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Special cycles on the basic locus of unitary Shimura
varieties at ramified primes

Yousheng Shi

We study special cycles on the basic locus of certain unitary Shimura varieties over the ramified primes
and their local analogs on the corresponding Rapoport–Zink spaces. We study the support and compute
the dimension of these cycles.
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1. Introduction

We study the basic locus of certain unitary Shimura varieties over ramified primes and special cycles on it.
To approach this global problem we first study local special cycles on the corresponding Rapoport–Zink
spaces and then apply a uniformization theorem to convert our local results on the Rapoport–Zink spaces
to global ones. Our results will have applications to Kudla’s program, in particular Kudla–Rapoport type
of conjectures over these ramified primes; see [Kudla and Rapoport 2011; 2014; Li and Zhang 2022; Li
and Liu 2022; He et al. 2023; Shi 2023].

We specialize to an integral model of Shimura varieties associated to U(1, n − 1) which parametrize
abelian schemes with certain CM action and a compatible principal polarization. This integral model and
the corresponding model of Rapoport–Zink space is first proposed by Pappas [2000]; see also [Rapoport
et al. 2021]. It is flat over the base, normal and Cohen–Macaulay and has isolated singularities. One
can blow up these singularities to get a model which has semistable reduction and has a simple moduli
interpretation; see [Krämer 2003]. We focus on the Pappas model in this paper but all results can be
easily adjusted to the Krämer model case as these models are the same outside the singularities.

In the Rapoport–Zink spaces setting, we study the reduced locus of special cycles and compute their
dimensions. As an intermediate step, we prove an isomorphism between two Rapoport–Zink spaces of
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1682 Yousheng Shi

different nature. In the Shimura variety setting, we write down the uniformization theorem of the basic
locus over the ramified primes and then translate our local results to global ones. We now explain our
results in more detail.

1A. Local results. Let p > 2 be a prime and fix a tower of finite extensions Qp ⊆ H ⊆ F0 ⊂ F where
F/F0 is quadratic and ramified. For any p-adic field R, we denote by OR its ring of integers. Let F̆ be
the completion of the maximal unramified extension of F . Let NilpOF̆ be the categories of OF̆ -schemes
S on which p is locally nilpotent. For S ∈ NilpOF̆ , let S = S ×SpecOF̆

Spec Fp. The Rapoport–Zink space
N F/H
(r,s) is the moduli space over SpfOF̆ whose S points are objects (X, ι, λ, ρ) where X is a supersingular

formal p-divisible group over S, ι : OF → End(X) is an OF -action on X whose restriction to OH is
strict, λ : X → X∨ is a principal polarization, and ρ : X ×S S → X ×Spec Fp

S is a map to a framing object
(X, ιX, λX) over Spec Fp. We require that the Rosati involution of λ induces on OF the Galois conjugation
over OF0 and the action ι satisfies the (r, s) signature condition (Definition 2.3). See Definitions 2.5
and 2.8 for the detailed definition of N F/H

(r,s) . We first show the following theorem (Theorem 2.10).

Theorem 1.1. Suppose that F0/H is unramified. Then there is an isomorphism

C : N F/H
(r,s)

∼= N F/F0
(r,s) .

The significance of the above theorem is that N F/Qp
(r,s) can be related to unitary Shimura varieties by the

uniformization theorem while N F/F0
(r,s) is easier to study. From now on we mainly focus on the signature

(1, n − 1). By [Rapoport et al. 2014] we know that N F/F0
(1,n−1) is representable by a formal scheme over

SpfOF̆ . Moreover there is a stratification of its reduced locus given by

(N F/F0
(1,n−1))red =

⊎
3

N o
3

where 3 runs over the so-called vertex lattices, see Theorem 2.17.
We can define special cycles on both N F/H

(1,n−1) and N F/F0
(1,n−1). The isomorphism in Theorem 1.1 maps

special cycles in the first space to special cycles in the second. Without loss of generality we focus on
N F/F0
(1,n−1). Let (Y, ιY, λY) (resp. (X, ιX, λX)) be the framing object of N F/F0

(0,1) (resp. N F/F0
(1,n−1)). Define an

F vector space
V := HomOF (Y,X)⊗Z Q

of rank n with the Hermitian form h( · , · ) such that for any x, y ∈ V we have

h(x, y)= λ−1
Y ◦ y∨

◦ λX ◦ x ∈ EndOF (Y)⊗ Q
∼=−→ F,

where y∨ is the dual of y. For an OF -lattice L ⊂ V, the associated special cycle Z(L) is the subfunctor
of N F/F0

(0,1) ×SpfOF̆
N F/F0
(1,n−1) such that ξ = (Y, ι, λY , ϱY , X, ι, λX , ϱX ) ∈ Z(L)(S) if for any x ∈ L the

quasihomomorphism
ϱ−1

X ◦ x ◦ ϱY : Y ×S S → X ×S S

lifts to a homomorphism from Y to X .



Special cycles on the basic locus of unitary Shimura varieties at ramified primes 1683

Any OF -lattice L with a Hermitian form ( · , · ) has a Jordan splitting

L = kλ∈ZLλ (1-1)

where k stands for orthogonal direct sum and Lλ is πλ-modular (see Section 3A). We say L is integral if
(x, y) ∈ OF for any x, y ∈ L . For an integer t and a fixed Jordan decomposition as above we define

L≥t = kλ≥t Lλ ⊂ L .

The following summarizes Theorems 3.9 and 3.10 and their corollaries.

Theorem 1.2. Let L ⊂ V be an OF -lattice of rank n:

(i) Z(L) is nonempty if and only if L is integral.

(ii) Z(L)red (the reduced scheme of Z(L)) is a union of strata N o
3 where 3 ranges over a set of vertices

which can be described in terms of L.

(iii) Fix a Jordan decomposition of L as in (1-1). Define

d(L) :=


rankOF (L≥1)− 1 if rankOF (L≥1) is odd,
rankOF (L≥1) if rankOF (L≥1) is even and L≥1 ⊗Z Q is split,
rankOF (L≥1)− 2 if rankOF (L≥1) is even and L≥1 ⊗Z Q is nonsplit.

Then Z(L)red is purely of dimension 1
2d(L), i.e., every irreducible component of Z(L)red is of

dimension 1
2d(L). Here we say a Hermitian space V of dimension n is split if

(−1)n(n−1)/2 det(V ) ∈ NmF/F0(F
×).

Otherwise we say it is nonsplit.

(iv) Define
nodd =

∑
λ≥3, λ is odd

rankOF (Lλ),

and
neven =

∑
λ≥2, λ is even

rankOF (Lλ).

Then Z(L)red is irreducible if and only if the following two conditions hold simultaneously:

(a) nodd = 0.
(b) neven ≤ 1 or neven = 2 and L≥2 ⊗Z Q is nonsplit.

1B. Global results. In the global setting, let F be a CM field with totally real subfield F0 and 8 ⊂

HomQ(F,C) be a CM type of F . Denote by x 7→ x̄ the Galois conjugation of F/F0 and fix a ϕ0 ∈ 8.
Define

Vram = {finite places v of F0 | v ramifies in F}. (1-2)

We assume that Vram is nonempty and every v ∈ Vram is unramified over Q and does not divide 2.
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Let V be a n dimensional F-vector space with a Hermitian form ( · , · ) which has signature (n − 1, 1)
with respect to ϕ0 and (n, 0) with respect to any other ϕ ∈ 8\{ϕ0}. The CM type 8 together with the
signature of V determines a reflex field E and F embeds into E via ϕ0. Define groups

ZQ
:= {z ∈ ResF/Q Gm | NmF/F0(z) ∈ Gm}, G = ResF0/Q U(V ).

Also define

G̃ := ZQ
× G.

We can define a corresponding Hodge map hG̃ : C×
→ G̃(R). By choosing a compact subgroup

K = K ZQ × KG ⊂ G̃(A f ) where K ZQ is the maximal compact subgroup of ZQ(A f ) (see (4-8)) and KG

is a compact subgroup of G(A f ), we get a Shimura variety S(G̃, hG̃)K which has a canonical model over
Spec E . Further more if we assume KG is the stabilizer of a self-dual lattice (see (4-7)), then [Rapoport
et al. 2021] defined a moduli functor M of abelian varieties with OF -action and a compatible principal
polarization over SpecOE whose complex fiber is S(G̃, hG̃)K . We review the definition in Section 4. By
our assumption K is of the form K =

∏
v Kv where we take the restricted product over all finite places

of F0. Throughout the paper, we use the notations

K p =

∏
v | p

Kv, K p
=

∏
v ∤ p

Kv,

and similar notations with K replaced by KG or K ZQ .
Now assume v0 ∈ Vram and let w0 be the place of F above it. Let p be the characteristic of the residue

field of F0,v0 . Fix a finite place ν of E above v0 with residue field kν . Let Ĕν be the completion of the
maximal unramified extension of Eν . We denote by Mss

ν the basic locus of M at ν and denote by M̂ss
ν the

completion of M×SpecOE SpecOĔν along Mss
ν ×Spec kνSpec k̄ν . Then we have the following uniformization

theorem which is a consequence of [Rapoport and Zink 1996, Theorem 6.30] and Theorem 1.1.

Theorem 1.3. Assume v0 ∈Vram and Vram satisfies the condition stated after (1-2). There is an isomorphism

2 : G̃ ′(Q)\N ′
× G̃(Ap

f )/K p ∼= M̂ ss
ν .

where G̃ ′ is an inner form of G̃ and

N ′
= ZQ(Qp)/K ZQ,p × (N

Fw0/F0,v0
(1,n−1) ×̂SpfOF̆w0

SpfOĔν )×
∏
v ̸=v0

U(V )(F0,v)/KG,v

where the product in the last factor is over all places of F0 over p not equal to v0.

For a nondegenerate totally positive definite F/F0-Hermitian matrix T , we define the special cycle
Z(T ) following the definition of [Kudla and Rapoport 2014] in Definition 5.2. Now assume T has rank n.
Let VT be the Hermitian F-space with Gram matrix T and define

Diff(T, V ) := {v is a finite place of F0 | Vv is not isomorphic to (VT )v}. (1-3)
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It is well-known to experts that Z(T ) is empty when Diff(T, V ) contains more than one element and
Z(T ) is supported on Mss

ν over finite primes ν of E above v if Diff(T, V )= {v}. We briefly review the
proof of these results (see Proposition 5.4). Then the following theorem is a consequence of Theorems 1.2
and 1.3.

Theorem 1.4. Assume that T is a totally positive definite F/F0-Hermitian matrix with values in OF such
that Diff(T, V )= {v0} where v0 ∈ Vram and Vram satisfies the condition stated after (1-2). Then Z(T ) is
supported on Mss

ν and Z(T )red is equidimensional of dimension 1
2d(Lv0) where Lv0 is any Hermitian

lattice over OF,v0 whose gram matrix is T and d(Lv0) is defined as in Theorem 1.2.

The paper is organized as follows. In Section 2, we prove Theorem 1.1 (Theorem 2.10) and recall
some properties of N F/F0

(1,n−1) as studied in [Rapoport et al. 2014]. In Section 3, we define our local
version of special cycles on Rapoport–Zink spaces and prove Theorem 1.2 (Theorems 3.9 and 3.10). In
Section 4, we recall the definition of the arithmetic model of the Shimura variety studied in [Rapoport
et al. 2020]. In Section 5 we define global special cycles Z(T ) and prove Theorems 1.3 (Theorem 5.6)
and 1.4 (Theorem 5.7).

2. Relative and absolute Rapoport–Zink spaces

We use the notations as in Section 1A. In this section, we define the Rapoport–Zink space N F/H
(r,s) and

recall its basic properties from [Rapoport et al. 2014] when H = F0 and (r, s)= (1, n − 1). The space
N F/F0
(1,n−1) is convenient for studying special cycles. On the other hand N F/Qp

(r,s) shows up naturally in the
uniformization theorem (see Theorem 5.6) of the basic locus of certain unitary Shimura varieties (see
Section 4). We call N F/F0

(r,s) (resp. N F/Qp
(r,s) ) a relative (resp. absolute) Rapoport–Zink space following the

terminology of [Mihatsch 2022].
In Theorem 2.10, we show that for different choices of H , N F/H

(r,s) are isomorphic to each other given
that F0/H is unramified. We follow the approach of [Li and Liu 2022, Section 2.8]. Alternatively one
can use the method of [Kudla et al. 2020]. The analog of Theorem 2.10 when F/F0 is unramified was
proved in [Mihatsch 2022].

2A. The signature condition. Assume F0/H is unramified with degree f . We denote the Galois
conjugation of F/F0 by x 7→ x̄ . Fix a uniformizer π of F such that π0 := π2

∈ F0 and is a uniformizer
of F0. Let k be the residue field of OF0 (hence also that of OF ) with an algebraic closure k̄. Let H̆ be the
completion of a maximal unramified extension of H (hence also that of F0) in F̆ . Let x 7→ σ(x) denote
the Frobenius of H̆/H . Define

9 := HomH (F0, H̆).

Fix a distinguished element ψ0 ∈90. Define ψi = σ i
◦ψ0 for i ∈ Z/( f Z). Then

9 = {ψi | i ∈ Z/( f Z)}.

Also define
8 := HomH (F, F̆).
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Choose a partition of 8=8+ ⊔8− such that

8+ =8−.

For i ∈ Z/( f Z), let ϕi be the element in 8+ such that its restriction to F0 is ψi .
We denote by OH̆ (resp. OF̆ ) the ring of integers of H̆ (resp. F̆). There are decompositions by the

Chinese remainder theorem

OF0 ⊗OH OH̆ =

∏
ψ∈9

OH̆ and OF ⊗OH OH̆ =

∏
ψ∈9

OF ⊗OF0 ,ψ
OH̆

∼=

∏
ψ∈9

OF̆ . (2-1)

The Frobenius 1 ⊗ σ is homogeneous and acts simply transitively on the index set.
Let S be an OH -scheme and L be a locally free sheaf over S with an OH -action. We say the action

is strict if it agrees with the structure map OH → OS . A strict formal OH -module over S is formal
p-divisible group over S with an OH -action ι : OH → End(X) such that its induced action on Lie X is
strict. Denote by X∨ the dual of X in the category of strict OH -module; see [Mihatsch 2022, Section 11].
We say X is supersingular if its relative Dieudonné module (see [Fargues 2008, Appendix B.8]) over H
at each geometric point of S has slope 1

2 .

Definition 2.1. For S ∈ NilpOF̆ , a hermitian OF -OH -module over S is a triple (X, ι, λ) where X is a
strict formal OH -module together with an action ι : OF → End(X) extending the action of OH and a
principal polarization X → X∨ such that

λ−1
◦ ι(a)∨ ◦ λ= ι(ā), ∀a ∈ OF .

Two hermitian OF -OH -modules (X, ι, λ) and (X ′, ι′, λ′) are isomorphic (resp. quasiisogenic) if there is
an OF -linear isomorphism (resp. quasiisogeny) ϕ : X → X ′ such that ϕ∨

◦ λ′
◦ϕ = λ.

Let r, s ∈ Z≥0 and set n := r + s. Define the signature function 8→ Z≥0 by

rϕ =


r if ϕ = ϕ0,

0 if ϕ ∈8+\{ϕ0},

n − rϕ if ϕ ∈8−.

Definition 2.2. For a ∈ F , we define the following polynomial

PF/H,(r,s),ϕ0,8+
(a; t) :=

∏
ϕ∈8

(t −ϕ(a))rϕ .

Let S ∈ NilpOF̆ and (L, ι) a locally free sheaf over S together with an OF action ι whose restriction
to OH is strict. Decomposition (2-1) induces a decomposition of L:

L =

⊕
ψ∈9

Lψ . (2-2)
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Definition 2.3. We say (L, ι) satisfies the signature condition (F/H, (r, s), ϕ0,8+) if the following
conditions are satisfied:

(i) charpol(ι(a) | L)= PF/H,(r,s),ϕ0,8+
(a; t) for all a ∈ OF .

(ii) (ι(a)− a) |Lψ0
= 0 for all a ∈ OF0 .

(iii) For each ϕ ∈8+ such that rϕ ̸= rϕ , the wedge condition of [Pappas 2000]:

∧
rϕ+1((ι(a)−ϕ(a)) | Lψ)= 0, ∧

rϕ+1((ι(a)−ϕ(a)) | Lψ)= 0

is satisfied for all a ∈ OF where ψ ∈9 is the restriction of ϕ to F0.

Remark 2.4. When rϕ = n or 0, the condition (iii) above is the same as the banal condition of [Li and
Liu 2022, Definition 2.60] or the Eisenstein condition in [Kudla et al. 2020, Section 2.2].

Definition 2.5. Let S ∈ NilpOF̆ . Let

HS(F/H, (r, s), ϕ0,8+)

be the category of supersingular hermitian OF -OH -modules X over S such that the induced OF -action
on Lie X satisfies the signature condition (F/H, (r, s), ϕ0,8+).

2B. Comparison theorem. We will prove the following theorem.

Theorem 2.6. Assume that F0/H is unramified. For S ∈ NilpOF̆ , there is an equivalence of categories

CS : HS(F/H, (r, s), ϕ0,8+)→ HS(F/F0, (r, s), ϕ0, {ϕ0})

that is compatible with base change.

If S = Spec R, we often write HR (resp. CR) instead of HS (resp. CS). To prove Theorem 2.6, we will
use the theory of f -O-displays developed by [Ahsendorf et al. 2016]. We recall some definitions and
notations. For an OH -algebra R, let WOH (R) be the relative Witt ring with respect to a fixed uniformizer
of H ; see for example [Fargues and Fontaine 2018, Definition 1.2.2]. Let x 7→

F x be the Frobenius
endomorphism and x 7→

V x be the Verschiebung. Let IOH (R) =
V WOH (R) and we can define V−1

on
IOH (R). For a ∈ R, let [a] ∈ WOH (R) be its Teichmüller representative.

Let ψ̂i be the composition of ψi with the Cartier morphism OH̆ → WOH (OH̆ ). For i ∈ Z/( f Z), let
ϵi be the unique unit in WOH (OF0) such that V ϵi = [ψi (π0)]− ψ̂i (π0), which exists by [Ahsendorf et al.
2016, Lemma 2.24]. Following [Li and Liu 2022, (2.20)], we can define a unit µπ ∈ WOH (OH̆ ) such that

F f
µπ

µπ
=

f −1∏
i=1

F f −1−i
ϵi . (2-3)

Definition 2.7 [Ahsendorf et al. 2016, Definition 2.1]. Assume f ∈ Z≥1. An f -OH -display over R is a
quadruple P = (P, Q, F, Ḟ) consisting of the following data: a finitely generated projective WOH (R)-
module P , a submodule Q ⊂ P , and two F f

-linear maps

F : P → P and Ḟ : Q → P.
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The following conditions are required:

(i) IOH (R)P ⊆ Q and there is a decomposition of WOH (R)-modules P = L ⊕ T such that Q =

L ⊕ IOH (R)T . Such a decomposition is called a normal decomposition.

(ii) Ḟ is an F f
-linear epimorphism.

(iii) For all x ∈ P and w ∈ WOH (R), we have

Ḟ(Vwx)=
F f −1

wF(x).

We define the Lie algebra of P to be LieP := P/Q. If f = 1, we simply call P an OH -display.

We refer to [Ahsendorf et al. 2016, Definition 2.3] for the definition of a nilpotent display and [Mihatsch
2022, Section 11] for the notion of polarizations of displays; see also [Kudla et al. 2020, Section 3]. The
main result of [Ahsendorf et al. 2016] tells us that there are equivalences of categories

{nilpotent f -OH -displays overR} → {strict formal OF0-modules over R}

where f = [F0 : H ], in particular

{nilpotent OH -displays overR} → {strict formal OH -modules over R}.

Proof of Theorem 2.6. The proof is similar with that of [Li and Liu 2022, Proposition 2.62]. Assume that
S = Spec R ∈ NilpOF̆ . We abuse notation and denote the composition of ψ̂i with WOH (OF̆0

)→ WOH (R)
by ψ̂i as well. Then (2-1) induces

OF ⊗OH WOH (R)=

∏
ψ∈9

OF ⊗OF0 ,ψ̂i
WOH (R). (2-4)

Assume (X, ι, λ)∈HS(F/H, (r, s), ϕ0,8+) and P = (P, Q, F, Ḟ) be its associated OH -display. Then
P has an OF action (still denoted by ι). Equation (2-4) induces the following decomposition

P =

⊕
ψ∈9

Pψ , Q =

⊕
ψ∈9

Qψ , with Qψ = Pψ ∩ Q (2-5)

where Pψ has an OF ⊗OF0 ,ψ̂i
WOH (R) action. Then F and Ḟ shift the grading on P in the following way:

F : Pψ → Pσ◦ψ and Ḟ : Qψ → Pσ◦ψ .

As in [Mihatsch 2022, Section 11.1], the principal polarization λ is equivalent to a collection of perfect
WOH (R)-bilinear skew-symmetric pairings

{⟨ · , · ⟩ψ : Pψ × Pψ → WOH (R) | ψ ∈9}

such that ⟨ι(a)x, y⟩ψ = ⟨x, ι(ā)y⟩ψ for all a ∈ OF , x, y ∈ Pψ and ⟨Ḟx, Ḟy⟩σ◦ψ =
V−1

⟨x, y⟩ψ for all
x, y ∈ Qψ .



Special cycles on the basic locus of unitary Shimura varieties at ramified primes 1689

For ψ ̸= ψ0, by [Li and Liu 2022, Lemma 2.60], the banal signature condition implies

Qψ = (π ⊗ 1 + 1 ⊗ [ϕ(π)])Pψ + IOH (R)Pψ .

where ϕ is the element in 8+ above ψ . Hence for ψ ̸= ψ0, we can define

F′
: Pψ → Pσ◦ψ : x 7→ Ḟ((π ⊗ 1 + 1 ⊗ [ϕ(π)])x).

By [loc. cit.], F′ is an F-linear isomorphism. Now define

P rel
= Pψ0, Qrel

= Qψ0, Frel
= ((F′) f −1

◦ F)|P rel, Ḟrel
= ((F′) f −1

◦ Ḟ)|Qrel .

Then P rel
:= (P rel, Qrel, Frel, Ḟrel) is a f -OH -display over R. Define

ιrel
: OF → End(P rel)

simply by restricting ι to Pψ0 . Then the signature condition (F/H, (r, s), ϕ0,8+) restricted on Pψ0 is
exactly the same as the signature condition (F/F0, (r, s), ϕ0, {ϕ0}). Define

⟨ · , · ⟩rel
:= µπ ⟨ · , · ⟩|P rel

where µπ is as in (2-3). Then ⟨ · , · ⟩rel is a perfect WOH (R)-bilinear skew-symmetric pairing such that
⟨ι(a)x, y⟩

rel
= ⟨x, ι(ā)y⟩

rel for all a ∈ OF , x, y ∈ P rel. By the calculation before [Li and Liu 2022,
Remark 2.61], we also have

⟨Ḟrelx, Ḟrel y⟩
rel

=
F f −1V−1

⟨x, y⟩
rel, ∀x, y ∈ Qrel.

The form ⟨ · , · ⟩rel gives a principal polarization of P rel. The pair (P rel, ιrel) together with the polarization
gives an object

(X, ι, λ)rel
∈ HS(F/F0, (r, s), ϕ0, {ϕ0}).

This is defined to be CS((X, ι, λ)). The functor CS is obviously functorial in S. The fact that CS is an
equivalence of categories can be proved verbatim as that of [Li and Liu 2022, Proposition 2.62]. □

2C. Comparison of Rapoport–Zink spaces. Fix a triple

(XF/H , ι
F/H
X , λ

F/H
X ) ∈ Hk̄(F/H, (r, s), ϕ0,8+).

We essentially only have one or two such choices up to isogeny according to n being odd or even, see
Remark 2.14 below.

Definition 2.8. Let N F/H
(r,s) be the functor which associates to S ∈ NilpOF̆ the set of isomorphism classes

of quadruples (X, ι, λ, ϱ) where

(i) (X, ι, λ) ∈ HS(F/H, (r, s), ϕ0,8+),

(ii) ϱ : X ×S S → XF/H
×Spec k̄ S is a OF -linear quasiisogeny of height 0 such that λ and ϱ∗(λ

F/H
X )

differ locally on S by a factor in O×

H .
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An isomorphism between two such quadruples (X, ι, λ, ϱ) and (X ′, ι′, λ′, ϱ′) is given by an OF -linear
isomorphism α : X → X ′ such that ϱ′

◦ (α×S S)= ϱ and α∗(λ′) is an O×

H multiple of λ.

Remark 2.9. In the definition of N F/H
(r,s) , we can replace condition (ii) by the condition that ϱ is a OF -linear

quasiisogeny of height 0 such that λ= ϱ∗(λX). The resulting functor is isomorphic to the original one as
(X, ι, λ, ϱ) and (X, ι, aλ, ϱ) are isomorphic in N F/F0

(r,s) for a ∈ O×

H .

By [Rapoport and Zink 1996, Chapter 3], N F/H
(r,s) is representable by a formal scheme locally of finite

type over SpfOF̆ .

Theorem 2.10. Assume F0/H is unramified and the framing object (XF/F0, ι
F/F0
X , λ

F/F0
X ) used in the

definition of N F/F0
(r,s) is isomorphic to Ck̄((X

F/H , ι
F/H
X , λ

F/H
X )). Then there is an isomorphism

C : N F/H
(r,s)

∼= N F/F0
(r,s) .

Proof. This is a consequence of Theorem 2.6. □

2D. The relative Rapoport–Zink space. In this subsection we assume H = F0. We simply denote N F/F0
(r,s)

by N(r,s) and HS(F/F0, (r, s), ϕ0, {ϕ0}) by HS(r, s). We recall some background information on N(1,n−1)

from [Rapoport et al. 2014]. Although [Rapoport et al. 2014] works on the category of p-divisible groups,
their arguments and results easily extend to the category of strict formal OF0-modules using relative
Dieudonné theory.

Proposition 2.11 [Rapoport et al. 2014, Proposition 2.1]. The functor N(1,n−1) is representable by a
separated formal scheme N(1,n−1), locally of finite type and flat over SpfOF̆ . It is formally smooth over
SpfOF̆ in all points of the special fiber except the superspecial points. Here a point z ∈ N(1,n−1)(k) is
superspecial if Lie(ι(π)) = 0 where (X, ι, λ, ϱ) is the pullback of the universal object of N(1,n−1) to z.
The superspecial points form an isolated set of points.

For the signature (0, 1) we know that N(0,1) ∼= SpfOF̆ and has a universal formal OF -module Y (the
canonical lifting of Y in the sense of [Gross 1986]) over it.

Remark 2.12. The formal scheme N(1,n−1) is denoted as N 0 in [Rapoport et al. 2014]. In the rest of this
section and Section 3 we often simply write N for N(1,n−1) if the context is clear.

Let Fu be the unique unramified quadratic extension of F0 in F̆0 where F̆0 is the completion of the
maximal unramified extension of F0 in F̆ . Let σ ∈ Gal(F̆0/F0) be the Frobenius element. For a formal
OF0-module, we denote by M(X) the relative Dieudonné module of X . When X has F0-height n and
dimension n over k̄, M(X) is a free OF̆0

-module of rank 2n with a σ -linear operator F and a σ−1-linear
operator V such that V F = FV = π0. Denote by E = F̆0[F, V ] the rational Cartier ring.

Fix a framing object (X, ιX, λX)∈Hk̄(1, n−1). Let N := M(X)⊗ZQ be the rational relative Dieudonné
module of X. Then N has a skew-symmetric F̆0-bilinear form ⟨ · , · ⟩ induced by λX such that for any
x, y ∈ N we have

⟨Fx, y⟩ = ⟨x, V y⟩
σ , ⟨ι(a)x, y⟩ = ⟨x, ι(ā)y⟩, a ∈ F.
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We simply denote by π the induced action of ιX(π) on N . Define a σ -linear operator

τ = πV−1
= π−1 F (2-6)

on N . Set C = N τ (the set of τ -fixed points in N ), then we obtain a n-dimensional F-vector space with
an isomorphism

C ⊗F F̆ ≃ N .

For x, y ∈ C , we have

⟨x, y⟩ = ⟨τ(x), τ (y)⟩ = ⟨π−1 Fx, πV−1 y⟩ = −⟨Fx, V−1 y⟩ = −⟨x, y⟩
σ

Choose δ ∈ Fu
\F0 such that δ2

∈ O×

F0
. Define a form ( · , · ) on N by

(x, y)= δ(⟨πx, y⟩ +π⟨x, y⟩) (2-7)

for all x, y ∈ C . Then ( · , · ) is Hermitian with values in F when restricted on C and

⟨x, y⟩ =
1
2δ

trF/F0(π
−1(x, y)),∀x, y ∈ C. (2-8)

Remark 2.13. There is a unique object (Y, ιY, λY) ∈ Hk̄(0, 1) up to isomorphism. We want to describe
M(Y) explicitly. As an OF0-lattice, it is of rank 2. We can choose a basis {e1, e2} such that Fe1 =

e2, Fe2 = π0e1, Ve1 = e2, Ve2 = π0e1 and ⟨e1, e2⟩ = δ. With respect to this basis, End0(Y)= EndE(N )
is of the form {(

a bπ0

bσ aσ

) ∣∣∣ a, b ∈ Fu
}
,

which is the quaternion algebra H over F0. By changing basis using elements in H ∩ SL2(F0) we can
assume F, V are of the same matrix form as before and

π =

(
0 π0

1 0

)
.

Thus τ is the diagonal matrix diag{1, 1} and fixes the F0-vector space spanF0
{e1, e2}. We have (e1, e1)=

−δ2. As OF is a DVR and N τ is a one dimensional F-space, spanOF
{e1} is the unique self-dual OF -lattice

w.r.t. ( · , · ). Let ϱY be the identity of Y, then (Y, ιY, λY, ϱY) is the unique closed point of N(0,1)(k̄).

Remark 2.14. By [Rapoport et al. 2014, Remark 4.2], when n is odd (resp. even) there is a unique (resp.
exactly two) object (X, ιX, λX) ∈ Hk̄(1, n − 1) up to isogenies that preserves the λX by a factor in O×

F0
.

These are the framing objects in the definition of N(1,n−1). This matches the number of similarity classes
of Hermitian forms over local fields.

When n is odd, we simply take (X, ιX, λX) := (Y, ιY, λY)
n where (Y, ιY, λY) is defined in the previous

remark. When n is even, we again define X := Yn with the diagonal action ιX by OF . There are two
choices of polarizations. The first one λ+

X ∈ End0(X)∼= Mn(H) is given by the antidiagonal matrix with 1’s
on the antidiagonal. The second one λ−

X is defined by the diagonal matrix diag(1, . . . , 1, u1, u2) where
u1, u2 ∈ O×

F0
and −u1u2 /∈ NmF/F0(F

×).
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For two OF -lattices 3, 3′ of C , we use the notation 3⊂
ℓ3′ to stand for the situation when π3′

⊆

3⊆3′ and dimk(3
′/3)= ℓ. Define

3♯ := {x ∈ C | (x,3)⊆ OF }, 3∨
:= {x ∈ C | δ⟨x,3⟩ ⊆ OF0}. (2-9)

Similarly for an OF̆ -lattice M ⊂ N , define

M♯
:= {x ∈ N | (x,M)⊆ OF̆ }, M∨

:= {x ∈ N | ⟨x,M⟩ ⊆ OF̆0
}. (2-10)

Then by (2-7) and (2-8), 3♯ =3∨. Similarly M♯
= M∨.

Proposition 2.15 [Rapoport et al. 2014, Proposition 2.4]. Define the following set of OF̆ -lattices

V := {M ⊆ N | M♯
= M, πτ(M)⊆ M ⊆ π−1τ(M),M ⊂

≤1 (M + τ(M))},

Then the map

(X, ι, λ, ϱ) 7→ ϱ(M(X))⊂ N

defines a bijection from N (k̄) to V .

A vertex lattice in C is an OF -lattice 3⊂ C such that π3⊆3♯ ⊆3. We denote the dimension of the
k-vector space 3/3♯ by t (3), and call it the type of 3. It is an even integer; see [Rapoport et al. 2014,
Lemma 3.2].

Lemma 2.16 [Rapoport et al. 2014, Proposition 4.1]. ∀M ∈ V , there is a unique minimal vertex lattice
3(M) such that M ⊆3(M)⊗OF OF̆ .

Define

V(3) := {M ∈ V | M ⊆3⊗OF OF̆ } and Vo(3) := {M ∈ V |3(M)=3}.

Then apparently Vo(3)⊆ V(3). The following theorem summarizes what we need from [Rapoport et al.
2014, Section 6], in particular [loc. cit., Theorem 6.10].

Theorem 2.17. We have the following facts:

(i) For two vertex lattices 31 and 32

V(31)⊆ V(32)⇔31 ⊆32.

If 31 ∩32 is a vertex lattice, then

V(31 ∩32)= V(31)∩V(32),

otherwise V(31)∩V(32)= ∅.

(ii) For each vertex lattice 3, there exist a reduced projective variety N o
3 over Spec k̄ such that

N o
3(k̄)= Vo(3).
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The closure of any N o
3 in Nred is given by

N3 :=

⊎
3′⊆3

N o
3′,

where the union is taken over vertex lattices3′ included in3. N3 is a projective variety of dimension
t (3)/2. Its set of k̄ points is V(3). The inclusion of points V(31) ⊆ V(32) in (i) is induced by a
closed embedding N31 → N32 .

(iii) There is a stratification of the reduced locus of N given by

Nred =

⊎
3

N o
3

where the union is over all vertex lattices. N (k̄) is nonempty for all n ≥ 1.

3. Special cycles on Rapoport–Zink spaces

In this section, we define special cycles on N F/H
(1,n−1). We then state our main results on the support of

these cycles. First we need some background information on Hermitian lattices.

3A. Hermitian lattices and Jordan splitting. We use k to denote direct sum of mutually orthogonal
spaces. In particular, we use

(α1)k · · · k (αn)

to denote the n-dimensional F vector space (or OF -lattice depending on the context) with a Hermitian
form given by a diagonal matrix diag{α1, . . . , αn} with respect to an orthogonal basis. We also use H(i)
to denote the hyperbolic plane which is the lattice of rank 2 with Hermitian form given by the matrix(

0 π i

(−π)i 0

)
with respect to a certain basis.

For a Hermitian lattice L with Hermitian form ( · , · ), define sL to be min{valπ (x, y) | x, y ∈ L} where
valπ is normalized such that valπ (π) = 1. We say x ∈ L is maximal if x is not in πL . We say L is
π i -modular if (x, L)= π iOF for every maximal vector x in L .

Any Hermitian lattice L has a Jordan splitting

L = kλ∈Z∪{∞}Lλ (3-1)

where Lλ is πλ-modular and L∞ is defined to be the radical of L . Any two Jordan splitting of L have the
same invariants; see [Jacobowitz 1962, Page 449].

Proposition 3.1 [Jacobowitz 1962, Proposition 8.1]. Let L be a π i -modular lattice of rank n. Then:

(1) L ≃ (π i
0/2)k (π i

0/2)k · · · k (π
−(n−1)i/2
0 det(L)) if i is even.

(2) L ≃ H(i)k H(i)k · · · k H(i) if i is odd.

In particular, when i is odd L must have even rank.
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For a sub-OF -module L in a Hermitian F-vector space V , define

L♯V := {x ∈ V | (x, y) ∈ OF ,∀y ∈ L}. (3-2)

When V = L ⊗Z Q, we simply denote L♯V by L♯. We will use the following basic lemmas throughout the
paper, sometimes without explicitly referring to them.

Lemma 3.2. Assume L and L ′ are OF -submodules inside a Hermitian F-vector space V . Then:

(1) (L + L ′)
♯
V = L♯V ∩ (L ′)

♯
V .

(2) (L♯V )
♯
V = L.

Proof. (1) follows from the definition of L♯V . (2) can be proved by using the Jordan splitting of L . □

Lemma 3.3. Assume L ′ is a sub-OF -module of L such that L ′ is π s-modular with s = sL. Then
L = L ′ k (L ′)⊥ where (L ′)⊥ is the perpendicular complement of L ′ in L.

Proof. This is a direct consequence of [Jacobowitz 1962, Proposition 4.2]. □

3B. Special cycles. For a moment, we go back to the setting of Section 2C. Let (XF/H , ι
F/H
X , λ

F/H
X )

(resp. (YF/H , ι
F/H
Y , λ

F/H
Y )) be the framing object of N F/H

(1,n−1) (resp. N F/H
(0,1) ). Define the space of special

homomorphisms to be the F-vector space

VF/H
:= HomOF (Y

F/H ,XF/H )⊗Z Q (3-3)

Define a Hermitian form hF/H ( · , · ) on VF/H such that for any x, y ∈ VF/H we have

hF/H (x, y)= (λ
F/H
Y )−1

◦ y∨
◦ λ

F/H
X ◦ x ∈ EndOF (Y

F/H )⊗ Q
(ι

F/H
Y )−1

∼
−−−→ F (3-4)

as in [Kudla and Rapoport 2011, (3.1)] where y∨ is the dual quasiisogeny of y.

Definition 3.4. For an OF -lattice L ⊂ VF/H , the special cycle Z(L) is the subfunctor of N F/H
(0,1) ×SpfOF̆

N F/H
(1,n−1) whose S-points is the set of isomorphism classes of tuples

ξ = (Y, ι, λY , ϱY , X, ι, λX , ϱX ) ∈ N F/H
(0,1) ×SpfOF̆

N F/H
(1,n−1)(S)

such that for any x ∈ L the quasihomomorphism

ϱ−1
X ◦ x ◦ ϱY : Y ×S S → X ×S S

deforms to a homomorphism from Y to X . If L is spanned by x ∈ Vm , we also denote Z(L) by Z(x).

By Grothendieck–Messing theory, Z(L) is a closed subformal scheme in N F/H
(0,1) ×SpfOF̆

N F/H
(1,n−1).

Proposition 3.5. Keep the same assumption as Theorem 2.10. The functor Ck̄ in Theorem 2.6 induces
an isomorphism (denoted by the same notation) Ck̄ : VF/H

→ VF/F0 of Hermitian vector spaces over F.
Moreover for lattice L ∈ VF/H , the functor C in Theorem 2.10 induces an isomorphism of formal schemes:

Z(L)→ Z(Ck̄(L)).
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Proof. This follows directly from Theorem 2.6. One can compare our result with [Mihatsch 2022,
Remark 4.4]. □

3C. Special cycles on relative Rapoport–Zink spaces. By Proposition 3.5, we can without loss of
generality assume that H = F0. In this case we drop the superscript F/F0 over X, Y, V and h etc. For
x, y ∈ V we abuse notation and denote the induced map between the corresponding relative Dieudonné
modules still by x, y. As in Section 2D, we denote N(1,n−1) simply by N .

Lemma 3.6. We have

h(x, y)(e1, e1)Y = (x(e1), y(e1))X

where e1 is as in Remark 2.13 and ( · , · )X, ( · , · )Y are defined as in (2-7) for the rational relative
Dieudonné module of X and Y respectively.

Proof. We claim that λ−1
Y ◦ y∨

◦ λX agrees with y∗ which is the adjoint operator of y on HomE(M(Y)⊗
Q,M(X)⊗ Q) with respect to ⟨ · , · ⟩X and ⟨ · , · ⟩Y. In fact ⟨ · , · ⟩X is defined by e⟨ · , λX ◦ · ⟩X where
e⟨ · , · ⟩X is the pairing between M(X)⊗ Q and M(X∨)⊗ Q, similarly for ⟨ · , · ⟩Y. Hence

⟨y(n),m⟩X = e⟨y(n), λX(m)⟩X = e⟨n, y∨λX(m)⟩Y = ⟨n, λ−1
Y y∨λX(m)⟩Y,

for all n ∈ M(Y)⊗ Q and m ∈ M(X)⊗ Q. This proves the claim. Hence

(x(e1), y(e1))X = ⟨πx(e1), y(e1)⟩X +π⟨x(e1), y(e1)⟩X

= ⟨y∗πx(e1), e1⟩Y +π⟨y∗x(e1), e1⟩Y

= ⟨πy∗x(e1), e1⟩Y +π⟨y∗x(e1), e1⟩Y

= ⟨πh(x, y)e1, e1⟩Y +π⟨h(x, y)e1, e1⟩Y

= h(x, y)(e1, e1)Y.

This proves the lemma. □

Now assume L ⊂ V is an OF -lattice and define

L = {x(e1) | x ∈ L}. (3-5)

Then L is an OF -lattice in C with the same rank as L and is similar to L as a Hermitian lattice by
Lemma 3.6.

Definition 3.7. Define Vert(L) to be the set of vertex lattices 3 such that L ⊆3♯. We also define

W(L) := {M ∈ V | L ⊆ M} ⊂ V = N (k̄). (3-6)

Proposition 3.8. For an OF -lattice L ⊂ V, define L as in (3-5). The set of k̄ points of the special cycle
Z(L) is W(L). Moreover we have

Z(L)red =

⋃
3∈Vert(L)

N3. (3-7)
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Proof. Assume that (X, ι, λ, ϱ) is a point in N (k̄) and M := ϱ(M(X)) ∈ V as in Proposition 2.15. By
Dieudonné theory, for any x ∈ L, ϱ−1

◦x is a homomorphism from Y to X if and only if ϱ−1
◦x(M(Y))⊆

M(X), if and only if x(M(Y)) ⊆ M . We know that M(Y) = spanOF̆
{e1}. Hence the set of k̄ points of

the special cycle Z(L) is W(L).
To prove (3-7), since both sides of the equation are reduced, it suffices to check it on the k̄-points,

namely,

W(L)=

⋃
3∈Vert(L)

V(3).

Let M ∈ V and suppose 3=3(M) as in Lemma 2.16. Then

L ⊆ M ⇔ M ⊆ (L♯C)⊗OF OF̆ as M = M♯(recall (3-2)),

⇔3⊆ (L♯C)⊗OF OF̆ as L♯ is τ -invariant,

⇔ L ⊆3♯ by Lemma 3.2.

This in fact shows that

M ∈ W(L)⇔ Vo(3)⊆ W(L).

Hence

W(L)=

⋃
3∈Vert(L)

Vo(3)=

⋃
3∈Vert(L)

V(3)

where the last equality follows from (i) and (ii) of Theorem 2.17. This finishes the proof of the proposition.
□

Corollary 3.8.1. If Z(L)(k̄) is nonempty, then L is integral, i.e., h(x, y) ∈ OF for any x, y ∈ L.

Proof. By Proposition 3.8, there exists an M ∈ V such that L ⊆ M . By Lemma 3.6, we have

h(x, y)=
(x(e1), y(e1))X

(e1, e1)Y
.

Since M = M♯, we know (x(e1), y(e1))X ∈ (M,M)X = OF̆ . Also notice that (e1, e1)Y ∈ O×

F0
by

construction. The lemma follows. □

From now on we assume that L (or L equivalently) has rank n. Take a Jordan decomposition of L as
in (3-1). By Corollary 3.8.1, λ≥ 0 for all λ such that Lλ ̸= {0}. We define

L≥t = kλ≥t Lλ, (3-8)

and

m(L)= rankOF (L≥1). (3-9)

Also define

nodd =

∑
λ≥3,λ is odd

rankOF (Lλ) and neven =

∑
λ≥2,λ is even

rankOF (Lλ). (3-10)
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We say a Hermitian F-vector space V of even dimension is split if it is isomorphic to sum of copies
of H(0)⊗Z Q. Equivalent it is split if and only if (−1)n(n−1)/2 det(V ) ∈ NmF/F0 F× where n is the
dimension of V . The following theorem is the analog of [Kudla and Rapoport 2011, Theorem 4.2].

Theorem 3.9. Assume that L ⊂ V has rank n and is integral. Define L as in (3-5). Then

Z(L)red =

⋃
{3∈Vert(L)|t (3)=d(L)}

N3

where

d(L) :=


m(L)− 1 if m(L) is odd,
m(L) if m(L) is even and L≥1 ⊗Z Q is split,
m(L)− 2 if m(L) is even and L≥1 ⊗Z Q is nonsplit.

We postpone the proof of Theorems 3.9 and 3.10 below to the Sections 3D and 3E respectively.

Corollary 3.9.1. If it is nonempty, Z(L) is a variety of pure dimension 1
2d(L).

Proof. The corollary follows from Theorems 3.9 and 2.17. □

The following theorem is the analog of [Kudla and Rapoport 2011, Theorem 4.5].

Theorem 3.10. Make the same assumption as Theorem 3.9. Z(L)red = N3 for a unique vertex lattice 3
if and only if the following two conditions are satisfied simultaneously:

(1) nodd = 0.

(2) neven ≤ 1 or neven = 2 and L≥2 ⊗Z Q is nonsplit.

Corollary 3.10.1. Z(L)red is an irreducible variety if and only if condition (1) and (2) in Theorem 3.10
are satisfied.

Proof. By Proposition 3.8 and Theorem 2.17, Z(L)red is an irreducible variety if and only if Z(L)red =N3

for a unique vertex lattice 3. The corollary now follows from Theorem 3.10. □

Corollary 3.10.2. The variety Z(L)red is zero dimensional if and only if the following conditions are
satisfied:

(1) nodd = 0.

(2) rankOF (L1)= 0.

(3) neven ≤ 1 or neven = 2 and L≥2 ⊗Z Q is nonsplit.

If this is the case, then Z(L)red is in fact a single point.

Proof. The first statement of the corollary follows from Theorem 3.9 directly. If this is the case, then
Z(L)red is a single point by Theorem 3.10. □

We now proceed to prove Theorems 3.9 and 3.10. Define L as in (3-5). Then we can replace all
conditions on L in Theorems 3.9 and 3.10 by the same conditions on L . Moreover d(L)= d(L).
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3D. Proof of Theorem 3.9. It suffices to show the corresponding statements on k̄-points, namely,

W(L)=

⋃
{3∈Vert(L)|t (3)=d(L)}

V(3).

For x ∈ Vn , fix a Jordan splitting of L as in (3-1). We then have

L = L0 k L≥1, L♯ = L0 k (L≥1)
♯.

For any 3 ∈ Vert(L), by Proposition 3.8 we have

L ⊆3♯ ⊆3⊆ L♯. (3-11)

If L0 ̸= {0} then s3= s3♯ = sL = 0. By Lemma 3.3 we can assume

3= L0 k3′.

Then 3♯ = L0 k (3′)♯ and we have the sequence

L≥1 ⊆ (3′)♯ ⊆3′
⊆ (L≥1)

♯.

As the map 3 7→ 3′ above is a bijection and d(L) = d(L≥1), in order to prove Theorem 3.9 we can
without loss of generality assume

L0 = 0 or equivalently 1
π

L ⊆ L♯ (3-12)

in the rest of the subsection. Define

m := m(L)= rankOF (L≥1),

which is the same as rankOF (L) by assumption (3-12). In the rest of the section we simply write rank(3)
instead of rankOF (3) for an OF -lattice 3.

The fact that d(L) can be no bigger than the bounds stated in Theorem 3.9 is a restatement of [Rapoport
et al. 2014, Lemma 3.3]. Our goal is to prove that it can achieve that number. To be more precise,
we prove that if 3 ∈ Vert(L) and t (3) < d(L), then there is a 3′

∈ Vert(L) such that 3 ⊂ 3′ (hence
V(3)⊂ V(3′)) and t (3′)= d(L).

From now on assume3∈ Vert(L), namely (3-11) holds. Let t = t (3), then π3⊂
m−t 3♯ ⊂

t 3. Define

r := dimk

((
1
π
3♯ ∩ L♯

)
/3

)
.

Since 3♯/
( 1
π
3♯ ∩ L♯

)♯
=3♯/(π3+ L), we have the following chain of inclusions

π3+ L ⊂
r 3♯ ⊂

t 3⊂
r 1
π
3♯ ∩ L♯. (3-13)

Our assumption L = L≥1 implies that L ⊆ πL♯. This together with (3-11) and (3-13) implies that

π3+ L ⊆ π
(

1
π
3♯ ∩ L♯

)
=3♯ ∩πL♯. (3-14)
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Hence

dimk

((
1
π
3♯ ∩ L♯

)
/(π3+ L)

)
≥ dimk

((
1
π
3♯ ∩ L♯

)
/π

(
1
π
3♯ ∩ L♯

))
= m.

Notice that the first quotient in the above inequality is indeed a k vector space. Combine the above
inequality with (3-13), we have

2r + t ≥ m. (3-15)

Define a k-valued symmetric form S( · , · ) on the k-vector space 1
π
3♯/3 by

S(x, y) := δπ0⟨πx, y⟩.

Lemma 3.11. Suppose3 is a vertex lattice in Vert(L) such that dimk
( 1
π
3♯∩ L♯/3

)
≥ 3, then there exists

a lattice 3′
∈ Vert(L) with 3⊂3′ and t (3′) > t (3).

Proof. Recall that every quadratic form on a k-vector (k is finite) space with dimension bigger or equal to
three has an isotropic line by the Chevalley–Warning theorem. Take an isotropic line ℓ in 1

π
3♯ ∩ L♯/3.

Let 3′
=: pr−1(ℓ) where pr is the natural projection 1

π
3♯ →

1
π
3♯/3. The fact that ℓ is isotropic just

means

δπ0⟨π3
′,3′

⟩ ⊆ π0OF0 .

This shows that π3′
⊆ (3′)♯. Since 3⊂

1 3′ we have

(3′)♯ ⊂
1 3♯ ⊆3⊂

1 3′.

So 3′ is a vertex lattice and t (3′) = t (3)+ 2. Since 3 ⊆ L♯, by the definition of 3′, we also have
3′

⊆ L♯. In other words, 3′
∈ Vert(L). The lemma is proved. □

By induction using the above lemma and the fact that V(3)⊂ V(3′) if 3⊂3′ [Rapoport et al. 2014,
Proposition 4.3], we reduce to the case when r = dimk

( 1
π
3♯ ∩ L♯/3

)
≤ 2. Also keep in mind that (3-15)

holds. There are at most four cases when r ≤ 2 and t (3) is smaller than the claimed d(L) in Theorem 3.9:

(1) m is even, t (3)= m − 2, r = 2.

(2) m is even, t (3)= m − 2, r = 1.

(3) m is even, t (3)= m − 4, r = 2.

(4) m is odd, t (3)= m − 3, r = 2.

We will show that 3 can be enlarged to 3′ so that t (3′)= d(L) case by case.

Case (1): We have

3♯ ⊂
m−2 3⊂

2 1
π
3♯ ∩ L♯ ⊆

1
π
3♯.

Since 3♯ ⊂
m 1
π
3♯, we actually have 1

π
3♯ ⊆ L♯. Choose a Jordan splitting of 3

3=30 k3−1.
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Then we know rank(30) = 2, 3♯0 = 30, rank(3−1) = m − 2 and π3−1 = 3
♯

−1. By Proposition 3.1,
3−1 ⊗Z Q is split. If 30 ⊗Z Q is split, then there exist e1, e2 ∈ 30 such that (e1, e1) = (e2, e2) = 0,
(e1, e2)= 1. Define

3′
=3−1 k span{e1, π

−1e2}.

By definition 3′
⊂

1
π
3♯. By the fact that 1

π
3♯ ⊆ L♯, we know that 3′

⊆ L♯. Also

(3′)♯ =3
♯

−1 k span{πe1, e2}.

So t (3′)= m. Hence t (3′)= d(L) as stated in Theorem 3.9. If 30 ⊗Z Q is nonsplit, then t (3)= m − 2
already obtains the number d(L) as stated in Theorem 3.9.

Case (2): We have

π3+ L ⊂
1 3♯ ⊂

m−2 3⊂
1 1
π
3♯ ∩ L♯ and π

(
1
π
3♯ ∩ L♯

)
⊂

m 1
π
3♯ ∩ L♯.

We have already seen in (3-14) that

π3+ L ⊆ π
(

1
π
3♯ ∩ L♯

)
=3♯ ∩πL♯.

These together imply that in fact π3+ L =3♯ ∩πL♯. But

π3+ L =

(
1
π
3♯ ∩ L♯

)♯
.

So define 3′
=

1
π
3♯ ∩ L♯, we have t (3′)= m. This implies that 3′

⊗Z Q is split and t (3′)= d(L).

Case (3): Similar to case (2).

Case (4): We have

3♯ ⊂
m−3 3⊂

2 1
π
3♯ ∩ L♯ ⊂

1 1
π
3♯.

Choose a Jordan splitting of 3

3=30 k3−1.

Then we know rank(30) = 3, 3♯0 = 30, rank(3−1) = m − 3, 3−1 =
1
π
3
♯

−1. By assumption there is a
basis {e1, e2, e3} of 30 such that

1
π

e1,
1
π

e2 ∈
1
π
3♯ ∩ L♯, 1

π
e3 /∈ L♯.

By changing {e1, e2} by an OF linear combination of them, we can assume (ei , ei ) = ui (i = 1, 2) for
ui ∈ O×

F0
and (e1, e2) = 0. By modifying e3 using linear combinations of e1, e2 we can in fact assume

that under the basis {e1, e2, e3}, the form ( · , · )|30 is represented by the diagonal matrix diag{u1, u2, u3}

with u1, u2, u3 ∈ O×

F0
. This means that

(e3, L♯)= (e3, e3)OF = OF ⇒ e3 ∈ L .
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But 1
π

e3 /∈ L♯, these together contradict our assumption (3-12). In conclusion, case (4) is not possible
under the assumption (3-12).

This finishes the proof of Theorem 3.9. □

3E. Proof of Theorem 3.10. Again it suffices to show the corresponding statements on k̄-points. By
Theorem 3.9, W(L)= V(3) is true if and only if 3 is the unique lattice in Vert(L) with t (3)= d(L).
As in the proof of Theorem 3.9, we can assume (3-12).

Lemma 3.12. Assume that one of the following conditions holds:

(1) neven ≥ 3 or neven = 2 with L≥2 ⊗ Q split.

(2) nodd ≥ 2.

Then there is more than one 3 in Vert(L) such that t (3)= d(L).

Proof. Fix a Jordan splitting of L as in (3-1). If nodd ≥ 2 by Proposition 3.1, we can find a direct summand
H(i), i ≥ 2 of L . If neven ≥ 3, scale the sub-OF -module L≥2 to be π2-modular to get a new lattice L ′

⊇ L
such that L ′

2 has rank bigger or equal to 3. Notice that d(L ′)= d(L). O’Meara [2000, Proposition 63:19]
showed that every quadratic space over a local field with dimension greater or equal to 5 is isotropic.
We apply this to the trace form of ( · , · )|L ′

2
and conclude that there is a maximal element in L ′

2 that has
length zero. Hence there is an H(i), i ≥ 2 which is a direct summand of L ′

2. Similarly if neven = 2 and
L≥2 ⊗ Q is split, we can find a lattice L ′

⊇ L such that d(L)= d(L ′) and a direct summand H(i) (i ≥ 2)
of L ′. In any case we can find a lattice L ′

⊇ L such that d(L)= d(L ′) and

L ′
= L ′′ k H(a),

with a ≥ 2. In particular Vert(L ′)⊆ Vert(L).
Notice that d(L ′) = d(L ′′)+ 2. By Theorem 3.9, there is a vertex lattice 3 ∈ Vert(L ′′) such that

t (3)= d(L ′′). Let {e1, e2} be a basis of H(a) such that (e1, e1)= (e2, e2)= 0 and (e1, e2)= πa . Define

31 :=3k span{π−ae1, π
−1e2}, 32 :=3k span{π−ae2, π

−1e1}.

Then

3
♯

1 =3♯ k span{π−a+1e1, e2}, 3
♯

2 =3♯ k span{π−a+1e2, e1}.

This shows that t (31)= t (32)= d(L) and 31,32 ∈ Vert(L ′), but 31 ̸=32. This proves the lemma. □

This proves the “only if” part of Theorem 3.10. To prove the converse, we start with a lemma.

Lemma 3.13. Suppose L = L0 k L1 k L≥1(Jordan splitting). If 3 is a vertex lattice in Vert(L) such that
t (3)= d(L), then L0 k L♯1 ⊂3.

Proof. Suppose L0 k L♯1 ̸⊂ 3. Let 3′
:= 3 + L0 k L♯1. We have L♯0 = L0 and πL♯1 = L1. Then

L♯ = L0 k 1
π

L1 k L♯
≥1 and

(3′)♯ =3♯ ∩ (L0 k L1 k (L≥1 ⊗ Q)).
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Using the above equation and the fact that 3 ∈ Vert(L), one checks immediately that π3′
⊆ (3′)♯. Since

3 ⊂ 3′ and 3♯ ⊆ 3, we have (3′)♯ ⊆ 3′. Also 3′
⊆ L♯, so 3′

∈ Vert(L). But t (3′) > t (3), which
contradicts the maximality of t (3) among vertex lattices in Vert(L). □

Now we assume conditions (1) and (2) of Theorem 3.10 hold. By Proposition 3.1, we have the following
three cases:

(1) L ≃ L0 k H(1)ℓ.

(2) L ≃ L0 k H(1)ℓ k (u(−π0)
a) with a ≥ 1 and u ∈ O×

F0
.

(3) L ≃ L0 k H(1)ℓ k (u1(−π0)
a)k (u2(−π0)

b), where u1, u2 ∈ O×

F0
,−u1u2 /∈ NmF/F0(F/F0) and

a, b are integers greater or equal to 1.

We need to prove that in each case there is a unique 3∈ Vert(L) such that t (3)= d(L). Cases (1) follows
from Lemma 3.13 directly (in this case 3 has to be L0 k H(1)ℓ). Case (2) follows from Lemma 3.13 and
simple arguments. Now we prove (3). By Lemmas 3.13 and 3.3, it suffices to prove the statement for
L = (u1(−π0)

a)k (u2(−π0)
b).

Let L = span{e1, e2} and T =diag{u1(−π0)
a, u2(−π0)

b
} is the gram matrix of {e1, e2}. Suppose

3= span{[e1, e2]S} ∈ Vert(L) where S ∈ GL2(F)/GL2(OF ). Since L ⊗Z Q is nonsplit, we must have
3♯ =3. Then 3♯ = [e1, e2]T −1t S−1 and

3♯ =3⇔ S−1T −1t S−1
∈ GL2(OF )⇔

t ST S ∈ GL2(OF )

L ⊆3♯ ⇔
t ST ∈ M2(OF ).

Apply Proposition 3.1 and multiply S on the right by an element in GL2(OF ) if necessary, we can assume

t ST S =

(
u1 0
0 u2

)
=: T1.

Assume

S =

(
π−a 0

0 π−b

)
S0,

then t S0T1S0 = T1. Claim: S0 ∈ GL2(OF ). Assume S0 =
( x

z
y
w

)
, then t S0T1S0 = T1 implies that

u1x x̄ + u2zz̄ = u1

u1 ȳx + u2w̄z = 0

u1 y ȳ + u2ww̄ = u2.

If z = 0, then y = 0 and x, w ∈ O×

F . If x = 0, then w = 0 and y, z ∈ O×

F as u1, u2 are units.
Now assume that xz ̸= 0. Suppose x = x0π

e where e < 0, x0 ∈ O×

F , then

x x̄ − 1 = (−π0)
e(x0 x̄0 − (−π0)

−e).

Since F is ramified over F0,
NmF/F0(O

×

F /O
×

F0
)= (O×

F0
)2
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by class field theory. As x0 x̄0 ∈ NmF/F0(O
×

F /O
×

F0
) = (O×

F0
)2, by Hensel’s lemma, x0 x̄0 − (−π0)

−e
∈

NmF/F0(O
×

F /O
×

F0
). Then

−
u2

u1
=

x x̄ − 1
zz̄

=
(−π0)

e(x0 x̄0 − (−π0)
−e)

zz̄
∈ NmF/F0(O

×

F /O
×

F0
),

contradicts our assumption on −u1u2. This show that e ≥ 0 and x ∈ OF , then z ∈ OF too.
Similarly u1 y ȳ + u2ww̄ = u2 implies y, w ∈ OF if yw ̸= 0. This proves the claim that S0 ∈ GL2(OF ).

In other words

3= span{π−ae1, π
−be2}.

This proves the uniqueness of 3 and we finish the proof of Theorem 3.10. □

4. Unitary Shimura varieties

In this section we briefly review the definition of an integral model of unitary Shimura variety following
[Rapoport et al. 2021, Section 6]; see also [Rapoport et al. 2020; Cho 2018]. Let F be a CM field over
Q with totally real subfield F0 of index 2 in it. Let d = [F0 : Q]. We denote by a 7→ ā the nontrivial
automorphism of F/F0. Define

Vram = {finite places v of F0 | v ramifies in F}. (4-1)

In this paper we assume that Vram is nonempty. We also make the assumption as in [Rapoport et al. 2021,
Section 6] that every v ∈ Vram is unramified over Q and does not divide 2.

Fix a totally imaginary element
√
1 ∈ F . Denote by 8F0 (resp. 8F ) the set of real (resp. complex)

embeddings of F0 (resp. F). Define a CM type of F by

8= {ϕ ∈8F | ϕ(
√
1) ∈

√
−1R>0}. (4-2)

We fix a distinguished element ϕ0 ∈8. For ϕ ∈ HomQ(F,C), denote its complex conjugate by ϕ.

4A. The Shimura datum. Define a function r : HomQ(F,C)→ Z≥0 by

ϕ 7→ rϕ :=


1 if ϕ = ϕ0;

0 if ϕ ∈8,ϕ ̸= ϕ0;

n − rϕ if ϕ /∈8.

Assume that W is a n dimensional F-vector space with a Hermitian form ( · , · ) such that

sig Wϕ = (rϕ, rϕ), ∀ϕ ∈8

where Wϕ := W ⊗F,ϕ C and sig Wϕ is its signature with respect to ( · , · ). Let U(W ) (resp. GU(W )) be
the unitary group (resp. general unitary group) of (W, ( · , · )). Recall that for an F0-algebra R, we have

GU(W )(R)= {g ∈ GL(W ⊗F0 R) | (gv, gw)= c(g)(v,w),∀v,w ∈ W ⊗F0 R}.
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Define the following groups.

ZQ
:= {z ∈ ResF/Q Gm | NmF/F0(z) ∈ Gm},

G = ResF0/Q U(W ),

GQ
:= {g ∈ ResF0/Q GU(W ) | c(g) ∈ Gm}. (4-3)

Notice that
ZQ(R)= {(zϕ) ∈ (C×)8 | |zϕ| = |zϕ0 |,∀ϕ ∈8}.

Define the Hodge map
hZQ : C×

→ ZQ(R), z 7→ (z̄, . . . , z̄).

For each ϕ ∈8 choose a C-basis of Wϕ such that ( · , · ) is given by the matrix diag(1rϕ ,−1rϕ ). Define
the Hodge map

hGU(W ) : C×
→ ResF0/Q GU(W )(R)∼=

∏
ϕ∈8

GU(Wϕ)

by sending z to diag(z · 1rϕ , z̄ · 1rϕ ) for each ϕ component. Then there exists hGQ : C×
→ GQ(R) such

that hGU(W ) factors as
hGU(W ) = i ◦ hGQ

where i : GQ(R)→ ResF0/Q GU(W )(R) is the natural inclusion.
Define

G̃ := ZQ
×Gm GQ

where the maps from the factors on the right hand side to Gm are NmF/F0 and the similitude character
c(g) respectively. Notice that the map

G̃ → ZQ
× G, (z, g) 7→ (z, z−1g) (4-4)

is an isomorphism. We define the Hodge map hG̃ by

hG̃ : C×
→ G̃(R), z 7→ (hZQ(z), hGQ(z)).

Then (G̃, hG̃) is a Shimura datum whose reflex field E ⊂ Q is defined by

Aut(Q/E)= {σ ∈ Aut(Q) | σ ◦8=8, σ ∗(r)= r}. (4-5)

Remark 4.1. F always embeds into E via ϕ0; [Rapoport et al. 2020, Remark 3.1]. Furthermore E = F
when F is Galois over Q or when F = F0K where K is an imaginary quadratic field over Q and 8 is
induced from a CM type of K/Q. From now on we identify F0 as a subfield of E via ϕ0.

For a small enough compact group K ∈ G̃(A f ), we can define a Shimura variety S(G̃, hG̃)K which
has a canonical model over the Spec E . We refer to [Rapoport et al. 2021, Section 3] for the moduli
problem S(G̃, hG̃)K represents.
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4B. Integral model. In this subsection, we define the integral model for S(G̃, hG̃)K (as a Deligne–
Mumford stack) in terms of a moduli functor for a particular choice of W and K . We remark here that all
the results in this section is semiglobal in natural so we could instead describe our results on semiglobal
integral models defined as in [Rapoport et al. 2021, Section 4] which will allow a wider choices of W
and K . It takes only slight modifications to adjust our results to the semiglobal setting so we leave it to
the interested readers.

For a lattice 3 in W , we let 3∨ denote its dual with respect to the symplectic form trF/Q(
√
1

−1
( · , · ))

and 3♯ denote its dual with respect to the Hermitian form ( · , · ). Then we have

3∨
=

√
1∂−13♯ (4-6)

where ∂ is the different ideal of F/Q. From now on we assume that W contains a lattice 3 such that
3∨

=3. Define the compact subgroup KG ⊂ G(A f ) by

KG := {g ∈ G(A f ) | g(3⊗ Ẑ)=3⊗ Ẑ}. (4-7)

Also let K ZQ be the unique maximal compact subgroup of ZQ(A f ):

K ZQ := {z ∈ (OF ⊗ Ẑ)× | NmF/F0(z) ∈ Ẑ}. (4-8)

Define the compact subgroup

K := K ZQ × KG ⊂ G̃(A f ) (4-9)

under the isomorphism (4-4).
First we define an auxiliary moduli functor M0 over SpecOE . For a locally notherian OE -scheme S,

we define M0(S) to be the groupoid of triples (A0, ι0, λ0) where:

(1) A0 is an abelian scheme over S.

(2) ι0 :OF → End(A0) is an OF -action satisfying the Kottwitz condition of signature ((0, 1)ϕ∈8), namely

charpol(ι0(a) | Lie A0)=

∏
ϕ∈8

(T −ϕ(a)), ∀a ∈ OF .

(3) λ0 is a principal polarization of A0 whose Rosati involution induces on OF via ι0 the nontrivial
Galois automorphism of F/F0.

A morphism between two objects (A0, ι0, λ0) and (A′

0, ι
′

0, λ
′

0) is a OF -linear isomorphism A0 → A′

0 that
pulls λ′

0 back to λ.
Since we assume Vram is nonempty, M0 is nonempty [Rapoport et al. 2021, Remark 3.7]. Then M0 is

a Deligne–Mumford stack, finite and étale over SpecOE [Howard 2012, Proposition 3.1.2]. Moreover,
we choose a 1 dimensional F vector space W0 such that W0 has an OF lattice 30 with a nondegenerate
alternating form ⟨ · , · ⟩0 satisfying:

(1) ⟨ax, y⟩0 = ⟨x, ā y⟩0 for all a ∈ OF and x, y ∈30.

(2) The quadratic form x 7→ ⟨
√
1x, x⟩0 is negative definite.

(3) The dual lattice 3∨

0 of 30 with respect to ⟨ · , · ⟩0 is 30.
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Let ( · , · )0 be the unique Hermitian form on W0 such that trF/Q(
√
1

−1
( · , ·)0)=⟨· , · ⟩0. Then (W0, ( · , ·)0)

determines a certain similarity class ξ of Hermitian forms which in turn give us an open and closed
substack Mξ

0 of M0; see [Rapoport et al. 2020, Lemma 3.4]. Define the F-vector space

V = HomF (W0,W ) (4-10)

with the Hermitian form ( · , · )V determined by ( · , · ) and ( · , · )0 via

(x(a), y(b))= (x, y)V (a, b)0,∀x, y ∈ V,∀a, b ∈ W0. (4-11)
The lattice

L := HomOF (30,3)⊂ V (4-12)

is a self dual lattice with respect to the Hermitian form ( · , · )V .
We define the functor M on the category of locally notherian schemes over SpecOE as follows. For a

scheme S in this category, M(S) is the groupoid of tuples (A0, ι0, λ0, A, ι, λ) where:

• (A0, ι0, λ0) is an object of Mξ

0(S).

• A is an abelian scheme over S.

• ι : OF → End(A) is an OF -action satisfying the Kottwitz condition of signature

((1, n − 1){ϕ0}, (0, n)8\{ϕ0}),

i.e., for all a ∈ OF

charpol(ι(a) | Lie A)= (T −ϕ0(a))(T −ϕ0(a))n−1
∏

ϕ∈8\{ϕ0}

(T −ϕ(a))n.

• λ : A → A∨ is a principal polarization whose associated Rosati involution induces on OF via ι the
nontrivial Galois automorphism of F/F0.

We assume further that the tuple (A0, ι0, λ0, A, ι, λ) satisfies the sign condition, the Wedge condition and
the Eisenstein condition, all of which are defined with respect to the signature ((1, n −1){ϕ0}, (0, n)8\{ϕ0}).

(H1) The sign condition. Let s be a geometric point of S and (A0,s, ι0,s, λ0,s, As, ιs, λs) be the pull back
of (A0, ι0, λ0, A, ι, λ) ∈ M(S) to s. For every nonsplit place v of F0, we impose

invr
v(A0,s, ι0,s, λ0,s, As, ιs, λs)= invv(V ). (4-13)

We need to explain the two factors. We refer to [Rapoport et al. 2020, Appedix A] for the definition of
invr

v(A0,s, ι0,s, λ0,s, As, ιs, λs). For invv(V ), it is defined by

invv(V )= (−1)n(n−1)/2 det(Vv) ∈ F×

0,v/NmFv/F0,v F×

v ,

where det(Vv) is the determinant of the Hermitian space Vv := V ⊗F0 F0,v. We call this the invariant of
V at v. We remark that when s has characteristic zero, the sign condition is equivalent to the condition
that there is an isometry

HomAF, f (V̂ (A0,s), V̂ (As))∼= V ⊗F AF, f (4-14)
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as Hermitian AF, f -vector spaces. Here V̂ (As) (resp. V̂ (A0,s)) is the rational Tate module of A (resp.
A0). The space HomAF, f (V̂ (A0,s), V̂ (As)) is equipped with the Hermitian form [Kudla and Rapoport
2014, Section 2.3]

h(x, y)= λ−1
0 ◦ y∨

◦ λ ◦ x ∈ EndAF, f (V̂ (A0,s))∼= AF, f (4-15)

where y∨ is the dual of y with respect to the Weil pairings on V̂ (A0,s)× V̂ (A∨

0,s) and V̂ (As)× V̂ (A∨
s ).

Hence the sign condition can be seen as a generalization of (4-14). See [Rapoport et al. 2021, Remark 6.9]
for cases when the sign condition can be simplified.

The wedge condition and Eisenstein condition are only needed when S has nonempty special fibers in
certain characteristics. We temporarily fix a finite prime p of Q. Fix an embedding ν̃ : Q → Qp. This
determines a p-adic place ν of E . ν̃ induces an identification

HomQ(F,Q) ∼
−→ HomQ(F,Qp) : ϕ 7→ ν̃ ◦ϕ.

Let Vp(F) be the set of places of F over p. For each w ∈ Vp(F), define

Homw(F,Q) := {ϕ ∈ HomQ(F,Q) | ν̃ ◦ϕ induces w}. (4-16)

Let F t
w be the maximal unramified extension of Qp in Fw. For ψ ∈ HomQp(F

t
w,Qp), define

Homw,ψ(F,Q) := {ϕ ∈ Homw(F,Q) | ν̃ ◦ϕ|F t
w

= ψ}. (4-17)

The definitions of Homw(F,Q) and Homw,ψ(F,Q) depend on the choice of ν̃ in general but the partition
of HomQ(F,Q) into unions of Homw,ψ(F,Q) does not [Rapoport et al. 2021, (5.4)].

We make a base change and assume that S is a scheme over SpecOE,ν where OE,ν is the completion
of OE with respect to the ν-adic topology. Then the OF action on A induces an action of

OF ⊗Z Zp ∼=

∏
w∈Vp(F)

OF,w

on Lie A. Hence we have a decomposition

Lie A =

⊕
w∈Vp(F)

Liew A. (4-18)

For each w, the OF t
w

-action on Liew A induces a decomposition

Liew A =

⊕
ψ∈HomQp (F t

w,Qp)

Liew,ψ A. (4-19)

Here we make a further base change to SpecOĔν where Ĕν is the completion of the maximal unramified
extension of Eν in Qp:

(H2) The wedge condition. Assume that w is a finite place of F that is ramified over F0. We further
assume that the underlying place of w in Q is p and we make a base change so that S is a Spec Zp-scheme.
The wedge condition is only needed when S has nonempty special fiber over Spec Fp. By our assumption,
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the underlying place v of F0 is unramified over Q. Hence F t
w = F0,v and Homw,ψ(F,Q)= {ϕψ , ϕψ } for

all ψ ∈ HomQp(F
t
w,Qp). For every ψ such that rϕψ ̸= rϕψ , decompose Lie A as in (4-18) and (4-19) and

impose the wedge condition of [Pappas 2000] (compare with Definition 2.3)

rϕψ+1∧
(ι(a)−ϕψ(a) | Liew,ψ A)= 0,

rϕψ+1∧
(ι(a)−ϕψ(a) | Liew,ψ A)= 0 (4-20)

for all a ∈ OF . Here since rϕψ ̸= rϕψ , ϕψ maps Fw into Eν , so we can view ϕψ(a) and ϕψ(a) as sections
in the structure sheaf of the base scheme S.

(H3) The Eisenstein condition. Assume that w is a finite place of F whose underlying place v in F0 is
ramified over Q. By our assumption w is unramified over v. Again assume that the underlying place of
w in Q is p and we make a base change so that S is a Spec Zp-scheme. Decompose Lie A as in (4-18)
and (4-19). The Eisenstein condition is a set of conditions on Liew,ψ A and is only needed when S has
nonempty special fiber over Spec Fp. We do not describe the condition in detail but instead refer to
[Rapoport et al. 2021, Section 5.2, case (1) and (2)].

Finally a morphism between two objects (A0, ι0, λ0, A, ι, λ) and (A′

0, ι
′

0, λ
′

0, A′, ι′, λ′) is a morphism
(A0, ι0, λ0) → (A′

0, ι
′

0, λ
′

0) in Mξ

0(S) together with an OF -linear isomorphism (A, ι, λ) → (A′, ι′, λ′)

that pulls λ′ back to λ.
The following Proposition is a partial summarize of [Rapoport et al. 2021, Theorem 3.5, 4.4 and 6.7].

Proposition 4.2. M is a Deligne–Mumford stack flat over OE , and

M×SpecOE C = S(G̃, hG̃)K .

Moreover we have:

(i) M is smooth of relative dimension n − 1 over the open subscheme of SpecOE obtained by removing
the set Vram(E) of finite places ν of E over Vram (see (4-1)). If n = 1, then M is finite étale over all
of SpecOE .

(ii) If n ≥ 2, then the fiber of M over a place ν ∈ Vram(E) has only isolated singularities. If n ≥ 3,
then blowing up these isolated points for all ν ∈ Vram(E) yields a model M♯ which has semistable
reduction, hence is regular, over the open subscheme of SpecOE obtained by removing all places
ν ∈ Vram(E) that are ramified over F. This model M♯ has a moduli interpretation by [Krämer 2003].

5. Special cycles on the basic locus of unitary Shimura varieties

5A. Definition of the special cycles. Let Hermm(OF ) be the set of m ×m Hermitian matrices with values
in OF . Let Hermm(OF )≥0 (resp. Hermm(OF )>0) be the subset of totally (i.e., for all archimedean places)
positive semidefinite (resp. definite) matrices of Hermm(OF ). We define special cycles as in [Kudla
and Rapoport 2014] and [Rapoport et al. 2021]. For a locally notherian scheme S over SpecOE and
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(A0, ι0, λ0, A, ι, λ) ∈ M(S), we have the finite rank locally free OF -module

L(A0, A) := HomOF (A0, A).

We can define a Hermitian form h′ on L(A0, A) by assigning for any x, y ∈ L(A0, A)

h′(x, y)= ι−1
0 (λ−1

0 ◦ y∨
◦ λ ◦ x) ∈ OF . (5-1)

Remark 5.1. The local analog of h′( · , · ) is denoted by h( · , · ), see Section 3B. We use the notation
h′( · , · ) here to be consistent with [Kudla and Rapoport 2014].

Definition 5.2. Let T ∈ Hermm(OF )≥0. The special cycle Z(T ) is the stack such that for any OE -
scheme S, Z(T )(S) is the groupoid of tuples (A0, ι0, λ0, A, ι, λ, x) where (A0, ι0, λ0, A, ι, λ) ∈ M(S)
and x = (x1, . . . , xm) ∈ L(A0, A)m such that

h′(x, x)= (h′(xi , x j ))= T .

Kudla and Rapoport [2014, Proposition 2.9] generalized to our case and shows that the natural map
Z(T )→ M is finite and unramified.

5B. Support of the special cycles. Let ν be a finite place of E with residue field kν of characteristic
p. Then ν determines places w0 of F and v0 of F0 respectively. For (A0, ι0, λ0, A, ι, λ) ∈ M(k̄ν), the
OF ⊗Z Zp-action induces a decomposition of the p-divisible group A[p∞

] and its Dieudonné module

A[p∞
] =

⊕
w | p

A[w∞
], M(A[p∞

])=

⊕
w | p

Mw(A) (5-2)

where w runs over the set of places of F over p and Mw(A) = M(A[w∞
]) for each w. Each A[w∞

]

admits an OF,w action. We say that (A0, ι0, λ0, A, ι, λ) is in the basic locus Mss
ν if each A[w∞

] is
isoclinic, i.e., the rational Deudonné module Mw(A) has constant slope for all w.

We assume from now on that T ∈ Hermn(OF )>0. Then we have the following generalization of [Kudla
and Rapoport 2014, Lemma 2.21].

Lemma 5.3. Assume that T ∈ Hermn(OF )>0. Then Z(T ) is supported on⋃
ν

Mss
ν

where ν runs over the set of finite places of E whose underlying place of F0 does not split in F.

Proof. The proof is the same as that of [Rapoport et al. 2020, Lemma 8.7] which is a variant of the proof
of [Kudla and Rapoport 2014, Lemma 2.21]. □

For T ∈ Hermn(OF )>0, let VT be the Hermitian F-vector space with gram matrix T . Recall that we
define a Hermitian vector space V as in (4-10). Define Diff(T, V ) as in (1-3) or equivalently

Diff(T, V ) := {v is a finite place of F0 | invv(V ) ̸= invv(VT )}. (5-3)
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Any v in Diff(T, V ) is automatically nonsplit in F . Since T is totally positive definite and V has signature
((n−1, 1){ϕ0}, (n, 0)8\{ϕ0}), by Hasse principal, Diff(T, V ) is a finite set of odd cardinality. The following
result generalizes [Kudla and Rapoport 2014, Proposition 2.22]. It should be well-known to experts; see
[Li and Zhang 2022, Section 14.4].

Proposition 5.4. Assume T ∈ Hermn(OF )>0:

(1) If |Diff(T, V )| = {v0} where v0 is a finite place of F0, then Z(T ) is supported on⋃
ν∈V (v0)

Mss
ν

where V (v0) is the set of places of E over v0.

(2) Z(T ) is empty if |Diff(T, V )|> 1.

Proof. We prove (1) first. By Lemma 5.3, we know that Z(T ) is supported on the basic locus over finite
places of E . Let ν be a finite place of E with residue field kν of characteristic p such that Z(T )(k̄ν)
is nonempty. Then ν determines a place v0 of F0 which does not split in F . Let (A0, ι0, λ0, A, ι, λ) ∈

Z(T )(k̄ν). By definition VT carries the Hermitian form h′( · , · ) in (5-1).
When v does not divide p, by its definition invr

v(A0, ι0, λ0, A, ι, λ) is the invariant at v of the Hermitian
form h( · , · ) defined in (4-15) and is the same as invv(V ) by the sign condition. On the other hand,
the invariant at v of the Hermitian form h( · , · ) is the same as invv(VT ) by [Kudla and Rapoport 2014,
Lemma 2.10].

Now assume v | p and is nonsplit and w is the place of F above v. Since the component containing
(A0, ι0, λ0, A, ι, λ) has nonempty generic fiber (this is implied for example by (5-10) below), [Rapoport
et al. 2020, Proposition A1] tells us that

invr
v(A0, ι0, λ0, A, ι, λ)= invv(V ). (5-4)

On the other hand by [Rapoport et al. 2020, (A.8)], we know that

invr
v(A0, ι0, λ0, A, ι, λ)= sgn(rν,v) invv(A0, ι0, λ0, A, ι, λ)

where by [Rapoport et al. 2020, (A.7)]

sgn(rν,v)=

{
1 if v | p and v ̸= v0,

−1 if v = v0,

and invv(A0, ι0, λ0, A, ι, λ) is the invariant of the Hermitian form on the Dieudonné module (see (5-2))

HomFw⊗Zp W (k̄ν)(Mw(A0)⊗ Q,Mw(A)⊗ Q).

By Lemma 3.6, Proposition 3.5 and their analogs at inert primes, we know that

invv(A0, ι0, λ0, A, ι, λ)= invv(VT ).
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Hence we have

invv(V )=

{
invv(VT ) if v | p and v ̸= v0,

− invv(VT ) if v = v0.

In conclusion, if Z(T )(k̄ν) is nonempty we must have

Diff(T, V )= {v0}.

This finishes the proof of the (1).
If z is a geometric point of characteristic zero in Z(T ), then (4-14) implies that Diff(T, V )= ∅. But

this is impossible by the signature assumption on V and VT . Hence Z(T ) has no geometric point of
characteristic zero and (2) follows from (1). □

5C. Uniformization of the basic locus and special cycles. We now fix a place ν of E over w0 of F and
v0 ∈ Vram of F0. Let Ĕν be the completion of the maximal unramified extension of Eν . We also denote by
M̂ss

ν the completion of M×SpecOE SpecOĔν along its basic locus Mss
ν ×Spec kν Spec k̄ν .

Lemma 5.5. Mss
ν (k̄ν) is nonempty.

Proof. The proof is a variant of that of [Kudla and Rapoport 2014, Lemma 5.1]. Let (A0, ι0, λ0)∈Mξ

0(OĔν ).
Also let (A1, ι1, λ1) be defined similarly as (A0, ι0, λ0) except that we change the signature from (0, 1)8
to ((1, 0){ϕ0}, (0, 1)8\{ϕ0}). Both abelian schemes have good reduction at ν by the smoothness of M0.
Define

(A, ι, λ′) := (A0, ι0, λ0)
n−1

⊕ (A1, ι1, λ1).

Then (A0, ι0, λ0, A, ι, λ′) ∈ MV ′

(OĔν ) where MV ′

has the same definition as M except that in the sign
condition we replace V by some Hermitian space V ′ over F with the same signature as V .

From now on we base change to Spec k̄ν and for simplicity denote the base change of (A0, ι0,λ0, A, ι,λ′)

by the same notation. Then (A0, ι0, λ0, A, ι, λ′) ∈ MV ′,ss
ν . Define

λ := λ′
◦ (ι(a/b), 1, . . . , 1) (5-5)

where a, b ∈ F0 represent det(V ) and det(V ′) respectively. Since V and V ′ have the same the signature
over the archimedean places, a/b is totally positive, hence λ is a quasipolarization. Notice that the Rosati
involution induced by λ on F ↪→ End0(A) is the complex conjugation. By the definition of λ and the
fact that (A0, ι0, λ0, A, ι, λ′) satisfies the sign condition (4-13) for V ′ we know that (A0, ι0, λ0, A, ι, λ)
satisfies the sign condition for V .

By the OF0-action on A, we can decompose the p-divisible group A[p∞
] and the rational Dieudonné

module M(A[p∞
]) of A[p∞

] into

A[p∞
] =

⊕
v | p

A[v∞
], M(A[p∞

])=

⊕
v | p

Mv(A) (5-6)

where v runs over places of F0 over p and Mv(A)= M(A[v∞
]) for each v. Let M rel

v0
(A) be the relative

Dieudonné module of Ck̄ν (A[v∞

0 ]) where C is the functor in Theorem 2.6. Choose an ŎF,w0-lattice 3rel
v0

⊂
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M rel
v0
(A)⊗Z Q satisfying the condition in Proposition 2.15. Such choice always exists by the nonemptiness

statement in Theorem 2.17 (iii). By Theorem 2.6, 3rel
v0

determines a self dual lattice 3v0 ∈ Mv0(A)⊗Z Q.
For any other v ̸= v0 dividing p, we can choose a self dual lattice 3v ⊂ Mv(A)⊗Z Q with respect to the
symplectic form induced by λ in a similar manner. Choose a self dual lattice 3p

⊂ V̂ p(A) with respect
to the symplectic form on V̂ p(A) induced by λ. These lattices determines an abelian variety (B, ιB, λB)

isogenic to (A, ι, λ) where λB is a principal polarization. Then (A0, ι0, λ0, B, ιB, λB) ∈ Mss
ν (k̄ν). □

By the lemma we can choose a framing object (Ao
0, ι

o
0, λ

o
0, Ao, ιo, λo) ∈ Mss

ν (k̄ν). The p-divisible
group Ao

[p∞
] of Ao then carries an OF -action ιo[p∞

] and a compatible polarization λo
[p∞

] determined
by ιo and λo respectively. Decompose Ao

[p∞
] as in (5-6) we get

(X, ιX, λX) := (Ao
[v∞

0 ], ιo[v∞

0 ], λo
[v∞

0 ]) (5-7)

where ιo[v∞

0 ] is the OF,w0-action determined by ιo[p∞
] and λo

[v∞

0 ] is the polarization of Ao
[v∞

0 ]

determined by λo
[p∞

].
Let W ′ be the n-dimensional Hermitian vector whose local invariants are the same as W except at v0

and ϕ0 where it has signature (0, n). Associate to W ′ the group G ′Q as in (4-3) where we associate GQ

to W . Also define

V ′
:= HomF (W0,W ′) (5-8)

together with the naturally defined Hermitian form. Then define G̃ ′
:= ZQ

×Gm G ′Q which is an
inner form of G̃. Let N ′ be the Rapoport–Zink space of p-divisible groups with OF -actions and
compatible principal polarizations satisfying the Kottwitz condition, the wedge condition and the Eisen-
stein condition with respect to the signature ((1, n − 1){ϕ0}, (0, n)8\{ϕ0}), defined by the framing object
(Ao

[p∞
], ιo[p∞

], λo
[p∞

]). Then we have the following uniformization theorem.

Theorem 5.6. We have

N ′
= ZQ(Qp)/K ZQ,p × (N ×̂SpfOF̆w0

SpfOĔν )×
∏
v ̸=v0

U(V )(F0,v)/KG,v (5-9)

where the product in the last factor is over all places of F0 over p not equal to v0 and N = N
Fw0/Qp

(1,n−1)
∼=

N
Fw0/F0,v0
(1,n−1) . Here N

Fw0/Qp

(1,n−1) (resp. N
Fw0/F0,v0
(1,n−1) ) is defined in Definition 2.8 using the framing objects

(X, ιX, λX) in (5-7) (resp. Ck̄ν ((X, ιX, λX))). There is an isomorphism depending on the choice of base
point (Ao

0, ι
o
0, λ

o
0, Ao, ιo, λo) ∈ Mss

ν (k̄ν),

2 : G̃ ′(Q)\N ′
× G̃(Ap

f )/K p ∼= M̂ ss
ν . (5-10)

Proof. Using exactly the same proof of [Rapoport et al. 2020, Lemma 8.16], we know that for v ̸= v0

above p, we have

N Fv/Qp
(0,n)

∼= U(V )(F0,v)/KG,v.
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As a corollary we know that

N ′
= ZQ(Qp)/K ZQ,p × (N

Fw0/Qp

(1,n−1) ×̂SpfOF̆w0
SpfOĔν )×

∏
v ̸=v0

U(V )(F0,v)/KG,v. (5-11)

Then (5-10) is a special case of [Rapoport and Zink 1996, Theorem 6.30]. By Theorem 2.10, we can also
replace N

Fw0/Qp

(1,n−1) above by N
Fw0/F0,v0
(1,n−1) . □

Theorem 5.7. Assume that T ∈ Hermn(OF )>0 with Diff(T, V )= {v0} where v0 ∈ Vram (1-2). Assume that
v0 is not over 2 and is unramified over Q. Then Z(T )red is equidimensional of dimension 1

2d(Lv0) where
Lv0 is any Hermitian lattice over OF,v0 whose gram matrix is T and d(Lv0) is defined as in Theorem 3.9.

Proof. The proof resembles that of [Kudla and Rapoport 2014, Proposition 11.2]. By Proposition 5.4,
Z(T ) is supported on the basic locus over ν for those finite places ν of E that induces v0. Fix such a ν
and let w0 be the place of F above v0. Choose a framing object (Ao

0, ι
o
0, λ

o
0, Ao, ιo, λo) ∈ Mss

ν (k̄ν) which
determines a supersingular formal OF,w0-module (X, ιX, λX) as in (5-7).

Define V ′ as in (5-8) and G ′
:= U(V ′). By Proposition 5.4, we know that

V ′ ∼= VT

as Hermitian spaces. In particular, V ′
v
∼= Vv as a Hermitian space for all finite places v ̸= v0 of F0. We

can thus think of
Lv0 := L ⊗OF0

Ôv0
F0

(see (4-12) for the definition of L) as a lattice in V ′(A
v0
F0, f ). Its stabilizer in G ′(A

v0
F0, f ) is K v0

G . On the
other hand, by Proposition 3.5 we have the following identification.

V ′

v0
∼= HomOF,w0

(Y,X)⊗ Q ∼= HomOF,w0
(Ck̄ν (Y), Ck̄ν (X))⊗ Q = V.

Let Ẑ(T )ν be the closure of Z(T )×SpecOE SpecOĔν in M̂ss
ν . Then by Theorem 5.6 and the fact that

G̃ ′
= ZQ

× ResF0/Q G ′, we have (see [Kudla and Rapoport 2014, Proposition 6.3])

Ẑ(T )ν ∼= (ZQ(Q)\ZQ(A f )/K ZQ)×
⊔

g∈G ′(F0)\G ′(A
v0
F0, f )/K

v0
G

⊔
x∈�(T )

g−1x∈(Lv0 )n

Z(x),

where Z(x) is the special cycle of N
Fw0/F0,v0
(1,n−1) defined in Definition 3.4 and

�(T ) := {x ∈ (V ′)n | (x, x)= T }.

Here we think of V ′ as a subset of both V and V ′(A
v0
F0, f ). The theorem is now a consequence of

Theorem 3.9. □
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Hybrid subconvexity bounds for twists of
GL(3) × GL(2) L-functions.

Bingrong Huang and Zhao Xu

We prove hybrid subconvexity bounds for GL(3)× GL(2) L-functions twisted by a primitive Dirichlet
character modulo M (prime) in the M- and t-aspects. We also improve hybrid subconvexity bounds for
twists of GL(3) L-functions in the M- and t-aspects.

1. Introduction

The subconvexity problem of automorphic L-functions on the critical line is one of the central problems
in number theory. In general, let C denote the analytic conductor of the relevant L-function; see, e.g.,
Iwaniec and Kowalski [2004, Section 5.1]), then one hopes to obtain a subconvexity bound C1/4−δ for
some δ > 0 on the critical line. Subconvexity bounds have many very important applications such as the
equidistribution problems; see, e.g., Michel and Venkatesh [2010].

For the GL(1) case, i.e., the Riemann zeta function and Dirichlet L-functions, subconvexity bounds
have been known for a long time thanks to Weyl [1921] and Burgess [1963]. In the last decades, many
cases of GL(2) L-functions have been treated; see Michel and Venkatesh [2010]. In the last ten years,
people have made progress on GL(3) L-functions; see [Blomer 2012; Li 2011; Munshi 2015a; 2015b;
2022; Sharma 2022]. In this paper, we extend the techniques in [Lin and Sun 2021; Munshi 2022; Sharma
2022] to prove, for the first time, hybrid subconvexity bounds for GL(3)× GL(2) L-functions twisted by
a primitive Dirichlet character modulo M (prime), which reach the best known bounds in the M- and
t-aspects simultaneously. Our method also improves hybrid subconvexity bounds for twists of GL(3)
L-functions due to Huang [2021a] and Lin [2021].

Let π be a Hecke–Maass cusp form of type (ν1, ν2) for SL(3,Z)with the normalized Fourier coefficients
A(m, n). The L-function of π is defined as

L(s, π)=

∑
n≥1

A(1, n)
ns , Re(s) > 1.
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Let f be a Hecke–Maass cusp form with the spectral parameter t f for SL(2,Z), with the normalized
Fourier coefficients λ f (n). The L-function of f is defined by

L(s, f )=

∑
n≥1

λ f (n)
ns , Re(s) > 1.

Let χ be a primitive Dirichlet character modulo M . The GL(3) × GL(2) × GL(1) Rankin–Selberg
L-function is defined as

L(s, π × f ×χ)=

∑
m≥1

∑
n≥1

A(m, n)λ f (n)χ(m2n)
(m2n)s

, Re(s) > 1.

These L-functions have analytic continuation to the whole complex plane. In this paper, we consider the
L-values at the point 1

2 + i t with t ∈ R. The Phragmén–Lindelöf principle and the functional equation
imply the convexity bounds

L
( 1

2 + i t, π × f ×χ
)
≪π, f,ε (M(1 + |t |))3/2+ε,

for any ε> 0. It is known that the Riemann hypothesis for L(s, π× f ×χ) implies the Lindelöf hypothesis,
i.e., L

( 1
2 + i t, π × f ×χ

)
≪π, f,ε (M(1 +|t |))ε. For M = 1, the first subconvex exponent in t-aspect was

obtained by Munshi [2022]. Recently, Lin and Sun [2021] proved that

L
( 1

2 + i t, π × f
)
≪π, f,ε (1 + |t |)3/2−3/20+ε.

For t = 0 and prime M , Sharma [2022] proved that

L
( 1

2 , π × f ×χ
)
≪π, f,ε M3/2−1/16+ε.

In the context of L-functions, obtaining hybrid bounds that perfectly combine the two aspects is a difficult
problem; see [Blomer and Harcos 2008; Fan and Sun 2022; Heath-Brown 1978; Lin 2021; Huang 2021c;
Petrow and Young 2020; 2023]. Our main result in this paper is the following hybrid subconvexity bounds.

Theorem 1.1. With the notation as above. Let t ∈ R and M be prime. Then we have

L
( 1

2 + i t, π × f ×χ
)
≪π, f,ε M3/2−1/16+ε(1 + |t |)3/2−3/20+ε.

Remark 1.2. Below we will carry out the proof under the assumption t ≥ Mε for some small ε > 0. For
the case t ≪ Mε, one can extend the method of Sharma [2022] to prove L

( 1
2 + i t, π × f ×χ

)
≪t,π, f,ε

M3/2−1/16+ε with polynomial dependence on t . For the case t ≤ −Mε, the same result follows from the
case t ≥ Mε by the functional equation.

Remark 1.3. Let π , χ and t be the same as above and f be a weight k Hecke modular form for SL(2,Z).
The same hybrid subconvexity bounds for L

( 1
2 + i t, π × f ×χ

)
can be proved by our method. The only

thing need to be changed is the GL(2) Voronoi summation formula.
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Note that by the Hecke relation of the Fourier coefficients (see [Goldfeld 2006, Theorem 6.4.11]), we
have

A(1,m)A(1, n)=

∑
d | (m,n)

A
(

d,
mn
d2

)
.

Hence we have

L(s, π ×χ)2 =

∑
m≥1

∑
n≥1

A(m, n)τ (n)χ(m2n)
(m2n)s

, Re(s) > 1,

where τ(n)=
∑

d | n 1 is the divisor function which is the coefficient of the Eisenstein series for SL(2,Z).
The subconvexity bounds for L

( 1
2 + i t, π × χ

)
follow from bounds for L

( 1
2 + i t, π × f × χ

)
with f

being a GL(2) Eisenstein series.

Theorem 1.4. With the notation as above. Let t ∈ R and M be prime. Then we have

L
(
1/2 + i t, π ×χ

)
≪π,ε M3/4−1/32+ε(1 + |t |)3/4−3/40+ε.

Remark 1.5. The only difference in the proofs of Theorem 1.4 and Theorem 1.1 is that we need to use
the Voronoi summation formula for τ(n) instead of those for Fourier coefficients of a GL(2) cusp form.
This will give us another zero frequency contribution in the dual sum. This contribution will not have any
effect on the final result. Indeed, in the generic case, the weight function for the sum of τ(n) is oscillating.
By integration by parts, we can show its contribution is negligibly small.

Theorem 1.4 improves the hybrid subconvexity bounds for twists of GL(3) L-functions due to Huang
[2021a] and Lin [2021], and also reaches the best known bounds in the M- and t-aspects simultaneously;
see Sharma [2022] and Aggarwal [2021]. Recall that under the same assumptions Lin [2021] proved that

L
(1

2 + i t, π ×χ
)
≪π,ε (M(1 + |t |))3/4−1/36+ε.

One may give a quick comparison with Lin’s work [2021]. Actually, we have a different structure from
Lin’s paper. Theorem 1.4 can be viewed as a subconvexity result for GL(3)×GL(2)×GL(1) L-functions,
where the GL(2)-item is the Eisenstein series. Lin’s work is to consider the L

( 1
2 + i t, π ×χ

)
directly.1

Heath-Brown [1978] proved the first hybrid subconvexity bounds for Dirichlet L-functions by extending
the Burgess method and van der Corput method to give good estimates for hybrid sums

∑
χ(n)ni t .

Recently, Petrow and Young [2020; 2023] proved the Weyl bound in both aspects by estimating moments
of L-functions. For the GL(2) case, Blomer and Harcos [2008] proved the first hybrid subconvexity
bounds in the M- and t-aspects by using moments of L-functions. Recently, Fan and Sun [2022] improved
the bounds by using a delta method. Our method can also provide hybrid subconvexity bounds in the
GL(1) and GL(2) settings, but are weaker than the best known results.

The basic observation is that the subconvexity bounds for GL(3)× GL(2)× GL(1) L-functions in
individual M-aspect or t-aspect were proved by applying the Duke–Friedlander–Iwaniec delta method

1Kıral, Kuan and Lesesvre [Kıral et al. 2022] further improved subconvexity bounds for twisted GL(3) L-functions under the
restriction M < t8/7.
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to separate oscillatory factors. This suggests to us that in order to prove a hybrid subconvexity bound
one may use the same method as the starting point. This philosophy may allow us to make progress in
other hybrid settings; see [Huang 2021c]. However, technically speaking, to estimate the complicated
sums (e.g., (3-1) below) is much more difficult. We have to take care of both aspects carefully. It is worth
mentioning that, as in [Aggarwal 2021; Huang 2021b; Lin and Sun 2021], we drop the conductor-lowering
trick which was used in Munshi [2015a] for the t-aspect, but we still use the conductor-lowering trick for
the M-aspect as in Munshi [2015b] and Sharma [2022].

1A. Sketch of the proof. We give a brief sketch of the proof. By the approximate functional equation
and some standard analysis, we need to get∑

n∼N

A(r, n)λ f (n)χ(n)n−i t
≪ N 1/2+εM3/2−1/16t3/2−3/20,

where N ≪ (Mt)3+ε/r2, r ≪ M1/8t3/10 and (r,M)= 1 (see Proposition 3.1). We will apply the Duke–
Friedlander–Iwaniec delta method with moduli q ≤ Q (see Lemma 2.6). For simplicity let us focus
on the generic case, i.e., N = M3t3, r = 1 and q ∼ Q = (L N/M K )1/2 for some parameters L and
K ≪ t1−ε which will be chosen later. After applying the Duke–Friedlander–Iwaniec delta method and
the conductor-lowering trick for the M-aspect by Munshi (see Sharma [2022]), the main object of study
is given by

1
L

∑
ℓ∼L

A(1, ℓ)
∫

x∼1

1
M

∑⋆

b mod M

1
Q

∑
q∼Q

(q,ℓM)=1

1
q

∑⋆

a mod q

∑
n∼L N

A(1, n)e
(

n(aM + bq)
q M

)
e
(

nx
Mq Q

)

·

∑
m∼N

λ f (m)χ(m)e
(

−mℓ(aM + bq)
q M

)
m−i t e

(
−mℓx
Mq Q

)
dx .

By using the Ramanujan conjecture on average, trivially estimating at this stage gives O(L N 2). So we
want to save L N plus a “little more” in the above sum. Note that here we don’t need the conductor-lowing
trick for the t-aspect as observed in [Aggarwal 2021; Huang 2021b; Lin and Sun 2021]. In fact, the
x-integral above plays the same role as the v-integral in Munshi [2015a].

We apply the Voronoi summation formulas to both n and m sums. For the n sum, by the GL(3) Voronoi,
we get essentially

q M
∞∑

n2=1

A(1, n2)

n2
S((aM + bq), n2; q M)9x

(
n2

q3 M3

)
,

for certain weight function 9x depending on x . The conductor in the above n2-sum is K 3 M3 Q3, and the
length is about L N . Hence the dual length becomes n2 ≍ K 3 M3 Q3/(L N )= L2 N 2/Q3. By Lemma 4.1,
the current bound for this dual sum is QM · (QM)1/2 · (L N/(M Q2))3/2. So we save (L N )1/4/(M K )3/4.
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In the GL(2) Voronoi, the dual sum becomes essentially

N
Mqτ(χ)

∑
u mod M

u ̸≡b mod M

χ(uℓ)
∑
m≥1

λ f (m)e
(

±
mℓ(aM + (b − u)q)

Mq

)
H±

(
m N

M2q2

)

for certain weight function H±. The conductor in the m-sum is t2 Q2 M2, so the dual length becomes
m ≍ t2 Q2 M2/N = L Mt2/K . By Lemma 2.4 and the square root cancellation in the u sum, the trivial
bound for this dual sum is (N/QM) · (M1/2 Q1/2/N 1/4) · (t2 Q2 M2/N )3/4 · (1/t1/2). Hence we save
N 1/2K 1/2/(L1/2 M1/2t). By the stationary phase method, we save K 1/2 from the x-integral. We also save
Q1/2 in the a sum and M1/2 in the b sum. Hence in total we have saved

(L N )1/4

(M K )3/4
·

N 1/2K 1/2

L1/2 M1/2t
· K 1/2 Q1/2 M1/2

=
N

Mt
.

Hence we still need to save L Mt plus a “little more”. Generally we arrive at

N 13/12

M2L Q

∑
ℓ∈L

A(1, ℓ)χ(ℓ)ℓ1/3
∑
q∼Q

1
q3/2

∑
n2≍L2 N 2/Q3

A(1, n2)

n2/3
2

∑
m≍M2 Q2t2/N

λ f (m)
m1/4 CJ ,

for certain character sum C and integral transform J (see (4-11)).
Next applying the Cauchy inequality we arrive at( ∑

n2≍L2 N 2/Q3

∣∣∣∣∑
ℓ∈L

A(1, ℓ)χ(ℓ)ℓ1/3
∑
q∼Q

1
q3/2

∑
m≍M2 Q2t2/N

λ f (m)
m1/4 CJ

∣∣∣∣2)1/2

,

where we seek to save L Mt plus extra. Opening the absolute value square we apply the Poisson summation
formula on the sum over n2. For the zero frequency we save (L QM2 Q2t2/N )1/2. This gives a bound of
size N 3/4 M3/4K 3/4/L1/4. We save enough in the zero frequency if K < t and L > 1.

For the non-zero frequencies, the conductor is of size Q2 M K , hence the length of the dual sum is
O((Q2 M K/(L2 N 2/Q3))1/2)= O(L1/4 N 1/4/(M3/4K 3/4)). In the integral transform we save K 1/4 and
the character sums save (Q2 M1/2)1/2 = QM1/4. Hence in total in the non-zero frequencies we save
(M3/4K 3/4/L1/4 N 1/4)K 1/4 QM1/4. This gives a bound of size N 1/4 QL1/4 Mt = N 3/4L3/4 M1/2t/K 1/2.
We save enough in the non-zero frequencies if L<M1/3 and K > t1/2. We also have different bounds from
other cases. In fact, the best choice is L = M1/4 and K = t4/5 which gives O(N 1/2+εM3/2−1/16t3/2−3/20)

as claimed.

1B. Plan for this paper. The rest of this paper is organized as follows. In Section 2, we introduce
some notation and present some lemmas that we will need later. The approximate functional equation
allows us to reduce the subconvexity problem to estimating certain convolution sums. In Section 3,
we apply the delta method to the convolution sums. In Section 4, we apply the Voronoi summation
formulas and estimate the integral transforms by the stationary phase method. In Section 5, we apply
the Cauchy–Schwarz inequality and Poisson summation formula, and then analyze the integrals. Then
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we deal with character sums and the zero frequency contribution in Section 6. In Section 7, we give the
contribution from non zero frequencies. Finally, in Section 8, we balance parameters optimally and prove
Proposition 3.1 which leads to Theorem 1.1.

Notation. Throughout the paper, ε is an arbitrarily small positive number; all of them may be different at
each occurrence. By a smooth dyadic subdivision of a sum

∑
n≥1 A(n), we will mean∑

(V,N )

∑
n≥1

A(n)V
(

n
N

)
,

where ∑
(V,N )

V
(

n
N

)
= 1

with V being a smooth function supported on [1, 2] and satisfying V ( j)(x)≪ j 1. The weight functions
U , V , W may also change at each occurrence. As usual, e(x)= e2π i x and n ∼ N means N ≤ n < 2N .

2. Preliminaries

2A. Automorphic forms. Let f be a Hecke–Maass cusp form with the spectral parameter t f for SL(2,Z),
with the normalized Fourier coefficients λ f (n). Let θ2 be the bound toward to the Ramanujan conjecture
and we have θ2 ≤

7
64 due to Kim and Sarnak [2003]. It is well known that, by the Rankin–Selberg theory,

one has ∑
n≤N

|λ f (n)|2 ≪ f N . (2-1)

Let π be a Hecke–Maass cusp form of type (ν1, ν2) for SL(3,Z)with the normalized Fourier coefficients
A(r, n). Similarly, Rankin–Selberg theory gives∑

r2n≤N

|A(r, n)|2 ≪π N . (2-2)

We record the Hecke relation

A(r, n)=

∑
d | (r,n)

µ(d)A
(

r
d
, 1

)
A
(

1,
n
d

)
which follows from the Möbius inversion and [Goldfeld 2006, Theorem 6.4.11]. Hence we have the
individual bounds

A(r, n)≪ (rn)θ3+ε, (2-3)

where θ3 ≤
5
14 is the bound toward to the Ramanujan conjecture on GL(3); see [Kim 2003]. So we have∑

n∼N

|A(r, n)| ≪

∑
n1 | r∞

∑
n∼N/n1
(n,r)=1

|A(r, nn1)| ≤

∑
n1 | r∞

|A(r, n1)|
∑

n∼N/n1
(n,r)=1

|A(1, n)| ≪ r θ3+εN (2-4)
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and ∑
n∼N

|A(r, n)|2 ≪

∑
n1 | r∞

∑
n∼N/n1
(n,r)=1

|A(r, nn1)|
2
≤

∑
n1 | r∞

|A(r, n1)|
2

∑
n∼N/n1
(n,r)=1

|A(1, n)|2 ≪ r2θ3+εN . (2-5)

Here we have used (2-2) and the fact
∑

d | r∞ d−σ
≪ r ε, for σ > 0.

2B. L-functions. The Rankin–Selberg L-function L(s, π× f ×χ) has the following functional equation

3(s, π × f ×χ)= ϵπ× f ×χ3(1 − s, π̃ × f ×χ),

where

3(s, π × f ×χ)= M3sπ−3s
3∏

j=1

∏
±

0

(
s −α j ± i t f

2

)
L(s, π × f ×χ)

is the completed L-function and ϵπ× f ×χ is the root number. Here α j are the Langlands parameters of π ,
and π̃ is the contragredient representation of π . By [Iwaniec and Kowalski 2004, Section 5.2], we can
obtain the approximate functional equation which leads us to the following result.

Lemma 2.1. We have

L
( 1

2 + i t, π × f ×χ
)
≪ (M(|t | + 1))ε sup

N≪(M(|t |+1))3+ε

|S(N )|
√

N
+ (M(|t | + 1))−A,

where

S(N )=

∑
r≥1

∑
n≥1

A(r, n)λ f (n)χ(r2n)(r2n)−i t V
(

r2n
N

)
,

with some compactly supported smooth function V such that supp V ⊂ [1, 2] and V ( j)
≪ j 1.

We first estimate the contribution from large values of r . By (2-1) and (2-5) we have∑
r≥M1/8(|t |+1)3/10

∣∣∣∣∑
n≥1

A(r, n)λ f (n)χ(n)(r2n)−i t V
(

r2n
N

)∣∣∣∣
≪

∑
M1/8(|t |+1)3/10≤r≪

√
N

( ∑
n≍N/r2

|A(r, n)|2
)1/2( ∑

n≍N/r2

|λ f (n)|2
)1/2

≪

∑
M1/8(|t |+1)3/10≤r≪

√
N

r θ3+ε
N
r2

≪ N
∑

M1/8(|t |+1)3/10≤r≪
√

N

r−3/2−ε

≪ N 1/2 M3/2−1/16(|t | + 1)3/2−3/20+ε, (2-6)

for N ≪ (M(|t | + 1))3+ε. The contribution from those terms to L
( 1

2 + i t, π × f × χ
)

is bounded by
M3/2−1/16+ε(|t | + 1)3/2−3/20+ε.

Therefore, combining this together with Lemma 2.1, we prove the following lemma.
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Lemma 2.2. We have

L
( 1

2 + i t, π × f ×χ
)
≪ tε

∑
r≤M1/8t3/10

(r,M)=1

1
r

sup
N≪(Mt)3+ε/r2

|S(r, N )|
√

N
+ M3/2−1/16t3/2−3/20+ε,

where

S(r, N ) :=

∑
n≥1

A(r, n)λ f (n)χ(n)n−i t V
(

n
N

)
.

2C. Summation formulas. We first recall the Poisson summation formula over an arithmetic progression.

Lemma 2.3. Let β ∈ Z and c ∈ Z≥1. For a Schwartz function f : R → C, we have∑
n∈Z

n≡β mod c

f (n)=
1
c

∑
n∈Z

f̂
(

n
c

)
e
(

nβ
c

)
,

where f̂ (y)=
∫

R
f (x)e(−xy) dx is the Fourier transform of f .

Proof. See, e.g., [Iwaniec and Kowalski 2004, (4.24)]. □

We recall the Voronoi summation formula for SL(2,Z). Let g be a smooth compactly supported
function on (0,∞).

Lemma 2.4. With the notation as above. Then we have∑
n≥1

λ f (n)e
(

an
q

)
g
(

n
N

)
=

N
q

∑
±

∑
n≥1

λ f (n)e
(

∓
ān
q

)
H±

(
nN
q2

)
(2-7)

where

H+(y)=
−π

sin(π i t f )

∫
∞

0
g(ξ)(J2i t f (4π

√
yξ)− J−2i t f (4π

√
yξ)) dξ, (2-8)

and

H−(y)= 4ϵ f cosh(π t f )

∫
∞

0
g(ξ)K2i t f (4π

√
yξ) dξ. (2-9)

For y ≫ T ε, we have

H+(y)= y−1/4
∫

∞

0
g(ξ)ξ−1/4

J∑
j=0

c j e(2
√

yξ)+ d j e(−2
√

yξ)
(yξ) j/2 dξ + O(T −A) (2-10)

for some constant J = J (A) and

H−(y)≪t f ,A y−A. (2-11)

Proof. See, e.g., [Lin and Sun 2021, Section 3.1]. □
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Notice that (2-10) and (2-11) are only valid for y ≫ T ε. So we also need the facts which state that, for
y > 0, k ≥ 0 and Re ν = 0, one has (see [Kowalski et al. 2002, Lemma C.2])

yk J (k)ν (y)≪k,ν
1

(1 + y)1/2
,

yk K (k)
ν (y)≪k,ν

e−y(1 + |log y|)

(1 + y)1/2
.

(2-12)

We now recall the Voronoi summation formula for SL(3,Z). Let ψ be a smooth compactly supported
function on (0,∞), and let ψ̃(s) :=

∫
∞

0 ψ(x)x s dx/x be its Mellin transform. For σ > 5
14 , we define

9±(z) := z
1

2π i

∫
(σ )

(π3z)−sγ±

3 (s)ψ̃(1 − s) ds, (2-13)

with

γ±

3 (s) :=

3∏
j=1

0((s +α j )/2)
0((1 − s −α j )/2)

±
1
i

3∏
j=1

0((1 + s +α j )/2)
0((2 − s −α j )/2)

, (2-14)

where α j are the Langlands parameters of π as above. Note that changing ψ(y) to ψ(y/N ) for a positive
real number N has the effect of changing 9±(z) to 9±(zN ). The Voronoi formula on GL(3) was first
proved by Miller and Schmid [2006]. The present version is due to Goldfeld and Li [2006] with slightly
renormalized variables; see Blomer [2012, Lemma 3].

Lemma 2.5. Let c, d, d̄ ∈ Z with c ̸= 0, (c, d)= 1, and dd̄ ≡ 1 (mod c). Then we have
∞∑

n=1

A(m, n)e
(

nd̄
c

)
ψ(n)=

cπ3/2

2

∑
±

∑
n1 | cm

∞∑
n2=1

A(n2, n1)

n1n2
S
(

md,±n2;
mc
n1

)
9±

(
n2

1n2

c3m

)
,

where S(a, b; c) :=
∑

∗

d(c) e((ad + bd̄)/c) is the classical Kloosterman sum.

2D. The delta method. There are several oscillatory factors contributing to the convolution sums. Our
method is based on separating these oscillations using the circle method. In the present situation we will
use a version of the delta method of Duke, Friedlander and Iwaniec. More specifically we will use the
expansion (20.157) given in [Iwaniec and Kowalski 2004, Section 20.5]. Let δ : Z → {0, 1} be defined by

δ(n)=

{
1 if n = 0;

0 otherwise.

We seek a Fourier expansion which matches with δ(n).

Lemma 2.6. Let Q be a large positive number. Then we have

δ(n)=
1
Q

∑
1≤q≤Q

1
q

∑⋆

a mod q

e
(

na
q

) ∫
R

g(q, x)e
(

nx
q Q

)
dx, (2-15)

where g(q, x) is a weight function satisfying that

g(q, x)= 1 + O
(

Q
q

(
q
Q

+ |x |

)A)
, g(q, x)≪ |x |

−A, for any A > 1, (2-16)
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and
∂ j

∂x j g(q, x)≪ |x |
− j min(|x |

−1, Q/q) log Q, j ≥ 1. (2-17)

Here the ⋆ on the sum indicates that the sum over a is restricted by the condition (a, q)= 1.

Proof. See [Huang 2021b, Lemma 15] and [Iwaniec and Kowalski 2004, Section 20.5]. □

In applications of (2-15), we can first restrict to |x | ≪ Qε. If q ≫ Q1−ε, then by (2-17) we get
∂ j

∂x j g(q, x)≪ Qε
|x |

− j , for any j ≥ 1. If q ≪ Q1−ε and Q−ε
≪ |x | ≪ Qε, then by (2-17) we also have

∂ j

∂x j g(q, x) ≪ Qε
|x |

− j , for any j ≥ 1. Finally, if q ≪ Q1−ε and |x | ≪ Q−ε, then by (2-16), we can
replace g(q, x) by 1 with a negligible error term. So in all cases, we can view g(q, x) as a nice weight
function.

We remark that there is no restrictions on Q, so we can choose Q to be any large positive number. Recall
that in Sharma [2022] and Lin and Sun [2021], the authors took Q to be (N L/M)1/2 and (N/t4/5)1/2,
respectively. This motivates us to choose Q = (N L/M K )1/2. As we will see, after balancing finally, we
can take L = M1/4 and K = t4/5 optimally, which coincides with Sharma [2022] and Lin and Sun [2021].

2E. Oscillatory integrals. Let F be an index set and X = XT : F → R≥1 be a function of T ∈ F . A
family of {wT }T ∈F of smooth functions supported on a product of dyadic intervals in Rd

>0 is called X -inert
if for each j = ( j1, . . . , jd) ∈ Zd

≥0 we have

sup
T ∈F

sup
(x1,...,xd )∈Rd

>0

X− j1−···− jd
T |x j1

1 · · · x jd
d w

( j1,..., jd )
T (x1, . . . , xd)| ≪ j1,..., jd 1.

We will use the following stationary phase lemma several times.

Lemma 2.7. Suppose w = wT (t) is a family of X-inert functions, with compact support on [Z , 2Z ], so
thatw( j)(t)≪ (Z/X)− j . Also suppose that φ is smooth and satisfies φ( j)

≪ Y/Z j for some Y/X2
≥ R ≥ 1

and all t in the support of w. Let

I =

∫
∞

−∞

w(t)eiφ(t) dt.

(i) If |φ′(t)| ≫ Y/Z for all t in the support of w, then I ≪A Z R−A for A arbitrarily large.

(ii) If |φ′′(t)| ≫ Y/Z2 for all t in the support of w, and there exists t0 ∈ R such that φ′(t0)= 0 (note that
t0 is necessarily unique), then

I =
eiφ(t0)

√
φ′′(t0)

FT (t0)+ OA(Z R−A),

where FT is a family of X-inert functions (depending on A) supported on t0 ≍ Z.

Proof. See [Blomer et al. 2013, Section 8] and [Kıral et al. 2019, Lemma 3.1]. □
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3. Reduction

Now we start to prove Theorem 1.1. We assume t ≥ Mε. Recall that, Lemma 2.2, we are considering
S(r, N ) with N ≪ (Mt)3+ε/r2, r ≪ M1/8t3/10, and (r,M)= 1. We will prove the following proposition.

Proposition 3.1. We have

S(r, N )≪ N 1/2+εM3/2−1/16t3/2−3/20,

for N ≪ (Mt)3+ε/r2, r ≪ M1/8t3/10 and (r,M)= 1.

Let L be the set of primes in [L , 2L]. Assume M /∈ [L , 2L]. For ℓ ∈ L and n ≥ 1, by the Hecke
relation, we have

A(1, ℓ)A(r, n)= A(r, ℓn)+ δℓ | r A(r/ℓ, n)+ δℓ | n A(rℓ, n/ℓ).

By the prime number theorem for L(s, π × π̃) we have

L∗
:=

∑
ℓ∈L

|A(1, ℓ)|2 ≫ L1−ε.

We have

S(r, N )=
1

L∗

∑
ℓ∈L

A(1, ℓ)
∑
n≥1

A(r, n)A(1, ℓ)λ f (n)χ(n)n−i t V
(

n
N

)
= S1(N )+ S2(N )+ S3(N ),

where

S1(N )=
1

L∗

∑
ℓ∈L

A(1, ℓ)
∑
n≥1

A(r, nℓ)λ f (n)χ(n)n−i t V
(

n
N

)
,

S2(N )=
1

L∗

∑
ℓ∈L

A(1, ℓ)
∑
n≥1

δℓ | r A(r/ℓ, n)λ f (n)χ(n)n−i t V
(

n
N

)
,

and

S3(N )=
1

L∗

∑
ℓ∈L

A(1, ℓ)
∑
n≥1

δℓ | n A(rℓ, n/ℓ)λ f (n)χ(n)n−i t V
(

n
N

)
.

We only consider S1(N ), since the same method works for the other two sums and will give better
bounds as the lengths of those sums are smaller. Actually, in S2, since ℓ | r , only τ(r) ℓ’s contribute; in
S3, since ℓ | n, the length of the n-sum is of size N/L . As the structures of sums in S2 and S3 are the
same as in S1, we can get better bounds than S1.

Now we apply (1/M)
∑

b mod M e((n − mℓ)b/M) to detect the condition M | (n − mℓ), and then use
the delta method, obtaining

S1(N )=
1

L∗

∑
ℓ∈L

A(1,ℓ)
1
M

∑
b mod M

∑
n≥1

A(r,n)W
(

n
ℓN

)
·

∑
m≥1

λ f (m)χ(m)m−i t V
(

m
N

)
e
(
(n−mℓ)b

M

)

·
1
Q

∑
1≤q≤Q

1
q

∑⋆

a mod q

e
(
(n−mℓ)a

Mq

)∫
R

g(q, x)e
(
(n−mℓ)x

Mq Q

)
dx .
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Rearranging the order of the sums and integrals we get

S1(N )=
1

L∗

∑
ℓ∈L

A(1, ℓ)
1
M

∑
b mod M

1
Q

∑
1≤q≤Q

∫
R

g(q, x)
1
q

∑⋆

a mod q

·

∑
n≥1

A(r, n)e
(

n(bq + a)
Mq

)
W

(
n
ℓN

)
e
(

nx
pq Q

)

·

∑
m≥1

λ f (m)χ(m)m−i t e
(

−mℓ(bq + a)
Mq

)
V

(
m
N

)
e
(

−mℓx
Mq Q

)
dx .

Inserting a smooth partition of unity for the x-integral and a dyadic partition for the q-sum, we get

S1(N )≪ N ε sup
t−B≪X≪tε

sup
1≪R≪Q

∑
1≤ j≤3

|S±

1 j (N , X, R)| + O(t−A),

for any large constant A > 0 and some large constant B > 0 depending on A, where S±

11(N , X, R),
S±

12(N , X, R) and S±

13(N , X, R) denote the terms with (b,M)= 1, M | b and (q, ℓM) > 1, respectively.
More precisely, we have

S±

11(N , X, R) j =
1

L∗

∑
ℓ∈L

A(1, ℓ)
∫

R

1
M

∑⋆

b mod M

1
Q

∑
q∼R

(q,ℓM)=1

1
q

∑⋆

a mod q

g(q, x)U
(

±x
X

)

·

∑
n≥1

A(r, n)e
(

n(aM + bq)
q M

)
W

(
n
ℓN

)
e
(

nx
Mq Q

)

·

∑
m≥1

λ f (m)χ(m)e
(

−mℓ(aM + bq)
q M

)
m−i t V

(
m
N

)
e
(

−mℓx
Mq Q

)
dx, (3-1)

S±

12(N , X, R)=
1

L∗

∑
ℓ∈L

A(1, ℓ)
∫

R

1
M

1
Q

∑
q∼R

(q,ℓM)=1

1
q

∑⋆

a mod q

g(q, x)U
(

±x
X

)

·

∑
n≥1

A(r, n)e
(

na
q

)
W

(
n
ℓN

)
e
(

nx
Mq Q

)

·

∑
m≥1

λ f (m)χ(m)e
(

−mℓa
q

)
m−i t V

(
m
N

)
e
(

−mℓx
Mq Q

)
dx,

and

S±

13(N , X, R)=
1

L∗

∑
ℓ∈L

A(1, ℓ)
∫

R

1
M

∑
b mod M

1
Q

∑
q∼R

(q,ℓM)>1

1
q

∑⋆

a mod q

g(q, x)U
(

±x
X

)

·

∑
n≥1

A(r, n)e
(

n(a + bq)
q M

)
W

(
n
ℓN

)
e
(

nx
Mq Q

)

·

∑
m≥1

λ f (m)χ(m)e
(

−mℓ(a + bq)
q M

)
m−i t V

(
m
N

)
e
(

−mℓx
Mq Q

)
dx .
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Note that in S±

11(N , X, R) and S±

12(N , X, R), we have made a change of variable a → aM . Here U is
a fixed compactly supported 1-inert function with supp U ⊂ (0,∞). We will only give details for the
treatment of S±

11(N , X, R), since the same method works for S±

12(N , X, R) and S±

13(N , X, R) and will
give a better upper bound. More precisely, in S±

12(N , X, R), we do not have the b-sum. In S±

13(N , X, R),
we have the condition (q, ℓM) > 1. In fact, we should have the following cases:

(i) b ≡ 0 mod M and q = ℓ j q ′ with j ≥ 1 and (q ′, ℓM)= 1.

(ii) b ≡ 0 mod M and q = Mkq ′ with k ≥ 1 and (q ′, ℓM)= 1.

(iii) b ≡ 0 mod M and q = ℓ j Mkq ′ with j, k ≥ 1 and (q ′, ℓM)= 1.

(iv) (b,M)= 1 and q = ℓ j q ′ with j ≥ 1 and (q ′, ℓM)= 1.

(v) (b,M)= 1 and q = Mkq ′ with k ≥ 1 and (q ′, ℓM)= 1.

(vi) (b,M)= 1 and q = ℓ j Mkq ′ with j, k ≥ 1 and (q ′, ℓM)= 1.

4. Applying Voronoi

We first apply the Voronoi summation formula (see Lemma 2.5) to the sum over n in S±

11(N , X, R),
getting∑
n≥1

A(r, n)e
(

n(bq + aM)
q M

)
W

(
n
ℓN

)
e
(

nx
Mq Q

)

= q M
∑
η1=±1

∑
n1 | q Mr

∞∑
n2=1

A(n1, n2)

n1n2
S(r(aM + bq), η1n2; q Mr/n1)9

sgn(η1)
x

(
n2

1n2

q3 M3r

)
, (4-1)

where 9sgn(η1)
x (z) is defined as in Lemma 2.5 with ψ(y) replaced by W (y/ℓN )e(xy/Mq Q).

Lemma 4.1. (i) If zN L ≫ tε, then 9
η1
x (z) is negligibly small unless sgn(x) = − sgn(η1) and

Nℓ(−η1x)/(Mq Q)≍ (zNℓ)1/3, in which case we have

9sgn(η1)
x (z)= (zNℓ)1/2e

(
η1

2(zMq Q)1/2

(−η1x)1/2

)
W

(
z1/2(Mq Q)3/2

Nℓ(−η1x)3/2

)
+ O(t−A),

where W is a certain compactly supported 1-inert function depending on A.

(ii) If zN L ≪ tε and (N L X)/(M RQ)≫ tε, then 9sgn(η1)
x (z)≪ t−A.

(iii) If zN L ≪ tε and (N L X)/(M RQ)≪ tε, then 9sgn(η1)
x (z)≪ tε.

Proof. See [Huang 2021b, 5.3]. □

In the last case, by taking σ =
1
2 and making a change of variable, we get

9±

x (z)= (zℓN )1/2
1

2π5/2

∫
R

(π3zℓN )−iτγ±

3 (1/2 + iτ)
∫

∞

0
W (ξ)e

(
xℓNξ
Mq Q

)
ξ−1/2−iτ dξ dτ.
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We can truncate τ at τ ≪ tε with a negligibly small error by repeated integration by parts for the ξ -integral
above. That is, we have

9±

x (z)= (zℓN )1/2W ±

x,ℓ(z)+ O(t−A), (4-2)

where

W ±

x,ℓ(z)=
1

2π5/2

∫
|τ |≤tε

(π3zℓN )−iτγ±

3 (1/2 + iτ)
∫

∞

0
W (ξ)e

(
xℓNξ
Mq Q

)
ξ−1/2−iτ dξ dτ.

The contribution from the error to S±

11(N , X, R) is also negligibly small. Note that the function W ±

x,ℓ(z)
satisfies that

∂ j

∂z j W ±

x,ℓ(z)≪ j tεz− j . (4-3)

Now we consider the m-sum. By

χ(m)= χ(ℓ)χ(mℓ)=
χ(ℓ)

τ(χ)

∑
u mod M

χ(u)e
(

umℓ
M

)
,

one has∑
m≥1

λ f (m)χ(m)m−i t e
(

−mℓ(bq + aM)
Mq

)
V

(
m
N

)
e
(

−mℓx
Mq Q

)

=
1

τ(χ)

∑
m≥1

λ f (m)m−i t V
(

m
N

)
e
(

−
mℓx
Mq Q

)
·

( ∑
u mod M

u ̸≡b mod M

χ(uℓ)
(

e
(

−
mℓ(aM + (b − u)q)

Mq

)
+ e

(
−

mℓa
q

)))
=:61 +62,

say. From now on, we only deal with the terms involving 61, since the treatment of 62 is similar and in
fact simpler. With the help of Lemma 2.4, we obtain

61 =
N 1−i t

Mqτ(χ)

∑
u mod M

u ̸≡b mod M

χ(uℓ)
∑
±

∑
m≥1

λ f (m)e
(

±
mℓ(aM + (b − u)q)

Mq

)
H±

(
m N

M2q2

)
, (4-4)

where H± is defined as in Lemma 2.4 with g(ξ) replaced by V (ξ)ξ−i t e(−Nℓxξ/Mq Q).

Lemma 4.2. If z ≪ tε, then H±(z) is negligible unless t ≍ (NℓX)/(Mq Q) and x < 0.

Proof. If z ≪ tε, then, in view of (2-8) and (2-9), we may regard H±(z) as

I(z) :=

∫
∞

0
V (ξ)e

(
−

t log ξ
2π

−
Nℓxξ
Mq Q

)
J f (zξ) dξ, (4-5)

where J f (z)= (−π/ sin(π i t f ))(J2i t f (4π
√

z)− J−2i t f (4π
√

z)) or J f (z)= 4ϵ f cosh(π t f )K2i t f (4π
√

z).
Then, by partial integration together with (2-12), I1(z) is negligible unless x < 0 and (N L X)/(M RQ)≍ t .

□
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If m N/M2q2
≫ tε, then, in view of (2-11), H−(m N/M2q2) is negligible. For the term in (4-4)

involving H+, with the help of (2-10), we may replace it by

N 3/4−i t

M1/2q1/2τ(χ)

∑
u mod M

u ̸=b

χ(uℓ)
∑
η2=±1

∑
m≥1

λ f (m)
m1/4 e

(
mℓ(aM + (b − u)q)

Mq

)

·

∫
R

ξ−1/4V (ξ)e
(

−
t log ξ

2π
+ η2

2
√

m Nξ
Mq

−
Nℓxξ
Mq Q

)
dξ. (4-6)

Note that we have ℓ≍ L , |x | ≍ X and q ≍ R. By Lemma 4.1 and Lemma 4.2 and according to the size of
(Nℓx)/(Mq Q), (n2

1n2 Nℓ)/(q3 M3r) and (m N )/(M2q2), we can reduce S±

1 (N , X, R) to the following
three cases:

Case a.
N L X
M RQ

≍

(
n2

1n2 N L
R3 M3r

)1/3

≫ tε,
m N

M2 R2 ≫ tε.

In this case, we insert (4-1) and (4-4) into (3-1) and use Lemma 4.1(i) and (4-6), so that it is sufficient
to estimate

N 5/4−i t

τ(χ)M2L Qr1/2

∑
ℓ∈L

A(1, ℓ)χ(ℓ)ℓ1/2
∑⋆

b mod M

∑
q∼R

(q,ℓM)=1

1
q2

∑⋆

a mod q

∑
u mod M

u ̸=b

χ(u)

·

∑
m≥1

λ f (m)
m1/4 e

(
mℓ(aM + (b − u)q)

Mq

) ∑
η1,η2=±1

∑
n1 | q Mr

∑
n2≍

N0
n2

1

A(n1, n2)

n1/2
2

· S(r(aM + bq), η1n2; q Mr/n1)

∫
R

ξ−1/4V (ξ)e
(

−
i t log ξ

2π
+ η2

2
√

m Nξ
Mq

)
·

∫
R

g(q, x)e
(

−
Nℓxξ
Mq Q

+ η1
2(n2

1n2 Q)1/2

Mq((−η1r x))1/2

)
W

(
Q3/2(n2

1n2)
1/2

r1/2(−η1x)3/2 Nℓ

)
U

(
−η1x

X

)
dx dξ, (4-7)

where N0 = N 2L2 X3r/Q3. Let x = −η1 Xv. Then the resulting x-integral becomes

−η1 X
∫

R

e
(
η1

NℓXξv
Mq Q

+ η1
2(n2

1n2 Q)1/2

Mq(r Xv)1/2

)
g(q,−η1 Xv)U (v)W

(
Q3/2(n2

1n2)
1/2

r1/2(Xv)3/2 Nℓ

)
dv. (4-8)

Let

h(v)= η1
NℓXξv
Mq Q

+ η1
2(n2

1n2 Q)1/2

Mq(r Xv)1/2
.

Then

h′(v)= η1
NℓXξ
Mq Q

− η1
(n2

1n2 Q)1/2

Mq(r X)1/2
v−3/2, h′′(v)= η1

3(n2
1n2 Q)1/2

2Mq(r X)1/2
v−5/2. (4-9)

Note that the solution of h′(v0)= 0 is v0 = (n2
1n2)

1/3 Q/(r1/3(Nℓξ)2/3 X)≍ 1, and

h(v0)= η1
3(n2

1n2 Nℓξ)1/3

r1/3 Mq
, h′′(v0)=

3η1

2v2
0

·
(n2

1n2 Q)1/2

Mq(r Xv0)1/2
=

3η1

2v2
0

·
(n2

1n2 Nℓξ)1/3

r1/3 Mq
.
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By the argument below Lemma 2.6, we can think g(q, x) as a nice function which satisfies

∂ j

∂x j g(q, x)≪ Qε1 |x |
− j , (4-10)

up to a negligible error. Here ε1 is a small positive number such that tε/Q2ε1 ≫ tε/2. Then, by applying
Lemma 2.7, we have (4-8) is equal to

r1/6(q M)1/2 X
(n2

1n2 Nℓξ)1/6
e
(
η1

3(n2
1n2 Nℓξ)1/3

r1/3 Mq

)
g(q,−η1 Xv0)U(v0)W

(
Q3/2(n2

1n2)
1/2

r1/2(Xv0)3/2 Nℓ

)
+ O(t−A),

where U is a certain compactly supported 1-inert function depending on A. We may assume (n1,M)= 1,
since otherwise we have M | n1 which leads to a simpler case. Hence, by letting

V(ξ)= ξ−5/12V (ξ)g(q,−η1 Xv0)U(v0)W
(

Q3/2(n2
1n2)

1/2

r1/2(Xv0)3/2 Nℓ

)
,

at the cost of a negligible error, we can rewrite (4-7) as

N 13/12−i t X
τ(χ)M3/2L Qr1/3

∑
ℓ∈L

A(1, ℓ)χ(ℓ)ℓ1/3
∑
q∼R

(q,ℓM)=1

1
q3/2

·

∑
η1,η2=±1

∑
n1 | qr

1

n1/3
1

∑
n2≍

N0
n2

1

A(n1, n2)

n2/3
2

∑
m≥1

λ f (m)
m1/4 C(m, n1, n2, ℓ, q)Ja(m, n1, n2, ℓ, q), (4-11)

where

Ja(m, n1, n2, ℓ, q)=

∫
R

V(ξ)e
(

−
t

2π
log ξ + η1

3(n2
1n2 Nℓξ)1/3

r1/3 Mq
+ η2

2
√

m Nξ
Mq

)
dξ,

and

C(m, n1, n2, ℓ, q)=

∑⋆

b mod M

∑⋆

a mod q

S(r(aM + bq), η1n2, q Mr/n1)

·

∑
u mod M

u ̸=b

χ(u)e
(

mℓ(aM + (b − u)q)
Mq

)
. (4-12)

By partial integration, one can truncate the m-sum at

m ≪ max{t2 R2 M2/N , N L2 X2/Q2
}.

We have

C(m, n1, n2, ℓ, q)=

∑⋆

α mod q Mr/n1

f (α,mℓ̄, q)S̃(α,mℓ̄, q)e
(
η1
αn1n2

q Mr

)
, (4-13)

where

S̃(α,m, q)=

∑⋆

b mod M

∑
u mod M

u ̸=b

χ(u)e
(

q̄2(n1αb̄ + m(b − u))
M

)
,
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and

f (α,m, q)=

∑
d | q

n1α≡−m (mod d)

dµ(q/d).

Case b.
N L X
M RQ

≍

(
n2

1n2 N L
R3 M3r

)1/3

≍ t,
m N

M2 R2 ≪ tε.

In this case, we replace H±(z) by I(z) as defined in (4-5). Hence, we are led to estimate

N 3/2−i t

τ(χ)M5/2L Qr1/2

∑
ℓ∈L

A(1, ℓ)χ(ℓ)ℓ1/2
∑⋆

b mod M

∑
q∼R

(q,ℓM)=1

1
q5/2

∑⋆

a mod q

∑
u mod M

u ̸=b

χ(u)

·

∑
m≥1

λ f (m)
m1/4 e

(
mℓ(aM + (b − u)q)

Mq

) ∑
η1=±1

∑
n1 | q Mr

∑
n2≍N0/n2

1

A(n1, n2)

n1/2
2

· S(r(aM + bq), η1n2; q Mr/n1)

∫
R

ξ−1/4V (ξ)J f

(
m Nξ
M2q2

)
e
(

−
i t log ξ

2π
Mq

)
·

∫
R

g(q, x)e
(

−
Nℓxξ
Mq Q

+ η1
2(n2

1n2 Q)1/2

Mq((−η1r x))1/2

)
W

(
Q3/2(n2

1n2)
1/2

r1/2(−η1x)3/2 Nℓ

)
U

(
−η1x

X

)
dx dξ.

By doing a similar treatment as in Case a, one can equate the above with (up to a negligible error and
another term with M | n1)

N 4/3−i t X
τ(χ)M2L Qr1/3

∑
ℓ∈L

A(1, ℓ)χ(ℓ)ℓ1/3
∑
q∼R

(q,ℓM)=1

1
q2

·

∑
η1,η2=±1

∑
n1 | qr

1

n1/3
1

∑
n2≍N0/n2

1

A(n1, n2)

n2/3
2

∑
m≥1

λ f (m)
m1/4 C(m, n1, n2, ℓ, q)Jb(m, n1, n2, ℓ, q), (4-14)

where C is defined as in (4-12) and

Jb(m, n1, n2, ℓ, q)=

∫
R

ξ−1/4V (ξ)J f

(
m Nξ
M2q2

)
e
(

−
t

2π
log ξ + η1

3(n2
1n2 Nℓξ)1/3

r1/3 Mq

)
dξ. (4-15)

Case c.
n2

1n2

R3 M3r
L N ≪ tε,

N L X
M RQ

≪ tε,
m N

M2 R2 ≫ tε.

Since (N L X)/(M RQ)≪ tε, we first deal with the ξ -integral in (4-6). Making a change of variable
ξ ⇝ ξ 2, we have

Jc(m, ℓ, q)= 2
∫

R

ξ−1/2V (ξ 2)e
(

−
Nℓxξ 2

Mq Q

)
e
(

−
t log ξ
π

+ η2
2
√

m N
Mq

ξ

)
dξ.

Let

h(ξ)= −
t log ξ
π

+ η2
2
√

m N
Mq

ξ.
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Then we have

h′(ξ)= −
t
πξ

+ η2
2
√

m N
Mq

, h′′(ξ)=
t
πξ 2 , h( j)(ξ)≍ j t, j ≥ 2.

Note that
t

1 + (N L X/M RQ)2
≫ t1−ε.

Hence, by Lemma 2.7, the integral is negligibly small unless m N/(M2 R2)≍ t and η2 = 1, in which case
we have the stationary phase point ξ0 = t Mq/(2π

√
m N ) and

Jc(m, ℓ, q)=
1

t1/2 e
(

−
t
π

log
t Mq

2πe
√

m N

)
Vx,ℓ

(
t Mq
√

m N

)
+ O(t−A),

where Vx,ℓ is a tε-inert function.
Together with (4-1) and (4-6), we have S±

11(N , X, R) is equal to (up to a negligibly small error term
and another term with u = b)

1
L∗

∑
ℓ∈L

A(1, ℓ)
∫

R

1
M

∑⋆

b mod M

1
Q

∑
q∼R

(q,ℓM)=1

1
q

∑⋆

a mod q

g(q, x)U
(

±x
X

)
q M

∑
η1=±1

∑
n1 | q Mr

·

∞∑
n2=1

A(n1, n2)

n1n2
S(r(aM + bq), η1n2; q Mr/n1)

(
n2

1n2ℓN
q3 M3r

)1/2

W sgn(η1)

x,ℓ

(
n2

1n2

q3 M3r

)

·
N 3/4−i t

M1/2q1/2τ(χ)

∑
u mod M

u ̸=b

χ(uℓ)
∑
m≥1

λ f (m)
m1/4 e

(
mℓ(aM + (b − u)q)

Mq

)

·
1

t1/2 e
(

−
t
π

log
t Mq

2πe
√

m N

)
Vx,ℓ

(
t Mq
√

m N

)
dx .

We assume (n1,M) = 1, since otherwise we have M | n1 which leads to a simpler case. Rearranging
the sums, inserting a dyadic partition for the n2-sum, and estimating the x-integral trivially, the above is
bounded by

N ε sup
1≪N0≪(R3 M3r/L N )tε

sup
x≍X

|S±

11(N , X, R, N0)|,

where

S±

11(N , X, R,N0)=
N 5/4 X

M5/2L Qr1/2

1
t1/2

∑
η1=±1

∑
n1≤Rr

∑
n2≍N0/n2

1

A(n1,n2)

n1/2
2

∑
ℓ∈L

A(1,ℓ)χ(ℓ)ℓ1/2

·

∑
q∼R
n1 |qr

(q,ℓM)=1

1
q2+2i t

∑
m≍R2 M2t2/N

λ f (m)
m1/4−i t C(m,n1,n2,ℓ,q)W

sgn(η1)

x,ℓ

(
n2

1n2

q3 M3r

)
Vx,ℓ

(
t Mq
√

m N

)
,

and C is defined as in (4-12).
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5. Applying Cauchy and Poisson

5A. Case a. In this subsection, we assume Case a. Write

q = q1q2 with q1 | (rn1)
∞ and (q2, rn1)= 1,

then we have

(4-11) ≪
N 13/12+εX
M2L Qr1/3

∑
η1,η2=±1

∑
n1≪Rr

1

n1/3
1

∑
(n1/(n1,r))|q1|(rn1)∞

1

q3/2
1

∑
n2≍N0/n2

1

|A(n1, n2)|

n2/3
2

·

∣∣∣∣ ∑
ℓ∈L

(ℓ,q1)=1

A(1, ℓ)χ(ℓ)ℓ1/3
∑

q2∼R/q1
(q2,rn1ℓM)=1

1

q3/2
2

∑
m≪max{t2 R2 M2/N ,N L2 X2/Q2}

λ f (m)
m1/4

· C(m, n1, n2, ℓ, q1q2)Ja(m, n1, n2, ℓ, q1q2)

∣∣∣∣.
Now we use the Cauchy–Schwarz inequality and (2-5) to get

≪
N 3/4+εX1/2

M2L4/3 Q1/2r1/2

∑
η1,η2=±1

sup
M1≪max{t2 R2 M2/N ,N L2 X2/Q2}

∑
n1≪Rr

nθ3
1

∑
(n1/(n1,r))|q1|n∞

1

1

q3/2
1

�1/2
a , (5-1)

where

�a

=

∑
n2≍N0/n2

1

∣∣∣∣ ∑
ℓ∈L

(ℓ,q1)=1

A(1,ℓ)χ(ℓ)ℓ1/3
∑

q2∼R/q1
(q2,rn1ℓM)=1

1

q3/2
2

∑
m∼M1

λ f (m)
m1/4 C(m,n1,n2,ℓ,q1q2)Ja(m,n1,n2,ℓ,q1q2)

∣∣∣∣2

.

Opening the absolute square, we get

�a ≪

∑
n2≥1

W
(

n2
1n2

N0

)∑
ℓ∈L

∑
ℓ′∈L

(ℓℓ′,q1)=1

A(1, ℓ)χ(ℓ)A(1, ℓ′)χ(ℓ′)(ℓℓ′)1/3

·

∑
m∼M1

λ f (m)
m1/4

∑
m′∼M1

λ f (m′)

m′1/4

∑
q2∼R/q1
(q2,ℓ)=1

∑
q ′

2∼R/q1
(q ′

2,ℓ
′)=1

(q2q ′

2,rn1 M)=1

1
(q2q ′

2)
3/2

· C(m, n1, n2, ℓ, q1q2)Ja(m, n1, n2, ℓ, q1q2)C(m′, n1, n2, ℓ′, q1q ′

2)Ja(m′, n1, n2, ℓ′, q1q ′

2),
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where W is supported on [1, 2] and satisfies W ( j)(x)≪ 1. We apply the Poisson summation formula on
n2, getting

�a ≪
N0q3

1 L2/3

n2
1 M1/2

1 R3

∑
ℓ∈L

∑
ℓ′∈L

(ℓℓ′,q1)=1

|A(1, ℓ)A(1, ℓ′)|
∑

m∼M1

∑
m′∼M1

|λ f (m)||λ f (m′)|

·

∑
q2∼R/q1
(q2,ℓ)=1

∑
q ′

2∼R/q1
(q ′

2,ℓ
′)=1

(q2q ′

2,rn1 M)=1

∑
n2≥1

|C(n2)||Ja(n2)|,

where

C(n2)=

∑⋆

b mod M

∑⋆

b′ mod M

( ∑
u mod M

u ̸=b

χ(u)e
(

mq2
1 q2

2ℓ(b − u)
M

))

·

( ∑
u′ mod M

u′
̸=b′

χ(u′)e
(

−m′q2
1 q ′2

2 ℓ
′(b′ − u′)

M

))( ∑
d | q1q2

∑
d ′ | q1q ′

2

dd ′µ(q1q2/d)µ(q1q ′

2/d
′)

·

∑⋆

α (mod Mrq1q2/n1)

∑⋆

α′ (mod Mrq1q ′

2/n1)

q ′

2α−q2α′≡−η1n2(Mrq1q2q ′

2/n1)

n1α≡−mℓ̄(d)
n1α

′
≡−m′ℓ′(d ′)

e
(

n1αbq2
1 q2

2 − n1α
′b′q2

1 q ′2
2

M

))
, (5-2)

and

Ja(n2)=

∫
R

W (w)Ia(N0w,m, q2)Ia(N0w,m′, q ′

2)e
(

−
N0n2w

q1q2q ′

2 Mn1r

)
dw

with

Ia(w, n, q2)=

∫
R

V(ξ)e
(

−
t

2π
log ξ + η1

3(wNℓξ)1/3

r1/3 Mq1q2
+ η2

2
√

m Nξ
Mq1q2

)
dξ.

5A1. (N L X)/(M RQ)≪ t1−ε. We first consider I(N0w,m, q2). Let

g(ξ)= −
t

2π
log ξ + η1

3(N0wNℓξ)1/3

r1/3 Mq1q2
+ η2

2
√

m Nξ
Mq1q2

. (5-3)
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There exists a stationary phase point ξ∗ if and only if m ≍ t2 M2 R2/N and η2 = 1, in which case ξ∗ can
be written as ξ0 + ξ1 + ξ2 + · · · with

ξ0 =
t2 M2q2

1 q2
2

4π2m N
=

(
t
πC

)2

≍ 1,

ξ1 = −η1
4πBw1/3

3t
ξ

4/3
0 ≍

B
t
,

ξ2 =
28π2 B2w2/3

27t2 ξ
5/3
0 ≍

B2

t2 ,

ξi = fi (t,C)
(
η1

Bw1/3

t

)i

≪

(
B
t

)i

, i ≥ 3,

where B = 3(N0 Nℓ)1/3/(r1/3 Mq1q2) ≍ N L X/(M RQ), C = 2
√

m N/(Mq1q2) and fi (t,C) ≍ 1 is
a function. Recall that V(ξ) = ξ−5/12V (ξ)g(q,−η1 Xv0)U(v0)W (Q3/2(n2

1n2)
1/2/(r1/2(Xv0)

3/2 Nℓ)),
v0 = (n2

1n2)
1/3 Q/(r1/3(Nℓξ)2/3 X)≍ 1 and (4-10). So it is easy to check the conditions in Lemma 2.7.

By using this lemma together with the Taylor expansion, Ia(N0w,m, q2) is essentially reduced to

1
t1/2 ξ

−i t
0 e

(
Bw1/3g1(C)+ B2w2/3g2(C)+ O

(
|B|

3

t2

))
, (5-4)

where g1(C)= η1ξ
1/3
0 = η1t2/3/(πC)2/3 ≍ 1 and g2(C)= −4π/(9t)ξ 2/3

0 ≪ 1/t . To estimate Ja(n2), we
use the strategy in [Lin and Sun 2021, Lemma 4.3] and [Munshi 2022, Lemma 5] to get the following
result.

Lemma 5.1. Let N2 = Q2 Rn1/(N L X2q1)tε and N ′

2 = tε(N Ln1/(M2 Rt2q1)+R2 Q3 Mn1/(N 2L2 X3q1)).
Assume (N L X)/(M RQ)≪ t1−ε:

(i) We have Ja(n2)≪ t−A unless n2 ≪ N2, in which case one has

Ja(n2)≪
1

t1−ε
. (5-5)

(ii) If N ′

2 ≪ n2 ≪ N2, we have

Ja(n2)≪
RQ3/2 M1/2n1/2

1

t1−εN L X3/2q1/2
1 n1/2

2

. (5-6)

(iii) If q2 =q ′

2, we have Ja(0)≪t−A unless ℓm′
−ℓ′m≪tε(M1 N 2L3 X2/(M2 R2 Q2t2)+M1 M RQ/(N X)).

Proof. Let w = u3. Then we may equate the w-integral in Ja with∫
R

W (u3)u2e
(

−
N0n2u3

q1q2q ′

2 Mn1r
+ (Bg1(C)− B ′g1(C ′))u + (B2g2(C)− B ′2g2(C ′))u2

+ O
(

B3

t2

))
du,

where B ′
= 3(N0 Nℓ′)1/3/(r1/3 Mq1q ′

2), C ′
= 2

√
m′N/(Mq1q ′

2). Applying integration by parts, the above
integral is ≪ t−A if n2 ≫ N2, which gives the first result in (i). The second result in (i) is obvious, since
we may save t1/2 in both Ia(N0w,m, q2) and Ia(N0w,m′, q ′

2) according to (5-4).
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It is easy to see that

B2g2(C)− B ′2g2(C ′)≪
Bξ 1/3

0 + B ′ξ
′1/3
0

t
|Bξ 1/3

0 − B ′ξ
′1/3
0 | ≪ |Bg1(C)− B ′g1(C ′)|t−ε, (5-7)

where we have used ξ ′

0 = (t/(πC ′))2 ≍ 1 and B, B ′
≍ (N L X)/(M RQ) ≪ t1−ε. Therefore, if N ′

2 ≪

n2 ≪ N2, the u-integral is O(t−A) unless |Bg1(C)− B ′g1(C ′)| ≍ N0n2/(q1q2q ′

2 Mn1r). By the second
derivative test and (5-4), we get (5-6).

For n2 = 0 and q2 = q ′

2, we may rewrite the above u-integral as∫
R

W (u3)u2e
(
(Bg1(C)− B ′g1(C ′))u + (B2g2(C)− B ′2g2(C ′))u2

+ O
(

B3

t2

))
du.

Notice that

Bg1(C)
(m′ℓ)1/3

=
B ′g1(C ′)

(mℓ′)1/3
and Bg1(C)− B ′g1(C ′)=

Bg1(C)
(m′ℓ)1/3

((m′ℓ)1/3 − (mℓ′)1/3).

So by partial integration and (5-7), the u-integral is O(t−A) unless

(m′ℓ)1/3 − (mℓ′)1/3 ≪

(
B3

t2 + 1
)
(M1L)1/3tε

B
.

This actually proves the result in (iii). □

5A2. (N L X)/(M RQ) ≫ t1−ε. It is easy to see that R ≪ N 1+εL X/(Mt Q). We have the following
Lemma 5.2.

Lemma 5.2. Let N2 be defined as in Lemma 5.1. Then, if (N L X)/(M RQ)≫ t1−ε, one has the following
estimates:

(1) If n2 ≫ N2, we have Ja(n2)≪ N−A.

(2) If n2 ≪ N2, we have

Ja(n2)≪
M RQ

N 1−εL X
.

Proof. The first result can be done by applying integration by parts with respect to the w-integral. For
n2 ≪ N2, we can use the arguments as in [Munshi 2022, Lemma 1] to see∫

R

W (w)|Ia(N0w, n, ℓ, q2)|
2 dw≪

M RQ
N 1−εL X

,

which implies (ii). □

Remark 5.3. In the case of (N L X)/(M RQ) ≫ t1+ε, we remark that one may replace it by a more
explicit version like Lemma 5.1. However, the present result is enough for our purpose.
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5B. Case b. After a similar treatment, and noting that m ≪ M2 R2tε/N , we have

(4-14) ≪
N 1+εX1/2

M5/2L4/3 Q1/2r1/2

∑
η1=±1

sup
M1≪(M2 R2tε/N )

∑
n1≪Rr

nθ3
1

∑
(n1/(n1,r))|q1|n∞

1

1
q2

1
�

1/2
b , (5-8)

where

�b≪
N0q4

1 L2/3

n2
1 M1/2

1 R4

∑
ℓ∈L

∑
ℓ′∈L

(ℓℓ′,q1)=1

|A(1,ℓ)A(1,ℓ′)|
∑

m∼M1

∑
m′∼M1

|λ f (m)||λ f (m′)|
∑

q2∼R/q1
(q2,ℓ)=1

∑
q ′

2∼R/q1
(q ′

2,ℓ
′)=1

(q2q ′

2,n1 M)=1

∑
n2≥1

|C(n2)||Jb(n2)|,

with C(n2) defined as in (5-2) and

Jb(n2)=

∫
R

W (w)Ib(N0w,m, q2)Ib(N0w,m′, q ′

2)e
(

−
N0n2w

q1q2q ′

2 Mn1r

)
dw,

Ib(w, n, q2)=

∫
R

ξ−1/4V (ξ)J f

(
m Nξ
M2q2

)
e
(

−
t

2π
log ξ + η1

3(wNℓξ)1/3

r1/3 Mq1q2

)
dξ.

By the exactly treatment, we have the following lemma.

Lemma 5.4. The results in Lemma 5.2 hold when replacing Ja by Jb.

5C. Case c. After a similar treatment, we have

S±

11(N , X, R, N0)≤
N 5/4 X

M5/2L Qr1/2

1
t1/2

∑
η1=±1

∑
n1≤Rr

∑
(n1/(n1,r)) | q1 | (rn1)∞

1
q2

1

∑
n2≍N0/n2

1

|A(n1, n2)|

n1/2
2

·

∣∣∣∣∑
ℓ∈L

A(1, ℓ)χ(ℓ)ℓ1/2
∑

q2∼R/q1
(q2,ℓMrn1)=1

1

q2+2i t
2

·

∑
m≍R2 M2t2/N

λ f (m)
m1/4−i t C(m, n1, n2, ℓ, q)W sgn(η1)

x,ℓ

(
n2

1n2

q3 M3r

)
Vx,ℓ

(
t Mq
√

m N

)∣∣∣∣.
By the Cauchy–Schwarz inequality and (2-5) we have

S±

11(N , X, R, N0)≪
N 5/4+εX

M5/2L Qr1/2

1
t1/2

∑
η1=±1

∑
n1≤Rr

nθ3
1

∑
(n1/(n1,r))|q1|(rn1)∞

1
q2

1
�1/2

c , (5-9)

where

�c =

∑
n2≍N0/n2

1

∣∣∣∣∑
ℓ∈L

A(1, ℓ)χ(ℓ)ℓ1/2
∑

q2∼R/q1
(q2,ℓMrn1)=1

1

q2+2i t
2

∑
m≍R2 M2t2/N

λ f (m)
m1/4−i t

· C(m, n1, n2, ℓ, q)W sgn(η1)

x,ℓ

(
n2

1n2

q3 M3r

)
Vx,ℓ

(
t Mq
√

m N

)∣∣∣∣2

.
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Opening the square we get

�c ≪ L
∑
ℓ∈L

|A(1, ℓ)|
∑

q2∼R/q1
(q2,ℓMrn1)=1

1
q2

2

∑
m≍R2 M2t2/N

|λ f (m)|
m1/4

·

∑
ℓ′∈L

|A(1, ℓ′)|
∑

q ′

2∼R/q1
(q ′

2,ℓ
′ Mrn1)=1

1
q ′2

2

∑
m′≍R2 M2t2/N

|λ f (m′)|

m′1/4

·

∣∣∣∣∑
n2≥1

W
(

n2
1n2

N0

)
C(m, n1, n2, ℓ, q)C(m′, n1, n2, ℓ′, q ′)

∣∣∣∣,
where W (n2

1n2/N0) is a smooth compactly supported function which contains the weight function

W sgn(η1)

x,ℓ (n2
1n2/(q3 M3r))W sgn(η1)

x,ℓ (n2
1n2/(q3 M3r)). Note that by (4-3) we have

∂ j

∂n j
2

W
(

n2
1n2

N0

)
≪ j tεn− j

2 , j ≥ 0.

By the Poisson summation formula modulo Mrq1q2q ′

2/n1 we get

�c ≪
N0

n2
1

Lq4
1

R4

N 1/2

RMt

∑
ℓ∈L

|A(1, ℓ)|
∑

q2∼R/q1
(q2,ℓMrn1)=1

∑
m≍R2 M2t2/N

·

∑
ℓ′∈L

|A(1, ℓ′)|
∑

q ′

2∼R/q1
(q ′

2,ℓ
′ Mrn1)=1

∑
m′≍R2 M2t2/N

|λ f (m′)|2
∑
n2∈Z

|C(n2)||Ic(n2)|,

where C(n2) is defined as in (5-2) and

Ic(n2)=
n2

1

N0

∫
R

W
(

n2
1u

N0

)
e
(

−
un2

Mrq1q2q ′

2/n1

)
du =

∫
R

W (ξ)e
(

−
N0n2ξ

Mrq1q2q ′

2n1

)
dξ.

By repeated integration by parts we have

Ic(n2)≪

{
t−A if n2 ≫ (Mr R2n1)/(q1 N0)tε,
tε if n2 ≪ (Mr R2n1)/(q1 N0)tε.

(5-10)

6. The zero frequency

In this section we estimate the contribution from the terms with n2 = 0. Denote the contribution of
this part to �∗ by �0, where ∗ ∈ {a, b, c}. Note that q ′

2α − q2α′ ≡ 0 (mod Mq2q ′

2). So we have
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q ′

2 = (q ′

2α,Mq2q ′

2)= (q2α′,Mq2q ′

2)= q2, and hence α = α′. We have

C(0)= δq=q ′

∑⋆

b (mod M)

∑⋆

b′ (mod M)

( ∑
u (mod M)

u ̸=b

χ(u)e
(

mq2ℓ(b−u)
M

))( ∑
u′ (mod M)

u′
̸=b′

χ(u′)e
(

−m′q2ℓ′(b′−u′)

M

))

·

∑
d |q

∑
d ′ |q

dd ′µ(q/d)µ(q/d ′)
∑⋆

α (mod Mrq/n1)

n1α≡−mℓ̄(d)
n1α≡−m′ℓ′(d ′)

e
(

n1αbq2−n1αb′q2

M

)
.

6A. Case a: tε ≪ (L N X)/(M R Q) ≪ t1−ε.

6A1. M | (mℓ̄− m′ℓ′). Denote the contribution of this part to �0 by �01. Moreover, the α-sum depends
on either b ≡ b′ (mod M) or b ̸≡ b′ (mod M). The character sum becomes

C(0)≪ M |C′

1|
∑
d | q

∑
d ′ | q

dd ′
∑

α (mod rq/n1)

n1α≡−mℓ̄ (mod d)
n1α≡−m′ℓ′ (mod d)

1 + |C′′

1|
∑
d | q

∑
d ′ | q

dd ′
∑

α (mod rq/n1)

n1α≡−mℓ̄ (mod d)
n1α≡−m′ℓ′ (mod d)

1

≪ (M |C′

1| + |C′′

1|)
∑
d | q

∑
d ′ | q

(d, d ′)rqδ(d,d ′) | (mℓ′−m′ℓ), (6-1)

where

C′

1 =

∑⋆

b (mod M)

∑
u (mod M)

u ̸=b

∑
u′ (mod M)

u′
̸=b

χ(u)χ(u′)e
(

mq2ℓ(b − u)
M

)
e
(

−
m′q2ℓ′(b − u′)

M

)
,

and

C′′

1 =

∑⋆

b (mod M)

∑⋆

b′ (mod M)
b′

̸≡b (mod M)

∑
u (mod M)

u ̸=b

∑
u′ (mod M)

u′
̸=b′

χ(u)χ(u′)e
(

mq2ℓ(b − u)
M

)
e
(

−
m′q2ℓ′(b′ − u′)

M

)
.

Since M | (mℓ̄− m′ℓ′), similar to [Sharma 2022, (6.3)], we have square root cancellation in the sum over
u and u′, and hence we obtain

C′

1 ≪ M2 and C′′

1 ≪ M3.

Hence

C(0)≪ M3
∑
d | q

∑
d ′ | q

(d, d ′)rqδ(d,d ′) | (mℓ′−m′ℓ).

Note that (M, (d, d ′))= 1 and

|A(1, ℓ)A(1, ℓ′)λ f (m)λ f (m′)| ≪ |A(1, ℓ)λ f (m′)|2 + |A(1, ℓ′)λ f (m)|2.
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By Lemma 5.1, we have∑
ℓ

∑
ℓ′

∑
m

∑
m′

|J(0)| ≪

∑
ℓ

|A(1, ℓ)|2
∑
m′

|λ f (m′)|2
∑
ℓ′

∑
m

M(d,d ′) | (mℓ′−m′ℓ)

|J(0)|

+

∑
ℓ′

|A(1, ℓ′)|2
∑

m

|λ f (m)|2
∑
ℓ

∑
m′

M(d,d ′) | (mℓ′−m′ℓ)

|J(0)|

≪ N εL M1

(
L M1((L N X)/(M RQt))2 + L M1(M RQ)/(L N X)

M(d, d ′)
+ 1

)
1
t
. (6-2)

Hence we have

�01 ≪ N ε N0 M3

n2
1 M1/2

1

L2/3q3
1

R3

( ∑
q2∼R/q1
(q2,rn1)=1

∑
d |q
d ′

|q

rq L M1

(
L M1(L N X/M RQt)2+L M1(M RQ/L N X)

M
+q

)
1
t

)

≪ N ε N0 M3

n2
1 M1/2

1

L2/3q2
1

R2 r RL M1

(
L M1(L N X/M RQt)2+L M1(M RQ/L N X)

Mt
+

R
t

)
.

By using N0 = N 2L2 X3r/Q3 and M1 ≪ t2 R2 M2/N , we get

�01 ≪ N ε r2 N 3/2L11/3 Rq2
1 M4 X3

n2
1 Q3

(
L3 N X2

M RQ2 +
M2 R2 Qt2

N 2 X
+ 1

)
.

Hence, the contribution from �01 to (5-1) is

≪
N 3/4+εX1/2

M2L4/3 Q1/2r1/2

∑
n1≪RMr

nθ3
1

∑
(n1/(n1,r))|q1|(rn1)∞

1

n1q1/2
1

(
r2 N 3/2L11/3 RM4 X3

Q3

)1/2

·

(
L3 N X2

M RQ2 +
M2 R2 Qt2

N 2 X
+ 1

)1/2

≪ N εr1/2 N 3/2L1/2 R1/2 X2

Q2

(
L3/2 N 1/2 X
M1/2 R1/2 Q

+
M RQ1/2t

N X1/2 + 1
)
.

Recall Q = (N L/M K )1/2. Thus, by X ≪ tε and R ≤ Q, we arrive at

≪ N εr1/2 N 2L2

M1/2 Q3 + N εr1/2 N 1/2L1/2 Mt + N εr1/2 N 3/2L1/2

Q3/2

≪ N εr1/2 N 1/2L1/2 M K 3/2
+ N εr1/2 N 1/2L1/2 Mt + N εr1/2 N 3/4 M3/4K 3/4

L1/4 .

(6-3)

6A2. M ∤(mℓ̄− m′ℓ′). Denote the contribution of this part to �0 by �02. In this case, we also have
q2 = q ′

2 and α=α′. So we can estimate the character as in (6-1). Since M ∤(mℓ̄−m′ℓ′), the nondegeneracy
holds for the variables b, u, u′ in C′

1 and C′′

1 and hence we have

C′

1 ≪ M3/2 and C′′

1 ≪ M5/2.
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Thus we get

C(0)≪ M5/2
∑

d | q1q2

∑
d ′ | q1q2

dd ′
rq1q2

[d, d ′]
δ(d,d ′) | (mℓ′−m′ℓ). (6-4)

As in (6-2), by Lemma 5.1, we have

∑
ℓ

∑
ℓ′

∑
m

∑
m′

(d,d ′) | (mℓ′−m′ℓ)

|J(0)| ≪ N εL M1

(
L M1(L N X/M RQt)2 + L M1 M RQ/L N X

(d, d ′)
+ 1

)
1
t
.

Hence, similar to the estimate for �01, we have

�02 ≪ N ε r2 N 3/2L11/3 Rq2
1 M7/2 X3

n2
1 Q3

(
L3 N X2

RQ2 +
M3 R2 Qt2

N 2 X
+ 1

)
.

Hence, similar to the estimate for (6-3), the contribution from �02 to (5-1) is

≪ N εr1/2 N 1/2L1/2 M5/4K 3/2
+ N εr1/2 N 1/2L1/2 M5/4t + N εr1/2 N 3/4 M1/2K 3/4

L1/4 . (6-5)

6B. Case a: (L N X)/(M R Q) ≫ t1−ε. By the same argument as in the Section 6A and Lemma 5.2 we
have

�0 ≪ N ε N0 M3

n2
1 M1/2

1

L2/3q3
1

R3

∑
q2∼R/q1
(q2,rn1)=1

∑
d | q
d ′

| q

rq L M1

(
L M1

M
+ q

)
M RQ
N L X

+ N ε N0 M5/2

n2
1 M1/2

1

L2/3q3
1

R3

∑
q2∼R/q1
(q2,rn1)=1

∑
d | q
d ′

| q

rq L M1(L M1 + q)
M RQ
N L X

≪ N ε N0

n2
1 M1/2

1

L2/3q3
1

R3

∑
q2∼R/q1
(q2,rn1)=1

rq L M1(L M1 M5/2
+ q M3)

M RQ
N L X

≪ N ε r2 N 3/2 Mq2
1 L11/3 X3

n2
1 Q3

(
N L3 M5/2 X2

Q2 + RM3
)
.

Here we have used N0 = N 2L2 X3r/Q3 and M1 ≪ (N L2 X2/Q2)N ε. Therefore, the contribution from
�0 to (5-1) is

≪
N 3/4+εX1/2

M2L4/3 Q1/2r1/2

∑
n1≪RMr

nθ3
1

∑
(n1/(n1,r))|q1|(rn1)∞

1

n1q1/2
1

(
r2 N 3/2 M L11/3 X3

Q3

(
N L3 M5/2 X2

Q2 +RM3
))1/2

≪ N εr1/2 N 3/2L1/2 X2

M3/2 Q2

(
N 1/2L3/2 M5/4 X

Q
+R1/2 M3/2

)
.
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Note that we have R ≪ N L X/(M Qt1−ε) now. By this and inserting Q = (N L/M K )1/2, one can bound
the above by

≪ N εr1/2 N 1/2L1/2 M5/4K 3/2
+ N εr1/2 N 3/4 M3/4K 5/4

L1/4t1/2 . (6-6)

6C. Case b: (L N X)/(M R Q) ≍ t. By the same argument as in the Section 6A and Lemma 5.4 we have

�0 ≪ N ε N0 M3

n2
1 M1/2

1

L2/3q4
1

R4

∑
q2∼R/q1
(q2,rn1)=1

∑
d | q
d ′

| q

rq L M1

(
L M1

M
+ q

)
M RQ
N L X

+ N ε N0 M5/2

n2
1 M1/2

1

L2/3q4
1

R4

∑
q2∼R/q1
(q2,rn1)=1

∑
d | q
d ′

| q

rq L M1(L M1 + q)
M RQ
N L X

≪ N ε N0

n2
1

L2/3q3
1

R3 r RL M1/2
1 (L M1 M5/2

+ RM3)
M RQ
N L X

.

By N0 = N 2L2 X3r/Q3 and M1 ≪ (M2 R2/N )tε we obtain

�0 ≪ N ε 1
n2

1

N 2L2 X3r
Q3

M RQ
N L X

L2/3q3
1

R3 r RL
M R
N 1/2

(
L M5/2 M2 R2

N
+ RM3

)
≪ N ε r2 N 1/2 M2q3

1 L8/3 X2

n2
1 Q2

(
L M9/2 R2

N
+ RM3

)
.

Thus, the contribution from �0 to (5-8) is

≪
N 1+εX1/2

M5/2L4/3 Q1/2r1/2

∑
n1≪RMr

nθ3
1

∑
(n1/(n1,r))|q1|(rn1)∞

1

n1q1/2
1

(
r2 N 1/2 M2L8/3 X2

Q2

(
L M9/2 R2

N
+RM3

))1/2

≪ N εr1/2 N 3/4L1/2 M3/4 R X3/2

Q3/2 +N εr1/2 N 5/4 R1/2 X3/2

Q3/2 .

By Q = (N L/M K )1/2 again and noting that R ≍ (N L X)/(M Qt), we deduce that the above is dominated
by

≪ N εr1/2 N 1/2L1/4 M
K 5/4

t
+ N εr1/2 N 3/4 M1/2K

L1/2t1/2 . (6-7)

6D. Case c: (L N X)/(M R Q) ≪ tε. By the same argument as in the Section 6A and (5-10) we have
(taking M1 ≍ R2 M2t2/N )

�0 ≪ N ε N0 M3

n2
1 M1/2

1

Lq4
1

R4

∑
q2∼R/q1
(q2,rn1)=1

∑
d |q
d ′

|q

rq L M1

(
L M1

M
+q

)
+N ε N0 M5/2

n2
1 M1/2

1

Lq4
1

R4

∑
q2∼R/q1
(q2,rn1)=1

∑
d |q
d ′

|q

rq L M1(L M1+q)

≪ N ε N0

n2
1

Lq3
1

R3 r RL M1/2
1 (L M1 M5/2

+RM3).
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By N0 ≪ (R3 M3r/L N )tε and M1 ≍ R2 M2t2/N , one has

�0 ≪ N ε 1
n2

1

R3 M3r
L N

Lq3
1

R3 r RL
RMt
N 1/2

(
L M5/2 R2 M2t2

N
+ RM3

)
≪ N ε r2q3

1 R2L M4t

n2
1 N 3/2

(
L M9/2 R2t2

N
+ RM3

)
.

So the contribution from �0 to (5-9) is

≪
N 5/4+εX

M5/2L Qr1/2t1/2

(
r2 R2L M4t

N 3/2

(
L M9/2 R2t2

N
+ RM3

))1/2

≪ N εr1/2 M7/4 R2t X
Q

+ N εr1/2 N 1/2 M R3/2 X
L1/2 Q

.

Now we have the condition X ≪ (M RQ/L N )tε, so one computes the above as

≪ N εr1/2 N 1/2L1/2 M5/4 t
K 3/2 + N εr1/2 N 3/4 M3/4

L1/4K 5/4 . (6-8)

Combining (6-3), (6-5), (6-6), (6-7) and (6-8), we see that the contribution of the zero frequency is
dominated by

≪ N εr1/2 N 1/2L1/2 M5/4K 3/2
+ N εr1/2 N 1/2L1/2 M5/4t

+ N εr1/2 N 3/4 M3/4K 3/4

L1/4 + N εr1/2 N 3/4 M3/4K 5/4

L1/4t1/2 . (6-9)

7. The nonzero frequencies

7A. n2 ̸≡ 0 (mod M). Denote the contribution from n2 ̸≡ 0 (mod M) in �∗ by �∗,1, where ∗ ∈ {a, b, c}.
We have

C(n2)≪ |C1(n2)C2(n2)C3(n2)|,

where

C1(n2)=

∑⋆

b mod M

∑⋆

b′ mod M

( ∑
u mod M

u ̸=b

χ(u)e
(

mq2
2ℓ(b − u)

M

))

·

( ∑
u′ mod M

u′
̸=b′

χ(u′)e
(

−
m′q ′2

2 ℓ(b
′ − u′)

M

))( ∑⋆

α,α′ mod M
q ′

2α−q2α′≡−η1n2(M)

e
(
αbq2

2 −α′b′q ′2
2

M

))
,

C2(n2)=

∑
d1 | q1

∑
d ′

1 | q1

d1d ′

1

∑⋆

α1 mod rq1/n1
n1α1≡−mℓ̄ mod d1

∑⋆

α′

1 mod rq1/n1

n1α
′

1≡−m′ℓ′ mod d ′

1

q ′

2α1−q2α
′

1≡−η1n2 (mod rq1/n1)

1,
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and
C3(n2)=

∑
d2 | q2

∑
d ′

2 | q ′

2

d2d ′

2

∑⋆

α2(q2),α
′

2(q
′

2)

q ′

2α2−q2α
′

2≡−η1n2 mod q2q ′

2
n1α2≡−mℓ̄ mod d2

n1α
′

2≡−m′ℓ′ mod d ′

2

1.

For C2(n2), the congruence condition determines at most one solution of α′

1 in terms of α1, and hence we
have

C2(n2)≤

∑
d1 | q1

d1
∑

d ′

1 | q1

d ′

1

∑⋆

α1 mod rq1/n1
−mℓ̄≡n1α1 mod d1

1.

Note that α1 is uniquely determined modulo d1/(d1, n1). Since (d1/(d1, n1), n1/(d1, n1)) = 1,
(d1/(d1, n1)) | (q1/(d1, n1)) and n1/(d1, n1) | rq1/(d1, n1), we have d1/(d1, n1) | rq1/n1. Hence we have

C2(n2)≪
rq1

n1

∑
d1 | q1

∑
d ′

1 | q1

d ′

1(d1, n1)δ(d1,n1) | m .

Similarly by considering α1-sum first we have

C2(n2)≪
rq1

n1

∑
d1 | q1

∑
d ′

1 | q1

d1(d ′

1, n1)δ(d ′

1,n1) | m′ .

For C3(n2), from the congruence q ′

2α−q2α′ ≡−η1n2 mod q2q ′

2 we have (q2, q ′

2) | n. Since (n1, q2)=1, we
have α≡−mℓ̄n̄1 mod d2 and hence q ′

2α≡−η1n2 mod d2. Therefore we get n1q ′

2 ≡η1mn2ℓ̄ mod d2. Sim-
ilarly we have −n1q2 ≡ η1m′n2ℓ′ mod d ′

2. Note that the congruence determines α2 mod [q2/(q2, q ′

2), d2]

and for each given α2 we have at most one solution of α′

2 mod q ′

2. Hence we have

C3(n)≪

∑ ∑
d2 | (q2,−q ′

2n1ℓ+η1mn2)

d ′

2 | (q ′

2,q2n1ℓ
′
+η1m′n2)

d2d ′

2
q2

[q2/(q2, q ′

2), d2]
δ(q2,q ′

2) | n.

Similarly we have

C3(n2)≪

∑ ∑
d2 | (q2,−q ′

2n1ℓ+η1mn2)

d ′

2 | (q ′

2,q2n1ℓ
′
+η1m′n2)

d2d ′

2
q ′

2

[q ′

2/(q2, q ′

2), d ′

2]
δ(q2,q ′

2) | n2 .

Together with [Sharma 2022, (5.6)] and [Lin et al. 2023, Proposition 4.4], we have

C1(n2)≪ M5/2,

C2(n2)≪
q1r
n1

∑
d1 | q1

∑
d ′

1 | q1

min{d ′

1(d1, n1)δ(d1,n1) | m, d1(d ′

1, n1)δ(d ′

1,n1) | m′},

C3(n2)≪

∑ ∑
d2 | (q2,−q ′

2n1ℓ+η1mn2)

d ′

2 | (q ′

2,q2n1ℓ
′
+η1m′n2)

d2d ′

2 min
{

q2

[q2/(q2, q ′

2), d2]
,

q ′

2

[q ′

2/(q2, q ′

2), d ′

2]

}
δ(q2,q ′

2) | n2 .
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Now, we need some careful counting to estimate �∗,1; see [Munshi 2022, Section 6; Sharma 2022,
Section 5; Lin et al. 2023, Section 6; Lin and Sun 2021, Section 4.5].

7A1. Case a. It is obvious that, for fixed tuple (n1, α, n2), the congruence

−q ′

2n1ℓ+ η1mn2 ≡ 0 mod d2

has a solution if and only if (d2, n2) | q ′

2ℓ, in which case m is uniquely determined modulo d2/(d2, n2).
Combining this together with the condition δ(d1,n1) | m in C2(n2), the number of m (∼ M1) is dominated
by δ(d2,n2) | q ′

2
O(1 + M1(d2, n2)/((d1, n1)d2)). Then, we get

�a,1 ≪
q4

1r N0L2/3 M5/2

n3
1 M1/2

1 R3

∑
d1 | q1

∑
d ′

1 | q1

d ′

1(d1, n1)
∑
ℓ∈L

∑
ℓ′∈L

(ℓℓ′,q1)=1

|Aπ (1, ℓ)Aπ (1, ℓ′)|

·

∑
q2∼R/q1
(q2,ℓ)=1

∑
q ′

2∼R/q1
(q ′

2,ℓ
′)=1

(q2q ′

2,n1 M)=1

∑
d2 | q2

∑
d ′

2 | q ′

2

∑
1≤n2≤N2
(d2,n2) | q ′

2ℓ

(q2,q ′

2) | n2

d2d ′

2

(
1 +

M1(d2, n2)

(d1, n1)d2

)

· min
{

q2

[q2/(q2, q ′

2), d2]
,

q ′

2

[q ′

2/(q2, q ′

2), d ′

2]

} ∑
m′

∼M1
q2n1ℓ

′
+η1m′n2≡0 (mod d ′

2)

|λ f (m′)|2|Ja(n2)|.

Let us make the following notation:

(q2, q ′

2)= q3, q2 = q3q4, q ′

2 = q3q ′

4

d2 = d0d3d4, d0 | (q3, q4), d3 | q3, (d3, q4)= 1, (d4, q3)= 1, d4 | q4,

d ′

2 = d ′

3d ′

4, d ′

3 | q3, d ′

4 | q4.

It is easy to see that

(d2, n2)≤ (d0d3, n2)(d4, n2)

≤ d0d3(d4, n2)

= d0d3(d4, n2/q3), q2/[q2/(q2, q ′

2), d2]

= q3q4/[q4, d2]

≤ q3/d3,

and

q ′

2/[q
′

2/(q2, q ′

2), d ′

2] = q3q ′

4/[q
′

4, d ′

2] ≤ q3q ′

4/d
′

2.
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Then, breaking the n2-sum into dyadic segments n2 ∼ Ñ2 with Ñ2 ≪ N2 and using Lemmas 5.1 and 5.2,
one has

�a,1 ≪ sup
1≪Ñ2≪N2

dyadic

N εq4
1r N0L2/3 M5/2

n3
1 M1/2

1 R3

∑
d1 | q1

∑
d ′

1 | q1

(d1, n1)d ′

1

∑
ℓ∈L

∑
ℓ′∈L

(ℓℓ′,q1)=1

|Aπ (1, ℓ)Aπ (1, ℓ′)|

·

∑
q3≤R/q1

(q3,n1ℓℓ
′ M)=1

∑
q4∼R/q3q1
(q4,ℓ)=1

∑
q ′

4∼R/q3q1
(q ′

4,ℓ
′)=1

(q4q ′

4,n1 M)=1

∑
d0 | (q3,q4)

∑
d3 | q3

(d3,q4)=1

∑
d4 | q4

(d4,q3)=1

d0d3d4

·

∑
d ′

3 | q3

∑
d ′

4 | q ′

4

d ′

3d ′

4

∑
n2∼Ñ2

(d2,n2) | q3q ′

4ℓ

q3 | n2

(
1 +

M1(d4, n2/q3)

(d1, n1)d4

)
C(Ñ2)

· min
{

q3

d3
,

q3q ′

4

d ′

3d ′

4

} ∑
m′

∼M1
q3q4n1ℓ

′
+η2m′n2≡0 (mod d ′

3d ′

4)

|λ f (m′)|2,

where

C(Ñ2)=


(RQ3/2 M1/2n1/2

1 )/(t N L X3/2q1/2
1 Ñ 1/2

2 ) N ′

2 ≪ Ñ2 ≪ N2 and N L X/M RQ ≪ t1−ε,

1/t Ñ2 ≪ N ′

2 and N L X/M RQ ≪ t1−ε,

M RQ/N L X Ñ2 ≪ N2 and N L X/M RQ ≫ t1−ε.

(7-1)

Case (i): q3q4n1ℓ
′
+ η2m′n2 ̸= 0. Denote the contribution from this part in �a,1 by �a,11. Write

q3 = d ′

3q5, q4 = d0q6 and q ′

4 = d ′

4q ′

6,

then we have

�a,11 ≪ sup
1≪Ñ2≪N2

dyadic

N εq5
1r N0L2/3 M5/2

n3
1 M1/2

1 R3

∑
d1 | q1

(d1, n1)
∑
ℓ∈L

∑
ℓ′∈L

|Aπ (1, ℓ)Aπ (1, ℓ′)|

·

∑
d ′

3≤R/q1

d ′

3

∑
q5≤R/q1d ′

3

∑
d0≤R/q1d ′

3q5
d0 | d ′

3q5

d0
∑

d3 | d ′

3q5
(d3,q4)=1

∑
q6∼R/q1d ′

3d0q5

∑
d4 | d0q6

(d4,d ′

3q5)=1

·

∑
n2∼Ñ2

d ′

3q5 | n2

d ′

3q5

(
d4 +

M1(d4, n2/d ′

3q5)

(d1, n1)

)
C(Ñ2)

∑
m′∼M1

|λ f (m′)|2

·

∑
d ′

4≤R/q1d ′

3q5
0̸=d ′

3d4q5q6n1ℓ
′
+η1m′n2≡0 (mod d ′

3d ′

4)

d ′

4

∑
q ′

6∼R/q1d ′

3q5d ′

4

1,
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By the well known bound of the divisor function, the number of the tuple (d0, d3, d4, d ′

4) is bounded by
O(N ε). Combining this together with (2-1) and (2-2), we get

�a,11 ≪ sup
1≪Ñ2≪N2

dyadic

N εq3
1r N0 M5/2 M1/2

1 L8/3 Ñ2C(Ñ2)

n3
1 R

(R + M1) (7-2)

Case (ii): q3q4n1ℓ
′
+ η2m′n2 = 0. Denote the contribution from this part in �a,1 by �a,12. In this

subsection, we use (d2, n2)≤ (q ′

2ℓ, q2)= q3. Therefore we have

�a,12 ≪ sup
1≪Ñ2≪N2

dyadic

N εq4
1r N0L2/3 M5/2

n3
1 M1/2

1 R3

∑
d1 | q1

∑
d ′

1 | q1

d ′

1(d1, n1)

·

∑
ℓ∈L

∑
ℓ′∈L

|Aπ (1, ℓ)Aπ (1, ℓ′)|
∑

q3≤R/q1

∑
q4,q ′

4∼R/q1q3

∑
d0 | (q3,q4)

∑
d3 | q3

(d3,q4)=1

∑
d4 | q4

(d4,q3)=1

d0d3d4

·

∑
d ′

3 | q3

∑
d ′

4 | q ′

4

d ′

3d ′

4

∑
n2∼Ñ2
q3 | n2

(
1 +

M1q3

(d1, n1)d0d3d4

)
C(Ñ2)

· min
{

q3

d3
,

q3q ′

4

d ′

3d ′

4

} ∑
m′

∼M1
q3q4n1ℓ

′
+η1m′n2=0

|λ f (m′)|2

≪ sup
1≪Ñ2≪N2

dyadic

N εq5
1r N0L2/3 M5/2

n3
1 M1/2

1 R3

∑
d1 | q1

(d1, n1)
∑

m′∼M1

|λ f (m′)|2
∑

q3≤R/q1

q3
∑

n2∼Ñ2
q3 | n2

C(Ñ2)

·

∑
q4∼R/q1q3

∑
ℓ∈L

|Aπ (1, ℓ)|
(

R
q1

+
M1q3

(d1, n1)

)
·

∑
d0 | (q3,q4)

∑
d3 | q3

(d3,q4)=1

∑
d4 | q4

(d4,q3)=1

∑
d ′

3 | q3

∑
ℓ′∈L

|Aπ (1, ℓ′)|δq3q4ℓ′ | m′n2

∑
q ′

4∼R/q1q3

∑
d ′

4 | q ′

4

q ′

4.

Now, we estimate the last two sums trivially, and then use the condition δq3q4ℓ′ | m′n2 together with (2-2)
and (2-3), obtaining

∑
q4∼R/q1q3

∑
ℓ∈L

|Aπ (1, ℓ)|
(

R
q1

+
M1q3

(d1, n1)

)
·

∑
d0 | (q3,q4)

∑
d3 | q3

(d3,q4)=1

∑
d4 | q4

(d4,q3)=1

∑
d ′

3 | q3

∑
ℓ′∈L

|Aπ (1, ℓ′)|δq3q4ℓ′ | m′n2

∑
q ′

4∼R/q1q3

∑
d ′

4 | q ′

4

q ′

4

≪
R2L1+θ3

q2
1 q2

3

(
R
q1

+
M1q3

(d1, n1)

)
,
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where θ3 ≤
5

14 . Therefore, it follows that

�a,12 ≪ sup
1≪Ñ2≪N2

dyadic

N εq4
1r N0L2/3 M5/2

n3
1 M1/2

1 R3

∑
d1 | q1

(d1, n1)
∑

m∼M1

|λ f (m′)|2
∑

q3≤R/q1

q3
∑

n2∼Ñ2
q3 | n2

C(Ñ2)

·
R2L1+θ3

q2
1 q2

3

(
R
q1

+
M1q3

(d1, n1)

)

≪ sup
1≪Ñ2≪N2

dyadic

q3
1r N εN0 M5/2 M1/2

1 L5/3+θ3 Ñ2C1(Ñ2)

n3
1 R

(R + M1). (7-3)

Recall

Q =

(
N L
M K

)1/2

, N0 =
N 2L2 X3r

Q3 , N2 =
Q2 Rn1

N L X2q1
tε,

N ′

2 = tε
(

N Ln1

M2 Rt2q1
+

R2 Q3 Mn1

N 2L2 X3q1

)
, N ≪

(Mt)3+ε

r2 .

(7-4)

For N L X/(M RQ) ≪ t1−ε, we have M1 ≪ t2 R2 M2/N . By taking L = M1/4 and K = t4/5, one has
R + M1 ≪ t2 M2 RQ/N . Hence, by applying these bounds into (7-2) and (7-3), we derive that

�a,1 ≪ sup
1≪Ñ2≪N2

dyadic

N εq3
1r N0 M11/2 RQt3L8/3 Ñ2C(Ñ2)

n3
1 N 3/2

.

Combining this together with (7-1) and (7-4), we get

�a,1 ≪
N εq2

1r2

n2
1

(
Q3L19/6 M6t2

N
+

N 3/2L17/3 M7/2

Q2 +
Q4L8/3 M13/2t2

N 3/2

)
.

For N L X/(M RQ)≫ t1−ε, we have M1 ≪ N L2 X2/Q2 and R ≪ N L X/(M Qt1−ε). Thus, in this case,
we arrive at

�a,1 ≪
N εq2

1r2

n2
1

(
N 5/2L17/3 M3/2

Q3t2 +
N 5/2L20/3 M5/2

Q4t

)
.

Therefore, the contribution from �a,1 to (5-1) is

≪
N 3/4+εX1/2

M2L4/3 Q1/2r1/2

∑
n1≪RMr

nθ3
1

∑
(n1/(n1,r))|q1|(rn1)∞

r

n1q1/2
1

·

(
Q3L19/6 M6t2

N
+

N 3/2L17/3 M7/2

Q2 +
Q4L8/3 M13/2t2

N 3/2 +
N 5/2L17/3 M3/2

Q3t2 +
N 5/2L20/3 M5/2

Q4t

)1/2

≪ r1/2 N 3/4+εM1/2L3/4
(

t
K 1/2 +K 3/4

+
K 5/4

t1/2

)
+r1/2 N 1+ε L1/2K

M1/4t
. (7-5)
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7A2. Case b. By the same arguments, we obtain

�b,1 ≪ sup
1≪Ñ2≪N2

dyadic

N εq4
1r N0 M5/2 M1/2

1 L8/3 Ñ2C(Ñ2)

n3
1 R2

(R + M1),

where M1 ≪ M2 R2tε/N and R ≍ (N L X)/(M Qt). So we see that

�b,1 ≪
N εq3

1r2

n2
1

(
N 3/2L14/3 M5/2

Q2t2 +
N 3/2L17/3 M7/2

Q3t3

)
,

which contributes (5-8) at most

≪
N 1+εX1/2r1/2

M5/2L4/3 Q1/2

∑
n1≪RMr

1

n1−θ3
1

∑
(n1/(n1,r))|q1|n∞

1

1

q1/2
1

(
N 3/2L14/3 M5/2

Q2t2 +
N 3/2L17/3 M7/2

Q3t3

)1/2

≪
N 1+εr1/2L1/4K 3/4

M1/2t
+

N 3/4+εr1/2L1/2 M1/4K
t3/2 . (7-6)

7A3. Case c. Similarly, by the same treatment and the results in Section 5C, we have

�c,1 ≪
N εq4

1r N0 M5/2 M1/2
1 L3 Ñ2

n3
1 R2

(R + M1),

where N0 ≪ (R3 M3r/L N )tε, Ñ2 = (Mr R2n1/q1 N0) and M1 = R2 M2t2/N . It is easy to see that

�c,1 ≪
q3

1r2

n2
1

(
R3 M13/2t3L3

N 3/2 +
R2 M9/2t L3

N 1/2

)
.

Notice that X ≪ (M RQ/N L)tε now. Hence, the contribution from �c,1 to (5-9) is

≪
N 5/4+εXr1/2

M5/2L Q
1

t1/2

∑
η1=±1

∑
n1≤Rr

1

n1−θ3
1

∑
(n1/(n1,r)) | q1 | (rn1)∞

1

q1/2
1

(
R3 M13/2t3L3

N 3/2 +
R2 M9/2t L3

N 1/2

)1/2

≪
r1/2 N 3/4 M1/2L3/4t

K 5/4 +
r1/2 N L1/2

M1/4K
. (7-7)

7B. n2 ≡ 0 (mod M), n2 ̸= 0. Denote the contribution of this part to � by �2. By the congruence
condition q ′

2α− q2α′ ≡ −n2 (mod M), we have α′
≡ q ′

2q2α (mod M). Hence,

C(n2)≪ |C1(n2)||C2(n2)||C3(n2)|,

where C2(n2) and C3(n2) are defined as in Section 7A, and

C1(n2)=

∑⋆

b mod M

∑⋆

b′ mod M

( ∑
u mod M

u ̸=b

χ(u)e
(

mq2
2ℓ(b − u)

M

))

·

( ∑
u′ mod M

u′
̸=b′

χ(u′)e
(

−
m′q ′2

2 ℓ
′(b′ − u′)

M

))( ∑⋆

α mod M

e
(
αbq2

2 −αq2b′q ′3
2

M

))
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Note that the innermost α-sum is a Ramanujan sum. We get

C1(n2)≪ M
∣∣∣∣ ∑⋆

b mod M

( ∑
u mod M

u ̸=b

χ(u)e
(

nq2
2ℓ(b − u)

M

))( ∑
u′ mod M
u′

̸=bq3
2 q ′

2
3

χ(u′)e
(

n′q ′2
2 ℓ

′(bq3
2 q ′

2
3 − u′)

M

))∣∣∣∣
+

∣∣∣∣ ∑⋆

b mod M

∑⋆

b′ mod M
b′

̸≡bq3
2 q ′

2
3 mod M

( ∑
u mod M

u ̸=b

χ(u)e
(

nq2
2ℓ(b − u)

M

))

·

( ∑
u′ mod M

u′
̸=b′

χ(u′)e
(

n′q ′2
2 ℓ

′(b′ − u′)

M

))∣∣∣∣.
As in [Sharma 2022, Section 6.2], there is a square root cancellation in the sum over u and u′, so we
arrive at

C1(n2)≪ M3.

Therefore, by the same treatment as in Section 7A together with the condition n2 ≡ 0 (mod M), we can
get a better result than that in Section 7A.

Combining the above argument together with (7-5), (7-6) and (7-7), the contribution of the non-zero
frequencies can be dominated by

≪ r1/2 N 3/4+εM1/2L3/4
(

t
K 1/2 + K 3/4

+
K 5/4

t1/2

)
+

r1/2 N 1+εL1/2

M1/4

(
K
t

+
1
K

)
. (7-8)

8. Proof of Proposition 3.1

Now we are ready to give an upper bound for S±

11(N , X, R) when (r,M)= 1. By (6-9) and (7-8), we get

S±

11(N , X, R)≪ r1/2 N 1/2+εL1/2 M5/4(K 3/2
+ t)+

r1/2 N 3/4+εM3/4

L1/4

(
K 3/4

+
K 5/4

t1/2

)
+ r1/2 N 3/4+εM1/2L3/4

(
t

K 1/2 + K 3/4
+

K 5/4

t1/2

)
+

r1/2 N 1+εL1/2

M1/4

(
K
t

+
1
K

)
.

Noting that N ≪ (Mt)3+ε/r2 and r ≪ M1/8t3/10, and assuming K < t , we obtain

S±

11(N , X, R)≪ N 1/2+ε

(
M1/16t3/20L1/2 M5/4(K 3/2

+ t)+
L1/2

M7/4

(
K t1/2

+
t3/2

K

)
+

M3/2

L1/4 t3/4K 3/4
+ M5/4L3/4t3/4

(
t

K 1/2 + K 3/4
))
.

To balance the terms in the second line, the best choice of K is to satisfy t/K 1/2
= K 3/4 and the best

choice of L is to satisfy M3/2/L1/4
= M5/4L3/4. Hence we should take

L = M1/4, K = t4/5,
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from which we deduce that

S±

11(N , X, R)≪ N 1/2+εM3/2−1/16t3/2−3/20.

As we point out in Section 3, all the other cases (such as S±

12(N , X, R), S±

13(N , X, R), S2(N ), S3(N ))
are similar and in fact easier. Hence, we finally prove Proposition 3.1.
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Separation of periods of quartic surfaces
Pierre Lairez and Emre Can Sertöz

We give a computable lower bound for the distance between two distinct periods of a given quartic
surface defined over the algebraic numbers. The main ingredient is the determination of height bounds on
components of the Noether–Lefschetz loci. This makes it possible to study the Diophantine properties of
periods of quartic surfaces and to certify a part of the numerical computation of their Picard groups.

1. Introduction

Periods are a countable set of complex numbers containing all the algebraic numbers, as well as many of
the transcendental constants of nature. In light of the ubiquity of periods in mathematics and the sciences,
Kontsevich and Zagier [2001] asked for the development of an algorithm to check for the equality of two
given periods. We solve this problem for periods coming from quartic surfaces by giving a computable
separation bound, that is, a lower bound on the minimum distance between distinct periods.

Let f ∈ C[w, x, y, z]4 be a homogeneous quartic polynomial defining a smooth quartic X f in P3(C).
The periods of X f are the integrals of a nowhere vanishing holomorphic 2-form on X f over integral
2-cycles in X f . The periods can also be given in the form of integrals of a rational function

1
2π i

∮
γ

dx dy dz
f (1, x, y, z)

, (1)

where γ is a 3-cycle in C3
\ X f . The integral (1) depends only on the homology class of γ . These periods

form a group under addition. The geometry of quartic surfaces dictates that there are only 21 independent
3-cycles in C3

\ X f . These give 21 periods α1, . . . , α21 ∈ C such that the integral over any other 3-cycle
is an integer linear combination of these periods.

It is possible to compute the periods to high precision [Sertöz 2019], typically to thousands of decimal
digits, and to deduce from them interesting algebraic invariants such as the Picard group of X f [Lairez
and Sertöz 2019]. This point of view has been fruitful for computing algebraic invariants for algebraic
curves from their periods [van Wamelen 1999; Costa et al. 2019; Bruin et al. 2019; Booker et al. 2016].

For quartic surfaces, the computation of the Picard group reduces to computing the lattice in Z21 of
integer relations x1α1 + · · · + x21α21 = 0, where xi ∈ Z. A basis for this lattice can be guessed from
approximate αi ’s using lattice reduction algorithms. But is it possible to prove that all guessed relations
are true relations? Previous work related to this question [Simpson 2008] required explicit construction of
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Keywords: K3 surfaces, periods, Diophantine approximation, Hodge loci, effective mathematics.
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algebraic curves on X f , which becomes challenging very quickly. Instead, we give a method of proving
relations by checking them at a predetermined finite precision. At the moment, this is equally challenging,
but we conjecture that the numerical approach can be made asymptotically faster, see Section 4.4 for
details.

The Lefschetz theorem on (1, 1)-classes (Section 2.2) associates a divisor on X f to any integer relation
between the periods of X f . In turn, the presence of a divisor imposes algebraic conditions on the
coefficients of f . Such algebraic conditions define the Noether–Lefschetz loci on the space of quartic
polynomials (Section 3). In addition to the degree computations of Maulik and Pandharipande [2013],
we give height bounds on the polynomial equations defining the Noether–Lefschetz loci (Theorem 14).
These lead to our main result (Theorem 17): Assume f has algebraic coefficients, then for xi ∈ Z,

x1α1 + · · · + x21α21 = 0 or |x1α1 + · · · + x21α21|> 2−cmaxi |xi |
9

(2)

for some constant c > 0 depending only on f and the choice of the 21 independent 3-cycles (see
Theorem 17 for a coordinate-free formulation). The constant c is computable in rather simple terms
and without prior knowledge of the Picard group of X f . We use the term “computable” in the sense of
“computable with a Turing machine”, not “primitive recursive”, as our suggested algorithm to compute c
depends, through Lemma 1, on the numerical computation of a nonzero constant (depending on f ), whose
magnitude is not known a priori, only the fact that it is nonzero.

The expression (2) is essentially a lower bound for the linear independence measure [Shidlovskii 1989,
Chapter 11] for the periods of X f . Our construction of this bound bears a loose resemblance to the ideas
involved in the statement of the analytic subgroup theorem [Wüstholz 1989], and in particular, to the
Masser–Wüstholz period theorem [1993]. We briefly comment on this analogy in Section 5.4.

As a consequence of the separation bound (2), we apply a construction in the manner of Liouville [1851]
and prove, for instance, that the number ∑

n≥0

(2⇈3n)−1 (3)

is not a quotient of two periods of a single quartic surface that is defined over Q, where 2⇈3n denotes an
exponentiation tower with 3n twos (Theorem 19, with θi+1 =222θi

).
The methods we employed to attain the period separation bound (2) can, in principle, be generalized to

separate the periods of some other algebraic varieties, e.g., of cubic fourfolds. We discuss these and other
generalizations in Section 5.

2. Periods and deformations

2.1. Construction of the period map. For any nonzero homogeneous polynomial f in C[w, x, y, z],
let X f denote the surface in P3 defined as the zero locus of f . Let R .

= C[w, x, y, z], and let R4 ⊂ R
be the subspace of degree 4 homogeneous polynomials. Let U4 ⊂ R4 denote the dense open subset of
all homogeneous polynomials f of degree 4 such that X f is smooth. For our purposes, it will be useful
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to consider not only the periods of a single quartic surface X f , but also the period map, to study the
dependence of periods on f .

The topology of X f does not depend on f as long as X f is smooth: given two polynomials f, g ∈ U4,
we can connect them by a continuous path in U4, and the surface X f deforms continuously along this
path, giving a homeomorphism X f ≃ Xg, which is uniquely defined up to isotopy. In particular, if we fix
a base point b ∈ U4, then for every f ∈ Ũ4, where Ũ4 is a universal covering of U4, we have a uniquely
determined isomorphism of cohomology groups H 2(Xb,Z) ≃ H 2(X f ,Z). Let HZ denote the second
cohomology group of Xb, which is isomorphic to Z22, e.g., [Huybrechts 2016, §1.3.3].

The hyperplane class and its multiples are redundant for the problem we are interested in, as their
periods are 0. In practice, therefore, we work with a rank 21 quotient lattice. The map (7) below identifies
this quotient with the cohomology of the complement of the quartic.

An element of Ũ4 determines a polynomial f ∈ U4 together with an identification of H 2(X f ,Z)

with HZ. We often work locally around a given polynomial f and, in that case, we do not actively
distinguish between U4 and its universal covering.

The group HZ is endowed with an even unimodular pairing

(x, y) ∈ HZ × HZ → x · y ∈ Z, (4)

given by the intersection form on cohomology. Through this pairing, the second homology and cohomology
groups are canonically identified with one another. For K3 surfaces, such as smooth quartic surfaces
in P3, the structure of the lattice HZ with its intersection form is explicitly known [Huybrechts 2016,
Proposition 1.3.5]. The fundamental class of a generic hyperplane section of X f gives an element of HZ

denoted by h.
Further, the complex cohomology group H 2(X f ,C), which is just HC

.
= HZ ⊗ C, is isomorphic to

the corresponding de Rham cohomology H 2
dR(X f ,C) group as follows: Elements of H 2

dR(X f ,C) are
represented by differential 2-forms. To a form �, one associates the element 2(�) of H 2(X f ,C) given
by the map

2(�) : [γ ] ∈ H2(X f ,C) 7→

∫
γ

� ∈ C. (5)

The group H 2
dR(X f ,C) has a distinguished element � f , a nowhere vanishing holomorphic 2-form,

described below. Every other holomorphic 2-form on X f is a scalar multiple of � f [Huybrechts 2016,
Example 1.1.3]. Mapping � f to HC gives rise to the period map

P : f ∈ Ũ4 7→ ω f
.
=2(� f ) ∈ HC. (6)

The coordinates of the period vector ω f , in some fixed basis of HZ, generates the group of periods of X f .
There is a standard Thom–Gysin type map in homology

T : H2(X f ,Z)→ H3(P
3
\ X f ,Z), (7)



1756 Pierre Lairez and Emre Can Sertöz

see [Voisin 2003, p. 159] for a modern description. Roughly speaking, T takes the class of a 2-cycle in X f

and returns the class of a narrow S1-bundle around the cycle lying entirely in P3
\ X f . See [Griffiths

1969a, §3] for this classical interpretation. The map T is a surjective morphism, and its kernel is generated
by the class of a hyperplane section of X f .

We choose � f so that the following identity holds:∫
γ

� f =
1

2π i

∫
T (γ )

dx dy dz
f (1, x, y, z)

. (8)

Therefore, in view of (5), the coefficients of ω f in a basis of HZ coincides with periods as defined in (1).
The image D of the period map P is called the period domain. It admits a simple description

D .
= P(Ũ4)=

{
w ∈ HC \ {0} | w · h = 0, w ·w = 0, w ·w > 0

}
, (9)

where “ · ” denotes the intersection form on HZ, extended to HC by C-linearity, and h denotes the
fundamental class of a hyperplane section, as introduced above [Huybrechts 2016, Chapter 6]. Moreover,
by the local Torelli theorem for K3 surfaces [Huybrechts 2016, Proposition 6.2.8], the map P is a
submersion: its derivative at any point of Ũ4 is surjective.

2.2. The Lefschetz (1,1)-theorem. Lefschetz proved that the linear integer relations between the periods
of a quartic surface X f are in correspondence with homology classes coming from algebraic curves in X f .
We now explain this statement in more detail. Let C ⊂ X f be an algebraic curve. Its fundamental class is
the element [C] of HZ obtained as the Poincaré dual of the homology class of C . Here, we identify HZ

with H 2(X f ,Z) by fixing a preimage of f in Ũ4. The Picard group Pic(X f ) of X f is the sublattice of HZ

spanned by the fundamental classes of algebraic curves.
It follows from the definition that for any class [�] ∈ H 2

dR(X f ) of a differential 2-form on X f ,

[C] ·2(�)=

∫
C
�. (10)

Moreover, if � is a holomorphic 2-form, then
∫

C �= 0, because the restriction of � to the complex 1-
dimensional subvariety C vanishes. In particular [C] ·ω f = 0. It turns out that this condition characterizes
the elements of Pic(X f ).

More precisely, let H 1,1(X f )⊂ HC denote the space orthogonal to ω f and ω f , the conjugate of ω f ,
with respect to the intersection form. This space is a direct summand in the Hodge decomposition
of H 2(X f ,C).

The Lefschetz (1,1)-theorem [Griffiths and Harris 1978, p. 163] asserts that the lattice of integer
relations coincide with the Picard group

Pic(X f )= HZ ∩ H 1,1(X f ). (11)
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Noting that for any γ ∈ HZ, we have γ = γ , where γ denotes the complex conjugate, it follows that
ω f · γ = ω f · γ , so that (11) becomes

Pic(X f )= {γ ∈ HZ | γ ·ω f = 0}. (12)

2.3. A deformation argument. Let γ1, . . . , γ22 be a basis of HZ. The space HR (respectively, HC) is
endowed with the coefficientwise Euclidean (respectively, Hermitian) norm∥∥∥∥ 22∑

i=1

xiγi

∥∥∥∥2
.
=

22∑
i=1

|xi |
2. (13)

For γ ∈ HZ, if |γ ·ω f | is small enough, then γ is close to being an integer relation between the periods
of X f . We want to argue that, in this case, γ is a genuine integer relation between the periods of Xg for
some polynomial g ∈ U4 close to f .

Recall f, g ∈ Ũ4 means f and g are smooth quartics with second cohomology identified with HZ. The
space Ũ4 inherits a metric from U4, so that Ũ4 → U4 is locally isometric. The metric on U4 ⊂ R4 ≃ C35

is induced by an inner product. The choice of an inner product will change the distances, but this is
absorbed into the constants in the statements below.

Let f ∈ Ũ4 be fixed. For any g ∈ R4 and t ∈ C small enough, the polynomials f + tg ∈ R4 lift
canonically to Ũ4. For any γ ∈ HC, we consider the map

φγ,g(t)
.
= γ ·P( f + tg), (14)

which is well defined and analytic in a neighborhood of 0 in C.

Lemma 1. There is a constant C > 0, depending only on f , such that for any γ ∈ HC satisfying γ · h = 0
and |γ ·ω f |∥ω f ∥ ≤

1
2∥γ ∥(ω f ·ω f ), there is a monomial m ∈ R4 for which |φ′

γ,m(0)| ≥ C∥γ ∥.

Proof. Observe that for any monomial m ∈ R4, we have φ′
γ,m(0)= γ ·d f P(m), where d f P is the derivative

at f of P . Let Q be the positive semidefinite Hermitian form defined on HC by

Q(γ ) .
=

∑
m

|γ · d f P(m)|2, (15)

where the sum is taken over the monomials in m. Since maxm |φ′
γ,m(0)|

2
≥ (1/ dim R4)Q(γ ), it is enough

to prove that Q(γ )≥ C∥γ ∥ for some constant C > 0, when γ ·h = 0 and |γ ·ω f |∥ω f ∥ ≤
1
2∥γ ∥(ω f ·ω f ).

The form Q vanishes exactly on the orthogonal complement (for the intersection product) of the tangent
space Tω f D of D at ω f . By (9),

Tω f D = {w ∈ HC | w · h = w ·ω f = 0}. (16)

So the kernel of Q is K .
= Ch + Cω f . Moreover, let E be the orthogonal complement of Ch + Cω f (still

for the intersection product). Since h ·ω f = h ·ω f = 0, h ·h = 4 and ω f ·ω f > 0, we check that E ∩ K = 0.
In particular, the form Q is positive definite on E , so there is a constant C > 0 such that Q(η)≥ C∥η∥ for
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any η ∈ E . This constant is easily computable as the smallest eigenvalue of the matrix of the restriction
of Q on that space, in a unitary basis, for the Hermitian norm ∥ −∥.

Now, let γ such that γ · h = 0 and

|γ ·ω f |∥ω f ∥ ≤
1
2∥γ ∥(ω f ·ω f ). (17)

Let a .
= (γ ·ω f )/(ω f ·ω f ) and η .

= γ − aω f , so that η ·ω f = 0 and η · h = 0, that is, η ∈ E . Since ω f is
in the kernel of Q, we have Q(η)= Q(γ ), and thus Q(γ )≥ C∥η∥. Lastly, we compute that

∥η∥ ≥ ∥γ ∥ − |a|∥ω f ∥ = ∥γ ∥ −

∣∣∣∣ γ ·ω f

ω f ·ω f

∣∣∣∣∥ω f ∥ ≥
1
2
∥γ ∥, (18)

using (17). So Q(γ )≥
1
2C∥γ ∥. □

The next statement is proved using the following result of [Smale 1986]. Let φ be an analytic function
on a maximal open disc around 0 in C with φ′(0) ̸= 0. We define

γSmale(φ)
.
= supk≥2

∣∣∣∣ 1
k!

φ(k)(0)
φ′(0)

∣∣∣∣1/(k−1)

and βSmale(φ)
.
=

∣∣∣∣ φ(0)φ′(0)

∣∣∣∣. (19)

If βSmale(φ)γSmale(φ) ≤
1

34 , then there is a t ∈ C such that |t | ≤ 2βSmale(φ) and φ(t)= 0 [Smale 1986],
see also [Blum et al. 1998, Chapter 8, Theorem 2].

Proposition 2. For any f ∈ Ũ4, there exists C f and εf > 0 such that for all ε < εf the following holds:
For any γ ∈ HR, if γ · h = 0 and |γ ·ω f | ≤ ε∥γ ∥, then there is a monomial m ∈ R4 and t ∈ C such that
|t | ≤ C f ε and γ ·ω f +tm = 0.

Proof. Let γ ∈ HR such that γ · h = 0 and

|γ ·ω f | ≤

(
ω f ·ω f

2∥ω f ∥

)
∥γ ∥. (20)

Since γ has real coefficients, we have |γ · ω f | = |γ · ω f | and we may apply Lemma 1 to obtain a
monomial m and a constant C such that

|φ′

γ,m(0)| ≥ C∥γ ∥. (21)

It follows, in particular, that

βSmale(φγ,m)≤
|γ ·ω f |

C∥γ ∥
. (22)

Moreover, for any k ≥ 2, and using C ≤ 1,∣∣∣∣ 1
k!

φ
(k)
γ,m(0)
φ′
γ,m(0)

∣∣∣∣1/(k−1)

≤ C−1
∣∣∣∣φ(k)γ,m(0)k!∥γ ∥

∣∣∣∣1/(k−1)

= C−1
∣∣∣∣ γ∥γ ∥

·
1
k!

dk
f P(m, . . . ,m)

∣∣∣∣1/(k−1)

(23)

≤ C−1
∣∣∣∣∣∣∣∣∣ 1

k!
dk

f P
∣∣∣∣∣∣∣∣∣1/(k−1)

, (24)
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where dk
f P : Rk

4 → HC is the k-th higher derivative of P at f and where |||·||| is the operator norm defined as∣∣∣∣∣∣∣∣∣ 1
k!

dk
f P

∣∣∣∣∣∣∣∣∣ .
= supγ∈HC

suph1,...,hk

∣∣γ · (1/k!)dk
f P(h1, . . . , hn)

∣∣
∥γ ∥∥h1∥ · · · ∥hn∥

, (25)

with supremum taken over h1, . . . , hn ∈ C[w, x, y, z]4. It follows that

γSmale(φγ,m)≤ C−1supk≥2

∣∣∣∣∣∣∣∣∣ 1
k!

dk
f P

∣∣∣∣∣∣∣∣∣1/(k−1)
. (26)

Let 0 denote the supremum on the right-hand side of (26). By Smale’s theorem, together with (22) and (26),
if |γ ·ω f | ≤

1
34C20−1

∥γ ∥, then there is a t ∈ C such that |t | ≤ 2C−1
|γ ·ω f |∥γ ∥

−1 and γ ·P( f + tm)= 0.
The claim follows with C f

.
= 2C−1 and

εf
.
= min

(
1
34

C20−1,
ω f ·ω f

2∥ω f ∥

)
. (27)

This concludes the proof. □

The constants C f and εf are actually computable with simple algorithms. The constant from Lemma 1
is not hard to get with elementary linear algebra. It only remains to compute an upper bound for 0. We
address this issue in Section 2.4.

Corollary 3. For any f ∈ Ũ4, any ε < ε f and any γ ∈ HZ, if |γ · ω f | ≤
1
4ε, then there exists a

monomial m ∈ R4 and t ∈ C such that |t | ≤ C f ε and γ ∈ Pic(X f +tm).

Proof. We may assume that γ ·ω f ̸= 0 (otherwise, choose any m and t = 0). Let γ ′
= γ −

1
4(γ · h)h.

Since h · h = 4, we have γ ′
· h = 0. Moreover, we have γ ′

·ω f = γ ·ω f ̸= 0. In particular, γ ′
̸= 0, and

since γ ′
∈

1
4 HZ, we have ∥γ ′

∥ ≥
1
4 . Then

|γ ′
·ω f | ≤ 4∥γ ′

∥|γ ·ω f | ≤ ε∥γ ′
∥, (28)

and Proposition 2 applies. □

2.4. Effective bounds for the higher derivatives of the period map. In the proof of Proposition 2, only
the quantity 0 is not clearly computable. We show in this section how to compute an upper bound for 0
using the Griffiths–Dwork reduction. We follow here [Griffiths 1969a; Griffiths 1969b].

Firstly, as a variant of (8) avoiding dehomogeneization, we write

P( f )=

(
1

2π i

∫
T (γi )

Vol
f

)
1≤i≤22

, (29)

where Vol is the projective volume form

Vol .
= w dx dy dz − x dw dy dz + y dw dx dz − z dw dx dy. (30)

For any k > 0 and a ∈ R4k−4, we denote∫
aVol

f k
.
=

(
1

2π i

∫
T (γi )

aVol
f k

)
1≤i≤22

∈ HC. (31)
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For any h ∈ R4 close enough to 0, we have the power series expansion∫
Vol
f +h

=

∑
k≥1

(−1)k−1
∫

hk−1 Vol
f k . (32)

Proposition 4. For any k ≥ 3, there is a linear map Gk : R4k−4 → R8 such that∫
a
f k Vol =

∫
Gk(a)

f 3 Vol .

Moreover, there is a computable constant C , which depends only on f , such that for any k ≥ 3, we have
|||Gk ||| ≤ Ck−3, where R is endowed with the 1-norm (57).

Before we begin the proof of proposition, let us show that this is enough to bound 0. Let

A : a ∈ R8 7→

∫
(a/ f 3)Vol ∈ HC,

then, using (32), we obtain ∫
Vol
f +h

=

∑
k≥1

(−1)k−1 A(Gk(hk−1)), (33)

and it follows that
1
k!

dk
f P(h1, . . . , hk)= (−1)k A(Gk+1(h1 · · · hk)). (34)

In particular, ∥∥∥ 1
k!

dk
f P(h1, . . . , hk)

∥∥∥ ≤ |||A||||||Gk+1|||∥h1 · · · hn∥1 (35)

≤ |||A||||||Gk+1|||∥h1∥1 · · · ∥hn∥1, (36)

and therefore, |||(1/k!)dk
f P||| ≤ |||A|||Ck+1, from which we get

0 ≤ C max
(
|||A|||C2, 1

)
. (37)

Let us remark on how to bound the operator norm of A in practice. The period integrals can be
approximated to arbitrary precision and with rigorous error bounds as in [Sertöz 2019]. This construction
gives a small neighborhood of A in the matrix space. In practice, we represent this neighborhood as
a matrix A′ of complex balls and compute the operator norm of A′ as usual but using complex ball
arithmetic. This will return a real open interval containing |||A||| ̸= 0. If the precision is high enough, 0
will not be contained in the closure of this interval, and we can take the lower bound of the interval.

2.4.1. Proof of Proposition 4. Let R = C[w, x, y, z]. We define two families of maps for this proof.
First, for d ≥ 12, a multivariate division map Qd : Rd → R4

d−3, such that for any a ∈ Rd ,

a =

3∑
i=0

Qd(a)i ∂i f. (38)

Note that such a map exists as soon as d ≥ 12 by a theorem due to Macaulay, see [Lazard 1977, Corollaire,
p. 169]. The choice of Qd is not unique. We fix Q12 arbitrarily and define Qd(a), for d > 12 and a ∈ R12,
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as follows: Write a =
∑3

i=0 xi ai , in such a way that the terms of the sum have disjoint monomial support,
and define

Qd(a)=

3∑
i=0

xi Qd−1(ai ). (39)

It is easy to check that this definition satisfies (38).
Second, for k ≥ 3, we define Gk : R4k−4 → R8 as follows: Begin with G3 = id, and then define Gk

for k ≥ 4 inductively. For a ∈ R4k−4, we write (b0, . . . ,b3)= Q4k−4(a) and define

Gk(a)
.
= Gk−1

( 1
k−1

(∂0b0 + · · · + ∂3b3)
)
. (40)

This map is the Griffiths–Dwork reduction, and it satisfies∫
γ

a�
f k =

∫
γ

Gk(a)�
f 3 . (41)

Lemma 5. For any d ≥ 12, we have |||Qd ||| ≤ |||Q12|||, where R is endowed with the 1-norm and R4 with
the norm ∥( f0, . . . , f3)∥1

.
= ∥ f0∥1 + · · · + ∥ f3∥1.

Proof. For any a ∈ Rd ,

∥Qd(a)∥1 =

3∑
i=0

∥Qd(a)i∥1 ≤

3∑
i=0

3∑
j=0

∥x j Qd−1(a j )i∥1 (42)

=

3∑
i=0

3∑
j=0

∥Qd−1(a j )i∥1 =

∑
j

∥Qd−1(a j )∥1 (43)

≤ |||Qd−1|||
∑

j

∥a j∥1 = |||Qd−1|||∥a∥1, (44)

using, for the last equality, that the terms a j have disjoint monomial support. □

Lemma 6. For any k ≥ 3, we have |||Gk ||| ≤ (4|||Q12|||)
k−3, where R is endowed with the 1-norm.

Proof. We proceed by induction on k (the base case k = 3 is trivial since G3 = id). Let a ∈ R4k−4

and (b0, . . . , b3)= Q4k−4(a). By (40), we have

∥Gk(a)∥1 ≤
|||Gk−1|||

k − 1

(
∥∂0b0∥1 + · · · + ∥∂3b3∥1

)
. (45)

By the induction hypothesis, |||Gk−1||| ≤ (4|||Q12|||)
k−4, and moreover, since each bi has degree 4k − 7,

we have ∥∂i bi∥1 ≤ (4k − 7)∥bi∥1. If follows that

∥Gk(a)∥1 ≤
(
4|||Q12|||

)k−4 4k−7
k−1

(
∥b0∥1 + · · · + ∥b3∥1

)
. (46)

Next, we note that ∥b0∥1 +· · ·+∥b3∥1 = ∥Q4k−4(a)∥1 and, by Lemma 5, we have |||Q4k−4(a)||| ≤ |||Q12|||.
Therefore,

∥Gk(a)∥1 ≤
(
4|||Q12|||

)k−3
∥a∥1, (47)

and the claim follows. □
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3. The Noether–Lefschetz locus

3.1. Basic properties. We define the Noether–Lefschetz locus for quartic surfaces and review a few
classical properties, especially algebraicity, with a view towards Theorem 14 about the degree and the
height of the equations defining the components of the Noether–Lefschetz locus.

3.1.1. Definition. The Noether–Lefschetz locus of quartics NL is the set of all f ∈ U4 such that the rank
of Pic(X f ) is at least 2. Equivalently, in view of (12), NL is the set of quartic polynomials f whose
primitive periods (1) are Z-linearly dependent.

The set NL is locally the union of smooth analytic hypersurfaces in U4. To see this, let ÑL be the
lift of NL in the universal covering Ũ4 of U4. Recall that P : Ũ4 → D is the period map. The Lefschetz
(1,1)-theorem implies

ÑL =

⋃
γ∈HZ\Zh

P−1
{w ∈ D | w · γ = 0}. (48)

That is, ÑL is the pullback of smooth hyperplane sections of D. Since P is a submersion, ÑL is the union
of smooth analytic hypersurfaces. It follows that NL is locally the union of smooth analytic hypersurfaces.

We break NL into algebraic pieces as follows: For any integers d and g, let NLd,g be the set

NLd,g =
{

f ∈ U4 | ∃γ ∈ Pic(X f ) \ Zh : γ · h = d and γ · γ = 2g − 2
}
. (49)

By replacing γ by γ + h or −γ , we observe that

NLd,g = NLd+4,g+d+2 = NL−d,g. (50)

In particular, NLd,g is equal to some NLd ′,g′ with d ′ > 0 and g′
≥ 0, so that

NL =

⋃
d>0

⋃
g≥0

NLd,g. (51)

For γ ∈ HZ, let 1(γ )= (h · γ )2 − 4γ · γ . It is the negative of the discriminant of the lattice generated
by h and γ in HZ, with respect to the intersection product (and it is zero if γ ∈ Zh). It follows from the
Hodge index theorem, see [Hartshorne 1977, Theorem V.1.9] that for any f ∈ U4 and any γ ∈ Pic(X f ),
where1(γ )≥0, with equality if and only if γ ∈Zh. If γ ·h =d and γ ·γ =2g−2, then1(γ )=d2

−8g+8.
We obtain, therefore, that for any d > 0 and g ≥ 0,

NLd,g =


{ f ∈ U4 | ∃γ ∈ Pic(X f ) : γ · h = d,

γ · γ = 2g − 2}, if d2 > 8g − 8,
∅, otherwise.

(52)

It is, in fact, more natural to introduce, for 1> 0, the locus

NL1
.
= { f ∈ U4 | ∃γ ∈ Pic(X f ) :1(γ )=1} (53)

=

⋃
d>0,

d2
≡1 mod 8

NLd,(d2−1)/8+1. (54)
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Due to (50), NL1 reduces to a single NLd,g. Namely,

NL1 =


NL4t,2t2+(8−1)/8, if 1≡ 0 mod 8,
NL4t+1,2t2+t+(9−1)/8, if 1≡ 1 mod 8,
NL4t+2,2t2+2t+(12−1)/8, if 1≡ 4 mod 8,
∅, otherwise,

(55)

where t =
⌈ 1

4

√
1

⌉
. Conversely, each NLd,g = NLd2−8g+8.

3.1.2. Algebraicity. For any d > 0 and g ≥ 0, the set NLd,g is either empty or an algebraic hypersurface
in U4. This is a classical result, e.g., [Voisin 2003, Theorem 3.32], which we recall here to obtain an
explicit algebraic description of NLd,g.

Lemma 7. For any f ∈ U4, d > 0 and g ≥ 0, we have: f ∈ NLd,g if and only if X f contains an effective
divisor with Hilbert polynomial t 7→ dt + 1 − g.

Proof. Assume that X f contains an effective divisor C with Hilbert polynomial t 7→ td + 1 − g. Since
X f is smooth, C is a locally principal divisor and gives an element γ of Pic X f . The integer d is the
degree of C , so it is the number of points in the intersection with a generic hyperplane, that is, d = γ · h.
Moreover, g is the arithmetic genus of C , which is determined by 2g − 2 = γ · γ [Hartshorne 1977,
Exercises III.5.3(b) and V.1.3(a)]. So, f ∈ NLd,g.

Conversely, let f ∈ NLd,g. By definition, there is a divisor C on X f such that its class γ in Pic X f

satisfies γ · h = d and γ · γ = 2g − 2. From the Riemann–Roch theorem for surfaces [Hartshorne 1977,
Theorem V.1.6], we get

dim H 0(X,OX (C))+ dim H 0(X,OX (−C))≥
1
2γ · γ + 2 = g + 1> 0,

so that either C or −C must be linearly equivalent to an effective divisor. Since γ · h > 0, it follows
that −C cannot be effective, and therefore, C must be. As above, the Hilbert polynomial of C is given
by t 7→ dt + 1 − g. □

In light of Lemma 7, the algebraicity of NLd,g is proved by using the Hilbert scheme Hd,g. The
Hilbert scheme Hd,g of degree d and genus g curves in P3 is a projective scheme that parametrizes all
the subschemes of P3 whose Hilbert polynomial is t 7→ dt + 1 − g.

The Hilbert scheme Hd,g may contain components that are not desirable for our purposes. For example,
H3,0, which contains twisted cubics in P3, contains two irreducible components [Piene and Schlessinger
1985]: a 12-dimensional component that is the closure of the space of all smooth cubic rational curves
in P3 and a 15-dimensional component parametrizing the union of a plane cubic curve with a point
in P3. We would be only interested in the first, not in the second component. So we introduce H′

d,g, the
union of components of Hd,g obtained by removing the components that do not correspond to locally
complete-intersection pure-dimensional subschemes of P3.

When d2 > 8g − 8, Lemma 7 can be rephrased as

NLd,g = proj1
{
( f,C) ∈ U4 ×H′

d,g | C ⊂ X f
}
, (56)
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where proj1 denotes the projection U4 ×H′

d,g → U4. Since H′

d,g is a projective variety, and the condi-
tion C ⊂ X f is algebraic, this shows that NLd,g is a closed subvariety of U4 (for more details about this
construction, see [Voisin 2003, §3.3]).

We note, furthermore, that NLd,g is clearly invariant under the action of the Galois group of algebraic
numbers. Therefore, it can be defined over the rational numbers.

As a consequence, for any nonnegative integers d and g, there is a squarefree primitive homogeneous
polynomial NLd,g ∈ Z[u1, . . . , u35] in the 35 coefficients of the general quartic polynomial that is unique
up to sign and whose zero locus is NLd,g in U4. Similarly, we define NL1 up to sign as the unique
squarefree primitive polynomial vanishing exactly on NL1.

3.2. Height of multiprojective varieties. The mainstay of our results is a bound on the degree and size
of the coefficients of the polynomials NLd,g. The determination of these bounds is based on (56) and
involves the theory of heights of multiprojective varieties as developed by D’Andrea et al. [2013], and,
before them, [Bost et al. 1991; Philippon 1995; Krick et al. 2001; Rémond 2001a; 2001b], among others.
We recall here the results that we need, following [D’Andrea et al. 2013].

3.2.1. Heights of polynomials. Let f =
∑

α cαxα ∈ C[x1, . . . , xn]. We recall the following different
measures of height of f :

∥ f ∥1
.
=

∑
α

|cα|, (57)

∥ f ∥sup
.
= sup|x1|=···=|xn |=1| f (x)|, (58)

m( f ) .
=

∫
[0,1]n

log | f (e2π i t1, . . . , e2π i tn )| dt1 · · · dtn. (59)

Lemma 8 [D’Andrea et al. 2013, Lemma 2.30]. For any homogeneous polynomial f ∈ C[x1, . . . , xn],

exp(m( f ))≤ ∥ f ∥sup ≤ ∥ f ∥1 ≤ exp(m( f ))(n + 1)deg f .

3.2.2. Extended Chow ring. The extended Chow ring [D’Andrea et al. 2013, Definition 2.50] is a tool
to track a measure of height of multiprojective varieties when performing intersections and projections.
We present here a very brief summary. Bold letters refer to multiindices, and all varieties are considered
over Q. Let n ∈ Nr , and let Pn be the multiprojective space Pn

= Pn1 × · · · × Pnm .
An algebraic cycle is a finite Z-linear combination

∑
V nV V of irreducible subvarieties of Pn. The

irreducible components of an algebraic cycle, as above, are the irreducible varieties V such that nV ̸= 0.
An algebraic cycle is equidimensional if all its irreducible components have the same dimension. An
algebraic cycle is effective if nV ≥ 0 for all V . The support of X , denoted by supp X , is the union of the
irreducible components of X .

Let A∗(Pn
; Z) be the extended Chow ring, namely

A∗(Pn
; Z)

.
= R[η, θ1, . . . , θm]/(η2, θn1+1

1 , . . . , θnm+1
m ), (60)
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where θi is the class of the pullback of a hyperplane from Pni and η is used to keep track of heights of
varieties. For two elements a and b of this ring, we write a ≤ b when the coefficients of b − a in the
monomial basis are nonnegative.

To an algebraic cycle X of Pn, we associate an element [X ]Z of A∗(Pn
; Z) [D’Andrea et al. 2013,

Definition 2.50]. If X is effective, then [X ]Z ≥ 0. The coefficients of the terms in [X ]Z for monomials not
involving η record the usual multidegrees of X . The terms involving η record mixed canonical heights
of X . The definition of these heights is based on the heights of various Chow forms associated to X
[D’Andrea et al. 2013, §2.3]. For the computations in this paper, we only need the following results:

Let f ∈ Z[x1, . . . , xr ] be a nonzero multihomogeneous polynomial with respect to the group of vari-
ables x1, . . . , xn . We assume that f is primitive, that is, the gcd of the coefficients of f is 1. The element
associated in A∗(Pn

; Z) to the hypersurface V ( f )⊂ Pn is [D’Andrea et al. 2013, Proposition 2.53 (2)]

[V ( f )]Z = m( f )η+ degx1
( f )θ1 + · · · + degxr

( f )θr . (61)

To such a polynomial f , we also associate [D’Andrea et al. 2013, Equation (2.57)]

[ f ]sup
.
= log(∥ f ∥sup)η+ degx1

( f )θ1 + · · · + degxr
( f )θr . (62)

3.2.3. Arithmetic Bézout theorem. Let X be an effective cycle and H a hypersurface in Pn. They intersect
properly if no irreducible component of X is in H . When X and H intersect properly, one defines an
intersection product X · H , that is an effective cycle supported on X ∩ H . If X is equidimensional of
dimension r , then X · H is equidimensional of dimension r − 1.

The following statement is an arithmetic Bézout bound that not only bounds the degree, as with the
classical Bézout bound, but also the height of an intersection:

Theorem 9 [D’Andrea et al. 2013, Theorem 2.58]. Let X be an effective equidimensional cycle on Pn

and f ∈ Z[x1, . . . , xm]. If X and V ( f ) intersect properly, then [X · V ( f )]Z ≤ [X ]Z · [ f ]sup.

This theorem can be applied (as in [D’Andrea et al. 2013, Corollary 2.61]) to bound the height of the
irreducible components of a variety in terms of its defining equations.

Proposition 10. Let Z ⊂ Pn be an equidimensional variety, and let X be V ( f1, . . . , fs)∩ Z , where fi is
a multihomogeneous polynomial of multidegree at most d and sup-norm at most L. Let Xr be the union of
all the irreducible components of X of codimension r in Z. Then

[Xr ]Z ≤ [Z ]Z

(
log(sL)η+

m∑
i=1

diθi

)r

.

Proof. Let (yi j ) be a new group of variables, with 1 ≤ i ≤ r and 1 ≤ j ≤ s. Let gi
.
=

∑s
j=1 yi j f j

and X ′ .
= V (g1, . . . , gr ) in Pk

× Z , with k = rs − 1 We first claim that Pk
× Xr is a union of components

of X ′. Indeed, let ξ0 be the generic point of Pk and ξ1 be the generic point of a component Y of Xr , so
that ξ = (ξ0, ξ1) is the generic point of the component Pk

× Y of Pk
× Xr . Since X has codimension r

at ξ1, the generic linear combinations g1, . . . , gr form a regular sequence at ξ (in other words, they
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form a regular sequence at ξ1 for generic values of the vi j ). Therefore, X ′ has codimension r at ξ .
Since Pk

× Y ⊆ X ′, it follows that Pk
× Y is a component of X ′.

Let X ′
r be the union of the components of codimension r of X ′. The argument above shows that

[Pk
× Xr ]Z ≤ [X ′

r ]Z. Besides, by repeated application of [D’Andrea et al. 2013, Corollary 2.61],

[X ′

r ]Z ≤ [Pk
× Z ]Z

r∏
i=1

[gi ]sup, (63)

where θ0 is the variable attached to Pk in the extended Chow ring of Pk
×Pn. We compute, using (61), that

[gi ]sup ≤ log(sL)η+ θ0 +

s∑
i=1

diθi . (64)

Finally, we note that [Pk
×Xr ]Z =[Xr ]Z and [Pk

×Z ]Z =[Z ]Z by [D’Andrea et al. 2013, Propositions 2.51.3
and 2.66]. □

Proposition 11. Let X be an equidimensional closed subvariety of Pk
× Pn, and let Y ⊂ Pn be the

projection of X. If Y is equidimensional, then

θ k
0 [Y ]Z ≤θdim X−dim Y

0 [X ]Z ∈ A∗(Pk
× Pn

; Z),

where θ0 is the variable attached to Pk in the extended Chow ring of Pk
× Pn.

Proof. We will argue by induction on r .
= dim X − dim Y . When r = 0, this is [D’Andrea et al. 2013,

Proposition 2.64].
Suppose now that r > 0 and X is irreducible. Let Q[ y, x1, . . . , xm] denote the multihomogeneous

coordinate ring of Pk
× Pn. There is an i , with 0 ≤ i ≤ k, such that H .

= V (yi )⊂ Pk
× Pn intersects X

properly (otherwise, X would be included in all V (yi ) and would be empty). Since the fibers of X → Y are
positive dimensional, H intersects each fiber. In particular, the set-theoretical projections of X and X ∩ H
coincide. As X is irreducible, so is Y . In particular, there is an irreducible component X ′

⊂ X ∩ H that
maps to Y . By the induction hypothesis applied to X ′, we have θ k

0 [Y ]Z ≤ θdim X ′
−dim Y

0 [X ′
]Z. Moreover,

[X ′
]Z ≤ [X ]Z[yi ]sup, and, in view of (62), [yi ]sup = θ0. The claim follows.

If X is reducible, then we apply the inequality above to each of the irreducible components of Y
together with an irreducible component of X mapping onto that component. □

3.3. Explicit equations for the Noether–Lefschetz loci. Following Gotzmann [1978], Bayer [1982] and
the exposition of Lella [2012], we describe the equations defining the Hilbert schemes of curves in P3.
An explicit description of the Noether–Lefschetz loci NLd,g follows.

3.3.1. Hilbert schemes of curves. For d>0 and g ≥0, let Hd,g be the Hilbert scheme of curves of degree d
and genus g in P3. It parametrizes subschemes of P3 with Hilbert polynomial p(m) .

= dm+1−g. Smooth
curves in P3 of degree d and genus g, in particular, have Hilbert polynomial p(m). Let R = C[w, x, y, z]
be the homogeneous coordinate ring of P3. For m ≥ 0, let Rm denote the m-th homogeneous part of R,
and let q(m)= dim Rm − p(m).
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The Hilbert scheme Hd,g can be realized in a Grassmannian variety as follows: A subscheme X of P3

is uniquely defined by a saturated homogeneous ideal I of R. If the Hilbert polynomial of X is p, then I
is the saturation of the ideal generated by the degree r slice Ir

.
= I ∩ Rr [Gotzmann 1978] and [Bayer

1982, §II.10], where

r =

(d
2

)
+ 1 − g (65)

is the Gotzmann number of p [Bayer 1982, §II.1.17]. For practical reasons, we need r ≥ 4, so we define
instead

r = max
((d

2

)
+ 1 − g, 4

)
. (66)

So X is entirely determined by Ir , which is a q(r)-dimensional subspace of Rr .
Let G be the Grassmannian variety of q(r)-dimensional subspaces of Rr . As a set, one can con-

struct Hd,g as the subset of all 4 ∈ G such that the ideal generated by 4 in R defines a subscheme of P3

with Hilbert polynomial p. In fact, Hd,g is a subvariety that is defined by the following condition [Bayer
1982, §VI.1]:

Hd,g =
{
4 ∈ G | dim(R14)≤ q(r + 1)

}
, (67)

where R1 is the space of linear forms in w, x, y, z, so that R14 is a subspace of Rr+1.
Several authors gave explicit equations for Hd,g in the Plücker coordinates [Bayer 1982; Grothendieck

1966; Gotzmann 1978; Brachat et al. 2016]. We will prefer here a more direct path that avoids the Plücker
embedding.

3.4. Equations for the relative Hilbert scheme. Define the relative Hilbert scheme of curves inside
quartic surfaces

Hd,g(4)
.
=

{
( f,C) ∈ P(R4)×Hd,g | C ⊂ V ( f )

}
, (68)

for each d > 0 and g ≥ 0.
We define the following auxiliary spaces to better describe (68): First, define the ambient space

A .
= P(R4)× P

(
End(Cq(r)−Nr−4, Rr )

)
× P

(
End(Rr+1,Cp(r+1))

)
. (69)

Second, let B = {( f, φ, ψ) ∈ A} be the set of all triples satisfying the conditions

(i) Rr−3 f ⊆ kerψ ,

(ii) R1 im(φ)⊆ kerψ ,

(iii) imφ ∩ Rr−4 f = 0,

(iv) φ and ψ are full rank.

Finally, we denote by B the Zariski closure of B.

Lemma 12. The map B → Hd,g(4) defined by ( f, φ, ψ) 7→ ( f, Rr−4 f + imφ) is well defined and
surjective.
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Proof. Let ( f, φ, ψ) ∈ B, and let 4 = Rr−4 f + imφ. Constraint (iv) implies that imφ has dimen-
sion q(r)− Nr−4. Together with Constraint (iii), we have dim4= q(r). Moreover, Constraint (iv) implies
that kerψ has dimension q(r + 1). In particular, since R14= Rr−3 f + R1 imφ, Constraints (i) and (ii)
imply that R14 has dimension at most q(r + 1). So, 4 ∈ Hd,g(4). Since Rr−4 f ⊆4, the polynomial f
is in the saturation of the ideal generated by 4. Hence, ( f, 4) ∈ Hd,g(4).

Conversely, let ( f, 4) ∈ Hd,g(4), then Rr−4 f ⊂ 4 and there is a full rank map φ : Cq(r)−Nr−4 → Rr

such that imφ complements Rr−4 f in4. Furthermore, dim R14≤ q(r +1), because 4∈Hd,g, so there is
a full rank map ψ : Rr+1 → Cp(r+1) such that R14⊆ kerψ . So, ( f, 4) is the image of ( f, φ, ψ) ∈ B. □

Lemma 13. For any a ≥ 0, let Ba be the union of the codimension a components of B. Then

[Ba]Z ≤
(
15 log(d + 2)η+ θ1 + θ2 + θ3

)a

Proof. Let B′ be the closed set defined by Constraints (i) and (ii). Constraints (iii) and (iv) are open, so
any component of B is a component of B′. In particular, [Ba]Z ≤ [B′

a]Z.
Constraint (i) is expressed with p(r + 1)Nr−3 polynomial equations of multidegree (1, 0, 1) (with

respect to f , φ and ψ , respectively). Namely, ψ(m f )= 0 for every monomial m in Rr−3. Each p(r + 1)
components of the equation ψ(m f )= 0 involves a sum of 35 terms (since f , as a quartic polynomial,
contains only 35 terms) with coefficients 1. So the 1-norm of these constraints is at most 35 (which is
also at most Nr , since r ≥ 4).

Constraint (ii) is expressed with 4p(r +1)(q(r)− Nr−4) polynomial equations of multidegree (0, 1, 1).
Namely, ψ(vφ(e))= 0 for any basis vector e and any variable v ∈ {w, x, y, z}. Each p(r +1) component
of the equation ψ(vφ(e)) = 0 involves a sum of Nr terms with coefficients 1. So the 1-norm of these
constraints is at most Nr .

The claim is then a consequence of Proposition 10, with

s = p(r + 1)Nr−3 + 4p(r + 1)(q(r)− Nr−4) and L = Nr .

We check routinely, with Mathematica, that sL ≤ (d + 2)15. □

Theorem 14. There is an absolute constant A > 0 such that for any d > 0 and g ≥ 0, we have

deg(NLd,g)≤ Ad9
and ∥NLd,g∥1 ≤ 2Ad9

.

Proof. We assume NLd,g is nonempty, since these inequalities are trivially satisfied if NLd,g = ∅ with
NLd,g = 1. Let P2

.
= P

(
End(Cq(r)−Nr−4, Rr )

)
and P3

.
= P

(
End(Rr+1,Cp(r+1))

)
denote the second and

third factors of A, respectively. Let α .
= (q(r)− Nr−4)Nr − 1 and β .

= p(r + 1)Nr+1 − 1 denote the
dimensions of P2 and P3, respectively. Let E be the projection of B on P(R4)× P2. The fibers of the
map B → E are projective subspaces of P3 since Constraints (i) and (ii) are linear in ψ . The dimension
of these fibers are β ′ .

= p(r + 1)2 − 1. So, by Proposition 11,

θ
β

3 [E]Z ≤ θ
β ′

3 [B]Z. (70)
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Next, the map B → Hd,g(4) factors through E , and the fibers of the corresponding map E → Hd,g(4)
have dimension α′ .

= (q(r) − Nr−4)q(r) − 1. Finally, let e be the dimension of the fibers of the
map Hd,g(4) → NLd,g. (If this dimension is not generically constant, we work one component at
a time.) Once again, by Proposition 11, we obtain

θα2 [NLd,g]Z ≤ θα
′
+e

2 [E]Z. (71)

Since [NLd,g]Z = m(NLd,g)η+ deg(NLd,g)θ1, taking L = 15 log(d + 2), we get

deg NLd,g ≤ coeff. of θ1θ
α−α′

−e
2 θ

β−β ′

3 in (Lη+ θ1 + θ2 + θ3)
α+β−α′

−β ′
−e+1 (72)

≤ 3α+β−α′
−β ′

−e+1. (73)

The exponent is a polynomial in d and g. Unless d2
≥ 8g − 8, we have that NLd,g is empty. So, we

may bound the exponent with a polynomial only in d, which turns out to be of degree 9. Therefore,
deg NLd,g ≤ Ad9

for some constant A > 0.
Similarly,

m(NLd,g)≤ coeff. of ηθα−α′
−e

2 θ
β−β ′

3 in (Lη+ θ1 + θ2 + θ3)
α+β−α′

−β ′
−e+1 (74)

≤ (α+β −α′
−β ′

− e + 1)L3α+β−α′
−β ′

−e (75)

≤ 2O(d9). (76)

By [D’Andrea et al. 2013, Lemma 2.30.3],

∥NLd,g∥1 ≤ exp(m(NLd,g))36deg NL1, (77)

and this implies the claim, for some other constant A > 0. □

For the following, we write a↑b for ab. This is a right-associative operation.

Corollary 15. There is an absolute constant A > 0 such that for any 1> 0,

deg(NL1)≤ A↑1↑ 9
2 and ∥NL1∥1 ≤ 2↑A↑1↑ 9

2 .

In fact, one can obtain the following explicit bounds:

deg(NL1)≤ 3(1+20)9/2 and log2 ∥NL1∥1 ≤ (1+ 60)53(1+20)9/2 .

Proof. The first statement follows directly from (55) and Theorem 14 using a different A. The second
statement is found by carrying out the arguments in the proof of Theorem 14 with the help of a computer
algebra system. □

3.5. How good are these bounds? We can compare our degree bounds for NL1 to the exact degrees
computed by Maulik and Pandharipande [2013], from which it actually follows that

deg NL1 = O(119/2). (78)
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This sharper bound does not directly imply a sharper bound on the height of NL1, but it suggests the
following conjecture. This would improve subsequently Theorems 17 and 19. In particular, (2) would be
exponential in the size of the coefficients, as opposed to being doubly exponential.

Conjecture 16. As 1 goes to ∞, we have

log ∥NL1∥1 ≤119/2+o(1).

Now we turn to the details of (78). Following Maulik and Pandharipande [2013] (but replacing q
by q8), consider the power series

A .
=

∑
n∈Z

qn2
, B .

=

∑
n∈Z

(−1)nqn2
, 9 = 108

∑
n>0

q8n2
, (79)

and 2 defined by

2222
.
= 3A21

−81A19 B2
−627A18 B3

−14436A17 B4
−20007A16 B5

−169092A15 B6
−120636A14 B7

−621558A13 B8

−292796A12 B9
−1038366A11 B10

−346122A10 B11

−878388A9B12
−207186A8B13

−361908A7B14
−56364A6B15

−60021A5 B16
−4812A4 B17

−1881A3 B18
−27A2 B19

+B21. (80)

From [Maulik and Pandharipande 2013, Corollary 2], we have, for any 1> 0,

deg NL1 ≤ coeff. of q1 in 2−9. (81)

In fact, this is an equality when the components of NL1 are given appropriate multiplicities. Let 2[k]

denote the coefficient of qk in 2. By (81), we only need to bound 2[1] in order to bound deg NL1. To
do so, replace every negative sign in the definition of 2 by a positive sign, including those in B, to obtain
the coefficientwise inequality

2≤ 6
( ∑

n∈Z

qn2
)21

. (82)

The coefficient of qk in
(∑

n∈Z qn2)21 is

r21(k)
.
= #

{
(a1, . . . , a21) ∈ Z21

∣∣∣ ∑
i

a2
i = k

}
. (83)

The asymptotic bound rd(k)= O(k d/2−1), for d > 4, is well known, e.g., [Krätzel 2000, Satz 5.8].

4. Separation bound

We now state and prove the main results. Recall that a↑b = ab is right associative, and for γ ∈ HZ, we
defined the discriminant 1(γ ) as (γ · h)2 − 4γ · γ .
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Theorem 17. For any f ∈ U4 with algebraic coefficients, there is a computable constant c > 1 such that
for any γ ∈ H 2(X f ,Z), if γ ·ω f ̸= 0, then

|γ ·ω f |>
(
2↑c↑1(γ )↑9

2

)−1
.

To make the connection with (1), recall the map T introduced in (7). We choose a basis γ1, . . . , γ21

of H3(P
3
\ X f ,Z)≃ HZ/Zh, write T (γ )=

∑
i xiγi and observe that 1(γ ) is a quadratic function of the

coordinates xi , so that 1(γ )1/2 ≤ C maxi |xi | for some constant C depending on the choice of basis.

4.1. Multiplicity of Noether–Lefschetz loci. The multiplicity at a point p ∈ Cs of some nonzero polyno-
mial F ∈ C[x1, . . . , xs] is the unique integer k such that all partial derivatives of F of order < k vanish
at p and some partial derivative of order k does not. It is denoted by multp F .

The multiplicity of NL1 at some f ∈ U4 is related to the elements of Pic(X f ) with discriminant 1.
For 1 > 0, let E1 be a set of representatives for elements of discriminant 1 modulo the equivalence
relation ∼ on HZ defined by

γ ∼ γ ′, if ∃a ∈ Q∗, b ∈ Q : γ ′
= aγ + bh. (84)

Lemma 18. For any f ∈ U4 and any 1> 0,

mult f NL1 = #(Pic X f ∩ E1).

Proof. Let ÑL1 be the lift of NL1 in Ũ4. Arguing as in Section 3.1.1, ÑL1 is the union of smooth
analytic hypersurfaces

ÑL1 =

⋃
η∈E1

P−1
{w ∈ D | w · η = 0}. (85)

Then the same holds locally for NL1.
For any f ∈ U4, it follows from the smoothness of branches of NL1 that mult f NL1 is exactly the

number of branches meeting at f . The branches meeting at f are described by the elements of Pic X f

with discriminant 1. Two elements γ and γ ′ describe the same branch (that is, the same hyperplane
section of D) if and only if γ ′

∼ γ . So mult f NL1 is exactly the number of equivalence classes in
{γ ∈ Pic X f |1(γ )=1} for this relation. □

4.2. Proof of Theorem 17. We first apply Corollary 3. Let ε = 4|γ · ω f |. The corollary gives con-
stants C f > 0 and εf > 0 (depending only on f ) such that if ε < εf , then there exists a monomial m ∈ R4

and t ∈ C such that
|t | ≤ C f ε (86)

and
γ ∈ Pic X f +tm . (87)

Assume ε < εf . As u varies, the number #
(
Pic(X f +um)∩ E1

)
has a strict local maximum at u = t , where

t and m are as above. By Lemma 18, so does mult f +um NL1(γ ). In particular, there is some higher-order
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partial derivative of NL1 which vanishes at f + tm but not at f + um, for u close to but not equal to t .
Let α ∈ N35 be the multiindex for which

P .
=

1
α1! · · ·α35!

∂ |α|NL1
∂uα

∈ Z[u1, . . . , u35] (88)

is this derivative. For a monomial uβ .
= uβ1

1 · · · uβ35
35 , we have

1
α1! · · ·α35!

∂ |α|uβ

∂uα
=

35∏
i=1

(
βi

αi

)
uβ−α. (89)

Since
(
βi
αi

)
≤ 2βi , it follows that∥∥∥∥ 1

α1! · · ·α35!

∂ |α|NL1
∂uα

∥∥∥∥
1
≤ 2deg NL1∥NL1∥1. (90)

Let Q ∈ Q[s] be the polynomial Q(s) .
= P( f + sm). By construction, Q ̸= 0 and Q(t) = 0.

Clearly deg Q ≤ deg NL1, and we check that

∥Q∥1 ≤ ∥P∥1
(
∥ f ∥1 + 1

)deg P
. (91)

Then

∥Q∥1 ≤ 2deg NL1∥NL1∥1
(
∥ f ∥1 + 1

)deg NL1
. (92)

From Corollary 15, we find a constant c depending only on f such that

deg Q ≤ c↑1↑9
2 and ∥Q∥1 ≤ 2↑c↑1↑9

2 . (93)

We write Q =
∑deg Q

i=0 qi si . Let k be the smallest integer such that qk ̸= 0. Since Q(t)= 0, it follows
that

|qk tk
| ≤

deg Q∑
i=k+1

|qi t i
|. (94)

If ε < C−1
f , we have |t |< 1, by (86), and it follows that

|t | ≥
|qk |

∥Q∥1
. (95)

Let D ≥ 1 be the degree of the number field generated by the coefficients of f . Let H > 0 be an upper
bound for the absolute logarithmic Weil height for the coefficient vector of f [Waldschmidt 2000, p. 77].
Then qk is an algebraic number defined by a polynomial expression q̃k( f ) in the coefficients of f , with
q̃k having integer coefficients. Liouville’s inequality [Waldschmidt 2000, Proposition 3.14] gives

|qk | ≥ ∥q̃k∥
−D+1
1 e−DH deg q̃k . (96)

It is easy to see that deg q̃k ≤ deg NL1 and ∥q̃k∥1 ≤ 2deg NL1∥NL1∥1, the latter can be bounded by ∥Q∥1.
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By (86), this leads to
ε ≥

(
2↑c↑1↑ 9

2

)−D(1+H)
, (97)

for some other constant c depending only on f . Recall that (97) holds with the assumptions that ε ≤ ε f

and ε < C−1
f . However, we can choose c large enough so that the right-hand side of (97) is smaller

than ε f and C−1
f . Then (97) holds unconditionally. Absorb the outer exponent of (97) into c to conclude

the proof of Theorem 17. □

4.3. Numbers à la Liouville. Let (θi )i≥0 be a sequence of positive integers such that θi is a strict divisor
of θi+1 for all i ≥ 0 (in particular, θi ≥ 2i .) Consider the number

Lθ
.
=

∞∑
i=0

θ−1
i .

As a corollary to the separation bound obtained in Theorem 17, the following result states that Lθ is not a
ratio of periods of quartic surfaces when θ grows fast enough:

Theorem 19. If θi+1 ≥ 2↑2↑θi↑10, for all i large enough, then Lθ is not equal to (γ1 ·ω f )/(γ2 ·ω f ) for
any γ1, γ2 ∈ HZ and any f ∈ U4 with algebraic coefficients.

Proof. Let lk =
∑k

i=0 θ
−1
i . Since θi divides θi+1, we can write lk = uk/θk for some integer uk . And since

the divisibility is strict, θi ≥ 2i and uk ≤ 2θk . Moreover,

0< Lθ − lk ≤ 2θ−1
k+1, (98)

using θk+i+1 ≥ 2iθk+1, for any i ≥ 0. Assume now that Lθ = (γ1 ·ω f )/(γ2 ·ω f ) for some γ1, γ2 ∈ HZ

and some f ∈ U4 with rational coefficients. Then, with

γk
.
= θkγ1 − ukγ2, (99)

we check that 1(γk)= O(θ2
k ) and that

0< |θk ||γ2 ·ω f |(Lθ − lk)= |γk ·ω f | ≤ C
θk

θk+1
, (100)

for some constant C . By Theorem 17, we obtain

(2 ↑ c ↑ θk ↑ 9)−1
≤ C

θk

θk+1
, (101)

for some constant c> 0 which depends only on f . This contradicts the assumption on the growth of θ . □

4.4. Computational complexity. Given a polynomial f ∈ Q[w, x, y, z] ∩ U4 and a cohomology class
γ ∈ H 2(X f ,Z), we can decide if γ ∈ Pic(X f ) (that is, γ ·ω f = 0) as follows:

(a) Compute the constant c in Theorem 17.

(b) Let ε =
(
2↑c↑1(γ )↑ 9

2

)−1 and compute an approximation s ∈ C of the period γ · ω f such that
|s − γ ·ω f |<

1
2ε.

Then γ is in Pic(X f ) if and only if |s|< 1
2ε.
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Computing the Picard group itself is an interesting application of this procedure. Algorithms for
computing the Picard group of X f , or even just the rank of it, break the problem into two: a part gives
larger and larger lattices inside Pic(X f ) while the other part gets finer and finer upper bounds on the
rank of Pic(X f ) [Charles 2014; Hassett et al. 2013; Poonen et al. 2015]. The computation stops when
the two parts meet. Approximations from the inside are based on finding sufficiently many elements
of Pic(X f ). So while deciding the membership of γ in Pic(X f ) can be solved by computing Pic(X f )

first, it makes sense not to assume prior knowledge of the Picard group and to study the complexity of
deciding membership as 1(γ )→ ∞, with f fixed.

Step (a) does not depend on γ , so only the complexity of Step (b) matters, that is, the numerical
approximation of γ ·ω f . This approximation amounts to numerically solving a Picard–Fuchs differential
equation [Sertöz 2019] and the complexity is (log(1/ε))1+o(1) [Beeler et al. 1972; van der Hoeven 2001;
Mezzarobba 2010; 2016]. With the value of ε in Step (b), we have a complexity bound of exp(1(γ )O(1))

for deciding membership.
For the sake of comparison, we may speculate about an approach that would decide the membership

of γ in Pic(X f ) by trying to construct an explicit algebraic divisor on X f whose cohomology class is equal
to γ . It would certainly need to decide the existence of a point satisfying some algebraic conditions in
some Hilbert scheme Hd,g, with d = O(1

1
2 ) and g = O(1) (see Section 3.1.1). Embedding Hd,g (or some

fibration over it, as we did in Section 3.4) in some affine chart of a projective space of dimension d O(1)

will lead to a complexity of exp(1(γ )O(1)) for deciding membership in this way.
However, if Conjecture 16 holds true, then the complexity of the numerical approach for deciding

membership would reduce to 1(γ )O(1).

5. Concluding remarks

5.1. Going beyond quartic surfaces. There are two directions in which the main result, Theorem 17,
can, in principle, be generalized beyond quartic surfaces.

In the first direction, our effective methods naturally extend to complete intersections in complete
simplicial toric varieties, provided the complete intersection has a K3 type middle cohomology satisfying
the integral Hodge conjecture. By this last condition, we mean that a single period should govern if a
homology cycle is algebraic. For instance, cubic fourfolds satisfy all of these conditions [Voisin 2013].
Of course, polarized K3 surfaces of degrees 2, 6 and 8 also work, in addition to the degree 4 case covered
here.

To generalize the result to this context, one needs to compute two ingredients. The height and degree
bounds for the image of a Hilbert schemes, and the “spread” of the period map (as in Section 2.4). Our
use of effective Nullstellensatz to compute heights clearly extends. To compute the spread, we used the
Griffiths–Dwork reduction, which continues to work for complete intersections in compact simplicial
toric varieties [Batyrev and Cox 1994; Dimca 1995; Mavlyutov 1999].
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The second direction one could generalize the result is to stick with surfaces in P3 but to increase the
degree. In this case, we do not know how to control the vanishing of individual period integrals. However,
the Lefschetz (1, 1)-theorem can be used to relate algebraic cycles to the simultaneous vanishing of a
vector of periods coming from all holomorphic forms. For instance, on quintic surfaces one can separate
4-dimensional (holomorphic) period vectors from one another. The deduction of the separation bounds
would be possible from a parallel discussion to the one provided here. This application would make it
possible to prove our heuristic Picard group computations of surfaces [Lairez and Sertöz 2019].

It would also be highly desirable to be able to numerically verify arbitrary, nonlinear, relations between
periods of quartics. However, in order to generalize our approach to this setup, one would need the
integral Hodge conjecture on products of quartic surfaces.

5.2. Closed formulae for the bounds. It is possible to determine a closed formula, involving the height
of f , that bounds the constant c in Theorem 17. We removed the deduction of such a formula due to the
excessive technical complexity it presents. In addition, the pursuit of a human readable bound gets us
further and further from the optimal bounds. We envisioned using the constant c on computer calculations
where an algorithmic deduction of c is possible and preferable. We designed our proofs so that such an
algorithm is explicit in the proofs. An implementation of this algorithm would be beneficial after the
bounds for the heights of the Noether–Lefschetz loci are brought down significantly.

5.3. Optimal bounds. We conjectured by analogy (Conjecture 16) that our bounds for the height of the
Noether–Lefschetz locus can be lowered by one level of exponentiation. One can be more optimistic
based on the following observation: For many example quartics X f , we determined the equations for the
Hilbert scheme of lines over each pencil X f +tm for monomials m. Then, going through the algorithm
in the proofs, we computed sharper separation bounds on these example quartics. On these examples,
the separation bound was around 10−60. In other words, it was sufficient to deduce whether a homology
cycle was the class of a line using only 60 digits of precision. This suggests that for homology cycles of
small discriminant, optimal separation bounds may be small enough to be used in practice. It would be
interesting to see if generalizing the work of Maulik and Pandharipande from degrees to heights by using
the modularity of arithmetic Chow rings [Kudla 2003] would give close to optimal bounds.

5.4. Analogies with related work. Our construction bears a remote resemblance to the analytic subgroup
theorem of Wüstholz [1989] and the period theorem of Masser and Wüstholz [1993]. The analytic subgroup
theorem and its applications work with the exponential map expA : T0 A → A of a (principally polarized)
abelian variety A over Q ⊂ C. The periods of A form a lattice 3 .

= ker exp A. Let P = exp−1
A A(Q) be

the periods of all algebraic points on A.
The analytic subgroup theorem implies that Q-linear relations between any set of elements S ⊂ P are de-

termined by abelian subvarieties of B: there is an abelian subvariety such that T0 B coincides with the span
of S. Observe that the linear relations live on the domain of the transcendental map expA and are converted
to an algebraic subvariety on the codomain. When S = {γ } ⊂3, the Masser–Wüstholz period theorem
bounds the degree of smallest B whose tangent space contains γ using the height of A and the norm of γ .
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In our work, we consider the space U4 of smooth homogeneous quartic polynomials of degree 4 and
its universal cover Ũ4 → U4. We then take the (transcendental) period map P : Ũ4 → HC. Note that the
Z-relations between periods are realized as linear subspaces of the period domain, whereas the preimage
of these linear spaces are the Noether–Lefschetz loci. These Noether–Lefschetz loci map to algebraic
hypersurfaces on the space U4.

Superficially, the main difference between the two approaches is the direction of the naturally appearing
transcendental maps that linearize relations between periods. However, the nature of the two transcendental
maps appearing in both constructions also differs substantially.
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Global dimension of real-exponent polynomial rings
Nathan Geist and Ezra Miller

The ring R of real-exponent polynomials in n variables over any field has global dimension n+ 1 and flat
dimension n. In particular, the residue field k= R/m of R modulo its maximal graded ideal m has flat
dimension n via a Koszul-like resolution. Projective and flat resolutions of all R-modules are constructed
from this resolution of k. The same results hold when R is replaced by the monoid algebra for the positive
cone of any subgroup of Rn satisfying a mild density condition.

1. Introduction

Overview. The aim of this note is to prove that the commutative ring R of real-exponent polynomials
in n variables over any field k has global dimension n + 1 and flat dimension n (Theorem 3.6 and
Corollary 2.10). It might be unexpected that R has finite global dimension at all, but it should be more
expected that the flat dimension is achieved by the residue field k= R/m of R modulo its maximal graded
ideal m; a Koszul-like construction shows that it is (Proposition 2.4 along with Example 2.5). In one
real-exponent variable the residue field k also achieves the global dimension bound of 2 (Lemma 3.2),
and this calculation lifts to n variables by tensoring with an ordinary Koszul complex (Proposition 3.4),
demonstrating global dimension at least n + 1. Projective and flat resolutions of all R-modules are
constructed from resolutions of the residue field in the proofs of Theorems 3.6 and 2.9 to yield the
respective upper bounds of n+ 1 and n. The results extend to the monoid algebra for the positive cone of
any subgroup of Rn satisfying a mild density condition (Definition 4.1 and Theorem 4.3).

Background. Global dimension measures how long projective resolutions of modules can get, or how
high the homological degree of a nonvanishing Ext module can be [20, Theorem 4.1.2]. Finding rings of
finite global dimension is of particular value, since they are considered to be smooth, generalizing the
best-known case of local noetherian commutative rings [2; 19], which correspond to germs of functions
on nonsingular algebraic varieties.

The related notion of flat dimension (also called Tor dimension or weak global dimension) measures
how long flat resolutions of modules can get, or how high the homological degree of a nonvanishing
Tor module can be. Flat dimension is bounded by global dimension because projective modules are
flat. These two dimensions agree for noetherian commutative rings [20, Proposition 4.1.5]. Without the
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noetherian condition equality can fail; commutative examples include von Neumann regular rings that are
infinite products of fields (see [20, page 98]), but domains are harder to come by.

The cardinality of a real-exponent polynomial ring a priori indicates a difference between flat and
projective dimension that could be as high as 1 plus the index on ℵ in the cardinality of the real numbers
[17, page 14]. In certain situations, such as in valuation rings, ideals generated by ℵn and no fewer
elements are known to cause global dimension at least n+ 2 [16]; see also [17, page 14]. But despite R
having an ideal minimally generated by all monomials with total degree 1, of which there are 2ℵ0 , the
dimension of the positive cone of exponents is more pertinent than its cardinality. This remains the case
when the exponent set is intersected with a suitably dense subgroup of Rn: the rank of the subgroup is
irrelevant (Section 4).

Methods. The increase from global dimension n to n+1 in the presence of n variables is powered by the
violation of condition 5 from [3, Theorem P]: a monomial ideal with an “open orthant” of exponents, such
as the maximal ideal m1 in one indeterminate, is a direct limit of principal monomial ideals (Lemma 3.1)
but is not projective (Lemma 3.2). This phenomenon occurs already for Laurent polynomials L1 in one
integer-exponent variable. But although m1 and L1 both have projective dimension 1, the real-exponent
maximal ideal m1 is a submodule of a projective (actually, free) module; the inclusion has a cokernel,
and its projective dimension is greater by 1.

The most nontrivial point is how to produce a projective resolution of length at most n+ 1 for any
module over the real-exponent polynomial ring R in n variables. Our approach takes two steps. The first
is a length n Koszul-like complex (Definition 2.7) in 2n variables that resolves the residue field and can
be massaged into a flat resolution of any module (Theorem 2.9). This “total Koszul” construction was
applied to combinatorially resolve monomial ideals in ordinary (that is, integer-exponent) polynomial
rings [7, Section 6]. The integer grading in the noetherian case makes this construction produce a Koszul
double complex, which is key for the combinatorial purpose of minimalizing the resulting free resolution
by splitting an associated spectral sequence. It is not obvious whether the double complex survives to the
real-exponent setting, but the total complex does (Definition 2.7; see [20, Application 4.5.6]), and that
suffices here because minimality is much more subtle — if it is even possible — in the presence of real
exponents [13].

Motivations. Beyond basic algebra, there has been increased focus on nonnoetherian settings in, for
example, noncommutative geometry and topological data analysis.

Quantum noncommutative toric geometry [9] is based on dense finitely generated additive subgroups
of Rn instead of the discrete sublattices that the noetherian commutative setting requires. The situations
treated by our main theorems, including especially Section 4, correspond to “smooth” affine quantum
toric varieties and could have consequences for sheaf theory in that setting.

The question of finite global dimension over real-exponent polynomial rings has surfaced in topological
data analysis (TDA), where modules graded by Rn are known as real multiparameter persistent homology;
see [6; 12; 13], for example, or [18] for a perspective from quiver theory. The question of global dimension
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arises because defining metrics for statistical analysis requires distances between persistence modules,
many of which use derived categorical constructions [4; 8; 15]; see [6, Section 7.1] for an explicit mention
of the finite global dimension problem.

Real-exponent modules that are graded by Rn and satisfy a suitable finiteness condition (“tameness”)
to replace the too-easily violated noetherian or finitely presented conditions admit finite multigraded
resolutions by monomial ideals [14, Theorem 6.12], which are useful for TDA. But even in the tame
setting no universal bound is known for the finite lengths of such resolutions [13, Remark 13.15]. The
global dimension calculations here suggest but do not immediately imply a universal bound of n+ 1.

Notation. The ordered additive group R of real numbers has its monoid R+ of nonnegative elements. The
n-fold product Rn

=
∏n

i=1 R has nonnegative cone Rn
+
=

∏n
i=1 R+. The monoid algebra R = Rn = k[Rn

+
]

over an arbitrary field k is the ring of real-exponent polynomials in n variables: finite sums
∑

a∈Rn
+

ca xa,
where xa

= xa1
1 · · · x

an
n . Its unique monoid-graded maximal ideal m is spanned over k by all nonunit

monomials.
Unadorned tensor products are over k. For example, R ∼= R1⊗ · · ·⊗ R1 is an n-fold tensor product

over k, where R1 = k[R+] is the real-exponent polynomial ring in one variable with graded maximal
ideal m1.

2. Flat dimension n

Lemma 2.1. The filtered colimit lim
−−→ε>0(R1←↩ ⟨xε

⟩) of the inclusions of the principal ideals generated
by xε for positive ε ∈ R is a flat resolution K̊1

•
: R1←↩ m1 of k over R1.

Proof. Colimits commute with homology so the colimit is a resolution. Filtered colimits of free modules
are flat by Lazard’s criterion [11], so the resolution is flat. □

Definition 2.2. The open Koszul complex is the tensor product K̊x
•
=

⊗n
i=1 K̊1

•
over the field k of n copies

of the flat resolution in Lemma 2.1. The 2n summands of K̊x
•

, each a tensor product of j copies of R1

and n− j copies of m1, are orthant ideals.

Example 2.3. The open Koszul complex in two real-exponent variables is depicted in Figure 2. From a
geometric perspective, take the ordinary Koszul complex from Figure 1, replace the free modules with
their continuous versions, and push the generators as close to the origin as possible without meeting it.
The four possible orthant ideals are rendered in Figure 2. From left to right, viewing them as tensor
products, they correspond to the product of two closed rays k[R+], the product (in both orders) of a
closed ray with an open ray m, and the product of two open rays. In n real-exponent variables the 2n

orthant ideals arise from all n-fold tensor products of closed and open rays.

Proposition 2.4. The open Koszul complex K̊x
•

is a flat resolution of k over R.

Proof. Lemma 2.1 and the Künneth theorem [20, Theorem 3.6.3]. □

Limit-Koszul complexes similar to K̊x
•

have previously been used to compute flat dimensions of
absolute integral closures [1] in the context of tight closure.
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0

Figure 1. Ordinary Koszul complex in two variables.

0

Figure 2. Open Koszul complex in two real-exponent variables.

Example 2.5. The sequence x[ε]= xε
1, . . . , xε

n is regular in R [5, Chapter 1], so the usual Koszul complex
K•(x[ε]) is a length n free resolution of Bε

n = R/⟨x[ε]⟩ over R. Using this resolution, TorR
n (k, Bε

n) = k

because k⊗R K•(x[ε]) has vanishing differentials.

Lemma 2.6. The real-exponent polynomial ring R⊗2
= R⊗ R has 2n variables

x = x1, . . . , xn = x1⊗ 1, . . . , xn ⊗ 1 and y = y1, . . . , yn = 1⊗ x1, . . . , 1⊗ xn.

Over R⊗2 is a directed system of Koszul complexes K•(x[ε]− y[ε]) on the sequences

x[ε]− y[ε] = xε
1 − yε

1, . . . , xε
n − yε

n

with ε > 0. The colimit K̊x− y
•
= lim
−−→ε>0 K•(x[ε]− y[ε]) is an R⊗2-flat resolution of R.

Proof. The general case is the tensor product over k of n copies of the case n = 1, which in turn reduces
to the calculation R⊗2/⟨xε

− yε
| ε > 0⟩ ∼= R. □
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Definition 2.7. Denote by Rx and R y the copies of R embedded in R⊗2 as R⊗ 1 and 1⊗ R. Fix an
Rx-module M :

(1) Write M y for the corresponding R y-module, with the x variables renamed to y.

(2) The open total Koszul complex of an Rx-module M is K̊x− y
•

(M)= K̊x− y
•
⊗R y M y.

Remark 2.8. By Definition 2.2, each of the 4n summands of K̊x− y
•

in Lemma 2.6 is the tensor product
over k of an orthant Rx-ideal and an orthant R y-ideal.

Theorem 2.9. The open total Koszul complex K̊x− y
•

(M) is a length n resolution of M over R⊗2 for any
Rx-module M. This resolution is flat over Rx ; more precisely, as an Rx-module K̊x− y

•
(M) is a direct sum

of orthant Rx-ideals.

Proof. The tensor product K̊x− y
•
⊗R y M y is over R y and hence converts the orthant Rx-ideal decomposition

for K̊x− y afforded by Remark 2.8 into one for K̊x− y
•

(M).
Since tensor products commute with colimits, K̊x− y

•
(M) = lim

−−→ε>0 Kε
•
(M), where Kε

•
(M) =

K•(x[ε] − y[ε]) ⊗R y M y. Each complex Kε
•
(M) is the ordinary Koszul complex of the sequence

x[ε]− y[ε] on the R⊗2-module R⊗2
⊗R y M y. But x[ε]− y[ε] is a regular sequence on this module because

the x variables are algebraically independent from the y variables. Thus Kε
•
(M) is acyclic by exactness

of colimits. Moreover, again by algebraic independence, the nonzero homology of Kε
•
(M) is naturally the

R y-module M y, with an action of k[x[ε]] where xε
i acts the same way as yε

i due to the relation xε
i − yε

i . □

Corollary 2.10. The n-variable real-exponent polynomial ring has flat dimension n.

Proof. Example 2.5 implies that fl.dim R ≥ n, and fl.dim R ≤ n by Theorem 2.9. □

3. Global dimension n + 1

Lemma 3.1. Fix an orthant ideal O ̸= R. Choose a sequence {εk}k∈N such that εk = (ε1k, . . . , εnk) ∈ Rn
+

has

• εik = 0 for all k if the i-th factor of O is R1 and

• {εik}k∈N strictly decreases with limit 0 if the i-th factor of O is m1.

Let F=
⊕

k⟨x
εk ⟩ be the direct sum of the principal ideals in R generated by the monomials with degrees εk .

Each summand ⟨xεk ⟩ is free with basis vector 1k , and O has a free resolution 0← F← F← 0 whose
differential sends 1k ∈ ⟨xεk ⟩ to 1k − xεk−εk+11k+1.

Proof. The augmentation map O α
←− F sends 1k to xεk . It is surjective by definition of O. Since α is

graded by the monoid Rn
+

, its kernel can be calculated degree by degree. In degree a ∈ R+ the kernel is
spanned by all differences xa−εk 1k − xa−εℓ1ℓ such that εk and εℓ both weakly precede a; indeed, this
subspace of the a-graded component Fa has codimension 1, and it is contained in the kernel because
xa−εk xεk = xa−εℓ xεℓ . The differential is injective because each element f ∈ F has nonzero coefficient
on a basis vector 1k with k maximal, and the image of f has nonzero coefficient on 1k+1. □
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Lemma 3.2. k= R1/m1 has a free resolution of length 2, and Ext2R1
(k, F) ̸= 0.

Proof. The resolution of m1 over R1 in Lemma 3.1 (with n = 1) can be augmented and composed
with the inclusion R1 ←↩ m1 to yield a free resolution of k over R1. The long exact sequence from
0← k← R1←m1← 0 implies that Exti+1

R1
(k,−)∼= ExtiR1

(m1,−) for i ≥ 1. Now apply Hom(m1,−) to
the exact sequence 0→ F→ F→m1→ 0. The first few terms are 0→Hom(m1, F)→Hom(m1, F)→

R1 → Ext1(m1, F). The image of Hom(m1, F) → R1 is m1, so k ↪→ Ext1(m1, F) ∼= Ext2(k, F) is
nonzero. □

Remark 3.3. Any ideal that is a countable (but not finite) union of a chain of principal ideals has projective
dimension 1 [17, page 14]. But it is convenient to have an explicit free resolution of m1 over R1, and it is
no extra work to resolve all orthant ideals.

Proposition 3.4. Set m1 = ⟨xε
n | ε > 0⟩ and J = ⟨x1, . . . , xn−1⟩ ⊆ R. Using x = xn for R1, consider the

R1-module F in Lemma 3.2 with n = 1 as an R-module via R ↠ R1, where xε
i 7→ 0 for all ε > 0 and

i ≤ n− 1. Then Extn+1
R (R/I, F) ̸= 0 when I = J +m1.

Proof. Let F• : 0← R1 ← F ← F ← 0 be the R1-free resolution of k obtained by augmenting the
resolution of m1 in Lemma 3.1 with n = 1. Let K• = KRn−1

•
(xn−1) be the ordinary Koszul complex over

Rn−1 on the sequence xn−1 = x1, . . . , xn−1, which is a free resolution of Rn−1/xn−1 Rn−1 over Rn−1.
Then Tot(F•⊗k K•) is a free resolution of R/I over R. On the other hand,

F•⊗k K• ∼= F•⊗R1 R1⊗k Rn−1⊗Rn−1 K•

∼= F•⊗R1 R⊗Rn−1 K•

∼= F•⊗R1 R⊗R R⊗Rn−1 K•

= FR
•
⊗R KR

•
,

where FR
•
= F• ⊗R1 R is an R-free resolution of R/m1 R and the ordinary Koszul complex KR

•
=

R⊗Rn−1 K• = KR
•
(xn−1) of the sequence xn−1 in R is an R-free resolution of R/J .

Using (−)∗ to denote the free dual HomR(−, R), compute

HomR(FR
•
⊗R KR

•
, F)∼= HomR(FR

•
, HomR(KR

•
, F))

∼= HomR(FR
•
, (KR

•
)∗⊗R F)

∼= HomR(FR
•
, (KR

•
)∗⊗R R1⊗R1 F), (3-1)

where the bottom isomorphism is because the R-action on F factors through R1. The differentials of the

complex (KR
•
)∗⊗R R1 ∼= (KR

•
)∗⊗Rn−1 k all vanish, and this complex has cohomology R

(n−1
q )

1 in degree q .
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Hence the total complex of Equation (3-1) has homology

ExtiR(R/I, F)∼=
⊕

p+q=i

Hp HomR(FR
•
, F(n−1

q ))

∼=

⊕
p+q=i

Hp HomR1(F•, F(n−1
q ))

∼=

⊕
p+q=i

Extp
R1

(k, F(n−1
q )),

where the middle isomorphism is again because the R-action on F factors through R1. Taking p = 2 and
q = n− 1 yields the nonvanishing by Lemma 3.2. □

Remark 3.5. The proof of Proposition 3.4 is essentially a Grothendieck spectral sequence for the derived
functors of the composite HomR1(k,−) ◦HomRn−1(Rn−1/xn−1,−), but the elementary Koszul argument
isn’t more lengthy than verifying the hypotheses.

Theorem 3.6. The n-variable real-exponent polynomial ring has global dimension n+ 1.

Proof. Proposition 3.4 yields the lower bound gl.dim R ≥ n + 1. For the opposite bound, given any
R-module M , each module in the length n flat resolution from Theorem 2.9 has a free resolution of length
at most 1 by Lemma 3.1. By the comparison theorem for projective resolutions [20, Theorem 2.2.6], the
differentials of the flat resolution lift to chain maps of these free resolutions. The total complex of the
resulting double complex has length at most n+ 1. □

Remark 3.7. As an Rn-graded module, the quotient R/I in Proposition 3.4 is nonzero only in degrees
from Rn−1

⊆ Rn . Hence R/I is ephemeral [4], meaning, more or less, that its set of nonzero degrees
has measure 0. The projective dimension exceeding n is not due solely to this ephemerality. Indeed,
multiplication by x1

n induces an inclusion of R/I into R/I ′ for I ′ = ⟨x1, . . . , xn−1⟩ + ⟨xε
n | ε > 1⟩,

which is supported on a unit cube in Rn
+

that is neither open nor closed. Theorem 3.6 implies that
Extn+1

R (R/I ′, N )↠ Extn+1
R (xn R/I, N ) is surjective for all modules N , so R/I ′ has projective dimension

n+ 1. On the other hand, it could be the closed right endpoints [10] — that is, closed socle elements [13,
Section 4.1] — that cause the problem. Thus it could be that sheaves in the conic topology (“γ -topology”;
see [4; 8; 15]) have consistently lower projective dimensions.

4. Dense exponent sets

The results in Sections 2 and 3 extend to monoid algebras for positive cones of subgroups of Rn satisfying
a mild density condition. Applications to noncommutative toric geometry should require restriction to
subgroups of this sort.

Definition 4.1. Let G ⊆ Rn be a subgroup whose intersection with each coordinate ray ρ of Rn is dense.
Write G+ = G ∩Rn

+
for the positive cone in G, set ρ̊ = ρ ∩Rn

+
∖ {0}, and let G̊+ =

∏
ρ G ∩ ρ̊+ be the

set of points in G whose projections to all coordinate rays are strictly positive and still lie in G. Set
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RG = k[G+], the monoid algebra of G+ over k. Let Rx
G and R y

G be the copies of RG embedded in R⊗2
G

as RG ⊗ 1 and 1⊗ RG . For ε ∈ G̊+ let x[ε] = xε1
1 , . . . , xεn

n be the corresponding sequence of elements
in RG .

(1) The open Koszul complex over RG is the colimit K̊x
•
= lim
−−→ε∈G̊+ K•(x[ε]).

(2) Fix an Rx
G-module M . Write M y for the corresponding R y

G-module, with the x variables renamed
to y. With notation for variables as in Lemma 2.6, the open total Koszul complex of M is the colimit
K̊x− y
•

(M)= lim
−−→ε∈G̊+ K•(x[ε]− y[ε])⊗R y M y.

(3) Given a subset σ ⊆ {1, . . . , n}, the orthant ideal Iσ ⊆ RG is generated by all monomials xε for
ε ∈ G+ such that εi > 0 for all i ∈ σ .

Example 4.2. Let G be generated by
[ 2

0

]
,
[

π
0

]
,
[1

1

]
,
[ 0

e

]
as a subgroup of R2, so G consists of the integer

linear combinations of these four vectors. The intersection G ∩ ρ y with the y-axis ρ y arises from integer
coefficients α, β, γ , and δ such that[

0
y

]
= α

[
2
0

]
+β

[
π

0

]
+ γ

[
1
1

]
+ δ

[
0
e

]
.

This occurs precisely when 2α + πβ + γ = 0, and in that case y = γ + δe. Since π is irrational it is
linearly independent from 1 over the integers, so β = 0 and hence γ =−2α is always an even integer.
Since e is irrational, the only integer points in G ∩ ρ y have even y-coordinate:

G ∩ ρ y
=

〈[
0
2

]
,

[
0
e

]〉
.

The point
[ 1

1

]
∈ G has strictly positive projection to ρ y , but that projection lands outside of G. Hence

G̊+ = G ∩ ρ̊ x
+
× G ∩ ρ̊

y
+ is a proper subgroup of G, given the strictly positive point

[1
1

]
∈ G+ ∖ G̊+.

Nonetheless, G̊+ contains positive real multiples of
[ 1

1

]
approaching the origin, which is all the colimit in

the proof of Theorem 4.3 requires.

Theorem 4.3. If a subgroup G ⊆ Rn is dense in every coordinate subspace of Rn as in Definition 4.1,
then Theorem 2.9 holds verbatim with RG = k[G ∩Rn

+
] in place of R. Consequently, the ring RG has flat

dimension n and global dimension n+ 1.

Proof. For σ ⊆ {1, . . . , n} and ε ∈ Rn let εσ ∈ Rn be the restriction of ε to σ , so εσ has entry 0 in
the coordinate indexed by every j ̸∈ σ . The 2n summands of K̊x

•
are orthant ideals because Ki (x[ε])∼=⊕

|σ |=i ⟨x
εσ ⟩ naturally with respect to the inclusions induced by the colimit defining K̊x

•
. Each orthant

ideal is flat because this colimit is filtered: given two vectors ε1, ε2 ∈ G̊+, the coordinatewise minimum
ε1∧ε2 ∈ Rn

+
lies in G̊+ because its projection to each ray lies in G. Proposition 2.4 therefore generalizes

to RG by the exactness of colimits and the cokernel calculation k= RG/m for the G-graded maximal
ideal m= ⟨xε

| 0 ̸= ε ∈G+⟩. Example 2.5 generalizes with no additional work. Lemma 2.6 generalizes by
exactness of colimits and the cokernel calculation RG ∼= R⊗2

G /⟨x[ε]− y[ε] | 0 ̸= ε ∈ G+⟩. The conclusion
of Remark 2.8 generalizes, but the reason is direct calculation of K̊•(x[ε] − y[ε]) as was done for K̊x

i .
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The original proof of Theorem 2.9 uses that tensor products commute with colimits, but the generalized
proof avoids that argument by simply defining K̊x− y

•
as the relevant colimit. The rest of the proof and the

generalization of the flat dimension claim in Corollary 2.10 work mutatis mutandis, given the strengthened
versions of the results they cite.

The orthant ideal resolution in Lemma 3.1 generalizes to RG by the density hypothesis, including
specifically the part about intersecting with coordinate subspaces. The Ext calculation in Lemma 3.2
works again by density of the exponent set of m1 in R+. The statement and proof of Proposition 3.4 work
mutatis mutandis for RG in place of R as long as the power of xi generating J lies in the intersection of
G with the corresponding coordinate ray of Rn . The proof of Theorem 3.6 then works verbatim, given
the strengthened versions of the results it cites. □
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1. Introduction

The Lebesgue–Nagell equation

x2
+ D = yn (1)

has a very extensive literature, motivated, at least in part, by attempts to extend Mihăilescu’s theorem
[2004] (Catalan’s conjecture) to larger gaps in the sequence of perfect powers, in an attempt to attack
Pillai’s conjecture [1936]. In (1), we will suppose that x and y are coprime nonzero integers, and that the
prime divisors of D belong to a fixed, finite set of primes S. Under these assumptions, bounds for linear
forms in logarithms, p-adic and complex, imply that the set of integer solutions (x, y, n) to (1), with
|y| > 1 and n ≥ 3, is finite and effectively determinable. If, in addition, we suppose that D is positive and
that y is odd, then these solutions may be explicitly determined, provided |S| is not too large, through
appeal to the primitive divisor theorem of Bilu, Hanrot and Voutier [Bilu et al. 2001], in conjunction with
techniques from Diophantine approximation.

If either D > 0 and y is even, or if D < 0, the primitive divisor theorem cannot be applied to solve (1)
and we must work rather harder, appealing to either bounds for linear forms in logarithms or to results
based upon the modularity of Galois representations associated to certain Frey–Hellegouarch elliptic
curves. In a companion paper [Bennett and Siksek 2023], we develop machinery for handling (1) in the
first difficult case where D > 0 and y is even. Though the techniques we discuss in the present paper are
more widely applicable, we will, for simplicity, restrict attention to the case where D in (1) is divisible
by a single prime q , whilst treating both the cases D < 0 and D > 0. That is, we will concern ourselves
primarily with the equation

x2
+ (−1)δqα

= yn, q ∤ x, (2)

where δ ∈ {0, 1} and α is a nonnegative integer. In the case δ = 0, our main result is the following.

Theorem 1. If x, y, q, α and n are positive integers with q prime, 2 ≤ q < 100, q ∤ x , n ≥ 3 and

x2
+ qα

= yn, (3)

then (q, α, y, n) is one of

(2, 1, 3, 3), (2, 2, 5, 3), (2, 5, 3, 4), (3, 5, 7, 3), (3, 4, 13, 3), (7, 1, 2, 3), (7, 3, 8, 3), (7, 1, 32, 3),

(7, 2, 65, 3), (7, 1, 2, 4), (7, 2, 5, 4), (7, 1, 2, 5), (7, 1, 8, 5), (7, 1, 2, 7), (7, 3, 2, 9), (7, 1, 2, 15),

(11, 1, 3, 3), (11, 1, 15, 3), (11, 2, 5, 3), (11, 3, 443, 3), (13, 1, 17, 3), (17, 1, 3, 4), (19, 1, 7, 3),

(19, 1, 55, 5), (23, 1, 3, 3), (23, 3, 71, 3), (23, 3, 78, 4), (23, 1, 2, 5), (23, 1, 2, 11), (29, 2, 5, 7),

(31, 1, 4, 4), (31, 1, 2, 5), (31, 1, 2, 8), (41, 2, 29, 4), (41, 2, 5, 5), (47, 1, 6, 3), (47, 1, 12, 3),

(47, 1, 63, 3), (47, 2, 17, 3), (47, 3, 74, 3), (47, 1, 3, 5), (47, 1, 2, 7), (53, 1, 9, 3), (53, 1, 29, 3),

(53, 1, 3, 6), (61, 1, 5, 3), (67, 1, 23, 3), (71, 1, 8, 3), (71, 1, 6, 4), (71, 1, 3, 7), (71, 1, 2, 9),

(79, 1, 20, 3), (79, 1, 2, 7), (83, 1, 27, 3), (83, 1, 3, 9), (89, 1, 5, 3), (97, 2, 12545, 3), (97, 1, 7, 4).
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One might note that the restriction q ∤ x can be removed, with a modicum of effort, at least for
certain values of q. The cases where primitive divisor arguments are inapplicable correspond to q ∈

{7, 23, 31, 47, 71, 79} and y even (and this is where the great majority of work lies in proving Theorem 1).
If q = 7, Theorem 1 generalizes recent work of Koutsianas [2020], who established a similar result under
certain conditions upon α and q, and, in particular, showed that (3) has no solutions with q = 7 and
prime n ≡ 13, 23 (mod 24). We note that the solution(s) with q = 83 were omitted in the statement of
Theorem 1 of Berczes and Pink [2012].

Our results for (2) with δ = 1 are less complete, at least when α is odd.

Theorem 2. Suppose that

q ∈ {7, 11, 13, 19, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71, 79, 83}. (4)

If x and n are positive integers, q ∤ x , n ≥ 3 and

x2
− q2k+1

= yn, (5)

where y and k are integers, then (q, k, y, n) is one of

(7, 2, 393, 3), (7, 1, −3, 5), (11, 1, 37, 3) (11, 0, 5, 5), (11, 1, 37, 3), (13, 0, 3, 5),

(19, 0, 5, 3), (19, 2, −127, 3), (19, 0, −3, 4), (19, 0, 3, 4), (23, 1, 1177, 3),

(31, 0, −3, 3), (43, 0, −3, 3), (71, 0, 5, 3), (71, 1, −23, 3), (79, 0, 45, 3).

To the best of our knowledge, these are the first examples of primes q for which (5) has been completely
solved (though the cases with k = 0 are treated in the thesis of Barros [2010]). There are eight other
primes in the range 3 ≤ q < 100 for which we are unable to give a similarly satisfactory statement. For
four of these, namely q = 3, 5, 17 and 37, the equation (5) has a solution with y = ±1. For such primes
we are unaware of any results that would enable us to completely treat fixed exponents n of moderate
size; this difficulty is well known for the D = −2 case of (1). One should note that it is relatively easy
to solve (5) for q ∈ {3, 5, 37}, under the additional assumption that y is even (and somewhat harder if
q = 17 and y is even). For the other four primes, namely q = 41, 73, 89 and 97, we give a method which
appears theoretically capable of success, but is alas prohibitively expensive, computationally speaking.
We content ourselves by proving the following modest result for these primes.

Theorem 3. Let q ∈ {41, 73, 89, 97}. The only solutions to (5) with q ∤ x and 3 ≤ n ≤ 1000 are with
(q, k, y, n) equal to one of

(41, 0, −2, 5), (41, 0, 2, 3), (41, 0, 2, 7), (41, 1, 10, 5), (73, 0, −6, 4),

(73, 0, −4, 3), (73, 0, 2, 3), (73, 0, 3, 3), (73, 0, 6, 3), (73, 0, 6, 4), (73, 0, 72, 3),

(89, 0, −4, 3), (89, 0, −2, 3), (89, 0, 2, 5), (89, 0, 2, 13), (97, 0, 2, 7).

There are no solutions to (5) with n > 1000, q ∤ x and either q = 73 and y ≡ 0 (mod 2), or with q = 97
and y ≡ 1 (mod 2).
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The additional assumption that the exponent of our prime q is even simplifies matters considerably.
In the case of (3), Berczes and Pink [2008] deduced Theorem 1 for even values of α (whence primitive
divisor technology works efficiently). For completeness, we extend this to q < 1000; the results for
q < 100 are, of course, just a special case of Theorem 1.

Theorem 4. If x, y, q, k and n are positive integers with q prime, 2 ≤ q < 1000, q ∤ x , n ≥ 3 and

x2
+ q2k

= yn, (6)

then (q, k, y, n) is one of

(2, 1, 5, 3), (3, 2, 13, 3), (7, 1, 65, 3), (7, 1, 5, 4), (11, 1, 5, 3), (29, 1, 5, 7),

(41, 1, 29, 4), (41, 1, 5, 5), (47, 1, 17, 3), (97, 1, 12545, 3), (107, 1, 37, 3), (191, 1, 65, 3),

(239, 1, 169, 4), (239, 1, 13, 8), (431, 1, 145, 3), (587, 1, 197, 3), (971, 1, 325, 3).

More interesting for us is the case where the difference x2
− yn is positive (so that primitive divisor

arguments are inapplicable and there are no prior results available in the literature). We prove the following.

Theorem 5. If x, q, k and n are positive integers with q prime, 2 ≤ q < 1000, q ∤ x , n ≥ 3 and

x2
− q2k

= yn, (7)

where y is an integer, then (q, k, y, n) is one of

(3, 1, −2, 3), (3, 1, 40, 3), (3, 1, ±2, 4), (3, 2, −2, 5), (5, 2, 6, 3), (7, 2, 15, 3), (7, 1, 2, 5), (11, 1, 12, 3),

(11, 2, 3, 5), (13, 1, 3, 3), (13, 1, 12, 5), (17, 1, −4, 3), (17, 1, ±12, 4), (17, 2, 42, 3), (29, 1, −6, 3),

(31, 1, 2, 7), (43, 1, −12, 3), (43, 1, 126, 3), (43, 4, 96222, 3), (47, 1, 6300, 3), (53, 1, 6, 3),

(71, 1, 30, 3), (71, 2, −136, 3), (89, 1, 84, 3), (97, 2, 3135, 3), (101, 1, 24, 3), (109, 1, 20, 3),

(109, 1, 35, 3), (109, 1, 570, 3), (127, 1, −10, 3), (127, 1, 8, 3), (127, 1, 198, 3), (127, 1, 2, 9),

(179, 1, −30, 3), (193, 1, 63, 3), (197, 1, 260, 3), (223, 1, 30, 3), (251, 1, −10, 3), (251, 1, −6, 5),

(257, 1, −4, 5), (263, 1, 2418, 3), (277, 1, −30, 3), (307, 1, 60, 3), (307, 1, 176, 3), (307, 2, 2262, 3),

(359, 1, −28, 3), (383, 2, 25800, 3), (397, 1, −42, 3), (431, 1, 12, 3), (433, 1, −12, 3), (433, 1, 143, 3),

(433, 2, 26462, 3), (479, 1, 90, 3), (499, 1, −12, 5), (503, 1, 828, 3), (557, 1, −60, 3), (577, 1, ±408, 4),

(593, 1, −70, 3), (601, 1, 72, 3), (659, 1, 42, 3), (683, 1, 193346, 3), (701, 1, 4452, 3), (727, 1, 18, 3),

(739, 1, 234, 3), (769, 1, 255, 3), (811, 1, −70, 3), (857, 1, −72, 3), (997, 1, 48, 3).

We note that, with sufficient computational power, there is no obstruction to extending the results of
Theorems 4 and 5 to larger prime values q . Without fundamentally new ideas, it is not clear that the same
may be said of, for example, Theorem 1. In this case, the bounds we obtain upon the exponent n via
linear forms in logarithms, even for relatively small q , leave us with a computation which, while finite, is
barely tractable.
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Equation (8) has been completely resolved [Ivorra 2003; Siksek 2003] for q = 2, except for the case
(α, δ) = (1, 1) which corresponds to D = −2 in (1). The solutions for q = 2 in our theorems are included
for completeness. For the remainder of the paper, we suppose that q is an odd prime. In particular, we
are concerned with the equation

x2
+ (−1)δqα

= yn, gcd(x, y) = 1, α > 0, (8)

where q is a fixed odd prime, n ≥ 3, and δ ∈ {0, 1}.
Our proofs will use a broad combination of techniques, which include

• lower bounds for linear forms in complex and p-adic logarithms which yield bounds for the exponent n
in (8);

• Frey–Hellegouarch curves and their Galois representations which provide a wealth of local informa-
tion regarding solutions to (8);

• the celebrated primitive divisor theorem of Bilu, Hanrot and Voutier, that can be used to treat most
cases of (8) when y is odd and δ = 0;

• elementary descent arguments that reduce (8) for a fixed exponent n to Thue–Mahler equations,
which are possible to resolve thanks to the Thue–Mahler solver associated to [Gherga and Siksek
2022].

The outline of this paper is as follows. In Section 2, we solve the equation x2
+ (−1)δqα

= yn for
n ∈ {3, 4} and 3 ≤ q < 100 by reducing the problem to the determination of S-integral points on elliptic
curves. In Section 3, we solve the equation x2

− q2k
= yn , for q in the range 3 ≤ q < 1000, with y

odd, using an elementary sieving argument; this completes the proof of Theorem 5 in the case y is odd.
Next, Section 4 provides a short overview of Lucas sequences, their ranks of apparition, and the primitive
divisor theorem of Bilu, Hanrot and Voutier. We make use of this machinery in Section 5 to solve the
equation x2

+ q2k
= yn for q in the range 3 ≤ q < 1000, thereby proving Theorem 4. Section 6 reduces

the equation x2
− q2k

= yn , for even values of y, to Thue–Mahler equations of the form

yn
1 − 2n−2 yn

2 = qk . (9)

In Section 7, we give a brief outline of the modular approach to Diophantine equations. Section 8 applies
this modular approach, particularly the (n, n, n) Frey–Hellegouarch elliptic curves of Kraus [1997], to (9);
this allows us to deduce that there are no solutions for 3 ≤ q < 1000 except for possibly q ∈ {31, 127, 257},
where the mod n representation of the Frey–Hellegouarch curve arises from that of an elliptic curve with
full 2-torsion and conductor 2q . Before we can complete the proof of Theorem 5, we need an upper bound
for the exponent n. We give a sharpening of Bugeaud’s bound [1997] for the equation x2

− q2k
= yn ,

which uses (9) and the theory of linear forms in real and p-adic logarithms. In Section 10, we complete
the proof of Theorem 5; our approach makes use of a sieving technique that builds on the information
obtained from the modular approach in Section 8 and the upper bound for n established in Section 9. The
remainder of the paper is concerned with (8) where α = 2k + 1, and for 3 ≤ q < 100. In Section 11, we
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solve x2
+ q2k+1

= yn with y odd with the help of the primitive divisor theorem, and in Section 12 we
solve x2

− q2k+1
= y5 by reducing to Thue–Mahler equations.

It remains, then, to handle the equations x2
−q2k+1

= yn and x2
+q2k+1

= yn where, in the latter case,
we may additionally assume that y is even. In Section 13, we study the more general equation

yn
+ qαzn

= x2, gcd(x, y) = 1, (10)

where q is prime, using Galois representations of Frey–Hellegouarch curves. Our approach builds on
previous work of Bennett and Skinner [2004], and also on the work of Ivorra and Kraus [2006]. We
then restrict ourselves in Section 14 to the case z = ±1 and α odd in (10). In this section, we develop a
variety of sieves based upon local information coming from the Frey–Hellegouarch curves that allows
us, in many situations, to eliminate values of q from consideration completely and, in the more difficult
cases, to solve (8) for a fixed pair (q, n). In particular, we employ this strategy to complete the proofs of
Theorems 2 and 3. Finally, in Section 15, we return to bounds for linear forms in p-adic and complex
logarithms to derive explicit upper bounds upon n in (8), and then report upon a (somewhat substantial)
computation to use the arguments of Section 14 to solve (8) for all remaining pairs (q, n) required to
finish the proof of Theorem 1.

2. Reduction to S-integral points on elliptic curves for n ∈ {3, 4}

In the following sections, it will be of value to us to assume that the exponent n in (8) is not too small.
This is primarily to ensure that the Frey–Hellegouarch curve we attach to a putative solution has a
corresponding mod n Galois representation that is irreducible. For suitably large prime values of n
(typically, n ≥ 7), the desired irreducibility follows from Mazur’s isogeny theorem. In Section 4, such an
assumption allows us to (mostly) ignore so-called defective Lucas sequences.

In this section, we treat separately the cases n = 3 and n = 4 for q < 100, where the problem of
solving (8) reduces immediately to one of determining S-integral points on specific models of genus one
curves; here S = {q}. This approach falters for many values of q in the range 100 < q < 1000 as we are
often unable to compute the Mordell–Weil groups of the relevant elliptic curves. Thus for the proofs of
Theorems 4 and 5 for exponents n = 3, n = 4, where we treat values of q less than 1000, we shall employ
different techniques including sieving arguments and reduction to Thue–Mahler equations.

The case n = 3. Supposing that we have a coprime solution to (8) with n = 3, we can write α = 6b + c,
where 0 ≤ c ≤ 5. Taking X = y/q2b and Y = x/q3b, it follows that (X, Y ) is an S-integral point on the
elliptic curve

Y 2
= X3

+ (−1)δ+1qc, (11)

where S = {q}. Here, for a particular choice of δ ∈ {0, 1} and prime q we may use the standard method for
computing S-integral points on elliptic curves based on lower bounds for linear forms in elliptic logarithms
(e.g., [Pethő et al. 1999]). We made use of the built-in Magma [Bosma et al. 1997] implementation of this
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q δ α x y

2 0 1 5 3
2 0 2 11 5
2 1 1 1 −1
2 1 7 71 17
2 1 9 13 −7
2 1 3 3 1
3 0 4 46 13
3 0 5 10 7
3 1 1 2 1
3 1 2 1 −2
3 1 2 253 40
5 1 1 2 −1
5 1 4 29 6
7 0 1 1 2
7 0 1 181 32
7 0 2 524 65
7 0 3 13 8
7 1 4 76 15
7 1 5 7792 393

11 0 1 4 3
11 0 1 58 15
11 0 2 2 5
11 0 3 9324 443
11 1 2 43 12
11 1 3 228 37
13 0 1 70 17
13 1 2 14 3
17 1 1 3 −2
17 1 1 4 −1

q δ α x y

17 1 1 5 2
17 1 1 9 4
17 1 1 23 8
17 1 1 282 43
17 1 1 375 52
17 1 7 21063928 76271
17 1 1 378661 5234
17 1 2 15 −4
17 1 4 397 42
19 0 1 18 7
19 1 1 12 5
19 1 5 654 −127
23 0 1 2 3
23 0 3 588 71
23 1 3 40380 1177
29 1 2 25 −6
31 1 1 2 −3
37 1 1 6 −1
37 1 1 8 3
37 1 1 3788 243
37 1 3 228 11
41 1 1 7 2
43 1 1 4 −3
43 1 2 11 −12
43 1 8 30042907 96222
43 1 2 1415 126
47 0 1 13 6
47 0 1 41 12
47 0 1 500 63
47 0 2 52 17

q δ α x y

47 0 3 549 74
47 1 2 500047 6300
53 0 1 26 9
53 0 1 156 29
53 1 2 55 6
61 0 1 8 5
67 0 1 110 23
71 0 1 21 8
71 1 1 14 5
71 1 2 179 30
71 1 3 588 −23
71 1 4 4785 −136
73 1 1 3 −4
73 1 1 9 2
73 1 1 10 3
73 1 1 17 6
73 1 1 611 72
73 1 1 6717 356
79 0 1 89 20
79 1 1 302 45
83 0 1 140 27
89 0 1 6 5
89 1 1 5 −4
89 1 1 9 −2
89 1 1 33 10
89 1 1 408 55
89 1 2 775 84
97 0 2 1405096 12545
97 1 1 77 18
97 1 4 175784 3135

Table 1. Solutions to the equation x2
+ (−1)δqα

= y3 for primes 2 ≤ q < 100, δ ∈ {0, 1}

and x , y, α integers satisfying α > 0, x > 0, y ̸= 0, and gcd(x, y) = 1.

method to compute these S-integral points on (11) for δ ∈ {0, 1} and 2 ≤ q < 100. We obtained a total of
83 solutions to (8) for these values of q with α > 0, x > 0, y ̸= 0 and gcd(x, y) = 1. These are given in
Table 1.

The case n = 4. Next we consider the case n = 4 separately. Write α = 4b + c where 0 ≤ c ≤ 3. Let
X = (y/qb)2, Y = xy/q3b. Then (X, Y ) is an S-integral point on the elliptic curve

Y 2
= X (X2

+ (−1)δ+1qc), (12)
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q δ α x y

2 0 5 7 3
2 1 3 3 1
3 1 1 2 1
3 1 5 122 11
3 1 2 5 2

q δ α x y

7 0 1 3 2
7 0 2 24 5

17 0 1 8 3
17 1 2 145 12
19 1 1 10 3

q δ α x y

23 0 3 6083 78
31 0 1 15 4
41 0 2 840 29
71 0 1 35 6
73 1 1 37 6
97 0 1 48 7

Table 2. Solutions to the equation x2
+ (−1)δqα

= y4 for primes 2 ≤ q < 100, δ ∈ {0, 1}

and x , y, α integers satisfying α > 0, x > 0, y > 0, and gcd(x, y) = 1.

where S = {q}. We again appealed to the built-in Magma [Bosma et al. 1997] implementation of this
method to compute these S-integral points on (12) for δ ∈ {0, 1} and 2 ≤ q < 100. We obtained a total of
16 solutions to (8) for these values of q with α > 0, x > 0, y > 0 and gcd(x, y) = 1. These are given in
Table 2.

3. An elementary approach to x2 − q2k = yn with y odd

In this section, we apply an elementary factorization argument to prove Theorem 5 for y odd. In other
words, we consider the equation

x2
− q2k

= yn, x , k, n positive integers, n ≥ 3, gcd(x, y) = 1, y an odd integer. (13)

Here q ≥ 3 is a prime. From this, we immediately see that

x + qk
= yn

1 and x − qk
= yn

2 , (14)

with y = y1 y2, so that we have

yn
1 − yn

2 = 2qk . (15)

If 2 | n, then yn
1 ≡ yn

2 ≡ 1 (mod 4), a contradiction. We may suppose henceforth, without loss of generality,
that n is an odd prime. Observe that

(y1 − y2)(yn−1
1 + yn−2

1 y2 + · · · + yn−1
2 ) = yn

1 − yn
2 = 2qk . (16)

Clearly y1 > y2 and, as they are both odd, y1 − y2 ≥ 2 and 2 | (y1 − y2). Write

d = gcd(y1 − y2, yn−1
1 + yn−2

1 y2 + · · · + yn−1
2 )

so that y2 ≡ y1 (mod d) and

0 ≡ yn−1
1 + yn−2

1 y2 + · · · + yn−1
2 ≡ nyn−1

1 (mod d).

Similarly, we have nyn−1
2 ≡ 0 (mod d) and so d ∈ {1, n}.
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We first deal with the case d = n, whereby, from (16), q = n. Let r = ordn(y1 − y2) ≥ 1 and write
y1 = y2 + nrκ where n ∤ κ . Then

ordn(yn−1
1 + yn−2

1 y2 + · · · + yn−1
2 ) = ordn

(
(y2 + nrκ)n

− yn
2

nrκ

)
= 1.

Hence
y1 − y2 = 2nk−1 and yn−1

1 + yn−2
1 y2 + · · · + yn−1

2 = n, (17)

and so

n =

n−1∏
i=1

|y1 − ζ i
n y2| ≥

∣∣|y1| − |y2|
∣∣n−1

.

Recall that y1 and y2 are both odd. If y2 ̸= ±y1, then the right-hand side of this last inequality is at
least 2n−1, which is impossible. Thus y2 = ±y1, so that, from (17), yn−1

1 | n. It follows that |y1| = |y2| = 1,
contradicting (14).

Thus d = 1, whence

y1 − y2 = 2 and yn−1
1 + yn−2

1 y2 + · · · + yn−1
2 = qk . (18)

Since the polynomial Xn−1
+ Xn−2

+ · · · + 1 has a root modulo q , the Dedekind–Kummer theorem tells
us that q splits in Z[ζn] and so q ≡ 1 (mod n). We therefore have the following.

Proposition 3.1. If x, y, q, k and n are positive integers satisfying (13) with n and q prime, then n | (q−1)

and there exists an odd positive integer X such that y = X (X + 2) and

(X + 2)n
− Xn

= 2qk . (19)

This last result makes it an extremely straightforward matter to solve (7) in the case y is odd.

Lemma 3.2. The only solutions to (13) with 3 ≤ q < 1000 prime correspond to the identities

762
− 74

= 153, 1222
− 114

= 35. 142
− 132

= 33, 1757842
− 974

= 31353,

2342
− 1092

= 353, 5362
− 1932

= 633, 17642
− 4332

= 1433, 41442
− 7692

= 2553.

Proof. Suppose first that n = 3, where (19) becomes

3(X + 1)2
+ 1 = qk . (20)

From [Cohn 1997; 2003], we know that the equation 3u2
+ 1 = ym has no solutions with m ≥ 3. We

conclude that k = 1 or 2. Solving (20) with k = 1 or 2 and 3 ≤ q < 1000 leads to the seven solutions with
n = 3.

We now suppose that n ≥ 5 is prime. By a theorem of Bennett and Skinner [2004, Theorem 2],
the only solutions to the equation Xn

+ Y n
= 2Z2 with n ≥ 5 prime and gcd(X, Y ) = 1 are with

either |XY | = 1 or (n, X, Y, Z) = (5, 3, −1, ±11). We note that if k is even then (19) can be rewritten
as (X + 2)n

− Xn
= 2(qk/2)2, and therefore n = 5, X = 1 and qk/2

= 11. This yields the solution
1222

− 114
= 35.
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We may therefore suppose that k is odd. Recalling that n | (q − 1) leaves us with precisely 191 pairs
(q, n) to consider, ranging from (11, 5) to (997, 83). Fix one of these pairs (q, n) and let ℓ ∤ nq be an
odd prime. Let Zℓ be the set of β ∈ Z/(ℓ − 1)Z such that β is odd and the polynomial

(X + 2)n
− Xn

− 2qβ

has a root in Fℓ. We note that the value of qk modulo ℓ depends only on the residue class of k modulo
ℓ − 1. From (19), we deduce that (k mod ℓ) ∈ Zℓ. Now let ℓ1, ℓ2, . . . , ℓm be a collection of odd primes
with ℓi ∤ nq for 1 ≤ i ≤ m. Let

M = lcm(ℓ1 − 1, ℓ2 − 1, . . . , ℓm − 1) (21)

and set
Zℓ1,...,ℓm = {β ∈ Z/MZ : (β mod ℓi ) ∈ Zℓi for i = 1, . . . , m}. (22)

It is clear that (k mod M)∈Zℓ1,...,ℓm . We wrote a short Magma script which, for each pair (q, n), computed
Zℓ1,...,ℓm where ℓ1, ℓ2, . . . , ℓm are the odd primes ≤ 101 distinct from n and q . In all 191 cases we found
that Zℓ1,...,ℓm = ∅, completing the desired contradiction. □

4. Lucas sequences and the primitive divisor theorem

The primitive divisor theorem of Bilu, Hanrot and Voutier [Bilu et al. 2001] shall be our main tool
for treating (8) when δ = 0 and y is odd. In this section, we state this result and a related theorem of
Carmichael that shall be useful later. A pair of algebraic integers (γ, δ) is called a Lucas pair if γ + δ

and γ δ are nonzero coprime rational integers, and γ /δ is not a root of unity. We say that two Lucas pairs
(γ1, δ1) and (γ2, δ2) are equivalent if γ1/γ2 = ±1 and δ1/δ2 = ±1. Given a Lucas pair (γ, δ) we define
the corresponding Lucas sequence by

Lm =
γ m

− δm

γ − δ
, m = 0, 1, 2, . . . .

A prime ℓ is said to be a primitive divisor of the m-th term if ℓ divides Lm but ℓ does not divide
(γ − δ)2

· L1L2 · · · Lm−1.

Theorem 6 [Bilu et al. 2001]. Let (γ, δ) be a Lucas pair and write {Lm} for the corresponding Lucas
sequence.

(i) If m ≥ 30, then Lm has a primitive divisor.

(ii) If m ≥ 11 is prime, then Lm has a primitive divisor.

(iii) L7 has a primitive divisor unless (γ, δ) is equivalent to ((a −
√

b)/2, (a +
√

b)/2) where

(a, b) ∈ {(1, −7), (1, −19)}. (23)

(iv) L5 has a primitive divisor unless (γ, δ) is equivalent to ((a −
√

b)/2, (a +
√

b)/2) where

(a, b) ∈ {(1, 5), (1, −7), (2, −40), (1, −11), (1, −15), (12, −76), (12, −1364)}. (24)
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Let ℓ be a prime. We define the rank of apparition of ℓ in the Lucas sequence {Lm} to be the smallest
positive integer m such that ℓ | Lm . We denote the rank of apparition of ℓ by mℓ. The following theorem
will be useful for us; a concise proof may be found in [Bennett et al. 2022, Theorem 8].

Theorem 7 [Carmichael 1913]. Let (γ, δ) be a Lucas pair, and {Lm} the corresponding Lucas sequence.
Let ℓ be a prime.

(i) If ℓ | γ δ then ℓ ∤ Lm for all positive integers m.

(ii) Suppose ℓ ∤ γ δ. Write D = (γ − δ)2
∈ Z.

(a) If ℓ ̸= 2 and ℓ | D, then mℓ = ℓ.
(b) If ℓ ̸= 2 and

( D
ℓ

)
= 1, then mℓ | (ℓ − 1).

(c) If ℓ ̸= 2 and
( D

ℓ

)
= −1, then mℓ | (ℓ + 1).

(d) If ℓ = 2, then mℓ = 2 or 3.

(iii) If ℓ ∤ γ δ then

ℓ | Lm ⇐⇒ mℓ | m.

5. The equation x2 + q2k = yn: the proof of Theorem 4

In this section, we prove Theorem 4 with the help of the primitive divisor theorem. We are concerned
with the equation

x2
+ q2k

= yn, x , k, n positive integers, n ≥ 3, gcd(x, y) = 1. (25)

Here q ≥ 3 is a prime. Considering this equation modulo 8 immediately tells us that y is odd and x is
even. Without loss of generality, we may suppose that 4 | n or that n is divisible by an odd prime.

Lemma 5.1. Solutions to (25) with 4 | n and odd prime q satisfy k = 1, q2
= 2yn/2

−1 and x = (q2
−1)/2.

In particular, the only solutions to (25) with 4 | n and prime 3 ≤ q < 1000 correspond to the identities

242
+ 72

= 54, 8402
+ 412

= 294 and 285602
+ 2392

= 138
= 1694.

Proof. Suppose that 4 | n. Then (yn/2
+ x)(yn/2

− x) = q2k , and so

yn/2
+ x = q2k and yn/2

− x = 1.

Thus 2yn/2
= q2k

+ 1. By Theorem 1 of [Bennett and Skinner 2004], the only solutions to the equation
Ar

+ Br
= 2C2 with r ≥ 4, ABC ̸= 0 and gcd(A, B) = 1 are with |AB| = 1 or (r, A, B, C) =

(5, 3, −1, ±11). It follows that the equation 2yn/2
= q2k

+ 1 has no solutions with k ≥ 2 and 4 | n.
Therefore k = 1, and hence q2

= 2yn/2
− 1. The only primes in the range 3 ≤ q < 1000, such that

q2
= 2yn/2

− 1 with 4 | n, are q = 7, 41 and 239, which lead to the solutions stated in the lemma. □
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Henceforth, we will suppose that n is an odd prime. Thus x +qki = αn , where we can write α = a +bi ,
for a and b coprime integers with y = a2

+ b2. Subtracting this equation from its conjugate yields

qk
= b ·

αn
− αn

α − α
. (26)

Lemma 5.2. Solutions to (25) with n = 3 and odd prime q must satisfy

(i) either q = 3 and (k, x, y) = (2, 46, 13);

(ii) or q = 3a2
− 1 for some positive integer a and (k, x, y) = (1, a3

− 3a, a2
+ 1);

(iii) or q2
= 3a2

+ 1 for some positive integer a and (k, x, y) = (1, 8a3
+ 3a, 4a2

+ 1).

In particular, the only solutions to (25) with n = 3 and prime 3 ≤ q < 1000 correspond to the identities

462
+ 34

= 133, 5242
+ 72

= 653, 22
+ 112

= 53, 522
+ 472

= 173,

14050962
+ 972

= 125453, 1982
+ 1072

= 373, 4882
+ 1912

= 653,

16922
+ 4312

= 1453, 27022
+ 5872

= 1973, 57782
+ 9712

= 3253.

Proof. Let n = 3. Thanks to Table 1, we know that the only solution with q = 3 is the one given in (i).
We may thus suppose that q ≥ 5. Equation (26) gives

qk
= b(3a2

− b2).

By the coprimality of a and b, we have b = ±1 or b = ±qk . We note that b = −1 gives qk
= 1 − 3a2

which is impossible. Also if b = qk then 3a2
− q2k

= 1 which is impossible modulo 3. Thus either b = 1
or b = −qk . If b = 1, then

qk
= 3a2

− 1,

and if b = −qk then
q2k

= 3a2
+ 1.

From Theorem 1.1 of [Bennett and Skinner 2004], these equations have no solutions in positive integers if
k ≥ 4 or k ≥ 2, respectively. If k = 3, the elliptic curve corresponding to the first equation has Mordell–Weil
rank 0 over Q and it is straightforward to show that the equation has no integer solutions. We therefore
have that k = 1 in either case. Thus q = 3a2

−1 or q2
= 3a2

+1, and these yield the parametric solutions
in (ii) and (iii). For 5 ≤ q < 1000, the primes q of the form 3a2

− 1 are

11, 47, 107, 191, 431, 587, 971.

For 5 ≤ q < 1000, the primes q satisfying q2
= 3a2

+1 are q = 7 and 97. These yield the solutions given
in the statement of the lemma. □

We expect that there are infinitely many primes q of the form 3a2
− 1, but are very unsure about the

number of primes q satisfying q2
= 3a2

+1 (the only ones known are 7, 97 and 708158977). Quantifying
such results, in any case, is well beyond current technology.
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In view of Lemma 5.2, we henceforth suppose that n is ≥ 5 and prime. The following lemma now
completes the proof of Theorem 4.

Lemma 5.3. Let (k, x, y, n) be a solution to (25) with prime n ≥ 5 and odd prime q. Then k is odd,{
n | (q − 1) if q ≡ 1 (mod 4),
n | (q + 1) if q ≡ 3 (mod 4),

(27)

and there is an integer a such that

y = a2
+ 1, x =

(a + i)n
+ (a − i)2

2
,

(a + i)n
− (a − i)n

2i
= ±qk .

In particular, the only solutions to (25) with prime 3 ≤ q < 1000 and prime n ≥ 5 correspond to the
identities

382
+ 412

= 55, 2782
+ 292

= 57.

Proof. Suppose n is ≥ 5 and prime in (25). By Theorem 1 of [Bennett et al. 2010], the equation
A4

+ B2
= Cm has no solutions satisfying gcd(A, B) = 1, AB ̸= 0 and m ≥ 4. We conclude that k is odd.

We note that (α, α) is a Lucas pair and write {Lm} for the corresponding Lucas sequence. By Theorem 6,
Ln must have a primitive divisor, and from (26) this primitive divisor is q . In particular, q does not divide
D = (α −α)2

= −4b2. Thus by (26) we have b = ±1 and D = −4. Moreover, the rank of apparition of q
in the sequence is n. By Theorem 7, we have n | (q −1) if q ≡ 1 (mod 4) and n | (q +1) if q ≡ 3 (mod 4).

We now let q be a prime in the range 3 ≤ q < 1000. There are 168 pairs (q, n) with q in this range
and n a prime ≥ 5 satisfying (27), ranging from (19, 5) to (997, 83). For each of these pairs (q, n), and
each sign η = ±1, we need to consider the equation

(a + i)n
− (a − i)n

2i
= η · qk, (28)

where k is an odd integer. We shall follow the sieving approach of Lemma 3.2 to eliminate all but two of
the possible 2 × 168 = 336 triples (q, n, η). Fix such a triple (q, n, η). Let fn ∈ Z[X ] be the polynomial

fn(X) =
(X + i)n

− (X − i)n

2i
.

Let ℓ ∤ nq be an odd prime, and let Zℓ be the set β ∈ Z/(ℓ−1)Z such that β is odd and fn(X)−η ·qβ has
a root in Fℓ. It follows that (k (mod ℓ)) ∈ Zℓ. Now let ℓ1, ℓ2, . . . , ℓm be a collection of odd primes ∤ qn.
Define M and Zℓ1,...,ℓm by (21) and (22), respectively. It is clear that (k (mod M)) ∈ Zℓ1,...,ℓm . We wrote
a short Magma script which, for each triple (q, n, η), computed Zℓ1,...,ℓm where ℓ1 . . . , ℓm are the odd
primes < 150 distinct from n and q. In all but two of the 336 cases we found that Zℓ1,...,ℓm = ∅. The
two exceptions are (q, n, η) = (41, 5, 1) and (29, 7, −1), and so these are the only two cases we need to
consider. Let

Fn(X, Y ) =
(X + iY )n

− (X − iY )n

2iY
.
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This is a homogeneous degree n − 1 polynomial belonging to Z[X, Y ]. Now (28) can be written as
Fn(a, 1) = η · qk . Thus it is sufficient to solve the Thue–Mahler equations Fn(X, Y ) = η · qk for
(q, n, η) = (41, 5, 1) and (29, 7, −1). Explicitly these equations are

5X4
− 10X2Y 2

+ Y 4
= 41k (29)

and

7X6
− 35X4Y 2

+ 21X2Y 4
− Y 6

= −29k . (30)

Using the Magma implementation of the Thue–Mahler solver described in [Gherga and Siksek 2022], we
find that the solutions to (29) are (X, Y, k) = (±2, ±1, 1) and (0, ±1, 0), and that the solutions to (30)
are also (X, Y, k) = (±2, ±1, 1) and (0, ±1, 0). These lead to the two solutions stated in the lemma. □

6. The equation x2 − q2k = yn with y even: reduction to Thue–Mahler equations

Section 3 dealt with (7) in the case that y is odd, using purely elementary means. We now turn our
attention to (7) with y even, and consider the equation

x2
− q2k

= yn, x , k, n positive integers, n ≥ 3, gcd(x, y) = 1, y an even integer. (31)

Here q ≥ 3 is a prime and, without loss of generality, n = 4 or n is an odd prime.

Lemma 6.1. Write γ = 1 +
√

2. Any solution to (31) with n = 4 and q an odd prime must satisfy k = 1,

q =
γ 2m

+ γ −2m

2
, x =

γ 4m
+ 6 + γ −4m

8
and y =

γ 2m
− γ −2m

2
√

2
, (32)

for some integer m. In particular, the only solutions with 3 ≤ q < 1000 correspond to the identities

52
− 32

= (±2)4, 1452
− 172

= (±12)4 and 1664652
− 5772

= (±408)4.

Proof. Suppose n = 4. Then (x + y2)(x − y2) = q2k , and so, by the coprimality of x and y,

x + y2
= q2k and x − y2

= 1,

or equivalently

x =
q2k

+ 1
2

and q2k
− 2y2

= 1. (33)

First we show that k = 1. From the second equation, we have (qk
+ 1)(qk

− 1) = 2y2. Since the greatest
common divisor of the two factors on the left is 2 we see that one of the two factors must be a perfect
square, i.e., qk

+ 1 = z2 or qk
− 1 = z2 for some nonzero integer z, and it is easy to see that k must be

odd. The impossibility of these cases for k ≥ 3 follows from Mihăilescu’s theorem [2004] (Catalan’s
conjecture). Hence k = 1.

The second equation in (33) implies that q + y
√

2 is a totally positive unit in Z[
√

2]. Thus

q + y
√

2 = γ 2m and q − y
√

2 = γ −2m, (34)
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for some integer m. The formulae for q and y in (32) follow from this, and the formula for x follows
from the first relation in (33).

We focus on primes 3 ≤ q < 1000. From the first relation in (34),

|m| <
log(2q)

2 log γ
<

log 2000

2 log(1 +
√

2)
< 5.

Thus −4 ≤ m ≤ 4. The values m = ±1, ±2, ±4, respectively, give the three solutions in the statement of
the lemma. If m = 0 or ±3, then we obtain q = 1 or 99 which are not prime. □

In view of Lemma 6.1, we may henceforth suppose that n ≥ 3 is odd. Let x ′ be either x or −x , chosen so
that x ′

≡ qk (mod 4). From (31), we deduce the existence of relatively prime integers y1 and y2 for which

x ′
+ qk

= 2yn
1 and x ′

− qk
= 2n−1 yn

2 , (35)

with y = 2y1 y2, so that we have
yn

1 − 2n−2 yn
2 = qk . (36)

We have thus reduced the resolution of (31) for particular q and n to solving a degree n Thue–Mahler
equation.

Lemma 6.2. The only solutions to (31) with n ∈ {3, 5} and 3 ≤ q < 1000 an odd prime correspond to the
identities

532
− 32

= 403, 12
− 32

= (−2)3, 72
− 34

= (−2)5, 292
− 54

= 63, 92
− 72

= 25, 432
− 112

= 123,

4992
− 132

= 125, 152
− 172

= −43, 3972
− 174

= 423, 252
− 292

= (−6)3, 112
− 432

= (−12)3,

14152
− 432

= 1263, 300429072
− 438

= 962223, 5000472
− 472

= 63003, 552
− 532

= 63,

1792
− 712

= 303, 47852
− 714

= (−136)3, 7752
− 892

= 843, 1552
− 1012

= 243,

136092
− 1092

= 5703, 1412
− 1092

= 203, 1292
− 1272

= 83, 1232
− 1272

= (−10)3,

27892
− 1272

= 1983, 712
− 1792

= (−30)3, 41972
− 1972

= 2603, 2772
− 2232

= 303,

2492
− 2512

= (−10)3, 2352
− 2512

= (−6)5, 2552
− 2572

= −45, 1189012
− 2632

= 24183,

2232
− 2772

= (−30)3, 23552
− 3072

= 1763, 1430272
− 3074

= 22623, 5572
− 3072

= 603,

3272
− 3592

= (−28)3, 41466892
− 3834

= 258003, 2892
− 3972

= (−42)3, 4332
− 4312

= 123,

4312
− 4332

= (−12)3, 43086932
− 4334

= 264623, 9792
− 4792

= 903, 132
− 4992

= (−12)5,

238312
− 5032

= 8283, 3072
− 5572

= (−60)3, 932
− 5932

= (−70)3, 8572
− 6012

= 723,

7132
− 6592

= 423, 850164152
− 6832

= 1933463, 2970532
− 7012

= 44523, 7312
− 7272

= 183,

36552
− 7392

= 2343, 5612
− 8112

= (−70)3, 6012
− 8572

= (−72)3, 10512
− 9972

= 483.

Proof. For n ∈ {3, 5} and primes 3 ≤ q < 1000, we solved the Thue–Mahler equation (36) using the Magma
implementation of the Thue–Mahler solver described in [Gherga and Siksek 2022]. The computation
resulted in the solutions given in the statement of the lemma. □
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7. The modular approach to Diophantine equations: some background

Let F/Q be an elliptic curve over the rationals of conductor NF and minimal discriminant 1F . Let
p ≥ 5 be a prime. The action of Gal(Q/Q) on the p-torsion F[p] gives rise to a 2-dimensional mod p
representation

ρ̄F,p : Gal(Q/Q) → GL2(Fp).

Suppose ρ̄F,p is irreducible (that is, F does not have an p-isogeny); this can often be established by
appealing to Mazur’s isogeny theorem [1978]. A standard consequence of Ribet’s lowering theorem
[1990], building on the modularity of elliptic curves over Q due to Wiles and others [Wiles 1995; Breuil
et al. 2001], is that ρ̄F,p arises from a weight-2 newform of level

N = NF

/ ∏
ℓ ∥ NF

p|ordℓ(1F )

ℓ.

More precisely, there is a newform f of weight 2 and level N with normalized q-expansion

f = q+

∞∑
m=2

cmq
m (37)

such that

ρ̄F,p ∼ ρ̄ f,p, (38)

where p is a prime ideal above p of the ring of integers O f of the Hecke eigenfield K f = Q(c1, c2, . . . ).
The original motivation for the great theorems of Ribet and Wiles included Fermat’s last theorem. To

motivate what is to come in later sections, we quickly sketch the deduction of FLT from the above. Let x ,
y and z be nonzero coprime rational integers satisfying x p

+ y p
+ z p

= 0 where p ≥ 5 is prime. After
appropriately permuting x , y and z, we may suppose that 2 | y and that xn

≡ −1 (mod 4). Let F be the
Frey–Hellegouarch curve

Y 2
= X (X − x p)(X + y p).

It follows from Mazur’s isogeny theorem and related results that ρ̄E,p is irreducible. A short computation
reveals that

1F = 2−8(xyz)2p and NF = 2 Rad(xyz),

where Rad(m) denotes the product of the prime divisors of m. We find that N = 2. Thus ρ̄F,p arises
from a newform f of weight 2 and level 2; the nonexistence of such newforms provides the desired
contradiction.

It is possible to use a similar strategy to treat various Diophantine problems including generalized
Fermat equations Ax p

+ Byq
= Czr , for certain signatures (p, q, r). This is done by Kraus [1997] for

signature (p, p, p) and by Bennett and Skinner [2004] for signature (p, p, 2). Fortunately, these papers
provide recipes for the Frey–Hellegouarch curves F and for the levels N , and establish the required
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irreducibility of ρ̄F,n . We shall make frequent use of these recipes in later sections. It is known (and
easily checked using standard dimension formulae) that there are no weight-2 newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60, (39)

but there are newforms at all other levels. Thus, if the level N predicted by the recipes is not in the list (39)
then we do not immediately obtain a contradiction. Instead, we may compute the possible newforms
using implementations (for example, in Magma or SAGE) of modular symbols algorithms due to Cremona
[1997] and Stein [2007]. We then use the relation (38) to help us extract information about the solutions
to our Diophantine equation. In doing this, we shall often make use of the following standard result; see,
for example, [Kraus and Oesterlé 1992; Siksek 2012, Section 5].

Lemma 7.1. Let F/Q be an elliptic curve of conductor NF . Let f be a weight-2 newform of level N
having q-expansion as in (37). Suppose (38) holds for some prime p ≥ 5. Let ℓ ̸= p be a rational prime.

(i) If ℓ ∤ NF N then aℓ(F) ≡ cℓ (mod p).

(ii) If ℓ ∤ N but ℓ || NF then ℓ + 1 ≡ ±cℓ (mod p).

If f is a rational newform (i.e., K f = Q) then (i), (ii) also hold for ℓ = p.

We will also make frequent use of the following theorem.

Theorem 8 [Kraus 1997, Proposition 2]. Let f be a newform of weight 2 and level N with q-expansion
as in (37), and Hecke eigenfield K f with ring of integers O f . Write

M = lcm(4, N ) and µ(M) = M ·

∏
r |M

r prime

(
1 +

1
r

)
.

Let p be a prime ideal of O f and suppose the following two conditions hold.

(i) For all primes ℓ ≤ µ(M)/6, ℓ ∤ 2N , we have

ℓ + 1 ≡ cℓ (mod p).

(ii) For all primes ℓ ≤ µ(M)/6, ℓ | 2N , ℓ2 ∤ 4N , we have

(ℓ + 1)(cℓ − 1) ≡ 0 (mod p).

Then ℓ + 1 ≡ cℓ (mod p) for all primes ℓ ∤ 2N.

8. The equation x2 − q2k = yn with y even: an approach via Frey curves

We are still concerned with (31). In view of the results of Section 6, we may suppose that n ≥ 7 is prime.
To show that (31) has no solutions for a particular pair (q, n), it is enough to show the same for (36).
We shall think of (36) as a Fermat equation of signature (n, n, n) by writing it as yn

1 − 2n−2 yn
2 = qk

· 1n .
This enables us to apply recipes of Kraus [1997] for Frey–Hellegouarch curves and level lowering. The
following lemma will eliminate some cases when applying those recipes.
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Lemma 8.1. Suppose n ≥ 7 is prime. Then gcd(k, 2n) = 1.

Proof. Theorem 1.2 of [Bennett and Skinner 2004] asserts that the equation Ap
+ 2α B p

= C2 with prime
p ≥ 7 has no solutions in nonzero integers with gcd(A, B, C) = 1 and α ≥ 2. It immediately follows from
(36) that k is odd. Moreover, Theorem 3 of [Ribet 1997] asserts that the equation Ap

+ 2α B p
+ C p

= 0
has no solutions with ABC ̸= 0 for prime p ≥ 7 and 2 ≤ α ≤ p − 1. It follows that n ∤ k. □

Following Kraus, we attach to a solution of (36) a Frey–Hellegouarch curve F , where

F : Y 2
= X (X + yn

1 )(X + 2n−2 yn
2 ) (40)

if q ≡ 1 (mod 4), and
F : Y 2

= X (X − qk)(X + 2n−2 yn
2 ), (41)

if q ≡ 3 (mod 4). The Frey–Hellegouarch curve F is semistable, and has minimal discriminant and
conductor, respectively, given by

1F = 22n−12q2k(y1 y2)
n and NF = 2q · Rad2(y1 y2), (42)

where Rad2(m) denotes the product of the odd primes dividing m. From Kraus [1997], the mod n
representation of F arises from a newform f of weight 2 and level N = 2q .

Let ℓ ∤ 2q be a prime. Write

T = {a ∈ Z ∩ [−2
√

ℓ, 2
√

ℓ] : a ≡ ℓ + 1 (mod 4)}.

Let
D′

f,ℓ = ((ℓ + 1)2
− c2

ℓ) ·

∏
a∈T

(a − cℓ),

and

D f,ℓ =

{
ℓ ·D′

f,ℓ if K f ̸= Q,

D′

f,ℓ if K f = Q,

Lemma 8.2. Let f be a newform of weight 2 and level 2q, and suppose that (38) holds. Let ℓ ∤ 2q be a
prime. Then n | D f,ℓ.

Proof. If ℓ ∤ y1 y2, then ℓ ∤ NF and so is a prime of good reduction for F . As F has full 2-torsion we
deduce that 4 | (ℓ + 1 − aℓ(F)). By the Hasse–Weil bounds, aℓ(F) belongs to the set T . If ℓ | y1 y2, then
ℓ || NF . The lemma now follows from Lemma 7.1. □

It is straightforward from Lemma 8.2 and the fact that n | n that n | Norm(D f,ℓ). Thus if D f,ℓ ̸= 0, we
immediately obtain an upper bound upon the exponent n. This approach will result in a bound on the
exponent n in (31) unless f corresponds to an elliptic curve over Q with full 2-torsion and conductor
N = 2q; for this see [Siksek 2012, Section 9]. Mazur showed that such an elliptic curve exists if and only
if q ≥ 31 is a Fermat or a Mersenne prime; see, for example, [Siksek 2012, Theorem 8]. We note that 31,
127 and 257 are the only such primes in our range 3 ≤ q < 1000. We shall exploit this approach to prove
the following.



Differences between perfect powers: prime power gaps 1807

Proposition 8.3. Let n ≥ 7 and 3 ≤ q < 1000 be primes.

(i) If q ̸∈ {31, 127, 257}, then (31) has no solutions.

(ii) Suppose q ∈ {31, 127, 257}, write q = 2m
+ η where η = ±1, and let

Eq : Y 2
= X (X + 1)(X − η · 2m). (43)

Suppose (k, x, y) is a solution to (31) and let F be as above. Then

ρ̄F,n ∼ ρ̄Eq ,n.

In Cremona’s notation, these Eq are the elliptic curves 62a2, 254d2 and 514a2, for q = 31, 127 and
257, respectively.

Proof. There are no newforms of weight 2 and levels 6, 10 and 22. Therefore the proof is complete in the
cases where q ∈ {3, 5, 11}. We may thus suppose that 7 ≤ q < 1000 is prime and that q ̸= 11.

For a newform f of weight 2 and level 2q , and a collection of primes ℓ1, . . . , ℓm (all coprime to 2q),
we write D f,ℓ1,...,ℓm for the ideal of O f generated by D f,ℓ1, . . . ,D f,ℓm . Let B f,ℓ1,...,ℓm ∈ Z be the norm
of the ideal D f,ℓ1,...,ℓm . If ρ̄F,n ∼ ρ̄ f,n, then n | D f,ℓ1,...,ℓm by Lemma 8.2. As n | n, we deduce that
n | B f,ℓ1,...,ℓm . In our computations we will take ℓ1, . . . , ℓm to be all the primes < 200 distinct from 2
and q, and write B f for B f,ℓ1,...,ℓm .

We wrote a short Magma script which computed, for all newforms f at all levels 2q under consideration,
the integer B f . We found that B f ̸= 0 for all newforms f except for three rational newforms of levels 62,
254 and 514 (corresponding to q = 31, 127 and 257, respectively). Thus, for all other newforms, we at
least obtain a bound on n. In many cases this bound is already sharp enough to contradict our assumption
that n ≥ 7. We give a few examples.

Let q = 13. Then there are two eigenforms f1, f2 of level 2q = 26, and

B f1 = 3 × 5, B f2 = 3 × 7.

Thus we eliminate f1 from consideration, and also conclude that n = 7. It is natural to wonder if n = 7
can be eliminated by increasing the size of our set of primes ℓ1, . . . , ℓm , but this is not the case. The
newform f2 is rational and corresponds to the elliptic curve 26b1 with Weierstrass model

E ′
: Y 2

+ XY + Y = X3
− X2

− 3X + 3.

The torsion subgroup of E ′(Q) is isomorphic to Z/7Z, generated by the point (1, 0). In particular, for any
prime ℓ ∤ 26, we have 7 | (ℓ + 1 − aℓ(E ′)). Since aℓ(E ′) = cℓ( f2), we have 7 | B f2,ℓ. Thus 7 | B f,ℓ1,...,ℓn

regardless of the set of primes ℓ1, . . . , ℓm that we choose. However we can still obtain a contradiction
for n = 7 in this case. Indeed, we have ρ̄F,7 ∼ ρ̄ f2,7 ∼ ρ̄E ′,7. Since E ′ has nontrivial 7-torsion, the
representation ρ̄E ′,7 is reducible. However, the representation of the Frey curve ρ̄F,7 is irreducible as
shown by Kraus [1997, Lemme 4], contradicting the fact that F has full rational 2-torsion.



1808 Michael A. Bennett and Samir Siksek

For q = 31, there are two newforms, g1 and g2. We find that Bg1 = 0 and Bg2 = 23
× 32; thus we may

eliminate g2 for consideration. The eigenform g1 is rational and corresponds to the elliptic curve E31

with Cremona label 62a2. Hence ρ̄F,p ∼ ρ̄g1,p ∼ ρ̄E31,p, whence the proof is complete for q = 31.
For q = 37, there are two newforms, h1 and h2. We find that Bh1 = 33 and Bh2 = 19. Thus n = 19 and

ρ̄F,19 ∼ ρ̄h2,19. (44)

The newform h2 has q-expansion

h2 = q+ q2
+ αq3

+ q4
+ (−3α − 1)q5

+ αq6
+ 2αq7

+ · · · , where α =
−1 +

√
5

2
,

and Hecke eigenfield K = Q(
√

5). Let n be the prime ideal n = (4 − α) · OK having norm 19. We
checked, using Theorem 8, that ℓ+1 ≡ cℓ (mod n) for all primes ℓ ∤ 2 ·37, where cℓ is the ℓ-th coefficient
of h2. From relation (44), we know that

aℓ(F) ≡ cℓ (mod n)

for all primes ℓ of good reduction for F3,1. Thus 19 | (ℓ+1−aℓ(F3,1)) for all primes ℓ of good reduction.
As before, this now implies that ρ̄F,19 is reducible [Serre 1975, IV-6], giving a contradiction. The proof
is thus complete for q = 37.

The above arguments allow us to prove (ii) in the statement of the proposition, and to obtain a
contradiction for all 3 ≤ q < 1000, q ̸∈ {31, 127, 257}, except when n = 7 and q belongs to the list

43, 101, 103, 139, 163, 379, 467, 509, 557, 569, 839, 937, 947, 977.

For n = 7 and these values of q , we checked using the aforementioned Thue–Mahler solver that the only
solutions to (36) are (y1, y2, k) = (1, 0, 0). Since k ̸= 0 in (31), the proof is complete. □

Symplectic criteria. When q ≥ 31 is a Fermat or Mersenne prime, it does not seem to be possible,
working purely with Galois representations of elliptic curves, to eliminate the possibility that ρ̄F,n ∼ ρ̄Eq ,n .
However, the so-called ‘symplectic method’ of Halberstadt and Kraus [2002] allows us to derive an
additional restriction on the solutions to (31).

Lemma 8.4. Let q = 2m
+η be a Fermat or Mersenne prime. Let n ≥ 7 be a prime ̸= q. Suppose (x, y, k)

is a solution to (31), and let F be the Frey–Hellegouarch curve constructed above, and Eq be given
by (43). Suppose ρ̄F,n ∼ ρ̄Eq ,n . Then either n | (m − 4) or(

(24 − 6m)k
n

)
= 1. (45)

Proof. We note that the curves F and Eq have multiplicative reduction at both 2 and q . Write 11 and 12

for the minimal discriminants of F and Eq , respectively. By [Halberstadt and Kraus 2002, Lemme 1.6],
the ratio

ord2(11) · ordq(11)

ord2(12) · ordq(12)
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is a square modulo n, provided n ∤ ord2(1i ), n ∤ ordq(1i ). It is in invoking this result of Halberstadt and
Kraus that we require the assumption that n ̸= q . We find that

11 = 22n−12q2k(y1 y2)
2n and 12 = 22m−8q2.

We have previously noted that n ∤ k by appealing to a result of Ribet. Suppose n ∤ (m − 4). Then the
valuations ord2(1i ) and ordq(1i ) are all indivisible by n. The result follows. □

9. The equation x2 − q2k = yn: an upper bound for the exponent n

To help us complete the proof of Theorem 5, we begin by deriving an upper bound for n. Our approach is
essentially a minor sharpening of Theorem 3 of [Bugeaud 1997] in a slightly special case. Since this
result is valid for an arbitrary prime q, it may be of independent interest.

Theorem 9. Let x , y, q , k ≥ 1 and n ≥ 3 be integers satisfying (7), with n and q prime, and q ∤ x. Then

n < 1000 q log q.

Proof. If q = 2, then we have that n ≤ 5 from Theorem 1.2 of [Bennett and Skinner 2004]. We may thus
suppose that q is odd and, additionally, that y is even, or, via Proposition 3.1, we immediately obtain the
much stronger result that n | (q − 1). We are therefore in case (35). By Proposition 8.3, we may suppose
that q = 31 or that q ≥ 127. Set Y = max{|y1|, |2y2|} and suppose first that

qk
≥ Y n/2, (46)

or equivalently
2k log q ≥ n log Y. (47)

We set

3 =
qk

(2y2)n =

(
y1

2y2

)n

−
1
4
;

we wish to apply an upper bound for linear forms in q-adic logarithms to 3, in order to bound k. To do
this, we must first treat the case where y1/2y2 and 1

4 are multiplicatively dependent, i.e., where y1 y2 has
no odd prime divisors. Under this assumption, since y1 is odd, we find from (36) that

2 j
± 1 = qk,

for an integer j with j ≡ −2 (mod n). Via Mihăilescu’s theorem [2004], if n ≥ 7, necessarily k = 1,
y1 = ±1, y2 = −2κ for some integer κ and

q = 2(κ+1)n−2
± 1.

In this case, we find a solution to (7) corresponding to the identity

(−q ± 2)2
− q2

= 4 ∓ 4q = (∓2κ+1)n,

whereby, certainly n < 1000 q log q .
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Otherwise, we may suppose that y1/2y2 and 1
4 are multiplicatively independent and that Y ≥ 3. We will

appeal to Théorème 4 of Bugeaud and Laurent [1996], with, in the notation of that result, (µ, ν) = (10, 5)

(see also Proposition 1 of Bugeaud [1997]). Before we state this result, we require some notation. Let Qq

denote an algebraic closure of the q-adic field Qq , and define νq to be the unique extension to Qq of the
standard q-adic valuation over Qq , normalized so that νq(q) = 1. For any algebraic number α of degree
d over Q, define the absolute logarithmic height of α via the formula

h(α) =
1
d

(
log |a0| +

d∑
i=1

log max(1, |α(i)
|)
)
, (48)

where a0 is the leading coefficient of the minimal polynomial of α over Z and the α(i) are the conjugates
of α in C.

Theorem 10 (Bugeaud–Laurent). Let q be a prime number and let α1, α2 denote algebraic numbers
which are q-adic units. Let f be the residual degree of the extension Qq(α1, α2)/Qq and put

D =
[Qq(α1, α2) : Qq ]

f
.

Let b1 and b2 be positive integers and put

31 = α
b1
1 − α

b2
2 .

Denote by A1 > 1 and A2 > 1 real numbers such that

log Ai ≥ max
{

h(αi ),
log q

D

}
, i ∈ {1, 2},

and put

b′
=

b1
D log A2

+
b2

D log A1
.

If α1 and α2 are multiplicatively independent, then we have the bound

νq(31) ≤
24q(q f

−1)

(q−1) log4 q
D4

(
max

{
log b′

+ log log q + 0.4,
10 log q

D
, 5

})2
· log A1 · log A2.

We apply this with

f = 1, D = 1, α1 =
y1

2y2
, α2 =

1
4
, b1 = n, b2 = 1,

so that we may choose

log A1 = max{log Y, log q}, log A2 = max{2 log 2, log q},

and
b′

=
n

log A2
+

1
log A1

.

Let us assume now that
n ≥ 1000 q log q, (49)
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whilst recalling that either q = 31 or q ≥ 127. We therefore have

b′ < 1.001
n

log q

and hence find that
k ≤ 24

q

log3 q
(max{log n + 0.401, 10 log q})2 log A1, (50)

whence, from (47),

n log Y ≤ 48
q

log2 q
(max{log n + 0.401, 10 log q})2 log A1. (51)

Let us suppose first that
log n + 0.401 ≥ 10 log q.

If q ≥ Y , we have that log A1 = log q and hence

n log Y
(log n + 0.401)2 ≤ 48

q
log q

.

From (49), we thus have

log2 q
(log(1000 q log q) + 0.401)2 ≤

0.048
log Y

≤
0.048
log 3

,

contradicting q ≥ 31. If, on the other hand, q < Y , then log A1 = log Y and so
n

(log n + 0.401)2 ≤ 48
q

log2 q
. (52)

With (49), this implies that

log3 q < 0.048(log(1000 q log q) + 0.401)2,

again contradicting q ≥ 31.
We may therefore assume that

log n + 0.401 < 10 log q,

so that
n log Y ≤ 4800 q log A1.

If q ≥ Y , then, from (49),
log Y < 4.8,

whereby 3 ≤ Y ≤ 121. If |y1| ≥ 2|y2|, it follows from (36) that

qk
≥ |y1|

n
−

1
4 |y1|

n
=

3
4 Y n. (53)

Suppose, conversely, that |y1| ≤ 2|y2| − 1 (so that 1 ≤ |y2| ≤ 60). If y1 > 0 and y2 < 0, it follows from
(36) that

qk > 1
4 Y n. (54)
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We may thus suppose that y1 and y2 have the same sign, whence, from (36), (49) and |y2| ≤ 60,

qk
= 2n−2

|y2|
n
− |y1|

n > 0.24 · |2y2|
n

= 0.24 · Y n. (55)

Combining (53), (54) and (55), we thus have from (50) that

n log Y + log 0.24 < k log q ≤ 2400 q log q,

contradicting (49) and q ≥ 31. If q < Y , then, via (49),

1000 q log q ≤ n ≤ 4800 q, (56)

a contradiction for q ≥ 127. We may thus suppose that q = 31, Y > 31 and, from (52), n ≤ 12119, which
contradicts (49).

Next suppose that inequality (46) (and hence also inequality (47)) fails to hold. In this case, we will
apply lower bounds for linear forms in two complex logarithms. Following Bugeaud, we take

31 = 43 =
4qk

(2y2)n = 4
(

y1

2y2

)n

− 1,

so that
log |31| = 2 log 2 + k log q − n log |2y2|. (57)

If Y = max{|y1|, |2y2|} = |y1|, then, from (35), it follows that

qk
≥

3
4 |y1|

n
=

3
4 Y n,

contradicting qk < Y n/2. It follows that Y = |2y2| and so, from (57),

log |31| = 2 log 2 + k log q − n log Y ≤ 2 log 2 −
n
2

log Y. (58)

From (49), we have that |31| ≤
1

2000 , so that∣∣∣∣n log
∣∣∣∣2y2

y1

∣∣∣∣ − 2 log 2
∣∣∣∣ ≤ | log(1 − 31)| ≤ 1.001 |31|. (59)

We will appeal to the following.

Theorem 11 [Laurent 2008, Corollary 1]. Consider the linear form

3 = c2 log β2 − c1 log β1,

where c1 and c2 are positive integers, and β1 and β2 are multiplicatively independent algebraic numbers.
Define D = [Q(β1, β2) : Q]/[R(β1, β2) : R] and set

b′
=

c1

D log B2
+

c2

D log B1
,

where B1, B2 > 1 are real numbers such that

log Bi ≥ max
{

h(βi ),
|log βi |

D
,

1
D

}
, i ∈ {1, 2}.
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Then

log |3| ≥ −CD4
(

max
{

log b′
+ 0.21,

m
D

, 1
})2

log B1 log B2,

for each pair (m, C) in the following set{
(10, 32.3), (12, 29.9), (14, 28.2), (16, 26.9), (18, 26.0), (20, 25.2),

(22, 24.5), (24, 24.0), (26, 23.5), (28, 23.1), (30, 22.8)
}
.

Applying this result to the left-hand side of (59), with (m, C) = (10, 32.3),

β2 =

∣∣∣∣2y2

y1

∣∣∣∣, β1 = 4, c2 = n, c1 = 1, D = 1,

log B2 = log Y, log B1 = 2 log 2 and b′
=

n
2 log 2

+
1

log Y
<

1.001n
2 log 2

,

we may conclude that

log |31| ≥ −0.001 − 44.8(max{log n − 0.11, 10})2 log Y.

Combining this with (58), we thus have

n ≤ 89.6(max{log n − 0.11, 10})2
+

1.4
log Y

.

After a little work we find that

n ≤ 8961,

contradicting (49) and q ≥ 31. □

10. The equation x2 − q2k = yn: proof of Theorem 5

In this section, we complete the proof of Theorem 5. Let 3 ≤ q < 1000 be a prime and let (k, x, y, n) be a
solution to (7) where x , k ≥ 1 and n ≥ 3 are positive integers satisfying q ∤ x . Thanks to Lemmata 3.2, 6.1
and 6.2, we may suppose that y is even and that n ≥ 7 is prime. It follows from Proposition 8.3 that
q = 31, 127 or 257 and ρ̄F,n ∼ ρ̄Eq ,n , where Eq is given in (43), and F is the Frey–Hellegouarch curve
given in (40) or (41) according to whether q ≡ 1 or 3 (mod 4). From Theorem 9, we have

n < 1000 × 257 × log 257 < 1.5 × 106.

We now give a method, which for a given exponent n and prime q ∈ {31, 127, 257}, is capable of
showing that (36) has no solutions. This is an adaptation of the method called ‘predicting the exponents
of constants’ in [Siksek 2012, Section 13]. Let n ≥ 7 be prime and choose ℓ ̸= q to be a prime satisfying

(i) ℓ = tn + 1 for some positive integer t ;

(ii) n ∤ ((ℓ + 1)2
− aℓ(Eq)2).
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For κ ∈ Fℓ, κ ̸∈ {0, 1}, set

E(κ) : Y 2
= X (X − 1)(X − κ).

Let g be a primitive root for ℓ (that is, a generator for F∗

ℓ) and let h = gn . Define Xℓ ⊂ F∗

ℓ via

Xℓ =
{ 1

4 hr
: 0 ≤ r ≤ t − 1 and hr

̸≡ 4 (mod ℓ)
}

and

Yℓ = {(κ − 1) · (F∗

ℓ)
n

: κ ∈ Xℓ and aℓ(E(κ))2
≡ aℓ(Eq)2 (mod n)} ⊂ F∗

ℓ/(F
∗

ℓ)
n.

Define further

φ : Z/nZ → F∗

ℓ/(F
∗

ℓ)
n via φ(s) = qs

· (F∗

ℓ)
n.

Finally, let

Zℓ =

{
s ∈ φ−1(Yℓ) :

(
(24 − 6m)s

n

)
= 1

}
,

where q = 2m
± 1; thus m = 5, 7 and 8 for q = 31, 127 and 257, respectively. We note that n ∤ (m − 4) in

all cases, so that (45) holds.

Lemma 10.1. Let q ∈ {31, 127, 257} and n ≥ 7, n ̸= q be prime. Let ℓ1, . . . , ℓt be primes ̸= q satisfying
(i) and (ii) above, and also

t⋂
i=1

Zℓi = ∅. (60)

Then (7) has no solutions with k ≥ 1 and q ∤ x.

Proof. From Proposition 8.3, ρ̄F,n ∼ ρ̄Eq ,n . The minimal discriminant and conductor of F are given
in (42). Thus a prime ℓ ∤ 2q satisfies ℓ || NF if and only if ℓ | y1 y2, otherwise ℓ ∤ NF . Let ℓ ̸= q be a prime
satisfying (i) and (ii). By (ii) we know, thanks to Lemma 7.1, that ℓ ∤ y1 y2, and so aℓ(F)≡ aℓ(Eq) (mod n).
Let κ ∈ Fℓ satisfy

κ ≡
2n−2 yn

2

yn
1

(mod ℓ).

Then E(κ)/Fℓ is a quadratic twist of F/Fℓ and so aℓ(E(κ)) = ±aℓ(F). We conclude that aℓ(E(κ))2
≡

aℓ(Eq)2 (mod n).
Recall that ℓ = tn + 1 and h = gn , where g is a primitive root of Fℓ. Observe that

4κ ≡
2n yn

2

yn
1

≡ hr (mod ℓ),

for some 0 ≤ r ≤ t − 1. Moreover,

κ − 1 ≡
2n−2 yn

2

yn
1

− 1 ≡ −
qk

yn
1

̸≡ 0 (mod ℓ).
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In particular, κ ̸= 1 and so κ ∈ Xℓ and qk
· (F∗

ℓ)
n

= (κ − 1) · (F∗

ℓ)
n

∈ Yℓ. Hence s ∈ φ−1(Yℓ), where
s = k̄ ∈ Z/nZ. Since k also satisfies (45), we conclude that s ∈ Zℓ. As this is true for ℓ = ℓ1, . . . , ℓt , the
element s belongs to the intersection (60) giving a contradiction. □

Corollary 10.2. For q ∈ {31, 127, 257} and prime n with 7 ≤ n < 1.5×106, equation (7) has no solutions
with k ≥ 1 and q ∤ x.

Proof. For n ̸= q , we ran a short Magma script that searches for suitable primes ℓi and verifies the criterion
of Lemma 10.1. This succeeded for all the primes 7 ≤ n < 1.5 × 106 in a few minutes, except for
(q, n) = (31, 7). In this case, we found that

⋂
Zℓi = {1̄} no matter how many primes ℓi we chose. The

reason for this is that there is a solution to (36) with n = 7 and k = 1, namely (−1)7
− 25

· (−1)7
= 311.

In the case n = q , we are unable to appeal directly to Lemma 10.1 as we no longer necessarily have (45).
We can, however, still derive a slightly weaker analogue of Lemma 10.1 with the Zℓ replaced by the
(typically) larger sets

Z ′

ℓ = φ−1(Yℓ).

For n = q , we find that

Z ′

311 ∩Z ′

373 = ∅, Z ′

509 ∩Z ′

2287 = ∅ and Z ′

1543 = ∅,

for q = 31, 127 and 257, respectively. □

To complete the proof of Theorem 5, it remains only to solve the Thue–Mahler equation

y7
1 − 32y7

2 = 31k .

Using the Magma implementation of [Gherga and Siksek 2022], we find that the only solution with k
positive is with k = 1 and y1 = y2 = −1, corresponding to the solution (q, k, y, n) = (31, 1, 2, 7) to (7).

11. The equation x2 + q2k+1 = yn with y odd

In previous sections, we have completed the proofs of Theorems 4 and 5, therefore solving (8) with
3 ≤ q < 1000 prime, for even exponents α. The remainder of the paper is devoted to solving (8) for odd
exponents α, and for the more modest range 3 ≤ q < 100. In this section, we focus on the equation

x2
+ q2k+1

= yn, x , y, k integers, k ≥ 0, gcd(x, y) = 1, y odd, (61)

with exponent n ≥ 5 prime; here q ≥ 3 is prime.

Theorem 12 (Arif and Abu Muriefah). Suppose q ≥ 3 and n ≥ 5 are prime, and that n does not divide
the class number of Q(

√
−q). Then the only solution to (61) corresponds to the identity

224342
+ 19 = 555. (62)

Proof. The proof given by Arif and Abu Muriefah [2002] is somewhat lengthy and slightly incorrect.
For the convenience of the reader we give a corrected and simplified proof. Let M = Q(

√
−q) and
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suppose that n does not divide the class number of M . This and the assumptions in (61) quickly lead us
to conclude that

x + qk√
−q = αn

for some α ∈ OM with Norm(α) = y. Thus

αn
− αn

= 2qk√
−q. (63)

If α/α is a root of unity, then by the coprimality of α and α, we can conclude that α is a unit and so y = 1
giving a contradiction. Thus α/α is not a root of unity. Therefore

um =
αm

− αm

α − α

is a Lucas sequence. Since αα = y, we note that αα is coprime to 2q. Suppose that the term un has a
primitive divisor ℓ. By definition, this is a prime ℓ dividing un that does not divide (α−α)2

·u1u2 · · · un−1.
However α = u +v

√
−q or α = (u +v

√
−q)/2 where u, v ∈ Z. Thus (α−α)2

= −4q or −q , respectively.
In particular ℓ ̸= q . It follows from (26) that ℓ = 2. By Theorem 7 and the primality of n, we have n = m2,
the rank of apparition of ℓ = 2 in the sequence un . Again by Theorem 7, n = m2 = 2 or 3 contradicting
our assumption that n ≥ 5. It follows that un does not have a primitive divisor.

We now invoke the primitive divisor theorem (Theorem 6) to conclude that n = 5 or 7 and that (α, α) is
equivalent to ((a−

√
b)/2, (a+

√
b)/2) where possibilities for (a, b) are given by (24) if n = 5, and by (23)

if n = 7. For illustration, we take n = 5 and (a, b)= (12, −76). Thus α = (±12±
√

−76)/2 =±6±
√

−19,
whence q = 19 and y = Norm(α) = 55, quickly giving the solution in (62). The other possibilities for
(a, b) in (23) and (24) do not yield solutions to (61). □

Corollary 11.1. The only solutions to (61) with 3 ≤ q < 100 and n ≥ 5 prime correspond to the identities

224342
+ 19 = 555, 142

+ 47 = 35 and 462
+ 71 = 37.

Proof. Write hq for the class number of M = Q(
√

−q). Thanks to Theorem 12, if n ∤ hq then the only
corresponding solution is 224342

+ 19 = 555. Thus we may suppose that n | hq . The only values of q in
our range with hq divisible by a prime ≥ 5 are q = 47, 71 and 79, where hq = 5, 7 and 5, respectively.
We therefore reduce to considering the three cases (q, n) = (47, 5), (71, 7) and (79, 5), with hq = n in
all three cases. From (61), we have

(x + qk√q) ·OM = An.

If A is principal, then we are in the situation of the proof of Theorem 12 and we obtain a contradiction.
Thus A is not principal. Now for the three quadratic fields under consideration the class group is generated
by the class [P] where

P = 2 ·OM +
(1 +

√
−q)

2
·OM
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is one of the two prime ideals dividing 2. We conclude that [A] = [P]
−r for some 1 ≤ r ≤ n −1. Observe

that CC is principal for any ideal C of OM , so [C] = [C]
−1. We choose B = A or A so that [B] = [P]

−r

where 1 ≤ r ≤ (n − 1)/2. We note that

(x ± qk√
−q) ·OM = Bn

= (P−n)r
· (PrB)n,

where the ± sign is + if B = A and − if B = A. We note that both P−n and PrB are principal. We
find that P−n

= 2−n−1(u + v
√

−q) ·OM where u, v are given by

(u, v) =


(−9, 1) if q = 47,
(−21, 1) if q = 71,
(7, 1) if q = 79.

The ideal PrB is integral as well as principal, and so has the form (X ′
+ Y ′

√
−q) ·OM where X ′ and Y ′

are either both integers, or both halves of odd integers. We conclude that

2s+rn+r (x ± qk√
−q) = (u + v

√
−q)r

· (X + Y
√

−q)n,

where X , Y ∈ Z and s = 0 or n. Equating imaginary parts gives

Gr (X, Y ) = ±2s+rn+r qk,

where Gr ∈ Z[X, Y ] is a homogeneous polynomial of degree n. We solved this Thue–Mahler equation
using the Thue–Mahler solver associated to the paper [Gherga and Siksek 2022], for each of our three
pairs (q, n) and each 0 ≤ r ≤ (n − 1)/2. For illustration, we consider the case q = 47, n = 5, r = 2. Thus
(u, v) = (−9, 1). We find

G2(X, Y ) = 2(−9X5
+ 85X4Y + 4230X3Y 2

− 7990X2Y 3
− 99405XY 4

+ 37553Y 5)

and are therefore led to solve the Thue–Mahler equation

−9X5
+ 85X4Y + 4230X3Y 2

− 7990X2Y 3
− 99405XY 4

+ 37553Y 5
= ±2 j qk .

We find that the solutions are

(X, Y, j, k) = (1, 1, 16, 0) and (−1, −1, 16, 0),

and compute G2(1, 1) = −217, G2(−1, −1) = 217. We note that 17 = n + rn + r ; therefore s = n = 5.
We deduce that

x ± 47k
√

−47 = ±(−9 +
√

−47)2
· (1 +

√
−47)5

= ±(14 −
√

−47).

Thus x = ±14 and k = 0, giving the solution 142
+ 47 = 35. The other cases are similar. □
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12. The equation x2 + (−1)δq2k+1 = y5

We will soon apply Frey–Hellegouarch curves to study the equation x2
+ (−1)δq2k+1

= yn for prime
exponents n ≥ 7, and for q a prime in the range 3 ≤ q < 100. In Section 2, we have solved this equation
for n ∈ {3, 4}. This leaves only the exponent n = 5 which we now treat through reduction to Thue–Mahler
equations.

Lemma 12.1. Let 3 ≤ q < 100 be a prime. The only solutions to the equation

x2
− q2k+1

= y5, x, y, k integers, k ≥ 0, gcd(x, y) = 1,

correspond to the identities

22
− 3 = 15, 22

− 5 = (−1)5, 102
− 73

= (−3)5, 562
− 11 = 55, 162

− 13 = 35,

42
− 17 = (−1)5, 72

− 17 = 25, 62
− 37 = (−1)5, 37882

− 37 = 275,

32
− 41 = (−2)5, 4112

− 413
= 105, 112

− 89 = 25.

Proof. Let M = Q(
√

q). For q in our range, the class number of M is 1, unless q = 79 in which case the
class number is 3. Suppose first that y is odd. Then

(x + qk√q)OM = A5,

where A is an ideal of OM . Since the class number is not divisible by 5, we see that A is principal and
conclude that

x + qk√q = ϵr
· α5, (64)

where ϵ is some fixed choice of a fundamental unit for M , −2 ≤ r ≤ 2, and α ∈ OM . Note that

−x + qk√q = ϵ−r
· β5,

where β is one of ±α. Thus we may, without loss of generality, suppose that 0 ≤ r ≤ 2. The case r = 0 is
easily shown not to lead to any solutions by following the approach in the proof of Theorem 12. Thus we
suppose r = 1 or 2.

Let

θ =

{√
q if q ≡ 3 (mod 4),

(1 +
√

q)/2 if q ≡ 1 (mod 4).

Then {1, θ} is a Z-basis for OM and so we may write α = X + Y θ where X , Y ∈ Z. It follows that

ϵr
· α5

= Fr (X, Y ) + Gr (X, Y )θ,

where Fr , Gr are homogeneous degree-5 polynomials in Z[X, Y ]. Equating the coefficients of θ in (64)
yields the Thue–Mahler equations

Gr (X, Y ) =

{
qk if q ≡ 3 (mod 4),
2qk if q ≡ 1 (mod 4).
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Solving these equations for prime 3 ≤ q < 100 and for r ∈ {1, 2} leads to the solutions given in the
statement of the theorem with y odd.

Next we consider the case when y is even, so that q ≡ 1 (mod 8). The possible values of q in our
range are 17, 41, 73, 89 and 97 (where, in each case, M has class number 1). We can rewrite the equation
x2

− q2k+1
= y5 as (

x + qk√q
2

)(
x − qk√q

2

)
= 23 y5

1 ,

where y1 = y/2. The two factors on the left-hand side are coprime. Let β be a generator of

P = 2OM +

(
1 +

√
q

2

)
·OM

which is one of the two prime ideals above 2. After possibly replacing x by −x we obtain

x − qk

2
+ qkθ =

x + qk√q
2

= ϵrβα5,

where −2 ≤ r ≤ 2. Writing α = X + Y θ and equating the coefficients of θ on both sides gives, for each
choice of q and r , a Thue–Mahler equation. Solving these leads to the solutions in the statement of the
theorem with y even. □

Lemma 12.2. Let 3 ≤ q < 100 be a prime. The only solutions to the equation

x2
+ q2k+1

= y5, x , y, k integers, k ≥ 0, gcd(x, y) = 1,

correspond to the identities

52
+7 = 25, 1812

+7 = 85, 224342
+19 = 555, 32

+23 = 25, 12
+31 = 25 and 142

+47 = 35.

Proof. By Corollary 11.1 we know that the only solutions when y is odd correspond to the identities
224342

+19 = 555 and 142
+47 = 35. Thus we may suppose y is even, and write y = 2y1. It follows that

q = 7, 23, 31, 47, 71, 79. Let M = Q(
√

−q). Let θ = (1 +
√

−q)/2, so that 1, θ is a Z-basis for OM .
Observe that (

x + qk√
−q

2

)(
x − qk√

−q
2

)
= 23 y5

1 ,

where the two factors on the left-hand side generate coprime ideals. Let

P = 2OM + θ ·OM ;

this is one of the two primes above 2. Thus, after possibly changing the sign of x ,(
x + qk√

−q
2

)
·OM = P3

·A5

for some ideal A of OM . The class number of OM is 1, 3, 3, 5, 7, 5 according to whether q = 7, 23, 31,
47, 71, 79. In all cases the class group is cyclic and generated by [P]. If q = 47 or 79 then the class
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number is 5, and so A5 is principal. Hence P3 is principal which is a contradiction. Thus there are no
solutions for q = 47 or 79. Let

C =

{
1 ·OM , q = 7, 23, 31,

P2, q = 71.

Note that P3C−5 is principal and we write P3C−5
= (u + vθ) ·OM . Thus(

x + qk√
−q

2

)
·OM = (u + vθ) · (CA)5.

As the class number is coprime to 5, we see that CA is principal. Write CA = (X + Y θ) ·OK . After
possibly changing the signs of X , Y , we have

x − qk

2
+ qkθ =

x + qk√
−q

2
= (u + vθ)(X + Y θ)5.

Comparing the coefficients of θ yields a degree-5 Thue–Mahler equation. Solving these Thue–Mahler
equations as before gives the claimed solutions with y even. □

13. Frey–Hellegouarch curves for a ternary equation of signature (n, n, 2)

In studying (7), we employed a factorization argument which reduced to (36) (which in turn we treated
as a special case of a Fermat equation having signature (n, n, n)). In the remainder of the paper, we are
primarily interested in the equation x2

+ (−1)δq2k+1
= yn , where q is a prime. We shall treat this, for

prime n ≥ 7, as a Fermat equation of signature (n, n, 2) by rewriting this as yn
+ q2k+1(−1)(δ+1)n

= x2,
a special case of

yn
+ qαzn

= x2, gcd(x, y) = 1. (65)

Equation (65) has previously been studied by Ivorra and Kraus [2006], and by Bennett and Skinner [2004].
In this section, we recall some of these results and strengthen them slightly before specialising them to
the case z = ±1 in forthcoming sections.

Theorem 13 (Ivorra and Kraus). Suppose that q is a prime with the property that q cannot be written in
the form

q = |t2
± 2k

|,

where t and k are integers, with k = 0, k = 3 or k ≥ 7. Then there are no solutions to the Diophantine
equation (65) in integers x, y, z, n and α with n prime satisfying

n > (
√

8(q + 1) + 1)2(q−1). (66)

To verify whether or not a given prime q can be written as |t2
−2k

|, an old result of Bauer and Bennett
[2002] can be helpful. We have, from Corollary 1.7 of [Bauer and Bennett 2002], if t and k are positive
integers with k ≥ 3 odd,

|t2
− 2k

| > 213k/50,
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unless
(t, k) ∈ {(3, 3), (181, 15)}.

In particular, a short computation reveals that Theorem 13 is applicable to the following primes q < 100:

q ∈ {11, 13, 19, 29, 43, 53, 59, 61, 67, 83}. (67)

We shall make Theorem 13 more precise for these particular values of q. To this end we attach to a
solution of (65) a certain Frey–Hellegouarch curve, following the recipes of Bennett and Skinner. If yz is
even in (65), then we define, assuming, without loss of generality, that x ≡ 1 (mod 4),

F : Y 2
+ XY = X3

+

(
x − 1

4

)
X2

+
yn

64
X, if y is even, (68)

and

F : Y 2
+ XY = X3

+

(
x − 1

4

)
X2

+
qαzn

64
X, if z is even.

If, on the other hand, yz is odd, we define

F : Y 2
= X3

+ 2x X2
+ qαzn X (69)

or
F : Y 2

= X3
+ 2x X2

+ yn X, (70)

depending on whether y ≡ 1 (mod 4) or y ≡ −1 (mod 4), respectively. Let

κ =

{
1 if yz is even,
5 if yz is odd.

(71)

By the results of [Bennett and Skinner 2004], in each case, we may suppose that n ∤ α and that the mod n
representation of F arises from a newform f of weight 2 and level N = 2κ

· q. Let the q-expansion of
f be given by (37). As before, we denote the Hecke eigenfield by K f = Q(c1, c2, . . . ) and its ring of
integers by O f . In particular, there is a prime ideal n of O f such that (38) holds. Let ℓ ∤ 2q be prime and

T = {a ∈ Z ∩ [−2
√

ℓ, 2
√

ℓ] : a ≡ 0 (mod 2)}.

We write
D′

f,ℓ = ((ℓ + 1)2
− c2

ℓ) ·

∏
a∈T

(a − cℓ),

and

D f,ℓ =

{
ℓ ·D′

f,ℓ if K f ̸= Q,

D′

f,ℓ if K f = Q.

Lemma 13.1. Let f be a newform of weight 2 and level N = 2κ
· q. Let ℓ ∤ 2q be a prime. If ρ̄F,n ∼ ρ̄ f,n

then n | D f,ℓ.

Proof. The proof is almost identical to the proof of Lemma 8.2. The only difference is the definition of T
which takes into account the fact F has a single rational point of order 2 instead of full 2-torsion. □
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The following is a slight refinement of Theorem 1.3 of [Bennett and Skinner 2004].

Proposition 13.2. Suppose that q belongs to (67). Then there are no solutions to (65) in integers x, y, z, n
and α with gcd(x, y) = 1 and n ≥ 7 prime, except, possibly, n = 7 and q ∈ {29, 43, 53, 59, 61}, or one of
the following holds:

• q = 11, n = 7 and yz ≡ 1 (mod 2), or

• q = 19, n = 7 and yz ≡ 1 (mod 2), or

• q = 43, n = 11 and yz ≡ 1 (mod 2), or

• q = 53, n = 17 and yz ≡ 1 (mod 2), or

• q = 59, n = 11 and yz ≡ 0 (mod 2), or

• q = 61, n = 13 and yz ≡ 1 (mod 2), or

• q = 67, n ∈ {7, 11, 13, 17} and yz ≡ 1 (mod 2), or

• q = 83, n = 7 and yz ≡ 1 (mod 2).

Proof. For a weight-2 newform f of level N and primes ℓ1, . . . , ℓm (all coprime to 2q), write D f,ℓ1,...,ℓm

for the ideal of O f generated by D f,ℓ1, . . . ,D f,ℓm . Let B f,ℓ1,...,ℓm ∈Z be the norm of the ideal D f,ℓ1,...,ℓm . If
ρ̄F,n ∼ ρ̄ f,n then n |D f,ℓ1,...,ℓm by Lemma 13.1. Write B f,ℓ1,...,ℓm = Norm(D f,ℓ1,...,ℓm ). Thus n |B f,ℓ1,...,ℓm .
In our computations, we take ℓ1, . . . , ℓm to be the primes < 100 coprime to 2q , and we let B f =B f,ℓ1,...,ℓm .
If B f ̸= 0, then we certainly have a bound on n. If B f is divisible only by primes ≤ 5, then we know that
(38) does not hold for that particular f , and we can eliminate it from further consideration.

For primes q in (67), we apply this with newforms f of levels N = 2κq, κ ∈ {1, 5}. We obtain the
desired conclusion that (65) has no solutions provided n ≥ 7 is prime, unless q ∈ {29, 43, 53, 59, 61} and
n = 7, or (q, n, κ) is one of

(11, 7, 5), (13, 7, 1), (19, 7, 5), (43, 11, 1), (43, 11, 5), (53, 17, 5), (59, 11, 1), (61, 31, 1),

(61, 13, 5), (67, 17, 1), (67, 7, 5), (67, 11, 5), (67, 13, 5), (67, 17, 5), (83, 7, 1), (83, 7, 5).

We show that the triples (13, 7, 1), (43, 11, 1), (61, 31, 1), (67, 17, 1) and (83, 7, 1) do not have
corresponding solutions; the remaining triples lead to the noted possible exceptions. For illustration, take
q = 83 and κ = 1, so that N = 2 × 83 = 166. There are three conjugacy classes of weight-2 newforms of
level N , which we denote by f1, f2, f3, which respectively have Hecke eigenfields Q, Q(

√
5) and Q(θ)

where θ3
− θ2

− 6θ + 4 = 0. We find

B f1 = 32
× 5, B f2 = 5, B f3 = 7.

We therefore deduce that f = f3 and n = 7. In fact, D f = (7, 3 + θ) is a prime ideal above 7, so we
take n = (7, 3 + θ). A short calculation verifies the congruences in hypotheses (i) and (ii) of Theorem 8,
whence ℓ + 1 ≡ cℓ (mod n) for all ℓ with ℓ ∤ 2 · 83. It follows from Lemma 7.1 that

aℓ(F) ≡ cℓ (mod n)
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for all primes ℓ of good reduction for F and hence 7 | (ℓ + 1 − aℓ(F)) for all such primes ℓ of good
reduction. This now implies that ρ̄F,7 is reducible [Serre 1975, IV-6], giving a contradiction.

We argue similarly for

(q, n, κ) = (13, 7, 1), (43, 11, 1), (61, 31, 1), (67, 17, 1).

In each case, Lemma 13.1 eliminates all but one class of newforms which are then treated via Theorem 8. □

For other odd primes q < 100, outside the set (67), we can, in certain cases, still show that (65) has
no nontrivial solutions for suitably large n, under the additional assumption that yz ≡ 0 (mod 2) or, for
other q , under the assumption that yz ≡ 1 (mod 2). To be precise, we have the following two propositions.

Proposition 13.3. Suppose that q ∈ {3, 5, 37, 73}. Then there are no solutions to (65) in integers x, y, z, n
and α with yz ≡ 0 (mod 2), gcd(x, y) = 1 and n ≥ 7 prime, except, possibly, (q, n) = (73, 7).

Proposition 13.4. Suppose that q ∈ {23, 31, 47, 71, 79, 97}. Then there are no solutions to (65) in
integers x, y, z, n and α with yz ≡ 1 (mod 2), gcd(x, y) = 1 and n ≥ 7 prime, except, possibly, n = 7 and
q ∈ {23, 31, 47, 71, 97}, or (q, n) = (79, 11), or (q, n) = (97, 29).

As in the case of Proposition 13.2, these results follow after a small amount of computation, by applying
Lemma 13.1 and Theorem 8.

14. The equation x2 ± q2k+1 = yn and proofs of Theorems 2 and 3

We now specialize and improve on the results of Section 13, proving the following.

Proposition 14.1. Let (x, y, k) be a solution to the equation

x2
+ (−1)δq2k+1

= yn, δ ∈ {0, 1}, k ≥ 0, gcd(x, y) = 1, (72)

where q is a prime in the range 3 ≤ q < 100, and n ≥ 7 is prime. Suppose, in addition, that

(a) if y is odd then δ = 1;

(b) if δ = 1 then q ̸∈ {3, 5, 17, 37}.

If y is even, suppose, without loss of generality, that x ≡ 1 (mod 4). Write

κ =

{
1 if y is even,
5 if y is odd.

(73)

Let v ∈ {0, 1} satisfy k ≡ v (mod 2). Attach to the solution (x, y, k) the Frey–Hellegouarch curve

G = Gx,k :


Y 2

= X3
+ 4x X2

+ 4(x2
+ (−1)δq2k+1)X if κ = 1,

Y 2
= X3

− 4x X2
+ 4(x2

+ (−1)δq2k+1)X if κ = 5 and q ≡ (−1)δ mod 4,

Y 2
= X3

+ 2x X2
+ (x2

+ (−1)δq2k+1)X if κ = 5 and q ≡ (−1)δ+1 mod 4.
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q δ κ v E

7 0 1 0 14a1
7 0 1 1 14a1

23 0 1 0 46a1
31 0 1 0 62a1
31 0 1 1 62a1
41 1 1 0 82a1
41 1 5 0 1312a1, 1312b1
41 1 5 1 1312a1, 1312b1

q δ κ v E

47 0 1 0 94a1
71 0 1 0 142c1
71 0 1 1 142c1
73 1 5 0 2336a1, 2336b1
73 1 5 1 2336a1, 2336b1
79 0 1 0 158e1
89 1 1 0 178b1
97 1 1 0 194a1

Table 3. Data for Proposition 14.1. Here the elliptic curves E are given by their Cremona labels.

Then either n > 1000 and ρ̄G,n ∼ ρ̄E,n where E/Q is an elliptic curve of conductor 2κq given in Table 3
or the solution (x, y, k) corresponds to one of the identities

112
+ 7 = 27, 452

+ 23 = 211, 132
− 41 = 27, 92

+ 47 = 27,

72
+ 79 = 27, 912

− 89 = 213, 152
− 97 = 27.

Before proving this result, we make a few remarks on the assumptions in Proposition 14.1. Our eventual
goal is to prove Theorems 1, 2 and 3, and thus we are interested in the equation x2

+ (−1)δqα
= yn where

3 ≤ q < 100. Theorems 4 and 5 (proved in Sections 5 and 10, respectively) treat the case where α is
even, so we are reduced to α = 2k + 1. The results of Section 2, Corollary 11.1 and Lemmas 12.1, 12.2
allow us to restrict the exponent n to be a prime ≥ 7. Thanks to Theorem 12, we need not consider the
case where δ = 0 and y is odd, which explains the reason for assumption (a). With a view to proving the
proposition, we will soon provide a method which is usually capable, for a fixed q , δ and n, of showing
that (72) does not have a solution. If δ = 1, and q is one of the values 3, 5, 17 or 37, then there is a
solution to (72) for all odd values of the exponent n:

22
− 3 = 1n, 22

− 5 = (−1)n, 42
− 17 = (−1)n, 62

− 37 = (−1)n
;

and so our method fails if δ = 1 and q is one of these four values. This explains assumption (b) in the
statement of the proposition.

We note that (72) is a special case of (65) with z specialised to the value (−1)δ+1, and with α = 2k +1.
The value κ in the statement of the proposition agrees with value for κ in (71) given in the previous
section. We note that if y is odd, then y ≡ (−1)δ · q (mod 4). The Frey–Hellegouarch curve G is, up to
isogeny, the same as the Frey–Hellegouarch curve F in the previous section, but is more convenient for
our purposes. More precisely, the model G is isomorphic to F given in (68) if y even (i.e., κ = 1), and
to F given in (70) if y ≡ 3 (mod 4) (i.e., κ = 5 and q ≡ (−1)δ+1 mod 4). It is 2-isogenous to F in (69)
if y ≡ 1 (mod 4) (i.e., κ = 5 and q ≡ (−1)δ mod 4). Thus ρ̄F,n ∼ ρ̄G,n in all three cases. We conclude
from the previous section that ρ̄G,n ∼ ρ̄ f,n where f is a weight-2 newform of level N = 2κq .



Differences between perfect powers: prime power gaps 1825

Note that if κ = 1 (that is, y is even) then 1+ (−1)δq ≡ 0 (mod 8). This together with the assumptions
of Proposition 14.1 shows that we are concerned with 30 possibilities for the triple (q, δ, κ), namely

(7, 0, 1), (7, 1, 5), (11, 1, 5), (13, 1, 5), (19, 1, 5), (23, 0, 1), (23, 1, 5), (29, 1, 5),

(31, 0, 1), (31, 1, 5), (41, 1, 1), (41, 1, 5), (43, 1, 5), (47, 0, 1), (47, 1, 5), (53, 1, 5),

(59, 1, 5), (61, 1, 5), (67, 1, 5), (71, 0, 1), (71, 1, 5), (73, 1, 1), (73, 1, 5), (79, 0, 1),

(79, 1, 5), (83, 1, 5), (89, 1, 1), (89, 1, 5), (97, 1, 1), (97, 1, 5).

(74)

Bounding the exponent n. In the previous section we defined an ideal D f,ℓ1,...,ℓr which if nonzero allows
us to bound the exponent n in (65). That bound will also be valid for (72) since it is a special case of (65).
We now offer a refinement that is often capable of yielding a better bound for (72).

Fix a triple (q, δ, κ) from the above list. We also fix v ∈ {0, 1} and suppose that k ≡ v (mod 2). Let f
be a weight-2 newform of level N = 2κq with q-expansion as in (37). Write K f for the Hecke eigenfield
of f , and O f for the ring of integers of K f . For a prime ℓ ̸= 2, q , define

Sℓ = {aℓ(Gw,v) : w ∈ Fℓ, w
2
+ (−1)δq2v+1

̸≡ 0 (mod ℓ)}.

Let

T = Tℓ =

{
Sℓ ∪ {ℓ + 1, −ℓ − 1} if (−1)δ+1q is a square modulo ℓ,

Sℓ otherwise.
Let

E ′

ℓ =

∏
a∈T

(a − cℓ) and Eℓ =

{
ℓ · E ′

ℓ if K f ̸= Q,

E ′

ℓ if K f = Q,

where, as before, cℓ is the ℓ-th coefficient in the q-expansion of f .

Lemma 14.2. Let n be a prime ideal of O f above n. If ρ̄G,n ∼ ρ̄ f,n then n | Eℓ.

Proof. Write k = 2u + v with u ∈ Z. Let w ∈ Fℓ satisfy w ≡ x/q2u (mod ℓ). Hence

yn
= x2

+ (−1)δq2k+1
≡ q4u

· (w2
+ (−1)δq2v+1) (mod ℓ).

It follows that ℓ | y if and only if w2
+ (−1)δq2v+1 (mod ℓ). Suppose first that ℓ ∤ y. The elliptic curves

Gx,k/Fℓ and Gw,v/Fℓ are isomorphic, and so aℓ(Gx,k) = aℓ(Gw,v). In particular, aℓ(Gx,k) ∈ Tℓ and so
aℓ(Gx,k) − cℓ divides Eℓ. Likewise, if ℓ | y (which can only happen if (−1)δ+1q is a square modulo ℓ)
then (ℓ + 1)2

− c2
ℓ divides Eℓ. The lemma follows from Lemma 7.1. □

A sieve. Lemma 14.2 will soon allow us to eliminate most possibilities for the newform f in a manner
similar to Propositions 13.2, 13.3 and 13.4. We will still need to treat some cases for fixed exponent n.
To this end, we will employ a sieving technique similar to the one in Section 10.

Fix a prime n ≥ 7, and let n be a prime ideal of O f above n. Let ℓ ̸= q be a prime. Suppose

(i) ℓ = tn + 1 for some positive integer t ;

(ii) either n ∤ (4 − c2
ℓ), or (−1)δ+1q is not a square modulo ℓ.
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Let
A = {m ∈ {0, 1, . . . , 2n − 1} : m ≡ v (mod 2), n ∤ (2m + 1)},

Xℓ = {(z, m) ∈ Fℓ × A : (z2
+ (−1)δq2m+1)t

≡ 1 (mod ℓ)},

Yℓ = {(z, m) ∈ Xℓ : aℓ(Gz,m) ≡ cℓ (mod n)},

Zℓ = {m : there exists z such that (z, m) ∈ Yℓ}.

Lemma 14.3. Let ℓ1, . . . , ℓr be primes ̸= q satisfying (i), (ii). Let

Zℓ1,...,ℓr =

r⋂
i=1

Zℓi .

If ρ̄G,n ∼ ρ̄ f,n then
(k mod 2n) ∈ Zℓ1,...,ℓr .

Proof. Let m be the unique element of {0, 1, . . . , 2n − 1} satisfying k ≡ m (mod 2n). Let ℓ ̸= q be a
prime satisfying (i) and (ii). It is sufficient to show that m ∈ Zℓ. First we will demonstrate that ℓ ∤ y.
If (−1)δ+1q is not a square modulo ℓ then ℓ ∤ y from (72). Otherwise, by (ii), n ∤ (4 − c2

ℓ). However,
from (i) and the fact that n | n we have ℓ + 1 ≡ 2 (mod n) and so n ∤ ((ℓ + 1)2

− c2
ℓ). It follows from

Lemma 7.1 that ℓ is a prime of good reduction for Gx,k and so ℓ ∤ y. We deduce from Lemma 7.1 that
aℓ(Gx,k) ≡ cℓ (mod n).

In the previous section, we observed that n ∤ α in (65) thanks to the results of [Bennett and Skinner
2004], whence n ∤ (2k + 1). Since k ≡ v (mod 2), we know that m ∈ A. Write k = 2nb + m with b a
nonnegative integer and let z ∈ Fℓ satisfy z ≡ x/q2nb (mod ℓ). Then

z2
+ (−1)δq2m+1

≡
1

q4nb (x2
+ (−1)δq2k+1) ≡

(
y

q4b

)n

(mod ℓ).

From (i), we deduce that

(z2
+ (−1)δq2m+1)t

≡

(
y

q4b

)ℓ−1

≡ 1 (mod ℓ).

Thus (z, m) ∈ Xℓ. Moreover, we have that Gx,k/Fℓ and Gz,m/Fℓ are isomorphic elliptic curves, whence
aℓ(Gz,m) = aℓ(Gx,k) ≡ cℓ (mod n). Thus (z, m) ∈ Yℓ and so m ∈ Zℓ as required. □

Remarks. We would like to explain how to compute Zℓ efficiently, given n and ℓ.

(1) In our computations, the value t will be relatively small compared to n and to ℓ = tn + 1. Let g
be a primitive root modulo ℓ (that is, a cyclic generator for F×

ℓ ), and let h = gn . The set Xℓ consists
of pairs (z, m) ∈ Fℓ × A such that (z2

+ (−1)δqm)t
≡ 1 (mod ℓ). Hence z2

+ (−1)δqm is one of the
values 1, h, h2, . . . , ht−1. Thus, to compute Xℓ, we run through i = 0, 1, . . . , t − 1 and m ∈ A and solve
z2

= hi
− (−1)δqm . We note that the expected cardinality of Xℓ should be roughly t × #A ≈ t × n ≈ ℓ.

(2) It seems at first that, in order to compute Yℓ and Zℓ, we need to compute aℓ(Gz,m) for all (z, m) ∈Xℓ,
and this might be an issue for large ℓ. There is in fact a shortcut that often means that we only need to
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perform a few of these computations. In fact we will need to compute Zℓ for large values of ℓ only for
rational newforms f that correspond to elliptic curves E/Q with nontrivial 2-torsion. In this case, we
note that aℓ(Gz,m) ≡ aℓ(E) (mod 2), as both elliptic curves have nontrivial 2-torsion. If (z, m) ∈ Yℓ, then
aℓ(Gz,m) ≡ aℓ(E) (mod 2n). However, by the Hasse–Weil bounds,

|aℓ(Gz,m) − aℓ(E)| ≤ 4
√

ℓ.

Suppose, in addition, that n2 > 4ℓ (which will be usually satisfied as t is typically small). Then, the
congruence aℓ(Gz,m) ≡ cℓ = aℓ(E) (mod 2n) is equivalent to the equality aℓ(Gz,m) = aℓ(E), and so to
#Gz,m(Fℓ) = #E(Fℓ). To check whether the equality #Gz,m(Fℓ) = #E(Fℓ) holds for a particular pair
(z, m) ∈ Xℓ, we first choose a random point Q ∈ Gz,m(Fℓ) and check whether #E(Fℓ) · Q = 0. Only
for pairs (z, m) ∈ Xℓ that pass this test do we need to compute aℓ(Gz,m) and check the congruence
aℓ(Gz,m) ≡ aℓ(E) (mod n).

A refined sieve. We note that if Zℓ1,...,ℓr = ∅ then ρ̄G,n ≁ ρ̄ f,n. In our computations, described later, we
are always able to find suitable primes ℓ1, . . . , ℓr satisfying (i), (ii), so that Zℓ1,...,ℓr = ∅, at least for n
suitably large. For smaller values of n (say less than 50), we occasionally failed. We now describe a
refined sieving method that, whilst being somewhat slow, has a better chance of succeeding for those
smaller values of the exponent n.

Let (q, δ, κ) be one of our 30 triples given in (74), and let n ≥ 7 be a prime. Suppose that (x, y, k) is
a solution to (72) where y is even if and only if κ = 1. Let φ =

√
(−1)δ+1q and set M = Q(φ). Let P be

one of the prime ideals of OM above 2.
Our first goal is to produce a finite set S ⊂ M∗, such that

x + qkφ = γ · αn (75)

for some γ ∈ S and α ∈ OM . This is the objective of Lemmata 14.4 and 14.5. Both of these make an
additional assumption on the class group, but this assumption will in fact be satisfied in all cases where
we need to apply our refined sieve.

Lemma 14.4. Let κ = 5. Suppose that the class group Cl(OM) of OM is cyclic and generated by the
class [P]. Let h = # Cl(OM) and set

I = {0 ≤ i ≤ h − 1 : P−ni is principal}.

Choose for each i ∈ I a generator βi for P−ni . Let ϵ be a fundamental unit for M (recall that if κ = 5
then δ = 1 and so M is real). Let

S =

{
ϵ jβi : −

n−1
2

≤ j ≤
n−1

2
, i ∈ I

}
.

Then there is some γ ∈ S and α ∈ OM such that (75) holds. Also, Norm(α) = 2µy for some µ ≥ 0.

Proof. As κ = 5, we have that y is odd. Then

(x + qkφ)OM = An,
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where A is an ideal of OM with norm y. Since [P] generates the class group, the same is true of [P]
−1.

Hence [A] = [P]
−i for some i ∈ {0, 1, . . . , h − 1}. Now

(x + qkθ)OM = P−ni
· (Pi

·A)n.

Since Pi
·A is principal, it follows that P−ni is also principal. The lemma follows. □

Lemma 14.5. Let κ = 1. Suppose that the class group Cl(OM) of OM is cyclic and generated by the
class [P]. Let h = # Cl(OM) and set

I = {0 ≤ i ≤ h − 1 : Pn(1−i)−2 is principal}.

Choose for each i ∈ I a generator βi for Pn(1−i)−2. Let

S ′
= {βi : i ∈ I} ∪ {βi : i ∈ I},

where βi denotes the Galois conjugate of βi . Let

S =

{
{2 · β : β ∈ S ′

} if δ = 0,

{2 · ϵ j
· β : −(n − 1)/2 ≤ j ≤ (n − 1)/2, β ∈ S ′

} if δ = 1,

where ϵ is a fundamental unit for M. Then there is some γ ∈ S and α ∈ OM such that (75) holds. Also,
Norm(α) = 2µy for some µ ∈ Z.

Proof. As κ = 1, we have that y is even. Then(
x + qkφ

2

)
OM = Cn−2An,

where A is an ideal of OM with norm y/2 and C is one of P, P. Since [P] generates the class group so
does [C]

−1. Hence [A] = [C]
−i for some i ∈ {0, 1, . . . , h − 1}. Now(

x + qkφ

2

)
OM = Cn(1−i)−2

· (CiA)n.

But Ci
·A is principal, whence Cn(1−i)−2 is principal, and so i ∈ I and Cn(1−i)−2 is generated by either βi

or βi . The lemma follows. □

We will now describe our refined sieve. Fix m ∈ {0, 1, . . . , 2n} and suppose k ≡ m (mod 2n). Let n be
a prime ideal of O f above n. Let ℓ ̸= q be a prime. Suppose

(a) ℓ = tn + 1 for some positive integer t ;

(b) n ∤ (4 − c2
ℓ);

(c) (−1)δ+1q is a square modulo ℓ.

We choose an integer s such that s2
≡ (−1)δ+1q (mod ℓ). Let

L = ℓOM + (s − φ)OM .
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By the Dedekind–Kummer theorem ℓ splits in OM and L is one of the two prime ideals above ℓ. In
particular, OM/L ∼= Fℓ and φ ≡ s (mod L). Let

Xℓ,m = {z ∈ Fℓ : (z2
+ (−1)δq2m+1)t

≡ 1 (mod ℓ)},

Yℓ,m = {z ∈ Xℓ,m : aℓ(Gz,m) ≡ cℓ (mod n)},

Uℓ,m = {(z, γ ) : z ∈ Yℓ,m, γ ∈ S, (z + qmφ)t
≡ γ t (mod L)},

Wℓ,m = {γ : there exists z such that (z, γ ) ∈ Uℓ,m}.

Lemma 14.6. Let ℓ1, . . . , ℓr be primes ̸= q satisfying (a), (b) and (c) above. Let

W = Wℓ1,...,ℓr =

r⋂
i=1

Wℓi .

If ρ̄G,n ∼ ρ̄ f,n, then there is some γ ∈ W and some α ∈ OM such that (75) holds.

Proof. Suppose ℓ satisfies conditions (a), (b) and (c). As ℓ satisfies (a) and (b), it also satisfies hypotheses (i)
and (ii) preceding the statement of Lemma 14.3. Write k = 2nb +m where b is a nonnegative integer, and
let z ≡ x/q2nb (mod ℓ). It follows from the proof of Lemma 14.3 that ℓ ∤ y and that z ∈ Yℓ,m . We know
from Lemmata 14.4 and 14.5 that there is some γ ∈ S such that x + qkφ = γαn where α ∈ OM satisfies
Norm(α) = 2µy for some µ ∈ Z. Note that γ is supported only on the prime ideals above 2. Since L | ℓ,
we have ordL(α) = ordL(γ ) = 0. Hence

z + qmφ ≡
1

q2nb (x + qkφ) ≡ γ ·

(
α

q2b

)n

(mod L).

Since (OM/L)∗ ∼= F∗

ℓ is cyclic of order ℓ − 1 = tn, we have

(z + qmφ)t
≡ γ t (mod L).

Thus (z, γ ) ∈ Uℓ,m and hence γ ∈ Wℓ,m . The lemma follows. □

Proof of Proposition 14.1. Our proof of Proposition 14.1 is the result of applying Magma scripts based on
Lemmata 14.2, 14.3 and 14.6, as well as solving a few Thue–Mahler equations. Our approach subdivides
the proof into 60 cases corresponding to 60 quadruples (q, δ, κ, v): here (q, δ, κ) is one of the 30 triples
in (74), and v ∈ {0, 1}. Let (x, y, k) be a solution to (72) with prime exponent n ≥ 7. Suppose that y
is even if κ = 1 and y is odd if κ = 5. Suppose, in addition, that k ≡ v (mod 2). Our first step is to
compute the newforms f of weight 2 and level N = 2κq. We know that for one these newforms f , we
have ρ̄G,n ∼ ρ̄ f,n where G = Gx,k is the Frey–Hellegouarch curve given in Proposition 14.1, and n | n is
a prime ideal of O f , the ring of integers of the Hecke eigenfield K f . Let p1, . . . , ps be the primes ≤ 200
distinct from 2 and q , and let

E f =

s∑
i=1

Epi ,
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where Epi is as in Lemma 14.2. It follows from Lemma 14.2 that if ρ̄G,n ∼ ρ̄ f,n then n | E f , and so
n | Norm(E f ).

We illustrate this by taking (q, δ, κ, v) = (31, 1, 5, 0). There are 8 newforms f1, . . . , f8 of weight 2
and level 2κq = 992, which all happen to be irrational. We find that

Norm(E f j ) = 7, 7, 210, 210, 23, 23, 26
× 32, 26

× 32,

respectively for j = 1, 2, . . . , 8. Thus n = 7 and f = f1 or f2. We consider first

f = f1 = q+
√

2q3
− q5

− (1 +
√

2)q7
− q9

+ 2(1 −
√

2)q11
+ · · · ,

with Hecke eigenfield K f = Q(
√

2) having ring of integers O f = Z[
√

2]. We found that E f = (1+2
√

2)

which is one of the two prime ideals above 7. Hence n = (1 + 2
√

2). Next we compute Z = Zℓ1,...,ℓ30 as
in Lemma 14.3 where ℓ1, . . . , ℓ30 ̸= 31 are the 30 primes satisfying (i) and (ii) with t ≤ 200. We find that
Z = {0, 8}. Thus, by Lemma 14.3, we have k ≡ 0 or 8 (mod 14). Now for m = 0 and m = 8, we compute
W = Wℓ1,...,ℓ36 as in Lemma 14.6, where ℓ1, . . . , ℓ36 ̸= 31 are the 36 primes satisfying (a), (b) and (c)
with t ≤ 800. We found that W =∅ for m = 0 and that W = {ϵ3

} for m = 8 where ϵ = 1520+273
√

31 is
the fundamental unit of M = Q(

√
31). Hence we conclude, by Lemma 14.6, that k ≡ 8 (mod 14) and that

x + 31k
√

31 = (1520 + 273
√

31)3(X + Y
√

31)7,

for some integers X , Y . Equating the coefficients of
√

31 on both sides results in a degree-7 Thue–Mahler
equation with huge coefficients. However, using an algorithm of Stoll and Cremona [2003] for reducing
binary forms we discover that this Thue–Mahler equation can be rewritten as

31k
= −56U 7

+ 112U 6V − 84U 5V 2
+ 140U 4V 3

+ 490U 3V 4
+ 1596U 2V 5

+ 2807U V 6
+ 2119V 7,

where U , V ∈ Z are related to X , Y via the unimodular substitution

U = 2X + 11Y and V = 7X + 39Y.

We applied the Thue–Mahler solver to this and found that it has no solutions. Next we take f = f2 which
also has Hecke eigenfield K f = Q(

√
2). We apply Lemmata 14.2, 14.3 and 14.6 using the same sets of

primes p j and ℓi as for f1. We find E f = (1 − 2
√

2), and so n = (1 − 2
√

2) and n = 7. Again we obtain
Z = {0, 8} on applying Lemma 14.3. We find that W = ∅ for m = 0 and W = {ϵ̄3

} for m = 8. Again
the corresponding Thue–Mahler equation has no solutions. Thus (72) has no solutions with n ≥ 7 prime
for q = 31, δ = 1 and with y odd (i.e., κ = 5) and k ≡ 0 (mod 2). We used the above approach to deal
with all the cases where E f is nonzero. In all the cases where E f = 0, the newform f is rational, and
in fact corresponds to an elliptic curve E/Q with nontrivial 2-torsion. These elliptic curves are listed in
Table 3. Thus ρ̄G,n ∼ ρ̄E,n . What is required for Proposition 14.1 is to show in these cases that there are
no solutions with prime 7 ≤ n < 1000 apart from the ones listed in the statement of the proposition. We
illustrate how this works by taking (q, δ, κ, v) = (7, 0, 1, 0). There is a unique newform f of weight 2
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n Z

7 {0, 8, 12}

11 {8}

13 {4}

41 {44}

other values ∅

Table 4. For the quadruple (q, δ, κ, v) = (7, 0, 1, 0) and for prime 7 ≤ n < 1000 we
computed Z = Zℓ1,...,ℓr as given by Lemma 14.3. Here we chose ℓ1, . . . , ℓr to be the
primes ̸= q satisfying (i) and (ii) with t ≤ 200.

and level N = 2κq = 14 which corresponds to the elliptic curve

Y 2
+ XY + Y = X3

+ 4X − 6

with Cremona label 14a1. For each prime 7 ≤ n < 1000 we computed Z =Zℓ1,...,ℓr with ℓ1, . . . , ℓr being
the primes ̸= 7 satisfying conditions (i), (ii) with t ≤ 200. The results of this computation are summarized
in Table 4. Note that by Lemma 14.3, (k (mod 2n)) ∈ Z . We deduce that there are no solutions for prime
n satisfying 17 ≤ n < 1000, n ̸= 41. For n = 7, 11, 13 and 41, and for each m in the corresponding Z ,
we compute W =Wℓ1,...,ℓr as in Lemma 14.6 where ℓ1, . . . , ℓr are now the primes ̸= q satisfying (a), (b)
and (c) with t ≤ 800. We found that W = ∅ in all cases except for n = 7, m = 0, when W = 11 −

√
−7.

It follows from Lemma 14.6 that x +7k√
−7 = (11−

√
−7) ·α7 where α ∈ Z[θ ] where θ = (1+

√
−7)/2.

Write α = (X + Y θ) with X , Y ∈ Z. Thus

x − 7k

2
+ 7k

· θ = (6 − θ) · (X + Y θ)7.

Equating the coefficients of θ on either side yields the Thue–Mahler equation

−X7
+ 35X6Y + 147X5Y 2

− 105X4Y 3
− 595X3Y 4

− 231X2Y 5
+ 161XY 6

+ 45Y 7
= 7k .

We find that the only solution is (X, Y, k) = (−1, 0, 0). Hence x = −11, and the corresponding solution
to (72) is 112

+ 7 = 27. We observe that −11 ≡ 1 (mod 4) which is consistent with our assumption
x ≡ 1 (mod 4) if κ = 1, made in the statement of Proposition 14.1. The other cases are similar.

Proofs of Theorems 2 and 3. We now deduce Theorems 2 and 3 from Proposition 14.1. These two
theorems concern the equation x2

−q2k+1
= yn with n ≥ 3 and q ∤ x . Thus we are in the δ = 1 case of the

proposition. By the remarks following the statement of the proposition we are reduced to the case n ≥ 7 is
prime. Theorem 2 is concerned with the primes q appearing in (4), whilst Theorem 3 deals with q = 41,
73, 89 and 97. A glance at Table 3 reveals that all the elliptic curves E appearing in Proposition 14.1
for the case δ = 1 in fact correspond to the values q = 41, 73, 89 and 97. Theorems 2 and 3 now follow
immediately from the proposition.
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n {ℓ1, . . . , ℓr } time (seconds)

210
+ 7 = 1031 {2063, 12373, 30931} 0.18

211
+ 5 = 2053 {94439, 110863, 143711, 168347, 197089} 7.75

212
+ 3 = 4099 {73783, 98377, 114773} 4.39

213
+ 17 = 8209 {246271, 525377, 574631} 15.50

214
+ 27 = 16411 {98467, 459509, 590797} 6.19

215
+ 3 = 32771 {65543, 983131, 1179757} 3.91

216
+ 1 = 65537 {917519, 1310741, 1703963, 2359333} 57.51

217
+ 29 = 131101 {2097617, 9439273, 11799091, 12585697} 142.59

218
+ 3 = 262147 {1048589, 4194353, 6291529} 65.89

219
+ 21 = 524309 {6291709, 10486181, 23069597} 402.12

220
+ 7 = 1048583 {20971661, 25165993, 44040487} 1319.57

221
+ 17 = 2097169 {37749043, 176162197, 188745211} 2468.46

222
+ 15 = 4194319 {75497743, 92275019, 100663657} 4983.07

Table 5. Write nu for the smallest prime > 2u . For 10 ≤ u ≤ 22 the prime n = nu belongs
to the range 1000 < n < 6 × 106. The table lists the primes n = nu in this range and, for
each, a set of primes ℓ1, . . . , ℓr satisfying conditions (i), (ii) such that Zℓ1,...,ℓr = ∅. It
also records the time the computation took for each of these values of n, on a single
processor.

Remark. It is well-known that the exponent n can be explicitly bounded in (72) in terms of the prime q .
For example, if δ = 1 and κ = 5 (i.e., y is odd) then Bugeaud [1997] showed that

n ≤ 4.5 × 106q2 log2 q. (76)

Let (q, δ, κ, v) = (73, 1, 5, 1) and E be the elliptic curve with Cremona label 2336a1; this is one of
the two outstanding cases from Table 3 for which the bound (76) is applicable. We are in fact able
to substantially improve this bound for the case in consideration through a specialization and minor
refinement (we omit the details) of Bugeaud’s approach and deduce that

n < 6 × 106.

Theorem 3 only resolves x2
− 732k+1

= yn for 3 ≤ n ≤ 1000. It is natural to ask whether we can apply
the same technique, namely Lemma 14.3, to show that there are no solutions for prime exponents n in
the range 1000 < n < 6 × 106. Write nu for the smallest prime > 2u . For 10 ≤ u ≤ 22 the prime n = nu

belongs to the range 1000 < n < 6 × 106. For each of these 13 primes we computed primes ℓ1, . . . , ℓr

satisfying conditions (i) and (ii) such that Zℓ1,...,ℓr =∅, whence by Lemma 14.3 there are no solutions for
that particular exponent n. Table 5 records the values of ℓ1, . . . , ℓr as well as the time taken to perform
the corresponding computation in Magma on a single processor. There are 412681 primes in the range
1000 < n < 6 × 106. On the basis of the timing in the table we crudely estimate that it would take around
60 years to carry out the computation (on a single processor) for all 412681 primes.
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q Cremona label for E minimal model for E

7 14a1 Y 2
+ XY + Y = X3

+ 4X − 6
23 46a1 Y 2

+ XY = X3
− X2

− 10X − 12
31 62a1 Y 2

+ XY + Y = X3
− X2

− X + 1
47 94a1 Y 2

+ XY + Y = X3
− X2

− 1
71 142c1 Y 2

+ XY = X3
− X2

− X − 3
79 158e1 Y 2

+ XY + Y = X3
+ X2

+ X + 1

Table 6. Elliptic curve E of conductor 2q and nontrivial 2-torsion.

We shall shortly give a substantially faster method for treating the case δ = 0. Alas this method is not
available for δ = 1, as we explain in due course.

15. The proof of Theorem 1: large exponents

We now complete the proof of Theorem 1 which is concerned, for prime 3 ≤ q < 100, with the equation

x2
+ qα

= yn,

subject to the assumptions that q ∤ x and n ≥ 3. The exponents n = 3 and n = 4 were treated in Section 2,
so we may suppose that n ≥ 5 is prime. The case α = 2k was handled in Section 5, so we suppose further
that α = 2k + 1. The case with y odd was the topic of Section 11, so we may assume that y is even.
Finally, the case with exponent n = 5 was resolved in Section 12, whence we may suppose that n ≥ 7 is
prime. To summarize, we are reduced to treating the equation

x2
+ q2k+1

= yn, k ≥ 0, q ∤ x, y even, n ≥ 7 prime. (77)

By Proposition 14.1, we may in fact suppose that n > 1000 and that

q ∈ {7, 23, 31, 47, 71, 79}. (78)

For convenience, we restate Proposition 14.1 specialized to our current situation.

Lemma 15.1. Let q be one of the values in (78). Let (x, y, k) satisfy (77), where n > 1000 is prime.
Suppose, without loss of generality, that x ≡ 1 (mod 4). Attach to this solution the Frey–Hellegouarch
elliptic curve

G = Gx,k : Y 2
= X3

+ 4x X2
+ 4(x2

+ q2k+1)X.

Then ρ̄G,n ∼ ρ̄E,n where E is an elliptic curve of conductor 2q and nontrivial 2-torsion given in Table 6.

Upper bounds for n: linear forms in logarithms, complex and q-adic. We will appeal to bounds for linear
forms in logarithms to deduce an upper bound for the prime exponent n in (77) where q belongs to (78).
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Proposition 15.2. Let q belong to the list (78). Let (x, y, k) satisfy (77) with prime exponent n > 1000.
Then n < Uq where

Uq =



2.8 × 108 if q = 7,

1.1 × 109 if q = 23,

5.0 × 108 if q = 31,

2.2 × 109 if q = 47,

2.3 × 109 if q = 71,

2.2 × 109 if q = 79.

(79)

To obtain this result, our first order of business will be to produce a lower bound upon y.

Lemma 15.3. If there exists a solution to (77), then y > 4n − 4
√

2n + 2.

Proof. We suppose without loss of generality that x ≡ 1 (mod 4), so that we can apply Lemma 15.1. We
first show that y is divisible by an odd prime. Suppose otherwise and write y = 2µ with µ ≥ 1. Then
the Frey–Hellegouarch curve Gx,k has conductor 2q and minimal discriminant −22nµ−12q2k+1. A short
search of Cremona’s tables [1997] reveals that there are no such elliptic curves for the values q in (78)
(recall that n > 1000). Thus, there necessarily exists an odd prime p | y; since q ∤ y, we observe that
q ̸= p. By Lemma 7.1,

ap(E) ≡ ±(p + 1) (mod n),

where E is given by Table 6. As E has nontrivial 2-torsion, we conclude that 2n | (p + 1 ∓ ap(E)).
However, from the Hasse–Weil bounds,

0 < p + 1 ∓ ap(E) < (
√

p + 1)2
≤ (

√
y/2 + 1)2,

and therefore 2n < (
√

y/2 + 1)2. The desired inequality follows. □

Now let q be any of the values in (78), write M = Q(
√

−q), and let OM be its ring of integers. Note
that the units of OM are ±1. Fix P to be one of the two prime ideals of OM above 2. After possibly
replacing x by −x we have

x + qk√
−q

2
·OM = Pn−2

·An, (80)

where A is an ideal of OM with norm y/2. Hence

x − qk√
−q

x + qk√−q
=

(
P

P

)2

·

(
P ·A

P ·A

)n

.

For all six values of q under consideration, the class group is cyclic and generated by the class [P]. Let
hq be the class number of M ; this value is respectively 1, 3, 3, 5, 7 and 5 for q in (78) (see Table 7). As
n > 1000 is prime, gcd(n, hq) = 1. Since OM has class number hq , it follows that Phq is principal, say
Phq = (αq) ·OM . We fix our choice of P so that αq is given by Table 7. Write βq = αq/αq . Thus(

x − qk√
−q

x + qk√−q

)hq

= β2
qγ n, (81)
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q 7 23 31 47 71 79

hq 1 3 3 5 7 5

αq
1+

√
−7

2
3+

√
−23

2
1+

√
−31

2
9+

√
−47

2
21+

√
−71

2
7+

√
−79

2

Table 7. Here, hq denotes the class number of M = Q(
√

−q), and αq is a generator for
the principal ideal Phq , where P is one of the two prime ideals of OM above 2.

where γ ∈ M is some generator for the principal ideal ((P ·A)/(P ·A))hq .
To derive an upper bound on n, we begin by using (81) to find a “small” linear form in logarithms.Write

3 = log
(

x − qk√
−q

x + qk√−q

)
.

Lemma 15.4. If there exists a solution to (77) with yn > 100 q2k+1, then

log |3| < 0.75 +

(
k +

1
2

)
log q −

n
2

log y.

Proof. The assumption that yn > 100q2k+1, together with, say, Lemma B.2 of [Smart 1998], implies that

|3| ≤ −10 log
(

9
10

)∣∣∣∣ x − qk√
−q

x + qk√−q
− 1

∣∣∣∣ = −20 log
(

9
10

)qk√q
yn/2 ,

whence the lemma follows. □

To show that log |3| here is indeed small, we first require an upper bound upon k. From (81), we have(
x − qk√

−q
x + qk√−q

)hq

− 1 = β2
qγ n

− 1

and so
−2qk√

−q
x + qk√−q

hq−1∑
i=0

(
x − qk√

−q
x + qk√−q

)i

= β2
qγ n

− 1. (82)

Since gcd(x, q) = 1, it follows from (82) that, if we set

31 = γ n
− βq

2,

then νq(31) ≥ k. To complement this with an upper bound for linear forms in q-adic logarithms, we
appeal to Theorem 10, with

q ∈ {7, 23, 31, 47, 79}, f = 1, D = 2, α1 = γ, α2 = βq , b1 = n, b2 = 2,

log A1 =
hq

2
log y, log A2 =

1
2

log q and b′
=

n
log q

+
2

hq log y
.

Here, we use Lemma 13.2 of Bugeaud, Mignotte and Siksek [Bugeaud et al. 2006] which implies that

h(α1) =
hq

2
log y and h(α2) =

hq

2
log 2.
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In the case q = 71, we make identical choices except to take log A2 =
7
2 log 2, whence

b′
=

n
7 log 2

+
2

7 log y
.

Theorem 10 thus yields the inequality

νq(31) ≤
96 q hq

log3 q
· (max{log b′

+ log log q + 0.4, 5 log q})2 log y,

for q ∈ {7, 23, 31, 47, 79}, and

ν71(31) ≤ 701.2 · (max{log b′
+ log log 71 + 0.4, 5 log 71})2 log y,

if q = 71.
Let us now suppose that

n > 108, (83)

which will certainly be the case if n ≥ Uq , for Uq as defined in (79). Then, from Lemma 15.3, in all cases
we have that

b′ < 1.001
n

log q

and hence obtain the inequalities

k <
96 q hq

log3 q
· (max{log n + 0.4001, 5 log q})2 log y, if q ∈ {7, 23, 31, 47, 79} (84)

and

k < 701.2 · (max{log n + 0.4001, 5 log 71})2 log y, if q = 71. (85)

Now consider

32 = hq log
x − qk√

−q
x + qk√−q

= n log(ϵ1γ ) + 2 log(ϵ2βq) + jπ i, (86)

where we take the principal branches of the logarithms and the integers ϵi ∈ {−1, 1} and j are chosen so
that Im(log(ϵ1γ )) and Im(log(ϵ2βq)) have opposite signs, and we have both

|log(ϵ2βq)| <
π

2

and |32| minimal. Explicitly,

q 7 23 31 47 71 79

ϵ2 −1 −1 −1 1 1 −1

|log(ϵ2βq)| arccos 3
4 arccos 7

16 arccos 15
16 arccos 17

64 arccos 185
256 arccos 15

64

Assume first that

yn
≤ 100q2k+1.
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If q ∈ {7, 23, 31, 47, 79}, it follows from (84) that

n <
2 log 10

log y
+

log q
log y

+
192 q hq

log2 q
· (max{log n + 0.4001, 5 log q})2,

in each case contradicting Lemma 15.3 and (83). We obtain a similar contradiction in case the q = 71
upon considering (85).

It follows, then, that we may assume yn > 100q2k+1 and hence conclude, from Lemma 15.4, that

log |32| < log hq + 0.75 +

(
k +

1
2

)
log q −

n
2

log y.

If q ∈ {7, 23, 31, 47, 79}, (84) thus implies that

log |32| < log hq + 0.75 +
1
2

log q +
96 q hq

log2 q
· (max{log n + 0.4001, 5 log q})2 log y −

n
2

log y.

An analogous inequality holds for q = 71, upon appealing to (85). From Lemma 15.3 and (83), we find that

log |32| < −κq n log y, (87)

where

κq =



0.499 if q = 7,

0.497 if q ∈ {23, 31},

0.494 if q = 47,

0.486 if q = 71,

0.490 if q = 79.

(88)

It therefore follows from the definition of 32 that

| j | π < πn + 2 arccos 15
64 + y−0.486n < πn + π,

and so
| j | ≤ n. (89)

Linear forms in three logarithms. To deduce an initial lower bound upon the linear form in logarithms |32|,
we will use the following.

Theorem 14 [Matveev 2000, Theorem 2.1]. Let K be an algebraic number field of degree D over Q and
put χ = 1 if K is real, χ = 2 otherwise. Suppose that α1, α2, . . . , αn0 ∈ K∗ with absolute logarithmic
heights h(αi ) for 1 ≤ i ≤ n0, and suppose that

Ai ≥ max{D h(αi ), |log αi |}, 1 ≤ i ≤ n0,

for some fixed choice of the logarithm. Define

3 = b1 log α1 + · · · + bn0 log αn0,

where the bi are integers and set

B = max
{

1, max
{
|bi |

Ai
An0

: 1 ≤ i ≤ n0

}}
.
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Define, with e := exp(1),

� = A1 · · · An0, C(n0) = C(n0, χ) =
16

n0!χ
en0(2n0 + 1 + 2χ)(n0 + 2)(4n0 + 4)n0+1

(en0
2

)χ

,

C0 = log(e4.4n0+7n5.5
0 D2 log(eD)) and W0 = log(1.5eBD log(eD)).

Then, if log α1, . . . , log αn0 are linearly independent over Z and bn0 ̸= 0, we have

log |3| > −C(n0) C0 W0 D2 �.

We apply Theorem 14 to 3 = 32 with

D = 2, χ = 2, n0 = 3, b3 = n, α3 = ϵ1γ, b2 = −2, α2 = ϵ2βq , b1 = j and α1 = −1.

We may thus take

A3 = log y, A2 = max{hq log 2, |log(ϵ2βq)|}, A1 = π and B = n.

Since

4 C(3) C0 = 218
· 3 · 5 · 11 · e5

· log(e20.2
· 35.5

· 4 log(2e)) < 1.80741 × 1011,

and

W0 = log(3en log(2e)) < 2.63 + log n,

we may therefore conclude that

log |32| > −5.68 × 1011 max
{
hq log 2, |log(ϵ2βq)|

}
(2.63 + log n) log y.

It thus follows from (87) that

n < κ−1
q 5.68 × 1011 max

{
hq log 2, |log(ϵ2βq)|

}
(2.63 + log n)

and hence

n <


2.77 × 1013 if q = 7,

8.24 × 1013 if q ∈ {23, 31},

1.42 × 1014 if q ∈ {47, 79},

2.02 × 1014 if q = 71.

(90)

To improve these inequalities, we appeal to a sharper, rather complicated, lower bound for linear
forms in three complex logarithms, due to Mignotte [2008, Theorem 2]. Our argument is very similar
to that employed in a recent paper of the authors [Bennett and Siksek 2023]. We note that recent work
of Mignotte and Voutier [2022] would substantially improve our bounds (and reduce our subsequent
computations considerably).

Theorem 15 (Mignotte). Consider three nonzero algebraic numbers α1, α2 and α3, which are either all
real and > 1, or all complex of modulus one and all ̸= 1. In addition, assume that the three numbers
α1, α2 and α3 are either all multiplicatively independent, or that two of the numbers are multiplicatively
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independent and the third is a root of unity. We also consider three positive rational integers b1, b2, b3

with gcd(b1, b2, b3) = 1, and the linear form

3 = b2 log α2 − b1 log α1 − b3 log α3,

where the logarithms of the αi are arbitrary determinations of the logarithm, but which are all real or all
purely imaginary. We assume that

0 < |3| <
2π

w
,

where w is the maximal order of a root of unity in Q(α1, α2, α3). Suppose further that

b2|log α2| = b1 |log α1| + b3 |log α3| ± |3| (91)

and put
d1 = gcd(b1, b2), d3 = gcd(b3, b2) and b2 = d1b′

2 = d3b′′

2

Let K , L , R, R1, R2, R3, S, S1, S2, S3, T, T1, T2, T3 be positive rational integers with

K ≥ 3, L ≥ 5, R > R1 + R2 + R3, S > S1 + S2 + S3 and T > T1 + T2 + T3.

Let ρ ≥ 2 be a real number. Let a1, a2 and a3 be real numbers such that

ai ≥ ρ|log αi | − log |αi | + 2D h(αi ), i ∈ {1, 2, 3},

where D = [Q(α1, α2, α3) : Q]/[R(α1, α2, α3) : R], and set

U =

(
K L
2

+
L
4

− 1 −
2K
3L

)
log ρ.

Assume further that

U ≥ (D + 1) log(K 2L) + gL(a1 R + a2S + a3T ) + D(K − 1) log b − 2 log
e
2
, (92)

where

g =
1
4

−
K 2L

12RST
and b = (b′

2η0)(b′′

2ζ0)

( K−1∏
k=1

k!

)−4/(K (K−1))

,

with

η0 =
R − 1

2
+

(S − 1)b1

2b2
and ζ0 =

T − 1
2

+
(S − 1)b3

2b2
.

Put
V =

√
(R1 + 1)(S1 + 1)(T1 + 1).

If , for some positive real number χ , we have

(i) (R1 + 1)(S1 + 1)(T1 + 1) > KM,

(ii) Card{αr
1α

s
2α

t
3 : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1} > L ,

(iii) (R2 + 1)(S2 + 1)(T2 + 1) > 2K 2,

(iv) Card{αr
1α

s
2α

t
3 : 0 ≤ r ≤ R2, 0 ≤ s ≤ S2, 0 ≤ t ≤ T2} > 2K L , and
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(v) (R3 + 1)(S3 + 1)(T3 + 1) > 6K 2L ,

where
M = max{R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV},

then either

|3| ·
L SeL S|3|/(2b2)

2|b2|
> ρ−K L , (93)

or at least one of the following conditions holds:

(C1) |b1| ≤ R1 and |b2| ≤ S1 and |b3| ≤ T1.

(C2) |b1| ≤ R2 and |b2| ≤ S2 and |b3| ≤ T2.

(C3) Either there exist nonzero rational integers r0 and s0 such that

r0b2 = s0b1 (94)

with

|r0| ≤
(R1 + 1)(T1 + 1)

M− T1
and |s0| ≤

(S1 + 1)(T1 + 1)

M− T1
, (95)

or there exist rational integers r1, s1, t1 and t2, with r1s1 ̸= 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1, (96)

which also satisfy

|r1s1| ≤ gcd(r1, s1) ·
(R1 + 1)(S1 + 1)

M− max{R1, S1}
,

|s1t1| ≤ gcd(r1, s1) ·
(S1 + 1)(T1 + 1)

M− max{S1, T1}

and

|r1t2| ≤ gcd(r1, s1) ·
(R1 + 1)(T1 + 1)

M− max{R1, T1}
.

Also, when t1 = 0 we can take r1 = 1, and when t2 = 0 we can take s1 = 1.

We will apply this result to 3 = 32. For simplicity, we will provide full details for the case q = 7; the
arguments for the other values of q under consideration are similar and follow closely their analogues in
[Bennett and Siksek 2023]. If j = 0, then 32 immediately reduces to a linear form in two logarithms and
we may appeal to Theorem 11, with (in the notation of that result)

c2 = n, β2 = ϵ1γ, c1 = 2, β1 =
1

ϵ2βq
, D = 1,

whence we may choose
log B2 =

1
2 log y and log B1 = 1.

We thus have, from (83) and Lemma 15.3,

b′
=

4
log y

+ n < 1.001n.
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From Theorem 11 with (m, C) = (10, 32.3), it follows, again from (83), that

log |32| ≥ −64.6(log n + 0.211)2 log y.

Combining this with inequality (87) contradicts (83). We argue similarly if j = ±n, again reaching a
contradiction via bounds for linear forms in two complex logarithms.

We may thus suppose that j ̸= 0 and | j | < n (so that, in particular, gcd( j, n) = 1), and hence choose

b1 = 2, α1 =
1

ϵ2βq
, b2 = n, α2 = ϵ1γ, b3 = − j and α3 = −1. (97)

From the fact that Im(log(ϵ1γ )) and Im(log(ϵ2βq)) have opposite signs, (91) is satisfied and we have

d1 = d3 = 1 and b′

2 = b′′

2 = n.

It follows that

h(α1) =
1
2 log(2), h(α2) =

1
2 log(y) and h(α3) = 0,

and hence we can take

a1 = ρ arccos 3
4 + log 2, a2 = ρπ + log y and a3 = ρπ.

As noted in [Bugeaud et al. 2006], if we suppose that m ≥ 1 and define

K = [mLa1a2a3], R1 = [c1a2a3], S1 = [c1a1a3], T1 = [c1a1a2], R2 = [c2a2a3],

S2 = [c2a1a3], T2 = [c2a1a2], R3 = [c3a2a3], S3 = [c3a1a3], T3 = [c3a1a2],
(98)

where

c1 = max
{
(χmL)2/3,

(
2mL

a1

)1/2}
, c2 = max

{
21/3(mL)2/3,

(
m
a1

)1/2
L
}

and c3 = (6m2)1/3L , (99)

then conditions (i)–(v) are automatically satisfied. It remains to verify inequality (92).
To carry this out, we optimize numerically over values of ρ, L , m and χ as in [Bennett and Siksek 2023]

(full details are available there, by way of example, in the case q = 7). Pari/GP code for carrying this out
is due to Voutier [2023]. In each case, we obtain a sharpened upper bound upon the exponent n, provided
inequality (93) holds. If, on the other hand, inequality (93) fails to be satisfied, from inequality (83)
and our choices of S1 and S2, necessarily (C3) holds and we may rewrite 32 as a linear form in two
complex logarithms to which we can apply Theorem 11. In this case, we once again obtain a sharpened
upper bound for n. Iterating this process leads to the upper bounds Uq given in (79). We observe that
direct application of the new bounds from [Mignotte and Voutier 2022], with the corresponding Pari/GP
code, substantially sharpens these bounds, though this is not especially important for our purposes. This
completes the proof of Proposition 15.2.
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Proof of Theorem 1. We now finish the proof of Theorem 1. By the remarks at the beginning of the
current section, we are reduced to considering solutions (x, y, k) to (77), where q belongs to (78).
Thanks to Propositions 14.1 and 15.2, we may suppose that the prime exponent n belongs to the range
1000 < n < Uq where Uq is given by (79).

Lemma 15.5. Let (x, y, k) be a solution to (77) where q belongs to (78) and the exponent n is a prime
belonging to the range 1000 < n < Uq . Let M = Q(

√
−q). Let hq and αq be as in Table 7, and choose i

to be the unique integer 0 ≤ i ≤ hq − 1 satisfying ni ≡ −2 (mod hq ). Write n∗
= (−ni − 2)/hq . Then,

after possibly changing the sign of x ,

x + qk√
−q

2
= αn∗

q · γ n, (100)

where γ ∈ OM . Additionally, Norm(γ ) = 2i−1 y.

Proof. Recall that hq is the class number of M , and that Phq = αqOM , where P is one of the two prime
ideals of OM above 2. From (78), after possibly replacing x by −x ,(

x + qk√
−q

2

)
·OM = P−2

·An,

where A is an ideal of OM of norm y/2. Now, for the values of q we are considering, the class group is
cyclic and generated by [P]. Thus there is some 0 ≤ i ≤ hq − 1 such that PiA is principal. However,(

x + qk√
−q

2

)
·OM = P−ni−2

· (Pi
·A)n.

We deduce that P−ni−2 is principal. As the class [P] generates the class group, we infer that i is the
unique integer 0 ≤ i ≤ hq −1 satisfying ni ≡ −2 (mod hq ). Write n∗

= (−ni −2)/hq . As Phq = αq , we
have P−ni−2

= αn∗

q ·OM . Hence

x + qk√
−q

2
= αn∗

q · γ n,

where γ ∈ OM is a generator for the principal ideal PiA. We note that Norm(γ ) = 2i−1 y. □

The following lemma, inspired by ideas of Kraus [1998], provides a computational framework for
showing that (77) has no solutions for a particular exponent n.

Lemma 15.6. Let q belong to the list (78) and let βq = αq/αq . Let n be a prime belonging to the range
1000 < n < Uq . Let E be the elliptic curve given in Table 6. Let ℓ ̸= q be a prime satisfying the three
conditions

(I) −q is a square modulo ℓ;

(II) ℓ = tn + 1 for some positive integer t;

(III) aℓ(E)2
̸≡ 4 (mod n).
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Let L be one of the two prime ideals of OM above ℓ, and write FL = OM/L ∼= Fℓ. Let β ∈ FL satisfy
β ≡ αq/αq (mod L). Choose g to be a cyclic generator for F∗

L, set h = gn , and define

Xℓ,n = {βn∗

· h j
: j = 0, 1, . . . , t − 1} ⊂ FL.

For x ∈ Xℓ,n let

Ex : Y 2
= X (X + 1)(X + x).

Finally, define

Yℓ,n = {x ∈ X : aL(Ex)
2
≡ aℓ(E)2 (mod n)}.

If Yℓ,n = ∅, then (77) has no solutions.

Proof. Suppose that (x, y, k) is a solution to (77) for our particular pair (q, n). We change the sign of
x if necessary so that (100) holds and let x ′

= ±x so that x ′
≡ 1 (mod 4). By Lemma 15.1, we know

that ρ̄Gx ′,k ,n ∼ ρ̄E,n . Observe that Gx ′,k is either the same elliptic curve as Gx,k if x ′
= x , or it is a

quadratic twist by −1 if x ′
= −x . Hence aℓ(Gx,k) = ±aℓ(Gx ′,k) for any odd prime ℓ of good reduction

for either (and hence both) elliptic curves. We let ℓ be a prime satisfying conditions (I), (II) and (III).
From (III) and (II), we note that aℓ(E) ̸≡ ±(ℓ+1) (mod n). It follows from Lemma 7.1 that ℓ ∤ y, and that
aℓ(Gx ′,k) ≡ aℓ(E) (mod n). Thus aℓ(Gx,k)

2
≡ aℓ(E)2 (mod n). By Lemma 15.5, identity (100) holds

where Norm(γ )=2i−1 y. In particular, L is disjoint from the support of γ and αq . It follows from (100) that

x − qk√
−q

x + qk√−q
=

(
αq

αq

)n∗

·

(
γ

γ

)n

.

As g is a generator of F∗

L which is cyclic of order ℓ − 1 = tn, and as h = gn , there is some 0 ≤ j ≤ t − 1
such that (γ /γ )n

≡ h j (mod L). Hence

x − qk√
−q

x + qk√−q
≡ x (mod L),

for some x ∈ Xℓ,n . The Frey–Hellegouarch curve Gx,k defined in Lemma 15.1 can be rewritten as

Y 2
= X (X + 2(x − qk√

−q))(X + 2(x + qk√
−q))

and hence modulo L is a quadratic twist of Ex. We deduce that aL(Ex)
2
= aℓ(Gx,k)

2
≡ aℓ(E)2 (mod n),

whence x ∈ Yℓ,n . This completes the proof. □

To finish the proof of Theorem 1, we wrote a Magma script which, for each q in (78) and each prime n
in the interval 1000 < n < Uq , found a prime ℓ satisfying conditions (I), (II) and (III), with Yℓ,n = ∅.
The following table gives the approximate time taken for this computation, on a single processor:

q 7 23 31 47 71 79

time (hours) 115 450 226 988 1058 1019
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As one may observe from our proofs, for a given q, the upper bound Uq upon n in (77), coming
from bounds for linear forms in logarithms, depends strongly upon the class number of Q(

√
−q). It

is this dependence which makes extending Theorem 1 to larger values of q an expensive proposition,
computationally.

16. Concluding remarks

There are quite a few additional Frey–Hellegouarch curves at our disposal, that might prove helpful in
completing the solution of (5), for some of our problematical values of q . A number of these arise from
considering (5) as a special case of

x2
− qδzκ

= yn,

where, say, κ ∈ {3, 4, 6} and 0 ≤ δ < κ . In each case, the dimensions of the spaces of modular forms
under consideration grow quickly, complicating matters. This is particularly true if κ ∈ {4, 6}, where our
Frey–Hellegouarch curve will a priori be defined over Q(

√
q), and so the relevant modular forms are

Hilbert modular forms which are more challenging to compute than classical modular forms.
In the case y is even in (5) (whence we are in the situation where our bounds coming from linear forms

in logarithms are weaker), we can attach a Frey–Hellegouarch Q-curve to a potential solution (which at
least corresponds to a classical modular form). To do this, write M = Q(

√
q) and OM for the ring of

integers of M . Assuming that M has class number one (which is the case for, say, the remaining values
q ∈ {41, 89, 97}), we have

x + qk√q
2

= δrγ n−2αn

for some r ∈ Z and α ∈ OM . Here, δ is a fundamental unit for OM and γ is a suitably chosen generator
for one of the two prime ideals above 2 in M . From this equation,

qk√q = δrγ n−2αn
− δrγ n−2αn.

Treating this as a ternary equation of signature (n, n, 2), we can attach to such a solution a Frey–
Hellegouarch Q-curve; see, for example, [van Langen 2021, Section 6]. We will not pursue this here.
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On fake linear cycles inside Fermat varieties
Jorge Duque Franco and Roberto Villaflor Loyola

We introduce a new class of Hodge cycles with nonreduced associated Hodge loci; we call them fake
linear cycles. We characterize them for all Fermat varieties and show that they exist only for degrees
d = 3, 4, 6, where there are infinitely many in the space of Hodge cycles. These cycles are pathological
in the sense that the Zariski tangent space of their associated Hodge locus is of maximal dimension,
contrary to a conjecture of Movasati. They provide examples of algebraic cycles not generated by their
periods in the sense of Movasati and Sertöz (2021). To study them we compute their Galois action in
cohomology and their second-order invariant of the IVHS. We conclude that for any degree d ≥ 2 +

6
n ,

the minimal codimension component of the Hodge locus passing through the Fermat variety is the one
parametrizing hypersurfaces containing linear subvarieties of dimension n

2 , extending results of Green,
Voisin, Otwinowska and Villaflor Loyola.

1. Introduction

The classical Noether–Lefschetz locus NLd is the space of degree d ≥ 4 surfaces in P3 with Picard rank
bigger than 1. This space is known to have countably many components given by algebraic subvarieties of
the space of smooth degree d surfaces in P3. A classical result due to Green [1988] and Voisin [1988] states
that for d ≥ 5 it has only one minimal codimension component, which parametrizes surfaces containing
lines (for d = 4 all components have the same codimension). The higher dimension analogue of the
Noether–Lefschetz locus is the so-called Hodge locus HLn,d which is the locus of degree d hypersurfaces
X ⊆ Pn+1 for n even, with lattice of Hodge cycles H n/2,n/2(X)∩ H n(X, Z) of rank bigger than 1. This
space is nontrivial for d ≥ 2+

4
n , and it is known to have countably many components which are algebraic

subvarieties of T ⊆ H 0(Pn+1,O(d)) the space of smooth degree d hypersurfaces of Pn+1. A natural
question is to ask whether the analogue of the Green–Voisin theorem still holds for higher dimensions, i.e.,
if for d ≥ 2 +

6
n the only minimal codimension component of the Hodge locus is 6(1,...,1), that is, the one

parametrizing hypersurfaces containing linear subvarieties of dimension n
2 . The first result in this direction

was obtained by Otwinowska [2002, Theorem 3] who answered positively the question for d ≫ n. The
conjecture for smaller degrees remains open, and even to establish that the codimension of 6(1,...,1) —
which is equal to

(n/2 + d
d

)
−

( n
2 + 1

)2 — is a lower bound for the codimension of all components is also a
conjecture. A partial result on the lower bound conjecture was obtained by Movasati [2017, Theorem 2],
who proved it for all components passing through the Fermat point. The characterization of 6(1,...,1) as
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the only component passing through the Fermat point attaining this bound was recently established in
Theorem 1.1 of [Villaflor Loyola 2022b] for d ̸= 3, 4, 6. In this article we treat the remaining cases.

The previously mentioned results rely on the description of the Zariski tangent space of the local Hodge
loci Vλ ⊆ (T, t), associated to some Hodge cycle λ ∈ H n/2,n/2(X t)∩ H n(X t , Z) for X t = Supp(t) ⊆ Pn+1

and t ∈ T , in terms of the infinitesimal variation of Hodge structure. In practice, instead of bounding the
codimension of the components of the Hodge locus, one bounds the codimension of the Zariski tangent
space of all Vλ. This is the case for all the previous results of Green, Voisin, Otwinowska and Movasati. In
particular, Movasati proved that if 0 ∈ T corresponds to the Fermat point then the codimension of T0Vλ is
greater than or equal to

(n/2 + d
d

)
−

( n
2 +1

)2 for all nontrivial Hodge cycles λ ∈ H n/2,n/2(X0)∩ H n(X0, Z)

of the Fermat variety. This naturally led Movasati [2021, Conjecture 18.8] to conjecture that this bound
is attained if and only if λ is the class of a linear algebraic cycle Pn/2

⊆ X0 of the Fermat variety. Our
main result disproves this conjecture for d = 3, 4, 6 in all dimensions, providing a complete answer to
Movasati’s question for the cases not covered by [Villaflor Loyola 2022b].

Theorem 1.1. For d = 3, 4, 6 ≥ 2 +
6
n and n even, there are infinitely many scheme-theoretically different

Hodge loci Vλ associated to nontrivial Hodge cycles of the Fermat variety λ ∈ H n/2,n/2(X0)∩ H n(X0, Z)

such that

codim T0Vλ =

(n/2 + d
d

)
−

(n
2

+ 1
)2

.

In particular, infinitely many of these Hodge cycles are not linear cycles. We call them fake linear cycles.
All fake linear cycles are of the form

λprim = res
(

Pλ�

Fn/2+1

)
,

where Pλ is given (up to some relabeling of the coordinates) by

Pλ = cλ

n/2+1∏
j=1

xd−1
2 j−2 − (c2 j−2x2 j−1)

d−1

x2 j−2 − c2 j−2x2 j−1
, (1)

where c0, c2, . . . , cn ∈ ζ−3
2d ·S1

Q(ζd ) = {ζ−3
2d ·z ∈ Q(ζ2d) : z ∈ Q(ζd) and |z| = 1} but not all being d-th roots

of −1 simultaneously, and cλ ∈ Q(ζ2d)×. For any such choice of ci ’s, there exists some cλ ∈ Q(ζ2d)×

such that the class λprim, given by Pλ as in (1), is the class of a fake linear cycle.

We point out that the condition on the ci ’s not all being d-th roots of −1 simultaneously is to avoid
that λprim becomes the class of a true linear cycle. Since the Hodge conjecture is known for these Fermat
varieties [Shioda 1979] we know that fake linear cycles are rational combinations of linear cycles. The
proof of the above result follows after a first-order analysis of the Hodge loci.

Curiously Fermat varieties of degrees d = 3, 4, 6 correspond exactly to those where the group
H n(Xn

d , Z)alg of algebraic cycles has maximal rank hn/2,n/2 (see Proposition 2.6 and [Beauville 2014] for
a survey on these rare-to-find varieties). The subtle part of the above result is showing the existence of cλ

in such a way that the corresponding class is a Hodge class. For this is necessary to describe the Galois
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action of Q(ζ2d)/Q on the space of totally decomposable Hodge monomials in the sense of [Shioda 1979].
An immediate consequence of Theorem 1.1 is that the Artinian Gorenstein ideal associated to each fake
linear cycle is of the form

J F
= ⟨x0 − c0x1, x2 − c2x3, . . . , xn − cnxn+1, xd−1

0 , . . . , xd−1
n+1 ⟩. (2)

The name fake linear cycle is inspired from this fact and the principle introduced in [Movasati and Sertöz
2021] which predicts that for “good enough” algebraic cycles, one should obtain the supporting equations
of a representative of the cycle as generators of J F,λ for small degrees. It was proved by Cifani, Pirola and
Schlesinger [Cifani et al. 2023] that all arithmetically Cohen–Macaulay curves inside a smooth surface
in P3 satisfy this principle, which says that the curve can be reconstructed from its periods. It was also
shown by them that not all curves can be reconstructed from their periods (for example, a rational degree 4
curve inside a quartic). After (2) we see that fake linear cycles provide more examples (of any dimension)
of algebraic cycles which cannot be reconstructed from their periods. In fact, otherwise the supporting
equations of the cycle should be the n

2 + 1 equations of degree 1 which define a n
2 -dimensional linear

subvariety inside Pn+1, but this linear variety is never contained in Xn
d .

Beside the above anomalous properties of fake linear cycles, we show that their associated Hodge loci
are nonreduced, completing thus the proof of following result.

Theorem 1.2. For n even and d ≥ 2 +
6
n the unique component of minimal codimension of the Hodge

locus HLn,d passing through the Fermat variety is 6(1,...,1), that is, the one parametrizing hypersurfaces
containing linear subvarieties of dimension n

2 .

For the proof of Theorem 1.2 it is necessary to compute the quadratic fundamental form of the Hodge
loci associated to fake linear cycles. For this we rely on the description of this second-order invariant of
the IVHS introduced in Theorem 7 of [Maclean 2005].

The text is organized as follows. In Section 2 we recall the cohomology and homology of Fermat
varieties. Section 3 is devoted to the computation of the field of definition of totally decomposable Hodge
monomials, together with the explicit description of the Galois action on them (see Proposition 3.7). In
Section 4 we recall the basic results and notation about the Artinian Gorenstein ideal associated to a
Hodge cycle based on [Villaflor Loyola 2022b]. The proof of Theorem 1.1 is given in Section 5. Section 6
is devoted to the computation of the quadratic fundamental form associated to each fake linear cycle and
the proof of Theorem 1.2.

2. Topology of Fermat varieties

In this section we describe the homology and cohomology groups of Fermat varieties. For this we start
by recalling the notation and main results of [Shioda 1979]. Let

Xn
d := {F := xd

0 + · · · + xd
n+1 = 0}
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be the n-dimensional Fermat variety of degree d . Shioda described the cohomology groups H n
dR(Xn

d) in
terms of a spectral decomposition compatible with the Hodge decomposition. This decomposition goes
as follows. Let

Gn
d := (µd)n+2/1(µd),

where µd := ⟨ζd⟩ ≃ Z/dZ is the group of d-th roots of unity. The above group acts on Xn
d by coordinate-

wise multiplication:

g = (g0, . . . , gn+1), g · x = (g0 · x0 : . . . : gn+1 · xn+1). (3)

The dual group Ĝn
d corresponds to the group of characters

Ĝn
d := {α = (a0, . . . , an+1) ∈ (Z/dZ)n+2

: a0 + · · · + an+1 = 0}

whose pairing with Gn
d is

α(g) := ga0
0 · · · gan+1

n+1 .

The action of Gn
d on Xn

d induces an action of Gn
d on H n(Xn

d , Z) and H n(Xn
d , Z)prim, which naturally

extends to H n(Xn
d , Z)prim ⊗ C ≃ H n

dR(Xn
d)prim. We have the decomposition

H n
dR(Xn

d)prim =

⊕
α∈Ĝn

d

V (α), (4)

which is finer than the Hodge decomposition, and where

V (α) := {ω ∈ H n
dR(Xn

d)prim : g∗ω = α(g)ω, ∀g ∈ Gn
d}.

The following is the main result of [Shioda 1979].

Theorem 2.1 (Shioda). (i) dim V (α) = 1 if a0 · · · an+1 ̸= 0, and V (α) = 0 otherwise.

(ii) Each piece of the Hodge decomposition corresponds to

H p,q(Xn
d)prim =

⊕
|α|=q+1

V (α),

where |α| :=
1
d

∑n+1
i=0 ai , and ai ∈ {0, . . . , d − 1} is the residue of ai modulo d.

(iii) If n is even, then

(H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Z)) ⊗ C =

⊕
α∈Bn

d

V (α)

with

Bn
d :=

{
α ∈ Ĝn

d : |t · α| =
n
2

+ 1, ∀t ∈ (Z/dZ)×
}
.

The previous result can be complemented with Griffiths’ basis theorem [1969a; 1969b]. This theorem
describes the primitive cohomology classes of any smooth hypersurface X = {F = 0} ⊆ Pn+1 in terms
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of the Jacobian ring RF
:= C[x0, . . . , xn+1]/J F , where J F

:= ⟨∂ F/∂x0, . . . , ∂ F/∂xn+1⟩ is the Jacobian
ideal. This description is compatible with the Hodge filtration and is done via the residue map as follows:

RF
d(q+1)−n−2

∼
−→ F p H n

dR(X)prim/F p+1 H n
dR(X)prim, P 7→ ωP := res

(
P�

Fq+1

)
.

In the particular case of the Fermat variety one has

H n
dR(Xn

d)prim =

⊕
β

C · ωβ, (5)

where

ωβ = res
(

xβ�

Fn/2+1

)
and β = (β0, . . . , βn+1) with βi ∈ {0, . . . , d −2} such that 1

d (deg(xβ)+n +2) ∈ Z. The relation between
Griffiths’ decomposition (5) and Shioda’s decomposition (4) is clarified by the following proposition.

Proposition 2.2. Let α = (a0, . . . , an+1) ∈ Ĝn
d be such that a0 · · · an+1 ̸= 0. Then

V (α) = C · ωβ,

where βi = ai − 1 for all i = 0, . . . , n + 1. In particular for any polynomial P ∈ RF
(d−2)(n/2+1)

ωP ∈ (H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Z)) ⊗ C if and only if P ∈

⊕
α∈Bn

d
V (α)=C·ωβ

C · xβ .

Proof. By item (i) of Theorem 2.1 it is enough to show that ωβ ∈ V (α) for α = (a0, . . . , an+1) with
a0 · · · an+1 ̸= 0 and βi = ai − 1. Let g = (ζ

c0
d , . . . , ζ

cn+1
d ) ∈ Gn

d . Then

g∗ωβ = ζ

∑n+1
j=0(β j +1)c j

d ωβ = ζ

∑n+1
j=0 a j c j

d ωβ = α(g)ωβ . □

Remark 2.3. Note that the forms ωβ ∈ V (α) for α ∈ Bn
d are not Hodge cycles. In general one can show

that ωβ ∈ H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Q) assuming the Hodge conjecture.

Remark 2.4. As a consequence of Theorem 2.1, one can show the Hodge conjecture for several Fermat
varieties [Shioda 1979] including those of degree d = 3, 4, 6. By an elementary argument one can
characterize these Fermat varieties as those where the group H n(Xn

d , Z)alg of algebraic cycles has maximal
rank hn/2,n/2. Part of this was already noted in Proposition 11 of [Beauville 2014] and in Corollary 15.1
of [Movasati 2021]. For the sake of completeness we will provide the argument here, starting with an
elementary number theory fact which will be also used later in Proposition 5.8.

Lemma 2.5. Let d ≥ 5 and d ̸= 6 be a integer. Consider q := min{p prime : p ∤ 2d}. Then q < d
2 or

q =
d+1

2 . The second case only holds for d = 5, 9.

Proof. If d = 4k, then gcd
(
2d, d

2 − 1
)
= 1, and therefore every prime p|

( d
2 − 1

)
satisfies that p ∤ 2d and

p < d
2 . Similarly, if d = 4k + 2, then gcd

(
2d, d

2 − 2
)
= 1 and we can take p|

( d
2 − 2

)
. If d = 4k + 3, then

gcd
(
2d, d−1

2

)
= 1 and we can take p|

d−1
2 . If d = 4k + 1, then gcd

(
2d, d+1

2

)
= 1 and so taking p|

d+1
2 we
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conclude that q ≤
d+1

2 , i.e., q ≤
d+1

2 − 1 < d
2 unless q =

d+1
2 . To see that this only happens for d = 5, 9

note that if q = pn is the n-th prime number, then p2 · · · pn−1 | d = 2pn − 1. One sees that p2 · · · pn−1

quickly becomes bigger than 2pn − 1 for n ≥ 4. □

Proposition 2.6. For even-dimensional Fermat varieties Xn
d one has

rank H n(Xn
d , Z)alg = hn/2,n/2 if and only if ϕ(d) ≤ 2 (d = 1, 2, 3, 4, 6).

Proof. Let us note first that if ϕ(d) ≤ 2, we know the Hodge conjecture by [Shioda 1979] and so it is
enough to show, by Theorem 2.1(iii), that for all α ∈ Ĝn

d with |α| =
n
2 + 1 one has

|t · α| =
n
2

+ 1 ∀t ∈ (Z/dZ)×. (6)

This is trivial if ϕ(d) = 1, and for ϕ(d) = 2 we have (Z/dZ)× = {1, d − 1} where the result is also clear.
Conversely, if ϕ(d) > 2 let us construct some α ∈ Ĝn

d with |α| =
n
2 + 1 not satisfying (6). Note that if we

find such an α for n = 2, then to construct one for any n ≥ 4 is easy by just adding pairs of entries of
the form (1, d − 1). Thus we are reduced to the case n = 2. Let us consider first the case d ̸= 5, 9. By
Lemma 2.5 there exists some k ∈ {2, 3, . . . , d − 1} such that

d
k+1

< q <
d
k
, where q := min{p prime : p ∤ 2d}.

We claim the desired character is any

α = (aq, bq, cq, 2d − (k + 1)q)

such that a + b + c = k + 1 with a, b, c ∈ {1, 2, . . . , k}. In fact, |α| = 2 but if t = q−1
∈ (Z/dZ)× then

|t · α| = |(a, b, c, r)| =
k+1+r

d
< 2.

Finally for the cases d =5, 9 consider the characters α = (2, 2, 2, 4), (5, 5, 5, 3), respectively, and t =2. □

Let us turn now to the homology groups of Fermat varieties. For this let us denote by

U n
d := {(x1, . . . , xn+1) ∈ Cn+1

: 1 + xd
1 + · · · + xd

n+1 = 0} = Xn
d ∩ Cn+1

the affine Fermat variety. A basis for Hn(U n
d , Z) is given by the so-called vanishing cycles.

Definition 2.7. For every β ∈ {0, . . . , d − 2}
n+1 consider the homological cycle

δβ :=

∑
a∈{0,1}n+1

(−1)
∑n+1

i=1 (1−ai )1β+a,

where 1β+a : 1n
:=

{
(t1, . . . , tn+1) ∈ Rn+1

: ti ≥ 0,
∑n+1

i=1 ti = 1
}

→ U n
d is given by

1β+a(t) := (ζ
2(β1+a1)−1
2d t1/d

1 , ζ
2(β2+a2)−1
2d t1/d

2 , . . . , ζ
2(βn+1+an+1)−1
2d t1/d

n+1).

Proposition 2.8. The set {δβ}β∈{0,...,d−2}n+1 is a basis of Hn(U n
d , Z).

Proof. This is a well-known fact. For a proof see for instance [Movasati 2021, Remark 7.1]. □
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Using the Leray–Thom–Gysin sequence in homology [Movasati 2021, §4.6], it is easy to see that

Hn(Xn
d , Q) = Im(Hn(U n

d , Q) → Hn(Xn
d , Q)) ⊕ Q · [Pn/2+1

∩ Xn
d ]. (7)

Hence every ω ∈ H n
dR(Xn

d) is determined by its periods over the vanishing cycles and [Pn/2+1
∩ Xn

d ].
Since this last period is zero when ω ∈ H n

dR(Xn
d)prim, we see that every primitive class is determined by

its periods over all vanishing cycles. These periods can be explicitly computed following [Deligne 1982]
(see Proposition 3.3).

3. Galois action in cohomology

Let X ⊆ Pn+1 be a smooth hypersurface of the projective space.

Definition 3.1. For every ω ∈ H n
dR(X), the field of definition of ω is

Qω := Q

(
1

(2π i)n/2

∫
δ

ω : δ ∈ Hn(X, Z)

)
.

Since Hn(X, Z) is finitely generated, Qω is also finitely generated. This is the field of definition of ω in
the following sense:

ω ∈ H n(X, Qω).

Definition 3.2. For every t ∈Gal(Qω/Q) we define the Galois action in cohomology as t (ω)∈ H n(X, Qω)

such that

t
(

1
(2π i)n/2

∫
δ

ω

)
=

1
(2π i)n/2

∫
δ

t (ω), ∀δ ∈ Hn(X, Z).

In order to describe the Galois action in the cohomology of Fermat varieties we will use the following
elementary result about periods, whose proof can be found in [Deligne 1982, Lemma 7.12; Movasati
2021, Proposition 15.1].

Proposition 3.3. For a Fermat variety of degree d and even dimension n, let ωβ ∈ H n/2,n/2(Xn
d)prim and

β ′
∈ {0, . . . , d − 2}

n+1. Then∫
δβ′

ωβ =
1

dn+1 n
2 !(2π i)

n+1∏
i=0

(ζ
(βi +1)(β ′

i +1)

d − ζ
(βi +1)β ′

i
d )0

(
βi + 1

d

)
,

where β ′

0 := 0 and 0 is the classical Gamma function.

Using the above formula one can obtain the following elementary result which can also be found as
part of [Deligne 1982, Theorem 7.15].

Proposition 3.4. For every character α = (a0, . . . , an+1) with a0 · · · an+1 ̸= 0,

V (α) ∩ H n(Xn
d , Q(ζd)) ̸= 0.
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In fact a generator is

ηα := (2π i)n/2+1 ωβ∏n+1
i=0 0

(ai
d

) ∈ H n(Xn
d , Q(ζd))prim,

for βi = ai − 1, and, for every t ∈ (Z/dZ)× ≃ Gal(Q(ζd)/Q),

t (ηα) = ηt ·α.

Proof. This follows directly from the definition of the action, Proposition 3.3 and Theorem 2.1. □

Definition 3.5. We say that a character α ∈ Bn
d is totally decomposable if we can relabel the entries of α

in such a way that

α = (a0, d − a0, a2, d − a2, . . . , an, d − an). (8)

Remark 3.6. The polynomial Pλ given by (1) is a C-linear combination of the monomials xβ with
β2 j−2 +β2 j−1 = d − 2 for j = 1, . . . , n

2 + 1. Each of these β’s has an associated character α ∈ Bn
d that is

totally decomposable with a j = β j + 1. In the following proposition we restrict the field of definition of
ωβ = res((xβ�)/Fn/2+1) where β has associated character α totally decomposable.

Proposition 3.7. For every α = (a0, a1, . . . , an, an+1) ∈ Bn
d totally decomposable of the form (8), and

βi = ai − 1,

Qωβ
⊆ Q(ζ2d).

For every t ∈ Gal(Q(ζ2d)/Q) ≃ (Z/2dZ)×,

t (ωβ) = (−1)
(

∑n/2+1
j=1 (ta2 j−2−ta2 j−2))/d

ωγ ,

where ωγ ∈ V (t · α) and ā denotes the residue of a ∈ Z modulo d.

Proof. Consider the class of the linear cycle Pn/2
= {x0 − ζ2d x1 = · · · = xn − ζ2d xn+1 = 0}. Then by

[Villaflor Loyola 2022a, Theorem 1.1] and Theorem 2.1 we know that

ωP =
−1

n
2 ! · dn/2 [Pn/2

]prim ∈ H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Q),

where

P = ζ
n/2+1
2d

∑
β∈I

xβζ
β1+β3+···+βn+1
2d

and

I :=

{
(β0, . . . , βn+1) ∈ {0, . . . , d − 2}

n+2
: β2 j−2 + β2 j−1 = d − 2, ∀ j = 1, . . . ,

n
2

+ 1
}
.

Let us first show that Qωβ
⊆ Q(ζ2d). Since Qηα

⊆ Q(ζd) it is enough to show that

Cβ :=

∏n+1
i=0 0

(ai
d

)
(2π i)n/2+1 ∈ Q(ζ2d).
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This could be shown directly by using the properties of the Gamma function, but we will give another
proof. Let K/Q(ζ2d) be a Galois extension such that Cβ ∈ K . For any σ ∈ Gal(K/Q(ζ2d)) we have
σ(ωP) = ωP , since it is a rational class. Hence by Proposition 3.4∑

β∈I

ζ
a1+a3+···+an+1
2d σ(Cβ) · ηα =

∑
β∈I

ζ
a1+a3+···+an+1
2d Cβ · ηα.

In other words σ(Cβ) = Cβ for all σ ∈ Gal(K/Q(ζ2d)), i.e., Cβ ∈ Q(ζ2d) as claimed. Let us now
compute the Galois action of Gal(Q(ζ2d)/Q) on ωβ . Let t ∈ Gal(Q(ζ2d)/Q) ≃ (Z/2dZ)×. Then, again,
t (ωP) = ωP , since ωP is a rational class. Expanding this equality we have∑

β∈I

ζ
t (a1+a3+···+an+1)

2d t (ωβ) =

∑
β∈I

ζ
a1+a3+···+an+1
2d ωβ .

Since by Proposition 3.4 we know t (ωβ) = C ·ωγ for some C ∈ Q(ζ2d)× and ωγ ∈ V (t ·α), we get that

ζ
t (a1+a3+···+an+1)

2d t (ωβ) = ζ
ta1+ta3+···+tan+1
2d ωγ

and the result follows. For the last equality just note that t (ωβ) = t (Cβ) · ηt ·α. □

Remark 3.8. Using Euler’s reflection formula we can compute explicitly

Cβ =

∏n/2+1
j=1 0

(a2 j−2
d

)
0

(
1 −

a2 j−2
d

)
(2π i)n/2+1 =

∏n/2+1
j=1

π
sin (πa2 j−2/d)

(2π i)n/2+1 =

n/2+1∏
j=1

1

ζ
a2 j−2
2d − ζ

−a2 j−2
2d

.

4. Artinian Gorenstein ideal associated to a Hodge cycle

For the sake of completeness we will briefly recall some known facts about Artinian Gorenstein ideals
associated to Hodge cycles in smooth hypersurfaces of the projective space. Our main aim is to settle the
notation we will use in the rest of the article and to gather some facts from [Villaflor Loyola 2022b].

Definition 4.1. A graded C-algebra R is Artinian Gorenstein if there exist σ ∈ N such that

(i) Re = 0 for all e > σ ,

(ii) dimC Rσ = 1,

(iii) the multiplication map Ri × Rσ−i → Rσ is a perfect pairing for all i = 0, . . . , σ .

The number σ =: soc(R) is the socle of R. We say that an ideal I ⊆ C[x0, . . . , xn+1] is Artinian Gorenstein
of socle σ =: soc(I ) if the quotient ring R = C[x0, . . . , xn+1]/I is Artinian Gorenstein of socle σ .

The definition of the following ideal appeared first in the work of Voisin [1989] for surfaces, and later
in the work of Otwinowska [2003] for higher dimensional varieties.

Definition 4.2. Let X = {F = 0} ⊆ Pn+1 be a smooth degree d hypersurface of even dimension n, and
λ ∈ H n/2,n/2(X, Z) be a nontrivial Hodge cycle. Consider J F

:= ⟨∂ F/∂x0, . . . , ∂ F/∂xn+1⟩ to be the



1856 Jorge Duque Franco and Roberto Villaflor Loyola

Jacobian ideal; we define the Artinian Gorenstein ideal associated to λ as

J F,λ
:= (J F

: Pλ), (9)

where Pλ ∈ C[x0, . . . , xn+1](d−2)(n/2+1) is such that λprim = res((Pλ�)/Fn/2+1)n/2,n/2. This ideal is
Artinian Gorenstein of soc(J F,λ) = (d − 2)

( n
2 + 1

)
=

1
2 soc(J F ).

The importance of this ideal is due to the following proposition which relates it to the local Hodge
locus Vλ associated to the Hodge cycle λ.

Proposition 4.3. Let X = {F = 0} ⊆ Pn+1 be a smooth degree d hypersurface of even dimension n, and
consider two Hodge cycles λ1, λ2 ∈ H n/2,n/2(X, Z). Then

J F,λ1 = J F,λ2 ⇐⇒ ∃c ∈ Q×
: (λ1 − c · λ2)prim = 0 ⇐⇒ Vλ1 = Vλ2 .

Proof. See [Villaflor Loyola 2022b, Corollary 2.3]. □

This ideal encodes in a simple way the information of the first-order approximation of the Hodge
loci. In fact the content of the following proposition is a rephrasing of the classical result of Carlson,
Green, Griffiths and Harris [Carlson et al. 1983] on the infinitesimal variation of Hodge structure for
hypersurfaces.

Proposition 4.4. Let T ⊆ C[x0, . . . , xn+1]d be the parameter space of smooth degree d hypersurfaces
of Pn+1, of even dimension n. For t ∈ T , let X t = {F = 0} ⊆ Pn+1 be the corresponding hypersurface.
For every Hodge cycle λ ∈ H n/2,n/2(X t , Z), we can compute the Zariski tangent space of its associated
Hodge locus Vλ as

Tt Vλ = J F,λ
d ,

where we have identified Tt T ≃ C[x0, . . . , xn+1]d .

Proof. See [Villaflor Loyola 2022b, Propositions 2.1 and 2.2]. □

Using the previous result, we can obtain the following technical lemma which is the first step in the
proof of Theorem 1.1.

Lemma 4.5. Let Xn
d = {F = 0} be the Fermat variety of even dimension n and degree d ≥ 2 +

6
n . Let

λ ∈ H n/2,n/2(Xn
d , Z) be a nontrivial Hodge cycle such that

codim T0Vλ =

(n/2 + d
d

)
−

(n
2

+ 1
)2

.

Then there exist cλ, c0, c2, c4, . . . , cn ∈ C× such that up to a permutation of the coordinates λprim =

res((Pλ�)/Fn/2+1), where Pλ is given by (1), that is,

Pλ = cλ

n/2+1∏
j=1

xd−1
2 j−2 − (c2 j−2x2 j−1)

d−1

x2 j−2 − c2 j−2x2 j−1
.

Proof. This follows from [Villaflor Loyola 2022b, Propositions 4.1 and 5.3]. The final assertion that
res((Pλ�)/Fn/2+1)= res((Pλ�)/Fn/2+1)n/2,n/2 follows from Theorem 2.1 [Shioda 1979, Theorem 1]. □
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5. Proof of Theorem 1.1

In this section we will prove Theorem 1.1, thus characterizing fake linear cycles as residue forms. In
order to do this we will first bound the field of definition of all fake linear cycles by computing their
periods; then we will characterize them as those invariant under the Galois action.

Proposition 5.1. In the same context of Lemma 4.5 we have that cλ ∈ Q(ζ2d)× and c0, c2, . . . , cn ∈

ζ−3
2d · S1

Q(ζd ) = {ζ−3
2d · z ∈ Q(ζ2d) : z ∈ Q(ζd) and |z| = 1}. Consequently, λprim is a Q(ζ2d)-linear

combination of residue forms ωβ with Qωβ
⊆ Q(ζ2d).

Proof. Since λprim = res((Pλ�)/Fn/2+1) is a Hodge class, all its periods are rational numbers. Using the
formula given by Proposition 3.3 together with Remark 3.8 we have that

1
(2π i)n/2

∫
δβ′

λprim =
cλ

dn/2+1 ·
n
2
!

∑
β∈I

n/2+1∏
j=1

c
β2 j−1
2 j−2

ζ
β2 j−2+1
2d −ζ

−β2 j−2−1
2d

n+1∏
i=0

(ζ
(βi +1)(β ′

i +1)

d −ζ
(βi +1)β ′

i
d )

=
cλ

dn/2+1 ·
n
2
!

∑
β∈I

cβ1
0 ·cβ3

2 · · ·cβn+1
n ζ

β0+β2+···+βn+n/2+1
2d ·ζ

∑n+1
i=0 (βi +1)β ′

i
d

∏n+1
i=0 (ζ

βi +1
d −1)∏n/2+1

j=1 (ζ
β2 j−2+1
d −1)

=
cλ(c0c2 · · ·cn)

−1

dn/2+1 ·
n
2
!

d−2∑
β1,β3,...,βn+1=0

n/2+1∏
j=1

(ζ−1
2d c2 j−2ζ

β ′

2 j−1−β ′

2 j−2
d )β2 j−1+1(1−ζ

β2 j−1+1
d )

=
cλ(c0c2 · · ·cn)

−1

dn/2+1 ·
n
2
!

n/2+1∏
j=1

( d−1∑
ℓ=1

(c2 j−2ζ
2(β ′

2 j−1−β ′

2 j−2)−1
2d )ℓ−(c2 j−2ζ

2(β ′

2 j−1−β ′

2 j−2)+1
2d )ℓ

)

=
cλ(c0c2 · · ·cn)

−1

dn/2+1 ·
n
2
!

n/2+1∏
j=1

E j,β ′ ∈ Q, ∀β ′
∈ {0,1, . . . ,d−2}

n+1,

where each E j,β ′ equals
∑d−1

ℓ=1 (c2 j−2ζ
2(β ′

2 j−1−β ′

2 j−2)−1
2d )ℓ − (c2 j−2ζ

2(β ′

2 j−1−β ′

2 j−2)+1
2d )ℓ. If cd

2 j−2 = −1, we
can always choose some β ′

2 j−1, β
′

2 j−2 ∈ {0, 1, . . . , d − 2} such that E j,β ′ ̸= 0. Let us define

S :=

{
j ∈

{
1, 2, . . . ,

n
2

+ 1
}

: cd
2 j−2 = −1

}
and consider the set B of all β ′

∈ {0, 1, . . . , d − 2}
n+1 such that the value of E j,β ′ ̸= 0 is fixed for every

j ∈ S. For every β ′
∈ B we have that for j /∈ S

E j,β ′ =
c2 j−2(cd

2 j−2 + 1)ζ
2(β ′

2 j−1−β ′

2 j−2)−1
2d (1 − ζd)

(c2 j−2 · ζ
2(β ′

2 j−1−β ′

2 j−2)−1
2d − 1)(c2 j−2 · ζ

2(β ′

2 j−1−β ′

2 j−2)+1
2d − 1)

̸= 0.

It is clear that c2 j−2 ∈ ζ−3
2d · S1

Q(ζd ) for j ∈ S. In order to show that c2 j−2 ∈ ζ−3
2d · S1

Q(ζd ) for j /∈ S, fix
some j0 /∈ S and consider two β ′, β ′′

∈ B such that E j,β ′ = E j,β ′′ for all j ̸= j0 and β ′

2 j0−1 − β ′

2 j0−2 = 1,
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β ′′

2 j0−1 − β ′′

2 j0−2 = 0. Then∫
δβ′

λprim∫
δβ′′

λprim
=

E j0,β ′

E j0,β ′′

=
ζd(c2 j0−2 · ζ−1

2d − 1)

c2 j0−2 · ζ 3
2d − 1

= q ∈ Q×

and so

c2 j0−2 =
q − ζd

ζ 3
2d(q − ζ−1

d )
∈ ζ−3

2d · S1
Q(ζd ).

Finally, since for every β ′
∈ B we know that E j,β ′ ∈ Q(ζ2d), it follows from the above formula for

1/(2π i)n/2
∫
δβ′

λprim ∈ Q that cλ ∈ Q(ζ2d). □

Remark 5.2. By Lemma 4.5 and Proposition 5.1 we know that all fake linear cycles are of the form

λprim = res
(

Pλ�

Fn/2+1

)
for Pλ given by (1) where cλ ∈ Q(ζ2d)× and c0, c2, . . . , cn ∈ ζ−3

2d · S1
Q(ζd ). In order to complete the proof

of Theorem 1.1 we only need to prove that for any choice of c0, c2, . . . , cn ∈ ζ−3
2d · S1

Q(ζd ) there exists
some cλ ∈ Q(ζ2d)× such that λ is in fact a Hodge class, that is, such that

Qλ = Q.

In terms of Galois cohomology, to prove the existence of such cλ, it is equivalent to find a number
cλ ∈ Q(ζ2d)× such that

σ(λ) = λ

for all σ ∈ Gal(Q(ζ2d)/Q). This in turn translates into a collection of relations of the form

σ(cλ) = cλ · φσ

for some numbers φσ (c0, c2, . . . , cn) ∈ Q(ζ2d)× which can be explicitly computed case by case. Since
the set {σ(cλ)/cλ} is by definition a 1-coboundary in the group cohomology of G = Gal(Q(ζ2d)/Q) with
coefficients in Q(ζ2d)×, the theorem will follow if we show that {φσ } is a 1-cocycle by the following
well-known result which can be found in [Neukirch et al. 2000].

Theorem 5.3 (Hilbert’s theorem 90). If L/K is a finite Galois extension of fields with Galois group
G = Gal(L/K ), then the first group cohomology H 1(G, L×) equals {1}.

Now we are in position to prove Theorem 1.1, but we will divide the proof into the three possible cases
d = 3, 4, 6. Along all the proofs we will denote by

I :=

{
(β0, . . . , βn+1) ∈ {0, . . . , d − 2}

n+2
: β2 j−2 + β2 j−1 = d − 2, ∀ j = 1, . . . ,

n
2

+ 1
}

the set of multi-indexes corresponding to the monomials of Pλ given by (1).
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Theorem 5.4. For the Fermat cubic Xn
3 with n ≥ 6, all fake linear cycles are of the form

λprim = res
(

Pλ�

Fn/2+1

)
for Pλ given by (1), where c0, c2, . . . , cn ∈ S1

Q(ζ6)
but not all are cube roots of −1 simultaneously, and

cλ ∈ Q(ζ6)
×. For any such choice of ci ’s, there exists some cλ ∈ Q(ζ6)

× such that the class λprim, given
by Pλ as in (1), is the class of a fake linear cycle.

Proof. Since all the monomials of Pλ are totally decomposable, and all their accompanying coefficients
belong to Q(ζ6) we know (by Proposition 3.7) that

Qλ ⊆ Q(ζ6).

In order to show that Qλ = Q it is enough to show that λ is invariant under the action of Gal(Q(ζ6)/Q) =

{id, σ } where σ(ζ6) = ζ−1
6 = ζ6. In particular for every α ∈ Q(ζ6), α = a + bζ6 for a, b ∈ Q, and so

σ(α) = a + bζ6 = α. With this we conclude that for γi = 1 − βi

σ(λ) = σ(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (5(β2 j−2+1)−5(β2 j−2+1)))/3

ωγ

n/2+1∏
j=1

c−β2 j−1
2 j−2 .

Hence

σ(λ) = λ if and only if
σ(cλ)

cλ

= (−1)n/2+1c0 · c2 · · · cn.

Since N ((−1)n/2+1c0 · c2 · · · cn) = |(−1)n/2+1c0 · c2 · · · cn|
2

= 1, we know such cλ always exists by
Hilbert’s theorem 90. □

Theorem 5.5. For the Fermat quartic Xn
4 with n ≥ 4, all fake linear cycles are of the form

λprim = res
(

Pλ�

Fn/2+1

)
for Pλ given by (1), where c0, c2, . . . , cn ∈ ζ8 ·S1

Q(i) but not all are fourth roots of −1 simultaneously, and
cλ ∈ Q(ζ8)

×. For any such choice of ci ’s, there exists some cλ ∈ Q(ζ8)
× such that the class λprim, given

by Pλ as in (1), is the class of a fake linear cycle.

Proof. Note first that ζ−3
8 · S1

Q(ζ4)
= ζ8 · S1

Q(i). Since all the monomials of Pλ are totally decomposable,
and all their accompanying coefficients belong to Q(ζ8), we see that

Qλ ⊆ Q(ζ8).

In order to show that Qλ = Q it is enough to show that λ is invariant under the action of Gal(Q(ζ8)/Q) =

{id, σ3, σ5, σ7} where σ j (ζ8)= ζ
j

8 . Observe that σ7(ζ8)= ζ−1
8 = ζ8. In particular for every α = aζ8+bζ 3

8 ∈

ζ8 · S1
Q(i) we have

σ3(α) = −α, σ5(α) = −α, σ7(α) = α.
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With this and Proposition 3.7 we conclude that for γi = 2 − βi

σ7(λ) = σ7(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (7(β2 j−2+1)−7(β2 j−2+1)))/4

ωγ

n/2+1∏
j=1

c−β2 j−1
2 j−2 .

Hence

σ7(λ) = λ if and only if
σ7(cλ)

cλ

= (−1)n/2+1(c0 · c2 · · · cn)
2. (10)

On the other hand for γi = βi

σ5(λ) = σ5(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (5(β2 j−2+1)−5(β2 j−2+1)))/4

ωγ

n/2+1∏
j=1

(−c2 j−2)
β2 j−1 .

Hence

σ5(λ) = λ if and only if
σ5(cλ)

cλ

= (−1)n/2+1. (11)

Finally for γ j = 2 − β j

σ3(λ) = σ3(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (3(β2 j−2+1)−3(β2 j−2+1)))/4

ωγ

n/2+1∏
j=1

(−c2 j−2)
−β2 j−1 .

Hence

σ3(λ) = λ if and only if
σ3(cλ)

cλ

= (c0 · c2 · · · cn)
2. (12)

Equations (10), (11) and (12) imply the existence of the desired cλ such that Qλ = Q if and only if the
map φ : Gal(Q(ζ8)/Q) → Q(ζ8)

× given by

φ(id) = 1, φ(σ3) = (c0 · c2 · · · cn)
2, φ(σ5) = (−1)n/2+1, φ(σ7) = (−1)n/2+1(c0 · c2 · · · cn)

2

is a 1-coboundary. By Hilbert’s theorem 90 we know H 1(G, L×) = {1} for L = Q(ζ8) and G =

Gal(Q(ζ8)/Q) and so we get the existence of the desired cλ ∈ Q(ζ8) after noting that φ is a 1-cocycle by
definition. □

Theorem 5.6. For the Fermat sextic Xn
6 with n ≥ 2, all fake linear cycles are of the form

λprim = res
(

Pλ�

Fn/2+1

)
for Pλ given by (1), where c0, c2, . . . , cn ∈ i · S1

Q(ζ6)
but not all are sixth roots of −1 simultaneously, and

cλ ∈ Q(ζ12)
×. For any such choice of ci ’s, there exists some cλ ∈ Q(ζ12)

× such that the class λprim, given
by Pλ as in (1), is the class of a fake linear cycle.

Proof. Note first that all the elements of ζ−3
12 · S1

Q(ζ6)
= i · S1

Q(ζ6)
are of the form aζ12 + bζ 3

12 for a, b ∈ Q.
Since all the monomials of Pλ are totally decomposable, and all their accompanying coefficients belong
to Q(ζ12) we see that

Qλ ⊆ Q(ζ12).
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In order to show that Qλ = Q it is enough to show that λ is invariant under the action of Gal(Q(ζ12)/Q) =

{id, σ5, σ7, σ11} where σ j (ζ12) = ζ
j

12. Observe that σ11(ζ12) = ζ−1
12 = ζ12. In particular for every α =

aζ12 + bζ 3
12 with a, b ∈ Q, we have

σ5(α) = −α, σ7(α) = −α, σ11(α) = α.

With this and Proposition 3.7 we conclude that for γi = 4 − βi

σ11(λ) = σ11(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (11(β2 j−2+1)−11(β2 j−2+1)))/6

ωγ

n/2+1∏
j=1

c−β2 j−1
2 j−2 .

Hence

σ11(λ) = λ if and only if
σ11(cλ)

cλ

= (−1)n/2+1(c0 · c2 · · · cn)
4. (13)

On the other hand for γi = βi

σ7(λ) = σ7(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (7(β2 j−2+1)−7(β2 j−2+1)))/6

ωγ

n/2+1∏
j=1

(−c2 j−2)
β2 j−1 .

Hence

σ7(λ) = λ if and only if
σ7(cλ)

cλ

= (−1)n/2+1. (14)

Finally for γ j = 4 − β j

σ5(λ) = σ5(cλ)
∑
β∈I

(−1)
(

∑n/2+1
j=1 (5(β2 j−2+1)−5(β2 j−2+1)))/6

ωγ

n/2+1∏
j=1

(−c2 j−2)
−β2 j−1 .

Hence

σ5(λ) = λ if and only if
σ5(cλ)

cλ

= (c0 · c2 · · · cn)
4. (15)

Equations (13)–(15) imply the existence of the desired cλ if and only if φ : Gal(Q(ζ12)/Q) → Q(ζ12)
×

given by

φ(id) = 1, φ(σ5) = (c0 · c2 · · · cn)
4, φ(σ7) = (−1)n/2+1, φ(σ11) = (−1)n/2+1(c0 · c2 · · · cn)

4

is a 1-coboundary. By Hilbert’s theorem 90 we know H 1(G, L×) = {1} for L = Q(ζ12) and G =

Gal(Q(ζ12)/Q). Thus cλ ∈ Q(ζ12) exists since φ is by definition a 1-cocycle. □

Remark 5.7. We want to highlight that using the Galois action in cohomology it is also possible to obtain
another proof of [Villaflor Loyola 2022b, Theorem 1.1] as follows.

Proposition 5.8. There are no fake linear cycles inside Xn
d for d ≥ 2 +

6
n and d ̸= 3, 4, 6. In other words,

for Pλ given by (1) such that cλ ∈ Q(ζ2d)× and c0, c2, . . . , cn ∈ S1
Q(ζ2d ), we have

cd
2i−2 = −1, for all i = 1, . . . ,

n
2

+ 1.
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Proof. Let t ∈ (Z/2dZ)× ≃ Gal(Q(ζ2d)/Q). Since ωPλ
is a Hodge class, it is a rational class and so it is

invariant under the Galois action, i.e., t (ωPλ
) = ωPλ

. Hence we can write

ωPλ
= cλ

∑
β∈I

ωβ

n/2+1∏
j=1

cβ2 j−1
2 j−2 .

Applying the action of t we get that

t (cλ)
∑
β∈I

t (ωβ)

n/2+1∏
j=1

t (cβ2 j−1
2 j−2) = cλ

∑
β∈I

ωβ

n/2+1∏
j=1

cβ2 j−1
2 j−2 ,

and so

t (cλ) · t (ωβ)

n/2+1∏
j=1

t (cβ2 j−1
2 j−2) = cλ · ωγ

n/2+1∏
j=1

cγ2 j−1
2 j−2

for ωβ ∈ V (α), ωγ ∈ V (t · α). It follows from Proposition 3.7 that

t (cλ)(−1)
(

∑n/2+1
j=1 (ta2 j−2−ta2 j−2))/d

n/2+1∏
j=1

t (cd−a2 j−2−1
2 j−2 ) = cλ

n/2+1∏
j=1

c−ta2 j−2−1
2 j−2

holds for all choices of a0, a2, . . . , an ∈ {1, . . . , d − 1}. For each j = 1, . . . , n
2 + 1, fix the values of

a2i−2 = 1 for all i ̸= j , and let a2 j−2 take two arbitrary values a, b ∈ {1, . . . , d − 1} in turn. Dividing one
of the resulting identities by the other we obtain

(−1)(ta−tb−ta+tb)/d t (cb−a
2 j−2) = c−ta−−tb

2 j−2

for all a, b ∈ {1, . . . , d − 1}, or, equivalently,

t (ζ a−b
2d cb−a

2 j−2) = ζ ta−tb
2d ctb−ta

2 j−2 . (16)

Now, let q := min{p prime : p ∤ 2d} as in Lemma 2.5; hence, gcd(2d, 2d −q) = 1 and q < d
2 or q =

d+1
2 .

If q < d
2 , there exists k ∈ {2, 3, . . . , d − 2} such that d

k+1 < q < d
k . In this case we have

(1 − k)(2d − q) − (k + 1)(2d − q) + k(2(2d − q)) = −d. (17)

Using (16) for t = 2d − q we have

ζ
k(2d−q)+2d−q−(k+1)(2d−q)

2d c(k+1)(2d−q)−2d−q
2 j−2 = t (ck

2 j−2)

= ζ
k((2d−q)+2d−q−2(2d−q))

2d ck(2(2d−q)−2d−q)

2 j−2 ,

and therefore ζ
(1−k)(2d−q)−(k+1)(2d−q)+k(2(2d−q))

2d = c(1−k)(2d−q)−(k+1)(2d−q)+k(2(2d−q))

2 j−2 . By (17) we con-
clude that cd

2 j−2 = −1. In the case where q =
d+1

2 the argument above works taking k = 2 in (17), which
is then equal to d instead of −d. □
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6. Quadratic fundamental form and proof of Theorem 1.2

In this final section we recall the quadratic fundamental form described in [Maclean 2005]. Her result
was described in the context of surfaces for the classical Noether–Lefschetz loci, however in higher
dimensions it also gives a partial description of the quadratic fundamental form which is enough for our
purposes. Since the original proof applies word by word to the general case we will omit it.

Definition 6.1. Let M be a smooth m-dimensional analytic scheme, V a vector bundle on M and σ a
section of V . Let W be the zero locus of σ and let x ∈ W . The quadratic fundamental form of σ at x is

qσ,x : Tx W ⊗ Tx W → Vx/ Im(dσx)

given in local coordinates (z1, . . . , zm) around x by

qσ,x

( m∑
i=1

αi
∂

∂zi
,

m∑
j=1

β j
∂

∂z j

)
=

m∑
i=1

αi
∂

∂zi

( m∑
j=1

β j
∂

∂z j
(σ )

)
.

In our context we will take M = (T, 0), V =
⊕n/2−1

p=0 F p/F p+1 and x = 0, where T ⊆ H 0(OPn+1(d))

is the parameter space of smooth degree d hypersurfaces of Pn+1, π : X → T is the corresponding
family, F p

= Rnπ∗�
•≥p
X/T , and 0 ∈ T corresponds to the Fermat variety. In order to construct a section

σ of V around x , let λ ∈ H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Z) be a Hodge cycle, and consider λ̄ its induced
flat section in F0/Fn/2. If we fix a holomorphic splitting F0/Fn/2

≃ V and we take σ as the image
of λ̄ under this splitting, then W = Vλ. In this context we can identify Tx W = J F,λ

d (Proposition 4.4),
Vx =

⊕n
q=n/2+1 RF

d(q+1)−n−2 and dσx = ·Pλ. The computation of the degree d
( n

2 + 2
)
− n − 2 piece of

q = qσ,x under these identifications was done in Theorem 7 of [Maclean 2005] as follows.

Theorem 6.2 (Maclean). The degree r := d
( n

2 + 2
)
− n − 2 piece of the fundamental quadratic form

q : Sym2(J F,λ
d ) →

n⊕
q=n/2+1

RF
d(q+1)−n−2/⟨Pλ⟩

is given by

qr (G, H) =

n+1∑
i=0

(
H

∂ Qi

∂xi
− Ri

∂G
∂xi

)
,

where

G · Pλ =

n+1∑
i=0

Qi
∂ F
∂xi

and H · Pλ =

n+1∑
i=0

Ri
∂ F
∂xi

.

Proposition 6.3. Let λ ∈ H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Z) be a fake linear cycle given by (1), and consider

G := (x2i−2 − c2i−2x2i−1) · D ∈ J F,λ
d .

Then

qr (G, G) =
−cλ

d

∏
j ̸=i

( xd−1
2 j−2 − (c2 j−2x2 j−1)

d−1

x2 j−2 − c2 j−2x2 j−1

)
· D2

· (cd
2i−2 + 1).
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Proof. Just note that

G · Pλ = cλ

∏
j ̸=i

( xd−1
2 j−2 − (c2 j−2x2 j−1)

d−1

x2 j−2 − c2 j−2x2 j−1

)
· D · (xd−1

2i−2 − (c2i−2x2i−1)
d−1).

Hence Q j = 0 for j ̸= 2i − 2, 2i − 1 and

Q2i−2 =
cλ

d

∏
j ̸=i

( xd−1
2 j−2−(c2 j−2x2 j−1)

d−1

x2 j−2−c2 j−2x2 j−1

)
·D, Q2i−1 =

−cλ ·cd−1
2i−2

d

∏
j ̸=i

( xd−1
2 j−2−(c2 j−2x2 j−1)

d−1

x2 j−2−c2 j−2x2 j−1

)
·D.

The result follows now by a direct computation of Maclean’s formula. □

Proof of Theorem 1.2. After Theorem 1.1 we just need to show that

codim Vλ >
(n/2 + d

d

)
−

(n
2

+ 1
)2

for all fake linear cycles λ ∈ H n/2,n/2(Xn
d)prim ∩ H n(Xn

d , Z). In fact, otherwise Vλ is smooth and reduced
at the Fermat point, and so the quadratic fundamental form q = 0 vanishes. In particular its degree
r := d

( n
2 + 2

)
− n − 2 piece also vanishes, that is, qr = 0, and so by Proposition 6.3 we conclude that

cd
2i−2 + 1 = 0 for all i = 1, . . . , n

2 + 1, contrary to the fact that λ is a fake linear cycle. □
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