z/2Z.

Since φ̃ = φ̃ ·ωE/F , it picks up the trivial pure inner form.

(C2.vi) If φs
1 = φ

∨

2 = φ2 and φ1 is not conjugate-symplectic, then Sφτ̄ = 1 and

dim HomPGSp1,1(F)(τ̄ , ωE/F )= 0, dim HomPGSp4(F)(τ̄ , ωE/F )= 1.

There is only one extension

φ̃ = IndWDF
WDE

φ1 :WDF → Sp4(C)

with the component group Sφ̃ = Z/2Z. Since φ̃ = φ̃ ·ωE/F , it picks up the trivial pure inner form.

It is easy to check that the identity (1-3) holds when 5φτ̄ is generic, i.e.,

dim HomPGSp4(F)(τ̄ , ωE/F )+ dim HomPGSp1,1(F)(τ̄ , ωE/F )=
∑

φ̃∈F(φτ̄ )

m(λ, φ̃) ·
deg8(φ̃)

d0(φ̃)
.
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7D2. Discrete and nonendoscopic case. Assume that φτ̄ is irreducible and so 5φτ̄ is a singleton. Given
a parameter φτ̄ , which is nonendoscopic, the theta lift 2+4 (τ ) from PGSp4(E) to PGSO2,2(E) is zero.

If φτ̄ is conjugate-symplectic, then

dim HomPGSp1,1(F)(τ̄ , ωE/F )= 1= dim HomPGSp4(F)(τ̄ , ωE/F ).

There are two extensions φ̃ and φ̃ ·ωE/F with a component group Sφ̃ = Sφτ̄ = Z/2Z. There is one orbit
under the twisting by ωE/F , which corresponds to both pure inner forms.

7D3. Generic but neither discrete nor endoscopic case. If φτ̄ = ρ⊕ ρν, det ρ = ν−1
6= 1, then Sφτ̄ = 1.

There are two cases:

• If φτ̄ is conjugate-symplectic and ρs
= ρ, then

dim HomPGSp1,1(F)(τ̄ , ωE/F )= 1= dim HomPGSp4(F)(τ̄ , ωE/F ).

There are two extensions φ̃ = ρ̃+ ρ̃∨ and φ̃ ·ωE/F where ρ̃ :WDF → GL2(C) satisfies ρ̃|WDE = ρ.

• If φτ̄ is conjugate-symplectic and ρs
6= ρ, then

dim HomPGSp4(F)(τ̄ , ωE/F )= 1 and dim HomPGSp1,1(F)(τ̄ , ωE/F )= 0.

There is only one extension φ̃ = IndWDF
WDE

ρ such that φ̃|WDE = φτ̄ .

Proof of Theorem 1.3. It follows from the discussions in the endoscopic cases (B)enumz in Section 7D1
and the discrete and nonendoscopic case in Section 7D2. �

7E. Further discussion. Let E be a quadratic extension over a nonarchimedean local field F . Let G
be a quasisplit reductive group defined over F . Let τ be an irreducible representation of G(E) with an
enhanced L-parameter (φτ , λ). Assume that F(φτ )= tiO(φ̃i ) where φ̃i |WDE = φτ .

If for each orbit O(φ̃i ), the coset Ci ⊂ H 1(WF , G) contains all pure inner forms satisfying Gα(E)=
G(E), then φτ is called a “full” L-parameter of G(E), in which case 1Ci (Gα)≡ 1 in (7-1).

Assume that τ belongs to a generic L-packet with Langlands parameter φτ :WDE →
L G and that φτ

is “full”. Then there is a conjectural identity

dim HomGα
(τ, χG)=

∑
i

m(λ, φ̃i ) ·
deg8(φ̃i )

d0(φ̃i )
(7-2)

for any pure inner form Gα ∈ H 1(WF , G) satisfying Gα(E)= G(E).
If H 1(WF , G) is trivial, then any L-parameter φτ is “full”. So the conjectural identity (7-2) holds for

G = GL2. In fact, it holds for G = PGL2 as well.
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ANDRÁS C. LŐRINCZ and CLAUDIU RAICU

2571On asymptotic Fermat over Zp-extensions of Q

NUNO FREITAS, ALAIN KRAUS and SAMIR SIKSEK

A
lgebra

&
N

um
ber

Theory
2020

Vol.14,
N

o.9

http://dx.doi.org/10.2140/ant.2020.14.2295
http://dx.doi.org/10.2140/ant.2020.14.2335
http://dx.doi.org/10.2140/ant.2020.14.2369
http://dx.doi.org/10.2140/ant.2020.14.2417
http://dx.doi.org/10.2140/ant.2020.14.2481
http://dx.doi.org/10.2140/ant.2020.14.2505
http://dx.doi.org/10.2140/ant.2020.14.2533
http://dx.doi.org/10.2140/ant.2020.14.2571

	1. Introduction
	2. The local theta correspondences for similitudes
	2A. First occurrence indices for pairs of orthogonal Witt towers

	3. The irreducibility of the big theta lift
	3A. Notation
	3B. The standard module conjecture
	3C. Theta lift from Sp2n(F) to On+1,n+1(F)
	3D. Representations of GO (V)
	3E. Representations of GSp4(E)

	4. The GSp4(F)-distinguished representations
	4A. Notation
	4B. See-saw identity for orthogonal-symplectic dual pairs
	4C. The structure of degenerate principal series
	4C1. Double cosets
	4C2. Filtration

	4D. The distinction problem for GSp4
	4D1. The Langlands correspondence for GSp4


	5. The GSp1,1(F)-distinguished representations
	5A. Notation
	5B. Theta lifts for quaternionic unitary groups
	5B1. Morita equivalence
	5B2. Dual pairs
	5B3. The see-saw diagram
	5B4. Degenerate principal series
	5B5. Double cosets

	5C. The distinction problem for GSp1,1

	6. The Prasad conjecture for GSp4
	6A. The Prasad conjecture
	6B. The Prasad conjecture for GL2
	6C. The Prasad conjecture for GSp4
	6C1. The irreducible L-parameter 
	6C2. phi_tau=rho+rho nu with nu=1 and rho irreducible 
	6C3. Endoscopic case
	6C4. Nongeneric tempered


	7. Proof of Theorem 1.3
	7A. Notation
	7B. The Prasad conjecture for PGL2
	7C. The Prasad conjecture for PGSp4
	7D. Proof of Theorem 1.3
	7D1. Endoscopic case
	7D2.  Discrete and nonendoscopic case
	7D3.  Generic but neither discrete nor endoscopic case

	7E. Further discussion

	Acknowledgments
	References
	
	

