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Separation of periods of quartic surfaces
Pierre Lairez and Emre Can Sertöz

We give a computable lower bound for the distance between two distinct periods of a given quartic
surface defined over the algebraic numbers. The main ingredient is the determination of height bounds on
components of the Noether–Lefschetz loci. This makes it possible to study the Diophantine properties of
periods of quartic surfaces and to certify a part of the numerical computation of their Picard groups.

1. Introduction

Periods are a countable set of complex numbers containing all the algebraic numbers, as well as many of
the transcendental constants of nature. In light of the ubiquity of periods in mathematics and the sciences,
Kontsevich and Zagier [2001] asked for the development of an algorithm to check for the equality of two
given periods. We solve this problem for periods coming from quartic surfaces by giving a computable
separation bound, that is, a lower bound on the minimum distance between distinct periods.

Let f ∈ C[w, x, y, z]4 be a homogeneous quartic polynomial defining a smooth quartic X f in P3(C).
The periods of X f are the integrals of a nowhere vanishing holomorphic 2-form on X f over integral
2-cycles in X f . The periods can also be given in the form of integrals of a rational function

1
2π i

∮
γ

dx dy dz
f (1, x, y, z)

, (1)

where γ is a 3-cycle in C3
\ X f . The integral (1) depends only on the homology class of γ . These periods

form a group under addition. The geometry of quartic surfaces dictates that there are only 21 independent
3-cycles in C3

\ X f . These give 21 periods α1, . . . , α21 ∈ C such that the integral over any other 3-cycle
is an integer linear combination of these periods.

It is possible to compute the periods to high precision [Sertöz 2019], typically to thousands of decimal
digits, and to deduce from them interesting algebraic invariants such as the Picard group of X f [Lairez
and Sertöz 2019]. This point of view has been fruitful for computing algebraic invariants for algebraic
curves from their periods [van Wamelen 1999; Costa et al. 2019; Bruin et al. 2019; Booker et al. 2016].

For quartic surfaces, the computation of the Picard group reduces to computing the lattice in Z21 of
integer relations x1α1 + · · · + x21α21 = 0, where xi ∈ Z. A basis for this lattice can be guessed from
approximate αi ’s using lattice reduction algorithms. But is it possible to prove that all guessed relations
are true relations? Previous work related to this question [Simpson 2008] required explicit construction of
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algebraic curves on X f , which becomes challenging very quickly. Instead, we give a method of proving
relations by checking them at a predetermined finite precision. At the moment, this is equally challenging,
but we conjecture that the numerical approach can be made asymptotically faster, see Section 4.4 for
details.

The Lefschetz theorem on (1, 1)-classes (Section 2.2) associates a divisor on X f to any integer relation
between the periods of X f . In turn, the presence of a divisor imposes algebraic conditions on the
coefficients of f . Such algebraic conditions define the Noether–Lefschetz loci on the space of quartic
polynomials (Section 3). In addition to the degree computations of Maulik and Pandharipande [2013],
we give height bounds on the polynomial equations defining the Noether–Lefschetz loci (Theorem 14).
These lead to our main result (Theorem 17): Assume f has algebraic coefficients, then for xi ∈ Z,

x1α1 + · · · + x21α21 = 0 or |x1α1 + · · · + x21α21|> 2−cmaxi |xi |
9

(2)

for some constant c > 0 depending only on f and the choice of the 21 independent 3-cycles (see
Theorem 17 for a coordinate-free formulation). The constant c is computable in rather simple terms
and without prior knowledge of the Picard group of X f . We use the term “computable” in the sense of
“computable with a Turing machine”, not “primitive recursive”, as our suggested algorithm to compute c
depends, through Lemma 1, on the numerical computation of a nonzero constant (depending on f ), whose
magnitude is not known a priori, only the fact that it is nonzero.

The expression (2) is essentially a lower bound for the linear independence measure [Shidlovskii 1989,
Chapter 11] for the periods of X f . Our construction of this bound bears a loose resemblance to the ideas
involved in the statement of the analytic subgroup theorem [Wüstholz 1989], and in particular, to the
Masser–Wüstholz period theorem [1993]. We briefly comment on this analogy in Section 5.4.

As a consequence of the separation bound (2), we apply a construction in the manner of Liouville [1851]
and prove, for instance, that the number ∑

n≥0

(2⇈3n)−1 (3)

is not a quotient of two periods of a single quartic surface that is defined over Q, where 2⇈3n denotes an
exponentiation tower with 3n twos (Theorem 19, with θi+1 =222θi

).
The methods we employed to attain the period separation bound (2) can, in principle, be generalized to

separate the periods of some other algebraic varieties, e.g., of cubic fourfolds. We discuss these and other
generalizations in Section 5.

2. Periods and deformations

2.1. Construction of the period map. For any nonzero homogeneous polynomial f in C[w, x, y, z],
let X f denote the surface in P3 defined as the zero locus of f . Let R .

= C[w, x, y, z], and let R4 ⊂ R
be the subspace of degree 4 homogeneous polynomials. Let U4 ⊂ R4 denote the dense open subset of
all homogeneous polynomials f of degree 4 such that X f is smooth. For our purposes, it will be useful
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to consider not only the periods of a single quartic surface X f , but also the period map, to study the
dependence of periods on f .

The topology of X f does not depend on f as long as X f is smooth: given two polynomials f, g ∈ U4,
we can connect them by a continuous path in U4, and the surface X f deforms continuously along this
path, giving a homeomorphism X f ≃ Xg, which is uniquely defined up to isotopy. In particular, if we fix
a base point b ∈ U4, then for every f ∈ Ũ4, where Ũ4 is a universal covering of U4, we have a uniquely
determined isomorphism of cohomology groups H 2(Xb,Z) ≃ H 2(X f ,Z). Let HZ denote the second
cohomology group of Xb, which is isomorphic to Z22, e.g., [Huybrechts 2016, §1.3.3].

The hyperplane class and its multiples are redundant for the problem we are interested in, as their
periods are 0. In practice, therefore, we work with a rank 21 quotient lattice. The map (7) below identifies
this quotient with the cohomology of the complement of the quartic.

An element of Ũ4 determines a polynomial f ∈ U4 together with an identification of H 2(X f ,Z)

with HZ. We often work locally around a given polynomial f and, in that case, we do not actively
distinguish between U4 and its universal covering.

The group HZ is endowed with an even unimodular pairing

(x, y) ∈ HZ × HZ → x · y ∈ Z, (4)

given by the intersection form on cohomology. Through this pairing, the second homology and cohomology
groups are canonically identified with one another. For K3 surfaces, such as smooth quartic surfaces
in P3, the structure of the lattice HZ with its intersection form is explicitly known [Huybrechts 2016,
Proposition 1.3.5]. The fundamental class of a generic hyperplane section of X f gives an element of HZ

denoted by h.
Further, the complex cohomology group H 2(X f ,C), which is just HC

.
= HZ ⊗ C, is isomorphic to

the corresponding de Rham cohomology H 2
dR(X f ,C) group as follows: Elements of H 2

dR(X f ,C) are
represented by differential 2-forms. To a form �, one associates the element 2(�) of H 2(X f ,C) given
by the map

2(�) : [γ ] ∈ H2(X f ,C) 7→

∫
γ

� ∈ C. (5)

The group H 2
dR(X f ,C) has a distinguished element � f , a nowhere vanishing holomorphic 2-form,

described below. Every other holomorphic 2-form on X f is a scalar multiple of � f [Huybrechts 2016,
Example 1.1.3]. Mapping � f to HC gives rise to the period map

P : f ∈ Ũ4 7→ ω f
.
=2(� f ) ∈ HC. (6)

The coordinates of the period vector ω f , in some fixed basis of HZ, generates the group of periods of X f .
There is a standard Thom–Gysin type map in homology

T : H2(X f ,Z)→ H3(P
3
\ X f ,Z), (7)
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see [Voisin 2003, p. 159] for a modern description. Roughly speaking, T takes the class of a 2-cycle in X f

and returns the class of a narrow S1-bundle around the cycle lying entirely in P3
\ X f . See [Griffiths

1969a, §3] for this classical interpretation. The map T is a surjective morphism, and its kernel is generated
by the class of a hyperplane section of X f .

We choose � f so that the following identity holds:∫
γ

� f =
1

2π i

∫
T (γ )

dx dy dz
f (1, x, y, z)

. (8)

Therefore, in view of (5), the coefficients of ω f in a basis of HZ coincides with periods as defined in (1).
The image D of the period map P is called the period domain. It admits a simple description

D .
= P(Ũ4)=

{
w ∈ HC \ {0} | w · h = 0, w ·w = 0, w ·w > 0

}
, (9)

where “ · ” denotes the intersection form on HZ, extended to HC by C-linearity, and h denotes the
fundamental class of a hyperplane section, as introduced above [Huybrechts 2016, Chapter 6]. Moreover,
by the local Torelli theorem for K3 surfaces [Huybrechts 2016, Proposition 6.2.8], the map P is a
submersion: its derivative at any point of Ũ4 is surjective.

2.2. The Lefschetz (1,1)-theorem. Lefschetz proved that the linear integer relations between the periods
of a quartic surface X f are in correspondence with homology classes coming from algebraic curves in X f .
We now explain this statement in more detail. Let C ⊂ X f be an algebraic curve. Its fundamental class is
the element [C] of HZ obtained as the Poincaré dual of the homology class of C . Here, we identify HZ

with H 2(X f ,Z) by fixing a preimage of f in Ũ4. The Picard group Pic(X f ) of X f is the sublattice of HZ

spanned by the fundamental classes of algebraic curves.
It follows from the definition that for any class [�] ∈ H 2

dR(X f ) of a differential 2-form on X f ,

[C] ·2(�)=

∫
C
�. (10)

Moreover, if � is a holomorphic 2-form, then
∫

C �= 0, because the restriction of � to the complex 1-
dimensional subvariety C vanishes. In particular [C] ·ω f = 0. It turns out that this condition characterizes
the elements of Pic(X f ).

More precisely, let H 1,1(X f )⊂ HC denote the space orthogonal to ω f and ω f , the conjugate of ω f ,
with respect to the intersection form. This space is a direct summand in the Hodge decomposition
of H 2(X f ,C).

The Lefschetz (1,1)-theorem [Griffiths and Harris 1978, p. 163] asserts that the lattice of integer
relations coincide with the Picard group

Pic(X f )= HZ ∩ H 1,1(X f ). (11)
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Noting that for any γ ∈ HZ, we have γ = γ , where γ denotes the complex conjugate, it follows that
ω f · γ = ω f · γ , so that (11) becomes

Pic(X f )= {γ ∈ HZ | γ ·ω f = 0}. (12)

2.3. A deformation argument. Let γ1, . . . , γ22 be a basis of HZ. The space HR (respectively, HC) is
endowed with the coefficientwise Euclidean (respectively, Hermitian) norm∥∥∥∥ 22∑

i=1

xiγi

∥∥∥∥2
.
=

22∑
i=1

|xi |
2. (13)

For γ ∈ HZ, if |γ ·ω f | is small enough, then γ is close to being an integer relation between the periods
of X f . We want to argue that, in this case, γ is a genuine integer relation between the periods of Xg for
some polynomial g ∈ U4 close to f .

Recall f, g ∈ Ũ4 means f and g are smooth quartics with second cohomology identified with HZ. The
space Ũ4 inherits a metric from U4, so that Ũ4 → U4 is locally isometric. The metric on U4 ⊂ R4 ≃ C35

is induced by an inner product. The choice of an inner product will change the distances, but this is
absorbed into the constants in the statements below.

Let f ∈ Ũ4 be fixed. For any g ∈ R4 and t ∈ C small enough, the polynomials f + tg ∈ R4 lift
canonically to Ũ4. For any γ ∈ HC, we consider the map

φγ,g(t)
.
= γ ·P( f + tg), (14)

which is well defined and analytic in a neighborhood of 0 in C.

Lemma 1. There is a constant C > 0, depending only on f , such that for any γ ∈ HC satisfying γ · h = 0
and |γ ·ω f |∥ω f ∥ ≤

1
2∥γ ∥(ω f ·ω f ), there is a monomial m ∈ R4 for which |φ′

γ,m(0)| ≥ C∥γ ∥.

Proof. Observe that for any monomial m ∈ R4, we have φ′
γ,m(0)= γ ·d f P(m), where d f P is the derivative

at f of P . Let Q be the positive semidefinite Hermitian form defined on HC by

Q(γ ) .
=

∑
m

|γ · d f P(m)|2, (15)

where the sum is taken over the monomials in m. Since maxm |φ′
γ,m(0)|

2
≥ (1/ dim R4)Q(γ ), it is enough

to prove that Q(γ )≥ C∥γ ∥ for some constant C > 0, when γ ·h = 0 and |γ ·ω f |∥ω f ∥ ≤
1
2∥γ ∥(ω f ·ω f ).

The form Q vanishes exactly on the orthogonal complement (for the intersection product) of the tangent
space Tω f D of D at ω f . By (9),

Tω f D = {w ∈ HC | w · h = w ·ω f = 0}. (16)

So the kernel of Q is K .
= Ch + Cω f . Moreover, let E be the orthogonal complement of Ch + Cω f (still

for the intersection product). Since h ·ω f = h ·ω f = 0, h ·h = 4 and ω f ·ω f > 0, we check that E ∩ K = 0.
In particular, the form Q is positive definite on E , so there is a constant C > 0 such that Q(η)≥ C∥η∥ for
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any η ∈ E . This constant is easily computable as the smallest eigenvalue of the matrix of the restriction
of Q on that space, in a unitary basis, for the Hermitian norm ∥ −∥.

Now, let γ such that γ · h = 0 and

|γ ·ω f |∥ω f ∥ ≤
1
2∥γ ∥(ω f ·ω f ). (17)

Let a .
= (γ ·ω f )/(ω f ·ω f ) and η .

= γ − aω f , so that η ·ω f = 0 and η · h = 0, that is, η ∈ E . Since ω f is
in the kernel of Q, we have Q(η)= Q(γ ), and thus Q(γ )≥ C∥η∥. Lastly, we compute that

∥η∥ ≥ ∥γ ∥ − |a|∥ω f ∥ = ∥γ ∥ −

∣∣∣∣ γ ·ω f

ω f ·ω f

∣∣∣∣∥ω f ∥ ≥
1
2
∥γ ∥, (18)

using (17). So Q(γ )≥
1
2C∥γ ∥. □

The next statement is proved using the following result of [Smale 1986]. Let φ be an analytic function
on a maximal open disc around 0 in C with φ′(0) ̸= 0. We define

γSmale(φ)
.
= supk≥2

∣∣∣∣ 1
k!

φ(k)(0)
φ′(0)

∣∣∣∣1/(k−1)

and βSmale(φ)
.
=

∣∣∣∣ φ(0)φ′(0)

∣∣∣∣. (19)

If βSmale(φ)γSmale(φ) ≤
1
34 , then there is a t ∈ C such that |t | ≤ 2βSmale(φ) and φ(t)= 0 [Smale 1986],

see also [Blum et al. 1998, Chapter 8, Theorem 2].

Proposition 2. For any f ∈ Ũ4, there exists C f and εf > 0 such that for all ε < εf the following holds:
For any γ ∈ HR, if γ · h = 0 and |γ ·ω f | ≤ ε∥γ ∥, then there is a monomial m ∈ R4 and t ∈ C such that
|t | ≤ C f ε and γ ·ω f +tm = 0.

Proof. Let γ ∈ HR such that γ · h = 0 and

|γ ·ω f | ≤

(
ω f ·ω f

2∥ω f ∥

)
∥γ ∥. (20)

Since γ has real coefficients, we have |γ · ω f | = |γ · ω f | and we may apply Lemma 1 to obtain a
monomial m and a constant C such that

|φ′

γ,m(0)| ≥ C∥γ ∥. (21)

It follows, in particular, that

βSmale(φγ,m)≤
|γ ·ω f |

C∥γ ∥
. (22)

Moreover, for any k ≥ 2, and using C ≤ 1,∣∣∣∣ 1
k!

φ
(k)
γ,m(0)
φ′
γ,m(0)

∣∣∣∣1/(k−1)

≤ C−1
∣∣∣∣φ(k)γ,m(0)k!∥γ ∥

∣∣∣∣1/(k−1)

= C−1
∣∣∣∣ γ∥γ ∥

·
1
k!

dk
f P(m, . . . ,m)

∣∣∣∣1/(k−1)

(23)

≤ C−1
∣∣∣∣∣∣∣∣∣ 1

k!
dk

f P
∣∣∣∣∣∣∣∣∣1/(k−1)

, (24)
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where dk
f P : Rk

4 → HC is the k-th higher derivative of P at f and where |||·||| is the operator norm defined as∣∣∣∣∣∣∣∣∣ 1
k!

dk
f P

∣∣∣∣∣∣∣∣∣ .
= supγ∈HC

suph1,...,hk

∣∣γ · (1/k!)dk
f P(h1, . . . , hn)

∣∣
∥γ ∥∥h1∥ · · · ∥hn∥

, (25)

with supremum taken over h1, . . . , hn ∈ C[w, x, y, z]4. It follows that

γSmale(φγ,m)≤ C−1supk≥2

∣∣∣∣∣∣∣∣∣ 1
k!

dk
f P

∣∣∣∣∣∣∣∣∣1/(k−1)
. (26)

Let 0 denote the supremum on the right-hand side of (26). By Smale’s theorem, together with (22) and (26),
if |γ ·ω f | ≤

1
34C20−1

∥γ ∥, then there is a t ∈ C such that |t | ≤ 2C−1
|γ ·ω f |∥γ ∥

−1 and γ ·P( f + tm)= 0.
The claim follows with C f

.
= 2C−1 and

εf
.
= min

(
1
34

C20−1,
ω f ·ω f

2∥ω f ∥

)
. (27)

This concludes the proof. □

The constants C f and εf are actually computable with simple algorithms. The constant from Lemma 1
is not hard to get with elementary linear algebra. It only remains to compute an upper bound for 0. We
address this issue in Section 2.4.

Corollary 3. For any f ∈ Ũ4, any ε < ε f and any γ ∈ HZ, if |γ · ω f | ≤
1
4ε, then there exists a

monomial m ∈ R4 and t ∈ C such that |t | ≤ C f ε and γ ∈ Pic(X f +tm).

Proof. We may assume that γ ·ω f ̸= 0 (otherwise, choose any m and t = 0). Let γ ′
= γ −

1
4(γ · h)h.

Since h · h = 4, we have γ ′
· h = 0. Moreover, we have γ ′

·ω f = γ ·ω f ̸= 0. In particular, γ ′
̸= 0, and

since γ ′
∈

1
4 HZ, we have ∥γ ′

∥ ≥
1
4 . Then

|γ ′
·ω f | ≤ 4∥γ ′

∥|γ ·ω f | ≤ ε∥γ ′
∥, (28)

and Proposition 2 applies. □

2.4. Effective bounds for the higher derivatives of the period map. In the proof of Proposition 2, only
the quantity 0 is not clearly computable. We show in this section how to compute an upper bound for 0
using the Griffiths–Dwork reduction. We follow here [Griffiths 1969a; Griffiths 1969b].

Firstly, as a variant of (8) avoiding dehomogeneization, we write

P( f )=

(
1

2π i

∫
T (γi )

Vol
f

)
1≤i≤22

, (29)

where Vol is the projective volume form

Vol .
= w dx dy dz − x dw dy dz + y dw dx dz − z dw dx dy. (30)

For any k > 0 and a ∈ R4k−4, we denote∫
aVol

f k
.
=

(
1

2π i

∫
T (γi )

aVol
f k

)
1≤i≤22

∈ HC. (31)



1760 Pierre Lairez and Emre Can Sertöz

For any h ∈ R4 close enough to 0, we have the power series expansion∫
Vol
f +h

=

∑
k≥1

(−1)k−1
∫

hk−1 Vol
f k . (32)

Proposition 4. For any k ≥ 3, there is a linear map Gk : R4k−4 → R8 such that∫
a
f k Vol =

∫
Gk(a)

f 3 Vol .

Moreover, there is a computable constant C , which depends only on f , such that for any k ≥ 3, we have
|||Gk ||| ≤ Ck−3, where R is endowed with the 1-norm (57).

Before we begin the proof of proposition, let us show that this is enough to bound 0. Let

A : a ∈ R8 7→

∫
(a/ f 3)Vol ∈ HC,

then, using (32), we obtain ∫
Vol
f +h

=

∑
k≥1

(−1)k−1 A(Gk(hk−1)), (33)

and it follows that
1
k!

dk
f P(h1, . . . , hk)= (−1)k A(Gk+1(h1 · · · hk)). (34)

In particular, ∥∥∥ 1
k!

dk
f P(h1, . . . , hk)

∥∥∥ ≤ |||A||||||Gk+1|||∥h1 · · · hn∥1 (35)

≤ |||A||||||Gk+1|||∥h1∥1 · · · ∥hn∥1, (36)

and therefore, |||(1/k!)dk
f P||| ≤ |||A|||Ck+1, from which we get

0 ≤ C max
(
|||A|||C2, 1

)
. (37)

Let us remark on how to bound the operator norm of A in practice. The period integrals can be
approximated to arbitrary precision and with rigorous error bounds as in [Sertöz 2019]. This construction
gives a small neighborhood of A in the matrix space. In practice, we represent this neighborhood as
a matrix A′ of complex balls and compute the operator norm of A′ as usual but using complex ball
arithmetic. This will return a real open interval containing |||A||| ̸= 0. If the precision is high enough, 0
will not be contained in the closure of this interval, and we can take the lower bound of the interval.

2.4.1. Proof of Proposition 4. Let R = C[w, x, y, z]. We define two families of maps for this proof.
First, for d ≥ 12, a multivariate division map Qd : Rd → R4

d−3, such that for any a ∈ Rd ,

a =

3∑
i=0

Qd(a)i ∂i f. (38)

Note that such a map exists as soon as d ≥ 12 by a theorem due to Macaulay, see [Lazard 1977, Corollaire,
p. 169]. The choice of Qd is not unique. We fix Q12 arbitrarily and define Qd(a), for d > 12 and a ∈ R12,
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as follows: Write a =
∑3

i=0 xi ai , in such a way that the terms of the sum have disjoint monomial support,
and define

Qd(a)=

3∑
i=0

xi Qd−1(ai ). (39)

It is easy to check that this definition satisfies (38).
Second, for k ≥ 3, we define Gk : R4k−4 → R8 as follows: Begin with G3 = id, and then define Gk

for k ≥ 4 inductively. For a ∈ R4k−4, we write (b0, . . . ,b3)= Q4k−4(a) and define

Gk(a)
.
= Gk−1

( 1
k−1

(∂0b0 + · · · + ∂3b3)
)
. (40)

This map is the Griffiths–Dwork reduction, and it satisfies∫
γ

a�
f k =

∫
γ

Gk(a)�
f 3 . (41)

Lemma 5. For any d ≥ 12, we have |||Qd ||| ≤ |||Q12|||, where R is endowed with the 1-norm and R4 with
the norm ∥( f0, . . . , f3)∥1

.
= ∥ f0∥1 + · · · + ∥ f3∥1.

Proof. For any a ∈ Rd ,

∥Qd(a)∥1 =

3∑
i=0

∥Qd(a)i∥1 ≤

3∑
i=0

3∑
j=0

∥x j Qd−1(a j )i∥1 (42)

=

3∑
i=0

3∑
j=0

∥Qd−1(a j )i∥1 =

∑
j

∥Qd−1(a j )∥1 (43)

≤ |||Qd−1|||
∑

j

∥a j∥1 = |||Qd−1|||∥a∥1, (44)

using, for the last equality, that the terms a j have disjoint monomial support. □

Lemma 6. For any k ≥ 3, we have |||Gk ||| ≤ (4|||Q12|||)
k−3, where R is endowed with the 1-norm.

Proof. We proceed by induction on k (the base case k = 3 is trivial since G3 = id). Let a ∈ R4k−4

and (b0, . . . , b3)= Q4k−4(a). By (40), we have

∥Gk(a)∥1 ≤
|||Gk−1|||

k − 1

(
∥∂0b0∥1 + · · · + ∥∂3b3∥1

)
. (45)

By the induction hypothesis, |||Gk−1||| ≤ (4|||Q12|||)
k−4, and moreover, since each bi has degree 4k − 7,

we have ∥∂i bi∥1 ≤ (4k − 7)∥bi∥1. If follows that

∥Gk(a)∥1 ≤
(
4|||Q12|||

)k−4 4k−7
k−1

(
∥b0∥1 + · · · + ∥b3∥1

)
. (46)

Next, we note that ∥b0∥1 +· · ·+∥b3∥1 = ∥Q4k−4(a)∥1 and, by Lemma 5, we have |||Q4k−4(a)||| ≤ |||Q12|||.
Therefore,

∥Gk(a)∥1 ≤
(
4|||Q12|||

)k−3
∥a∥1, (47)

and the claim follows. □
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3. The Noether–Lefschetz locus

3.1. Basic properties. We define the Noether–Lefschetz locus for quartic surfaces and review a few
classical properties, especially algebraicity, with a view towards Theorem 14 about the degree and the
height of the equations defining the components of the Noether–Lefschetz locus.

3.1.1. Definition. The Noether–Lefschetz locus of quartics NL is the set of all f ∈ U4 such that the rank
of Pic(X f ) is at least 2. Equivalently, in view of (12), NL is the set of quartic polynomials f whose
primitive periods (1) are Z-linearly dependent.

The set NL is locally the union of smooth analytic hypersurfaces in U4. To see this, let ÑL be the
lift of NL in the universal covering Ũ4 of U4. Recall that P : Ũ4 → D is the period map. The Lefschetz
(1,1)-theorem implies

ÑL =

⋃
γ∈HZ\Zh

P−1
{w ∈ D | w · γ = 0}. (48)

That is, ÑL is the pullback of smooth hyperplane sections of D. Since P is a submersion, ÑL is the union
of smooth analytic hypersurfaces. It follows that NL is locally the union of smooth analytic hypersurfaces.

We break NL into algebraic pieces as follows: For any integers d and g, let NLd,g be the set

NLd,g =
{

f ∈ U4 | ∃γ ∈ Pic(X f ) \ Zh : γ · h = d and γ · γ = 2g − 2
}
. (49)

By replacing γ by γ + h or −γ , we observe that

NLd,g = NLd+4,g+d+2 = NL−d,g. (50)

In particular, NLd,g is equal to some NLd ′,g′ with d ′ > 0 and g′
≥ 0, so that

NL =

⋃
d>0

⋃
g≥0

NLd,g. (51)

For γ ∈ HZ, let 1(γ )= (h · γ )2 − 4γ · γ . It is the negative of the discriminant of the lattice generated
by h and γ in HZ, with respect to the intersection product (and it is zero if γ ∈ Zh). It follows from the
Hodge index theorem, see [Hartshorne 1977, Theorem V.1.9] that for any f ∈ U4 and any γ ∈ Pic(X f ),
where1(γ )≥0, with equality if and only if γ ∈Zh. If γ ·h =d and γ ·γ =2g−2, then1(γ )=d2

−8g+8.
We obtain, therefore, that for any d > 0 and g ≥ 0,

NLd,g =


{ f ∈ U4 | ∃γ ∈ Pic(X f ) : γ · h = d,

γ · γ = 2g − 2}, if d2 > 8g − 8,
∅, otherwise.

(52)

It is, in fact, more natural to introduce, for 1> 0, the locus

NL1
.
= { f ∈ U4 | ∃γ ∈ Pic(X f ) :1(γ )=1} (53)

=

⋃
d>0,

d2
≡1 mod 8

NLd,(d2−1)/8+1. (54)
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Due to (50), NL1 reduces to a single NLd,g. Namely,

NL1 =


NL4t,2t2+(8−1)/8, if 1≡ 0 mod 8,
NL4t+1,2t2+t+(9−1)/8, if 1≡ 1 mod 8,
NL4t+2,2t2+2t+(12−1)/8, if 1≡ 4 mod 8,
∅, otherwise,

(55)

where t =
⌈ 1

4

√
1

⌉
. Conversely, each NLd,g = NLd2−8g+8.

3.1.2. Algebraicity. For any d > 0 and g ≥ 0, the set NLd,g is either empty or an algebraic hypersurface
in U4. This is a classical result, e.g., [Voisin 2003, Theorem 3.32], which we recall here to obtain an
explicit algebraic description of NLd,g.

Lemma 7. For any f ∈ U4, d > 0 and g ≥ 0, we have: f ∈ NLd,g if and only if X f contains an effective
divisor with Hilbert polynomial t 7→ dt + 1 − g.

Proof. Assume that X f contains an effective divisor C with Hilbert polynomial t 7→ td + 1 − g. Since
X f is smooth, C is a locally principal divisor and gives an element γ of Pic X f . The integer d is the
degree of C , so it is the number of points in the intersection with a generic hyperplane, that is, d = γ · h.
Moreover, g is the arithmetic genus of C , which is determined by 2g − 2 = γ · γ [Hartshorne 1977,
Exercises III.5.3(b) and V.1.3(a)]. So, f ∈ NLd,g.

Conversely, let f ∈ NLd,g. By definition, there is a divisor C on X f such that its class γ in Pic X f

satisfies γ · h = d and γ · γ = 2g − 2. From the Riemann–Roch theorem for surfaces [Hartshorne 1977,
Theorem V.1.6], we get

dim H 0(X,OX (C))+ dim H 0(X,OX (−C))≥
1
2γ · γ + 2 = g + 1> 0,

so that either C or −C must be linearly equivalent to an effective divisor. Since γ · h > 0, it follows
that −C cannot be effective, and therefore, C must be. As above, the Hilbert polynomial of C is given
by t 7→ dt + 1 − g. □

In light of Lemma 7, the algebraicity of NLd,g is proved by using the Hilbert scheme Hd,g. The
Hilbert scheme Hd,g of degree d and genus g curves in P3 is a projective scheme that parametrizes all
the subschemes of P3 whose Hilbert polynomial is t 7→ dt + 1 − g.

The Hilbert scheme Hd,g may contain components that are not desirable for our purposes. For example,
H3,0, which contains twisted cubics in P3, contains two irreducible components [Piene and Schlessinger
1985]: a 12-dimensional component that is the closure of the space of all smooth cubic rational curves
in P3 and a 15-dimensional component parametrizing the union of a plane cubic curve with a point
in P3. We would be only interested in the first, not in the second component. So we introduce H′

d,g, the
union of components of Hd,g obtained by removing the components that do not correspond to locally
complete-intersection pure-dimensional subschemes of P3.

When d2 > 8g − 8, Lemma 7 can be rephrased as

NLd,g = proj1
{
( f,C) ∈ U4 ×H′

d,g | C ⊂ X f
}
, (56)
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where proj1 denotes the projection U4 ×H′

d,g → U4. Since H′

d,g is a projective variety, and the condi-
tion C ⊂ X f is algebraic, this shows that NLd,g is a closed subvariety of U4 (for more details about this
construction, see [Voisin 2003, §3.3]).

We note, furthermore, that NLd,g is clearly invariant under the action of the Galois group of algebraic
numbers. Therefore, it can be defined over the rational numbers.

As a consequence, for any nonnegative integers d and g, there is a squarefree primitive homogeneous
polynomial NLd,g ∈ Z[u1, . . . , u35] in the 35 coefficients of the general quartic polynomial that is unique
up to sign and whose zero locus is NLd,g in U4. Similarly, we define NL1 up to sign as the unique
squarefree primitive polynomial vanishing exactly on NL1.

3.2. Height of multiprojective varieties. The mainstay of our results is a bound on the degree and size
of the coefficients of the polynomials NLd,g. The determination of these bounds is based on (56) and
involves the theory of heights of multiprojective varieties as developed by D’Andrea et al. [2013], and,
before them, [Bost et al. 1991; Philippon 1995; Krick et al. 2001; Rémond 2001a; 2001b], among others.
We recall here the results that we need, following [D’Andrea et al. 2013].

3.2.1. Heights of polynomials. Let f =
∑

α cαxα ∈ C[x1, . . . , xn]. We recall the following different
measures of height of f :

∥ f ∥1
.
=

∑
α

|cα|, (57)

∥ f ∥sup
.
= sup|x1|=···=|xn |=1| f (x)|, (58)

m( f ) .
=

∫
[0,1]n

log | f (e2π i t1, . . . , e2π i tn )| dt1 · · · dtn. (59)

Lemma 8 [D’Andrea et al. 2013, Lemma 2.30]. For any homogeneous polynomial f ∈ C[x1, . . . , xn],

exp(m( f ))≤ ∥ f ∥sup ≤ ∥ f ∥1 ≤ exp(m( f ))(n + 1)deg f .

3.2.2. Extended Chow ring. The extended Chow ring [D’Andrea et al. 2013, Definition 2.50] is a tool
to track a measure of height of multiprojective varieties when performing intersections and projections.
We present here a very brief summary. Bold letters refer to multiindices, and all varieties are considered
over Q. Let n ∈ Nr , and let Pn be the multiprojective space Pn

= Pn1 × · · · × Pnm .
An algebraic cycle is a finite Z-linear combination

∑
V nV V of irreducible subvarieties of Pn. The

irreducible components of an algebraic cycle, as above, are the irreducible varieties V such that nV ̸= 0.
An algebraic cycle is equidimensional if all its irreducible components have the same dimension. An
algebraic cycle is effective if nV ≥ 0 for all V . The support of X , denoted by supp X , is the union of the
irreducible components of X .

Let A∗(Pn
; Z) be the extended Chow ring, namely

A∗(Pn
; Z)

.
= R[η, θ1, . . . , θm]/(η2, θn1+1

1 , . . . , θnm+1
m ), (60)
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where θi is the class of the pullback of a hyperplane from Pni and η is used to keep track of heights of
varieties. For two elements a and b of this ring, we write a ≤ b when the coefficients of b − a in the
monomial basis are nonnegative.

To an algebraic cycle X of Pn, we associate an element [X ]Z of A∗(Pn
; Z) [D’Andrea et al. 2013,

Definition 2.50]. If X is effective, then [X ]Z ≥ 0. The coefficients of the terms in [X ]Z for monomials not
involving η record the usual multidegrees of X . The terms involving η record mixed canonical heights
of X . The definition of these heights is based on the heights of various Chow forms associated to X
[D’Andrea et al. 2013, §2.3]. For the computations in this paper, we only need the following results:

Let f ∈ Z[x1, . . . , xr ] be a nonzero multihomogeneous polynomial with respect to the group of vari-
ables x1, . . . , xn . We assume that f is primitive, that is, the gcd of the coefficients of f is 1. The element
associated in A∗(Pn

; Z) to the hypersurface V ( f )⊂ Pn is [D’Andrea et al. 2013, Proposition 2.53 (2)]

[V ( f )]Z = m( f )η+ degx1
( f )θ1 + · · · + degxr

( f )θr . (61)

To such a polynomial f , we also associate [D’Andrea et al. 2013, Equation (2.57)]

[ f ]sup
.
= log(∥ f ∥sup)η+ degx1

( f )θ1 + · · · + degxr
( f )θr . (62)

3.2.3. Arithmetic Bézout theorem. Let X be an effective cycle and H a hypersurface in Pn. They intersect
properly if no irreducible component of X is in H . When X and H intersect properly, one defines an
intersection product X · H , that is an effective cycle supported on X ∩ H . If X is equidimensional of
dimension r , then X · H is equidimensional of dimension r − 1.

The following statement is an arithmetic Bézout bound that not only bounds the degree, as with the
classical Bézout bound, but also the height of an intersection:

Theorem 9 [D’Andrea et al. 2013, Theorem 2.58]. Let X be an effective equidimensional cycle on Pn

and f ∈ Z[x1, . . . , xm]. If X and V ( f ) intersect properly, then [X · V ( f )]Z ≤ [X ]Z · [ f ]sup.

This theorem can be applied (as in [D’Andrea et al. 2013, Corollary 2.61]) to bound the height of the
irreducible components of a variety in terms of its defining equations.

Proposition 10. Let Z ⊂ Pn be an equidimensional variety, and let X be V ( f1, . . . , fs)∩ Z , where fi is
a multihomogeneous polynomial of multidegree at most d and sup-norm at most L. Let Xr be the union of
all the irreducible components of X of codimension r in Z. Then

[Xr ]Z ≤ [Z ]Z

(
log(sL)η+

m∑
i=1

diθi

)r

.

Proof. Let (yi j ) be a new group of variables, with 1 ≤ i ≤ r and 1 ≤ j ≤ s. Let gi
.
=

∑s
j=1 yi j f j

and X ′ .
= V (g1, . . . , gr ) in Pk

× Z , with k = rs − 1 We first claim that Pk
× Xr is a union of components

of X ′. Indeed, let ξ0 be the generic point of Pk and ξ1 be the generic point of a component Y of Xr , so
that ξ = (ξ0, ξ1) is the generic point of the component Pk

× Y of Pk
× Xr . Since X has codimension r

at ξ1, the generic linear combinations g1, . . . , gr form a regular sequence at ξ (in other words, they
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form a regular sequence at ξ1 for generic values of the vi j ). Therefore, X ′ has codimension r at ξ .
Since Pk

× Y ⊆ X ′, it follows that Pk
× Y is a component of X ′.

Let X ′
r be the union of the components of codimension r of X ′. The argument above shows that

[Pk
× Xr ]Z ≤ [X ′

r ]Z. Besides, by repeated application of [D’Andrea et al. 2013, Corollary 2.61],

[X ′

r ]Z ≤ [Pk
× Z ]Z

r∏
i=1

[gi ]sup, (63)

where θ0 is the variable attached to Pk in the extended Chow ring of Pk
×Pn. We compute, using (61), that

[gi ]sup ≤ log(sL)η+ θ0 +

s∑
i=1

diθi . (64)

Finally, we note that [Pk
×Xr ]Z =[Xr ]Z and [Pk

×Z ]Z =[Z ]Z by [D’Andrea et al. 2013, Propositions 2.51.3
and 2.66]. □

Proposition 11. Let X be an equidimensional closed subvariety of Pk
× Pn, and let Y ⊂ Pn be the

projection of X. If Y is equidimensional, then

θ k
0 [Y ]Z ≤θdim X−dim Y

0 [X ]Z ∈ A∗(Pk
× Pn

; Z),

where θ0 is the variable attached to Pk in the extended Chow ring of Pk
× Pn.

Proof. We will argue by induction on r .
= dim X − dim Y . When r = 0, this is [D’Andrea et al. 2013,

Proposition 2.64].
Suppose now that r > 0 and X is irreducible. Let Q[ y, x1, . . . , xm] denote the multihomogeneous

coordinate ring of Pk
× Pn. There is an i , with 0 ≤ i ≤ k, such that H .

= V (yi )⊂ Pk
× Pn intersects X

properly (otherwise, X would be included in all V (yi ) and would be empty). Since the fibers of X → Y are
positive dimensional, H intersects each fiber. In particular, the set-theoretical projections of X and X ∩ H
coincide. As X is irreducible, so is Y . In particular, there is an irreducible component X ′

⊂ X ∩ H that
maps to Y . By the induction hypothesis applied to X ′, we have θ k

0 [Y ]Z ≤ θdim X ′
−dim Y

0 [X ′
]Z. Moreover,

[X ′
]Z ≤ [X ]Z[yi ]sup, and, in view of (62), [yi ]sup = θ0. The claim follows.

If X is reducible, then we apply the inequality above to each of the irreducible components of Y
together with an irreducible component of X mapping onto that component. □

3.3. Explicit equations for the Noether–Lefschetz loci. Following Gotzmann [1978], Bayer [1982] and
the exposition of Lella [2012], we describe the equations defining the Hilbert schemes of curves in P3.
An explicit description of the Noether–Lefschetz loci NLd,g follows.

3.3.1. Hilbert schemes of curves. For d>0 and g ≥0, let Hd,g be the Hilbert scheme of curves of degree d
and genus g in P3. It parametrizes subschemes of P3 with Hilbert polynomial p(m) .

= dm+1−g. Smooth
curves in P3 of degree d and genus g, in particular, have Hilbert polynomial p(m). Let R = C[w, x, y, z]
be the homogeneous coordinate ring of P3. For m ≥ 0, let Rm denote the m-th homogeneous part of R,
and let q(m)= dim Rm − p(m).
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The Hilbert scheme Hd,g can be realized in a Grassmannian variety as follows: A subscheme X of P3

is uniquely defined by a saturated homogeneous ideal I of R. If the Hilbert polynomial of X is p, then I
is the saturation of the ideal generated by the degree r slice Ir

.
= I ∩ Rr [Gotzmann 1978] and [Bayer

1982, §II.10], where

r =

(d
2

)
+ 1 − g (65)

is the Gotzmann number of p [Bayer 1982, §II.1.17]. For practical reasons, we need r ≥ 4, so we define
instead

r = max
((d

2

)
+ 1 − g, 4

)
. (66)

So X is entirely determined by Ir , which is a q(r)-dimensional subspace of Rr .
Let G be the Grassmannian variety of q(r)-dimensional subspaces of Rr . As a set, one can con-

struct Hd,g as the subset of all 4 ∈ G such that the ideal generated by 4 in R defines a subscheme of P3

with Hilbert polynomial p. In fact, Hd,g is a subvariety that is defined by the following condition [Bayer
1982, §VI.1]:

Hd,g =
{
4 ∈ G | dim(R14)≤ q(r + 1)

}
, (67)

where R1 is the space of linear forms in w, x, y, z, so that R14 is a subspace of Rr+1.
Several authors gave explicit equations for Hd,g in the Plücker coordinates [Bayer 1982; Grothendieck

1966; Gotzmann 1978; Brachat et al. 2016]. We will prefer here a more direct path that avoids the Plücker
embedding.

3.4. Equations for the relative Hilbert scheme. Define the relative Hilbert scheme of curves inside
quartic surfaces

Hd,g(4)
.
=

{
( f,C) ∈ P(R4)×Hd,g | C ⊂ V ( f )

}
, (68)

for each d > 0 and g ≥ 0.
We define the following auxiliary spaces to better describe (68): First, define the ambient space

A .
= P(R4)× P

(
End(Cq(r)−Nr−4, Rr )

)
× P

(
End(Rr+1,Cp(r+1))

)
. (69)

Second, let B = {( f, φ, ψ) ∈ A} be the set of all triples satisfying the conditions

(i) Rr−3 f ⊆ kerψ ,

(ii) R1 im(φ)⊆ kerψ ,

(iii) imφ ∩ Rr−4 f = 0,

(iv) φ and ψ are full rank.

Finally, we denote by B the Zariski closure of B.

Lemma 12. The map B → Hd,g(4) defined by ( f, φ, ψ) 7→ ( f, Rr−4 f + imφ) is well defined and
surjective.
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Proof. Let ( f, φ, ψ) ∈ B, and let 4 = Rr−4 f + imφ. Constraint (iv) implies that imφ has dimen-
sion q(r)− Nr−4. Together with Constraint (iii), we have dim4= q(r). Moreover, Constraint (iv) implies
that kerψ has dimension q(r + 1). In particular, since R14= Rr−3 f + R1 imφ, Constraints (i) and (ii)
imply that R14 has dimension at most q(r + 1). So, 4 ∈ Hd,g(4). Since Rr−4 f ⊆4, the polynomial f
is in the saturation of the ideal generated by 4. Hence, ( f, 4) ∈ Hd,g(4).

Conversely, let ( f, 4) ∈ Hd,g(4), then Rr−4 f ⊂ 4 and there is a full rank map φ : Cq(r)−Nr−4 → Rr

such that imφ complements Rr−4 f in4. Furthermore, dim R14≤ q(r +1), because 4∈Hd,g, so there is
a full rank map ψ : Rr+1 → Cp(r+1) such that R14⊆ kerψ . So, ( f, 4) is the image of ( f, φ, ψ) ∈ B. □

Lemma 13. For any a ≥ 0, let Ba be the union of the codimension a components of B. Then

[Ba]Z ≤
(
15 log(d + 2)η+ θ1 + θ2 + θ3

)a

Proof. Let B′ be the closed set defined by Constraints (i) and (ii). Constraints (iii) and (iv) are open, so
any component of B is a component of B′. In particular, [Ba]Z ≤ [B′

a]Z.
Constraint (i) is expressed with p(r + 1)Nr−3 polynomial equations of multidegree (1, 0, 1) (with

respect to f , φ and ψ , respectively). Namely, ψ(m f )= 0 for every monomial m in Rr−3. Each p(r + 1)
components of the equation ψ(m f )= 0 involves a sum of 35 terms (since f , as a quartic polynomial,
contains only 35 terms) with coefficients 1. So the 1-norm of these constraints is at most 35 (which is
also at most Nr , since r ≥ 4).

Constraint (ii) is expressed with 4p(r +1)(q(r)− Nr−4) polynomial equations of multidegree (0, 1, 1).
Namely, ψ(vφ(e))= 0 for any basis vector e and any variable v ∈ {w, x, y, z}. Each p(r +1) component
of the equation ψ(vφ(e)) = 0 involves a sum of Nr terms with coefficients 1. So the 1-norm of these
constraints is at most Nr .

The claim is then a consequence of Proposition 10, with

s = p(r + 1)Nr−3 + 4p(r + 1)(q(r)− Nr−4) and L = Nr .

We check routinely, with Mathematica, that sL ≤ (d + 2)15. □

Theorem 14. There is an absolute constant A > 0 such that for any d > 0 and g ≥ 0, we have

deg(NLd,g)≤ Ad9
and ∥NLd,g∥1 ≤ 2Ad9

.

Proof. We assume NLd,g is nonempty, since these inequalities are trivially satisfied if NLd,g = ∅ with
NLd,g = 1. Let P2

.
= P

(
End(Cq(r)−Nr−4, Rr )

)
and P3

.
= P

(
End(Rr+1,Cp(r+1))

)
denote the second and

third factors of A, respectively. Let α .
= (q(r)− Nr−4)Nr − 1 and β .

= p(r + 1)Nr+1 − 1 denote the
dimensions of P2 and P3, respectively. Let E be the projection of B on P(R4)× P2. The fibers of the
map B → E are projective subspaces of P3 since Constraints (i) and (ii) are linear in ψ . The dimension
of these fibers are β ′ .

= p(r + 1)2 − 1. So, by Proposition 11,

θ
β

3 [E]Z ≤ θ
β ′

3 [B]Z. (70)
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Next, the map B → Hd,g(4) factors through E , and the fibers of the corresponding map E → Hd,g(4)
have dimension α′ .

= (q(r) − Nr−4)q(r) − 1. Finally, let e be the dimension of the fibers of the
map Hd,g(4) → NLd,g. (If this dimension is not generically constant, we work one component at
a time.) Once again, by Proposition 11, we obtain

θα2 [NLd,g]Z ≤ θα
′
+e

2 [E]Z. (71)

Since [NLd,g]Z = m(NLd,g)η+ deg(NLd,g)θ1, taking L = 15 log(d + 2), we get

deg NLd,g ≤ coeff. of θ1θ
α−α′

−e
2 θ

β−β ′

3 in (Lη+ θ1 + θ2 + θ3)
α+β−α′

−β ′
−e+1 (72)

≤ 3α+β−α′
−β ′

−e+1. (73)

The exponent is a polynomial in d and g. Unless d2
≥ 8g − 8, we have that NLd,g is empty. So, we

may bound the exponent with a polynomial only in d, which turns out to be of degree 9. Therefore,
deg NLd,g ≤ Ad9

for some constant A > 0.
Similarly,

m(NLd,g)≤ coeff. of ηθα−α′
−e

2 θ
β−β ′

3 in (Lη+ θ1 + θ2 + θ3)
α+β−α′

−β ′
−e+1 (74)

≤ (α+β −α′
−β ′

− e + 1)L3α+β−α′
−β ′

−e (75)

≤ 2O(d9). (76)

By [D’Andrea et al. 2013, Lemma 2.30.3],

∥NLd,g∥1 ≤ exp(m(NLd,g))36deg NL1, (77)

and this implies the claim, for some other constant A > 0. □

For the following, we write a↑b for ab. This is a right-associative operation.

Corollary 15. There is an absolute constant A > 0 such that for any 1> 0,

deg(NL1)≤ A↑1↑ 9
2 and ∥NL1∥1 ≤ 2↑A↑1↑ 9

2 .

In fact, one can obtain the following explicit bounds:

deg(NL1)≤ 3(1+20)9/2 and log2 ∥NL1∥1 ≤ (1+ 60)53(1+20)9/2 .

Proof. The first statement follows directly from (55) and Theorem 14 using a different A. The second
statement is found by carrying out the arguments in the proof of Theorem 14 with the help of a computer
algebra system. □

3.5. How good are these bounds? We can compare our degree bounds for NL1 to the exact degrees
computed by Maulik and Pandharipande [2013], from which it actually follows that

deg NL1 = O(119/2). (78)
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This sharper bound does not directly imply a sharper bound on the height of NL1, but it suggests the
following conjecture. This would improve subsequently Theorems 17 and 19. In particular, (2) would be
exponential in the size of the coefficients, as opposed to being doubly exponential.

Conjecture 16. As 1 goes to ∞, we have

log ∥NL1∥1 ≤119/2+o(1).

Now we turn to the details of (78). Following Maulik and Pandharipande [2013] (but replacing q
by q8), consider the power series

A .
=

∑
n∈Z

qn2
, B .

=

∑
n∈Z

(−1)nqn2
, 9 = 108

∑
n>0

q8n2
, (79)

and 2 defined by

2222
.
= 3A21

−81A19 B2
−627A18 B3

−14436A17 B4
−20007A16 B5

−169092A15 B6
−120636A14 B7

−621558A13 B8

−292796A12 B9
−1038366A11 B10

−346122A10 B11

−878388A9B12
−207186A8B13

−361908A7B14
−56364A6B15

−60021A5 B16
−4812A4 B17

−1881A3 B18
−27A2 B19

+B21. (80)

From [Maulik and Pandharipande 2013, Corollary 2], we have, for any 1> 0,

deg NL1 ≤ coeff. of q1 in 2−9. (81)

In fact, this is an equality when the components of NL1 are given appropriate multiplicities. Let 2[k]

denote the coefficient of qk in 2. By (81), we only need to bound 2[1] in order to bound deg NL1. To
do so, replace every negative sign in the definition of 2 by a positive sign, including those in B, to obtain
the coefficientwise inequality

2≤ 6
( ∑

n∈Z

qn2
)21

. (82)

The coefficient of qk in
(∑

n∈Z qn2)21 is

r21(k)
.
= #

{
(a1, . . . , a21) ∈ Z21

∣∣∣ ∑
i

a2
i = k

}
. (83)

The asymptotic bound rd(k)= O(k d/2−1), for d > 4, is well known, e.g., [Krätzel 2000, Satz 5.8].

4. Separation bound

We now state and prove the main results. Recall that a↑b = ab is right associative, and for γ ∈ HZ, we
defined the discriminant 1(γ ) as (γ · h)2 − 4γ · γ .
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Theorem 17. For any f ∈ U4 with algebraic coefficients, there is a computable constant c > 1 such that
for any γ ∈ H 2(X f ,Z), if γ ·ω f ̸= 0, then

|γ ·ω f |>
(
2↑c↑1(γ )↑9

2

)−1
.

To make the connection with (1), recall the map T introduced in (7). We choose a basis γ1, . . . , γ21

of H3(P
3
\ X f ,Z)≃ HZ/Zh, write T (γ )=

∑
i xiγi and observe that 1(γ ) is a quadratic function of the

coordinates xi , so that 1(γ )1/2 ≤ C maxi |xi | for some constant C depending on the choice of basis.

4.1. Multiplicity of Noether–Lefschetz loci. The multiplicity at a point p ∈ Cs of some nonzero polyno-
mial F ∈ C[x1, . . . , xs] is the unique integer k such that all partial derivatives of F of order < k vanish
at p and some partial derivative of order k does not. It is denoted by multp F .

The multiplicity of NL1 at some f ∈ U4 is related to the elements of Pic(X f ) with discriminant 1.
For 1 > 0, let E1 be a set of representatives for elements of discriminant 1 modulo the equivalence
relation ∼ on HZ defined by

γ ∼ γ ′, if ∃a ∈ Q∗, b ∈ Q : γ ′
= aγ + bh. (84)

Lemma 18. For any f ∈ U4 and any 1> 0,

mult f NL1 = #(Pic X f ∩ E1).

Proof. Let ÑL1 be the lift of NL1 in Ũ4. Arguing as in Section 3.1.1, ÑL1 is the union of smooth
analytic hypersurfaces

ÑL1 =

⋃
η∈E1

P−1
{w ∈ D | w · η = 0}. (85)

Then the same holds locally for NL1.
For any f ∈ U4, it follows from the smoothness of branches of NL1 that mult f NL1 is exactly the

number of branches meeting at f . The branches meeting at f are described by the elements of Pic X f

with discriminant 1. Two elements γ and γ ′ describe the same branch (that is, the same hyperplane
section of D) if and only if γ ′

∼ γ . So mult f NL1 is exactly the number of equivalence classes in
{γ ∈ Pic X f |1(γ )=1} for this relation. □

4.2. Proof of Theorem 17. We first apply Corollary 3. Let ε = 4|γ · ω f |. The corollary gives con-
stants C f > 0 and εf > 0 (depending only on f ) such that if ε < εf , then there exists a monomial m ∈ R4

and t ∈ C such that
|t | ≤ C f ε (86)

and
γ ∈ Pic X f +tm . (87)

Assume ε < εf . As u varies, the number #
(
Pic(X f +um)∩ E1

)
has a strict local maximum at u = t , where

t and m are as above. By Lemma 18, so does mult f +um NL1(γ ). In particular, there is some higher-order
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partial derivative of NL1 which vanishes at f + tm but not at f + um, for u close to but not equal to t .
Let α ∈ N35 be the multiindex for which

P .
=

1
α1! · · ·α35!

∂ |α|NL1
∂uα

∈ Z[u1, . . . , u35] (88)

is this derivative. For a monomial uβ .
= uβ1

1 · · · uβ35
35 , we have

1
α1! · · ·α35!

∂ |α|uβ

∂uα
=

35∏
i=1

(
βi

αi

)
uβ−α. (89)

Since
(
βi
αi

)
≤ 2βi , it follows that∥∥∥∥ 1

α1! · · ·α35!

∂ |α|NL1
∂uα

∥∥∥∥
1
≤ 2deg NL1∥NL1∥1. (90)

Let Q ∈ Q[s] be the polynomial Q(s) .
= P( f + sm). By construction, Q ̸= 0 and Q(t) = 0.

Clearly deg Q ≤ deg NL1, and we check that

∥Q∥1 ≤ ∥P∥1
(
∥ f ∥1 + 1

)deg P
. (91)

Then

∥Q∥1 ≤ 2deg NL1∥NL1∥1
(
∥ f ∥1 + 1

)deg NL1
. (92)

From Corollary 15, we find a constant c depending only on f such that

deg Q ≤ c↑1↑9
2 and ∥Q∥1 ≤ 2↑c↑1↑9

2 . (93)

We write Q =
∑deg Q

i=0 qi si . Let k be the smallest integer such that qk ̸= 0. Since Q(t)= 0, it follows
that

|qk tk
| ≤

deg Q∑
i=k+1

|qi t i
|. (94)

If ε < C−1
f , we have |t |< 1, by (86), and it follows that

|t | ≥
|qk |

∥Q∥1
. (95)

Let D ≥ 1 be the degree of the number field generated by the coefficients of f . Let H > 0 be an upper
bound for the absolute logarithmic Weil height for the coefficient vector of f [Waldschmidt 2000, p. 77].
Then qk is an algebraic number defined by a polynomial expression q̃k( f ) in the coefficients of f , with
q̃k having integer coefficients. Liouville’s inequality [Waldschmidt 2000, Proposition 3.14] gives

|qk | ≥ ∥q̃k∥
−D+1
1 e−DH deg q̃k . (96)

It is easy to see that deg q̃k ≤ deg NL1 and ∥q̃k∥1 ≤ 2deg NL1∥NL1∥1, the latter can be bounded by ∥Q∥1.
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By (86), this leads to
ε ≥

(
2↑c↑1↑ 9

2

)−D(1+H)
, (97)

for some other constant c depending only on f . Recall that (97) holds with the assumptions that ε ≤ ε f

and ε < C−1
f . However, we can choose c large enough so that the right-hand side of (97) is smaller

than ε f and C−1
f . Then (97) holds unconditionally. Absorb the outer exponent of (97) into c to conclude

the proof of Theorem 17. □

4.3. Numbers à la Liouville. Let (θi )i≥0 be a sequence of positive integers such that θi is a strict divisor
of θi+1 for all i ≥ 0 (in particular, θi ≥ 2i .) Consider the number

Lθ
.
=

∞∑
i=0

θ−1
i .

As a corollary to the separation bound obtained in Theorem 17, the following result states that Lθ is not a
ratio of periods of quartic surfaces when θ grows fast enough:

Theorem 19. If θi+1 ≥ 2↑2↑θi↑10, for all i large enough, then Lθ is not equal to (γ1 ·ω f )/(γ2 ·ω f ) for
any γ1, γ2 ∈ HZ and any f ∈ U4 with algebraic coefficients.

Proof. Let lk =
∑k

i=0 θ
−1
i . Since θi divides θi+1, we can write lk = uk/θk for some integer uk . And since

the divisibility is strict, θi ≥ 2i and uk ≤ 2θk . Moreover,

0< Lθ − lk ≤ 2θ−1
k+1, (98)

using θk+i+1 ≥ 2iθk+1, for any i ≥ 0. Assume now that Lθ = (γ1 ·ω f )/(γ2 ·ω f ) for some γ1, γ2 ∈ HZ

and some f ∈ U4 with rational coefficients. Then, with

γk
.
= θkγ1 − ukγ2, (99)

we check that 1(γk)= O(θ2
k ) and that

0< |θk ||γ2 ·ω f |(Lθ − lk)= |γk ·ω f | ≤ C
θk

θk+1
, (100)

for some constant C . By Theorem 17, we obtain

(2 ↑ c ↑ θk ↑ 9)−1
≤ C

θk

θk+1
, (101)

for some constant c> 0 which depends only on f . This contradicts the assumption on the growth of θ . □

4.4. Computational complexity. Given a polynomial f ∈ Q[w, x, y, z] ∩ U4 and a cohomology class
γ ∈ H 2(X f ,Z), we can decide if γ ∈ Pic(X f ) (that is, γ ·ω f = 0) as follows:

(a) Compute the constant c in Theorem 17.

(b) Let ε =
(
2↑c↑1(γ )↑ 9

2

)−1 and compute an approximation s ∈ C of the period γ · ω f such that
|s − γ ·ω f |<

1
2ε.

Then γ is in Pic(X f ) if and only if |s|< 1
2ε.
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Computing the Picard group itself is an interesting application of this procedure. Algorithms for
computing the Picard group of X f , or even just the rank of it, break the problem into two: a part gives
larger and larger lattices inside Pic(X f ) while the other part gets finer and finer upper bounds on the
rank of Pic(X f ) [Charles 2014; Hassett et al. 2013; Poonen et al. 2015]. The computation stops when
the two parts meet. Approximations from the inside are based on finding sufficiently many elements
of Pic(X f ). So while deciding the membership of γ in Pic(X f ) can be solved by computing Pic(X f )

first, it makes sense not to assume prior knowledge of the Picard group and to study the complexity of
deciding membership as 1(γ )→ ∞, with f fixed.

Step (a) does not depend on γ , so only the complexity of Step (b) matters, that is, the numerical
approximation of γ ·ω f . This approximation amounts to numerically solving a Picard–Fuchs differential
equation [Sertöz 2019] and the complexity is (log(1/ε))1+o(1) [Beeler et al. 1972; van der Hoeven 2001;
Mezzarobba 2010; 2016]. With the value of ε in Step (b), we have a complexity bound of exp(1(γ )O(1))

for deciding membership.
For the sake of comparison, we may speculate about an approach that would decide the membership

of γ in Pic(X f ) by trying to construct an explicit algebraic divisor on X f whose cohomology class is equal
to γ . It would certainly need to decide the existence of a point satisfying some algebraic conditions in
some Hilbert scheme Hd,g, with d = O(1

1
2 ) and g = O(1) (see Section 3.1.1). Embedding Hd,g (or some

fibration over it, as we did in Section 3.4) in some affine chart of a projective space of dimension d O(1)

will lead to a complexity of exp(1(γ )O(1)) for deciding membership in this way.
However, if Conjecture 16 holds true, then the complexity of the numerical approach for deciding

membership would reduce to 1(γ )O(1).

5. Concluding remarks

5.1. Going beyond quartic surfaces. There are two directions in which the main result, Theorem 17,
can, in principle, be generalized beyond quartic surfaces.

In the first direction, our effective methods naturally extend to complete intersections in complete
simplicial toric varieties, provided the complete intersection has a K3 type middle cohomology satisfying
the integral Hodge conjecture. By this last condition, we mean that a single period should govern if a
homology cycle is algebraic. For instance, cubic fourfolds satisfy all of these conditions [Voisin 2013].
Of course, polarized K3 surfaces of degrees 2, 6 and 8 also work, in addition to the degree 4 case covered
here.

To generalize the result to this context, one needs to compute two ingredients. The height and degree
bounds for the image of a Hilbert schemes, and the “spread” of the period map (as in Section 2.4). Our
use of effective Nullstellensatz to compute heights clearly extends. To compute the spread, we used the
Griffiths–Dwork reduction, which continues to work for complete intersections in compact simplicial
toric varieties [Batyrev and Cox 1994; Dimca 1995; Mavlyutov 1999].
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The second direction one could generalize the result is to stick with surfaces in P3 but to increase the
degree. In this case, we do not know how to control the vanishing of individual period integrals. However,
the Lefschetz (1, 1)-theorem can be used to relate algebraic cycles to the simultaneous vanishing of a
vector of periods coming from all holomorphic forms. For instance, on quintic surfaces one can separate
4-dimensional (holomorphic) period vectors from one another. The deduction of the separation bounds
would be possible from a parallel discussion to the one provided here. This application would make it
possible to prove our heuristic Picard group computations of surfaces [Lairez and Sertöz 2019].

It would also be highly desirable to be able to numerically verify arbitrary, nonlinear, relations between
periods of quartics. However, in order to generalize our approach to this setup, one would need the
integral Hodge conjecture on products of quartic surfaces.

5.2. Closed formulae for the bounds. It is possible to determine a closed formula, involving the height
of f , that bounds the constant c in Theorem 17. We removed the deduction of such a formula due to the
excessive technical complexity it presents. In addition, the pursuit of a human readable bound gets us
further and further from the optimal bounds. We envisioned using the constant c on computer calculations
where an algorithmic deduction of c is possible and preferable. We designed our proofs so that such an
algorithm is explicit in the proofs. An implementation of this algorithm would be beneficial after the
bounds for the heights of the Noether–Lefschetz loci are brought down significantly.

5.3. Optimal bounds. We conjectured by analogy (Conjecture 16) that our bounds for the height of the
Noether–Lefschetz locus can be lowered by one level of exponentiation. One can be more optimistic
based on the following observation: For many example quartics X f , we determined the equations for the
Hilbert scheme of lines over each pencil X f +tm for monomials m. Then, going through the algorithm
in the proofs, we computed sharper separation bounds on these example quartics. On these examples,
the separation bound was around 10−60. In other words, it was sufficient to deduce whether a homology
cycle was the class of a line using only 60 digits of precision. This suggests that for homology cycles of
small discriminant, optimal separation bounds may be small enough to be used in practice. It would be
interesting to see if generalizing the work of Maulik and Pandharipande from degrees to heights by using
the modularity of arithmetic Chow rings [Kudla 2003] would give close to optimal bounds.

5.4. Analogies with related work. Our construction bears a remote resemblance to the analytic subgroup
theorem of Wüstholz [1989] and the period theorem of Masser and Wüstholz [1993]. The analytic subgroup
theorem and its applications work with the exponential map expA : T0 A → A of a (principally polarized)
abelian variety A over Q ⊂ C. The periods of A form a lattice 3 .

= ker exp A. Let P = exp−1
A A(Q) be

the periods of all algebraic points on A.
The analytic subgroup theorem implies that Q-linear relations between any set of elements S ⊂ P are de-

termined by abelian subvarieties of B: there is an abelian subvariety such that T0 B coincides with the span
of S. Observe that the linear relations live on the domain of the transcendental map expA and are converted
to an algebraic subvariety on the codomain. When S = {γ } ⊂3, the Masser–Wüstholz period theorem
bounds the degree of smallest B whose tangent space contains γ using the height of A and the norm of γ .
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In our work, we consider the space U4 of smooth homogeneous quartic polynomials of degree 4 and
its universal cover Ũ4 → U4. We then take the (transcendental) period map P : Ũ4 → HC. Note that the
Z-relations between periods are realized as linear subspaces of the period domain, whereas the preimage
of these linear spaces are the Noether–Lefschetz loci. These Noether–Lefschetz loci map to algebraic
hypersurfaces on the space U4.

Superficially, the main difference between the two approaches is the direction of the naturally appearing
transcendental maps that linearize relations between periods. However, the nature of the two transcendental
maps appearing in both constructions also differs substantially.
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