Vol. 14, No. 9, 2020

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 9, 1589–1766
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
On asymptotic Fermat over $\mathbb{Z}_p$-extensions of $\mathbb{Q}$

Nuno Freitas, Alain Kraus and Samir Siksek

Vol. 14 (2020), No. 9, 2571–2574
Abstract

Let p be a prime and let n,p denote the n-th layer of the cyclotomic p-extension of . We prove the effective asymptotic FLT over n,p for all n 1 and all primes p 5 that are non-Wieferich, i.e., 2p11(modp2). The effectivity in our result builds on recent work of Thorne proving modularity of elliptic curves over n,p.

Keywords
Fermat, unit equation, $\mathbb{Z}_p$-extensions
Mathematical Subject Classification
Primary: 11D41
Secondary: 11R23
Milestones
Received: 2 April 2020
Accepted: 11 May 2020
Published: 13 October 2020
Authors
Nuno Freitas
Department de Matemàtiques i Informàtica
Universitat de Barcelona
Barcelona
Spain
Alain Kraus
Institut de Mathématiques de Jussieu - Paris Rive Gauche
Sorbonne Université
UMR 7586 CNRS - Paris Diderot
Paris
France
Samir Siksek
Mathematics Institute
University of Warwick
Coventry
United Kingdom