Vol. 15, No. 5, 2021

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
Other MSP Journals
Equidistribution of shapes of complex cubic fields of fixed quadratic resolvent

Robert Harron

Vol. 15 (2021), No. 5, 1095–1125

We show that the shape of a complex cubic field lies on the geodesic of the modular surface defined by the field’s trace-zero form. We also prove a general such statement for all orders in étale Q-algebras. Applying a method of Manjul Bhargava and Piper H to results of Bhargava and Ariel Shnidman, we prove that the shapes lying on a fixed geodesic become equidistributed with respect to the hyperbolic measure as the discriminant of the complex cubic field goes to infinity. We also show that the shape of a complex cubic field is a complete invariant (within the family of all cubic fields).

algebraic number theory, cubic fields, lattices, arithmetic statistics, equidistribution, geodesics, majorant space
Mathematical Subject Classification
Primary: 11R16
Secondary: 11E12, 11R45
Received: 19 August 2019
Revised: 8 June 2020
Accepted: 21 July 2020
Published: 30 June 2021
Robert Harron
Department of Mathematics
University of Hawai‘i at Mānoa
Honolulu, HI
United States