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Nathan Geist and Ezra Miller

The ring R of real-exponent polynomials in n variables over any field has global dimension n+ 1 and flat
dimension n. In particular, the residue field k= R/m of R modulo its maximal graded ideal m has flat
dimension n via a Koszul-like resolution. Projective and flat resolutions of all R-modules are constructed
from this resolution of k. The same results hold when R is replaced by the monoid algebra for the positive
cone of any subgroup of Rn satisfying a mild density condition.

1. Introduction

Overview. The aim of this note is to prove that the commutative ring R of real-exponent polynomials
in n variables over any field k has global dimension n + 1 and flat dimension n (Theorem 3.6 and
Corollary 2.10). It might be unexpected that R has finite global dimension at all, but it should be more
expected that the flat dimension is achieved by the residue field k= R/m of R modulo its maximal graded
ideal m; a Koszul-like construction shows that it is (Proposition 2.4 along with Example 2.5). In one
real-exponent variable the residue field k also achieves the global dimension bound of 2 (Lemma 3.2),
and this calculation lifts to n variables by tensoring with an ordinary Koszul complex (Proposition 3.4),
demonstrating global dimension at least n + 1. Projective and flat resolutions of all R-modules are
constructed from resolutions of the residue field in the proofs of Theorems 3.6 and 2.9 to yield the
respective upper bounds of n+ 1 and n. The results extend to the monoid algebra for the positive cone of
any subgroup of Rn satisfying a mild density condition (Definition 4.1 and Theorem 4.3).

Background. Global dimension measures how long projective resolutions of modules can get, or how
high the homological degree of a nonvanishing Ext module can be [20, Theorem 4.1.2]. Finding rings of
finite global dimension is of particular value, since they are considered to be smooth, generalizing the
best-known case of local noetherian commutative rings [2; 19], which correspond to germs of functions
on nonsingular algebraic varieties.

The related notion of flat dimension (also called Tor dimension or weak global dimension) measures
how long flat resolutions of modules can get, or how high the homological degree of a nonvanishing
Tor module can be. Flat dimension is bounded by global dimension because projective modules are
flat. These two dimensions agree for noetherian commutative rings [20, Proposition 4.1.5]. Without the
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noetherian condition equality can fail; commutative examples include von Neumann regular rings that are
infinite products of fields (see [20, page 98]), but domains are harder to come by.

The cardinality of a real-exponent polynomial ring a priori indicates a difference between flat and
projective dimension that could be as high as 1 plus the index on ℵ in the cardinality of the real numbers
[17, page 14]. In certain situations, such as in valuation rings, ideals generated by ℵn and no fewer
elements are known to cause global dimension at least n+ 2 [16]; see also [17, page 14]. But despite R
having an ideal minimally generated by all monomials with total degree 1, of which there are 2ℵ0 , the
dimension of the positive cone of exponents is more pertinent than its cardinality. This remains the case
when the exponent set is intersected with a suitably dense subgroup of Rn: the rank of the subgroup is
irrelevant (Section 4).

Methods. The increase from global dimension n to n+1 in the presence of n variables is powered by the
violation of condition 5 from [3, Theorem P]: a monomial ideal with an “open orthant” of exponents, such
as the maximal ideal m1 in one indeterminate, is a direct limit of principal monomial ideals (Lemma 3.1)
but is not projective (Lemma 3.2). This phenomenon occurs already for Laurent polynomials L1 in one
integer-exponent variable. But although m1 and L1 both have projective dimension 1, the real-exponent
maximal ideal m1 is a submodule of a projective (actually, free) module; the inclusion has a cokernel,
and its projective dimension is greater by 1.

The most nontrivial point is how to produce a projective resolution of length at most n+ 1 for any
module over the real-exponent polynomial ring R in n variables. Our approach takes two steps. The first
is a length n Koszul-like complex (Definition 2.7) in 2n variables that resolves the residue field and can
be massaged into a flat resolution of any module (Theorem 2.9). This “total Koszul” construction was
applied to combinatorially resolve monomial ideals in ordinary (that is, integer-exponent) polynomial
rings [7, Section 6]. The integer grading in the noetherian case makes this construction produce a Koszul
double complex, which is key for the combinatorial purpose of minimalizing the resulting free resolution
by splitting an associated spectral sequence. It is not obvious whether the double complex survives to the
real-exponent setting, but the total complex does (Definition 2.7; see [20, Application 4.5.6]), and that
suffices here because minimality is much more subtle — if it is even possible — in the presence of real
exponents [13].

Motivations. Beyond basic algebra, there has been increased focus on nonnoetherian settings in, for
example, noncommutative geometry and topological data analysis.

Quantum noncommutative toric geometry [9] is based on dense finitely generated additive subgroups
of Rn instead of the discrete sublattices that the noetherian commutative setting requires. The situations
treated by our main theorems, including especially Section 4, correspond to “smooth” affine quantum
toric varieties and could have consequences for sheaf theory in that setting.

The question of finite global dimension over real-exponent polynomial rings has surfaced in topological
data analysis (TDA), where modules graded by Rn are known as real multiparameter persistent homology;
see [6; 12; 13], for example, or [18] for a perspective from quiver theory. The question of global dimension
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arises because defining metrics for statistical analysis requires distances between persistence modules,
many of which use derived categorical constructions [4; 8; 15]; see [6, Section 7.1] for an explicit mention
of the finite global dimension problem.

Real-exponent modules that are graded by Rn and satisfy a suitable finiteness condition (“tameness”)
to replace the too-easily violated noetherian or finitely presented conditions admit finite multigraded
resolutions by monomial ideals [14, Theorem 6.12], which are useful for TDA. But even in the tame
setting no universal bound is known for the finite lengths of such resolutions [13, Remark 13.15]. The
global dimension calculations here suggest but do not immediately imply a universal bound of n+ 1.

Notation. The ordered additive group R of real numbers has its monoid R+ of nonnegative elements. The
n-fold product Rn

=
∏n

i=1 R has nonnegative cone Rn
+
=

∏n
i=1 R+. The monoid algebra R = Rn = k[Rn

+
]

over an arbitrary field k is the ring of real-exponent polynomials in n variables: finite sums
∑

a∈Rn
+

ca xa,
where xa

= xa1
1 · · · x

an
n . Its unique monoid-graded maximal ideal m is spanned over k by all nonunit

monomials.
Unadorned tensor products are over k. For example, R ∼= R1⊗ · · ·⊗ R1 is an n-fold tensor product

over k, where R1 = k[R+] is the real-exponent polynomial ring in one variable with graded maximal
ideal m1.

2. Flat dimension n

Lemma 2.1. The filtered colimit lim
−−→ε>0(R1←↩ ⟨xε

⟩) of the inclusions of the principal ideals generated
by xε for positive ε ∈ R is a flat resolution K̊1

•
: R1←↩ m1 of k over R1.

Proof. Colimits commute with homology so the colimit is a resolution. Filtered colimits of free modules
are flat by Lazard’s criterion [11], so the resolution is flat. □

Definition 2.2. The open Koszul complex is the tensor product K̊x
•
=

⊗n
i=1 K̊1

•
over the field k of n copies

of the flat resolution in Lemma 2.1. The 2n summands of K̊x
•

, each a tensor product of j copies of R1

and n− j copies of m1, are orthant ideals.

Example 2.3. The open Koszul complex in two real-exponent variables is depicted in Figure 2. From a
geometric perspective, take the ordinary Koszul complex from Figure 1, replace the free modules with
their continuous versions, and push the generators as close to the origin as possible without meeting it.
The four possible orthant ideals are rendered in Figure 2. From left to right, viewing them as tensor
products, they correspond to the product of two closed rays k[R+], the product (in both orders) of a
closed ray with an open ray m, and the product of two open rays. In n real-exponent variables the 2n

orthant ideals arise from all n-fold tensor products of closed and open rays.

Proposition 2.4. The open Koszul complex K̊x
•

is a flat resolution of k over R.

Proof. Lemma 2.1 and the Künneth theorem [20, Theorem 3.6.3]. □

Limit-Koszul complexes similar to K̊x
•

have previously been used to compute flat dimensions of
absolute integral closures [1] in the context of tight closure.
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0

Figure 1. Ordinary Koszul complex in two variables.

0

Figure 2. Open Koszul complex in two real-exponent variables.

Example 2.5. The sequence x[ε]= xε
1, . . . , xε

n is regular in R [5, Chapter 1], so the usual Koszul complex
K•(x[ε]) is a length n free resolution of Bε

n = R/⟨x[ε]⟩ over R. Using this resolution, TorR
n (k, Bε

n) = k

because k⊗R K•(x[ε]) has vanishing differentials.

Lemma 2.6. The real-exponent polynomial ring R⊗2
= R⊗ R has 2n variables

x = x1, . . . , xn = x1⊗ 1, . . . , xn ⊗ 1 and y = y1, . . . , yn = 1⊗ x1, . . . , 1⊗ xn.

Over R⊗2 is a directed system of Koszul complexes K•(x[ε]− y[ε]) on the sequences

x[ε]− y[ε] = xε
1 − yε

1, . . . , xε
n − yε

n

with ε > 0. The colimit K̊x− y
•
= lim
−−→ε>0 K•(x[ε]− y[ε]) is an R⊗2-flat resolution of R.

Proof. The general case is the tensor product over k of n copies of the case n = 1, which in turn reduces
to the calculation R⊗2/⟨xε

− yε
| ε > 0⟩ ∼= R. □
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Definition 2.7. Denote by Rx and R y the copies of R embedded in R⊗2 as R⊗ 1 and 1⊗ R. Fix an
Rx-module M :

(1) Write M y for the corresponding R y-module, with the x variables renamed to y.

(2) The open total Koszul complex of an Rx-module M is K̊x− y
•

(M)= K̊x− y
•
⊗R y M y.

Remark 2.8. By Definition 2.2, each of the 4n summands of K̊x− y
•

in Lemma 2.6 is the tensor product
over k of an orthant Rx-ideal and an orthant R y-ideal.

Theorem 2.9. The open total Koszul complex K̊x− y
•

(M) is a length n resolution of M over R⊗2 for any
Rx-module M. This resolution is flat over Rx ; more precisely, as an Rx-module K̊x− y

•
(M) is a direct sum

of orthant Rx-ideals.

Proof. The tensor product K̊x− y
•
⊗R y M y is over R y and hence converts the orthant Rx-ideal decomposition

for K̊x− y afforded by Remark 2.8 into one for K̊x− y
•

(M).
Since tensor products commute with colimits, K̊x− y

•
(M) = lim

−−→ε>0 Kε
•
(M), where Kε

•
(M) =

K•(x[ε] − y[ε]) ⊗R y M y. Each complex Kε
•
(M) is the ordinary Koszul complex of the sequence

x[ε]− y[ε] on the R⊗2-module R⊗2
⊗R y M y. But x[ε]− y[ε] is a regular sequence on this module because

the x variables are algebraically independent from the y variables. Thus Kε
•
(M) is acyclic by exactness

of colimits. Moreover, again by algebraic independence, the nonzero homology of Kε
•
(M) is naturally the

R y-module M y, with an action of k[x[ε]] where xε
i acts the same way as yε

i due to the relation xε
i − yε

i . □

Corollary 2.10. The n-variable real-exponent polynomial ring has flat dimension n.

Proof. Example 2.5 implies that fl.dim R ≥ n, and fl.dim R ≤ n by Theorem 2.9. □

3. Global dimension n + 1

Lemma 3.1. Fix an orthant ideal O ̸= R. Choose a sequence {εk}k∈N such that εk = (ε1k, . . . , εnk) ∈ Rn
+

has

• εik = 0 for all k if the i-th factor of O is R1 and

• {εik}k∈N strictly decreases with limit 0 if the i-th factor of O is m1.

Let F=
⊕

k⟨x
εk ⟩ be the direct sum of the principal ideals in R generated by the monomials with degrees εk .

Each summand ⟨xεk ⟩ is free with basis vector 1k , and O has a free resolution 0← F← F← 0 whose
differential sends 1k ∈ ⟨xεk ⟩ to 1k − xεk−εk+11k+1.

Proof. The augmentation map O α
←− F sends 1k to xεk . It is surjective by definition of O. Since α is

graded by the monoid Rn
+

, its kernel can be calculated degree by degree. In degree a ∈ R+ the kernel is
spanned by all differences xa−εk 1k − xa−εℓ1ℓ such that εk and εℓ both weakly precede a; indeed, this
subspace of the a-graded component Fa has codimension 1, and it is contained in the kernel because
xa−εk xεk = xa−εℓ xεℓ . The differential is injective because each element f ∈ F has nonzero coefficient
on a basis vector 1k with k maximal, and the image of f has nonzero coefficient on 1k+1. □
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Lemma 3.2. k= R1/m1 has a free resolution of length 2, and Ext2R1
(k, F) ̸= 0.

Proof. The resolution of m1 over R1 in Lemma 3.1 (with n = 1) can be augmented and composed
with the inclusion R1 ←↩ m1 to yield a free resolution of k over R1. The long exact sequence from
0← k← R1←m1← 0 implies that Exti+1

R1
(k,−)∼= ExtiR1

(m1,−) for i ≥ 1. Now apply Hom(m1,−) to
the exact sequence 0→ F→ F→m1→ 0. The first few terms are 0→Hom(m1, F)→Hom(m1, F)→

R1 → Ext1(m1, F). The image of Hom(m1, F) → R1 is m1, so k ↪→ Ext1(m1, F) ∼= Ext2(k, F) is
nonzero. □

Remark 3.3. Any ideal that is a countable (but not finite) union of a chain of principal ideals has projective
dimension 1 [17, page 14]. But it is convenient to have an explicit free resolution of m1 over R1, and it is
no extra work to resolve all orthant ideals.

Proposition 3.4. Set m1 = ⟨xε
n | ε > 0⟩ and J = ⟨x1, . . . , xn−1⟩ ⊆ R. Using x = xn for R1, consider the

R1-module F in Lemma 3.2 with n = 1 as an R-module via R ↠ R1, where xε
i 7→ 0 for all ε > 0 and

i ≤ n− 1. Then Extn+1
R (R/I, F) ̸= 0 when I = J +m1.

Proof. Let F• : 0← R1 ← F ← F ← 0 be the R1-free resolution of k obtained by augmenting the
resolution of m1 in Lemma 3.1 with n = 1. Let K• = KRn−1

•
(xn−1) be the ordinary Koszul complex over

Rn−1 on the sequence xn−1 = x1, . . . , xn−1, which is a free resolution of Rn−1/xn−1 Rn−1 over Rn−1.
Then Tot(F•⊗k K•) is a free resolution of R/I over R. On the other hand,

F•⊗k K• ∼= F•⊗R1 R1⊗k Rn−1⊗Rn−1 K•

∼= F•⊗R1 R⊗Rn−1 K•

∼= F•⊗R1 R⊗R R⊗Rn−1 K•

= FR
•
⊗R KR

•
,

where FR
•
= F• ⊗R1 R is an R-free resolution of R/m1 R and the ordinary Koszul complex KR

•
=

R⊗Rn−1 K• = KR
•
(xn−1) of the sequence xn−1 in R is an R-free resolution of R/J .

Using (−)∗ to denote the free dual HomR(−, R), compute

HomR(FR
•
⊗R KR

•
, F)∼= HomR(FR

•
, HomR(KR

•
, F))

∼= HomR(FR
•
, (KR

•
)∗⊗R F)

∼= HomR(FR
•
, (KR

•
)∗⊗R R1⊗R1 F), (3-1)

where the bottom isomorphism is because the R-action on F factors through R1. The differentials of the

complex (KR
•
)∗⊗R R1 ∼= (KR

•
)∗⊗Rn−1 k all vanish, and this complex has cohomology R

(n−1
q )

1 in degree q .
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Hence the total complex of Equation (3-1) has homology

ExtiR(R/I, F)∼=
⊕

p+q=i

Hp HomR(FR
•
, F(n−1

q ))

∼=

⊕
p+q=i

Hp HomR1(F•, F(n−1
q ))

∼=

⊕
p+q=i

Extp
R1

(k, F(n−1
q )),

where the middle isomorphism is again because the R-action on F factors through R1. Taking p = 2 and
q = n− 1 yields the nonvanishing by Lemma 3.2. □

Remark 3.5. The proof of Proposition 3.4 is essentially a Grothendieck spectral sequence for the derived
functors of the composite HomR1(k,−) ◦HomRn−1(Rn−1/xn−1,−), but the elementary Koszul argument
isn’t more lengthy than verifying the hypotheses.

Theorem 3.6. The n-variable real-exponent polynomial ring has global dimension n+ 1.

Proof. Proposition 3.4 yields the lower bound gl.dim R ≥ n + 1. For the opposite bound, given any
R-module M , each module in the length n flat resolution from Theorem 2.9 has a free resolution of length
at most 1 by Lemma 3.1. By the comparison theorem for projective resolutions [20, Theorem 2.2.6], the
differentials of the flat resolution lift to chain maps of these free resolutions. The total complex of the
resulting double complex has length at most n+ 1. □

Remark 3.7. As an Rn-graded module, the quotient R/I in Proposition 3.4 is nonzero only in degrees
from Rn−1

⊆ Rn . Hence R/I is ephemeral [4], meaning, more or less, that its set of nonzero degrees
has measure 0. The projective dimension exceeding n is not due solely to this ephemerality. Indeed,
multiplication by x1

n induces an inclusion of R/I into R/I ′ for I ′ = ⟨x1, . . . , xn−1⟩ + ⟨xε
n | ε > 1⟩,

which is supported on a unit cube in Rn
+

that is neither open nor closed. Theorem 3.6 implies that
Extn+1

R (R/I ′, N )↠ Extn+1
R (xn R/I, N ) is surjective for all modules N , so R/I ′ has projective dimension

n+ 1. On the other hand, it could be the closed right endpoints [10] — that is, closed socle elements [13,
Section 4.1] — that cause the problem. Thus it could be that sheaves in the conic topology (“γ -topology”;
see [4; 8; 15]) have consistently lower projective dimensions.

4. Dense exponent sets

The results in Sections 2 and 3 extend to monoid algebras for positive cones of subgroups of Rn satisfying
a mild density condition. Applications to noncommutative toric geometry should require restriction to
subgroups of this sort.

Definition 4.1. Let G ⊆ Rn be a subgroup whose intersection with each coordinate ray ρ of Rn is dense.
Write G+ = G ∩Rn

+
for the positive cone in G, set ρ̊ = ρ ∩Rn

+
∖ {0}, and let G̊+ =

∏
ρ G ∩ ρ̊+ be the

set of points in G whose projections to all coordinate rays are strictly positive and still lie in G. Set
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RG = k[G+], the monoid algebra of G+ over k. Let Rx
G and R y

G be the copies of RG embedded in R⊗2
G

as RG ⊗ 1 and 1⊗ RG . For ε ∈ G̊+ let x[ε] = xε1
1 , . . . , xεn

n be the corresponding sequence of elements
in RG .

(1) The open Koszul complex over RG is the colimit K̊x
•
= lim
−−→ε∈G̊+ K•(x[ε]).

(2) Fix an Rx
G-module M . Write M y for the corresponding R y

G-module, with the x variables renamed
to y. With notation for variables as in Lemma 2.6, the open total Koszul complex of M is the colimit
K̊x− y
•

(M)= lim
−−→ε∈G̊+ K•(x[ε]− y[ε])⊗R y M y.

(3) Given a subset σ ⊆ {1, . . . , n}, the orthant ideal Iσ ⊆ RG is generated by all monomials xε for
ε ∈ G+ such that εi > 0 for all i ∈ σ .

Example 4.2. Let G be generated by
[ 2

0

]
,
[

π
0

]
,
[1

1

]
,
[ 0

e

]
as a subgroup of R2, so G consists of the integer

linear combinations of these four vectors. The intersection G ∩ ρ y with the y-axis ρ y arises from integer
coefficients α, β, γ , and δ such that[

0
y

]
= α

[
2
0

]
+β

[
π

0

]
+ γ

[
1
1

]
+ δ

[
0
e

]
.

This occurs precisely when 2α + πβ + γ = 0, and in that case y = γ + δe. Since π is irrational it is
linearly independent from 1 over the integers, so β = 0 and hence γ =−2α is always an even integer.
Since e is irrational, the only integer points in G ∩ ρ y have even y-coordinate:

G ∩ ρ y
=

〈[
0
2

]
,

[
0
e

]〉
.

The point
[ 1

1

]
∈ G has strictly positive projection to ρ y , but that projection lands outside of G. Hence

G̊+ = G ∩ ρ̊ x
+
× G ∩ ρ̊

y
+ is a proper subgroup of G, given the strictly positive point

[1
1

]
∈ G+ ∖ G̊+.

Nonetheless, G̊+ contains positive real multiples of
[ 1

1

]
approaching the origin, which is all the colimit in

the proof of Theorem 4.3 requires.

Theorem 4.3. If a subgroup G ⊆ Rn is dense in every coordinate subspace of Rn as in Definition 4.1,
then Theorem 2.9 holds verbatim with RG = k[G ∩Rn

+
] in place of R. Consequently, the ring RG has flat

dimension n and global dimension n+ 1.

Proof. For σ ⊆ {1, . . . , n} and ε ∈ Rn let εσ ∈ Rn be the restriction of ε to σ , so εσ has entry 0 in
the coordinate indexed by every j ̸∈ σ . The 2n summands of K̊x

•
are orthant ideals because Ki (x[ε])∼=⊕

|σ |=i ⟨x
εσ ⟩ naturally with respect to the inclusions induced by the colimit defining K̊x

•
. Each orthant

ideal is flat because this colimit is filtered: given two vectors ε1, ε2 ∈ G̊+, the coordinatewise minimum
ε1∧ε2 ∈ Rn

+
lies in G̊+ because its projection to each ray lies in G. Proposition 2.4 therefore generalizes

to RG by the exactness of colimits and the cokernel calculation k= RG/m for the G-graded maximal
ideal m= ⟨xε

| 0 ̸= ε ∈G+⟩. Example 2.5 generalizes with no additional work. Lemma 2.6 generalizes by
exactness of colimits and the cokernel calculation RG ∼= R⊗2

G /⟨x[ε]− y[ε] | 0 ̸= ε ∈ G+⟩. The conclusion
of Remark 2.8 generalizes, but the reason is direct calculation of K̊•(x[ε] − y[ε]) as was done for K̊x

i .
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The original proof of Theorem 2.9 uses that tensor products commute with colimits, but the generalized
proof avoids that argument by simply defining K̊x− y

•
as the relevant colimit. The rest of the proof and the

generalization of the flat dimension claim in Corollary 2.10 work mutatis mutandis, given the strengthened
versions of the results they cite.

The orthant ideal resolution in Lemma 3.1 generalizes to RG by the density hypothesis, including
specifically the part about intersecting with coordinate subspaces. The Ext calculation in Lemma 3.2
works again by density of the exponent set of m1 in R+. The statement and proof of Proposition 3.4 work
mutatis mutandis for RG in place of R as long as the power of xi generating J lies in the intersection of
G with the corresponding coordinate ray of Rn . The proof of Theorem 3.6 then works verbatim, given
the strengthened versions of the results it cites. □
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