Vol. 16, No. 1, 2022

Download this article
Download this article For screen
For printing
Recent Issues

Volume 16
Issue 2, 231–519
Issue 1, 1–230

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
 
Other MSP Journals
Cohomology of cluster varieties, I: Locally acyclic case

Thomas Lam and David E. Speyer

Vol. 16 (2022), No. 1, 179–230
Abstract

We initiate a systematic study of the cohomology of cluster varieties. We introduce the Louise property for cluster algebras that holds for all acyclic cluster algebras, and for most cluster algebras arising from marked surfaces. For cluster varieties satisfying the Louise property and of full rank, we show that the cohomology satisfies the curious Lefschetz property of Hausel and Rodriguez-Villegas, and that the mixed Hodge structure is split over . We give a complete description of the highest weight part of the mixed Hodge structure of these cluster varieties, and develop the notion of a standard differential form on a cluster variety. We show that the point counts of these cluster varieties over finite fields can be expressed in terms of Dirichlet characters. Under an additional integrality hypothesis, the point counts are shown to be polynomials in the order of the finite field.

Keywords
cluster algebras, cluster varieties, cohomology, mixed Hodge structure
Mathematical Subject Classification
Primary: 13F60
Secondary: 14F40
Milestones
Received: 4 January 2021
Accepted: 21 April 2021
Published: 22 February 2022
Authors
Thomas Lam
Department of Mathematics
University of Michigan
Ann Arbor, MI
United States
David E. Speyer
Department of Mathematics
University of Michigan
Ann Arbor, MI
United States