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Consider a Frobenius kernel G in a split semisimple algebraic group, in very good characteristic. We
provide an analysis of support for the Drinfeld center Z(rep(G)) of the representation category for G, or
equivalently for the representation category of the Drinfeld double of kG. We show that thick ideals in the
corresponding stable category are classified by cohomological support, and calculate the Balmer spectrum
of the stable category of Z(rep(G)). We also construct a π -point style rank variety for the Drinfeld double,
identify π-point support with cohomological support, and show that both support theories satisfy the
tensor product property. Our results hold, more generally, for Drinfeld doubles of Frobenius kernels in any
smooth algebraic group which admits a quasilogarithm, such as a Borel subgroup in a split semisimple
group in very good characteristic.
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In this paper we provide an in depth analysis of support theory for the Drinfeld double of a Frobenius
kernel G = G(r) in a sufficiently nice algebraic group G. Equivalently, we study support for the Drinfeld
center of the representation category rep(G). As indicated in the abstract, we calculate the Balmer
spectrum of thick prime ideals in the stable category of representations for the double, classify thick ideals
in the stable category, and construct π-point style rank varieties for representations. Our rank variety
construction is in line with that of Suslin, Friedlander and Bendel [Suslin et al. 1997b] and Friedlander
and Pevtsova [2005; 2007].
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The present study occupies a somewhat unique position in the literature in that it is among the first
semicomplete analyses of support for a class of “properly quantum” finite tensor categories; compare
[Vashaw 2020, Section 3.1]. By properly quantum here we mean braided, but nonsymmetric. In our earlier
papers [Friedlander and Negron 2018; Negron 2021], we verified the finite generation of cohomology for
Drinfeld doubles of finite group schemes, a necessary foundational step for a theory of cohomological
support varieties. We also made explicit computations of cohomology and briefly considered support
varieties of irreducible representations. In contrast, our focus in this paper is the establishment of basic
properties of support for Drinfeld doubles.

Support varieties have been employed to study various structural aspects of representations of groups
and Hopf algebras. The stratification they provide for various stable module categories was presaged
by Quillen’s stratification [1971a; 1971b] of the spectrum of the cohomology of finite groups. Indeed,
cohomology (including Ext-groups) plays a central role in the formulation of support theories, revealing a
surprising wealth of information about representations. Although the cohomology of a Hopf algebra A does
not depend upon the coproduct of A, the tensor product certainly does and the behavior of tensor products
is a fundamental underpinning of many applications of representation theory. Consequently, “the tensor
product property” for a support theory V 7→ supp(V ) asserting that supp(V ⊗W )= supp(V )∩ supp(W )

is of considerable interest.
As mentioned above, this text is dedicated to an analysis of support for the Drinfeld center Z(rep(G)) of

the representation category of an infinitesimal group scheme G. The center Z(rep(G)) can be understood
as the universal braided tensor category which admits a central tensor functor to rep(G), in the sense of
[Bezrukavnikov 2004, Definition 2.1]. There are, however, a number of more explicit presentations of the
center. For example, one can identify Z(rep(G)) with the category Coh(G)G of ad-equivariant sheaves on
G. Or, even more concretely, Z(rep(G)) is identified with the representation category of the smash product

D(G) := O(G)#adkG

of the algebra of functions on G with the group ring of G. The algebra D(G) is called the Drinfeld
double, or quantum double, of the group ring kG. For more details one can see Section 2C below.

The Drinfeld center construction plays an essential role in studies of tensor categories and in related
studies in mathematical physics. The important point here is that, unlike classical (symmetric) tensor
categories, such as rep(G) itself, Z(rep(G)) = rep(D(G)) is highly nonsymmetric, and so behaves
more like a quantum group than a classical group. In particular, the Drinfeld center is what is called
a nonsemisimple modular tensor category. In order for the center Z(rep(G)) to actually be a ribbon
category some natural restrictions must be placed on G; see for example [Kauffman and Radford 1993;
Humphreys 1978]. For applications of modular tensor categories to studies of conformal and topological
field theories one can see for example [Reshetikhin and Turaev 1991; Fendley 2021; Brochier et al.
2021; Gannon and Negron 2021; Koshida and Kytölä 2022], and for some indications of the relevance of
cohomology in such studies one can consult the texts [Lentner et al. 2020; Schweigert and Woike 2021;
Costello et al. 2019; Creutzig et al. 2021].
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Let us now turn to the specifics of this paper. For the remainder of the introduction we fix a field k of
prime characteristic p, and consider the following:

• Fix G to be the r-th Frobenius kernel in a split semisimple algebraic group G, in very good charac-
teristic.

• Fix D= D(G) to be the corresponding Drinfeld double for kG.

Here r is arbitrary, so that we are considering the family of normal subgroups G(r) in G.
For an explicit example, one could consider G to be SLn(k) in odd characteristic p which does not

divide n, or the symplectic group Sp2n(k) in arbitrary odd characteristic. We note that all of the results
listed below hold more generally when G is replaced by an arbitrary smooth algebraic group over k which
admits a quasilogarithm; see Section 4 for a definition.

We recall the notion of cohomological support: For a finite-dimensional Hopf algebra A, and any
A-representation V , we let |A| denote the projective spectrum of cohomology, and |A|V denote the
associated cohomological support space

|A| = Proj Ext∗A(k, k), |A|V = Supp|A| Ext∗A(V, V )∼.

Here Ext∗A(V, V ) inherits a graded module structure over Ext∗A(k, k) via the tensor structure on rep(A),
and Ext∗A(V, V )∼ denotes the associated sheaf on the projective spectrum.

As a first point, we prove the following.

Theorem 6.11. Consider G as above, with corresponding Drinfeld double D. Cohomological support for
D satisfies the tensor product property. That is to say, for finite-dimensional D-representations V and W
we have

|D|(V⊗W ) = |D|V ∩ |D|W . (1)

From the perspective of tensor triangular geometry (e.g., [Balmer 2010b; Benson et al. 2011a]),
Theorem 6.11 indicates that cohomological support may be used to “structure” both the derived and stable
categories of representations for the double D. We elaborate on this point, and also on our findings in
this direction.

Recall that the stable category stab(D) for D is the quotient of rep(D) by the ideal of all morphisms
which factor through a projective. This category inherits a triangulated structure from the abelian structure
on rep(D), and a monoidal structure from the monoidal structure on rep(D). Also, by a thick ideal in
stab(D) we mean a thick subcategory — and in particular a full triangulated subcategory — which is
stable under the tensor action of stab(D) on itself. Finally, by a specialization closed subset in |D|, we
mean a subset 2⊂ |D| which contains the closure x̄ ⊂2 of any point x ∈2. We prove the following.

Theorem 8.1. Cohomological support provides an order preserving bijection

{Specialization closed subsets in |D|} ∼−→ {thick ideals in stab(D)},

2 7−→K2,

where K2 is the thick ideal of all objects V in stab(D) which are supported in the given set |D|V ⊂2.
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One can compare with analogous classification results for finite groups [Rickard 1997], and finite
group schemes [Friedlander and Pevtsova 2007]. By a thick prime ideal in stab(D) we mean a thick ideal
P in stab(D) which satisfies the following: a product V ⊗W is in P if and only if V or W is in P.
Balmer has shown that the collection of prime ideals in stab(D) admits the structure of a locally ringed
space, which he calls the spectrum of stab(D).

Theorem 8.1 implies the following calculation of the Balmer spectrum Spec(stab(D)) for the Drinfeld
double.

Theorem 8.2. There is an isomorphism of locally ringed spaces

fcoh : |D|
∼=−→ Spec(stab(D)).

We note that the proofs of Theorems 8.1 and 8.2 rely on the construction of a certain “hybrid” Benson–
Iyengar–Krause-type support theory [Benson et al. 2008] for infinite-dimensional D-representations. We
discuss this support theory in Section 7 below.

Let us provide, in closing, an elaboration on the methods employed in our analysis of the center
Z(rep(G))= rep(D), and on a related π -point construction which appears in the appendix.

Elaborations on methods. Our proofs of the above results intertwine various approaches to support
varieties in the literature. There are, however, some fundamental mechanisms which we leverage
throughout the text.

Our basic approach to support for the double is as follows: We show in Section 5 that, for G a
Frobenius kernel in a sufficiently nice algebraic group G, the representation category of the Drinfeld
double D = D(G) admit an “effective comparison” with the representation category of an associated
infinitesimal group scheme 6. In particular, there is a linear abelian, nontensor, equivalence

L : rep(D) ∼−→ rep(6) (2)

which nonetheless transports support theoretic information back and forth. For example, we have an
identification of cohomological supports |D|V = |6|L(V ) for all V in rep(D); see Lemma 6.9.

The fact that the equivalence L identifies support for D with that of 6 is not a casual one, and requires
one to “descend” the equivalence L to a family of local Hopf subalgebras Dψ ⊂D which “covers” D.
This family of subalgebras {Dψ }ψ∈Vr (G) is parametrized by the scheme Vr (G) of 1-parameter subgroups
in G, and plays a fundamental role in our study. As a basic point, one can use the subalgebras Dψ to
detect projectivity of D-representations. In particular, a given D-representation is projective if and only
if its restriction to each Dψ is projective (Theorem 3.7). The ability of the Dψ to detect projectivity of
D-representations is the covering property referred to above.

The effective comparison (2) is integral to our proofs of the tensor product property |D|V⊗W =

|D|V ∩ |D|W , and also to the classification results listed above. Additionally, the particular nature of our
comparison indicates the existence of a π-point support theory for representations of the double, which
we discuss in more detail below.
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One might compare our approach with Avrunin and Scott’s proof of Carlson’s conjecture, where a
certain change of coproduct result is used to relate supports for abelian restricted Lie algebras to those of
elementary abelian groups [Avrunin and Scott 1982].

Conceptualizations via π-points. The introduction of π-points by Pevtsova and the first author [Fried-
lander and Pevtsova 2005; 2007] provide an alternate way to conceptualize our results. Our discussion of
an analogous theory of π -points for the Drinfeld double D is relegated to the appendix because they do
not figure directly into the proofs of the results we have summarized. Instead, these results justify the
intuition of π -points.

For us, a π -point for D is a choice of field extension K/k, and a flat algebra map

α : K [t]/(t p)→DK

which admits an appropriate factorization through one of the local Hopf subalgebras Dψ ⊂DK (Def-
initions A.6 and A.8). We then construct the space 5(D) of equivalence classes of π-points, and a
corresponding π-point support theory V 7→ 5(D)V for the double. The support spaces 5(D)V are
explicitly the locus of all π -points α at which the restriction resα(VK ) of V to K [t]/(t p) is nonprojective.

Two of our main results are that π -point support for the double D satisfies the tensor product property

5(D)V⊗W =5(D)V ∩5(D)W (3)

(Theorem A.14), and also agrees with cohomological support. In the statement of the following theorem
we suppose that G is, as usual, a Frobenius kernel in a sufficiently nice algebraic group G, i.e., one which
admits a quasilogarithm.

Theorem A.15. Consider G as above, and D= D(G). There is a homeomorphism of topological spaces

5(D)
∼=−→ |D|

which restricts to a homeomorphism of support spaces 5(D)V
∼=−→ |D|V for each V in rep(D).

We furthermore construct a “universal” π-point theory 5⊗(D)⋆, and show that our specific π-point
support theory 5(D)⋆ agrees with this universal theory. One can see Theorem A.16 below.

In considering the π -point perspective for support, we open up the possibility of a deeper analysis of
support for the double via explicit nilpotent operators. One can compare with the introduction of local
Jordan types for group representations in [Carlson et al. 2008; Friedlander et al. 2007], and constructions
of vector bundles on support spaces provided in [Friedlander and Pevtsova 2011; Benson and Pevtsova
2012]. Although we won’t discuss the issue here, our methods also allow us to identify cohomological and
hypersurface supports for Drinfeld doubles of first Frobenius kernels G(1) in sufficiently nice algebraic
groups; compare [Negron and Pevtsova 2020, Corollary 7.2, Section 13.3].
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2. Preliminaries

We recall basic information about Hopf algebras, finite group schemes, and the Drinfeld double construc-
tion. We also recall the notion of cohomological support, and some basic results about Carlson modules.
Throughout this text we work over a base field k which is of (finite) characteristic p.

2A. Hopf algebras and some generic notation. We set some global notations, and recall a strong form
of the Larson–Sweedler theorem [Larson and Sweedler 1969]. We assume the reader has some familiarity
with Hopf algebras, and our canonical reference for the topic is [Montgomery 1993].

For us, a representation of a finite-dimensional algebra A is the same thing as an A-module, and all
representations/modules are left representations/modules. For a finite-dimensional Hopf algebra A we let

rep(A) := {the tensor category of finite-dimensional A-representations}

and

Rep(A) := {the monoidal category of all A-representation}.

To be clear, when we say rep(A) is a tensor category we recognize that all objects in rep(A) admit both
left and right duals [Etingof et al. 2015, Section 2.10], whereas objects in Rep(A) are not dualizable in
general. We let Irrep(A) denote the collection of all (isoclasses of) simple A-representations.

Throughout the text we denote finite-dimensional representations by the letters V and W , and reserve the
letters M and N for possibly infinite-dimensional representations. This notation is employed throughout
the text, without exception.

We recall the following basic result, which will be of use later.

Theorem 2.1 [Larson and Sweedler 1969]. Any finite-dimensional Hopf algebra A is Frobenius. In
particular, an A-representation M is projective if and only if M is injective.

Proof. The algebra A is Frobenius by Larson and Sweedler [1969]. We note that if A is Frobenius then
injectivity is the same as projectivity, even for infinite-dimensional modules, by [Faith and Walker 1967,
Theorem 5.3]. □

2B. Finite group scheme. All group schemes in this text are affine. A group scheme G, over a base
field k, is called finite if it is finite as a scheme over Spec(k). Rather, G is finite if it is affine and has
finite-dimensional (Hopf) algebra of global functions O(G). For such finite G we let kG denote the
associated group algebra kG = O(G)∗. A finite group scheme is called infinitesimal if G is connected,
i.e., if O(G) is local, and unipotent if the group algebra kG is local.

Following the framework of the previous section, we let rep(G) denote the category of finite-dimensional
kG-modules, and Rep(G) denote the category of arbitrary kG-modules. Note that kG-modules are
identified with O(G)-comodules as in [Montgomery 1993, Lemma 1.6.4], so that finite-dimensional
kG-modules are in fact identified with k-linear representations of the group scheme G.
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2C. The Drinfeld double and the Drinfeld center. Let G be a finite group scheme. The adjoint action of
G on itself induces an action of kG on O(G), and we can form the corresponding smash product, which
is known as the Drinfeld double, or quantum double of kG, D(G)= O(G)#kG. We usually employ the
generic notation D for the Drinfeld double

D := D(G).

The algebra D admits a unique Hopf algebra structure for which the two algebra inclusions O(G)→D

and kG→D are inclusions of Hopf algebras; see for example [Montgomery 1993, Corollary 10.3.10].

Remark 2.2. There is an analogous construction A⇝ D(A) of the Drinfeld double for an arbitrary finite-
dimensional Hopf algebra A. So, we are only discussing a particular instance of a general construction.

Remark 2.3. If one compares directly with the presentation of [Montgomery 1993], then one finds an
alternate description of the double as a smash product between the coopposite Hopf algebra O(G)cop

and kG. However, by applying the antipode to the O(G) factor in D, one sees that the coopposite
comultiplication on O(G) can be replaced with the usual one, up to Hopf isomorphism.

From a categorical perspective, we can consider the Drinfeld center of the representation category
rep(G). This is the category of pairs

Z(rep(G))=
{

pairs (V, γV ) of an object V in rep(G), and
a choice of half braiding γV : V ⊗−→−⊗ V

}
Such a half-braiding γV is required to be a natural isomorphism of endofunctors of rep(G), and we require
that this natural isomorphism satisfies the expected compatibilities with the tensor structure on rep(G)
[Kassel 1995, Definition XIII.4.1].

The center Z(rep(G)) inherits a tensor structure from that of rep(G), and admits a canonical braiding
cV,W : V ⊗W →W ⊗ V induced by the given half-braidings on objects γV,W : V ⊗W →W ⊗ V . This
braiding on Z(rep(G)) is highly nonsymmetric, in any sense which one might consider [Shimizu 2019].
For example, any object V in Z(rep(G)) for which the square braiding is trivial c2

V,− = idV⊗− must itself
be trivial, V ∼= 1⊕ dim(V ).

We have the following categorical interpretation of the double.

Theorem 2.4 [Kassel 1995, Theorem XIII.5.1]. For any finite group scheme G, there is an equivalence of
tensor categories rep(D)∼= Z(rep(G)).

As a corollary to this result, we see that the category rep(D) of representations for the Drinfeld double
is canonically braided. This point is relevant for many applications in mathematical physics, and is also
relevant in studies of support and cohomology. Specifically, many support theoretic results which are
stated in the context of symmetric tensor categories can be immediately extended to the braided setting.

Remark 2.5. As with the construction of the Drinfeld double, one can construct the Drinfeld center of an
arbitrary finite tensor category. Furthermore, the obvious analog of Theorem 2.4 is valid when we replace
rep(G) with the representation category of an arbitrary finite-dimensional Hopf algebra.
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In addition to considering the double D we also consider a certain class of Hopf subalgebras D′ ⊂D

which one associates to subgroups in G. The following lemma will prove useful for our analysis of the
subalgebras D′.

Lemma 2.6. Suppose that G is an infinitesimal group scheme, and let H ⊂ G be a closed subgroup in G.
Let H act on O(G) via the (restriction of the) adjoint action, and consider the smash product algebra
O(G)#k H.

Restriction along the surjective algebra map O(G)#k H → k H , f ⊗ x 7→ ϵ( f )x , provides a bijection

Irrep(H) ∼=−→ Irrep(O(G)#k H).

Proof. Same as the proof of [Friedlander and Negron 2018, Proposition 5.5]. □

2D. Cohomological support.

Definition 2.7. We say a finite-dimensional Hopf algebra A (over k) has finite type cohomology (over k)
if the following two conditions hold:

(a) The extensions Ext∗A(k, k) form a finitely generated k-algebra.

(b) For any pair of finite-dimensional A-representations V and W , the extensions Ext∗A(V,W ) form a
finitely generated module over Ext∗A(k, k), via the tensor action

−⊗− : Ext∗A(k, k)⊗Ext∗A(V,W )→ Ext∗A(V,W ).

Let A be a finite-dimensional Hopf algebra, and suppose that A has finite type cohomology. We take

|A| := Proj Ext∗A(k, k).

Formally, Proj Ext∗A(k, k) is the topological space of homogeneous prime ideals in Ext∗A(k, k), which
we equip with the Zariski topology. Since Ext∗A(k, k) is graded commutative and finitely generated,
restriction along the inclusion ExtevA (k, k)→ Ext∗A(k, k) provides a homeomorphism Proj Ext∗A(k, k)∼=
Proj ExtevA (k, k). The structure sheaf on Proj Ext∗A(k, k) is the expected one, whose sections over a basic
open D f , f ∈ ExtnA(k, k), are the degree 0 elements in the localization Ext∗A(k, k) f .

For any finite-dimensional A-representation V , we can consider the self-extensions Ext∗A(V, V ) and
the tensor action of Ext∗A(k, k) on these extensions. Note that the extensions of V form a graded module
over Ext∗A(k, k), and we may consider the associated sheaf Ext∗A(V, V )∼ on |A| = Proj Ext∗A(k, k). We
define the cohomological support of V as the support of its associated sheaf

|A|V := Supp|A| Ext∗A(V, V )∼. (4)

Remark 2.8. When we consider the support |A|V of a finite-dimensional A-representation V , we typically
view this as a “subvariety” (i.e., a reduced subscheme) of the scheme |A|. However, at certain times we
simply view |A|V as a subspace of the underlying topological space of |A|.

We have the following basic claim.
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Lemma 2.9 [Pevtsova and Witherspoon 2009, Proposition 2]. Suppose that A has finite type cohomology.
A finite-dimensional A-representation V is projective if and only if its support vanishes, |A|V =∅.

In considering the aforementioned collection of Hopf subalgebras D′ ⊂D we also take account of the
following.

Lemma 2.10. Suppose that A has finite type cohomology, and that B → A is an inclusion of Hopf
algebras. Then:

(1) B has finite type cohomology.

(2) The restriction map Ext∗A(k, k)→ Ext∗B(k, k) is a finite algebra map, and the induced map on spectra

res∗ : Spec Ext∗B(k, k)→ Spec Ext∗A(k, k)

is such that (res∗)−1(0)= {0}.

Proof. The algebra B has finite-type cohomology, and the algebra map of (2) is finite, by [Negron and
Plavnik 2022, Proposition 3.3]. Since this map is finite, the fiber

k⊗Ext∗A(k,k) Ext∗B(k, k)

is a finite-dimensional nonnegatively graded algebra, and hence the irrelevant ideal is the unique prime
ideal in this algebra. This implies that the preimage (res∗)−1(0) is the singleton {0}. □

Lemma 2.10(2) tells us that restriction res : rep(A)→ rep(B) induces a well-defined map on projective
spectra |B| → |A|. This map is furthermore closed and has finite fibers.

2E. Cohomological support for group schemes. In considering a finite group scheme G (over k) we
adopt the particular notation

|G| := |kG| = Proj Ext∗G(k, k).

We may consider cohomological support for G-representations as described in Section 2D.
In addition to cohomological support, there are a number of additional support theories for rep(G)

which one might employ in tandem. In particular, when G is an infinitesimal group scheme, one can
consider the k-scheme Vr (G) of 1-parameter subgroups in G and its associated support theory of [Suslin
et al. 1997b]. Although we do not use this theory explicitly in the text, it does “run in the background” of
our analysis. So we sketch a presentation of this support theory here.

At fixed r ≥ 0, Vr (G) is the moduli space of group scheme maps Ga(r)→ G [Suslin et al. 1997a], and
for any finite-dimensional G-representation W one has an associated support space Vr (G)W . The support
space Vr (G)W is specifically a nonprojectivity locus of the representation W in Vr (G). To elaborate,
the group ring kGa(r) is a truncated polynomial ring k[t, t (1), . . . , t (r−1)

]/(t p, . . . , t (r−1)p) generated by
divided powers t (i), and kGa(r) is a flat extension of the subalgebra Atop ⊂Ga(r) generated by the highest
divided power t (r−1). A k-point α :Ga(r)→ G is in the support Vr (G)W , for example, precisely when the
restriction resα(W ) is nonprojective when restricted further to this highest power subalgebra Atop ⊂Ga(r).
The moduli space Vr (G) is a conical scheme, and the supports Vr (G)W are closed conical subschemes
in Vr (G).
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By results of [Suslin et al. 1997b], we have a natural scheme map 9 : P(Vr (G))→ |G| from the
projectivization of Vr (G), and this map is a homeomorphism whenever G is of height ≤ r . The map 9
restricts to homeomorphisms 9W :P(Vr (G)W )→|G|W between support spaces at arbitrary W ∈ rep(G),
again when G is of height≤r . So the support theory Vr (G)⋆ provides a kind of group theoretic “realization”
of cohomological support for infinitesimal group schemes.

Remark 2.11. Our notation |G| conflicts slightly with the notation of [Suslin et al. 1997a; 1997b;
Friedlander and Pevtsova 2007]. Namely, |G| is used to denote the affine spectrum of Ext∗G(k, k) in the
aforementioned papers, while we use it to denote the projective spectrum.

Remark 2.12. By results of Friedlander and Pevtsova [2007], the support theory W 7→ Vr (G)W for
rep(G) has a reasonable extension to the category Rep(G) of arbitrary kG-representation.

2F. Carlson modules and support. Consider a finite-dimensional Hopf algebra A with finite type coho-
mology. Define the n-th syzygy �nk of the trivial representation via any choice of projective resolution
of k, 0→�nk→ P−(n−1)

→ · · · → P0
→ k. Given an extension ζ ∈ ExtnA(k, k), we can represent ζ as

a map ζ̃ :�nk→ k and define
Lζ := ker(ζ̃ :�nk→ k).

The object Lζ is called a Carlson module associated to ζ .
The object Lζ is clearly not uniquely defined by ζ , since the definition relies on a choice of representative

for the map ζ :6−nk→ k in the derived category Db(A). However, Lζ is unique up to isomorphism in
the stable category for A, and so is sufficiently unique for most support theoretic applications. Carlson
modules have a number of exceedingly useful properties. We recall a few of these properties here.

Proposition 2.13 [Pevtsova and Witherspoon 2009, Proposition 3]. Consider an arbitrary homogeneous
extension ζ ∈ ExtevA (k, k). For any finite-dimensional A-representation V there is an equality of supports

|A|(Lζ⊗V ) = Z(ζ )∩ |A|V . (5)

As a corollary to Proposition 2.13 we find

Corollary 2.14 [Pevtsova and Witherspoon 2009, Corollary 1]. Any closed subset 2 in |A| is realizable
as the support of a product L = Lζ1 ⊗ · · ·⊗ Lζm of Carlson modules, 2= |A|L .

Carlson modules also enjoy certain naturality properties with respect to exact tensor functors. We list a
particular occurrence of such naturality here.

Lemma 2.15. If ι : B→ A is an inclusion of Hopf algebras, and Lζ is a Carlson module associated to
an extension ζ ∈ Ext∗A(k, k) over A, then the restriction resι(Lζ ) is a Carlson module for the image of
resι(ζ ) ∈ Ext∗B(k, k) of this extension in Ext∗B(k, k).

Proof. By the Nichols–Zoeller theorem [Larson and Sweedler 1969], A is projective as a B-module. So
the result just follows from the fact that a projective resolution P→ k of the unit over A restricts to a
projective resolution over B. □
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3. The Hopf subalgebras Dψ and a projectivity test

Let G be an infinitesimal group scheme. We show that the Drinfeld double D= D(G) admits a family
of Hopf embeddings {Dψ →D}ψ∈1-param which is parametrized by the space of 1-parameter subgroups
in G. Each of the Hopf algebras Dψ is local, and so behaves like a “unipotent subgroup” in D.

We show that the family {Dψ →D}ψ∈1-param can be used to check projectivity of arbitrary (possibly
infinite-dimensional) D-representations. One can see Theorem 3.7 below for a specific statement. We
furthermore show that the cohomological support |D|V of a finite-dimensional D-representation V can
be reconstructed from the support spaces |Dψ |resψ (V ) of the restrictions of V to the various Dψ .

The family of embeddings {Dψ → D}ψ∈1-param plays an integral role throughout our study, and is
therefore a fundamental object of interest. As implied above, an analysis of support for the double D will
be shown to be reducible to an analysis of support for the local subalgebras Dψ . One can compare with
the group theoretic setting, where the support theory of a finite group scheme is similarly reducible to
that of its unipotent subgroups; cf. [Friedlander and Pevtsova 2005; 2007].

3A. 1-parameter subgroups. Let k be a field of characteristic p > 0, and G be an infinitesimal group
scheme over k. We let G K denote the base change along any given field extension k→ K .

Definition 3.1. An embedded 1-parameter subgroup for G is a pair (K , ψ) of a field extension k→ K
and a closed map of group schemes ψ : Ga(s),K → G K . We call K the field of definition for such a
1-parameter subgroup ψ .

Of course, by Ga(r),K we mean the base change of the r-th Frobenius kernel in Ga . Let us take a
moment to compare with [Suslin et al. 1997a; 1997b].

In the texts [Suslin et al. 1997a; 1997b], by a 1-parameter subgroup the authors mean an arbitrary
group map ψ ′ : Ga(r),K → G K . Having fixed a preferred quotient Ga(r)→ Ga(s) for each s ≤ r , such a
group map specifies an integer s ≤ r and a unique factorization of ψ ′ as a composition of the quotient
Ga(r),K → Ga(s),K followed by an embedding ψ : Ga(s),K → G K . In this way, the moduli space of
1-parameter subgroups Vr (G) employed in [Suslin et al. 1997b] is identified with the moduli space of
embedded 1-parameter subgroups for G, provided G is of height ≤ r . (One can define the moduli space
of embedded 1-parameter subgroups in precise analogy with [Suslin et al. 1997a, Definition 1.1].) One
thus translates freely between the language of [Suslin et al. 1997a; 1997b] and the language we employ
in this text.

Having clarified with this point, we recall the following essential results of Suslin, Friedlander and
Bendel [1997b, Proposition 7.6] and Pevtsova [2002; 2004, Theorem 2.2].

Theorem 3.2 [Suslin et al. 1997b; Pevtsova 2002]. Consider an infinitesimal group scheme G. An
arbitrary G-representation M is projective over G if and only if for every field extension k→ K , and
embedded 1-parameter subgroup ψ : Ga(s),K → G K , the base change MK is projective over Ga(s),K .

To be clear, when we say that MK is projective over Ga(s),K we mean that MK restricts to a projective
Ga(s),K -representation along the given map ψ : Ga(s),K → G K .
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When we consider a finite-dimensional representation V , and k is algebraically closed, it suffices to
check projectivity of V after restricting to all 1-parameter subgroups which are defined over k.

Theorem 3.3 [Suslin et al. 1997b]. Consider an infinitesimal group scheme G, and a finite-dimensional
G-representation V . Suppose also that the base field k is algebraically closed. Then V is projective over
G if and only if , for every embedded 1-parameter subgroup ψ : Ga(s)→ G which is defined over k, V is
projective over Ga(s).

Proof. Suppose that V is projective when restricted to all such ψ . Then [Suslin et al. 1997b, Corollary 6.8]
tells us that V has no closed points in its support. Since the support |G|V is closed, we conclude that
|G|V =∅, and hence that V is projective. □

Remark 3.4. Since the category Rep(G) is Frobenius, we can replace projectivity with injectivity, or
even flatness, in the statements of Theorems 3.2 and 3.3.

3B. A family of local subalgebras, and projectivity. As we have just observed, 1-parameter subgroups
play an essential role in studies of support for infinitesimal group schemes. We provide a corresponding
family of Hopf subalgebras for the Drinfeld double.

Definition 3.5. Let G be an infinitesimal group scheme, and ψ : Ga(s),K → G K be an embedded 1-
parameter subgroup. Let D = D(G) denote the Drinfeld double for G. We define Dψ to be the Hopf
algebra

Dψ := O(G K )#K Ga(s),K ,

where Ga(s),K acts on O(G K ) by restricting the adjoint action of G K along the given embedding ψ .

Note that each Hopf algebra Dψ embeds in the double DK via the map idO ⊗ψ :Dψ →DK . So we
might speak of the Dψ as Hopf subalgebras in DK , via a slight abuse of language.

Lemma 3.6. Consider an infinitesimal group scheme G, with Drinfeld double D. For any embedded
1-parameter subgroup ψ : Ga(s)→ G the Hopf algebra Dψ is local.

Proof. By changing base if necessary we may assume K = k. By Lemma 2.6 the restriction map provides
an bijection Irrep(Ga(s))→ Irrep(Dψ). Now, since Ga(s) is unipotent, the trivial representation is the only
simple object in rep(Ga(s)). So we observe that rep(Dψ) has a unique simple object, and therefore that
Dψ is local. □

We recall that, according to Theorem 3.2, 1-parameter subgroups in a given infinitesimal group scheme
can be used to detect projectivity of G-representations. We observe an analogous detection property for
the Dψ .

Theorem 3.7. Consider an arbitrary representation M over the Drinfeld double D of an infinitesimal
group scheme G. Then M is projective over D if and only if for every field extension k→ K , and every
embedded 1-parameter subgroup ψ : Ga(s),K → G K , the base change MK is projective over Dψ .

When M is finite-dimensional, and k is algebraically closed, M is projective over D if and only if , for
all embedded 1-parameter subgroups ψ : Ga(s)→ G which are defined over k, M is projective over Dψ .
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Proof. Recall that D is Frobenius, so that projectivity of M is equivalent to injectivity. It suffices to
check projectivity/injectivity after changing base to the algebraic closure k̄, so that we may assume k = k̄.
Furthermore, as with any finite dimensional algebra, injectivity of M is equivalent to vanishing of the
extensions

Ext>0
D (S,M)= 0 from the sum S of all simple D-reps.

So we seek to establish the above vanishing of cohomology. In what follows we take O = O(G).
If M is projective over D, then M is projective over the Hopf subalgebra O ⊂D [Montgomery 1993,

Theorem 3.1.5]. Thus M is injective over O in this case. Similarly, if MK is projective over Dψ , then
MK is projective over OK , and thus injective over OK as well. It follows that M is injective over O itself.
So it suffices to assume that M is injective over O, and prove that in this case M is injective over D if
and only if MK is injective over Dψ for all extensions k→ K and embeddings ψ : Ga(s),K → G K .

Let us assume that M is injective over O . By Lemma 2.6, all simple D-representations are restrictions
of simple G-representations along the projection D→ kG. It follows that we have a spectral sequence

Ext∗G(S,Ext∗O(k,M))⇒ Ext∗D(S,M)

which reduces to an identification

Ext∗G(S,HomO(k,M))= Ext∗D(S,M),

since M is injective over O. Similarly, we have an identification

Ext∗Ga(s),K
(K ,HomOK (K ,MK ))= Ext∗Dψ

(K ,MK )

at any embedded 1-parameter subgroupψ :Ga(s),K→G K . Hence M is injective over D (resp. MK is injec-
tive over Dψ ) if and only if the invariant subspace HomO(k,M) is injective over G (resp. HomOK (K ,MK )

is injective over Ga(s),K ).
Given the above information, we seek to establish the claim that

HomO(k,M) is injective over G

⇐⇒ for each ψ : Ga(s),K → G K ,HomO(k,M)K = HomOK (K ,MK ) is injective over Ga(s),K .

But this final claim follows by Theorem 3.2. Our specific claim about finite-dimensional M follows by
Theorem 3.3. □

3C. (Re)constructing cohomological support. We consider cohomological support for finite-dimensional
representations over the Drinfeld double. Fix an infinitesimal group scheme G and let D denote its
Drinfeld double D= D(G). Recall our notation |D| for the projective spectrum of cohomology, |D| =
Proj Ext∗D(k, k). We have the following basic result of Friedlander and Negron [2018] and Negron [2021].

Theorem 3.8 [Friedlander and Negron 2018; Negron 2021]. The Drinfeld double D has finite type
cohomology.
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We now apply Lemma 2.10 and Theorem 3.8 to find:

Corollary 3.9. For any embedded 1-parameter subgroup ψ :Ga(s),K → G K , the Hopf algebra Dψ has
finite type cohomology, and the induced map on projective spectra res∗ψ : |Dψ | → |DK | is a finite map of
schemes.

Let us consider an arbitrary field extension k→ K . We note that the natural map K ⊗Ext∗D(k, k) ∼=−→
Ext∗DK

(K , K ) is an isomorphism, and thus identifies the spectrum |DK | with the base change |D|K . For
any embedded 1-parameter subgroup ψ : Ga(s),K → G K , we therefore obtain a map of schemes

fψ : |Dψ | → |D| (6)

given by composing the map res∗ψ : |Dψ | → |DK | induced by restriction with the projection |DK | =

|D|K → |D|.
We note that these fψ are not closed morphisms in general. This is simply because the projection
|D|K →|D| does not preserve closed points when the extension k→ K is infinite. On the other hand, we
see that any point x in |D| is represented by — or rather lifts to — a closed point in the base change |D|k̄(x).
So, by employing base change one is able to treat arbitrary points in the spectrum |D| as closed points, at
least to a certain degree. We record a little lemma.

Lemma 3.10. Consider any finite-dimensional D-representation V .

(1) For an arbitrary field extension k→ K , the support |DK |VK of VK over DK is precisely the preimage
of |D|V along the projection |DK | → |D|. In particular, the composition |DK |VK ⊂ |DK | → |D| is
a surjection onto |D|V .

(2) For any embedded 1-parameter subgroup ψ : Ga(s),K → G the map fψ restricts to a morphism
between support spaces |Dψ |VK → |D|V . In particular, the image of |Dψ |VK under fψ is contained
in |D|V .

Proof. Statement (1) follows from the fact that (a) For any scheme X , the projection X K → X along a
field extension k→ K is surjective and (b) for any map of schemes f : Y → X , and coherent sheaf F on
X , we have Supp( f ∗F )= f −1 Supp(F ). For (2) it suffices to prove the result in the case K = k, by (1).
We simply consider the diagram

Ext∗D(k, k)
−⊗V

//

resψ
��

Ext∗D(V, V )

resψ
��

Ext∗Dψ
(k, k)

−⊗V
// Ext∗Dψ

(V, V )

induced by the restriction functors, and note that the supports |D|V and |Dψ |V are the subvarieties
associated to the respective kernels of the algebra maps −⊗ V . □

We now observe that the support of V over D can be reconstructed from the supports of V over the Dψ ,
where we allow ψ to vary along all 1-parameter subgroups for G.



Support theory for Drinfeld doubles of some infinitesimal group schemes 231

Proposition 3.11. Let G be an infinitesimal group scheme and D = D(G) be the associated Drinfeld
double. For any finite-dimensional D-representation V there is an equality

|D|V =
⋃

1-param subgroups

fψ(|Dψ |VK ). (7)

To be clear, the equality (7) is an equality of sets. Indeed, the support of a representation is itself
simply a closed subset in the space |D|. Also, the union (7) is explicitly taken over the collection of all
embedded 1-parameter subgroups in G, each of which consists of a pair of a field extension K/k and an
embedding ψ : Ga(s),K → G K .

Proof. If the support |D|V vanishes, i.e., if V is projective over D, then Theorem 3.7 tells us that all of
the supports |Dψ |VK vanish as well. So the claimed equality holds when the support |D|V is empty.

Let us assume now that V is not projective over D, and hence that the support |D|V is nonvanishing.
By considering base change, and Lemma 3.10, we see that the equality (7) can be obtained from the
following claim:

Claim. When k is algebraically closed, and x is a closed point in |D|V , there is a 1-parameter subgroup
ψ : Ga(s)→ G such that x is in the image fψ(|Dψ |V ).

Let us verify this claim.
We suppose that k = k̄ and consider a closed point x in |D|V . Let L be a product of Carlson modules

with |D|L = {x}. Then |D|L⊗V = {x} and for any 1-parameter subgroup ψ : Ga(s)→ G we have

fψ(|Dψ |L⊗V )=

{
{x} if x ∈ fψ(|Dψ |V )

∅ else.

Indeed, the above formula follows from the fact that |Dψ |L = f −1
ψ (x), by Lemma 2.15, and the subsequent

fact that

|Dψ |L⊗V = f −1
ψ (x)∩ |Dψ |V ,

by Proposition 2.13.
Recall that, by the projectivity test of Theorem 3.7, projectivity of the restriction of L ⊗ V along each

such ψ would imply that L ⊗ V is projective over D. Equivalently, vanishing of the supports |Dψ |L⊗V

along all such ψ would imply vanishing of the support |D|L⊗V . Since we have chosen L so that the latter
space explicitly does not vanish, we conclude that some support space |Dψ |L⊗V does not vanish. Rather,
x ∈ fψ(|Dψ |L⊗V ) for some ψ , and thus x ∈ fψ(|Dψ |V ) for some ψ . So we have proved the above claim,
and thus establish the identification (7). □

We remark, in closing, that one can prove analogs of the results of this section for arbitrary finite
(rather than infinitesimal) group schemes. One simply replaces the “testing groups” Ga(s) with a larger
class of unipotent group schemes; cf. [Friedlander and Pevtsova 2005].
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4. Quasilogarithms for group schemes

In this short aside we recall the notion of a quasilogarithm for an affine group scheme. As we recall
below, “most” familiar algebraic groups admit quasilogarithms. One can see Proposition 4.4 in particular.
As our study of support for Drinfeld doubles becomes more focused, we employ quasilogarithms to gain
some leverage on the algebra structure of the double D= D(G).

4A. Quasilogarithms.

Definition 4.1 [Kazhdan and Varshavsky 2006]. Let G be an affine group scheme with Lie algebra g.
We consider g as an affine scheme g = Spec(Sym(g∗)). A quasilogarithm for G is a map of schemes
l : G→ g which

(a) is equivariant for the adjoint actions,

(b) sends 1 ∈ G to {0} ∈ g,

(c) induces the identity on tangent spaces T1l = idg.

Concretely, if we let m ⊂ O(G) denote the maximal ideal associated to the point 1 ∈ G, then a
quasilogarithm for G is a choice of ad-equivariant splitting g∗→ m of the projection m→ m/m2

= g∗.
We note that, when G is smooth over the base field k, such a quasilogarithm induces an isomorphism on
the respective formal neighborhoods l̂ : Ĝ1

∼=−→ ĝ0. Also, when G is infinitesimal any quasilogarithm is a
closed embedding.

The following lemma is straightforward.

Lemma 4.2. Suppose a group scheme G admits a quasilogarithm l :G→ g. Then for any positive integer
r , the restriction l|G(r) : G(r)→ g provides a quasilogarithm for the Frobenius kernel G(r).

Through the remainder of the text we often adopt the following hypotheses: We assume G is a
smooth algebraic group which admits a quasilogarithm, then consider the Frobenius kernels G = G(r)

at arbitrary r > 0. The previous lemma tells us that all such G naturally inherit quasilogarithms from
any choice of quasilogarithm for the ambient group G. So in this way we obtain various families of
infinitesimal group schemes which admit quasilogarithms.

4B. Appearances of quasilogs in nature. We discuss the “generic” presence of quasilogarithms among
reductive algebraic groups. Let G be an affine algebraic group which is defined over a localization
R = Z[1/n] of the integers, and suppose that G is generically reductive. That is to say, suppose that the
rational form GQ is reductive. Take O = O(G).

Let m ⊂ O be the ideal associated to the identity 1 ∈ G(R), and consider the coadjoint representation
g∗ =m/m2. The surjection m→ g∗ admits an ad-equivariant splitting g∗

Q
→mQ ⊂OQ over the rationals,

since GQ has semisimple representation theory [Milne 2017, Theorem 22.42]. This splitting is defined
over a further localization R′ = Z[1/N ], so that we obtain a quasilogarithm GR′→ gR′ defined over R′.
It follows that for any field k of characteristic p which does not divide N , the group G= Gk admits a
quasilogarithm. We record this observation.
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Proposition 4.3. Let G be a algebraic group scheme which is defined over a localization R = Z[1/n]
of the integers, and suppose that G is generically reductive. Then for any field k, in all but finitely many
characteristics, the k-form G= Gk admits a quasilogarithm.

If we consider split semisimple algebraic groups, for example, we can be much more precise about the
characteristics at which our group G= Gk admits a quasilogarithm. We can also deduce quasilogarithms
for various classes of algebraic groups which are related to such semisimple G.

Proposition 4.4 [Friedlander and Negron 2018, Section 6.1]. The following algebraic groups admit a
quasilogarithm:

• The general linear group GLn , over any field in any characteristic.

• Any split simple algebraic group in very good characteristic (relative to the corresponding Dynkin
type).

• Any Borel subgroup inside a split simple algebraic group, in very good characteristic.

• The unipotent radical in such a Borel, in sufficiently large characteristic.

5. The Drinfeld double D via an infinitesimal group scheme

Let G be a smooth algebraic group over k which admits a quasilogarithm, and let G be a Frobenius kernel
in G. We consider the Drinfeld double D for G. In this section we show that, for G as described, there is
a linear abelian equivalence

L : rep(D) ∼−→ rep(6)

between the representation category of the double and the representation category of an associated
infinitesimal group scheme 6. We show, furthermore, that this equivalence restricts to a corresponding
abelian equivalence Lψ : rep(Dψ)

∼
−→ rep(6ψ) at all embedded 1-parameter subgroups in G.

Although these equivalences are not equivalences of tensor categories, they can be used in highly
nontrivial ways in an analysis of support for the double, as we will see in Sections 6 and 7.

5A. The group schemes 6V (G, r). Consider a finite group scheme G and any finite-dimensional G-
representation V . To V we associate the algebra

Sr (V ) := Sym(V )/(v pr
: v ∈ V ).

This algebra has the natural structure of a cocommutative Hopf algebra in the symmetric tensor category
rep(G), where the coproduct on Sr (V ) is defined by taking all of the generators v ∈ V to be primitive
1(v)= v⊗1+1⊗v; cf. [Andruskiewitsch and Schneider 2001, Section 1.3]. Indeed, we may view V as
an abelian Lie algebra in rep(G), and consider the universal enveloping algebra U (V )=Sym(V ). We then
obtain Sr (V ) as the quotient of U (V ) by the Hopf ideal generated by the primitive elements v pr

, v ∈ V .
Now, since the forgetful functor rep(G)→ Vect is a map of symmetric tensor categories, any Hopf

algebra in rep(G) can be viewed immediately as a Hopf algebra in the classical sense, i.e., as a Hopf
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algebra in Vect. So we may view Sr (V ) as a Hopf algebra in rep(G) or as a Hopf algebra in Vect as
needed. Furthermore, for any Hopf algebra S in rep(G) the smash product S#kG admits a unique Hopf
algebra structure (in Vect) so that the two inclusions

S→ S#kG and kG→ S#kG

are maps of Hopf algebras (in Vect). Indeed, this is the standard bosonization procedure [Radford 2012,
Theorem 1.6.9]. So, in the case discussed above, we obtain the following.

Lemma 5.1. For any finite group scheme G and any finite-dimensional G-representation V , the smash
product Sr (V )#kG admits a unique cocommutative Hopf algebra structure (in Vect) such that the following
conditions hold:

(a) Each v ∈ V is primitive.

(b) The inclusion kG→ Sr (V )#kG is a map of Hopf algebras.

Proof. The existence of such a Hopf structure follows by the discussion above. Cocommutativity follows
from the fact that the two Hopf subalgebras Sr (V ) and kG are cocommutative, and that the multiplication
map

mult : Sr (V )⊗ kG→ Sr (V )#kG

is a morphism, and hence an isomorphism, of coalgebras. □

The fact that Sr (V )#kG is cocommutative tells us that it serves as the group ring for an associated
finite group scheme.

Definition 5.2. For any finite group scheme G, and any finite-dimensional G-representation V , we define
the finite group scheme 6V (G, r) to be the unique such group scheme with associated group algebra

k6V (G, r)= Sr (V )#kG.

Said another way, 6V (G, r) is the spectrum of the dual Hopf algebra

6V (G, r)= Spec((Sr (V )#kG)∗).

Note that the group scheme 6V (G, r) admits a normal subgroup NV (r)⊂6V (G, r) which corresponds
to the normal Hopf subalgebra Sr (V )⊂ k6V (G, r), and that we have an exact sequence of group schemes

1→ NV (r)→6V (G, r)→ G→ 1. (8)

Lemma 5.3. Suppose that G is infinitesimal, and let V be an any finite-dimensional G-representation.
Then 6V (G, r) is infinitesimal. Furthermore, if G is unipotent then 6V (G, r) is unipotent as well.

Proof. Take 6 = 6V (G, r). As a coalgebra k6 = Sr (V )⊗ kG. So the algebra of functions O(6)

is the tensor product Sr (V )∗ ⊗ O(G). Since Sr (V ) is a connected coalgebra, with primitive space
Prim(Sr (V )) = {v ps

: 0 ≤ s < r}, it follows that the dual Sr (V )∗ is local. Since G is infinitesimal the



Support theory for Drinfeld doubles of some infinitesimal group schemes 235

algebra O(G) is also local. Now, since a tensor product of finite-dimensional local k-augmented algebras
is also local, we see that O(6) is local. Hence 6 is infinitesimal.

For arbitrary G, the maximal ideal m = (V )⊂ Sr (V ) is stable under the action of G, so that the ideal
m⊗ kG ⊂ k6 is nilpotent. Hence the Jacobson radical of k6 is the preimage of the Jacobson radical in
kG along the surjection k6→ kG. It follows that if kG is local then k6 is local. So we see that 6 is
unipotent when G is unipotent. □

We note, finally, that the group scheme 6V (G, r) can be defined entirely within the category of group
schemes (rather than in the category of Hopf algebras). Indeed, the action of G on V induces an action
on the r-th Frobenius kernel in the corresponding additive group scheme Va = (V,+), and hence on
the Cartier dual (NV (r) =)V∨a(r). We then recover 6V (G, r) as the semidirect product V∨a(r)⋊ G. This
construction is more in line with the standard perspective of, say, Jantzen [2003]. However, what is
of interest to us is the algebra structure on k6V (G, r). So the above Hopf algebraic presentation is
sufficiently informative for our purposes.

5B. Quasilogarithms and a system of linear equivalences. We consider the above construction6V (G, r)
for the coadjoint representation of G.

Definition 5.4. For any finite group scheme G we define

6(G, r) :=6g∗(G, r),

where g∗ is the coadjoint representation. Additionally, for any embedded 1-parameter subgroup ψ :
Ga(s),K → G K we restrict the coadjoint representation of G K along ψ to define

6(G, r)ψ :=6g∗K
(Ga(s),K , r).

When no confusion will arise we will be even more casual in our presentation, and write simply

6 =6(G, r), 6ψ =6(G, r)ψ .

(We usually consider a Frobenius kernel G = G(r) and the associated group scheme 6(G, r), so that
the parameter r is already clear from the context.) Note that for any embedded 1-parameter sub-
group ψ : Ga(r),K → G K the product map idSr ⊗Kψ provides a natural inclusion of group schemes
6(G, r)ψ →6(G, r)K .

Lemma 5.5. Let G be a smooth algebraic group which admits a quasilogarithm. Consider G = G(r),
D= D(G), and 6 =6(G, r) at arbitrary r > 0.

Any choice of quasilogarithm l for G specifies an isomorphism of augmented k-algebras a(l) : k6→D.
Furthermore, for any 1-parameter subgroup ψ :Ga(s),K → G K , we have a corresponding isomorphism of
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augmented K -algebra a(l)ψ : K6ψ →Dψ . These isomorphisms fit into a diagram of K -algebra maps:

K6K
a(L)K

// DK

K6ψ

incl

OO

a(L)ψ
// Dψ

incl

OO

(9)

The augmentations considered above are, of course, the augmentations specified by the respective
counits.

Proof. Take S = Sr (g
∗), with its G-action induced by the coadjoint action on g∗. Any quasilogarithm l

specifies a G-equivariant map of algebras a0 : S→ O(G) which is an isomorphism on cotangent spaces
m0/m2

0→ m1/m2
1. Indeed, a quasilogarithm for G is a choice of equivariant section g∗→ m1 of the

reduction map m1→ m1/m2
1 = g∗, and a0 is the algebra map from the (truncated) symmetric algebra

induced by this section. Since O(G) is local, such a map is necessarily surjective. Since furthermore
dim(S)= dim(O(G))= rdim(g), it follows that a0 is an isomorphism. Since both algebras in question are
local, a0 is an isomorphism of augmented algebras. (This point is also obvious from the construction
of a0.)

We obtain the desired isomorphism a(l) : k6→ D as the product a(l) = a0 ⊗ idkG , and similarly
a(l)ψ : K6ψ→Dψ is the product (a0)K ⊗ idkGa(s) . One sees directly that, since a0 is an isomorphism of
augmented algebras, a(l) and a(l)ψ are also isomorphisms of augmented algebras. □

As a consequence of the above lemma, we see that any choice of quasilogarithm for the ambient group
G specifies a “system of linear equivalences” for D, and its local family of Hopf subalgebras Dψ .

Proposition 5.6. For G as in Lemma 5.5, there is an equivalence of k-linear, abelian categories L :

rep(D) ∼
−→ rep(6) which preserves the trivial representation L(k) = k. Furthermore, for any 1-

parameter subgroup ψ : Ga(s),K → G K we have a corresponding equivalence of K -linear categories
Lψ : rep(Dψ)

∼
−→ rep(6ψ) which preserves the trivial representation, and fits into a diagram of exact

linear functors:

rep(DK )
LK

//

res
��

rep(6K )

res
��

rep(Dψ)
Lψ

// rep(6ψ).

(10)

Proof. Define L and Lψ as restriction along the algebra isomorphisms a(l) and a(l)ψ of Lemma 5.5,
respectively. □

For any 1-parameter subgroup ψ : Ga(s),K → G K we let

f ′ψ : |6ψ | → |6|
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denote the corresponding map on projective spectra of cohomology. Specifically, we consider the
composite

f ′ψ :=
(
|6ψ |

res∗
−→ |6K | = |6|K → |6|

)
.

Proposition 5.6 tells us that, at any 1-parameter subgroup ψ :Ga(s),K →G, the maps f ′ψ fit into a diagram

|Dψ |
fψ

// |D|

|6ψ |

L∗ψ∼=

OO

f ′ψ
// |6|

L∗∼=

OO

(11)

of maps of k-schemes, where fψ is as in (6).
Now, from [Suslin et al. 1997b, Corollary 5.4.1] we understand that any closed embedding 60→61

of group schemes induces a map on projective spectra of cohomology |60| → |61| which is universally
injective. The universal modifier here simply indicates that each base change |60|K → |6|K is also
injective. So the above diagram (11) implies the following basic result.

Proposition 5.7. Consider a smooth algebraic group G, and take G = G(r). Suppose that G admits a
quasilogarithm. Let ψ : Ga(s)→ G be an embedded 1-parameter subgroup which is defined over k. Then
the induced map on projective spectra of cohomology

fψ : |Dψ | → |D|

is universally injective.

The system of equivalences (10), which we view as a family of equivalences parametrized by the space
of 1-parameter subgroups in G, can be leveraged in quite substantive ways in an analysis of support for
the double D. Indeed, the following two sections essentially argue this point in both the finite-dimensional
and infinite-dimensional context.

6. Support and tensor products for finite-dimensional representations

As in the previous section, we consider a Frobenius kernel G in a smooth algebraic group G which admits
a quasilogarithm. We prove that cohomological support for the Drinfeld double D= D(G) satisfies the
tensor product property

|D|(V⊗W ) = |D|V ∩ |D|W . (12)

Here V and W are specifically finite-dimensional representations over D. This result appears in
Theorem 6.11 below. Our proof of Theorem 6.11 relies on an analysis of cohomological support,
and the tensor product property, for representations over the local family Dψ .

For any given Dψ we argue that the behaviors of cohomological support are, essentially, independent
of the choice of coproduct. We elaborate on this point in Sections 6B and 6C below.
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In Section 7, we provide an extension of cohomological support, and of the identity (12), to the big
representation category Rep(D). Such an extension allows us to apply methods of Rickard [1997] to show
that cohomological support can also be used to classify thick tensor ideals in the stable representation
category for D.

6A. Comparison with the π -point support of the Appendix. Before we begin, let us make a few points
of comparison between the material of this section and the material of the Appendix, for the π-point
orientated reader. In the appendix we produce a π -point support theory for the double D, essentially by
restricting to the local subalgebras Dψ and considering such a theory for Dψ .

We note that the proof of the tensor product property for cohomological support is, arguably, more
difficult than the proof for π-point support (Theorem A.14 below). However, the proof that π-support
agrees with cohomological support uses precisely the same technology which is used in the proof of the
tensor product property for cohomological support. So, depending on one’s inclinations, one may view
Theorem 6.11 below essentially as the claim that π-point support and cohomological support agree for
Drinfeld doubles of the prescribed form.

6B. Supports and thick ideals for local Hopf algebras. Let A be a finite-dimensional, local, Hopf
algebra. Suppose additionally that A has finite type cohomology.

For A as prescribed, the support (4) of a given finite-dimensional representation V can be computed
as the support of the sheaf associated to the Ext∗A(k, k)-module Ext∗A(k, V ), where we act via the first
coordinate

|A|V = Supp|A| Ext∗A(k, V )∼; (13)

see for example [Benson 1991, Proposition 5.7.1] or [Pevtsova and Witherspoon 2009, Proposition 2].
That is to say, the support spaces |A|V do not depend on the choice of Hopf structure on A.

Let us write Db(A) for the bounded derived category of finite-dimensional A-representations. Recall
that a thick subcategory in Db(A) is a full triangulated subcategory which is closed under taking summands,
and a thick ideal in Db(A) is a thick subcategory which is additionally closed under the (left and right)
tensor actions of Db(A) on itself. The following lemma is strongly related to the above identification (13).

Lemma 6.1. Consider a finite-dimensional local Hopf algebra A which has finite type cohomology. Any
thick subcategory in Db(A) is stable under the tensor action of Db(A) on itself. That is to say, the
collection of thick ideals in Db(A) is identified with the collection of thick subcategories in Db(A).

Proof. Locality tells us that any complex V in Db(A) is obtainable from the trivial representation via a
finite sequence of extensions. It follows that for any object W in Db(A), the product V ⊗W is obtainable
from W = k⊗W via a finite sequence of extensions. Hence V ⊗W is contained in the thick subcategory
generated by W , for arbitrary V and W in Db(A). Similarly, W ⊗ V is contained in the thick ideal
generated by W .
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Now, let K ⊂ Db(A) be any thick subcategory. By the above discussion we have V ⊗K ⊂K and
K ⊗ V ⊂K for all V in Db(A). This shows that K is a thick ideal. Hence the inclusion

{thick ideals in Db(A)} → {thick subcategories in Db(A)}

is an equality. □

We note that the definition of support (4) works perfectly well for arbitrary objects in the bounded
derived category. Furthermore, when A is local the expression (13) remains valid for any V in Db(A).

For an exact triangle V → W → V ′ in Db(A), the long exact sequence in cohomology provides an
exact sequence of Ext∗A(k, k)-modules

Ext∗A(k, V )→ Ext∗A(k,W )→ Ext∗A(k, V ′).

So there is an inclusion of supports |A|W ⊂ (|A|V ∪|A|V ′) whenever we have such a triangle. Additionally,
for any sum V = V1⊕ V2 in Db(A) we have an equality |A|V = |A|V1 ∪ |A|V2 . From these observations
we deduce an inclusion

|A|W ⊂ |A|V whenever W is in the thick subcategory generated by V .

Lemma 6.2. Consider a finite-dimensional local Hopf algebra A. For any V and W in Db(A) there is an
inclusion

|A|(V⊗W ) ⊂ (|A|V ∩ |A|W ).

Proof. The object V ⊗W is in the thick ideal generated by V , and hence the thick subcategory generated
by V by Lemma 6.1. So |A|(V⊗W ) ⊂ |A|V by the above reasoning. We similarly find |A|(V⊗W ) ⊂ |A|W ,
which gives the claimed inclusion |A|(V⊗W ) ⊂ |A|V ∩ |A|W . □

We note that the inclusion of Lemma 6.2 does not hold for an arbitrary Hopf algebra A. One can see
for example [Benson and Witherspoon 2014].

Remark 6.3. The familiar reader is free to replace the derived category Db(A) with the stable category
stab(A) in the above discussion.

6C. Classification of thick ideals for local algebras.

Definition 6.4. Let A be a finite-dimensional Hopf algebra which has finite type cohomology. We say
that cohomological support for A classifies thick ideals in Db(A) if an inclusion of supports |A|W ⊂ |A|V ,
for nonzero W and V in Db(A), implies that W is in the thick ideal generated by V in Db(A).

The supposition that W and V are nonzero (nonacyclic) is necessary to avoid issues with perfect
complexes. Namely, any perfect complex has vanishing support, and yet the ideal of perfect complexes in
Db(A) is not contained in the ideal of acyclic complexes. However, for nonzero V , we always have that
perf(A) is contained in the thick ideal generated by V .
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One can consider representation categories of finite group schemes, for example. In this case we
understand [Friedlander and Pevtsova 2007] that cohomological support does in fact classify thick ideals
in the associated derived category.

Theorem 6.5 [Friedlander and Pevtsova 2007, Theorem 6.3]. For any finite group scheme G, cohomolog-
ical support classifies thick ideals in Db(G).

When G is furthermore unipotent, or rather when rep(G) is a local category, Theorem 6.5 and Lemma 6.1
combine to give the following.

Corollary 6.6. Suppose that G is a finite unipotent group scheme. Then thick subcategories in Db(G)
are classified by cohomological support.

The following will prove quite useful in our analysis of support for the local Hopf algebras Dψ .

Proposition 6.7. Let A be a finite-dimensional local algebra. Suppose that A admits a Hopf algebra
structure for which cohomological support classifies thick ideals in the derived category Db(A). Then
under any choice of Hopf structure on A, and any choice of objects V and W in Db(A), we have an
equality

|A|(V⊗W ) = |A|V ∩ |A|W .

Proof. Let ⟨X⟩ denote the thick subcategory generated by a given object X in Db(A). For any object L in
⟨V ⟩ the product L ⊗W is in ⟨V ⊗W ⟩, and hence |A|(L⊗W ) ⊂ |A|(V⊗W ). Consider a product of Carlson
modules L for which |A|L = |A|V . Since cohomological support classifies thick ideals, such equality of
supports implies an equality ⟨L⟩ = ⟨V ⟩. Then by Proposition 2.13 we have

|A|(V⊗W ) ⊃ |A|(L⊗W ) = |A|L ∩ |A|W = |A|V ∩ |A|W .

The opposite inclusion is covered by Lemma 6.2, so that we obtain the desired equality. □

6D. Implications for Dψ . Fix a smooth algebraic group G which admits a quasilogarithm and an arbitrary
positive integer r . Let G be the r -th Frobenius kernel in G. We consider the Drinfeld double D= D(G).

For such G, we have the corresponding infinitesimal group scheme 6 =6(G, r) of Definition 5.4, and
for any 1-parameter subgroup ψ :Ga(s),K → G K we have an associated unipotent subgroup 6ψ ⊂6K .
By Proposition 5.6, any choice of quasilogarithm for G determines a compatible collection of linear
equivalences

L : rep(D) ∼−→ rep(6) and Lψ : rep(Dψ)
∼
−→ rep(6ψ), (14)

which preserve the unit objects in the respective categories
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Since cohomological support for a local Hopf algebra depends only on the abelian structure on the
representation category, we see that the diagram of (11) restricts to a diagram

|Dψ |V
fψ

// |D|

|6ψ |LψV

∼= L∗ψ

OO

f ′ψ

// |6|

∼= L∗

OO

(15)

for any V in Db(Dψ). Hence the discussions of Subsections 6B and 6C imply the following.

Proposition 6.8. Let G be as above, and fix an embedded 1-parameter subgroup ψ : Ga(s),K → G K .
Then the following hold:

(1) Thick ideals in Db(Dψ) are classified by cohomological support.

(2) For any finite-dimensional Dψ -representations V and W we have

|Dψ |(V⊗W ) = |Dψ |V ∩ |Dψ |W .

Proof. From the linear equivalence Lψ , Theorem 6.5, and Lemma 6.1, we understand that thick ideals in
Db(Dψ) are classified by cohomological support, establishing (1). A direct application of Proposition 6.7
now implies (2). □

6E. Restrictions of support and the tensor product property. As above, let G be the r-th Frobenius
kernel in a smooth algebraic group G, and suppose that G admits a quasilogarithm.

Lemma 6.9. Let L : rep(D)→ rep(6) be the linear equivalence induced by a choice of quasilogarithm
for G. Then for any finite-dimensional D-representation V the isomorphism L∗ : |6|

∼=−→ |D| restricts to
an isomorphism of supports |6|LV

∼=−→ |D|V .

Proof. Via the diagram of equivalences of Proposition 5.6, and Theorem 3.7, we understand that a
6-representation is projective if and only if its restriction to each of the 6ψ is projective. We can therefore
repeat the proof of Proposition 3.11 to obtain a reconstruction of support

|6|W =
⋃

1-param subgroups

f ′ψ(|6ψ |WK )

for any 6-representation W , where the f ′ψ are the maps on projective spectra induced by restriction.
The above expression, and the analogous expression of Proposition 3.11, therefore imply the claimed

equality. To argue this point more clearly, take a point x ∈ |6|LV . Then x is in the image of some map
f ′ψ : |6ψ |LψVK →|6|. It follows by the diagram (15) that L∗(x)∈ |D| is in the image of the corresponding
map fψ : |Dψ |VK → |D|. Hence L∗(x) ∈ |D|V . This gives an inclusion L∗(|6|LV )⊂ |D|V . Since this
argument is completely symmetric, we obtain the opposite inclusion as well and find that we have an
identification L∗(|6|LV )= |D|V . □
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Recall from Proposition 5.7 that, for any embedded 1-parameter subgroup ψ which is defined over k,
the map fψ : |Dψ |→ |D| is universally injective. Furthermore, in this case fψ is simply the map induced
by restriction (i.e., it involves no base change).

Proposition 6.10. Consider any embedded 1-parameter subgroup ψ : Ga(s)→ G which is defined over k,
and identify |Dψ | with a closed subscheme in |D| via the map induced by restriction (Proposition 5.7).
Then for any finite-dimensional D-representation V we have

|Dψ |V = |Dψ | ∩ |D|V .

Proof. By the diagram (15), and Lemma 6.9, it suffices to check that we have an equality

|6ψ |W = |6ψ | ∩ |6|W

for any finite-dimensional 6-representation W . However, the above equality follows from the analysis of
support for infinitesimal group schemes given in [Suslin et al. 1997b] — in particular [loc. cit., Corol-
lary 5.4.1, Proposition 7.4]. □

We can now prove that cohomological support for the Drinfeld double D satisfies the tensor product
property.

Theorem 6.11. Consider a Frobenius kernel G = G(r) in a smooth algebraic group G. Suppose also that
G admits a quasilogarithm. Then for any finite-dimensional D-representations V and W we have

|D|(V⊗W ) = |D|V ∩ |D|W

Proof. Consider any point in the intersection x ∈ |D|V ∩|D|W , and let ψ :Ga(s),K→G K be any embedded
1-parameter subgroup for which x is in the image of the map |Dψ | → |D|. Let x ′ ∈ |DK | be any lift
of x . Since the support of VK (resp. WK ) over DK is simply the preimage of |D|V (resp. |D|W ) along
the projection |DK | → |D|, by Lemma 3.10, we have x ′ ∈ |DK |VK ∩ |DK |WK . So, by changing base, we
may assume that x is in the image of |Dψ |, where now ψ : Ga(s)→ G a 1-parameter subgroup which is
defined over k.

Since x is in |D|V , |D|W , and |Dψ |, Proposition 6.10 implies

x ∈ |Dψ |V ∩ |Dψ |W .

By the tensor product property for Dψ , Proposition 6.8, we then have x ∈ |Dψ |(V⊗W ). From the inclusion
|Dψ |X ⊂ |D|X , for arbitrary X , we see that x is in |D|(V⊗W ) as well. We therefore have an inclusion
(|D|V ∩ |D|W )⊂ |D|(V⊗W ).

For the opposite inclusion |D|(V⊗W ) ⊂ (|D|V ∩ |D|W ), one can restrict to some choice of Dψ and
argue similarly. However, since the representation category rep(D) is braided, this opposite inclusion
actually comes for free; see for example [Bergh et al. 2021, Proposition 3.3]. □
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7. Support and tensor products for infinite-dimensional representations

We consider support for infinite-dimensional representations over the Drinfeld double D= D(G). The
support theory which we employ is a kind of “hybrid theory”, which we produce via the restriction
functors rep(D)→ rep(Dψ) and the Benson–Iyengar–Krause (local cohomology) support theory for
the Dψ . We prove that this hybrid support theory detects projectivity of arbitrary D-representations, and
admits a sufficiently strong tensor product property.

The results of this section provide the necessary foundations for our analysis of thick ideals in the
(small) stable category stab(D) in Section 8.

7A. Stable categories. Let A be a finite-dimensional Hopf algebra. We consider the stable categories
stab(A) and Stab(A) for A. These are the quotient categories of rep(A) and Rep(A), respectively, by the
tensor ideal consisting of all morphisms which factor through a projective.

In addition to the derived category Db(A) of finite-dimensional representations over A, we consider

Db
big(A)= {The bounded derived category of arbitrary A-representations}.

We have canonical equivalences to the Verdier quotients

stab(A) ∼−→ Db(A)/⟨proj(A)⟩, Stab(A) ∼−→ Db
big(A)/⟨Proj(A)⟩

[Rickard 1989; Friedlander 2021b, Theorem 4.2], which provide the stable categories with triangulated
structures. These equivalences also provide actions of the extension algebra Ext∗A(k, k) on the stable
representation categories

−⊗M : Ext∗A(k, k)→ Hom∗Stab(M,M) ∀M ∈ Stab(A).

The inclusion stab(A)→ Stab(A) is exact and fully faithful, and identifies the small stable category
with the subcategory of compact objects in Stab(A).

7B. Local cohomology support. Let A be a finite-dimensional Hopf algebra with finite type cohomology.
We suppose additionally that cohomological support for finite-dimensional A-representations satisfies the
inclusion

|A|V⊗W ⊂ (|A|V ∩ |A|W ). (16)

For example, we might consider A to be a local Hopf algebra with finite type cohomology (see Lemma 6.2).
Take E A := Ext∗A(k, k). As remarked above, we have natural actions of E A on objects in the big

stable category Stab(A), which collectively constitute a map to the graded center E A→ Z(Stab(A))=
EndFun(idStab(A)). Given this situation, we can consider the local cohomology support of Benson, Iyengar,
and Krause [Benson et al. 2008]. This support theory is defined via certain triangulated endofunctors
0p : Stab(A)→ Stab(A) associated to (arbitrary) points in the homogeneous spectrum |A| ∪ {m} =
Proj(E A)∪ {m}. Here m is the maximal ideal of all positive degree elements in E A, i.e., the irrelevant
ideal, and the homogeneous spectrum is topologized in such a way that m becomes the unique closed
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point, and the complement |A| to m is given its usual topology as the projective spectrum of cohomology.
We have explicitly

supplc
A(M) := {p ∈ |A| ∪ {m} : 0p(M) ̸= 0} (17)

[Benson et al. 2008, Section 5.1]. We note that the points p appearing in the above formula are not
necessarily closed, and that supports of objects in Stab(A) are not necessarily closed in the space |A|∪{m}.

Since the support theory (17) is defined via the vanishing of certain triangulated endofunctors, it
behaves appropriately under sums, shifts, and exact triangles. Specifically, the support of a sum M ⊕M ′

is the union of the supports of M and M ′, support is invariant under the shift automorphism, and the
support of an object N which fits into a triangle M → N → M ′ → 6M is contained in the union
supplc

A(M)∪ supplc
A(M

′).
The following lemma is implicit in the literature, though we did not find a direct proof; cf. [Benson

et al. 2008, Section 10]. So we give a proof here.

Lemma 7.1. Let A be as above. The irrelevant ideal m is not contained in the local cohomology support
supplc

A(M) of any object in Stab(A). Furthermore, for any finite-dimensional representation V there is an
identification supplc

A(V )= |A|V .

Proof. Let S be the sum of all simple A-representations, and consider any point p in the homogeneous
spectrum |A|∪{m}. The Koszul object S//p of [Benson et al. 2008] is, up to a shift, the tensor product L p⊗

S where L p is a product of Carlson modules whose cohomological support is equal to the (projectivized)
vanishing locus of p, |A|L p = Z(p). In particular, Lm has vanishing cohomological support, and is thus
projective over A. It follows that Lm ⊗ S vanishes in the stable category, as does S//m.

We apply [Benson et al. 2008, Proposition 5.12] to see that vanishing of S//m implies vanishing of
the stable morphisms HomStab(S, 0m(M)), for any M in Stab(A). Since Stab(A) is generated by the
simple A-representations, vanishing of HomStab(S, 0m(M)) implies that 0m(M)= 0 in the stable category.
Hence m /∈ supplc

A(M) and we see that local cohomology support takes values in the projective spectrum
|A|, as claimed.

We now consider the equality supplc
A(V )= |A|V for finite-dimensional V . Let W be an arbitrary finite-

dimensional representation. We have the natural map f : Ext∗A(W, V )→ Hom∗Stab(W, V ) induced by the
functor Db(A)→ Stab(A). This map has m-torsion kernel and cokernel; see, e.g., [Benson and Krause
2002, Equation (2.3)]. It follows that f induces an isomorphism on all localizations Ext∗A(W, V )p ∼=

Hom∗Stab(W, V )p at points p in the projective spectrum |A|. Hence by [Benson et al. 2008, Lemma 2.2]
the homogeneous supports of these two objects, defined as in [loc. cit., Section 2], agree modulo
a consideration of the maximal ideal m. (That is to say, the homogeneous supports have the same
intersection with |A|.) We consider the case where W is the sum of the simples, and note again that
m /∈ supplc

A(V ), to observe finally that supplc
A(V )= |A|V by [loc. cit., Theorem 5.13]. □

By Lemma 7.1 we can now consider local cohomology support supplc
A as a support theory which takes

values in the projective, rather than homogeneous spectrum. Indeed, we can simply omit the extraneous
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point m from the definition and write simply

supplc
A(M)= {p ∈ |A| : 0p(M) ̸= 0} ⊂ |A|.

We understand furthermore that the support supplc
A provides an extension of cohomological support, which

we have only defined for the small stable category, to all of Stab(A).
By pulling back along the quotient Db

big(A)→ Stab(A), we may consider local cohomology support
supplc

A as a support theory which takes A-complexes as inputs as well.

Theorem 7.2 [Benson et al. 2008]. For A as above, the following hold:

(1) M vanishes in Stab(A) if and only if supplc
A(M)=∅.

(2) For arbitrary M and N in Db
big(A), local cohomology support satisfies

supplc
A(M ⊗ N )⊂ (supplc

A(M)∩ supplc
A(N )).

Proof. Statement (1) is covered in [Benson et al. 2008, Theorem 5.13]. For the claimed inclusion (2), we
note that for any specialization closed subset 2⊂ |A| the containment (16) tells us that the subcategory

K2 := {V in stab(A) : |A|V ⊂2}

is a thick ideal in stab(A). Thus one follows the proof of [loc. cit., Theorem 8.2] to see that

0p(M ⊗ N )= M ⊗0p(N )= 0p(M)⊗ N .

From the above equation, and the definition of the support supplc
A , we deduce the inclusion of (2). □

7C. ψ-local support for D-representations. Consider an infinitesimal group scheme G, with associated
Drinfeld double D= D(G). Let M be an object in the bounded derived category Db

big(D) of arbitrary
D-representations, and recall the maps fψ : |Dψ |→ |D| induced by restriction (6). We define the support

suppψ-loc(M) :=
⋃

1-param subgroups

fψ(supplc
Dψ
(resψ MK )), (18)

where the union runs over all embedded 1-parameter subgroups ψ :Ga(s),K→G K , and resψ : rep(G K )→

rep(Ga(s),K ) denotes the restriction functor. As in Proposition 3.11, (18) defines the support suppψ-loc(M)
as a union of subsets in the projective spectrum of cohomology |D|.

We refer to the support (18) as the ψ-local support of M . Note that this support takes values in the
projective spectrum of cohomology |D|. By pulling back along the quotient map

Db
big(D)→ Stab(D)

we freely consider the ψ-local support as a support theory for the bounded derived category of arbitrary
D-representations as well.

Remark 7.3. We have used a boldface ψ in our notation to indicate that ψ might be thought of as a
coordinate which ranges over the space of 1-parameter subgroups.
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We list some basic properties of ψ-local support.

Lemma 7.4. For any infinitesimal group scheme G, ψ-local support satisfies the following:

• suppψ-loc(M)=∅ if and only if M vanishes in the stable category Stab(D).

• suppψ-loc(M ⊕ N )= suppψ-loc(M)∪ suppψ-loc(N ).

• For any triangle M→ N → M ′,

suppψ-loc(N )⊂ (suppψ-loc(M)∪ suppψ-loc(M ′)).

• suppψ-loc(M ⊗ N )⊂ (suppψ-loc(M)∩ suppψ-loc(N )).

• suppψ-loc(6M)= suppψ-loc(M).

• For any V in Db(D), suppψ-loc(V )= |D|V .

In the above formulas M , M ′, and N are arbitrary objects in Db
big(D).

Proof. The first point follows by the projectivity test of Theorem 3.7, and the detection property for
local cohomology support over Dψ . The four subsequent points follow directly from the corresponding
properties for the local cohomology supports supplc

Dψ
, and the fact that restriction is an exact tensor

functor. The final point follows from the identification supplc
Dψ
(VK ) = |Dψ |VK and the reconstruction

formula of Proposition 3.11. □

7D. ψ-local support and tensor products.

Theorem 7.5. Consider a Frobenius kernel G in a smooth algebraic group G. Suppose that G admits a
quasilogarithm. Then for any object V in Db(D), and any M in Db

big(D), we have

suppψ-loc(V ⊗M)= suppψ-loc(V )∩ suppψ-loc(M). (19)

Note that, since Rep(D) is a braided monoidal category, an identification (19) implies the corresponding
equality for the action of finite-dimensional representations (or complexes) on the right

suppψ-loc(M ⊗ V )= suppψ-loc(M)∩ suppψ-loc(V ),

simply because V ⊗M ∼= M ⊗ V . In the language of [Negron and Pevtsova 2021, Definition 4.7], we are
claiming that cohomological support for D is a lavish support theory for the stable category stab(D).

Before proving Theorem 7.5, we prove its local analog.

Proposition 7.6. Let G be as in the statement of Theorem 7.5, and consider an embedded 1-parameter
subgroup ψ : Ga(s)→ G which is defined over k. Then for W in Db(Dψ), and N in Db

big(Dψ), local
cohomology support satisfies

supplc
Dψ
(W ⊗ N )= supplc

Dψ
(W )∩ supplc

Dψ
(N ).
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Proof. It suffices to prove the inclusion

supplc
Dψ
(W )∩ supplc

Dψ
(N )⊂ supplc

Dψ
(W ⊗ N ),

since the opposite inclusion follows by Theorem 7.2. Since the local cohomology support is defined
via the vanishing of the exact endomorphisms 0p, we understand that if Q′ in Stab(Dψ) is in the thick
subcategory generated by Q then supplc

Dψ
(Q′) ⊂ supplc

Dψ
(Q). So it suffices to prove that there is an

equality

supplc
Dψ
(W )∩ supplc

Dψ
(N )= supplc

Dψ
(L ⊗ N )

for some L in the thick subcategory generated by W in stab(Dψ).
Let L be a product of Carlson modules such that supplc

Dψ
(L) = supplc

Dψ
(W ). By Lemma 6.1 and

Proposition 6.8, the object L is in the thick subcategory generated by W in stab(Dψ) and thus L ⊗ N is
in the thick subcategory generated by W ⊗ N in Stab(Dψ).

Recall that, in the stable category, the Carlson module Lζ associated to an extension ζ : k→6nk is
isomorphic to a shift of the mapping cone cone(ζ ). So by [Benson et al. 2011a, Lemma 2.6] we have

supplc
Dψ
(Lζ ⊗ N )= Z(ζ )∩ supplc

Dψ
(N )= supplc

Dψ
(Lζ )∩ supplc

Dψ
(N )

for any such Lζ . It follows that, for our product of Carlson modules L , we have

supplc
Dψ
(L ⊗ N )= supplc

Dψ
(L)∩ supplc

Dψ
(N )= supplc

Dψ
(W )∩ supplc

Dψ
(N ),

as desired. □

We now prove our theorem.

Proof of Theorem 7.5. We have already observed one inclusion in Lemma 7.4. So we need only establish
the inclusion

suppψ-loc(V )∩ suppψ-loc(M)⊂ suppψ-loc(V ⊗M). (20)

Consider any point x in the above intersection, and choose an embedded subgroup ψ : Ga(s),K → G K

for which x is the image of a point x ′ ∈ supplc
Dψ
(MK ). The naturality property

supplc
Dψ
(VK )= |Dψ | ∩ |DK |VK

of Proposition 6.10 implies that x ′ is in supplc
Dψ
(VK ) as well. (See also Lemma 3.10.) We apply the

equality

supplc
Dψ
(VK ⊗MK )= supplc

Dψ
(VK )∩ supplc

Dψ
(MK )

of Proposition 7.6 to see that x ′ ∈ supplc
Dψ
(VK⊗MK ), and hence x ∈ suppψ-loc(V⊗M) by the definition of

the ψ-local support. We thus verify the inclusion (20), and obtain the proposed tensor product property. □
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8. Thick ideals and the Balmer spectrum

We provide a classification of thick ideals in the stable category stab(D), for D the Drinfeld double of an
appropriate Frobenius kernel. We then apply results of Balmer to calculate the spectrum of prime ideals
in the stable category stab(D). In particular, we show that thick ideals are classified by specialization
closed subsets in the projective spectrum of cohomology |D|, and we show that the Balmer spectrum is
isomorphic to the cohomological spectrum |D| as a locally ringed space.

8A. Classification of thick ideals and prime ideal spectra. Let D be the Drinfeld double of a finite
group scheme. Recall that a specialization closed subset 2 in |D| = Proj Ext∗D(k, k) is a subset which
contains the closures of all of its points. Equivalently, a specialization closed subset is an arbitrary union
of closed subsets in |D|.

For any specialization closed subset 2 in |D| we have the associated thick ideal

K2 := {V ∈ stab(D) : |D|V ⊂2}

in the stable category stab(D). To see that K2 is in fact closed under the tensor actions stab(D) on the
left and right, one simply consults the inclusion |D|V⊗W ⊂ (|D|V ∩ |D|W ) provided by the braiding on
rep(D) [Bergh et al. 2021, Proposition 3.3]. Similarly, for any thick ideal K ⊂ stab(D) we have the
associated support space

|D|K := ∪V∈K |D|V ,

which is a specialization closed subset in |D|. We note that the formal properties of cohomological
support imply an equality |D|V = |D|⟨V ⟩⊗ between the support of a given object V , and the support of
the thick ideal ⟨V ⟩⊗ which it generates in stab(D).

The two above operations define maps of sets

{thick ideals in stab(D)}
K?

|D|?

←
−
−
−
−
→ {specialization closed subsets in |D|} (21)

which preserve the respective orderings by inclusion. In rephrasing Definition 6.4, we say cohomological
support for D classifies thick ideals in stab(D) if the two maps in (21) are mutually inverse bijections.

At this point it is a formality to deduce a classification of thick ideals in the stable category stab(D)
from the support theoretic results of Lemma 7.4 and Theorem 7.5. One can see for example [Rickard
1997]. We follow the generic presentation of [Negron and Pevtsova 2021].

Theorem 8.1. Consider a smooth algebraic group G which admits a quasilogarithm, and let G be a
Frobenius kernel in G. Then, for the Drinfeld double D= D(G), cohomological support classifies thick
ideals in the stable category stab(D). That is to say, the two maps of (21) are mutually inverse bijections.

Proof. Theorem 7.5 tells us that cohomological support is a lavish support theory for stab(D), in the
language of [Negron and Pevtsova 2021, Section 4.3]. So the claimed classification follows by [loc. cit.,
Proposition 5.2]. (Note that all of the centralizing hypotheses in [loc. cit.] are obviated by the existence
of a braiding on rep(D).) □
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We note that, by pulling back along the projection π : Db(D) → stab(D), we can similarly use
cohomology to classify thick ideals in the bounded derived category for D. Namely, under the map
π thick ideals in stab(D) are identified with thick ideals in Db(D) which contain the ideal perf(D) of
bounded complexes of projectives. This subcollection of ideals in Db(D) is precisely the collection of
nonvanishing ideals in Db(D). So we obtain a classification

{thick ideals in Db(D)} ∼= {specialization closed subsets in |D|} ∪ {0}.

8B. Prime ideal spectra for Drinfeld doubles. Consider again the Drinfeld double D of a finite group
scheme G.

We recall that the sublattice of thick prime ideals in stab(D) forms a locally ringed space, which is
referred to as the Balmer spectrum

Spec(stab(D)) :=
{

the collection of thick prime ideals in stab(D)
with the topology and ringed structure described in [Balmer 2005]

}
. (22)

As one might expect, by a thick prime ideal in stab(D) we mean a proper thick ideal P for which an
inclusion V ⊗W ∈P implies either V ∈P or W ∈P. We do not recall the topology or the ringed
structure on the spectrum here, and refer the reader instead to the highly readable text [Balmer 2005,
Sections 1 and 6].

As explained in [Balmer 2005; 2010a], a classification of thick ideals in stab(D) via cohomological
support implies a corresponding calculation of the prime ideal spectrum.

Theorem 8.2. For G as in Theorem 8.1, there is a homeomorphism

fcoh : |D| = Proj Ext∗D(k, k) ∼=−→ Spec(stab(D))

defined by taking fcoh(x) = {V ∈ stab(D) : x /∈ |D|V }. Furthermore, fcoh can be upgraded to an
isomorphism of locally ringed spaces.

Proof. Given Theorem 8.1, the fact that fcoh is a homeomorphism follows from [Balmer 2005, Theo-
rem 5.2]. By [Balmer 2010a, Proposition 6.11], the homeomorphism fcoh furthermore enhances to an
isomorphism of locally ringed spaces. To elaborate, in [loc. cit., Definitions 5.1, 6.10] a map of ringed
spaces ρ : Spec(stab(D))→|D| is constructed. One sees directly that the composite ρ ◦ fcoh : |D|→ |D|

is the identity, as a map of topological spaces. Since fcoh is a homeomorphism, we see that ρ is a
homeomorphism as well. It follows by [loc. cit., Proposition 6.11] that ρ is an isomorphism of (locally)
ringed spaces, and so provides the homeomorphism fcoh = ρ

−1 with ringed structure under which it is
also an isomorphism of locally ringed spaces. □

Remark 8.3. In [Balmer 2005; 2010a] Balmer only considers symmetric tensor triangulated categories.
However, all of the definitions, results, and proofs from [Balmer 2005; 2010a] apply verbatim in the
braided context. So, implicitly, we use the fact that rep(D) = Z(rep(G)) admits a canonical (highly
non-symmetric!) braided structure in the definition (22), and also in the proof of Theorem 8.2. One can
alternatively refer to [Negron and Pevtsova 2021, Section 6] and in particular [loc. cit., Theorem 6.10].
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Appendix: A π -point rank variety for the Drinfeld double

We introduce a π-point rank variety 5(D) for the Drinfeld double D, whose points consist of certain
classes of flat algebra maps K [t]/(t p)→DK . For any D-representation V we construct an associated
support space 5(D)V in 5(D). We show that the support theory V 7→5(D)V behaves in the expected
manner when we consider the Drinfeld double of a Frobenius kernel G = G(r) in a sufficiently nice
algebraic group G. In particular, the support space 5(D)V vanishes if and only if the given representation
V is projective, and the support spaces satisfy the tensor product property

5(D)V⊗W =5(D)V ∩5(D)W .

Furthermore, we establish an identification with cohomological support 5(G)⋆
∼=−→ |D|⋆. We also show

that our π-support can be identified with a certain “universal” π-point support, which we define in
Section A5.

Since these results of this section are isolated from those of the body of the text, in a technical sense,
we collect them here in an appendix.

A1. π-points and support for finite group schemes. Throughout this subsection G is a finite group
scheme over our base field k. We recall some definitions and results from [Friedlander and Pevtsova 2007].

Definition A.1. A π -point for a finite group scheme G, over k, is a pair of a field extension k→ K and
a flat algebra map α : K [t]/(t p)→ KG which factors through the group ring of an abelian, unipotent
subgroup U ⊂ G K .

We generally abuse notation and simply write α for the pair (K/k, α). Any π-point defines a corre-
sponding point pα in the projective spectrum of cohomology |G|, which is explicitly the homogeneous
prime ideal

pα := ker
(
Ext∗G(k, k) K⊗−

−−→ Ext∗G K
(K , K ) resα

−−→ Ext∗K [t]/t p(K , K )red = K [T ]
)
. (23)

In the above formula T is a variable of cohomological degree 2 (or 1 in characteristic 2). Flatness of the
extension α ensures that the ideal pα is not all of Ext>0

G (k, k), so that pα does in fact define a point in the
projective spectrum [Friedlander and Pevtsova 2005, Lemma 3.4]; compare to [Andruskiewitsch et al.
2022, Theorem 3.2.1].

Definition A.2. For a given finite group scheme G, we say two π-points α : K [t]/(t p)→ KG and
β : L[t]/(t p)→ LG are equivalent if any finite-dimensional G-representation V which restricts to a
projective K [t]/(t p)-representation resα(VK ) along α also restricts to a projective L[t]/(t p)-representation
resβ(VL) along β, and vice versa.

We let 5(G) denote the collection of equivalence classes of π -points

5(G)= {[α] : α : K [t]/(t p)→ KG is a π -point for G}.
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For any finite-dimensional G-representation V we define the π -support space 5(G)V as

5(G)V = {[α] : resα(VK ) is nonprojective over K [t]/(t p)}.

The collection of subsets {5(G)V : V ∈ rep(G)} in 5(G) is closed under finite unions, since
5(G)V ∪5(G)W = 5(G)V⊕W . Hence there is a uniquely defined topology on 5(G) for which the
supports of objects 5(G)V provide a basis of closed subsets.

Theorem A.3 [Friedlander and Pevtsova 2007, Theorem 3.6]. If two π -points α and β for G are equivalent,
then the corresponding points pα, pβ ∈ |G| are equal. Furthermore, the resulting map

5(G)→ |G|, [α] 7→ pα

is a homeomorphism, and for any finite-dimensional representation V this homeomorphism restricts to a
homeomorphism 5(G)V → |G|V .

Note that Theorem A.3 tells us that the topological space 5(G) is Noetherian. Hence the basic closed
sets {5(G)V }V∈rep(G) in5(G) provide the collection of all closed sets in5(G) [Friedlander and Pevtsova
2007, Proposition 3.4].

Remark A.4. One of the main advancements of [Friedlander and Pevtsova 2007] is the observation that
one can reasonably define support spaces 5(G)M for infinite-dimensional G-representation M . So, the
above presentation omits some of the more significant aspects of [loc. cit.]. One can see Remark A.12
below for additional context.

Remark A.5. For infinitesimal G, a direct comparison between π-point support and the rank variety
support theory of [Suslin et al. 1997b] can be found at [Friedlander 2021b, Theorem 1.6].

A2. π -point support for Dψ . We consider an infinitesimal group scheme G, with corresponding Drinfeld
double D= D(G).

Definition A.6. Consider any infinitesimal group scheme G, and fix an embedded 1-parameter subgroup
ψ :Ga(s)→ G which is defined over k. A π -point for Dψ is a pair of a field extension k→ K , and a flat
algebra map α : K [t]/(t p)→ (Dψ)K such that:

(a) There exists an algebra identification Dψ = k H between Dψ and the group algebra of a finite group
scheme H over k.

(b) Under some identification as in (a), α corresponds to a π -point for the given group scheme H .

Statements (a) and (b) above can alternately be stated as follows: a π -point for Dψ is a flat algebra map
α : K [t]/(t p)→ (Dψ)K which is a π-point for Dψ relative to some alternate choice of cocommutative
Hopf structure 1′ on Dψ . We note that any group scheme H as in (a) is necessarily unipotent, since Dψ

is local.
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We say two π -points α : K [t]/(t p)→ (Dψ)K and β : L[t]/(t p)→ (Dψ)L for Dψ are equivalent if any
finite-dimensional Dψ -representation V with projective restriction resα(VK ) also has projective restriction
resβ(VL), and vice versa. We define the π -point space in the expected manner

5(Dψ)= {[α] : α : K [t]/(t p)→ (Dψ)K is a π -point},

and for any finite-dimensional Dψ -representation V we define the π -support space

5(Dψ)V = {[α] : resα(VK ) is nonprojective over K [t]/(t p)}.

We note that if Dψ admits no such identification with a group algebra k H , as required in Definition A.6(a),
then the space 5(Dψ) is necessarily empty.

We topologize the space 5(Dψ) via the basis of closed sets {5(Dψ)V : V in rep(Dψ)}. As in (23),
one sees that each π -point α defines a corresponding point pα in the cohomological support space |Dψ |.

Lemma A.7. If two π -points α and β for Dψ are equivalent, then their corresponding points pα and pβ
in |Dψ | are equal. Furthermore, whenever the π -point space 5(Dψ) is nonempty, the map

5(Dψ)→ |Dψ |, [α] 7→ pα

is a homeomorphism and for any finite-dimensional Dψ -representation V this homeomorphism restricts
to a homeomorphism 5(Dψ)V → |Dψ |V .

Proof. If Dψ admits no cocommutative Hopf structure then the space 5(Dψ) is empty, and there is
nothing to prove. So let us suppose that Dψ admits the necessary alternate Hopf structure.

Consider any cocommutative Hopf structure 1′ on the underlying algebra Dψ , and corresponding
identification Dψ = k H . Since H is necessarily unipotent, as Dψ is local, the cohomological support
spaces agree |H |V = |Dψ |V for all V in rep(Dψ)= rep(H). (See Section 6B.)

Now, Theorem A.3 tells us that a H -representation V is nonprojective at a π -point α′ for H if and only if
pα′ ∈ |H |V . So by the above information we see that a Dψ -representation V is nonprojective at a π -point α
if and only if pα ∈ |Dψ |V . Hence two π -points α and β for Dψ are equivalent if and only if pα = pβ . This
shows that the map5(Dψ)→|Dψ | is well-defined and injective. The map is furthermore surjective since,
if we consider our identification Dψ = k H , the map 5(H)→ |H |(= |Dψ |) is surjective, meaning every
point in the cohomological support space is represented by a π -point α : K [t]/(t p)→ K H = (Dψ)K . □

Based on the presentation of Section 5B, we understand that Dψ admits a cocommutative Hopf
structure whenever G is a Frobenius kernel in a smooth algebraic group which admits a quasilogarithm.
So Lemma A.7 tells us that we have an identification of support theories 5(Dψ)⋆ ∼= |Dψ |⋆ in this case.
In particular, the above lemma is not vacuous.

A3. π -point support for D. Fix an infinitesimal group scheme G and D= D(G).

Definition A.8. A π-point α for D is a pair of an embedded 1-parameter subgroup ψ : Ga(s),K → G K

and a π -point α : K [t]/(t p)→Dψ , defined as in Definition A.6.



Support theory for Drinfeld doubles of some infinitesimal group schemes 253

For any given π-point (ψ, α), we are particularly concerned with the composition K [t]/(t p)→DK

of the map α : K [t]/(t p)→Dψ with the inclusion Dψ→D. So we generally identify a π -point with its
associated flat map K [t]/(t p)→DK , and simply write α : K [t]/(t p)→DK by an abuse of notation.

Definition A.9. Two π -points α : K [t]/(t p)→DK and β : L[t]/(t p)→DL are said to be equivalent if
any finite-dimensional representation V which restricts to a projective K [t]/(t p)-representation resα(VK )

along α also restricts to a projective L[t]/(t p)-representation resβ(VL) along β, and vice versa.

We define the space of equivalence classes of π -points

5(D)= {[α] : α : K [t]/(t p)→DK is a π -point},

and for any finite-dimensional D-representation V we define the π -support

5(D)V = {[α] : resα(VK ) is nonprojective}.

The space 5(D) is topologized via the basis of closed sets provided by the supports 5(D)V of all
finite-dimensional D-representations.

As in (23), any π-point α : K [t]/(t p)→ DK defines an associated point pα ∈ |D| in the cohomo-
logical support space. One employs Carlson modules exactly as in [Friedlander and Pevtsova 2007,
Proposition 2.9] to see that the two points pα and pβ agree whenever α and β are equivalent. So we find

Proposition A.10. There is a well-defined continuous map

w :5(D)→ |D|, α 7→ pα.

For any finite-dimensional D-representation V , the above map restricts to a map between support spaces
5(D)V → |D|V .

Proof. As stated above, well-definedness can be argued as in [Friedlander and Pevtsova 2007]. The fact
that 5(D)V is mapped to |D|V can be reduced to the corresponding claim for π-support over the Dψ ,
which is covered in Lemma A.7.

All that is left is to establish continuity of w. For continuity, we note that any closed set in |D|
is the support |D|L of a product of Carlson modules. The naturality properties of Lemma 2.15 then
gives w−1(|D|L)=5(D)L . This shows that the preimage of any closed set in |D| along w is closed in
5(D). □

One can see from Theorem 3.7, and the arguments used in the proof of Proposition A.10, that the map
5(D)→ |D| is in fact surjective when G is a Frobenius kernel in a sufficiently nice algebraic group G.
We leave the details to the interested reader, as we will observe a stronger result in Theorem A.15 below.
As a related finding, we have the following.

Theorem A.11. Suppose that G is a Frobenius kernel in an algebraic group G, and that G admits
a quasilogarithm. Then a given finite-dimensional D-representation V is projective if and only if
5(D)V =∅.
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Proof. By Theorem 3.7, V is projective if and only if its restrictions to all Dψ are projective. The
hypothesis on G, and Lemma 5.5, ensure that at all 1-parameter subgroups ψ the algebra Dψ admits
an (alternative) cocommutative Hopf structures. Hence, by Lemma A.7, VK is projective over Dψ if
and only it VK is projective at all π-points for Dψ . Taking this information together, we see that V is
projective over D if and only if V is projective at all π -points α : K [t]/(t p)→DK for D. □

Remark A.12. There are ways to define the π-support 5(D)M of an arbitrary (possibly infinite-
dimensional) D-module M so that Theorem A.11 remains valid at arbitrary M . However, it is unclear
whether or not the equivalence relation on π-points K [t]/(t p)→ DK defined via finite-dimensional
representations agrees with the analogous one defined via arbitrary modules; cf. [Friedlander and Pevtsova
2007, Theorem 4.6]. Rather, in the language of [loc. cit.], it is unclear whether equivalent π -points are in
fact strongly equivalent. So we do not know if the support space 5(D)M can be defined in such a way
that depends only on the classes [α] of π -points, and not the π -points themselves. We therefore leave a
discussion of π -point support for infinite-dimensional modules to some later investigation.

A4. Tensor product properties and comparison with cohomological support. As discussed in Section 6A,
one can read the material of Section 6 through the alternate lens of π-point support. In particular, the
arguments of Section 6 imply that π -point support behaves well with respect to tensor products, and also
agrees with cohomological support; cf. [Friedlander and Pevtsova 2005; 2007].

We have the following.

Proposition A.13. For any infinitesimal group scheme G, and embedded 1-parameter subgroup ψ :
Ga(s)→ G, π -point support for Dψ satisfies the tensor product property

5(Dψ)V⊗W =5(Dψ)V ∩5(Dψ)W .

Proof. If 5(Dψ) is empty there is nothing to prove. If 5(Dψ) is nonempty, then π -point support for Dψ

is identified with cohomological support, via Lemma A.7. So the result follows by the tensor product
property for cohomological support provided in the (proof of) Proposition 6.8. □

An important reading of Proposition A.13 is the following: given a π -point α : K [t]/(t p)→Dψ , and
Dψ -representations V and W , the restriction resα(V ⊗W ) is nonprojective if and only both resα(V ) and
resα(W ) are nonprojective. Since π -point support for the global algebra D is itself defined via π -points
for the varying Dψ , the following result is immediate.

Theorem A.14. For any infinitesimal group scheme G, π -point support for D satisfies the tensor product
property

5(D)V⊗W =5(D)V ∩5(D)W .

Finally, when G is a Frobenius kernel in a sufficiently nice algebraic group G, we find that π-point
support is identified with cohomological support.
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Theorem A.15. Suppose that G is a Frobenius kernel in an algebraic group G, and that G admits a
quasilogarithm. Then the map w :5(D)→ |D| of Proposition A.10 is a homeomorphism, and restricts to
a homeomorphism 5(D)V → |D|V for all finite-dimensional D-representations V .

Proof. Let w :5(D)→ |D| denote the map [α] 7→ pα of Proposition A.10. Under the above hypotheses
Lemma 5.5 tells us that all Dψ have nonvanishing π -support spaces 5(Dψ). So Lemma A.7 tells us that
π -supports and cohomological supports are identified for all Dψ .

Suppose we have two π-points α, β ∈5(D) for which pα = pβ . Let V be any representation which
is nonprojective at α. Write explicitly α : K [t]/(t p)→Dψ →DK and β : K ′[t]/(t p)→Dψ ′ →DK ′ .
Since, at any embedded 1-parameter subgroups η, the composites

5(Dη)→5(D)→ |D| and 5(Dη)
∼=−→ |Dη| → |D|

are both given by [η] 7→ pη, i.e., since the two composites agree, Proposition 6.10 ensures that [α] ∈
5(Dψ)VK and [β] ∈5(Dψ ′)VK ′

. Rather, both resα(VK ) and resβ(VK ′) are nonprojective. Since V was
chosen arbitrarily, this shows α is equivalent to β. So we see that w is injective. Surjectivity follows from
Proposition 3.11, applied to V = k.

We understand now that w :5(D)→ |D| is a bijection of sets. One argues similarly to see that each
restriction 5(D)V → |D|V is a bijection. Finally, since all basic closed subsets in 5(D) and |D| are
realized as supports of finite-dimensional representation, we see that w is in fact a homeomorphism. □

A5. Comparing with a universal π-point space. Consider the Drinfeld double D of an arbitrary finite
group scheme — or really any Hopf algebra. We have a universal definition of “π-points”, from the
perspective of classifying thick tensor ideals in the stable category. Namely, we consider all flat algebra
maps α : K [t]/(t p)→DK which satisfy the tensor product property:

resα(VK⊗WK ) is nonprojective if and only if both resα(VK ) and resα(WK ) are nonprojective. (TPP)

As with our other classes of π -points, we consider the space 5⊗(D) of equivalence classes of all such
universal π-points, and topologize this space in the expected way. To be clear, our equivalence relation
for universal π-points is defined exactly as in Definition A.9, where we simply replace “π-point” with
“universal π -point” in the definition. We have the supports

5⊗(D)V = {[α] : resα(VK ) is nonprojective}

and corresponding support theory V 7→5⊗(D)V .
One notes that the class of universal π -points is chosen in the coarsest possible way to ensure that the

tensor product property
5⊗(D)V⊗W =5⊗(D)V ∩5⊗(D)W

holds, and to ensure that the support 5⊗(D)V depends only on the class of V in the stable category.
Now, if we specifically consider the Drinfeld double of an infinitesimal group scheme, Theorem A.14

tells us that any π -point α : K [t]/(t p)→DK as in Definition A.8 is a universal π -point. Furthermore, the
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equivalence relations on π -points and universal π -points are exactly the same. So we obtain a topological
embedding ι :5(D)→5⊗(D) for which we have

5(D)V =5(D)∩5⊗(D)V , (24)

simply by the definitions of these supports.

Theorem A.16. Suppose that G is a Frobenius kernel in an smooth algebraic group G, and that G admits
a quasilogarithm. Then the inclusion ι :5(D)→5⊗(D) is a homeomorphism, and all of the restrictions
ιV :5(D)V →5⊗(D)V are also homeomorphisms.

Proof. Take Z = stab(D), and recall the isomorphism w : 5(D)→ |D| of Theorem A.15. By the
universal property of the Balmer spectrum [2005, Theorem 3.2], and Theorem A.14, we have continuous
maps to the Balmer spectrum fπ :5(D)→ Spec(Z ) and f⊗ :5⊗(D)→ Spec(Z ) which are compatible,
in the sense that f⊗ ◦ ι = fπ . Similarly, the map fcoh : |D| → Spec(Z ) of Theorem 8.2 is such that
fcoh ◦w = fπ . Since w and fcoh are homeomorphisms, by Theorems 8.2 and A.15, we see that fπ is a
homeomorphism. Since fπ factors through f⊗, we see that f⊗ :5⊗(D)→ Spec(Z ) is surjective. We
claim that this surjection is in fact a bijection.

We have explicitly

f⊗(α)= {V ∈Z : [α] /∈5⊗(D)V } = {V ∈Z : resα(VK ) is projective}

[Balmer 2005, Theorem 3.2]. Hence f⊗(α)= f⊗(β) implies that any D-representation with projective
restriction along α also has projective restriction along β, and vice versa. So, by definition, the two classes
agree [α]= [β]. So we see that f⊗ is injective, and therefore a bijection. It follows that ι :5(D)→5⊗(D)

is a bijection. Since ι is a topological embedding, this bijection is furthermore a homeomorphism. The fact
that all of the restrictions 5(D)V →5⊗(D)V are homeomorphisms as well follows by the intersection
formula (24). □

We collect our results about the support theory 5⊗(D)⋆ from above to find the following, somewhat
remarkable, corollary.

Corollary A.17. Fix G as in Theorem A.16, and D the corresponding Drinfeld double. Then:

(1) D admits enough universal π -points, in the sense that a D-representation V is projective if and only
if its restriction resα(VK ) along each universal π -point α : K [t]/(t p)→DK is projective.

(2) The natural map w :5⊗(D)→ |D|, [α] 7→ pα, is a homeomorphism. In particular, the universal
π -point space 5⊗(D) has the structure of a projective scheme.

(3) Any flat map α : K [t]/(t p)→D which satisfies the tensor product property (TPP) is equivalent to
one of the form required in Definition A.8.

Of course, the issue with the universal π -support 5⊗(D)⋆, in general, is that it is difficult to understand
the space 5⊗(D) explicitly, or even to understand when this space is nonempty. So, one needs a practical
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construction of π-points, as above, in order to populate 5⊗(D) with enough points, and in order to see
that this theory carries significant amounts of information.

Remark A.18. For a general Hopf algebra A, we can define the universal π-point support theory
V 7→5⊗(A)V exactly as above. We make no claim that this theory is well-behaved, or even nonvacuous
in general. However, it is interesting that there are even any examples in characteristic 0 where one has
enough universal π-points. For example, the results of [Pevtsova and Witherspoon 2015] imply that
the support theory 5⊗(A)⋆ satisfies the conclusions of Corollary A.17(1) and (2), for A a “quantum
elementary abelian group” over C. Similarly, for finite group schemes, one can argue as in the proof of
Theorem A.16 to see that the standard π -point support theory 5(G)⋆ and universal theory 5⊗(G)⋆ agree.

A6. Remaining questions. At this point we have recorded a number of nontrivial results concerning
π -points and support for Drinfeld doubles of (some) infinitesimal group schemes. We record a number of
remaining questions which the reader may consider.

Question A.19. (1) Can one provide an intrinsic proof of the tensor product property of Theorem A.14, i.e.,
one which follows from a direct analysis of π -points, and does not reference an auxiliary support theory?
(Compare with [Friedlander and Pevtsova 2005; Pevtsova and Witherspoon 2009; Friedlander 2021a].)

(2) Does the Drinfeld double of a general infinitesimal group scheme G admit enough (universal) π -points,
in the sense of Corollary A.17(1)?

(3) Is there a reasonable extension of π -point support 5(D)M to infinite-dimensional M? In particular,
does there exist such a definition which reproduces the tensor product property

5(D)M⊗N =5(D)M ∩5(D)N

at arbitrary M and N?

Of course, question (3) has to do with one’s (in)ability to use π -point support in certain tensor triangular
investigations, as in Section 8 and [Benson et al. 2011b; 2018; Balmer et al. 2019; Balmer 2020] for
example.
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