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On fake linear cycles inside Fermat varieties
Jorge Duque Franco and Roberto Villaflor Loyola

We introduce a new class of Hodge cycles with nonreduced associated Hodge loci; we call them fake
linear cycles. We characterize them for all Fermat varieties and show that they exist only for degrees
d = 3, 4, 6, where there are infinitely many in the space of Hodge cycles. These cycles are pathological
in the sense that the Zariski tangent space of their associated Hodge locus is of maximal dimension,
contrary to a conjecture of Movasati. They provide examples of algebraic cycles not generated by their
periods in the sense of Movasati and Sertöz (2021). To study them we compute their Galois action in
cohomology and their second-order invariant of the IVHS. We conclude that for any degree d ≥ 2 +

6
n ,

the minimal codimension component of the Hodge locus passing through the Fermat variety is the one
parametrizing hypersurfaces containing linear subvarieties of dimension n

2 , extending results of Green,
Voisin, Otwinowska and Villaflor Loyola.

1. Introduction

The classical Noether–Lefschetz locus NLd is the space of degree d ≥ 4 surfaces in P3 with Picard rank
bigger than 1. This space is known to have countably many components given by algebraic subvarieties of
the space of smooth degree d surfaces in P3. A classical result due to Green [1988] and Voisin [1988] states
that for d ≥ 5 it has only one minimal codimension component, which parametrizes surfaces containing
lines (for d = 4 all components have the same codimension). The higher dimension analogue of the
Noether–Lefschetz locus is the so-called Hodge locus HLn,d which is the locus of degree d hypersurfaces
X ⊆ Pn+1 for n even, with lattice of Hodge cycles H n/2,n/2(X)∩ H n(X, Z) of rank bigger than 1. This
space is nontrivial for d ≥ 2+

4
n , and it is known to have countably many components which are algebraic

subvarieties of T ⊆ H 0(Pn+1,O(d)) the space of smooth degree d hypersurfaces of Pn+1. A natural
question is to ask whether the analogue of the Green–Voisin theorem still holds for higher dimensions, i.e.,
if for d ≥ 2 +

6
n the only minimal codimension component of the Hodge locus is 6(1,...,1), that is, the one

parametrizing hypersurfaces containing linear subvarieties of dimension n
2 . The first result in this direction

was obtained by Otwinowska [2002, Theorem 3] who answered positively the question for d ≫ n. The
conjecture for smaller degrees remains open, and even to establish that the codimension of 6(1,...,1) —
which is equal to

(n/2 + d
d

)
−

( n
2 + 1

)2 — is a lower bound for the codimension of all components is also a
conjecture. A partial result on the lower bound conjecture was obtained by Movasati [2017, Theorem 2],
who proved it for all components passing through the Fermat point. The characterization of 6(1,...,1) as
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the only component passing through the Fermat point attaining this bound was recently established in
Theorem 1.1 of [Villaflor Loyola 2022b] for d ̸= 3, 4, 6. In this article we treat the remaining cases.

The previously mentioned results rely on the description of the Zariski tangent space of the local Hodge
loci Vλ ⊆ (T, t), associated to some Hodge cycle λ ∈ H n/2,n/2(X t)∩ H n(X t , Z) for X t = Supp(t) ⊆ Pn+1

and t ∈ T , in terms of the infinitesimal variation of Hodge structure. In practice, instead of bounding the
codimension of the components of the Hodge locus, one bounds the codimension of the Zariski tangent
space of all Vλ. This is the case for all the previous results of Green, Voisin, Otwinowska and Movasati. In
particular, Movasati proved that if 0 ∈ T corresponds to the Fermat point then the codimension of T0Vλ is
greater than or equal to

(n/2 + d
d

)
−

( n
2 +1

)2 for all nontrivial Hodge cycles λ ∈ H n/2,n/2(X0)∩ H n(X0, Z)

of the Fermat variety. This naturally led Movasati [2021, Conjecture 18.8] to conjecture that this bound
is attained if and only if λ is the class of a linear algebraic cycle Pn/2

⊆ X0 of the Fermat variety. Our
main result disproves this conjecture for d = 3, 4, 6 in all dimensions, providing a complete answer to
Movasati’s question for the cases not covered by [Villaflor Loyola 2022b].

Theorem 1.1. For d = 3, 4, 6 ≥ 2 +
6
n and n even, there are infinitely many scheme-theoretically different

Hodge loci Vλ associated to nontrivial Hodge cycles of the Fermat variety λ ∈ H n/2,n/2(X0)∩ H n(X0, Z)

such that

codim T0Vλ =

(n/2 + d
d

)
−

(n
2

+ 1
)2

.

In particular, infinitely many of these Hodge cycles are not linear cycles. We call them fake linear cycles.
All fake linear cycles are of the form

λprim = res
(

Pλ�

Fn/2+1

)
,

where Pλ is given (up to some relabeling of the coordinates) by

Pλ = cλ

n/2+1∏
j=1

xd−1
2 j−2 − (c2 j−2x2 j−1)

d−1

x2 j−2 − c2 j−2x2 j−1
, (1)

where c0, c2, . . . , cn ∈ ζ−3
2d ·S1

Q(ζd ) = {ζ−3
2d ·z ∈ Q(ζ2d) : z ∈ Q(ζd) and |z| = 1} but not all being d-th roots

of −1 simultaneously, and cλ ∈ Q(ζ2d)×. For any such choice of ci ’s, there exists some cλ ∈ Q(ζ2d)×

such that the class λprim, given by Pλ as in (1), is the class of a fake linear cycle.

We point out that the condition on the ci ’s not all being d-th roots of −1 simultaneously is to avoid
that λprim becomes the class of a true linear cycle. Since the Hodge conjecture is known for these Fermat
varieties [Shioda 1979] we know that fake linear cycles are rational combinations of linear cycles. The
proof of the above result follows after a first-order analysis of the Hodge loci.

Curiously Fermat varieties of degrees d = 3, 4, 6 correspond exactly to those where the group
H n(Xn

d , Z)alg of algebraic cycles has maximal rank hn/2,n/2 (see Proposition 2.6 and [Beauville 2014] for
a survey on these rare-to-find varieties). The subtle part of the above result is showing the existence of cλ

in such a way that the corresponding class is a Hodge class. For this is necessary to describe the Galois
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action of Q(ζ2d)/Q on the space of totally decomposable Hodge monomials in the sense of [Shioda 1979].
An immediate consequence of Theorem 1.1 is that the Artinian Gorenstein ideal associated to each fake
linear cycle is of the form

J F
= ⟨x0 − c0x1, x2 − c2x3, . . . , xn − cnxn+1, xd−1

0 , . . . , xd−1
n+1 ⟩. (2)

The name fake linear cycle is inspired from this fact and the principle introduced in [Movasati and Sertöz
2021] which predicts that for “good enough” algebraic cycles, one should obtain the supporting equations
of a representative of the cycle as generators of J F,λ for small degrees. It was proved by Cifani, Pirola and
Schlesinger [Cifani et al. 2023] that all arithmetically Cohen–Macaulay curves inside a smooth surface
in P3 satisfy this principle, which says that the curve can be reconstructed from its periods. It was also
shown by them that not all curves can be reconstructed from their periods (for example, a rational degree 4
curve inside a quartic). After (2) we see that fake linear cycles provide more examples (of any dimension)
of algebraic cycles which cannot be reconstructed from their periods. In fact, otherwise the supporting
equations of the cycle should be the n

2 + 1 equations of degree 1 which define a n
2 -dimensional linear

subvariety inside Pn+1, but this linear variety is never contained in Xn
d .

Beside the above anomalous properties of fake linear cycles, we show that their associated Hodge loci
are nonreduced, completing thus the proof of following result.

Theorem 1.2. For n even and d ≥ 2 +
6
n the unique component of minimal codimension of the Hodge

locus HLn,d passing through the Fermat variety is 6(1,...,1), that is, the one parametrizing hypersurfaces
containing linear subvarieties of dimension n

2 .

For the proof of Theorem 1.2 it is necessary to compute the quadratic fundamental form of the Hodge
loci associated to fake linear cycles. For this we rely on the description of this second-order invariant of
the IVHS introduced in Theorem 7 of [Maclean 2005].

The text is organized as follows. In Section 2 we recall the cohomology and homology of Fermat
varieties. Section 3 is devoted to the computation of the field of definition of totally decomposable Hodge
monomials, together with the explicit description of the Galois action on them (see Proposition 3.7). In
Section 4 we recall the basic results and notation about the Artinian Gorenstein ideal associated to a
Hodge cycle based on [Villaflor Loyola 2022b]. The proof of Theorem 1.1 is given in Section 5. Section 6
is devoted to the computation of the quadratic fundamental form associated to each fake linear cycle and
the proof of Theorem 1.2.

2. Topology of Fermat varieties

In this section we describe the homology and cohomology groups of Fermat varieties. For this we start
by recalling the notation and main results of [Shioda 1979]. Let

Xn
d := {F := xd

0 + · · · + xd
n+1 = 0}
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be the n-dimensional Fermat variety of degree d . Shioda described the cohomology groups H n
dR(Xn

d) in
terms of a spectral decomposition compatible with the Hodge decomposition. This decomposition goes
as follows. Let

Gn
d := (µd)n+2/1(µd),

where µd := ⟨ζd⟩ ≃ Z/dZ is the group of d-th roots of unity. The above group acts on Xn
d by coordinate-

wise multiplication:

g = (g0, . . . , gn+1), g · x = (g0 · x0 : . . . : gn+1 · xn+1). (3)

The dual group Ĝn
d corresponds to the group of characters

Ĝn
d := {α = (a0, . . . , an+1) ∈ (Z/dZ)n+2

: a0 + · · · + an+1 = 0}

whose pairing with Gn
d is

α(g) := ga0
0 · · · gan+1

n+1 .

The action of Gn
d on Xn

d induces an action of Gn
d on H n(Xn

d , Z) and H n(Xn
d , Z)prim, which naturally

extends to H n(Xn
d , Z)prim ⊗ C ≃ H n

dR(Xn
d)prim. We have the decomposition

H n
dR(Xn

d)prim =

⊕
α∈Ĝn

d

V (α), (4)

which is finer than the Hodge decomposition, and where

V (α) := {ω ∈ H n
dR(Xn

d)prim : g∗ω = α(g)ω, ∀g ∈ Gn
d}.

The following is the main result of [Shioda 1979].

Theorem 2.1 (Shioda). (i) dim V (α) = 1 if a0 · · · an+1 ̸= 0, and V (α) = 0 otherwise.

(ii) Each piece of the Hodge decomposition corresponds to

H p,q(Xn
d)prim =

⊕
|α|=q+1

V (α),

where |α| :=
1
d

∑n+1
i=0 ai , and ai ∈ {0, . . . , d − 1} is the residue of ai modulo d.

(iii) If n is even, then

(H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Z)) ⊗ C =

⊕
α∈Bn

d

V (α)

with

Bn
d :=

{
α ∈ Ĝn

d : |t · α| =
n
2

+ 1, ∀t ∈ (Z/dZ)×
}
.

The previous result can be complemented with Griffiths’ basis theorem [1969a; 1969b]. This theorem
describes the primitive cohomology classes of any smooth hypersurface X = {F = 0} ⊆ Pn+1 in terms
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of the Jacobian ring RF
:= C[x0, . . . , xn+1]/J F , where J F

:= ⟨∂ F/∂x0, . . . , ∂ F/∂xn+1⟩ is the Jacobian
ideal. This description is compatible with the Hodge filtration and is done via the residue map as follows:

RF
d(q+1)−n−2

∼
−→ F p H n

dR(X)prim/F p+1 H n
dR(X)prim, P 7→ ωP := res

(
P�

Fq+1

)
.

In the particular case of the Fermat variety one has

H n
dR(Xn

d)prim =

⊕
β

C · ωβ, (5)

where

ωβ = res
(

xβ�

Fn/2+1

)
and β = (β0, . . . , βn+1) with βi ∈ {0, . . . , d −2} such that 1

d (deg(xβ)+n +2) ∈ Z. The relation between
Griffiths’ decomposition (5) and Shioda’s decomposition (4) is clarified by the following proposition.

Proposition 2.2. Let α = (a0, . . . , an+1) ∈ Ĝn
d be such that a0 · · · an+1 ̸= 0. Then

V (α) = C · ωβ,

where βi = ai − 1 for all i = 0, . . . , n + 1. In particular for any polynomial P ∈ RF
(d−2)(n/2+1)

ωP ∈ (H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Z)) ⊗ C if and only if P ∈

⊕
α∈Bn

d
V (α)=C·ωβ

C · xβ .

Proof. By item (i) of Theorem 2.1 it is enough to show that ωβ ∈ V (α) for α = (a0, . . . , an+1) with
a0 · · · an+1 ̸= 0 and βi = ai − 1. Let g = (ζ

c0
d , . . . , ζ

cn+1
d ) ∈ Gn

d . Then

g∗ωβ = ζ

∑n+1
j=0(β j +1)c j

d ωβ = ζ

∑n+1
j=0 a j c j

d ωβ = α(g)ωβ . □

Remark 2.3. Note that the forms ωβ ∈ V (α) for α ∈ Bn
d are not Hodge cycles. In general one can show

that ωβ ∈ H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Q) assuming the Hodge conjecture.

Remark 2.4. As a consequence of Theorem 2.1, one can show the Hodge conjecture for several Fermat
varieties [Shioda 1979] including those of degree d = 3, 4, 6. By an elementary argument one can
characterize these Fermat varieties as those where the group H n(Xn

d , Z)alg of algebraic cycles has maximal
rank hn/2,n/2. Part of this was already noted in Proposition 11 of [Beauville 2014] and in Corollary 15.1
of [Movasati 2021]. For the sake of completeness we will provide the argument here, starting with an
elementary number theory fact which will be also used later in Proposition 5.8.

Lemma 2.5. Let d ≥ 5 and d ̸= 6 be a integer. Consider q := min{p prime : p ∤ 2d}. Then q < d
2 or

q =
d+1

2 . The second case only holds for d = 5, 9.

Proof. If d = 4k, then gcd
(
2d, d

2 − 1
)
= 1, and therefore every prime p|

( d
2 − 1

)
satisfies that p ∤ 2d and

p < d
2 . Similarly, if d = 4k + 2, then gcd

(
2d, d

2 − 2
)
= 1 and we can take p|

( d
2 − 2

)
. If d = 4k + 3, then

gcd
(
2d, d−1

2

)
= 1 and we can take p|

d−1
2 . If d = 4k + 1, then gcd

(
2d, d+1

2

)
= 1 and so taking p|

d+1
2 we
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conclude that q ≤
d+1

2 , i.e., q ≤
d+1

2 − 1 < d
2 unless q =

d+1
2 . To see that this only happens for d = 5, 9

note that if q = pn is the n-th prime number, then p2 · · · pn−1 | d = 2pn − 1. One sees that p2 · · · pn−1

quickly becomes bigger than 2pn − 1 for n ≥ 4. □

Proposition 2.6. For even-dimensional Fermat varieties Xn
d one has

rank H n(Xn
d , Z)alg = hn/2,n/2 if and only if ϕ(d) ≤ 2 (d = 1, 2, 3, 4, 6).

Proof. Let us note first that if ϕ(d) ≤ 2, we know the Hodge conjecture by [Shioda 1979] and so it is
enough to show, by Theorem 2.1(iii), that for all α ∈ Ĝn

d with |α| =
n
2 + 1 one has

|t · α| =
n
2

+ 1 ∀t ∈ (Z/dZ)×. (6)

This is trivial if ϕ(d) = 1, and for ϕ(d) = 2 we have (Z/dZ)× = {1, d − 1} where the result is also clear.
Conversely, if ϕ(d) > 2 let us construct some α ∈ Ĝn

d with |α| =
n
2 + 1 not satisfying (6). Note that if we

find such an α for n = 2, then to construct one for any n ≥ 4 is easy by just adding pairs of entries of
the form (1, d − 1). Thus we are reduced to the case n = 2. Let us consider first the case d ̸= 5, 9. By
Lemma 2.5 there exists some k ∈ {2, 3, . . . , d − 1} such that

d
k+1

< q <
d
k
, where q := min{p prime : p ∤ 2d}.

We claim the desired character is any

α = (aq, bq, cq, 2d − (k + 1)q)

such that a + b + c = k + 1 with a, b, c ∈ {1, 2, . . . , k}. In fact, |α| = 2 but if t = q−1
∈ (Z/dZ)× then

|t · α| = |(a, b, c, r)| =
k+1+r

d
< 2.

Finally for the cases d =5, 9 consider the characters α = (2, 2, 2, 4), (5, 5, 5, 3), respectively, and t =2. □

Let us turn now to the homology groups of Fermat varieties. For this let us denote by

U n
d := {(x1, . . . , xn+1) ∈ Cn+1

: 1 + xd
1 + · · · + xd

n+1 = 0} = Xn
d ∩ Cn+1

the affine Fermat variety. A basis for Hn(U n
d , Z) is given by the so-called vanishing cycles.

Definition 2.7. For every β ∈ {0, . . . , d − 2}
n+1 consider the homological cycle

δβ :=

∑
a∈{0,1}n+1

(−1)
∑n+1

i=1 (1−ai )1β+a,

where 1β+a : 1n
:=

{
(t1, . . . , tn+1) ∈ Rn+1

: ti ≥ 0,
∑n+1

i=1 ti = 1
}

→ U n
d is given by

1β+a(t) := (ζ
2(β1+a1)−1
2d t1/d

1 , ζ
2(β2+a2)−1
2d t1/d

2 , . . . , ζ
2(βn+1+an+1)−1
2d t1/d

n+1).

Proposition 2.8. The set {δβ}β∈{0,...,d−2}n+1 is a basis of Hn(U n
d , Z).

Proof. This is a well-known fact. For a proof see for instance [Movasati 2021, Remark 7.1]. □
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Using the Leray–Thom–Gysin sequence in homology [Movasati 2021, §4.6], it is easy to see that

Hn(Xn
d , Q) = Im(Hn(U n

d , Q) → Hn(Xn
d , Q)) ⊕ Q · [Pn/2+1

∩ Xn
d ]. (7)

Hence every ω ∈ H n
dR(Xn

d) is determined by its periods over the vanishing cycles and [Pn/2+1
∩ Xn

d ].
Since this last period is zero when ω ∈ H n

dR(Xn
d)prim, we see that every primitive class is determined by

its periods over all vanishing cycles. These periods can be explicitly computed following [Deligne 1982]
(see Proposition 3.3).

3. Galois action in cohomology

Let X ⊆ Pn+1 be a smooth hypersurface of the projective space.

Definition 3.1. For every ω ∈ H n
dR(X), the field of definition of ω is

Qω := Q

(
1

(2π i)n/2

∫
δ

ω : δ ∈ Hn(X, Z)

)
.

Since Hn(X, Z) is finitely generated, Qω is also finitely generated. This is the field of definition of ω in
the following sense:

ω ∈ H n(X, Qω).

Definition 3.2. For every t ∈Gal(Qω/Q) we define the Galois action in cohomology as t (ω)∈ H n(X, Qω)

such that

t
(

1
(2π i)n/2

∫
δ

ω

)
=

1
(2π i)n/2

∫
δ

t (ω), ∀δ ∈ Hn(X, Z).

In order to describe the Galois action in the cohomology of Fermat varieties we will use the following
elementary result about periods, whose proof can be found in [Deligne 1982, Lemma 7.12; Movasati
2021, Proposition 15.1].

Proposition 3.3. For a Fermat variety of degree d and even dimension n, let ωβ ∈ H n/2,n/2(Xn
d)prim and

β ′
∈ {0, . . . , d − 2}

n+1. Then∫
δβ′

ωβ =
1

dn+1 n
2 !(2π i)

n+1∏
i=0

(ζ
(βi +1)(β ′

i +1)

d − ζ
(βi +1)β ′

i
d )0

(
βi + 1

d

)
,

where β ′

0 := 0 and 0 is the classical Gamma function.

Using the above formula one can obtain the following elementary result which can also be found as
part of [Deligne 1982, Theorem 7.15].

Proposition 3.4. For every character α = (a0, . . . , an+1) with a0 · · · an+1 ̸= 0,

V (α) ∩ H n(Xn
d , Q(ζd)) ̸= 0.
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In fact a generator is

ηα := (2π i)n/2+1 ωβ∏n+1
i=0 0

(ai
d

) ∈ H n(Xn
d , Q(ζd))prim,

for βi = ai − 1, and, for every t ∈ (Z/dZ)× ≃ Gal(Q(ζd)/Q),

t (ηα) = ηt ·α.

Proof. This follows directly from the definition of the action, Proposition 3.3 and Theorem 2.1. □

Definition 3.5. We say that a character α ∈ Bn
d is totally decomposable if we can relabel the entries of α

in such a way that

α = (a0, d − a0, a2, d − a2, . . . , an, d − an). (8)

Remark 3.6. The polynomial Pλ given by (1) is a C-linear combination of the monomials xβ with
β2 j−2 +β2 j−1 = d − 2 for j = 1, . . . , n

2 + 1. Each of these β’s has an associated character α ∈ Bn
d that is

totally decomposable with a j = β j + 1. In the following proposition we restrict the field of definition of
ωβ = res((xβ�)/Fn/2+1) where β has associated character α totally decomposable.

Proposition 3.7. For every α = (a0, a1, . . . , an, an+1) ∈ Bn
d totally decomposable of the form (8), and

βi = ai − 1,

Qωβ
⊆ Q(ζ2d).

For every t ∈ Gal(Q(ζ2d)/Q) ≃ (Z/2dZ)×,

t (ωβ) = (−1)
(

∑n/2+1
j=1 (ta2 j−2−ta2 j−2))/d

ωγ ,

where ωγ ∈ V (t · α) and ā denotes the residue of a ∈ Z modulo d.

Proof. Consider the class of the linear cycle Pn/2
= {x0 − ζ2d x1 = · · · = xn − ζ2d xn+1 = 0}. Then by

[Villaflor Loyola 2022a, Theorem 1.1] and Theorem 2.1 we know that

ωP =
−1

n
2 ! · dn/2 [Pn/2

]prim ∈ H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Q),

where

P = ζ
n/2+1
2d

∑
β∈I

xβζ
β1+β3+···+βn+1
2d

and

I :=

{
(β0, . . . , βn+1) ∈ {0, . . . , d − 2}

n+2
: β2 j−2 + β2 j−1 = d − 2, ∀ j = 1, . . . ,

n
2

+ 1
}
.

Let us first show that Qωβ
⊆ Q(ζ2d). Since Qηα

⊆ Q(ζd) it is enough to show that

Cβ :=

∏n+1
i=0 0

(ai
d

)
(2π i)n/2+1 ∈ Q(ζ2d).
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This could be shown directly by using the properties of the Gamma function, but we will give another
proof. Let K/Q(ζ2d) be a Galois extension such that Cβ ∈ K . For any σ ∈ Gal(K/Q(ζ2d)) we have
σ(ωP) = ωP , since it is a rational class. Hence by Proposition 3.4∑

β∈I

ζ
a1+a3+···+an+1
2d σ(Cβ) · ηα =

∑
β∈I

ζ
a1+a3+···+an+1
2d Cβ · ηα.

In other words σ(Cβ) = Cβ for all σ ∈ Gal(K/Q(ζ2d)), i.e., Cβ ∈ Q(ζ2d) as claimed. Let us now
compute the Galois action of Gal(Q(ζ2d)/Q) on ωβ . Let t ∈ Gal(Q(ζ2d)/Q) ≃ (Z/2dZ)×. Then, again,
t (ωP) = ωP , since ωP is a rational class. Expanding this equality we have∑

β∈I

ζ
t (a1+a3+···+an+1)

2d t (ωβ) =

∑
β∈I

ζ
a1+a3+···+an+1
2d ωβ .

Since by Proposition 3.4 we know t (ωβ) = C ·ωγ for some C ∈ Q(ζ2d)× and ωγ ∈ V (t ·α), we get that

ζ
t (a1+a3+···+an+1)

2d t (ωβ) = ζ
ta1+ta3+···+tan+1
2d ωγ

and the result follows. For the last equality just note that t (ωβ) = t (Cβ) · ηt ·α. □

Remark 3.8. Using Euler’s reflection formula we can compute explicitly

Cβ =

∏n/2+1
j=1 0

(a2 j−2
d

)
0

(
1 −

a2 j−2
d

)
(2π i)n/2+1 =

∏n/2+1
j=1

π
sin (πa2 j−2/d)

(2π i)n/2+1 =

n/2+1∏
j=1

1

ζ
a2 j−2
2d − ζ

−a2 j−2
2d

.

4. Artinian Gorenstein ideal associated to a Hodge cycle

For the sake of completeness we will briefly recall some known facts about Artinian Gorenstein ideals
associated to Hodge cycles in smooth hypersurfaces of the projective space. Our main aim is to settle the
notation we will use in the rest of the article and to gather some facts from [Villaflor Loyola 2022b].

Definition 4.1. A graded C-algebra R is Artinian Gorenstein if there exist σ ∈ N such that

(i) Re = 0 for all e > σ ,

(ii) dimC Rσ = 1,

(iii) the multiplication map Ri × Rσ−i → Rσ is a perfect pairing for all i = 0, . . . , σ .

The number σ =: soc(R) is the socle of R. We say that an ideal I ⊆ C[x0, . . . , xn+1] is Artinian Gorenstein
of socle σ =: soc(I ) if the quotient ring R = C[x0, . . . , xn+1]/I is Artinian Gorenstein of socle σ .

The definition of the following ideal appeared first in the work of Voisin [1989] for surfaces, and later
in the work of Otwinowska [2003] for higher dimensional varieties.

Definition 4.2. Let X = {F = 0} ⊆ Pn+1 be a smooth degree d hypersurface of even dimension n, and
λ ∈ H n/2,n/2(X, Z) be a nontrivial Hodge cycle. Consider J F

:= ⟨∂ F/∂x0, . . . , ∂ F/∂xn+1⟩ to be the
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Jacobian ideal; we define the Artinian Gorenstein ideal associated to λ as

J F,λ
:= (J F

: Pλ), (9)

where Pλ ∈ C[x0, . . . , xn+1](d−2)(n/2+1) is such that λprim = res((Pλ�)/Fn/2+1)n/2,n/2. This ideal is
Artinian Gorenstein of soc(J F,λ) = (d − 2)

( n
2 + 1

)
=

1
2 soc(J F ).

The importance of this ideal is due to the following proposition which relates it to the local Hodge
locus Vλ associated to the Hodge cycle λ.

Proposition 4.3. Let X = {F = 0} ⊆ Pn+1 be a smooth degree d hypersurface of even dimension n, and
consider two Hodge cycles λ1, λ2 ∈ H n/2,n/2(X, Z). Then

J F,λ1 = J F,λ2 ⇐⇒ ∃c ∈ Q×
: (λ1 − c · λ2)prim = 0 ⇐⇒ Vλ1 = Vλ2 .

Proof. See [Villaflor Loyola 2022b, Corollary 2.3]. □

This ideal encodes in a simple way the information of the first-order approximation of the Hodge
loci. In fact the content of the following proposition is a rephrasing of the classical result of Carlson,
Green, Griffiths and Harris [Carlson et al. 1983] on the infinitesimal variation of Hodge structure for
hypersurfaces.

Proposition 4.4. Let T ⊆ C[x0, . . . , xn+1]d be the parameter space of smooth degree d hypersurfaces
of Pn+1, of even dimension n. For t ∈ T , let X t = {F = 0} ⊆ Pn+1 be the corresponding hypersurface.
For every Hodge cycle λ ∈ H n/2,n/2(X t , Z), we can compute the Zariski tangent space of its associated
Hodge locus Vλ as

Tt Vλ = J F,λ
d ,

where we have identified Tt T ≃ C[x0, . . . , xn+1]d .

Proof. See [Villaflor Loyola 2022b, Propositions 2.1 and 2.2]. □

Using the previous result, we can obtain the following technical lemma which is the first step in the
proof of Theorem 1.1.

Lemma 4.5. Let Xn
d = {F = 0} be the Fermat variety of even dimension n and degree d ≥ 2 +

6
n . Let

λ ∈ H n/2,n/2(Xn
d , Z) be a nontrivial Hodge cycle such that

codim T0Vλ =

(n/2 + d
d

)
−

(n
2

+ 1
)2

.

Then there exist cλ, c0, c2, c4, . . . , cn ∈ C× such that up to a permutation of the coordinates λprim =

res((Pλ�)/Fn/2+1), where Pλ is given by (1), that is,

Pλ = cλ

n/2+1∏
j=1

xd−1
2 j−2 − (c2 j−2x2 j−1)

d−1

x2 j−2 − c2 j−2x2 j−1
.

Proof. This follows from [Villaflor Loyola 2022b, Propositions 4.1 and 5.3]. The final assertion that
res((Pλ�)/Fn/2+1)= res((Pλ�)/Fn/2+1)n/2,n/2 follows from Theorem 2.1 [Shioda 1979, Theorem 1]. □
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5. Proof of Theorem 1.1

In this section we will prove Theorem 1.1, thus characterizing fake linear cycles as residue forms. In
order to do this we will first bound the field of definition of all fake linear cycles by computing their
periods; then we will characterize them as those invariant under the Galois action.

Proposition 5.1. In the same context of Lemma 4.5 we have that cλ ∈ Q(ζ2d)× and c0, c2, . . . , cn ∈

ζ−3
2d · S1

Q(ζd ) = {ζ−3
2d · z ∈ Q(ζ2d) : z ∈ Q(ζd) and |z| = 1}. Consequently, λprim is a Q(ζ2d)-linear

combination of residue forms ωβ with Qωβ
⊆ Q(ζ2d).

Proof. Since λprim = res((Pλ�)/Fn/2+1) is a Hodge class, all its periods are rational numbers. Using the
formula given by Proposition 3.3 together with Remark 3.8 we have that

1
(2π i)n/2

∫
δβ′

λprim =
cλ

dn/2+1 ·
n
2
!

∑
β∈I

n/2+1∏
j=1

c
β2 j−1
2 j−2

ζ
β2 j−2+1
2d −ζ

−β2 j−2−1
2d

n+1∏
i=0

(ζ
(βi +1)(β ′

i +1)

d −ζ
(βi +1)β ′

i
d )

=
cλ

dn/2+1 ·
n
2
!

∑
β∈I

cβ1
0 ·cβ3

2 · · ·cβn+1
n ζ

β0+β2+···+βn+n/2+1
2d ·ζ

∑n+1
i=0 (βi +1)β ′

i
d

∏n+1
i=0 (ζ

βi +1
d −1)∏n/2+1

j=1 (ζ
β2 j−2+1
d −1)

=
cλ(c0c2 · · ·cn)

−1

dn/2+1 ·
n
2
!

d−2∑
β1,β3,...,βn+1=0

n/2+1∏
j=1

(ζ−1
2d c2 j−2ζ

β ′

2 j−1−β ′

2 j−2
d )β2 j−1+1(1−ζ

β2 j−1+1
d )

=
cλ(c0c2 · · ·cn)

−1

dn/2+1 ·
n
2
!

n/2+1∏
j=1

( d−1∑
ℓ=1

(c2 j−2ζ
2(β ′

2 j−1−β ′

2 j−2)−1
2d )ℓ−(c2 j−2ζ

2(β ′

2 j−1−β ′

2 j−2)+1
2d )ℓ

)

=
cλ(c0c2 · · ·cn)

−1

dn/2+1 ·
n
2
!

n/2+1∏
j=1

E j,β ′ ∈ Q, ∀β ′
∈ {0,1, . . . ,d−2}

n+1,

where each E j,β ′ equals
∑d−1

ℓ=1 (c2 j−2ζ
2(β ′

2 j−1−β ′

2 j−2)−1
2d )ℓ − (c2 j−2ζ

2(β ′

2 j−1−β ′

2 j−2)+1
2d )ℓ. If cd

2 j−2 = −1, we
can always choose some β ′

2 j−1, β
′

2 j−2 ∈ {0, 1, . . . , d − 2} such that E j,β ′ ̸= 0. Let us define

S :=

{
j ∈

{
1, 2, . . . ,

n
2

+ 1
}

: cd
2 j−2 = −1

}
and consider the set B of all β ′

∈ {0, 1, . . . , d − 2}
n+1 such that the value of E j,β ′ ̸= 0 is fixed for every

j ∈ S. For every β ′
∈ B we have that for j /∈ S

E j,β ′ =
c2 j−2(cd

2 j−2 + 1)ζ
2(β ′

2 j−1−β ′

2 j−2)−1
2d (1 − ζd)

(c2 j−2 · ζ
2(β ′

2 j−1−β ′

2 j−2)−1
2d − 1)(c2 j−2 · ζ

2(β ′

2 j−1−β ′

2 j−2)+1
2d − 1)

̸= 0.

It is clear that c2 j−2 ∈ ζ−3
2d · S1

Q(ζd ) for j ∈ S. In order to show that c2 j−2 ∈ ζ−3
2d · S1

Q(ζd ) for j /∈ S, fix
some j0 /∈ S and consider two β ′, β ′′

∈ B such that E j,β ′ = E j,β ′′ for all j ̸= j0 and β ′

2 j0−1 − β ′

2 j0−2 = 1,
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β ′′

2 j0−1 − β ′′

2 j0−2 = 0. Then∫
δβ′

λprim∫
δβ′′

λprim
=

E j0,β ′

E j0,β ′′

=
ζd(c2 j0−2 · ζ−1

2d − 1)

c2 j0−2 · ζ 3
2d − 1

= q ∈ Q×

and so

c2 j0−2 =
q − ζd

ζ 3
2d(q − ζ−1

d )
∈ ζ−3

2d · S1
Q(ζd ).

Finally, since for every β ′
∈ B we know that E j,β ′ ∈ Q(ζ2d), it follows from the above formula for

1/(2π i)n/2
∫
δβ′

λprim ∈ Q that cλ ∈ Q(ζ2d). □

Remark 5.2. By Lemma 4.5 and Proposition 5.1 we know that all fake linear cycles are of the form

λprim = res
(

Pλ�

Fn/2+1

)
for Pλ given by (1) where cλ ∈ Q(ζ2d)× and c0, c2, . . . , cn ∈ ζ−3

2d · S1
Q(ζd ). In order to complete the proof

of Theorem 1.1 we only need to prove that for any choice of c0, c2, . . . , cn ∈ ζ−3
2d · S1

Q(ζd ) there exists
some cλ ∈ Q(ζ2d)× such that λ is in fact a Hodge class, that is, such that

Qλ = Q.

In terms of Galois cohomology, to prove the existence of such cλ, it is equivalent to find a number
cλ ∈ Q(ζ2d)× such that

σ(λ) = λ

for all σ ∈ Gal(Q(ζ2d)/Q). This in turn translates into a collection of relations of the form

σ(cλ) = cλ · φσ

for some numbers φσ (c0, c2, . . . , cn) ∈ Q(ζ2d)× which can be explicitly computed case by case. Since
the set {σ(cλ)/cλ} is by definition a 1-coboundary in the group cohomology of G = Gal(Q(ζ2d)/Q) with
coefficients in Q(ζ2d)×, the theorem will follow if we show that {φσ } is a 1-cocycle by the following
well-known result which can be found in [Neukirch et al. 2000].

Theorem 5.3 (Hilbert’s theorem 90). If L/K is a finite Galois extension of fields with Galois group
G = Gal(L/K ), then the first group cohomology H 1(G, L×) equals {1}.

Now we are in position to prove Theorem 1.1, but we will divide the proof into the three possible cases
d = 3, 4, 6. Along all the proofs we will denote by

I :=

{
(β0, . . . , βn+1) ∈ {0, . . . , d − 2}

n+2
: β2 j−2 + β2 j−1 = d − 2, ∀ j = 1, . . . ,

n
2

+ 1
}

the set of multi-indexes corresponding to the monomials of Pλ given by (1).
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Theorem 5.4. For the Fermat cubic Xn
3 with n ≥ 6, all fake linear cycles are of the form

λprim = res
(

Pλ�

Fn/2+1

)
for Pλ given by (1), where c0, c2, . . . , cn ∈ S1

Q(ζ6)
but not all are cube roots of −1 simultaneously, and

cλ ∈ Q(ζ6)
×. For any such choice of ci ’s, there exists some cλ ∈ Q(ζ6)

× such that the class λprim, given
by Pλ as in (1), is the class of a fake linear cycle.

Proof. Since all the monomials of Pλ are totally decomposable, and all their accompanying coefficients
belong to Q(ζ6) we know (by Proposition 3.7) that

Qλ ⊆ Q(ζ6).

In order to show that Qλ = Q it is enough to show that λ is invariant under the action of Gal(Q(ζ6)/Q) =

{id, σ } where σ(ζ6) = ζ−1
6 = ζ6. In particular for every α ∈ Q(ζ6), α = a + bζ6 for a, b ∈ Q, and so

σ(α) = a + bζ6 = α. With this we conclude that for γi = 1 − βi

σ(λ) = σ(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (5(β2 j−2+1)−5(β2 j−2+1)))/3

ωγ

n/2+1∏
j=1

c−β2 j−1
2 j−2 .

Hence

σ(λ) = λ if and only if
σ(cλ)

cλ

= (−1)n/2+1c0 · c2 · · · cn.

Since N ((−1)n/2+1c0 · c2 · · · cn) = |(−1)n/2+1c0 · c2 · · · cn|
2

= 1, we know such cλ always exists by
Hilbert’s theorem 90. □

Theorem 5.5. For the Fermat quartic Xn
4 with n ≥ 4, all fake linear cycles are of the form

λprim = res
(

Pλ�

Fn/2+1

)
for Pλ given by (1), where c0, c2, . . . , cn ∈ ζ8 ·S1

Q(i) but not all are fourth roots of −1 simultaneously, and
cλ ∈ Q(ζ8)

×. For any such choice of ci ’s, there exists some cλ ∈ Q(ζ8)
× such that the class λprim, given

by Pλ as in (1), is the class of a fake linear cycle.

Proof. Note first that ζ−3
8 · S1

Q(ζ4)
= ζ8 · S1

Q(i). Since all the monomials of Pλ are totally decomposable,
and all their accompanying coefficients belong to Q(ζ8), we see that

Qλ ⊆ Q(ζ8).

In order to show that Qλ = Q it is enough to show that λ is invariant under the action of Gal(Q(ζ8)/Q) =

{id, σ3, σ5, σ7} where σ j (ζ8)= ζ
j

8 . Observe that σ7(ζ8)= ζ−1
8 = ζ8. In particular for every α = aζ8+bζ 3

8 ∈

ζ8 · S1
Q(i) we have

σ3(α) = −α, σ5(α) = −α, σ7(α) = α.



1860 Jorge Duque Franco and Roberto Villaflor Loyola

With this and Proposition 3.7 we conclude that for γi = 2 − βi

σ7(λ) = σ7(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (7(β2 j−2+1)−7(β2 j−2+1)))/4

ωγ

n/2+1∏
j=1

c−β2 j−1
2 j−2 .

Hence

σ7(λ) = λ if and only if
σ7(cλ)

cλ

= (−1)n/2+1(c0 · c2 · · · cn)
2. (10)

On the other hand for γi = βi

σ5(λ) = σ5(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (5(β2 j−2+1)−5(β2 j−2+1)))/4

ωγ

n/2+1∏
j=1

(−c2 j−2)
β2 j−1 .

Hence

σ5(λ) = λ if and only if
σ5(cλ)

cλ

= (−1)n/2+1. (11)

Finally for γ j = 2 − β j

σ3(λ) = σ3(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (3(β2 j−2+1)−3(β2 j−2+1)))/4

ωγ

n/2+1∏
j=1

(−c2 j−2)
−β2 j−1 .

Hence

σ3(λ) = λ if and only if
σ3(cλ)

cλ

= (c0 · c2 · · · cn)
2. (12)

Equations (10), (11) and (12) imply the existence of the desired cλ such that Qλ = Q if and only if the
map φ : Gal(Q(ζ8)/Q) → Q(ζ8)

× given by

φ(id) = 1, φ(σ3) = (c0 · c2 · · · cn)
2, φ(σ5) = (−1)n/2+1, φ(σ7) = (−1)n/2+1(c0 · c2 · · · cn)

2

is a 1-coboundary. By Hilbert’s theorem 90 we know H 1(G, L×) = {1} for L = Q(ζ8) and G =

Gal(Q(ζ8)/Q) and so we get the existence of the desired cλ ∈ Q(ζ8) after noting that φ is a 1-cocycle by
definition. □

Theorem 5.6. For the Fermat sextic Xn
6 with n ≥ 2, all fake linear cycles are of the form

λprim = res
(

Pλ�

Fn/2+1

)
for Pλ given by (1), where c0, c2, . . . , cn ∈ i · S1

Q(ζ6)
but not all are sixth roots of −1 simultaneously, and

cλ ∈ Q(ζ12)
×. For any such choice of ci ’s, there exists some cλ ∈ Q(ζ12)

× such that the class λprim, given
by Pλ as in (1), is the class of a fake linear cycle.

Proof. Note first that all the elements of ζ−3
12 · S1

Q(ζ6)
= i · S1

Q(ζ6)
are of the form aζ12 + bζ 3

12 for a, b ∈ Q.
Since all the monomials of Pλ are totally decomposable, and all their accompanying coefficients belong
to Q(ζ12) we see that

Qλ ⊆ Q(ζ12).
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In order to show that Qλ = Q it is enough to show that λ is invariant under the action of Gal(Q(ζ12)/Q) =

{id, σ5, σ7, σ11} where σ j (ζ12) = ζ
j

12. Observe that σ11(ζ12) = ζ−1
12 = ζ12. In particular for every α =

aζ12 + bζ 3
12 with a, b ∈ Q, we have

σ5(α) = −α, σ7(α) = −α, σ11(α) = α.

With this and Proposition 3.7 we conclude that for γi = 4 − βi

σ11(λ) = σ11(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (11(β2 j−2+1)−11(β2 j−2+1)))/6

ωγ

n/2+1∏
j=1

c−β2 j−1
2 j−2 .

Hence

σ11(λ) = λ if and only if
σ11(cλ)

cλ

= (−1)n/2+1(c0 · c2 · · · cn)
4. (13)

On the other hand for γi = βi

σ7(λ) = σ7(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (7(β2 j−2+1)−7(β2 j−2+1)))/6

ωγ

n/2+1∏
j=1

(−c2 j−2)
β2 j−1 .

Hence

σ7(λ) = λ if and only if
σ7(cλ)

cλ

= (−1)n/2+1. (14)

Finally for γ j = 4 − β j

σ5(λ) = σ5(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (5(β2 j−2+1)−5(β2 j−2+1)))/6

ωγ

n/2+1∏
j=1

(−c2 j−2)
−β2 j−1 .

Hence

σ5(λ) = λ if and only if
σ5(cλ)

cλ

= (c0 · c2 · · · cn)
4. (15)

Equations (13)–(15) imply the existence of the desired cλ if and only if φ : Gal(Q(ζ12)/Q) → Q(ζ12)
×

given by

φ(id) = 1, φ(σ5) = (c0 · c2 · · · cn)
4, φ(σ7) = (−1)n/2+1, φ(σ11) = (−1)n/2+1(c0 · c2 · · · cn)

4

is a 1-coboundary. By Hilbert’s theorem 90 we know H 1(G, L×) = {1} for L = Q(ζ12) and G =

Gal(Q(ζ12)/Q). Thus cλ ∈ Q(ζ12) exists since φ is by definition a 1-cocycle. □

Remark 5.7. We want to highlight that using the Galois action in cohomology it is also possible to obtain
another proof of [Villaflor Loyola 2022b, Theorem 1.1] as follows.

Proposition 5.8. There are no fake linear cycles inside Xn
d for d ≥ 2 +

6
n and d ̸= 3, 4, 6. In other words,

for Pλ given by (1) such that cλ ∈ Q(ζ2d)× and c0, c2, . . . , cn ∈ S1
Q(ζ2d ), we have

cd
2i−2 = −1, for all i = 1, . . . ,

n
2

+ 1.
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Proof. Let t ∈ (Z/2dZ)× ≃ Gal(Q(ζ2d)/Q). Since ωPλ
is a Hodge class, it is a rational class and so it is

invariant under the Galois action, i.e., t (ωPλ
) = ωPλ

. Hence we can write

ωPλ
= cλ

∑
β∈I

ωβ

n/2+1∏
j=1

cβ2 j−1
2 j−2 .

Applying the action of t we get that

t (cλ)
∑
β∈I

t (ωβ)

n/2+1∏
j=1

t (cβ2 j−1
2 j−2) = cλ

∑
β∈I

ωβ

n/2+1∏
j=1

cβ2 j−1
2 j−2 ,

and so

t (cλ) · t (ωβ)

n/2+1∏
j=1

t (cβ2 j−1
2 j−2) = cλ · ωγ

n/2+1∏
j=1

cγ2 j−1
2 j−2

for ωβ ∈ V (α), ωγ ∈ V (t · α). It follows from Proposition 3.7 that

t (cλ)(−1)
(

∑n/2+1
j=1 (ta2 j−2−ta2 j−2))/d

n/2+1∏
j=1

t (cd−a2 j−2−1
2 j−2 ) = cλ

n/2+1∏
j=1

c−ta2 j−2−1
2 j−2

holds for all choices of a0, a2, . . . , an ∈ {1, . . . , d − 1}. For each j = 1, . . . , n
2 + 1, fix the values of

a2i−2 = 1 for all i ̸= j , and let a2 j−2 take two arbitrary values a, b ∈ {1, . . . , d − 1} in turn. Dividing one
of the resulting identities by the other we obtain

(−1)(ta−tb−ta+tb)/d t (cb−a
2 j−2) = c−ta−−tb

2 j−2

for all a, b ∈ {1, . . . , d − 1}, or, equivalently,

t (ζ a−b
2d cb−a

2 j−2) = ζ ta−tb
2d ctb−ta

2 j−2 . (16)

Now, let q := min{p prime : p ∤ 2d} as in Lemma 2.5; hence, gcd(2d, 2d −q) = 1 and q < d
2 or q =

d+1
2 .

If q < d
2 , there exists k ∈ {2, 3, . . . , d − 2} such that d

k+1 < q < d
k . In this case we have

(1 − k)(2d − q) − (k + 1)(2d − q) + k(2(2d − q)) = −d. (17)

Using (16) for t = 2d − q we have

ζ
k(2d−q)+2d−q−(k+1)(2d−q)

2d c(k+1)(2d−q)−2d−q
2 j−2 = t (ck

2 j−2)

= ζ
k((2d−q)+2d−q−2(2d−q))

2d ck(2(2d−q)−2d−q)

2 j−2 ,

and therefore ζ
(1−k)(2d−q)−(k+1)(2d−q)+k(2(2d−q))

2d = c(1−k)(2d−q)−(k+1)(2d−q)+k(2(2d−q))

2 j−2 . By (17) we con-
clude that cd

2 j−2 = −1. In the case where q =
d+1

2 the argument above works taking k = 2 in (17), which
is then equal to d instead of −d. □
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6. Quadratic fundamental form and proof of Theorem 1.2

In this final section we recall the quadratic fundamental form described in [Maclean 2005]. Her result
was described in the context of surfaces for the classical Noether–Lefschetz loci, however in higher
dimensions it also gives a partial description of the quadratic fundamental form which is enough for our
purposes. Since the original proof applies word by word to the general case we will omit it.

Definition 6.1. Let M be a smooth m-dimensional analytic scheme, V a vector bundle on M and σ a
section of V . Let W be the zero locus of σ and let x ∈ W . The quadratic fundamental form of σ at x is

qσ,x : Tx W ⊗ Tx W → Vx/ Im(dσx)

given in local coordinates (z1, . . . , zm) around x by

qσ,x

( m∑
i=1

αi
∂

∂zi
,

m∑
j=1

β j
∂

∂z j

)
=

m∑
i=1

αi
∂

∂zi

( m∑
j=1

β j
∂

∂z j
(σ )

)
.

In our context we will take M = (T, 0), V =
⊕n/2−1

p=0 F p/F p+1 and x = 0, where T ⊆ H 0(OPn+1(d))

is the parameter space of smooth degree d hypersurfaces of Pn+1, π : X → T is the corresponding
family, F p

= Rnπ∗�
•≥p
X/T , and 0 ∈ T corresponds to the Fermat variety. In order to construct a section

σ of V around x , let λ ∈ H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Z) be a Hodge cycle, and consider λ̄ its induced
flat section in F0/Fn/2. If we fix a holomorphic splitting F0/Fn/2

≃ V and we take σ as the image
of λ̄ under this splitting, then W = Vλ. In this context we can identify Tx W = J F,λ

d (Proposition 4.4),
Vx =

⊕n
q=n/2+1 RF

d(q+1)−n−2 and dσx = ·Pλ. The computation of the degree d
( n

2 + 2
)
− n − 2 piece of

q = qσ,x under these identifications was done in Theorem 7 of [Maclean 2005] as follows.

Theorem 6.2 (Maclean). The degree r := d
( n

2 + 2
)
− n − 2 piece of the fundamental quadratic form

q : Sym2(J F,λ
d ) →

n⊕
q=n/2+1

RF
d(q+1)−n−2/⟨Pλ⟩

is given by

qr (G, H) =

n+1∑
i=0

(
H

∂ Qi

∂xi
− Ri

∂G
∂xi

)
,

where

G · Pλ =

n+1∑
i=0

Qi
∂ F
∂xi

and H · Pλ =

n+1∑
i=0

Ri
∂ F
∂xi

.

Proposition 6.3. Let λ ∈ H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Z) be a fake linear cycle given by (1), and consider

G := (x2i−2 − c2i−2x2i−1) · D ∈ J F,λ
d .

Then

qr (G, G) =
−cλ

d

∏
j ̸=i

( xd−1
2 j−2 − (c2 j−2x2 j−1)

d−1

x2 j−2 − c2 j−2x2 j−1

)
· D2

· (cd
2i−2 + 1).
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Proof. Just note that

G · Pλ = cλ

∏
j ̸=i

( xd−1
2 j−2 − (c2 j−2x2 j−1)

d−1

x2 j−2 − c2 j−2x2 j−1

)
· D · (xd−1

2i−2 − (c2i−2x2i−1)
d−1).

Hence Q j = 0 for j ̸= 2i − 2, 2i − 1 and

Q2i−2 =
cλ

d

∏
j ̸=i

( xd−1
2 j−2−(c2 j−2x2 j−1)

d−1

x2 j−2−c2 j−2x2 j−1

)
·D, Q2i−1 =

−cλ ·cd−1
2i−2

d

∏
j ̸=i

( xd−1
2 j−2−(c2 j−2x2 j−1)

d−1

x2 j−2−c2 j−2x2 j−1

)
·D.

The result follows now by a direct computation of Maclean’s formula. □

Proof of Theorem 1.2. After Theorem 1.1 we just need to show that

codim Vλ >
(n/2 + d

d

)
−

(n
2

+ 1
)2

for all fake linear cycles λ ∈ H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Z). In fact, otherwise Vλ is smooth and reduced
at the Fermat point, and so the quadratic fundamental form q = 0 vanishes. In particular its degree
r := d

( n
2 + 2

)
− n − 2 piece also vanishes, that is, qr = 0, and so by Proposition 6.3 we conclude that

cd
2i−2 + 1 = 0 for all i = 1, . . . , n

2 + 1, contrary to the fact that λ is a fake linear cycle. □
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