
Algebra &
Number
Theory

msp

Volume 17

2023
No. 10

Special cycles on the basic locus of unitary Shimura varieties at
ramified primes

Yousheng Shi



msp
ALGEBRA AND NUMBER THEORY 17:10 (2023)

https://doi.org/10.2140/ant.2023.17.1681

Special cycles on the basic locus of unitary Shimura
varieties at ramified primes

Yousheng Shi

We study special cycles on the basic locus of certain unitary Shimura varieties over the ramified primes
and their local analogs on the corresponding Rapoport–Zink spaces. We study the support and compute
the dimension of these cycles.
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1. Introduction

We study the basic locus of certain unitary Shimura varieties over ramified primes and special cycles on it.
To approach this global problem we first study local special cycles on the corresponding Rapoport–Zink
spaces and then apply a uniformization theorem to convert our local results on the Rapoport–Zink spaces
to global ones. Our results will have applications to Kudla’s program, in particular Kudla–Rapoport type
of conjectures over these ramified primes; see [Kudla and Rapoport 2011; 2014; Li and Zhang 2022; Li
and Liu 2022; He et al. 2023; Shi 2023].

We specialize to an integral model of Shimura varieties associated to U(1, n − 1) which parametrize
abelian schemes with certain CM action and a compatible principal polarization. This integral model and
the corresponding model of Rapoport–Zink space is first proposed by Pappas [2000]; see also [Rapoport
et al. 2021]. It is flat over the base, normal and Cohen–Macaulay and has isolated singularities. One
can blow up these singularities to get a model which has semistable reduction and has a simple moduli
interpretation; see [Krämer 2003]. We focus on the Pappas model in this paper but all results can be
easily adjusted to the Krämer model case as these models are the same outside the singularities.

In the Rapoport–Zink spaces setting, we study the reduced locus of special cycles and compute their
dimensions. As an intermediate step, we prove an isomorphism between two Rapoport–Zink spaces of
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different nature. In the Shimura variety setting, we write down the uniformization theorem of the basic
locus over the ramified primes and then translate our local results to global ones. We now explain our
results in more detail.

1A. Local results. Let p > 2 be a prime and fix a tower of finite extensions Qp ⊆ H ⊆ F0 ⊂ F where
F/F0 is quadratic and ramified. For any p-adic field R, we denote by OR its ring of integers. Let F̆ be
the completion of the maximal unramified extension of F . Let NilpOF̆ be the categories of OF̆ -schemes
S on which p is locally nilpotent. For S ∈ NilpOF̆ , let S = S ×SpecOF̆

Spec Fp. The Rapoport–Zink space
N F/H
(r,s) is the moduli space over SpfOF̆ whose S points are objects (X, ι, λ, ρ) where X is a supersingular

formal p-divisible group over S, ι : OF → End(X) is an OF -action on X whose restriction to OH is
strict, λ : X → X∨ is a principal polarization, and ρ : X ×S S → X ×Spec Fp

S is a map to a framing object
(X, ιX, λX) over Spec Fp. We require that the Rosati involution of λ induces on OF the Galois conjugation
over OF0 and the action ι satisfies the (r, s) signature condition (Definition 2.3). See Definitions 2.5
and 2.8 for the detailed definition of N F/H

(r,s) . We first show the following theorem (Theorem 2.10).

Theorem 1.1. Suppose that F0/H is unramified. Then there is an isomorphism

C : N F/H
(r,s)

∼= N F/F0
(r,s) .

The significance of the above theorem is that N F/Qp
(r,s) can be related to unitary Shimura varieties by the

uniformization theorem while N F/F0
(r,s) is easier to study. From now on we mainly focus on the signature

(1, n − 1). By [Rapoport et al. 2014] we know that N F/F0
(1,n−1) is representable by a formal scheme over

SpfOF̆ . Moreover there is a stratification of its reduced locus given by

(N F/F0
(1,n−1))red =

⊎
3

N o
3

where 3 runs over the so-called vertex lattices, see Theorem 2.17.
We can define special cycles on both N F/H

(1,n−1) and N F/F0
(1,n−1). The isomorphism in Theorem 1.1 maps

special cycles in the first space to special cycles in the second. Without loss of generality we focus on
N F/F0
(1,n−1). Let (Y, ιY, λY) (resp. (X, ιX, λX)) be the framing object of N F/F0

(0,1) (resp. N F/F0
(1,n−1)). Define an

F vector space
V := HomOF (Y,X)⊗Z Q

of rank n with the Hermitian form h( · , · ) such that for any x, y ∈ V we have

h(x, y)= λ−1
Y ◦ y∨

◦ λX ◦ x ∈ EndOF (Y)⊗ Q
∼=−→ F,

where y∨ is the dual of y. For an OF -lattice L ⊂ V, the associated special cycle Z(L) is the subfunctor
of N F/F0

(0,1) ×SpfOF̆
N F/F0
(1,n−1) such that ξ = (Y, ι, λY , ϱY , X, ι, λX , ϱX ) ∈ Z(L)(S) if for any x ∈ L the

quasihomomorphism
ϱ−1

X ◦ x ◦ ϱY : Y ×S S → X ×S S

lifts to a homomorphism from Y to X .
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Any OF -lattice L with a Hermitian form ( · , · ) has a Jordan splitting

L = kλ∈ZLλ (1-1)

where k stands for orthogonal direct sum and Lλ is πλ-modular (see Section 3A). We say L is integral if
(x, y) ∈ OF for any x, y ∈ L . For an integer t and a fixed Jordan decomposition as above we define

L≥t = kλ≥t Lλ ⊂ L .

The following summarizes Theorems 3.9 and 3.10 and their corollaries.

Theorem 1.2. Let L ⊂ V be an OF -lattice of rank n:

(i) Z(L) is nonempty if and only if L is integral.

(ii) Z(L)red (the reduced scheme of Z(L)) is a union of strata N o
3 where 3 ranges over a set of vertices

which can be described in terms of L.

(iii) Fix a Jordan decomposition of L as in (1-1). Define

d(L) :=


rankOF (L≥1)− 1 if rankOF (L≥1) is odd,
rankOF (L≥1) if rankOF (L≥1) is even and L≥1 ⊗Z Q is split,
rankOF (L≥1)− 2 if rankOF (L≥1) is even and L≥1 ⊗Z Q is nonsplit.

Then Z(L)red is purely of dimension 1
2d(L), i.e., every irreducible component of Z(L)red is of

dimension 1
2d(L). Here we say a Hermitian space V of dimension n is split if

(−1)n(n−1)/2 det(V ) ∈ NmF/F0(F
×).

Otherwise we say it is nonsplit.

(iv) Define
nodd =

∑
λ≥3, λ is odd

rankOF (Lλ),

and
neven =

∑
λ≥2, λ is even

rankOF (Lλ).

Then Z(L)red is irreducible if and only if the following two conditions hold simultaneously:

(a) nodd = 0.
(b) neven ≤ 1 or neven = 2 and L≥2 ⊗Z Q is nonsplit.

1B. Global results. In the global setting, let F be a CM field with totally real subfield F0 and 8 ⊂

HomQ(F,C) be a CM type of F . Denote by x 7→ x̄ the Galois conjugation of F/F0 and fix a ϕ0 ∈ 8.
Define

Vram = {finite places v of F0 | v ramifies in F}. (1-2)

We assume that Vram is nonempty and every v ∈ Vram is unramified over Q and does not divide 2.
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Let V be a n dimensional F-vector space with a Hermitian form ( · , · ) which has signature (n − 1, 1)
with respect to ϕ0 and (n, 0) with respect to any other ϕ ∈ 8\{ϕ0}. The CM type 8 together with the
signature of V determines a reflex field E and F embeds into E via ϕ0. Define groups

ZQ
:= {z ∈ ResF/Q Gm | NmF/F0(z) ∈ Gm}, G = ResF0/Q U(V ).

Also define

G̃ := ZQ
× G.

We can define a corresponding Hodge map hG̃ : C×
→ G̃(R). By choosing a compact subgroup

K = K ZQ × KG ⊂ G̃(A f ) where K ZQ is the maximal compact subgroup of ZQ(A f ) (see (4-8)) and KG

is a compact subgroup of G(A f ), we get a Shimura variety S(G̃, hG̃)K which has a canonical model over
Spec E . Further more if we assume KG is the stabilizer of a self-dual lattice (see (4-7)), then [Rapoport
et al. 2021] defined a moduli functor M of abelian varieties with OF -action and a compatible principal
polarization over SpecOE whose complex fiber is S(G̃, hG̃)K . We review the definition in Section 4. By
our assumption K is of the form K =

∏
v Kv where we take the restricted product over all finite places

of F0. Throughout the paper, we use the notations

K p =

∏
v | p

Kv, K p
=

∏
v ∤ p

Kv,

and similar notations with K replaced by KG or K ZQ .
Now assume v0 ∈ Vram and let w0 be the place of F above it. Let p be the characteristic of the residue

field of F0,v0 . Fix a finite place ν of E above v0 with residue field kν . Let Ĕν be the completion of the
maximal unramified extension of Eν . We denote by Mss

ν the basic locus of M at ν and denote by M̂ss
ν the

completion of M×SpecOE SpecOĔν along Mss
ν ×Spec kνSpec k̄ν . Then we have the following uniformization

theorem which is a consequence of [Rapoport and Zink 1996, Theorem 6.30] and Theorem 1.1.

Theorem 1.3. Assume v0 ∈Vram and Vram satisfies the condition stated after (1-2). There is an isomorphism

2 : G̃ ′(Q)\N ′
× G̃(Ap

f )/K p ∼= M̂ ss
ν .

where G̃ ′ is an inner form of G̃ and

N ′
= ZQ(Qp)/K ZQ,p × (N

Fw0/F0,v0
(1,n−1) ×̂SpfOF̆w0

SpfOĔν )×
∏
v ̸=v0

U(V )(F0,v)/KG,v

where the product in the last factor is over all places of F0 over p not equal to v0.

For a nondegenerate totally positive definite F/F0-Hermitian matrix T , we define the special cycle
Z(T ) following the definition of [Kudla and Rapoport 2014] in Definition 5.2. Now assume T has rank n.
Let VT be the Hermitian F-space with Gram matrix T and define

Diff(T, V ) := {v is a finite place of F0 | Vv is not isomorphic to (VT )v}. (1-3)
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It is well-known to experts that Z(T ) is empty when Diff(T, V ) contains more than one element and
Z(T ) is supported on Mss

ν over finite primes ν of E above v if Diff(T, V )= {v}. We briefly review the
proof of these results (see Proposition 5.4). Then the following theorem is a consequence of Theorems 1.2
and 1.3.

Theorem 1.4. Assume that T is a totally positive definite F/F0-Hermitian matrix with values in OF such
that Diff(T, V )= {v0} where v0 ∈ Vram and Vram satisfies the condition stated after (1-2). Then Z(T ) is
supported on Mss

ν and Z(T )red is equidimensional of dimension 1
2d(Lv0) where Lv0 is any Hermitian

lattice over OF,v0 whose gram matrix is T and d(Lv0) is defined as in Theorem 1.2.

The paper is organized as follows. In Section 2, we prove Theorem 1.1 (Theorem 2.10) and recall
some properties of N F/F0

(1,n−1) as studied in [Rapoport et al. 2014]. In Section 3, we define our local
version of special cycles on Rapoport–Zink spaces and prove Theorem 1.2 (Theorems 3.9 and 3.10). In
Section 4, we recall the definition of the arithmetic model of the Shimura variety studied in [Rapoport
et al. 2020]. In Section 5 we define global special cycles Z(T ) and prove Theorems 1.3 (Theorem 5.6)
and 1.4 (Theorem 5.7).

2. Relative and absolute Rapoport–Zink spaces

We use the notations as in Section 1A. In this section, we define the Rapoport–Zink space N F/H
(r,s) and

recall its basic properties from [Rapoport et al. 2014] when H = F0 and (r, s)= (1, n − 1). The space
N F/F0
(1,n−1) is convenient for studying special cycles. On the other hand N F/Qp

(r,s) shows up naturally in the
uniformization theorem (see Theorem 5.6) of the basic locus of certain unitary Shimura varieties (see
Section 4). We call N F/F0

(r,s) (resp. N F/Qp
(r,s) ) a relative (resp. absolute) Rapoport–Zink space following the

terminology of [Mihatsch 2022].
In Theorem 2.10, we show that for different choices of H , N F/H

(r,s) are isomorphic to each other given
that F0/H is unramified. We follow the approach of [Li and Liu 2022, Section 2.8]. Alternatively one
can use the method of [Kudla et al. 2020]. The analog of Theorem 2.10 when F/F0 is unramified was
proved in [Mihatsch 2022].

2A. The signature condition. Assume F0/H is unramified with degree f . We denote the Galois
conjugation of F/F0 by x 7→ x̄ . Fix a uniformizer π of F such that π0 := π2

∈ F0 and is a uniformizer
of F0. Let k be the residue field of OF0 (hence also that of OF ) with an algebraic closure k̄. Let H̆ be the
completion of a maximal unramified extension of H (hence also that of F0) in F̆ . Let x 7→ σ(x) denote
the Frobenius of H̆/H . Define

9 := HomH (F0, H̆).

Fix a distinguished element ψ0 ∈90. Define ψi = σ i
◦ψ0 for i ∈ Z/( f Z). Then

9 = {ψi | i ∈ Z/( f Z)}.

Also define
8 := HomH (F, F̆).
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Choose a partition of 8=8+ ⊔8− such that

8+ =8−.

For i ∈ Z/( f Z), let ϕi be the element in 8+ such that its restriction to F0 is ψi .
We denote by OH̆ (resp. OF̆ ) the ring of integers of H̆ (resp. F̆). There are decompositions by the

Chinese remainder theorem

OF0 ⊗OH OH̆ =

∏
ψ∈9

OH̆ and OF ⊗OH OH̆ =

∏
ψ∈9

OF ⊗OF0 ,ψ
OH̆

∼=

∏
ψ∈9

OF̆ . (2-1)

The Frobenius 1 ⊗ σ is homogeneous and acts simply transitively on the index set.
Let S be an OH -scheme and L be a locally free sheaf over S with an OH -action. We say the action

is strict if it agrees with the structure map OH → OS . A strict formal OH -module over S is formal
p-divisible group over S with an OH -action ι : OH → End(X) such that its induced action on Lie X is
strict. Denote by X∨ the dual of X in the category of strict OH -module; see [Mihatsch 2022, Section 11].
We say X is supersingular if its relative Dieudonné module (see [Fargues 2008, Appendix B.8]) over H
at each geometric point of S has slope 1

2 .

Definition 2.1. For S ∈ NilpOF̆ , a hermitian OF -OH -module over S is a triple (X, ι, λ) where X is a
strict formal OH -module together with an action ι : OF → End(X) extending the action of OH and a
principal polarization X → X∨ such that

λ−1
◦ ι(a)∨ ◦ λ= ι(ā), ∀a ∈ OF .

Two hermitian OF -OH -modules (X, ι, λ) and (X ′, ι′, λ′) are isomorphic (resp. quasiisogenic) if there is
an OF -linear isomorphism (resp. quasiisogeny) ϕ : X → X ′ such that ϕ∨

◦ λ′
◦ϕ = λ.

Let r, s ∈ Z≥0 and set n := r + s. Define the signature function 8→ Z≥0 by

rϕ =


r if ϕ = ϕ0,

0 if ϕ ∈8+\{ϕ0},

n − rϕ if ϕ ∈8−.

Definition 2.2. For a ∈ F , we define the following polynomial

PF/H,(r,s),ϕ0,8+
(a; t) :=

∏
ϕ∈8

(t −ϕ(a))rϕ .

Let S ∈ NilpOF̆ and (L, ι) a locally free sheaf over S together with an OF action ι whose restriction
to OH is strict. Decomposition (2-1) induces a decomposition of L:

L =

⊕
ψ∈9

Lψ . (2-2)
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Definition 2.3. We say (L, ι) satisfies the signature condition (F/H, (r, s), ϕ0,8+) if the following
conditions are satisfied:

(i) charpol(ι(a) | L)= PF/H,(r,s),ϕ0,8+
(a; t) for all a ∈ OF .

(ii) (ι(a)− a) |Lψ0
= 0 for all a ∈ OF0 .

(iii) For each ϕ ∈8+ such that rϕ ̸= rϕ , the wedge condition of [Pappas 2000]:

∧
rϕ+1((ι(a)−ϕ(a)) | Lψ)= 0, ∧

rϕ+1((ι(a)−ϕ(a)) | Lψ)= 0

is satisfied for all a ∈ OF where ψ ∈9 is the restriction of ϕ to F0.

Remark 2.4. When rϕ = n or 0, the condition (iii) above is the same as the banal condition of [Li and
Liu 2022, Definition 2.60] or the Eisenstein condition in [Kudla et al. 2020, Section 2.2].

Definition 2.5. Let S ∈ NilpOF̆ . Let

HS(F/H, (r, s), ϕ0,8+)

be the category of supersingular hermitian OF -OH -modules X over S such that the induced OF -action
on Lie X satisfies the signature condition (F/H, (r, s), ϕ0,8+).

2B. Comparison theorem. We will prove the following theorem.

Theorem 2.6. Assume that F0/H is unramified. For S ∈ NilpOF̆ , there is an equivalence of categories

CS : HS(F/H, (r, s), ϕ0,8+)→ HS(F/F0, (r, s), ϕ0, {ϕ0})

that is compatible with base change.

If S = Spec R, we often write HR (resp. CR) instead of HS (resp. CS). To prove Theorem 2.6, we will
use the theory of f -O-displays developed by [Ahsendorf et al. 2016]. We recall some definitions and
notations. For an OH -algebra R, let WOH (R) be the relative Witt ring with respect to a fixed uniformizer
of H ; see for example [Fargues and Fontaine 2018, Definition 1.2.2]. Let x 7→

F x be the Frobenius
endomorphism and x 7→

V x be the Verschiebung. Let IOH (R) =
V WOH (R) and we can define V−1

on
IOH (R). For a ∈ R, let [a] ∈ WOH (R) be its Teichmüller representative.

Let ψ̂i be the composition of ψi with the Cartier morphism OH̆ → WOH (OH̆ ). For i ∈ Z/( f Z), let
ϵi be the unique unit in WOH (OF0) such that V ϵi = [ψi (π0)]− ψ̂i (π0), which exists by [Ahsendorf et al.
2016, Lemma 2.24]. Following [Li and Liu 2022, (2.20)], we can define a unit µπ ∈ WOH (OH̆ ) such that

F f
µπ

µπ
=

f −1∏
i=1

F f −1−i
ϵi . (2-3)

Definition 2.7 [Ahsendorf et al. 2016, Definition 2.1]. Assume f ∈ Z≥1. An f -OH -display over R is a
quadruple P = (P, Q, F, Ḟ) consisting of the following data: a finitely generated projective WOH (R)-
module P , a submodule Q ⊂ P , and two F f

-linear maps

F : P → P and Ḟ : Q → P.
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The following conditions are required:

(i) IOH (R)P ⊆ Q and there is a decomposition of WOH (R)-modules P = L ⊕ T such that Q =

L ⊕ IOH (R)T . Such a decomposition is called a normal decomposition.

(ii) Ḟ is an F f
-linear epimorphism.

(iii) For all x ∈ P and w ∈ WOH (R), we have

Ḟ(Vwx)=
F f −1

wF(x).

We define the Lie algebra of P to be LieP := P/Q. If f = 1, we simply call P an OH -display.

We refer to [Ahsendorf et al. 2016, Definition 2.3] for the definition of a nilpotent display and [Mihatsch
2022, Section 11] for the notion of polarizations of displays; see also [Kudla et al. 2020, Section 3]. The
main result of [Ahsendorf et al. 2016] tells us that there are equivalences of categories

{nilpotent f -OH -displays overR} → {strict formal OF0-modules over R}

where f = [F0 : H ], in particular

{nilpotent OH -displays overR} → {strict formal OH -modules over R}.

Proof of Theorem 2.6. The proof is similar with that of [Li and Liu 2022, Proposition 2.62]. Assume that
S = Spec R ∈ NilpOF̆ . We abuse notation and denote the composition of ψ̂i with WOH (OF̆0

)→ WOH (R)
by ψ̂i as well. Then (2-1) induces

OF ⊗OH WOH (R)=

∏
ψ∈9

OF ⊗OF0 ,ψ̂i
WOH (R). (2-4)

Assume (X, ι, λ)∈HS(F/H, (r, s), ϕ0,8+) and P = (P, Q, F, Ḟ) be its associated OH -display. Then
P has an OF action (still denoted by ι). Equation (2-4) induces the following decomposition

P =

⊕
ψ∈9

Pψ , Q =

⊕
ψ∈9

Qψ , with Qψ = Pψ ∩ Q (2-5)

where Pψ has an OF ⊗OF0 ,ψ̂i
WOH (R) action. Then F and Ḟ shift the grading on P in the following way:

F : Pψ → Pσ◦ψ and Ḟ : Qψ → Pσ◦ψ .

As in [Mihatsch 2022, Section 11.1], the principal polarization λ is equivalent to a collection of perfect
WOH (R)-bilinear skew-symmetric pairings

{⟨ · , · ⟩ψ : Pψ × Pψ → WOH (R) | ψ ∈9}

such that ⟨ι(a)x, y⟩ψ = ⟨x, ι(ā)y⟩ψ for all a ∈ OF , x, y ∈ Pψ and ⟨Ḟx, Ḟy⟩σ◦ψ =
V−1

⟨x, y⟩ψ for all
x, y ∈ Qψ .
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For ψ ̸= ψ0, by [Li and Liu 2022, Lemma 2.60], the banal signature condition implies

Qψ = (π ⊗ 1 + 1 ⊗ [ϕ(π)])Pψ + IOH (R)Pψ .

where ϕ is the element in 8+ above ψ . Hence for ψ ̸= ψ0, we can define

F′
: Pψ → Pσ◦ψ : x 7→ Ḟ((π ⊗ 1 + 1 ⊗ [ϕ(π)])x).

By [loc. cit.], F′ is an F-linear isomorphism. Now define

P rel
= Pψ0, Qrel

= Qψ0, Frel
= ((F′) f −1

◦ F)|P rel, Ḟrel
= ((F′) f −1

◦ Ḟ)|Qrel .

Then P rel
:= (P rel, Qrel, Frel, Ḟrel) is a f -OH -display over R. Define

ιrel
: OF → End(P rel)

simply by restricting ι to Pψ0 . Then the signature condition (F/H, (r, s), ϕ0,8+) restricted on Pψ0 is
exactly the same as the signature condition (F/F0, (r, s), ϕ0, {ϕ0}). Define

⟨ · , · ⟩rel
:= µπ ⟨ · , · ⟩|P rel

where µπ is as in (2-3). Then ⟨ · , · ⟩rel is a perfect WOH (R)-bilinear skew-symmetric pairing such that
⟨ι(a)x, y⟩

rel
= ⟨x, ι(ā)y⟩

rel for all a ∈ OF , x, y ∈ P rel. By the calculation before [Li and Liu 2022,
Remark 2.61], we also have

⟨Ḟrelx, Ḟrel y⟩
rel

=
F f −1V−1

⟨x, y⟩
rel, ∀x, y ∈ Qrel.

The form ⟨ · , · ⟩rel gives a principal polarization of P rel. The pair (P rel, ιrel) together with the polarization
gives an object

(X, ι, λ)rel
∈ HS(F/F0, (r, s), ϕ0, {ϕ0}).

This is defined to be CS((X, ι, λ)). The functor CS is obviously functorial in S. The fact that CS is an
equivalence of categories can be proved verbatim as that of [Li and Liu 2022, Proposition 2.62]. □

2C. Comparison of Rapoport–Zink spaces. Fix a triple

(XF/H , ι
F/H
X , λ

F/H
X ) ∈ Hk̄(F/H, (r, s), ϕ0,8+).

We essentially only have one or two such choices up to isogeny according to n being odd or even, see
Remark 2.14 below.

Definition 2.8. Let N F/H
(r,s) be the functor which associates to S ∈ NilpOF̆ the set of isomorphism classes

of quadruples (X, ι, λ, ϱ) where

(i) (X, ι, λ) ∈ HS(F/H, (r, s), ϕ0,8+),

(ii) ϱ : X ×S S → XF/H
×Spec k̄ S is a OF -linear quasiisogeny of height 0 such that λ and ϱ∗(λ

F/H
X )

differ locally on S by a factor in O×

H .



1690 Yousheng Shi

An isomorphism between two such quadruples (X, ι, λ, ϱ) and (X ′, ι′, λ′, ϱ′) is given by an OF -linear
isomorphism α : X → X ′ such that ϱ′

◦ (α×S S)= ϱ and α∗(λ′) is an O×

H multiple of λ.

Remark 2.9. In the definition of N F/H
(r,s) , we can replace condition (ii) by the condition that ϱ is a OF -linear

quasiisogeny of height 0 such that λ= ϱ∗(λX). The resulting functor is isomorphic to the original one as
(X, ι, λ, ϱ) and (X, ι, aλ, ϱ) are isomorphic in N F/F0

(r,s) for a ∈ O×

H .

By [Rapoport and Zink 1996, Chapter 3], N F/H
(r,s) is representable by a formal scheme locally of finite

type over SpfOF̆ .

Theorem 2.10. Assume F0/H is unramified and the framing object (XF/F0, ι
F/F0
X , λ

F/F0
X ) used in the

definition of N F/F0
(r,s) is isomorphic to Ck̄((X

F/H , ι
F/H
X , λ

F/H
X )). Then there is an isomorphism

C : N F/H
(r,s)

∼= N F/F0
(r,s) .

Proof. This is a consequence of Theorem 2.6. □

2D. The relative Rapoport–Zink space. In this subsection we assume H = F0. We simply denote N F/F0
(r,s)

by N(r,s) and HS(F/F0, (r, s), ϕ0, {ϕ0}) by HS(r, s). We recall some background information on N(1,n−1)

from [Rapoport et al. 2014]. Although [Rapoport et al. 2014] works on the category of p-divisible groups,
their arguments and results easily extend to the category of strict formal OF0-modules using relative
Dieudonné theory.

Proposition 2.11 [Rapoport et al. 2014, Proposition 2.1]. The functor N(1,n−1) is representable by a
separated formal scheme N(1,n−1), locally of finite type and flat over SpfOF̆ . It is formally smooth over
SpfOF̆ in all points of the special fiber except the superspecial points. Here a point z ∈ N(1,n−1)(k) is
superspecial if Lie(ι(π)) = 0 where (X, ι, λ, ϱ) is the pullback of the universal object of N(1,n−1) to z.
The superspecial points form an isolated set of points.

For the signature (0, 1) we know that N(0,1) ∼= SpfOF̆ and has a universal formal OF -module Y (the
canonical lifting of Y in the sense of [Gross 1986]) over it.

Remark 2.12. The formal scheme N(1,n−1) is denoted as N 0 in [Rapoport et al. 2014]. In the rest of this
section and Section 3 we often simply write N for N(1,n−1) if the context is clear.

Let Fu be the unique unramified quadratic extension of F0 in F̆0 where F̆0 is the completion of the
maximal unramified extension of F0 in F̆ . Let σ ∈ Gal(F̆0/F0) be the Frobenius element. For a formal
OF0-module, we denote by M(X) the relative Dieudonné module of X . When X has F0-height n and
dimension n over k̄, M(X) is a free OF̆0

-module of rank 2n with a σ -linear operator F and a σ−1-linear
operator V such that V F = FV = π0. Denote by E = F̆0[F, V ] the rational Cartier ring.

Fix a framing object (X, ιX, λX)∈Hk̄(1, n−1). Let N := M(X)⊗ZQ be the rational relative Dieudonné
module of X. Then N has a skew-symmetric F̆0-bilinear form ⟨ · , · ⟩ induced by λX such that for any
x, y ∈ N we have

⟨Fx, y⟩ = ⟨x, V y⟩
σ , ⟨ι(a)x, y⟩ = ⟨x, ι(ā)y⟩, a ∈ F.
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We simply denote by π the induced action of ιX(π) on N . Define a σ -linear operator

τ = πV−1
= π−1 F (2-6)

on N . Set C = N τ (the set of τ -fixed points in N ), then we obtain a n-dimensional F-vector space with
an isomorphism

C ⊗F F̆ ≃ N .

For x, y ∈ C , we have

⟨x, y⟩ = ⟨τ(x), τ (y)⟩ = ⟨π−1 Fx, πV−1 y⟩ = −⟨Fx, V−1 y⟩ = −⟨x, y⟩
σ

Choose δ ∈ Fu
\F0 such that δ2

∈ O×

F0
. Define a form ( · , · ) on N by

(x, y)= δ(⟨πx, y⟩ +π⟨x, y⟩) (2-7)

for all x, y ∈ C . Then ( · , · ) is Hermitian with values in F when restricted on C and

⟨x, y⟩ =
1
2δ

trF/F0(π
−1(x, y)),∀x, y ∈ C. (2-8)

Remark 2.13. There is a unique object (Y, ιY, λY) ∈ Hk̄(0, 1) up to isomorphism. We want to describe
M(Y) explicitly. As an OF0-lattice, it is of rank 2. We can choose a basis {e1, e2} such that Fe1 =

e2, Fe2 = π0e1, Ve1 = e2, Ve2 = π0e1 and ⟨e1, e2⟩ = δ. With respect to this basis, End0(Y)= EndE(N )
is of the form {(

a bπ0

bσ aσ

) ∣∣∣ a, b ∈ Fu
}
,

which is the quaternion algebra H over F0. By changing basis using elements in H ∩ SL2(F0) we can
assume F, V are of the same matrix form as before and

π =

(
0 π0

1 0

)
.

Thus τ is the diagonal matrix diag{1, 1} and fixes the F0-vector space spanF0
{e1, e2}. We have (e1, e1)=

−δ2. As OF is a DVR and N τ is a one dimensional F-space, spanOF
{e1} is the unique self-dual OF -lattice

w.r.t. ( · , · ). Let ϱY be the identity of Y, then (Y, ιY, λY, ϱY) is the unique closed point of N(0,1)(k̄).

Remark 2.14. By [Rapoport et al. 2014, Remark 4.2], when n is odd (resp. even) there is a unique (resp.
exactly two) object (X, ιX, λX) ∈ Hk̄(1, n − 1) up to isogenies that preserves the λX by a factor in O×

F0
.

These are the framing objects in the definition of N(1,n−1). This matches the number of similarity classes
of Hermitian forms over local fields.

When n is odd, we simply take (X, ιX, λX) := (Y, ιY, λY)
n where (Y, ιY, λY) is defined in the previous

remark. When n is even, we again define X := Yn with the diagonal action ιX by OF . There are two
choices of polarizations. The first one λ+

X ∈ End0(X)∼= Mn(H) is given by the antidiagonal matrix with 1’s
on the antidiagonal. The second one λ−

X is defined by the diagonal matrix diag(1, . . . , 1, u1, u2) where
u1, u2 ∈ O×

F0
and −u1u2 /∈ NmF/F0(F

×).
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For two OF -lattices 3, 3′ of C , we use the notation 3⊂
ℓ3′ to stand for the situation when π3′

⊆

3⊆3′ and dimk(3
′/3)= ℓ. Define

3♯ := {x ∈ C | (x,3)⊆ OF }, 3∨
:= {x ∈ C | δ⟨x,3⟩ ⊆ OF0}. (2-9)

Similarly for an OF̆ -lattice M ⊂ N , define

M♯
:= {x ∈ N | (x,M)⊆ OF̆ }, M∨

:= {x ∈ N | ⟨x,M⟩ ⊆ OF̆0
}. (2-10)

Then by (2-7) and (2-8), 3♯ =3∨. Similarly M♯
= M∨.

Proposition 2.15 [Rapoport et al. 2014, Proposition 2.4]. Define the following set of OF̆ -lattices

V := {M ⊆ N | M♯
= M, πτ(M)⊆ M ⊆ π−1τ(M),M ⊂

≤1 (M + τ(M))},

Then the map

(X, ι, λ, ϱ) 7→ ϱ(M(X))⊂ N

defines a bijection from N (k̄) to V .

A vertex lattice in C is an OF -lattice 3⊂ C such that π3⊆3♯ ⊆3. We denote the dimension of the
k-vector space 3/3♯ by t (3), and call it the type of 3. It is an even integer; see [Rapoport et al. 2014,
Lemma 3.2].

Lemma 2.16 [Rapoport et al. 2014, Proposition 4.1]. ∀M ∈ V , there is a unique minimal vertex lattice
3(M) such that M ⊆3(M)⊗OF OF̆ .

Define

V(3) := {M ∈ V | M ⊆3⊗OF OF̆ } and Vo(3) := {M ∈ V |3(M)=3}.

Then apparently Vo(3)⊆ V(3). The following theorem summarizes what we need from [Rapoport et al.
2014, Section 6], in particular [loc. cit., Theorem 6.10].

Theorem 2.17. We have the following facts:

(i) For two vertex lattices 31 and 32

V(31)⊆ V(32)⇔31 ⊆32.

If 31 ∩32 is a vertex lattice, then

V(31 ∩32)= V(31)∩V(32),

otherwise V(31)∩V(32)= ∅.

(ii) For each vertex lattice 3, there exist a reduced projective variety N o
3 over Spec k̄ such that

N o
3(k̄)= Vo(3).
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The closure of any N o
3 in Nred is given by

N3 :=

⊎
3′⊆3

N o
3′,

where the union is taken over vertex lattices3′ included in3. N3 is a projective variety of dimension
t (3)/2. Its set of k̄ points is V(3). The inclusion of points V(31) ⊆ V(32) in (i) is induced by a
closed embedding N31 → N32 .

(iii) There is a stratification of the reduced locus of N given by

Nred =

⊎
3

N o
3

where the union is over all vertex lattices. N (k̄) is nonempty for all n ≥ 1.

3. Special cycles on Rapoport–Zink spaces

In this section, we define special cycles on N F/H
(1,n−1). We then state our main results on the support of

these cycles. First we need some background information on Hermitian lattices.

3A. Hermitian lattices and Jordan splitting. We use k to denote direct sum of mutually orthogonal
spaces. In particular, we use

(α1)k · · · k (αn)

to denote the n-dimensional F vector space (or OF -lattice depending on the context) with a Hermitian
form given by a diagonal matrix diag{α1, . . . , αn} with respect to an orthogonal basis. We also use H(i)
to denote the hyperbolic plane which is the lattice of rank 2 with Hermitian form given by the matrix(

0 π i

(−π)i 0

)
with respect to a certain basis.

For a Hermitian lattice L with Hermitian form ( · , · ), define sL to be min{valπ (x, y) | x, y ∈ L} where
valπ is normalized such that valπ (π) = 1. We say x ∈ L is maximal if x is not in πL . We say L is
π i -modular if (x, L)= π iOF for every maximal vector x in L .

Any Hermitian lattice L has a Jordan splitting

L = kλ∈Z∪{∞}Lλ (3-1)

where Lλ is πλ-modular and L∞ is defined to be the radical of L . Any two Jordan splitting of L have the
same invariants; see [Jacobowitz 1962, Page 449].

Proposition 3.1 [Jacobowitz 1962, Proposition 8.1]. Let L be a π i -modular lattice of rank n. Then:

(1) L ≃ (π i
0/2)k (π i

0/2)k · · · k (π
−(n−1)i/2
0 det(L)) if i is even.

(2) L ≃ H(i)k H(i)k · · · k H(i) if i is odd.

In particular, when i is odd L must have even rank.
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For a sub-OF -module L in a Hermitian F-vector space V , define

L♯V := {x ∈ V | (x, y) ∈ OF ,∀y ∈ L}. (3-2)

When V = L ⊗Z Q, we simply denote L♯V by L♯. We will use the following basic lemmas throughout the
paper, sometimes without explicitly referring to them.

Lemma 3.2. Assume L and L ′ are OF -submodules inside a Hermitian F-vector space V . Then:

(1) (L + L ′)
♯
V = L♯V ∩ (L ′)

♯
V .

(2) (L♯V )
♯
V = L.

Proof. (1) follows from the definition of L♯V . (2) can be proved by using the Jordan splitting of L . □

Lemma 3.3. Assume L ′ is a sub-OF -module of L such that L ′ is π s-modular with s = sL. Then
L = L ′ k (L ′)⊥ where (L ′)⊥ is the perpendicular complement of L ′ in L.

Proof. This is a direct consequence of [Jacobowitz 1962, Proposition 4.2]. □

3B. Special cycles. For a moment, we go back to the setting of Section 2C. Let (XF/H , ι
F/H
X , λ

F/H
X )

(resp. (YF/H , ι
F/H
Y , λ

F/H
Y )) be the framing object of N F/H

(1,n−1) (resp. N F/H
(0,1) ). Define the space of special

homomorphisms to be the F-vector space

VF/H
:= HomOF (Y

F/H ,XF/H )⊗Z Q (3-3)

Define a Hermitian form hF/H ( · , · ) on VF/H such that for any x, y ∈ VF/H we have

hF/H (x, y)= (λ
F/H
Y )−1

◦ y∨
◦ λ

F/H
X ◦ x ∈ EndOF (Y

F/H )⊗ Q
(ι

F/H
Y )−1

∼
−−−→ F (3-4)

as in [Kudla and Rapoport 2011, (3.1)] where y∨ is the dual quasiisogeny of y.

Definition 3.4. For an OF -lattice L ⊂ VF/H , the special cycle Z(L) is the subfunctor of N F/H
(0,1) ×SpfOF̆

N F/H
(1,n−1) whose S-points is the set of isomorphism classes of tuples

ξ = (Y, ι, λY , ϱY , X, ι, λX , ϱX ) ∈ N F/H
(0,1) ×SpfOF̆

N F/H
(1,n−1)(S)

such that for any x ∈ L the quasihomomorphism

ϱ−1
X ◦ x ◦ ϱY : Y ×S S → X ×S S

deforms to a homomorphism from Y to X . If L is spanned by x ∈ Vm , we also denote Z(L) by Z(x).

By Grothendieck–Messing theory, Z(L) is a closed subformal scheme in N F/H
(0,1) ×SpfOF̆

N F/H
(1,n−1).

Proposition 3.5. Keep the same assumption as Theorem 2.10. The functor Ck̄ in Theorem 2.6 induces
an isomorphism (denoted by the same notation) Ck̄ : VF/H

→ VF/F0 of Hermitian vector spaces over F.
Moreover for lattice L ∈ VF/H , the functor C in Theorem 2.10 induces an isomorphism of formal schemes:

Z(L)→ Z(Ck̄(L)).
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Proof. This follows directly from Theorem 2.6. One can compare our result with [Mihatsch 2022,
Remark 4.4]. □

3C. Special cycles on relative Rapoport–Zink spaces. By Proposition 3.5, we can without loss of
generality assume that H = F0. In this case we drop the superscript F/F0 over X, Y, V and h etc. For
x, y ∈ V we abuse notation and denote the induced map between the corresponding relative Dieudonné
modules still by x, y. As in Section 2D, we denote N(1,n−1) simply by N .

Lemma 3.6. We have

h(x, y)(e1, e1)Y = (x(e1), y(e1))X

where e1 is as in Remark 2.13 and ( · , · )X, ( · , · )Y are defined as in (2-7) for the rational relative
Dieudonné module of X and Y respectively.

Proof. We claim that λ−1
Y ◦ y∨

◦ λX agrees with y∗ which is the adjoint operator of y on HomE(M(Y)⊗
Q,M(X)⊗ Q) with respect to ⟨ · , · ⟩X and ⟨ · , · ⟩Y. In fact ⟨ · , · ⟩X is defined by e⟨ · , λX ◦ · ⟩X where
e⟨ · , · ⟩X is the pairing between M(X)⊗ Q and M(X∨)⊗ Q, similarly for ⟨ · , · ⟩Y. Hence

⟨y(n),m⟩X = e⟨y(n), λX(m)⟩X = e⟨n, y∨λX(m)⟩Y = ⟨n, λ−1
Y y∨λX(m)⟩Y,

for all n ∈ M(Y)⊗ Q and m ∈ M(X)⊗ Q. This proves the claim. Hence

(x(e1), y(e1))X = ⟨πx(e1), y(e1)⟩X +π⟨x(e1), y(e1)⟩X

= ⟨y∗πx(e1), e1⟩Y +π⟨y∗x(e1), e1⟩Y

= ⟨πy∗x(e1), e1⟩Y +π⟨y∗x(e1), e1⟩Y

= ⟨πh(x, y)e1, e1⟩Y +π⟨h(x, y)e1, e1⟩Y

= h(x, y)(e1, e1)Y.

This proves the lemma. □

Now assume L ⊂ V is an OF -lattice and define

L = {x(e1) | x ∈ L}. (3-5)

Then L is an OF -lattice in C with the same rank as L and is similar to L as a Hermitian lattice by
Lemma 3.6.

Definition 3.7. Define Vert(L) to be the set of vertex lattices 3 such that L ⊆3♯. We also define

W(L) := {M ∈ V | L ⊆ M} ⊂ V = N (k̄). (3-6)

Proposition 3.8. For an OF -lattice L ⊂ V, define L as in (3-5). The set of k̄ points of the special cycle
Z(L) is W(L). Moreover we have

Z(L)red =

⋃
3∈Vert(L)

N3. (3-7)
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Proof. Assume that (X, ι, λ, ϱ) is a point in N (k̄) and M := ϱ(M(X)) ∈ V as in Proposition 2.15. By
Dieudonné theory, for any x ∈ L, ϱ−1

◦x is a homomorphism from Y to X if and only if ϱ−1
◦x(M(Y))⊆

M(X), if and only if x(M(Y)) ⊆ M . We know that M(Y) = spanOF̆
{e1}. Hence the set of k̄ points of

the special cycle Z(L) is W(L).
To prove (3-7), since both sides of the equation are reduced, it suffices to check it on the k̄-points,

namely,

W(L)=

⋃
3∈Vert(L)

V(3).

Let M ∈ V and suppose 3=3(M) as in Lemma 2.16. Then

L ⊆ M ⇔ M ⊆ (L♯C)⊗OF OF̆ as M = M♯(recall (3-2)),

⇔3⊆ (L♯C)⊗OF OF̆ as L♯ is τ -invariant,

⇔ L ⊆3♯ by Lemma 3.2.

This in fact shows that

M ∈ W(L)⇔ Vo(3)⊆ W(L).

Hence

W(L)=

⋃
3∈Vert(L)

Vo(3)=

⋃
3∈Vert(L)

V(3)

where the last equality follows from (i) and (ii) of Theorem 2.17. This finishes the proof of the proposition.
□

Corollary 3.8.1. If Z(L)(k̄) is nonempty, then L is integral, i.e., h(x, y) ∈ OF for any x, y ∈ L.

Proof. By Proposition 3.8, there exists an M ∈ V such that L ⊆ M . By Lemma 3.6, we have

h(x, y)=
(x(e1), y(e1))X

(e1, e1)Y
.

Since M = M♯, we know (x(e1), y(e1))X ∈ (M,M)X = OF̆ . Also notice that (e1, e1)Y ∈ O×

F0
by

construction. The lemma follows. □

From now on we assume that L (or L equivalently) has rank n. Take a Jordan decomposition of L as
in (3-1). By Corollary 3.8.1, λ≥ 0 for all λ such that Lλ ̸= {0}. We define

L≥t = kλ≥t Lλ, (3-8)

and

m(L)= rankOF (L≥1). (3-9)

Also define

nodd =

∑
λ≥3,λ is odd

rankOF (Lλ) and neven =

∑
λ≥2,λ is even

rankOF (Lλ). (3-10)
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We say a Hermitian F-vector space V of even dimension is split if it is isomorphic to sum of copies
of H(0)⊗Z Q. Equivalent it is split if and only if (−1)n(n−1)/2 det(V ) ∈ NmF/F0 F× where n is the
dimension of V . The following theorem is the analog of [Kudla and Rapoport 2011, Theorem 4.2].

Theorem 3.9. Assume that L ⊂ V has rank n and is integral. Define L as in (3-5). Then

Z(L)red =

⋃
{3∈Vert(L)|t (3)=d(L)}

N3

where

d(L) :=


m(L)− 1 if m(L) is odd,
m(L) if m(L) is even and L≥1 ⊗Z Q is split,
m(L)− 2 if m(L) is even and L≥1 ⊗Z Q is nonsplit.

We postpone the proof of Theorems 3.9 and 3.10 below to the Sections 3D and 3E respectively.

Corollary 3.9.1. If it is nonempty, Z(L) is a variety of pure dimension 1
2d(L).

Proof. The corollary follows from Theorems 3.9 and 2.17. □

The following theorem is the analog of [Kudla and Rapoport 2011, Theorem 4.5].

Theorem 3.10. Make the same assumption as Theorem 3.9. Z(L)red = N3 for a unique vertex lattice 3
if and only if the following two conditions are satisfied simultaneously:

(1) nodd = 0.

(2) neven ≤ 1 or neven = 2 and L≥2 ⊗Z Q is nonsplit.

Corollary 3.10.1. Z(L)red is an irreducible variety if and only if condition (1) and (2) in Theorem 3.10
are satisfied.

Proof. By Proposition 3.8 and Theorem 2.17, Z(L)red is an irreducible variety if and only if Z(L)red =N3

for a unique vertex lattice 3. The corollary now follows from Theorem 3.10. □

Corollary 3.10.2. The variety Z(L)red is zero dimensional if and only if the following conditions are
satisfied:

(1) nodd = 0.

(2) rankOF (L1)= 0.

(3) neven ≤ 1 or neven = 2 and L≥2 ⊗Z Q is nonsplit.

If this is the case, then Z(L)red is in fact a single point.

Proof. The first statement of the corollary follows from Theorem 3.9 directly. If this is the case, then
Z(L)red is a single point by Theorem 3.10. □

We now proceed to prove Theorems 3.9 and 3.10. Define L as in (3-5). Then we can replace all
conditions on L in Theorems 3.9 and 3.10 by the same conditions on L . Moreover d(L)= d(L).
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3D. Proof of Theorem 3.9. It suffices to show the corresponding statements on k̄-points, namely,

W(L)=

⋃
{3∈Vert(L)|t (3)=d(L)}

V(3).

For x ∈ Vn , fix a Jordan splitting of L as in (3-1). We then have

L = L0 k L≥1, L♯ = L0 k (L≥1)
♯.

For any 3 ∈ Vert(L), by Proposition 3.8 we have

L ⊆3♯ ⊆3⊆ L♯. (3-11)

If L0 ̸= {0} then s3= s3♯ = sL = 0. By Lemma 3.3 we can assume

3= L0 k3′.

Then 3♯ = L0 k (3′)♯ and we have the sequence

L≥1 ⊆ (3′)♯ ⊆3′
⊆ (L≥1)

♯.

As the map 3 7→ 3′ above is a bijection and d(L) = d(L≥1), in order to prove Theorem 3.9 we can
without loss of generality assume

L0 = 0 or equivalently 1
π

L ⊆ L♯ (3-12)

in the rest of the subsection. Define

m := m(L)= rankOF (L≥1),

which is the same as rankOF (L) by assumption (3-12). In the rest of the section we simply write rank(3)
instead of rankOF (3) for an OF -lattice 3.

The fact that d(L) can be no bigger than the bounds stated in Theorem 3.9 is a restatement of [Rapoport
et al. 2014, Lemma 3.3]. Our goal is to prove that it can achieve that number. To be more precise,
we prove that if 3 ∈ Vert(L) and t (3) < d(L), then there is a 3′

∈ Vert(L) such that 3 ⊂ 3′ (hence
V(3)⊂ V(3′)) and t (3′)= d(L).

From now on assume3∈ Vert(L), namely (3-11) holds. Let t = t (3), then π3⊂
m−t 3♯ ⊂

t 3. Define

r := dimk

((
1
π
3♯ ∩ L♯

)
/3

)
.

Since 3♯/
( 1
π
3♯ ∩ L♯

)♯
=3♯/(π3+ L), we have the following chain of inclusions

π3+ L ⊂
r 3♯ ⊂

t 3⊂
r 1
π
3♯ ∩ L♯. (3-13)

Our assumption L = L≥1 implies that L ⊆ πL♯. This together with (3-11) and (3-13) implies that

π3+ L ⊆ π
(

1
π
3♯ ∩ L♯

)
=3♯ ∩πL♯. (3-14)
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Hence

dimk

((
1
π
3♯ ∩ L♯

)
/(π3+ L)

)
≥ dimk

((
1
π
3♯ ∩ L♯

)
/π

(
1
π
3♯ ∩ L♯

))
= m.

Notice that the first quotient in the above inequality is indeed a k vector space. Combine the above
inequality with (3-13), we have

2r + t ≥ m. (3-15)

Define a k-valued symmetric form S( · , · ) on the k-vector space 1
π
3♯/3 by

S(x, y) := δπ0⟨πx, y⟩.

Lemma 3.11. Suppose3 is a vertex lattice in Vert(L) such that dimk
( 1
π
3♯∩ L♯/3

)
≥ 3, then there exists

a lattice 3′
∈ Vert(L) with 3⊂3′ and t (3′) > t (3).

Proof. Recall that every quadratic form on a k-vector (k is finite) space with dimension bigger or equal to
three has an isotropic line by the Chevalley–Warning theorem. Take an isotropic line ℓ in 1

π
3♯ ∩ L♯/3.

Let 3′
=: pr−1(ℓ) where pr is the natural projection 1

π
3♯ →

1
π
3♯/3. The fact that ℓ is isotropic just

means

δπ0⟨π3
′,3′

⟩ ⊆ π0OF0 .

This shows that π3′
⊆ (3′)♯. Since 3⊂

1 3′ we have

(3′)♯ ⊂
1 3♯ ⊆3⊂

1 3′.

So 3′ is a vertex lattice and t (3′) = t (3)+ 2. Since 3 ⊆ L♯, by the definition of 3′, we also have
3′

⊆ L♯. In other words, 3′
∈ Vert(L). The lemma is proved. □

By induction using the above lemma and the fact that V(3)⊂ V(3′) if 3⊂3′ [Rapoport et al. 2014,
Proposition 4.3], we reduce to the case when r = dimk

( 1
π
3♯ ∩ L♯/3

)
≤ 2. Also keep in mind that (3-15)

holds. There are at most four cases when r ≤ 2 and t (3) is smaller than the claimed d(L) in Theorem 3.9:

(1) m is even, t (3)= m − 2, r = 2.

(2) m is even, t (3)= m − 2, r = 1.

(3) m is even, t (3)= m − 4, r = 2.

(4) m is odd, t (3)= m − 3, r = 2.

We will show that 3 can be enlarged to 3′ so that t (3′)= d(L) case by case.

Case (1): We have

3♯ ⊂
m−2 3⊂

2 1
π
3♯ ∩ L♯ ⊆

1
π
3♯.

Since 3♯ ⊂
m 1
π
3♯, we actually have 1

π
3♯ ⊆ L♯. Choose a Jordan splitting of 3

3=30 k3−1.
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Then we know rank(30) = 2, 3♯0 = 30, rank(3−1) = m − 2 and π3−1 = 3
♯

−1. By Proposition 3.1,
3−1 ⊗Z Q is split. If 30 ⊗Z Q is split, then there exist e1, e2 ∈ 30 such that (e1, e1) = (e2, e2) = 0,
(e1, e2)= 1. Define

3′
=3−1 k span{e1, π

−1e2}.

By definition 3′
⊂

1
π
3♯. By the fact that 1

π
3♯ ⊆ L♯, we know that 3′

⊆ L♯. Also

(3′)♯ =3
♯

−1 k span{πe1, e2}.

So t (3′)= m. Hence t (3′)= d(L) as stated in Theorem 3.9. If 30 ⊗Z Q is nonsplit, then t (3)= m − 2
already obtains the number d(L) as stated in Theorem 3.9.

Case (2): We have

π3+ L ⊂
1 3♯ ⊂

m−2 3⊂
1 1
π
3♯ ∩ L♯ and π

(
1
π
3♯ ∩ L♯

)
⊂

m 1
π
3♯ ∩ L♯.

We have already seen in (3-14) that

π3+ L ⊆ π
(

1
π
3♯ ∩ L♯

)
=3♯ ∩πL♯.

These together imply that in fact π3+ L =3♯ ∩πL♯. But

π3+ L =

(
1
π
3♯ ∩ L♯

)♯
.

So define 3′
=

1
π
3♯ ∩ L♯, we have t (3′)= m. This implies that 3′

⊗Z Q is split and t (3′)= d(L).

Case (3): Similar to case (2).

Case (4): We have

3♯ ⊂
m−3 3⊂

2 1
π
3♯ ∩ L♯ ⊂

1 1
π
3♯.

Choose a Jordan splitting of 3

3=30 k3−1.

Then we know rank(30) = 3, 3♯0 = 30, rank(3−1) = m − 3, 3−1 =
1
π
3
♯

−1. By assumption there is a
basis {e1, e2, e3} of 30 such that

1
π

e1,
1
π

e2 ∈
1
π
3♯ ∩ L♯, 1

π
e3 /∈ L♯.

By changing {e1, e2} by an OF linear combination of them, we can assume (ei , ei ) = ui (i = 1, 2) for
ui ∈ O×

F0
and (e1, e2) = 0. By modifying e3 using linear combinations of e1, e2 we can in fact assume

that under the basis {e1, e2, e3}, the form ( · , · )|30 is represented by the diagonal matrix diag{u1, u2, u3}

with u1, u2, u3 ∈ O×

F0
. This means that

(e3, L♯)= (e3, e3)OF = OF ⇒ e3 ∈ L .
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But 1
π

e3 /∈ L♯, these together contradict our assumption (3-12). In conclusion, case (4) is not possible
under the assumption (3-12).

This finishes the proof of Theorem 3.9. □

3E. Proof of Theorem 3.10. Again it suffices to show the corresponding statements on k̄-points. By
Theorem 3.9, W(L)= V(3) is true if and only if 3 is the unique lattice in Vert(L) with t (3)= d(L).
As in the proof of Theorem 3.9, we can assume (3-12).

Lemma 3.12. Assume that one of the following conditions holds:

(1) neven ≥ 3 or neven = 2 with L≥2 ⊗ Q split.

(2) nodd ≥ 2.

Then there is more than one 3 in Vert(L) such that t (3)= d(L).

Proof. Fix a Jordan splitting of L as in (3-1). If nodd ≥ 2 by Proposition 3.1, we can find a direct summand
H(i), i ≥ 2 of L . If neven ≥ 3, scale the sub-OF -module L≥2 to be π2-modular to get a new lattice L ′

⊇ L
such that L ′

2 has rank bigger or equal to 3. Notice that d(L ′)= d(L). O’Meara [2000, Proposition 63:19]
showed that every quadratic space over a local field with dimension greater or equal to 5 is isotropic.
We apply this to the trace form of ( · , · )|L ′

2
and conclude that there is a maximal element in L ′

2 that has
length zero. Hence there is an H(i), i ≥ 2 which is a direct summand of L ′

2. Similarly if neven = 2 and
L≥2 ⊗ Q is split, we can find a lattice L ′

⊇ L such that d(L)= d(L ′) and a direct summand H(i) (i ≥ 2)
of L ′. In any case we can find a lattice L ′

⊇ L such that d(L)= d(L ′) and

L ′
= L ′′ k H(a),

with a ≥ 2. In particular Vert(L ′)⊆ Vert(L).
Notice that d(L ′) = d(L ′′)+ 2. By Theorem 3.9, there is a vertex lattice 3 ∈ Vert(L ′′) such that

t (3)= d(L ′′). Let {e1, e2} be a basis of H(a) such that (e1, e1)= (e2, e2)= 0 and (e1, e2)= πa . Define

31 :=3k span{π−ae1, π
−1e2}, 32 :=3k span{π−ae2, π

−1e1}.

Then

3
♯

1 =3♯ k span{π−a+1e1, e2}, 3
♯

2 =3♯ k span{π−a+1e2, e1}.

This shows that t (31)= t (32)= d(L) and 31,32 ∈ Vert(L ′), but 31 ̸=32. This proves the lemma. □

This proves the “only if” part of Theorem 3.10. To prove the converse, we start with a lemma.

Lemma 3.13. Suppose L = L0 k L1 k L≥1(Jordan splitting). If 3 is a vertex lattice in Vert(L) such that
t (3)= d(L), then L0 k L♯1 ⊂3.

Proof. Suppose L0 k L♯1 ̸⊂ 3. Let 3′
:= 3 + L0 k L♯1. We have L♯0 = L0 and πL♯1 = L1. Then

L♯ = L0 k 1
π

L1 k L♯
≥1 and

(3′)♯ =3♯ ∩ (L0 k L1 k (L≥1 ⊗ Q)).
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Using the above equation and the fact that 3 ∈ Vert(L), one checks immediately that π3′
⊆ (3′)♯. Since

3 ⊂ 3′ and 3♯ ⊆ 3, we have (3′)♯ ⊆ 3′. Also 3′
⊆ L♯, so 3′

∈ Vert(L). But t (3′) > t (3), which
contradicts the maximality of t (3) among vertex lattices in Vert(L). □

Now we assume conditions (1) and (2) of Theorem 3.10 hold. By Proposition 3.1, we have the following
three cases:

(1) L ≃ L0 k H(1)ℓ.

(2) L ≃ L0 k H(1)ℓ k (u(−π0)
a) with a ≥ 1 and u ∈ O×

F0
.

(3) L ≃ L0 k H(1)ℓ k (u1(−π0)
a)k (u2(−π0)

b), where u1, u2 ∈ O×

F0
,−u1u2 /∈ NmF/F0(F/F0) and

a, b are integers greater or equal to 1.

We need to prove that in each case there is a unique 3∈ Vert(L) such that t (3)= d(L). Cases (1) follows
from Lemma 3.13 directly (in this case 3 has to be L0 k H(1)ℓ). Case (2) follows from Lemma 3.13 and
simple arguments. Now we prove (3). By Lemmas 3.13 and 3.3, it suffices to prove the statement for
L = (u1(−π0)

a)k (u2(−π0)
b).

Let L = span{e1, e2} and T =diag{u1(−π0)
a, u2(−π0)

b
} is the gram matrix of {e1, e2}. Suppose

3= span{[e1, e2]S} ∈ Vert(L) where S ∈ GL2(F)/GL2(OF ). Since L ⊗Z Q is nonsplit, we must have
3♯ =3. Then 3♯ = [e1, e2]T −1t S−1 and

3♯ =3⇔ S−1T −1t S−1
∈ GL2(OF )⇔

t ST S ∈ GL2(OF )

L ⊆3♯ ⇔
t ST ∈ M2(OF ).

Apply Proposition 3.1 and multiply S on the right by an element in GL2(OF ) if necessary, we can assume

t ST S =

(
u1 0
0 u2

)
=: T1.

Assume

S =

(
π−a 0

0 π−b

)
S0,

then t S0T1S0 = T1. Claim: S0 ∈ GL2(OF ). Assume S0 =
( x

z
y
w

)
, then t S0T1S0 = T1 implies that

u1x x̄ + u2zz̄ = u1

u1 ȳx + u2w̄z = 0

u1 y ȳ + u2ww̄ = u2.

If z = 0, then y = 0 and x, w ∈ O×

F . If x = 0, then w = 0 and y, z ∈ O×

F as u1, u2 are units.
Now assume that xz ̸= 0. Suppose x = x0π

e where e < 0, x0 ∈ O×

F , then

x x̄ − 1 = (−π0)
e(x0 x̄0 − (−π0)

−e).

Since F is ramified over F0,
NmF/F0(O

×

F /O
×

F0
)= (O×

F0
)2
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by class field theory. As x0 x̄0 ∈ NmF/F0(O
×

F /O
×

F0
) = (O×

F0
)2, by Hensel’s lemma, x0 x̄0 − (−π0)

−e
∈

NmF/F0(O
×

F /O
×

F0
). Then

−
u2

u1
=

x x̄ − 1
zz̄

=
(−π0)

e(x0 x̄0 − (−π0)
−e)

zz̄
∈ NmF/F0(O

×

F /O
×

F0
),

contradicts our assumption on −u1u2. This show that e ≥ 0 and x ∈ OF , then z ∈ OF too.
Similarly u1 y ȳ + u2ww̄ = u2 implies y, w ∈ OF if yw ̸= 0. This proves the claim that S0 ∈ GL2(OF ).

In other words

3= span{π−ae1, π
−be2}.

This proves the uniqueness of 3 and we finish the proof of Theorem 3.10. □

4. Unitary Shimura varieties

In this section we briefly review the definition of an integral model of unitary Shimura variety following
[Rapoport et al. 2021, Section 6]; see also [Rapoport et al. 2020; Cho 2018]. Let F be a CM field over
Q with totally real subfield F0 of index 2 in it. Let d = [F0 : Q]. We denote by a 7→ ā the nontrivial
automorphism of F/F0. Define

Vram = {finite places v of F0 | v ramifies in F}. (4-1)

In this paper we assume that Vram is nonempty. We also make the assumption as in [Rapoport et al. 2021,
Section 6] that every v ∈ Vram is unramified over Q and does not divide 2.

Fix a totally imaginary element
√
1 ∈ F . Denote by 8F0 (resp. 8F ) the set of real (resp. complex)

embeddings of F0 (resp. F). Define a CM type of F by

8= {ϕ ∈8F | ϕ(
√
1) ∈

√
−1R>0}. (4-2)

We fix a distinguished element ϕ0 ∈8. For ϕ ∈ HomQ(F,C), denote its complex conjugate by ϕ.

4A. The Shimura datum. Define a function r : HomQ(F,C)→ Z≥0 by

ϕ 7→ rϕ :=


1 if ϕ = ϕ0;

0 if ϕ ∈8,ϕ ̸= ϕ0;

n − rϕ if ϕ /∈8.

Assume that W is a n dimensional F-vector space with a Hermitian form ( · , · ) such that

sig Wϕ = (rϕ, rϕ), ∀ϕ ∈8

where Wϕ := W ⊗F,ϕ C and sig Wϕ is its signature with respect to ( · , · ). Let U(W ) (resp. GU(W )) be
the unitary group (resp. general unitary group) of (W, ( · , · )). Recall that for an F0-algebra R, we have

GU(W )(R)= {g ∈ GL(W ⊗F0 R) | (gv, gw)= c(g)(v,w),∀v,w ∈ W ⊗F0 R}.
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Define the following groups.

ZQ
:= {z ∈ ResF/Q Gm | NmF/F0(z) ∈ Gm},

G = ResF0/Q U(W ),

GQ
:= {g ∈ ResF0/Q GU(W ) | c(g) ∈ Gm}. (4-3)

Notice that
ZQ(R)= {(zϕ) ∈ (C×)8 | |zϕ| = |zϕ0 |,∀ϕ ∈8}.

Define the Hodge map
hZQ : C×

→ ZQ(R), z 7→ (z̄, . . . , z̄).

For each ϕ ∈8 choose a C-basis of Wϕ such that ( · , · ) is given by the matrix diag(1rϕ ,−1rϕ ). Define
the Hodge map

hGU(W ) : C×
→ ResF0/Q GU(W )(R)∼=

∏
ϕ∈8

GU(Wϕ)

by sending z to diag(z · 1rϕ , z̄ · 1rϕ ) for each ϕ component. Then there exists hGQ : C×
→ GQ(R) such

that hGU(W ) factors as
hGU(W ) = i ◦ hGQ

where i : GQ(R)→ ResF0/Q GU(W )(R) is the natural inclusion.
Define

G̃ := ZQ
×Gm GQ

where the maps from the factors on the right hand side to Gm are NmF/F0 and the similitude character
c(g) respectively. Notice that the map

G̃ → ZQ
× G, (z, g) 7→ (z, z−1g) (4-4)

is an isomorphism. We define the Hodge map hG̃ by

hG̃ : C×
→ G̃(R), z 7→ (hZQ(z), hGQ(z)).

Then (G̃, hG̃) is a Shimura datum whose reflex field E ⊂ Q is defined by

Aut(Q/E)= {σ ∈ Aut(Q) | σ ◦8=8, σ ∗(r)= r}. (4-5)

Remark 4.1. F always embeds into E via ϕ0; [Rapoport et al. 2020, Remark 3.1]. Furthermore E = F
when F is Galois over Q or when F = F0K where K is an imaginary quadratic field over Q and 8 is
induced from a CM type of K/Q. From now on we identify F0 as a subfield of E via ϕ0.

For a small enough compact group K ∈ G̃(A f ), we can define a Shimura variety S(G̃, hG̃)K which
has a canonical model over the Spec E . We refer to [Rapoport et al. 2021, Section 3] for the moduli
problem S(G̃, hG̃)K represents.



Special cycles on the basic locus of unitary Shimura varieties at ramified primes 1705

4B. Integral model. In this subsection, we define the integral model for S(G̃, hG̃)K (as a Deligne–
Mumford stack) in terms of a moduli functor for a particular choice of W and K . We remark here that all
the results in this section is semiglobal in natural so we could instead describe our results on semiglobal
integral models defined as in [Rapoport et al. 2021, Section 4] which will allow a wider choices of W
and K . It takes only slight modifications to adjust our results to the semiglobal setting so we leave it to
the interested readers.

For a lattice 3 in W , we let 3∨ denote its dual with respect to the symplectic form trF/Q(
√
1

−1
( · , · ))

and 3♯ denote its dual with respect to the Hermitian form ( · , · ). Then we have

3∨
=

√
1∂−13♯ (4-6)

where ∂ is the different ideal of F/Q. From now on we assume that W contains a lattice 3 such that
3∨

=3. Define the compact subgroup KG ⊂ G(A f ) by

KG := {g ∈ G(A f ) | g(3⊗ Ẑ)=3⊗ Ẑ}. (4-7)

Also let K ZQ be the unique maximal compact subgroup of ZQ(A f ):

K ZQ := {z ∈ (OF ⊗ Ẑ)× | NmF/F0(z) ∈ Ẑ}. (4-8)

Define the compact subgroup

K := K ZQ × KG ⊂ G̃(A f ) (4-9)

under the isomorphism (4-4).
First we define an auxiliary moduli functor M0 over SpecOE . For a locally notherian OE -scheme S,

we define M0(S) to be the groupoid of triples (A0, ι0, λ0) where:

(1) A0 is an abelian scheme over S.

(2) ι0 :OF → End(A0) is an OF -action satisfying the Kottwitz condition of signature ((0, 1)ϕ∈8), namely

charpol(ι0(a) | Lie A0)=

∏
ϕ∈8

(T −ϕ(a)), ∀a ∈ OF .

(3) λ0 is a principal polarization of A0 whose Rosati involution induces on OF via ι0 the nontrivial
Galois automorphism of F/F0.

A morphism between two objects (A0, ι0, λ0) and (A′

0, ι
′

0, λ
′

0) is a OF -linear isomorphism A0 → A′

0 that
pulls λ′

0 back to λ.
Since we assume Vram is nonempty, M0 is nonempty [Rapoport et al. 2021, Remark 3.7]. Then M0 is

a Deligne–Mumford stack, finite and étale over SpecOE [Howard 2012, Proposition 3.1.2]. Moreover,
we choose a 1 dimensional F vector space W0 such that W0 has an OF lattice 30 with a nondegenerate
alternating form ⟨ · , · ⟩0 satisfying:

(1) ⟨ax, y⟩0 = ⟨x, ā y⟩0 for all a ∈ OF and x, y ∈30.

(2) The quadratic form x 7→ ⟨
√
1x, x⟩0 is negative definite.

(3) The dual lattice 3∨

0 of 30 with respect to ⟨ · , · ⟩0 is 30.
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Let ( · , · )0 be the unique Hermitian form on W0 such that trF/Q(
√
1

−1
( · , ·)0)=⟨· , · ⟩0. Then (W0, ( · , ·)0)

determines a certain similarity class ξ of Hermitian forms which in turn give us an open and closed
substack Mξ

0 of M0; see [Rapoport et al. 2020, Lemma 3.4]. Define the F-vector space

V = HomF (W0,W ) (4-10)

with the Hermitian form ( · , · )V determined by ( · , · ) and ( · , · )0 via

(x(a), y(b))= (x, y)V (a, b)0,∀x, y ∈ V,∀a, b ∈ W0. (4-11)
The lattice

L := HomOF (30,3)⊂ V (4-12)

is a self dual lattice with respect to the Hermitian form ( · , · )V .
We define the functor M on the category of locally notherian schemes over SpecOE as follows. For a

scheme S in this category, M(S) is the groupoid of tuples (A0, ι0, λ0, A, ι, λ) where:

• (A0, ι0, λ0) is an object of Mξ

0(S).

• A is an abelian scheme over S.

• ι : OF → End(A) is an OF -action satisfying the Kottwitz condition of signature

((1, n − 1){ϕ0}, (0, n)8\{ϕ0}),

i.e., for all a ∈ OF

charpol(ι(a) | Lie A)= (T −ϕ0(a))(T −ϕ0(a))n−1
∏

ϕ∈8\{ϕ0}

(T −ϕ(a))n.

• λ : A → A∨ is a principal polarization whose associated Rosati involution induces on OF via ι the
nontrivial Galois automorphism of F/F0.

We assume further that the tuple (A0, ι0, λ0, A, ι, λ) satisfies the sign condition, the Wedge condition and
the Eisenstein condition, all of which are defined with respect to the signature ((1, n −1){ϕ0}, (0, n)8\{ϕ0}).

(H1) The sign condition. Let s be a geometric point of S and (A0,s, ι0,s, λ0,s, As, ιs, λs) be the pull back
of (A0, ι0, λ0, A, ι, λ) ∈ M(S) to s. For every nonsplit place v of F0, we impose

invr
v(A0,s, ι0,s, λ0,s, As, ιs, λs)= invv(V ). (4-13)

We need to explain the two factors. We refer to [Rapoport et al. 2020, Appedix A] for the definition of
invr

v(A0,s, ι0,s, λ0,s, As, ιs, λs). For invv(V ), it is defined by

invv(V )= (−1)n(n−1)/2 det(Vv) ∈ F×

0,v/NmFv/F0,v F×

v ,

where det(Vv) is the determinant of the Hermitian space Vv := V ⊗F0 F0,v. We call this the invariant of
V at v. We remark that when s has characteristic zero, the sign condition is equivalent to the condition
that there is an isometry

HomAF, f (V̂ (A0,s), V̂ (As))∼= V ⊗F AF, f (4-14)
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as Hermitian AF, f -vector spaces. Here V̂ (As) (resp. V̂ (A0,s)) is the rational Tate module of A (resp.
A0). The space HomAF, f (V̂ (A0,s), V̂ (As)) is equipped with the Hermitian form [Kudla and Rapoport
2014, Section 2.3]

h(x, y)= λ−1
0 ◦ y∨

◦ λ ◦ x ∈ EndAF, f (V̂ (A0,s))∼= AF, f (4-15)

where y∨ is the dual of y with respect to the Weil pairings on V̂ (A0,s)× V̂ (A∨

0,s) and V̂ (As)× V̂ (A∨
s ).

Hence the sign condition can be seen as a generalization of (4-14). See [Rapoport et al. 2021, Remark 6.9]
for cases when the sign condition can be simplified.

The wedge condition and Eisenstein condition are only needed when S has nonempty special fibers in
certain characteristics. We temporarily fix a finite prime p of Q. Fix an embedding ν̃ : Q → Qp. This
determines a p-adic place ν of E . ν̃ induces an identification

HomQ(F,Q) ∼
−→ HomQ(F,Qp) : ϕ 7→ ν̃ ◦ϕ.

Let Vp(F) be the set of places of F over p. For each w ∈ Vp(F), define

Homw(F,Q) := {ϕ ∈ HomQ(F,Q) | ν̃ ◦ϕ induces w}. (4-16)

Let F t
w be the maximal unramified extension of Qp in Fw. For ψ ∈ HomQp(F

t
w,Qp), define

Homw,ψ(F,Q) := {ϕ ∈ Homw(F,Q) | ν̃ ◦ϕ|F t
w

= ψ}. (4-17)

The definitions of Homw(F,Q) and Homw,ψ(F,Q) depend on the choice of ν̃ in general but the partition
of HomQ(F,Q) into unions of Homw,ψ(F,Q) does not [Rapoport et al. 2021, (5.4)].

We make a base change and assume that S is a scheme over SpecOE,ν where OE,ν is the completion
of OE with respect to the ν-adic topology. Then the OF action on A induces an action of

OF ⊗Z Zp ∼=

∏
w∈Vp(F)

OF,w

on Lie A. Hence we have a decomposition

Lie A =

⊕
w∈Vp(F)

Liew A. (4-18)

For each w, the OF t
w

-action on Liew A induces a decomposition

Liew A =

⊕
ψ∈HomQp (F t

w,Qp)

Liew,ψ A. (4-19)

Here we make a further base change to SpecOĔν where Ĕν is the completion of the maximal unramified
extension of Eν in Qp:

(H2) The wedge condition. Assume that w is a finite place of F that is ramified over F0. We further
assume that the underlying place of w in Q is p and we make a base change so that S is a Spec Zp-scheme.
The wedge condition is only needed when S has nonempty special fiber over Spec Fp. By our assumption,
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the underlying place v of F0 is unramified over Q. Hence F t
w = F0,v and Homw,ψ(F,Q)= {ϕψ , ϕψ } for

all ψ ∈ HomQp(F
t
w,Qp). For every ψ such that rϕψ ̸= rϕψ , decompose Lie A as in (4-18) and (4-19) and

impose the wedge condition of [Pappas 2000] (compare with Definition 2.3)

rϕψ+1∧
(ι(a)−ϕψ(a) | Liew,ψ A)= 0,

rϕψ+1∧
(ι(a)−ϕψ(a) | Liew,ψ A)= 0 (4-20)

for all a ∈ OF . Here since rϕψ ̸= rϕψ , ϕψ maps Fw into Eν , so we can view ϕψ(a) and ϕψ(a) as sections
in the structure sheaf of the base scheme S.

(H3) The Eisenstein condition. Assume that w is a finite place of F whose underlying place v in F0 is
ramified over Q. By our assumption w is unramified over v. Again assume that the underlying place of
w in Q is p and we make a base change so that S is a Spec Zp-scheme. Decompose Lie A as in (4-18)
and (4-19). The Eisenstein condition is a set of conditions on Liew,ψ A and is only needed when S has
nonempty special fiber over Spec Fp. We do not describe the condition in detail but instead refer to
[Rapoport et al. 2021, Section 5.2, case (1) and (2)].

Finally a morphism between two objects (A0, ι0, λ0, A, ι, λ) and (A′

0, ι
′

0, λ
′

0, A′, ι′, λ′) is a morphism
(A0, ι0, λ0) → (A′

0, ι
′

0, λ
′

0) in Mξ

0(S) together with an OF -linear isomorphism (A, ι, λ) → (A′, ι′, λ′)

that pulls λ′ back to λ.
The following Proposition is a partial summarize of [Rapoport et al. 2021, Theorem 3.5, 4.4 and 6.7].

Proposition 4.2. M is a Deligne–Mumford stack flat over OE , and

M×SpecOE C = S(G̃, hG̃)K .

Moreover we have:

(i) M is smooth of relative dimension n − 1 over the open subscheme of SpecOE obtained by removing
the set Vram(E) of finite places ν of E over Vram (see (4-1)). If n = 1, then M is finite étale over all
of SpecOE .

(ii) If n ≥ 2, then the fiber of M over a place ν ∈ Vram(E) has only isolated singularities. If n ≥ 3,
then blowing up these isolated points for all ν ∈ Vram(E) yields a model M♯ which has semistable
reduction, hence is regular, over the open subscheme of SpecOE obtained by removing all places
ν ∈ Vram(E) that are ramified over F. This model M♯ has a moduli interpretation by [Krämer 2003].

5. Special cycles on the basic locus of unitary Shimura varieties

5A. Definition of the special cycles. Let Hermm(OF ) be the set of m ×m Hermitian matrices with values
in OF . Let Hermm(OF )≥0 (resp. Hermm(OF )>0) be the subset of totally (i.e., for all archimedean places)
positive semidefinite (resp. definite) matrices of Hermm(OF ). We define special cycles as in [Kudla
and Rapoport 2014] and [Rapoport et al. 2021]. For a locally notherian scheme S over SpecOE and
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(A0, ι0, λ0, A, ι, λ) ∈ M(S), we have the finite rank locally free OF -module

L(A0, A) := HomOF (A0, A).

We can define a Hermitian form h′ on L(A0, A) by assigning for any x, y ∈ L(A0, A)

h′(x, y)= ι−1
0 (λ−1

0 ◦ y∨
◦ λ ◦ x) ∈ OF . (5-1)

Remark 5.1. The local analog of h′( · , · ) is denoted by h( · , · ), see Section 3B. We use the notation
h′( · , · ) here to be consistent with [Kudla and Rapoport 2014].

Definition 5.2. Let T ∈ Hermm(OF )≥0. The special cycle Z(T ) is the stack such that for any OE -
scheme S, Z(T )(S) is the groupoid of tuples (A0, ι0, λ0, A, ι, λ, x) where (A0, ι0, λ0, A, ι, λ) ∈ M(S)
and x = (x1, . . . , xm) ∈ L(A0, A)m such that

h′(x, x)= (h′(xi , x j ))= T .

Kudla and Rapoport [2014, Proposition 2.9] generalized to our case and shows that the natural map
Z(T )→ M is finite and unramified.

5B. Support of the special cycles. Let ν be a finite place of E with residue field kν of characteristic
p. Then ν determines places w0 of F and v0 of F0 respectively. For (A0, ι0, λ0, A, ι, λ) ∈ M(k̄ν), the
OF ⊗Z Zp-action induces a decomposition of the p-divisible group A[p∞

] and its Dieudonné module

A[p∞
] =

⊕
w | p

A[w∞
], M(A[p∞

])=

⊕
w | p

Mw(A) (5-2)

where w runs over the set of places of F over p and Mw(A) = M(A[w∞
]) for each w. Each A[w∞

]

admits an OF,w action. We say that (A0, ι0, λ0, A, ι, λ) is in the basic locus Mss
ν if each A[w∞

] is
isoclinic, i.e., the rational Deudonné module Mw(A) has constant slope for all w.

We assume from now on that T ∈ Hermn(OF )>0. Then we have the following generalization of [Kudla
and Rapoport 2014, Lemma 2.21].

Lemma 5.3. Assume that T ∈ Hermn(OF )>0. Then Z(T ) is supported on⋃
ν

Mss
ν

where ν runs over the set of finite places of E whose underlying place of F0 does not split in F.

Proof. The proof is the same as that of [Rapoport et al. 2020, Lemma 8.7] which is a variant of the proof
of [Kudla and Rapoport 2014, Lemma 2.21]. □

For T ∈ Hermn(OF )>0, let VT be the Hermitian F-vector space with gram matrix T . Recall that we
define a Hermitian vector space V as in (4-10). Define Diff(T, V ) as in (1-3) or equivalently

Diff(T, V ) := {v is a finite place of F0 | invv(V ) ̸= invv(VT )}. (5-3)
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Any v in Diff(T, V ) is automatically nonsplit in F . Since T is totally positive definite and V has signature
((n−1, 1){ϕ0}, (n, 0)8\{ϕ0}), by Hasse principal, Diff(T, V ) is a finite set of odd cardinality. The following
result generalizes [Kudla and Rapoport 2014, Proposition 2.22]. It should be well-known to experts; see
[Li and Zhang 2022, Section 14.4].

Proposition 5.4. Assume T ∈ Hermn(OF )>0:

(1) If |Diff(T, V )| = {v0} where v0 is a finite place of F0, then Z(T ) is supported on⋃
ν∈V (v0)

Mss
ν

where V (v0) is the set of places of E over v0.

(2) Z(T ) is empty if |Diff(T, V )|> 1.

Proof. We prove (1) first. By Lemma 5.3, we know that Z(T ) is supported on the basic locus over finite
places of E . Let ν be a finite place of E with residue field kν of characteristic p such that Z(T )(k̄ν)
is nonempty. Then ν determines a place v0 of F0 which does not split in F . Let (A0, ι0, λ0, A, ι, λ) ∈

Z(T )(k̄ν). By definition VT carries the Hermitian form h′( · , · ) in (5-1).
When v does not divide p, by its definition invr

v(A0, ι0, λ0, A, ι, λ) is the invariant at v of the Hermitian
form h( · , · ) defined in (4-15) and is the same as invv(V ) by the sign condition. On the other hand,
the invariant at v of the Hermitian form h( · , · ) is the same as invv(VT ) by [Kudla and Rapoport 2014,
Lemma 2.10].

Now assume v | p and is nonsplit and w is the place of F above v. Since the component containing
(A0, ι0, λ0, A, ι, λ) has nonempty generic fiber (this is implied for example by (5-10) below), [Rapoport
et al. 2020, Proposition A1] tells us that

invr
v(A0, ι0, λ0, A, ι, λ)= invv(V ). (5-4)

On the other hand by [Rapoport et al. 2020, (A.8)], we know that

invr
v(A0, ι0, λ0, A, ι, λ)= sgn(rν,v) invv(A0, ι0, λ0, A, ι, λ)

where by [Rapoport et al. 2020, (A.7)]

sgn(rν,v)=

{
1 if v | p and v ̸= v0,

−1 if v = v0,

and invv(A0, ι0, λ0, A, ι, λ) is the invariant of the Hermitian form on the Dieudonné module (see (5-2))

HomFw⊗Zp W (k̄ν)(Mw(A0)⊗ Q,Mw(A)⊗ Q).

By Lemma 3.6, Proposition 3.5 and their analogs at inert primes, we know that

invv(A0, ι0, λ0, A, ι, λ)= invv(VT ).
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Hence we have

invv(V )=

{
invv(VT ) if v | p and v ̸= v0,

− invv(VT ) if v = v0.

In conclusion, if Z(T )(k̄ν) is nonempty we must have

Diff(T, V )= {v0}.

This finishes the proof of the (1).
If z is a geometric point of characteristic zero in Z(T ), then (4-14) implies that Diff(T, V )= ∅. But

this is impossible by the signature assumption on V and VT . Hence Z(T ) has no geometric point of
characteristic zero and (2) follows from (1). □

5C. Uniformization of the basic locus and special cycles. We now fix a place ν of E over w0 of F and
v0 ∈ Vram of F0. Let Ĕν be the completion of the maximal unramified extension of Eν . We also denote by
M̂ss

ν the completion of M×SpecOE SpecOĔν along its basic locus Mss
ν ×Spec kν Spec k̄ν .

Lemma 5.5. Mss
ν (k̄ν) is nonempty.

Proof. The proof is a variant of that of [Kudla and Rapoport 2014, Lemma 5.1]. Let (A0, ι0, λ0)∈Mξ

0(OĔν ).
Also let (A1, ι1, λ1) be defined similarly as (A0, ι0, λ0) except that we change the signature from (0, 1)8
to ((1, 0){ϕ0}, (0, 1)8\{ϕ0}). Both abelian schemes have good reduction at ν by the smoothness of M0.
Define

(A, ι, λ′) := (A0, ι0, λ0)
n−1

⊕ (A1, ι1, λ1).

Then (A0, ι0, λ0, A, ι, λ′) ∈ MV ′

(OĔν ) where MV ′

has the same definition as M except that in the sign
condition we replace V by some Hermitian space V ′ over F with the same signature as V .

From now on we base change to Spec k̄ν and for simplicity denote the base change of (A0, ι0,λ0, A, ι,λ′)

by the same notation. Then (A0, ι0, λ0, A, ι, λ′) ∈ MV ′,ss
ν . Define

λ := λ′
◦ (ι(a/b), 1, . . . , 1) (5-5)

where a, b ∈ F0 represent det(V ) and det(V ′) respectively. Since V and V ′ have the same the signature
over the archimedean places, a/b is totally positive, hence λ is a quasipolarization. Notice that the Rosati
involution induced by λ on F ↪→ End0(A) is the complex conjugation. By the definition of λ and the
fact that (A0, ι0, λ0, A, ι, λ′) satisfies the sign condition (4-13) for V ′ we know that (A0, ι0, λ0, A, ι, λ)
satisfies the sign condition for V .

By the OF0-action on A, we can decompose the p-divisible group A[p∞
] and the rational Dieudonné

module M(A[p∞
]) of A[p∞

] into

A[p∞
] =

⊕
v | p

A[v∞
], M(A[p∞

])=

⊕
v | p

Mv(A) (5-6)

where v runs over places of F0 over p and Mv(A)= M(A[v∞
]) for each v. Let M rel

v0
(A) be the relative

Dieudonné module of Ck̄ν (A[v∞

0 ]) where C is the functor in Theorem 2.6. Choose an ŎF,w0-lattice 3rel
v0

⊂
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M rel
v0
(A)⊗Z Q satisfying the condition in Proposition 2.15. Such choice always exists by the nonemptiness

statement in Theorem 2.17 (iii). By Theorem 2.6, 3rel
v0

determines a self dual lattice 3v0 ∈ Mv0(A)⊗Z Q.
For any other v ̸= v0 dividing p, we can choose a self dual lattice 3v ⊂ Mv(A)⊗Z Q with respect to the
symplectic form induced by λ in a similar manner. Choose a self dual lattice 3p

⊂ V̂ p(A) with respect
to the symplectic form on V̂ p(A) induced by λ. These lattices determines an abelian variety (B, ιB, λB)

isogenic to (A, ι, λ) where λB is a principal polarization. Then (A0, ι0, λ0, B, ιB, λB) ∈ Mss
ν (k̄ν). □

By the lemma we can choose a framing object (Ao
0, ι

o
0, λ

o
0, Ao, ιo, λo) ∈ Mss

ν (k̄ν). The p-divisible
group Ao

[p∞
] of Ao then carries an OF -action ιo[p∞

] and a compatible polarization λo
[p∞

] determined
by ιo and λo respectively. Decompose Ao

[p∞
] as in (5-6) we get

(X, ιX, λX) := (Ao
[v∞

0 ], ιo[v∞

0 ], λo
[v∞

0 ]) (5-7)

where ιo[v∞

0 ] is the OF,w0-action determined by ιo[p∞
] and λo

[v∞

0 ] is the polarization of Ao
[v∞

0 ]

determined by λo
[p∞

].
Let W ′ be the n-dimensional Hermitian vector whose local invariants are the same as W except at v0

and ϕ0 where it has signature (0, n). Associate to W ′ the group G ′Q as in (4-3) where we associate GQ

to W . Also define

V ′
:= HomF (W0,W ′) (5-8)

together with the naturally defined Hermitian form. Then define G̃ ′
:= ZQ

×Gm G ′Q which is an
inner form of G̃. Let N ′ be the Rapoport–Zink space of p-divisible groups with OF -actions and
compatible principal polarizations satisfying the Kottwitz condition, the wedge condition and the Eisen-
stein condition with respect to the signature ((1, n − 1){ϕ0}, (0, n)8\{ϕ0}), defined by the framing object
(Ao

[p∞
], ιo[p∞

], λo
[p∞

]). Then we have the following uniformization theorem.

Theorem 5.6. We have

N ′
= ZQ(Qp)/K ZQ,p × (N ×̂SpfOF̆w0

SpfOĔν )×
∏
v ̸=v0

U(V )(F0,v)/KG,v (5-9)

where the product in the last factor is over all places of F0 over p not equal to v0 and N = N
Fw0/Qp

(1,n−1)
∼=

N
Fw0/F0,v0
(1,n−1) . Here N

Fw0/Qp

(1,n−1) (resp. N
Fw0/F0,v0
(1,n−1) ) is defined in Definition 2.8 using the framing objects

(X, ιX, λX) in (5-7) (resp. Ck̄ν ((X, ιX, λX))). There is an isomorphism depending on the choice of base
point (Ao

0, ι
o
0, λ

o
0, Ao, ιo, λo) ∈ Mss

ν (k̄ν),

2 : G̃ ′(Q)\N ′
× G̃(Ap

f )/K p ∼= M̂ ss
ν . (5-10)

Proof. Using exactly the same proof of [Rapoport et al. 2020, Lemma 8.16], we know that for v ̸= v0

above p, we have

N Fv/Qp
(0,n)

∼= U(V )(F0,v)/KG,v.
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As a corollary we know that

N ′
= ZQ(Qp)/K ZQ,p × (N

Fw0/Qp

(1,n−1) ×̂SpfOF̆w0
SpfOĔν )×

∏
v ̸=v0

U(V )(F0,v)/KG,v. (5-11)

Then (5-10) is a special case of [Rapoport and Zink 1996, Theorem 6.30]. By Theorem 2.10, we can also
replace N

Fw0/Qp

(1,n−1) above by N
Fw0/F0,v0
(1,n−1) . □

Theorem 5.7. Assume that T ∈ Hermn(OF )>0 with Diff(T, V )= {v0} where v0 ∈ Vram (1-2). Assume that
v0 is not over 2 and is unramified over Q. Then Z(T )red is equidimensional of dimension 1

2d(Lv0) where
Lv0 is any Hermitian lattice over OF,v0 whose gram matrix is T and d(Lv0) is defined as in Theorem 3.9.

Proof. The proof resembles that of [Kudla and Rapoport 2014, Proposition 11.2]. By Proposition 5.4,
Z(T ) is supported on the basic locus over ν for those finite places ν of E that induces v0. Fix such a ν
and let w0 be the place of F above v0. Choose a framing object (Ao

0, ι
o
0, λ

o
0, Ao, ιo, λo) ∈ Mss

ν (k̄ν) which
determines a supersingular formal OF,w0-module (X, ιX, λX) as in (5-7).

Define V ′ as in (5-8) and G ′
:= U(V ′). By Proposition 5.4, we know that

V ′ ∼= VT

as Hermitian spaces. In particular, V ′
v
∼= Vv as a Hermitian space for all finite places v ̸= v0 of F0. We

can thus think of
Lv0 := L ⊗OF0

Ôv0
F0

(see (4-12) for the definition of L) as a lattice in V ′(A
v0
F0, f ). Its stabilizer in G ′(A

v0
F0, f ) is K v0

G . On the
other hand, by Proposition 3.5 we have the following identification.

V ′

v0
∼= HomOF,w0

(Y,X)⊗ Q ∼= HomOF,w0
(Ck̄ν (Y), Ck̄ν (X))⊗ Q = V.

Let Ẑ(T )ν be the closure of Z(T )×SpecOE SpecOĔν in M̂ss
ν . Then by Theorem 5.6 and the fact that

G̃ ′
= ZQ

× ResF0/Q G ′, we have (see [Kudla and Rapoport 2014, Proposition 6.3])

Ẑ(T )ν ∼= (ZQ(Q)\ZQ(A f )/K ZQ)×
⊔

g∈G ′(F0)\G ′(A
v0
F0, f )/K

v0
G

⊔
x∈�(T )

g−1x∈(Lv0 )n

Z(x),

where Z(x) is the special cycle of N
Fw0/F0,v0
(1,n−1) defined in Definition 3.4 and

�(T ) := {x ∈ (V ′)n | (x, x)= T }.

Here we think of V ′ as a subset of both V and V ′(A
v0
F0, f ). The theorem is now a consequence of

Theorem 3.9. □
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