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Bézoutians and the A1-degree
Thomas Brazelton, Stephen McKean and Sabrina Pauli

We prove that both the local and global A1-degree of an endomorphism of affine space can be computed
in terms of the multivariate Bézoutian. In particular, we show that the Bézoutian bilinear form, the Scheja–
Storch form, and the A1-degree for complete intersections are isomorphic. Our global theorem generalizes
Cazanave’s theorem in the univariate case, and our local theorem generalizes Kass–Wickelgren’s theorem
on EKL forms and the local degree. This result provides an algebraic formula for local and global degrees
in motivic homotopy theory.

1. Introduction

Morel’s A1-Brouwer degree [25] assigns a bilinear form-valued invariant to a given endomorphism
of affine space. However, Morel’s construction is not explicit. In order to make computations and
applications, we would like algebraic formulas for the A1-degree. Such formulas were constructed by
Cazanave for the global A1-degree in dimension 1 [9], Kass and Wickelgren for the local A1-degree at
rational points and étale points [16], and Brazelton, Burklund, McKean, Montoro and Opie for the local
A1-degree at separable points [7]. In this paper, we give a general algebraic formula for the A1-degree in
both the global and local cases. In the global case, we remove Cazanave’s dimension restriction, while
in the local case, we remove previous restrictions on the residue field of the point at which the local
A1-degree is taken.

Let k be a field, and let f = ( f1, . . . , fn) : An
k → An

k be an endomorphism of affine space with isolated
zeros, so that Q := k[x1, . . . , xn]/( f1, . . . , fn) is a complete intersection. We now recall the definition
of the Bézoutian of f , as well as a special bilinear form determined by the Bézoutian. Introduce new
variables X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn). For each 1 ≤ i, j ≤ n, define the quantity

1i j :=
fi (Y1, . . . , Y j−1, X j , . . . , Xn)− fi (Y1, . . . , Y j , X j+1, . . . , Xn)

X j − Y j
.

Definition 1.1. The Bézoutian of f is the image Béz( f1, . . . , fn) of the determinant det(1i j ) in
k[X, Y ]/( f (X), f (Y )). Given a basis {a1, . . . , am} of Q as a k-vector space, there exist scalars Bi, j for
which

Béz( f1, . . . , fn)=

m∑
i, j=1

Bi, j ai (X)a j (Y ).
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We define the Bézoutian form of f to be the class β f in the Grothendieck–Witt ring GW(k) determined
by the bilinear form Q × Q → k with Gram matrix (Bi, j ).

For any isolated zero of f corresponding to a maximal ideal m, there is an analogous bilinear form β f,m

on the local algebra Qm. We refer to β f,m as the local Bézoutian form of f at m. We will demonstrate
that both β f and β f,m yield well-defined classes in GW(k). Our main theorem is that the Bézoutian form
of f agrees with the A1-degree in both the local and global contexts.

Theorem 1.2. Let char k ̸= 2. Let f : An
k → An

k have an isolated zero at a closed point m. Then β f,m is
isomorphic to the local A1-degree of f at m. If we further assume that all the zeros of f are isolated, then
β f is isomorphic to the global A1-degree of f .

Because the Bézoutian form can be explicitly computed using commutative algebraic tools, Theorem 1.2
provides a tractable formula for A1-degrees and Euler classes in motivic homotopy theory. Using the
Bézoutian formula for the A1-degree, we are able to deduce several computational rules for the degree.
We also provide a Sage implementation for calculating local and global A1-degrees via the Bézoutian
at [8].

Remark 1.3. The key contribution of this article is computability. Building on the work of Kass and
Wickelgren [16], Bachmann and Wickelgren [2] show that the A1-degree agrees with the Scheja–Storch
form as elements of KO0(k). In Theorem 5.1, we show how this immediately implies that the A1-degree
and Scheja–Storch form determine the same element of GW(k). Scheja and Storch [30] showed that their
form is a Bézoutian bilinear form (in the sense of Definition 3.8; see also Lemma 4.4 and Remark 4.8),
which was further explored by Becker, Cardinal, Roy and Szafraniec [4]. Putting these results together
shows that the isomorphism class of the Bézoutian bilinear form is the A1-degree.

In dimension 1, Cazanave [9] gives a simple formula for computing the A1-degree as a Bézoutian
bilinear form in the global setting. However, it is not immediately clear how to adapt this to higher
dimensions or the local setting. Becker, Cardinal, Roy and Szafraniec show how to compute Bézoutian
bilinear forms in terms of “dualizing forms,” but this method is computationally analogous to using the
Eisenbud–Khimshiashvili–Levine form to compute the A1-degree [16]. In the proof of Theorem 1.2
(found in Section 5), we show that our two notions of Bézoutian bilinear forms (Definitions 1.1 and 3.8)
agree up to isomorphism. Since Definition 1.1 is the desired generalization of Cazanave’s formula, this
enables us to calculate A1-degrees in full generality.

1A. Outline. Before proving Theorem 1.2, we recall some classical results on Bézoutians (following [4])
in Section 3, as well as the work of Scheja and Storch on residue pairings [30] in Section 4. We then discuss
a local decomposition procedure for the Scheja–Storch form and show that the global Scheja–Storch form
is isomorphic to the Bézoutian form in Section 4A. In Section 5, we complete the proof of Theorem 1.2 by
applying the work of Kass and Wickelgren [16] and Bachmann and Wickelgren [2] on the local A1-degree
and the Scheja–Storch form. Using Theorem 1.2, we give an algorithm for computing the local and global
A1-degree at the end of Section 5A, available at [8]. In Section 6, we establish some basic properties for
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computing degrees. In Section 7, we provide a step-by-step illustration of our ideas by working through
some explicit examples. Finally, we implement our code to compute some examples of A1-Euler charac-
teristics of Grassmannians in Section 8. We check our computations by proving a general formula for the
A1-Euler characteristic of a Grassmannian in Theorem 8.4. The A1-Euler characteristic of Grassmannians
is essentially a folklore result that follows from the work of Hoyois, Levine, and Bachmann and Wickelgren.

1B. Background. Let GW(k) denote the Grothendieck–Witt group of isomorphism classes of symmetric,
nondegenerate bilinear forms over a field k. Morel’s A1-Brouwer degree [25, Corollary 1.24]

deg : [Pn
k/P

n−1
k ,Pn

k/P
n−1
k ]A1 → GW(k),

which is a group isomorphism (in fact, a ring isomorphism [24, Lemma 6.3.8]) for n ≥ 2, demonstrates
that bilinear forms play a critical role in motivic homotopy theory. However, Morel’s A1-degree is
nonconstructive. Kass and Wickelgren addressed this problem by expressing the A1-degree as a sum of
local degrees [17, Lemma 19] and providing an explicit formula (building on the work of Eisenbud and
Levine [11] and Khimshiashvili [13]) for the local A1-degree [16] at rational points and étale points. This
explicit formula can also be used to compute the local A1-degree at points with separable residue field
by [7]. Together, these results allow one to compute the global A1-degree of a morphism f : An

k → An
k

with only isolated zeros by computing the local A1-degrees of f over its zero locus, so long as the residue
field of each point in the zero locus is separable over the base field. In the local case, Theorem 1.2 gives
a commutative algebraic formula for the local A1-degree at any closed point.

Cazanave showed that the Bézoutian gives a formula for the global A1-degree of any endomorphism
of P1

k [9]. An advantage to Cazanave’s formula is that one does not need to determine the zero locus
or other local information about f . We extend Cazanave’s formula for morphisms f : An

k → An
k with

isolated zeros. The work of Scheja and Storch on global complete intersections [30] is central to both
[16] and our result. We also rely on the work of Becker, Cardinal, Roy and Szafraniec [4], who describe
a procedure for recovering the global version of the Scheja–Storch form.

Theorem 1.2 has applications wherever Morel’s A1-degree is used. One particularly successful
application of the A1-degree has been the A1-enumerative geometry program. The goal of this program is
to enrich enumerative problems over arbitrary fields by producing GW(k)-valued enumerative equations
and interpreting them geometrically over various fields. Notable results in this direction include Srinivasan
and Wickelgren’s count of lines meeting four lines in three-space [31], Larson and Vogt’s count of
bitangents to a smooth plane quartic [19], and Bethea, Kass, and Wickelgren’s enriched Riemann–Hurwitz
formula [5]. See [22; 26] for other related works. For a more detailed account of recent developments in
A1-enumerative geometry; see [6; 28].

2. Notation and conventions

In this section, we fix some standard terminology and notation. Let k denote an arbitrary field. We will
always use f = ( f1, . . . , fn) : An

k → An
k to denote an endomorphism of affine space, assumed to have
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isolated zeros when we work with it in the global context. We denote by Q the global algebra associated
to this endomorphism

Q :=
k[x1, . . . , xn]

( f1, . . . , fn)
.

The maximal ideals of Q correspond to the maximal ideals of k[x1, . . . , xn] on which f vanishes. For
any maximal ideal m of k[x1, . . . , xn] on which f vanishes, we denote by Qm the local algebra

Qm :=
k[x1, . . . , xn]m

( f1, . . . , fn)
.

If λ : V → k is a k-linear form on any k-algebra, we will denote by 8λ the associated bilinear form given
by

8λ : V × V → k

(a, b) 7→ λ(ab).

Definition 2.1. We say that λ is a dualizing linear form if 8λ is nondegenerate as a symmetric bilinear
form [4, 2.1]. If λ is dualizing, then we say that two vector space bases {ai } and {bi } of V are dual with
respect to λ if

λ(ai b j )= δi j ,

where δi j = 1 for i = j and δi j = 0 for i ̸= j . We show in Remark 3.6 that if {ai } and {bi } are dual with
respect to λ, then λ is a dualizing linear form.

More notation will be introduced as we provide an overview of Bézoutians and the Scheja–Storch
bilinear form. We will borrow and clarify notation from both [30] and [4].

3. Bézoutians

We first provide an overview of the construction of the Bézoutian, following [4]. Given one of our n
polynomials fi , we introduce two sets of auxiliary indeterminants and study how fi changes when we
incrementally exchange one set of indeterminants for the other. Explicitly, consider variables X :=

(X1, . . . , Xn) and Y := (Y1, . . . , Yn). For any 1 ≤ i, j ≤ n, we denote by 1i j the quantity

1i j :=
fi (Y1, . . . , Y j−1, X j , . . . , Xn)− fi (Y1, . . . , Y j , X j+1, . . . , Xn)

X j − Y j
.

Note that 1i j is a multivariate polynomial. Indeed,

fi (Y1, . . . , Y j−1, X j , . . . , Xn) and fi (Y1, . . . , Y j , X j+1, . . . , Xn)

differ only in the terms in which X j or Y j appear, so we can expand the difference

fi (Y1, . . . , Y j−1, X j , . . . , Xn)− fi (Y1, . . . , Y j , X j+1, . . . , Xn)=

∑
ℓ≥1

gℓ · (X j − Y j )
ℓ,

where gℓ ∈ k[Y1, . . . , Y j−1, X j+1, . . . , Xn]. In this notation, 1i j =
∑

ℓ≥1 gℓ · (X j − Y j )
ℓ−1.
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We view 1i j as living in the tensor product ring Q ⊗k Q, under the isomorphism

ε :
k[X, Y ]

( f (X), f (Y ))
∼=−→ Q ⊗k Q,

given by sending X i to xi ⊗ 1, and Yi to 1 ⊗ xi .

Definition 3.1. We define the Bézoutian of the polynomials f1, . . . , fn to be the image Béz( f1, . . . , fn)

of the determinant det(1i j ) in Q ⊗k Q.

Example 3.2. Let ( f1, f2, f3)= (x2
1 , x2

2 , x2
3). Then we have that

Béz( f1, f2, f3)= ε

det

X1 + Y1 0 0
0 X2 + Y2 0
0 0 X3 + Y3


= ε((X1 + Y1)(X2 + Y2)(X3 + Y3))

= x1x2x3 ⊗ 1 + x1x2 ⊗ x3 + x1x3 ⊗ x2 + x2x3 ⊗ x1

+ x1 ⊗ x2x3 + x2 ⊗ x1x3 + x3 ⊗ x1x2 + 1 ⊗ x1x2x3.

There is a natural multiplication map δ : Q ⊗k Q → Q, defined by δ(a ⊗ b) = ab, that sends the
Bézoutian of f to the image of the Jacobian of f in Q.

Proposition 3.3. Let Jac( f1, . . . , fn) be the image of the Jacobian determinant det
(
∂ fi
∂x j

)
in Q. Then

δ(Béz( f1, . . . , fn))= Jac( f1, . . . , fn) ∈ Q.

Proof. Note that (δ ◦ ε)(a(X, Y ))= a(x, x) and δ ◦ ε is an algebra homomorphism. In particular, δ ◦ ε

preserves the multiplication and addition occurring in the determinant which defines Béz( f1, . . . , fn).
Therefore it suffices for us to verify that

(δ ◦ ε)(1i j )=
∂ fi

∂x j
.

Recall that

1i j =
fi (Y1, . . . , Y j−1, X j , . . . , Xn)− fi (Y1, . . . , Y j , X j+1, . . . , Xn)

X j − Y j
.

Taking the x j -Taylor expansion of f (x1, . . . , xn) about Y j gives us

fi (x1, . . . , xn)= fi (x1, . . . , Y j , . . . , xn)+
∑
ℓ≥1

∂ℓ fi

∂xℓj
· (x j − Y j )

ℓ.

We now subtract fi (x1, . . . , Y j , . . . , xn) from both sides, evaluate x j 7→ X j , and divide by X j − Y j to
deduce

fi (x1, . . . , X j , . . . , xn)− fi (x1, . . . , Y j , . . . , xn)

(X j − Y j )
=
∂ fi

∂x j
+

∑
ℓ≥2

∂ℓ fi

∂xℓj
· (X j − Y j )

ℓ−1.

Finally, evaluating X j 7→ x j and Y j 7→ x j gives us (δ ◦ ε)(1i j )=
∂ fi
∂x j

, as desired. □
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Lemma 3.4. Let a1, . . . , am be any vector space basis for Q, and write the Bézoutian as

Béz( f1, . . . , fn)=

m∑
i=1

ai ⊗ bi

for some b1, . . . , bn ∈ Q. Then {bi }
m
i=1 is a basis for Q.

Proof. This is [4, 2.10(iii)]. □

This allows us to associate to the Bézoutian a pair of vector space bases for Q. Given any such pair of
bases, we will construct a unique linear form for which the bases are dual. Before doing so, we establish
some equivalent conditions for the duality of a linear form given a pair of bases.

Proposition 3.5. Let {ai } and {bi } be a pair of bases for B. Consider the induced k-linear isomorphism

2 : Homk(Q, k)→ Q

ϕ 7→

∑
i

ϕ(ai )bi .

Given a linear form λ : Q → k, the following are equivalent:

(1) We have that 2(λ)=
∑

i λ(ai )bi = 1.

(2) For any a ∈ Q, we have a =
∑

i λ(aai )bi .

(3) We have that {ai } and {bi } are dual with respect to λ.

Proof. Note that (2) implies (1) by setting a = 1. Next, we remark that 2 is a Q-module isomorphism by
[30, 3.3 Satz], where the Q-module structure on Homk(Q, k) is given by a ·ϕ = ϕ(a ·−). This allows us
to conclude that a ·2(λ)=2(a · λ) for any linear form λ. In particular, we have

a
∑

i

λ(ai )bi =

∑
i

λ(aai )bi .

It follows from this identity that (1) implies (2). Now suppose that (2) holds. By setting a = b j for some
j , we have ∑

i

λ(ai b j )bi = b j .

Since {bi } is a basis, it follows that λ(ai b j )= δi j . Thus the bases {ai } and {bi } are dual with respect to λ.
Finally, suppose that (3) holds, so that λ(ai b j )= δi j . For any a ∈ Q, write a as a :=

∑
j c j b j for some

scalars c j . Then∑
i

λ(aai )bi =

∑
i

λ

(
ai

∑
j

c j b j

)
bi =

∑
i

(∑
j

c jλ(ai b j )

)
bi =

∑
i

ci bi = a.

Thus (3) implies (2). □
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Remark 3.6. If {ai } and {bi } are dual with respect to λ, then λ is a dualizing form. Indeed, suppose there
exists x ∈ Q such that 8λ(x, y)= 0 for all y ∈ Q. Write x =

∑
i xi ai with xi ∈ k. Then

0 = λ(xb j )= λ

(∑
i

xi ai b j

)
=

∑
i

xiλ(ai b j )= x j

for all j , so x = 0.

Corollary 3.7. Let {ai } and {bi } be two k-vector space bases for Q. Then there exists a unique dualizing
linear form λ : Q → k such that {ai } and {bi } are dual with respect to λ.

Proof. As 2 is a k-algebra isomorphism, it admits a unique preimage of 1. Thus, given any pair of bases
{ai } and {bi } of Q, there is a unique dualizing linear form with respect to which {ai } and {bi } are dual. □

Definition 3.8. We call 8λ a Bézoutian bilinear form if λ : Q → k is a dualizing linear form such that

Béz( f1, . . . , fn)=

m∑
i=1

ai ⊗ bi ,

where {ai } and {bi } are dual bases with respect to λ.

A priori this is different than the Bézoutian form detailed in Definition 1.1, although we will prove that
they define the same class in GW(k) in Section 5A.

Proposition 3.9. Given a function f : An
k → An

k with isolated zeros, its Bézoutian bilinear form is a
well-defined class in GW(k).

Proof. Let 8λ be a Bézoutian bilinear form for f . Recall that 8λ : Q × Q → k is defined by 8λ(a, b)=

λ(ab). Since λ is a dualizing linear form, 8λ is nondegenerate and as Q is commutative, 8λ is symmetric.
Lemma 3.4 implies that given a basis a1, . . . , am for Q, we can write

Béz( f1, . . . , fn)=

m∑
i=1

ai ⊗ bi ,

and obtain a second basis b1, . . . , bm for Q. By Corollary 3.7, there is a dualizing linear form for the two
bases {ai }

m
i=1 and {bi }

m
i=1. It remains to show that if

Béz( f1, . . . , fn)=

m∑
i=1

ai ⊗ bi =

m∑
i=1

a′

i ⊗ b′

i ,

for some bases {ai }, {bi } dual with respect to λ and {a′

i }, {b
′

i } dual with respect to λ′, then 8λ and 8λ′ are
isomorphic. We will in fact show that λ= λ′, so that 8λ =8λ′ . Write ai =

∑
s αisa′

s and bi =
∑

s βisb′
s .

Then
m∑

i=1

a′

i ⊗ b′

i =

m∑
i=1

ai ⊗ bi =

∑
i

(∑
s

αisa′

s

)
⊗

(∑
t

βi t b′

t

)
=

∑
s,t

(∑
i

αisβi t

)
a′

s ⊗ b′

t .
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Since {a′
s ⊗ b′

t } is a basis for Q ⊗k Q, we conclude that
∑

i αisβi t = δst . In particular, (αi j )
−1

= (βi j )
T ,

so (βi j )(αi j )
T is the identity matrix. Thus

∑
j αs jβt j = δst .

Now given g =
∑

i ci ai =
∑

i c′

i a
′

i ∈ Q and 1 =
∑

i di bi =
∑

i d ′

i b
′

i , we have that

λ(g)= λ

(∑
i

(ci ai ) ·
∑

j

d j b j

)
=

∑
i, j

ci d jλ(ai b j )=

∑
i

ci di .

Similarly, we have λ′(g)=
∑

i c′

i d
′

i . By our change of bases, we have c′

j =
∑

i c jαi j and d ′

j =
∑

i diβi j .
Thus

λ′(g)=

∑
j

c′

j d
′

j =

∑
j

(∑
s

csαs j

)(∑
t

dtβt j

)
=

∑
s,t

csdt

(∑
j

αs jβt j

)
=

∑
s

csds = λ(g).

Therefore λ= λ′, as desired. □

Example 3.10. Continuing Example 3.2, let f = (x2
1 , x2

2 , x2
3), so that

ε−1(Béz( f1, f2, f3))= (X1+Y1)(X2+Y2)(X3+Y3)

= X1 X2 X3+X1 X2Y3+X1Y2 X3+X1Y2Y3+Y1 X2 X3+Y1 X2Y3+Y1Y2 X3+Y1Y2Y3.

We give two bases for k[Z1, Z2, Z3]/(Z2
1, Z2

2, Z2
3) in the following table, where we replace Z by either

X or Y . We pair off these bases in a convenient way.

i ai bi

1 1 Y1Y2Y3

2 X1 Y2Y3

3 X2 Y1Y3

4 X3 Y1Y2

5 X1 X2 Y3

6 X1 X3 Y2

7 X2 X3 Y1

8 X1 X2 X3 1

The Bézoutian we computed is in the desired form
∑8

i=1 ai ⊗bi , so we now need to compute the dualizing
linear form λ for {ai } and {bi }. Since 1 = 1 · b8 +

∑7
i=1 0 · bi , we define λ by λ(ai )= 0 for 1 ≤ i ≤ 7 and

λ(a8)= λ(X1 X2 X3)= 1. Now let g ∈ k[X1, X2, X3]/(X2
1, X2

2, X2
3) be arbitrary. We can write g as

g = c1 + c2 X1 + c3 X2 + c4 X3 + c5 X1 X2 + c6 X1 X3 + c7 X2 X3 + c8 X1 X2 X3.

Then λ is the dualizing linear form sending

λ :
k[X1, X2, X3]

(X2
1, X2

2, X2
3)

→ k

g 7→ c8.
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Finally we can compute the Gram matrix of 8λ in the basis {ai }. Note that ai a j is a scalar multiple of
X1 X2 X3 if and only if i + j − 1 = 8. Thus the Gram matrix is

8λ =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


∼=

4⊕
i=1

(
1 0
0 −1

)
.

4. The Scheja–Storch bilinear form

Associated to any polynomial with an isolated zero, Eisenbud and Levine [11] and Khimshiashvili [13]
used the Scheja–Storch construction [30] to produce a bilinear form on the local algebra Qm. Kass and
Wickelgren proved that this Eisenbud–Khimshiashvili–Levine bilinear form computes the local A1-degree
[16]. The machinery of Scheja and Storch works in great generality; in particular, one may produce a
Scheja–Storch bilinear form on the global algebra Q as well as the local algebras Qm. We will provide a
brief account of the Scheja–Storch construction before comparing it with the Bézoutian.

In [30], k⟨X⟩ := k⟨X1, . . . , Xn⟩ denotes either a polynomial ring k[X1, . . . , Xn] or a power series ring
k[[X1, . . . , Xn]]. We will also use this notation, although we will focus on the situation where k⟨X⟩ is a
polynomial ring. Let ρ : k⟨X⟩ → Q denote the map obtained by quotienting out by the ideal ( f1, . . . , fn),
let µ1 : k⟨X⟩ ⊗k k⟨X⟩ → k⟨X⟩ denote the multiplication map, and let µ : Q ⊗k Q → Q denote the
multiplication map on the global algebra, fitting into a commutative diagram:

k⟨X⟩ ⊗k k⟨X⟩ k⟨X⟩

Q ⊗k Q Q

µ1

ρ⊗ρ ρ

µ

We remark that f j ⊗ 1 − 1 ⊗ f j lies in ker(µ1), and that ker(µ1) is generated by elements of the form
X i ⊗ 1 − 1 ⊗ X i . Thus for any j , there are elements ai j ∈ k⟨X⟩ ⊗k k⟨X⟩ such that

f j ⊗ 1 − 1 ⊗ f j =

n∑
i=1

ai j (X i ⊗ 1 − 1 ⊗ X i ). (4-1)

We denote by 1 the following distinguished element in the tensor algebra Q ⊗k Q

1 := (ρ⊗ ρ)(det(ai j )),

which corresponds to the Bézoutian which we will later demonstrate. It is true that 1 is independent of
the choice of ai j , as shown by Scheja and Storch [30, 3.1 Satz]. We now define an important isomorphism



1994 Thomas Brazelton, Stephen McKean and Sabrina Pauli

χ of k-algebras used in the Scheja–Storch construction. However, we will phrase this more categorically
than in [30], as it will benefit us later.

Proposition 4.1. Consider two endofunctors F,G : Alg f.g.
k → Alg f.g.

k on the category of finitely gener-
ated k-algebras, where F(A) = A ⊗k A and G(A) = Homk(Homk(A, k), A). Then there is a natural
isomorphism χ : F → G whose component at a k-algebra A is

χA : A ⊗k A → Homk(Homk(A, k), A)

b ⊗ c 7→ [ϕ 7→ ϕ(b)c].

Proof. This canonical isomorphism is given in [30, page 181], so it will suffice for us to verify naturality.
Let g : A → B be any morphism of k-algebras. Consider the induced maps g ⊗ g : A ⊗k A → B ⊗k B and

g∗ : Homk(Homk(A, k), A)→ Homk(Homk(B, k), B)

ψ 7→ [ϵ 7→ g ◦ψ(ϵ ◦ g)].

It remains to show that the following diagram commutes:

A ⊗k A Homk(Homk(A, k), A)

B ⊗k B Homk(Homk(B, k), B)

χA

g⊗g g∗

χB

To see this, we compute g∗ ◦ χA = [b ⊗ c 7→ [ϵ 7→ g((ϵ ◦ g)(b) · c)]]. Note that ϵ ◦ g : B → k, so
(ϵ ◦ g)(b) ∈ k. Since g is k-linear, we have g((ϵ ◦ g)(b) · c) = ϵ(g(b)) · g(c). Next, we compute
χB ◦(g ⊗g)= [b⊗c 7→ [ϵ 7→ ϵ(g(b)) ·g(c)]]. Thus g∗ ◦χA = χB ◦(g ⊗g), so the diagram commutes. □

We now let 2 := χQ(1) denote the image of 1 under the component of this natural isomorphism at
the global algebra Q. We have that 2 is a k-linear map 2 : Homk(Q, k)→ Q. Letting η denote 2−1(1),
we obtain a well-defined linear form η : Q → k by [30, 3.3 Satz].

Definition 4.2. We refer to 8η : Q × Q → k as the global Scheja–Storch bilinear form.

The Bézoutian gives us an explicit formula for 1. As a result, the global Scheja–Storch form agrees
with the Bézoutian form.

Proposition 4.3. In Q ⊗k Q, we have 1= Béz( f1, . . . , fn).

Proof. We first compute
n∑

i=1

1 j i (X i − Yi )=

n∑
i=1

f j (Y1, . . . , Yi−1, X i , . . . , Xn)− f j (Y1, . . . , Yi , X i+1, . . . , Xn)

(X i − Yi )
· (X i − Yi )

=

n∑
i=1

f j (Y1, . . . , Yi−1, X i , . . . , Xn)− f j (Y1, . . . , Yi , X i+1, . . . , Xn)

= f j (X1, . . . , Xn)− f j (Y1, . . . , Yn).
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Let ϕ : k⟨X⟩ ⊗k k⟨X⟩
∼

−→ k⟨X, Y ⟩ be the ring isomorphism given by ϕ(b ⊗ c) = b(X)c(Y ). Note
that ϕ(xi ⊗ 1) = X i and ϕ(1 ⊗ xi ) = Yi , so the inverse of ϕ is characterized by ϕ−1(X i ) = xi ⊗ 1 and
ϕ−1(Yi )= 1 ⊗ xi . It follows that

f j ⊗ 1 − 1 ⊗ f j = ϕ−1( f j (X)− f j (Y ))=

n∑
i=1

ϕ−1(1 j i (X i − Yi ))=

n∑
i=1

ϕ−1(1 j i )(xi ⊗ 1 − 1 ⊗ xi ).

We may thus set ai j = ϕ−1(1 j i ), and [30, 3.1 Satz] implies that 1 = (ρ ⊗ ρ)(det(ai j )). On the other
hand, (ρ⊗ ρ)(ϕ−1(det(1 j i )))= Béz( f1, . . . , fn) by Definition 3.1. □

Lemma 4.4. The Bézoutian bilinear form and the global Scheja–Storch bilinear form are identical.

Proof. We showed in Proposition 4.3 that 1 is the Bézoutian in Q ⊗k Q. We now show that the associated
forms are identical. Pick bases {ai } and {bi } of Q such that

1= Béz( f1, . . . , fn)=

m∑
i=1

ai ⊗ bi .

Since the natural isomorphism χ has k-linear components, 1 is mapped to

2 := χQ(1)=

[
ϕ 7→

m∑
i=1

ϕ(ai )bi

]
.

Thus η :=2−1(1) is the linear form η : Q → k satisfying
∑m

i=1 η(ai )bi = 1. By Proposition 3.5, this
implies that η is the form for which {ai } and {bi } are dual bases. As in Definition 3.8, this tells us that η
is the linear form producing the Bézoutian bilinear form. □

4A. Local decomposition. While our discussion of the Scheja–Storch form in the previous section was
global, it is perfectly valid to localize at a maximal ideal and repeat the story again [30, pages 180–181].
The fact that Q is an Artinian ring then gives a convenient way to relate the global version of η to the
local version of η. This local decomposition has been utilized previously, for example in [16].

Let m be a maximal ideal in k[x1, . . . , xn] at which the morphism f = ( f1, . . . , fn) has an isolated
root. Letting ρm denote the quotient map k⟨X⟩m → Qm, we have a commutative diagram:

k⟨X⟩m ⊗k k⟨X⟩m k⟨X⟩m

Qm ⊗k Qm Qm

ρm⊗ρm

µ′

1

ρm

µ′

In k⟨X⟩m ⊗k k⟨X⟩m, we can again write

f j ⊗ 1 − 1 ⊗ f j =

n∑
i=1

ãi j (X i ⊗ 1 − 1 ⊗ X i )
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to obtain the local Bézoutian 1m := (ρm ⊗ ρm)(det(ãi j )) ∈ Qm ⊗k Qm. Let λm : Q → Qm be the
localization map. From [30, page 181] we have (λm ⊗ λm)(1)=1m. Via the natural isomorphism χ in
Proposition 4.1, we have a commutative diagram of the form:

Q ⊗k Q Homk(Homk(Q, k), Q)

Qm ⊗k Qm Homk(Homk(Qm, k), Qm)

λm⊗λm

χQ

λm∗

χQm

Tracing 1 through this diagram, we see that

1 2

1m 2m

where 2m = χQm(1m). Unwinding 2m = λm∗(2), we find that 2m is the map

2m : Homk(Qm, k)→ Qm

ψ 7→ λm ◦2(ψ ◦ λm).

Recall that as Q is a zero-dimensional Noetherian commutative k-algebra, the localization maps induce
a k-algebra isomorphism:1

(λm)m : Q ∼
−→

∏
m

Qm.

This is reflected by an internal decomposition of Q in terms of orthogonal idempotents [4, 2.13], which we
now describe; see also [32, Lemma 00JA]. By the Chinese remainder theorem, we may pick a collection
of pairwise orthogonal idempotents {em}m such that

∑
m em = 1. The internal decomposition of Q is then

Q =

⊕
m

Q · em,

and the localization maps restrict to isomorphisms λm|Q·em : Q · em ∼
−→ Qm with λm(em)= 1. Moreover,

λm(Q · en)= 0 for any n ̸= m.

Proposition 4.5. Suppose ℓ : Q → k is a linear form which factors through the localization λm : Q → Qm

for some maximal ideal m. Then 2(ℓ) lies in Q · em.

Proof. Recall that λm|Q·en = 0 for n ̸=m. Since em ·en = 0 for n ̸=m and em is idempotent, the localization
λm : Q → Qm can be written as the following composition:

λm : Q −·em
−−→ Q λm

−→ Qm.

Since ℓ factors through the localization, it can be written as a composite

ℓ : Q −·em
−−→ Q λm

−→ Qm
ℓm
−→ k.

1 Q is Artinian by [32, Lemma 00KH], so the claimed isomorphism exists by [32, Lemma 00JA].

https://stacks.math.columbia.edu/tag/00JA
https://stacks.math.columbia.edu/tag/00KH
https://stacks.math.columbia.edu/tag/00JA
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Thus 2(ℓ) =2(ℓm ◦ λm ◦ (em · −)). Scheja–Storch proved that 2 respects the Q-module structure on
Homk(Q, k) given by a · σ = σ(a · −) [30, 3.3 Satz]. That is, 2(σ(a · −))=2(a · σ)= a2(σ) for any
a ∈ Q and σ ∈ Homk(Q, k). Thus

2(ℓ)= em ·2(ℓm ◦ λm),

so 2(ℓ) ∈ Q · em. □

Returning to the Scheja–Storch form, we have the following commutative diagram relating 2m and 2:

Homk(Q, k) Q

Homk(Qm, k) Qm

2

λm−◦λm

2m

This coherence between 2 and 2m allows us to relate the local linear forms ηm :=2−1
m (1) to the global

linear form η :=2−1(1) in the following way.

Proposition 4.6. For each maximal ideal m of Q, let ηm :=2−1
m (1) : Qm → k, and let η :=2−1(1) : Q → k.

Then η =
∑

m ηm ◦ λm.

Proof. It suffices to show that 2(
∑

m ηm ◦ λm) = 1. Since ηm = 2−1
m (1) by definition, we have 1 =

2m(ηm) := λm(2(ηm◦λm)). By Proposition 4.5, we have2(ηm◦λm)∈ Q ·em. Since λm(2(ηm◦λm))= 1
and λm|Q·em is an isomorphism sending em to 1, it follows that 2(ηm ◦ λm) = em. Finally, since 2 is
k-linear, we have

2

(∑
m

ηm ◦ λm

)
=

∑
m

2(ηm ◦ λm)=

∑
m

em = 1. □

Using this local decomposition procedure for the linear forms ηm and η, we obtain a local decomposition
for Scheja–Storch bilinear forms.

Lemma 4.7. (Local decomposition of Scheja–Storch forms) Let η and ηm be as in Proposition 4.6. Then
8η =

⊕
m8ηm . In particular, the global Scheja–Storch form is a sum over local Scheja–Storch forms

SS( f )=

∑
m

SSm( f ).

Proof. For each maximal ideal m, let {wm,i }i be a k-vector space basis for Qm. Let {vm,i }m,i (ranging over
all i and all maximal ideals) be a basis of Q such that λm(vm,i )=wm,i for each i and m, and λm(vn,i )= 0
for m ̸= n. We now compare the Gram matrix for η : Q → k and the Gram matrices for ηm : Qm → k
in these bases. Via the internal decomposition consisting of pairwise orthogonal idempotents, we have
vm,i · vn, j = 0 if m ̸= n. Thus

η(vm,i · vn, j )= 0,
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so the Gram matrix for 8η will be a block sum indexed over the maximal ideals. If m = n, then
Proposition 4.6 implies

η(vm,i · vm, j )=

∑
n

ηn(λn(vm,i · vm, j ))= ηm(λm(vm,i · vm, j )= ηm(wm,i ·wm, j ).

Thus the Gram matrices of 8η and
⊕

m8ηm are equal, so 8η =
⊕

m8ηm . □

Remark 4.8. The local Scheja–Storch bilinear form is given by 8ηm : Qm × Qm → k. Given a basis
{a1, . . . , am} of Qm, we may write 1m =

∑
ai ⊗ bi and define the local Bézoutian bilinear form as a

suitable dualizing form. Replacing Q, 1, 2, and η with Qm, 1m, 2m, and ηm, the results of Sections 3
and 4 also hold for local Bézoutians and the local Scheja–Storch form. In particular, the local analog of
Lemma 4.4 implies that the local Scheja–Storch form is equal to the local Bézoutian form.

5. Proof of Theorem 1.2

We now relate the Scheja–Storch form to the A1-degree. The following theorem was first proven in the case
where p is a rational zero by Kass and Wickelgren [16], and then in the case where p has finite separable
residue field over the ground field in [7, Corollary 1.4]. Recent work of Bachmann and Wickelgren [2]
gives a general result about the relation between local A1-degrees and Scheja–Storch forms.

Theorem 5.1. Let char k ̸= 2. Let f : An
k → An

k be an endomorphism of affine space with an isolated zero
at a closed point p. Then we have that the local A1-degree of f at p and the Scheja–Storch form of f at
p coincide as elements of GW(k):

degA1

p ( f )= SSp( f ).

Proof. We may rewrite f as a section of the trivial rank n bundle over affine space On
An

k
→ An

k . Under
the hypothesis that p is isolated, we may find a neighborhood X ⊆ An

k of p where the section f is
nondegenerate (meaning it is cut out by a regular sequence). By [2, Corollary 8.2], the local index of f
at p with the trivial orientation, corresponding to the representable Hermitian K -theory spectrum KO,
agrees with the local Scheja–Storch form as elements of KO0(k):

indp( f, ρtriv,KO)= SSp( f ). (5-1)

Let S denote the sphere spectrum in the stable motivic homotopy category SH(k). It is a well-known fact
that Hermitian K -theory receives a map from the sphere spectrum, inducing an isomorphism π0(S)

∼
−→

π0(KO) if char k ̸= 2 (see for example [14, 6.9] for more detail); this is the only place where we use
the assumption that char k ̸= 2. Combining this with the fact that π0(S)= GW(k) under Morel’s degree
isomorphism, we observe that (5-1) is really an equality in GW(k). By [2, Theorem 7.6, Example 7.7],
the local index associated to the representable theory agrees with the local A1-degree:

indp( f, ρtriv,KO)= degA1

p ( f ).

Combining these equalities gives the desired equality in GW(k). □
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Remark 5.2. Bachmann and Wickelgren in fact show that degA1

Z ( f ) = SSZ ( f ) for any isolated zero
locus Z of f [2, Corollary 8.2]. This gives an alternate viewpoint on the local decomposition described
in Lemma 4.7

Corollary 5.3. Let char k ̸= 2. The local Bézoutian bilinear form is the local A1-degree.

Proof. As discussed in Remark 4.8, we can modify Lemma 4.4 to the local case by replacing Q, 1, 2,
and η with Qm, 1m, 2m, and ηm. The local Bézoutian form is thus equal to the local Scheja–Storch form,
which is equal to the local A1-degree by Theorem 5.1. □

In contrast to previous techniques for computing the local A1-degree at rational or separable points,
Corollary 5.3 gives an algebraic formula for the local A1-degree at any closed point.

As a result of the local decomposition of Scheja–Storch forms, the Bézoutian form agrees with the
A1-degree globally as well.

Corollary 5.4. Let char k ̸= 2. The Bézoutian bilinear form is the global A1-degree.

Proof. Let 8η denote the Bézoutian bilinear form, which is equal to the global Scheja–Storch bilinear
form by Lemma 4.4. By Lemma 4.7, the global Scheja–Storch form decomposes as a block sum of
local Scheja–Storch forms. By Theorem 5.1, the local Scheja–Storch bilinear form agrees with the local
A1-degree. Finally, we have that the sum of local A1-degrees is the global A1-degree. Putting this all
together, we have

8η = SS( f )=

∑
m

SSm( f )=

∑
m

degA1

m ( f )= degA1
( f ). □

Remark 5.5. It is not known if GW is represented by KO over fields of characteristic 2, which is the
source of our assumption that char k ̸= 2. If this problem is resolved, one can remove any characteristic
restrictions from our results. Alternately, Lemma 4.7 implies Corollaries 5.3 and 5.4 if all roots of f
satisfy degA1

p ( f )= SSp( f ). By [16], [7], and [17, Proposition 34], Corollaries 5.3 and 5.4 are true in any
characteristic if all roots of f are rational, étale, or separable.

5A. Computing the Bézoutian bilinear form. We now prove Theorem 1.2 by describing a method for
computing the class in GW(k) of the Bézoutian bilinear form in terms of the Bézoutian.

Proof of Theorem 1.2. Let R denote either a global algebra Q or a local algebra Qm. Let {αi } be any
basis for R, and express

Béz( f1, . . . , fn)=

∑
i, j

Bi, jαi ⊗α j . (5-2)

Rewriting this, we have

Béz( f1, . . . , fn)=

∑
i

αi ⊗

(∑
j

Bi, jα j

)
.

Let βi :=
∑

j Bi, jα j , so that {αi } and {βi } are dual bases. Then for any linear form λ : R → k for which
{αi } and {βi } are dual, we will have that 8λ agrees with the global or local A1-degree (depending on our
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choice of R) by Corollaries 5.3 and 5.4. Let λ be such a form. The product of αi and β j is given by

αiβ j = αi ·

∑
s

B j,sαs .

Applying λ to each side, we get an indicator function

δi j = λ(αiβ j )= λ

(
αi

∑
s

B j,sαs

)
=

∑
s

B j,sλ(αiαs).

Varying over all i, j, s, this equation above tells us that the identity matrix is equal to the product of the
matrix (B j,s) and the matrix (λ(αiαs))= (λ(αsαi )). Explicitly, we have that

1 0 · · · 0
0 1 · · · 0
...
...
. . .

...

0 0 · · · 1

=


B1,1 B1,2 · · · B1,m

B2,1 B2,2 · · · B2,m
...

...
. . .

...

Bm,1 Bm,2 · · · Bm,m



λ(α2

1) λ(α1α2) · · · λ(α1αm)

λ(α2α1) λ(α2
2) · · · λ(α2αm)

...
...

. . .
...

λ(αmα1) λ(αmα2) · · · λ(α2
m)

 .
Thus the Gram matrix for 8λ in the basis {αi } is (Bi, j )

−1. We conclude by proving that (Bi, j ) and
(Bi, j )

−1 represent the same element of GW(k). Since any symmetric bilinear form can be diagonalized,
there is an invertible m × m matrix S such that ST

· (Bi, j ) · S is diagonal. Since (ST
· (Bi, j ) · S) · (S−1

·

(Bi, j )
−1

· (S−1)T ) is equal to the identity matrix, it follows that S−1
· (λ(αiα j )) · (S−1)T is diagonal

with entries inverse to the diagonal entries of ST
· (Bi, j ) · S. Applying the equality ⟨a⟩ = ⟨1/a⟩ along

the diagonals, it follows that (Bi, j )
−1 and (Bi, j ) define the same element in GW(k). Theorem 1.2 now

follows from Corollaries 5.3 and 5.4. □

The following tables describe algorithms for computing the global and local A1-degrees in terms of
the Bézoutian bilinear form. A Sage implementation of these algorithms is available at [8].

Computing the global A1-degree via the Bézoutian

(1) Compute the 1i j and the image of their determinant Béz( f )= det(1i j ) in k[X, Y ]/( f (X), f (Y )).

(2) Pick a k-vector space basis a1, . . . , am of Q = k[X1, . . . , Xn]/( f1, . . . , fn). Find Bi, j ∈ k such that

Béz( f )=

m∑
i=1

Bi, j ai (X)a j (Y ).

(3) The matrix B = (Bi, j ) represents degA1
( f ). Diagonalize B to write its class in GW(k).

Computing the local A1-degree via the Bézoutian

(1) Compute the 1i j and the image of their determinant Béz( f )= det(1i j ) in k[X, Y ]/( f (X), f (Y )).

(2) Pick a k-vector space basis a1, . . . , am of Qm=k[X1, . . . , Xn]m/( f1, . . . , fn). Find Bi, j ∈k such that

Béz( f )=

m∑
i=1

Bi, j ai (X)a j (Y ).

(3) The matrix B = (Bi, j ) represents degA1

m ( f ). Diagonalize B to write its class in GW(k).
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6. Calculation rules

Using the Bézoutian characterization of the A1-degree, we are able to establish various calculation rules
for local and global A1-degrees. See [18; 29] for related results in the local case.

Our ultimate goal in this section is the product rule for the A1-degree (see Proposition 6.5), which was
already known by the work of Morel. See the paragraph preceding Proposition 6.5 for a more detailed
discussion.

Proposition 6.1. Suppose that f = ( f1, . . . , fn) and g = (g1, . . . , gn) are endomorphisms of affine space
that generate the same ideal

I = ( f1, . . . , fn)= (g1, . . . , gn) ◁ k[x1, . . . , xn].

If Béz( f )= Béz(g) in k[X, Y ], then degA1
( f )= degA1

(g), and degA1

p ( f )= degA1

p (g) for all p.

Proof. We may choose the same basis for Q = k[x1, . . . , xn]/I (or Q p in the local case) in our computation
for the degrees of f and g. The Bézoutians Béz( f )= Béz(g) will have the same coefficients in this basis,
so their Gram matrices will coincide. □

The following result is the global analogue of [29, Lemma 14].

Lemma 6.2. Let f = ( f1, . . . , fn) : An
k → An

k be an endomorphism of An
k with only isolated zeros. Let

A ∈ kn×n be an invertible matrix. Then

⟨det A⟩ · degA1
( f )= degA1

(A ◦ f )

as elements of GW(k).

Proof. Write A = (ai j ) and

1
g
i j =

gi (X1, . . . , X j , Y j+1, . . . , Yn)− gi (X1, . . . , X j−1, Y j , . . . , Yn)

X j − Y j
,

where g is either f or A ◦ f . Then 1A◦ f
i j =

∑n
l=1 ail1

f
l j , and thus (1A◦ f

i j )= A · (1
f
i j ) as matrices over

k[X, Y ]. The ideals generated by A ◦ ( f1, . . . , fn) and ( f1, . . . , fn) are equal, and the images in Q ⊗k Q
of det(1A◦ f

i j ) and det A · det(1 fi j ) are equal. Thus the Gram matrix of the Bézoutian bilinear form for
A ◦ f is det A times the Gram matrix of the Bézoutian bilinear form for f . Proposition 6.1 then proves
the claim. □

Example 6.3. We may apply Lemma 6.2 in the case where A is a permutation matrix associated to some
permutation σ ∈6n . Letting fσ := ( fσ(1), . . . , fσ(n)), we observe that

degA1

p ( fσ )= ⟨sgn(σ )⟩ · degA1

p ( f )

at any isolated zero p of f , and an analogous statement is true for global degrees as well.

Next, we prove a lemma inspired by [18, Lemma 12].
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Lemma 6.4. Let f, g : An
k → An

k be two endomorphisms of An
k . Assume that f and g are quasifinite. Let

L ∈ Mn(k) be an invertible n ×n matrix, which defines a morphism L : An
k → An

k given by (x1, . . . , xn) 7→

(x1, . . . , xn) · LT . Let In denote the n × n identity matrix, and assume that det(In + t (L − In)) ∈ k[t] is in
fact an element of k×. Then degA1

( f ◦ g)= degA1
( f ◦ L ◦ g).

Proof. Quasifinite morphisms have isolated zero loci by [32, Definition 01TD (3)]. The composition of
quasifinite morphisms is again quasifinite [32, Lemma 01TL], so f ◦ g has isolated zero locus.

Next, we show that L is also quasifinite. We will actually prove a stronger statement. Let At ∈ Mn(k[t])
be an invertible n × n matrix, which implies that det At ∈ k[t]× = k×. This matrix determines a family of
morphisms At : An

k × A1
k → An

k by (x1, . . . , xn, t) 7→ (x1, . . . , xn) · AT
t . Given t0 ∈ A1

k , the morphism At0

has Jacobian determinant det
( ∂(At0 )i

∂x j

)
= det At , which is a unit. In particular, At0 is unramified for each

t0 ∈ A1
k . Thus At0 is locally quasifinite [32, Lemma 02VF]. Since An

k is Noetherian, At0 : An
k → An

k is
quasicompact. Quasicompact and locally quasifinite morphisms are quasifinite [32, Lemma 01TJ], so we
conclude that At0 is quasifinite for each t0 ∈ A1

k .
Just as in [18, Lemma 12], we now define L t = In + t ·(L − In). Our assumption on det(In + t (L − In))

implies that L t is invertible. Thus L t is quasifinite, so f ◦ L t ◦ g is quasifinite and hence only has isolated
zeros for all t . Set

Q̃ =
k[t][x1, . . . , xn]

( f ◦ L t ◦ g)
.

Then [30, page 182] gives us a Scheja–Storch form η̃ : Q̃ → k[t] such that the bilinear form8η̃ : Q̃× Q̃ →

k[t] is symmetric and nondegenerate. By Harder’s theorem [16, Lemma 30], the stable isomorphism class
of 8η̃ ⊗k k(t0) ∈ GW(k) is independent of t0 ∈ A1

k(k). In particular, the Scheja–Storch bilinear forms of
f ◦ L0 ◦ g = f ◦ g and f ◦ L1 ◦ g = f ◦ L ◦ g are isomorphic. □

The following product rule is a consequence of Morel’s proof that the A1-degree is a ring isomorphism
[24, Lemma 6.3.8]. We give a more hands-on proof of this product rule. See [18, Theorem 13] and [29,
Theorem 26] for an analogous proof of the product rule for local degrees at rational points.

Proposition 6.5 (product rule). Let f, g : An
k → An

k be two quasifinite endomorphisms of An
k . Then

degA1
( f ◦ g)= degA1

( f ) · degA1
(g).

Proof. We follow the proofs of [18, Theorem 13] and [29, Theorem 26]. The general idea is to mimic the
Eckmann–Hilton argument [10]. Let x := (x1, . . . , xn) and y := (y1, . . . , yn). Define f̃ , g̃ : An

× An
→

An
× An by f̃ (x, y) = ( f (x), y) and g̃(x, y) = (g(x), y), and note that f̃ and g̃ are both quasifinite

because f and g are quasifinite. Since ( f ◦ g, y) and f̃ ◦ g̃ define the same ideal in k[x, y] and have the
same Bézoutian, we have degA1

( f ◦ g)= degA1
( f̃ ◦ g̃) by Proposition 6.1.

Let g× f : An
k ×An

k → An
k ×An

k be given by (g× f )(x, y)= (g(x), f (y)). Using Lemma 6.4 repeatedly,
we will show that degA1

( f̃ ◦ g̃)= degA1
(g × f ). Let In be the n × n identity matrix, and let

L1 =

(
In 0

−In In

)
, L2 =

(
In In

0 In

)
, A =

(
0 −In

In 0

)
.

https://stacks.math.columbia.edu/tag/01TD
https://stacks.math.columbia.edu/tag/01TL
https://stacks.math.columbia.edu/tag/02VF
https://stacks.math.columbia.edu/tag/01TJ
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By construction, det(I2n + t (L1 − I2n))= det(I2n + t (L2 − I2n))= 1, so Lemma 6.4 implies that

degA1
( f̃ ◦ g̃)= degA1

( f̃ ◦ L1 ◦ g̃)= degA1
( f̃ ◦ L2 ◦ (L1 ◦ g̃))= degA1

( f̃ ◦ L1 ◦ (L2 ◦ L1 ◦ g̃)).

One can check that A ◦ f̃ ◦ L1 ◦ L2 ◦ L1 ◦ g̃ = g × f . By Lemma 6.2, we have

⟨det A⟩ · degA1
( f̃ ◦ g̃)= ⟨det A⟩ · degA1

( f̃ ◦ L1 ◦ L2 ◦ L1 ◦ g̃)= degA1
(g × f ).

Since det A = 1, it just remains to show that degA1
(g × f ) = degA1

(g) · degA1
( f ). Let a1, . . . , am be

a basis for k[x1, . . . , xn]/(g1, . . . , gn) and a′

1, . . . , a′

m′ be a basis for k[y1, . . . , yn]/( f1, . . . , fn). Write
Béz(g)=

∑m
i, j=1 Bi j ai ⊗ a j and Béz( f )=

∑m′

i, j=1 B ′

i j a
′

i ⊗ a′

j . By Theorem 1.2, (Bi j ) and (B ′

i j ) are the
Gram matrices for degA1

(g) and degA1
( f ), respectively. Next, we have Béz(g × f )= Béz(g) · Béz( f ),

since

(1
g× f
i j )=

(
(1

g
i j ) 0

0 (1
f
i j )

)
.

Note that {ai (x)a′

i ′(y)}m,m′

i,i ′=1 is a basis of k[x1, . . . , xn, y1, . . . , yn]/(g1(x), . . . ,gn(x), f1(y), . . . , fn(y)).
In this basis, we have

Béz(g) · Béz( f )=

m∑
i, j=1

m′∑
i ′, j ′=1

Bi j B ′

i ′ j ′ai a′

i ′ ⊗ a j a′

j ′,

so the Gram matrix of degA1
(g × f ) is the tensor product (Bi j )⊗ (B ′

i j ). We thus we have an equality
degA1

(g × f )= degA1
(g) · degA1

( f ) in GW(k). □

7. Examples

We now give a few remarks and examples about computing the Bézoutian.

Remark 7.1. It is not always the case that the determinant det(1i j )∈ k[X, Y ] is symmetric. For example,
consider the morphism f : A2

k → A2
k sending (x1, x2) 7→ (x1x2, x1 + x2). Then the Bézoutian is given by

Béz( f )= det
(

X2 Y1

1 1

)
= X2 − Y1.

However, the Bézoutian is symmetric once we pass to the quotient k[X, Y ]/( f (X), f (Y )) [4, 2.12].
Continuing the present example, let {1, x2} be a basis for the algebra Q = k[x1, x2]/(x1x2, x1 + x2). Then
we have that

Béz( f )= X2 − Y1 = X2 + Y2,

which is symmetric. Moreover, the Bézoutian bilinear form is represented by
( 0

1
1
0

)
, so degA1

( f )= H.

Example 7.2. Let k = Fp(t), where p is an odd prime, and consider the endomorphism of the affine
plane given by

f : Spec Fp(t)[x1, x2] → Spec Fp(t)[x1, x2]

(x1, x2) 7→ (x p
1 − t, x1x2).



2004 Thomas Brazelton, Stephen McKean and Sabrina Pauli

As the residue field of the zero of f is not separable over k, existing strategies for computing the local
A1-degree are insufficient. Our results allow us to compute this A1-degree. The Bézoutian is given by

Béz( f )= det

(
X p

1 −Y p
1

X1−Y1
0

X2 Y1

)
= X p−1

1 Y1 + X p−2
1 Y 2

1 + . . .+ X1Y p−1
1 + Y p

1

= X p−1
1 Y1 + X p−2

1 Y 2
1 + . . .+ X1Y p−1

1 + t.

In the basis {1, x1, . . . , x p−1
1 } of Q, the Bézoutian bilinear form consists of a t in the upper left corner

and a 1 in each entry just below the antidiagonal. Thus

degA1
( f )= degA1

(t1/p,0)( f )= ⟨t⟩ +
1
2(p − 1)H.

Example 7.3. Let f1 = (x1 − 1)x1x2 and f2 = (ax2
1 − bx2

2) for some a, b ∈ k× with a
b not a square in k.

Then f = ( f1, f2) has isolated zeros at m := (x1 − 0, x2 − 0) and n := (x1 − 1, x2
2 − a/b). We will use

Bézoutians to compute the local degrees degA1

m ( f ) and degA1

n ( f ), as well as the global degree degA1
( f ).

Let

Q =
k[x1, x2]

((x1 − 1)x1x2, ax2
1 − bx2

2)
.

We first compute the global Bézoutian as

Béz( f )= det
(
(X1 + Y1 − 1)X2 a(X1 + Y1)

Y 2
1 − Y1 −b(X2 + Y2)

)
= −a(X1Y 2

1 − X1Y1 + Y 3
1 − Y 2

1 )− b(X1 X2
2 + X2

2Y1 − X2
2 + X1 X2Y2 + X2Y1Y2 − X2Y2).

In the basis {1, x1, x2, x2
1 , x1x2, x3

1} of Q, the Bézoutian is given by

Béz( f )= −a(X1Y 2
1 − X1Y1 + Y 3

1 − Y 2
1 + X3

1 + X2
1Y1 − X2

1)− b(X1 X2Y2 + X2Y1Y2 − X2Y2).

We now write the Bézoutian matrix given by the coefficients of Béz( f ):

1 X1 X2 X2
1 X1 X2 X3

1

1 0 0 0 a 0 −a
Y1 0 a 0 −a 0 0
Y2 0 0 b 0 −b 0
Y 2

1 a −a 0 0 0 0
Y1Y2 0 0 −b 0 0 0

Y 3
1 −a 0 0 0 0 0

One may check (e.g., with a computer) that this is equal to 3H in GW(k).
In Qm, we have that x2

1 x2 = x1x2 = 0 and x3
1 =

b
a x1x2

2 = 0. In the basis {1, x1, x2, x2
1} of Qm, the

global Bézoutian reduces to

Béz( f )= −a(X1Y 2
1 − X1Y1 − Y 2

1 + X2
1Y1 − X2

1)+ bX2Y2.
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We thus get the Bézoutian matrix at m:

1 X1 X2 X2
1

1 0 0 0 a
Y1 0 a 0 −a
Y2 0 0 b 0
Y 2

1 a −a 0 0

This is H + ⟨a, b⟩ in GW(k).
In Qn, we have x1 = 1. In the basis {1, x2} for Qn, the Bézoutian reduces to

Béz( f )= −a − bX2Y2.

We can then write the Bézoutian matrix at n:

1 X2

1 −a 0
Y2 0 −b

This is ⟨−a,−b⟩ in GW(k). Note that ⟨−a,−b⟩ need not be equal to H. However, this does not contradict
[29, Theorem 2], since n is a nonrational point.

Putting these computations together, we see that

degA1

m ( f )+ degA1

n ( f )= H + ⟨a, b⟩ + ⟨−a,−b⟩ = 3H = degA1
( f ).

8. Application: The A1-Euler characteristic of Grassmannians

As an application of Theorem 1.2, we compute the A1-Euler characteristic of various low-dimensional
Grassmannians in Example 8.2 and Figure 1. These computations suggest a recursive formula for the
A1-Euler characteristic of an arbitrary Grassmannian, which we prove in Theorem 8.4. This formula is
analogous to the recursive formulas for the Euler characteristics of complex and real Grassmannians.
Theorem 8.4 is probably well-known, and the proof is essentially a combination of results of Hoyois,
Levine, and Bachmann–Wickelgren.

8A. The A1-Euler characteristic. Let X be a smooth, proper k-variety of dimension n with structure map
π : X → Spec k. Let p : TX → X denote the tangent bundle of X . The A1-Euler characteristic χA1

(X) ∈

GW(k) is a refinement of the classical Euler characteristic. In particular, if k = R, then rankχA1
(X)=

χ(X (C)) and sgnχA1
(X) = χ(X (R)). There exist several equivalent definitions of the A1-Euler char-

acteristic [20; 21; 1]. For example, we may define χA1
(X) to be the π -pushforward of the A1-Euler class

e(TX ) := z∗z∗1X ∈ C̃Hn
(X, ωX/k),

of the tangent bundle [20], where z : X → TX is the zero section and C̃Hd
(X, ωX/k) is the Chow–Witt

group defined by Barge and Morel [3; 12]. That is,

χA1
(X) := π∗(e(TX )) ∈ C̃H0

(Spec k)= GW(k).
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Analogous to the classical case [23], the A1-Euler characteristic can be computed as the sum of
local A1-degrees at the zeros of a general section of the tangent bundle using the work of Kass and
Wickelgren [2; 17; 20]. We now describe this process. Let σ be a section of TX which only has isolated
zeros. For a zero x of σ , choose Nisnevich coordinates ψ : U → An

k around x .2 Since ψ is étale, it
induces an isomorphism of tangent spaces and thus yields local coordinates around x . Shrinking U if
necessary, we can trivialize TX |U ∼= U × An

k . The chosen Nisnevich coordinates (ψ,U ) and trivialization
τ : TX |U ∼=U ×An

k each define distinguished elements dψ , dτ ∈det TX |U . In turn, this yields a distinguished
section d of Hom(det TX |U , det TX |U ), which is defined by dψ 7→ dτ . We say that a trivialization τ is
compatible with the chosen coordinates (ψ,U ) if the image of the distinguished section d under the
canonical isomorphism ρ : Hom(det TX |U , det TX |U )∼= OU is a square [17, Definition 21].

Given a compatible trivialization τ : TX |U ∼= U × An
k , the section σ trivializes to σ : U → An

k . We can
then define the local index indx σ at x to be the A1-degree of the composite

Pn
k

Pn−1
k

→
Pn

k

Pn
k\{ψ(x)}

∼=
An

k

An
k \{ψ(x)}

∼=
U

U\{x}

σ
−→

An
k

An
k \{0}

∼=
Pn

k

Pn−1
k

.

Here, the first map is the collapse map, the second map is excision, the third map is induced by the
Nisnevich coordinates (ψ,U ), and the fifth map is purity; see e.g., [2, Definition 7.1]. By [17, Theorem 3],
the A1-Euler characteristic is then the sum of local indices

χA1
(X)=

∑
x∈σ−1(0)

indx σ ∈ GW(k).

By Theorem 1.2, we may thus compute the A1-Euler characteristic by computing the global Bézoutian
bilinear form of an appropriate map f : An

k → An
k .

Remark 8.1. If all the zeros of f : An
k → An

k are simple, then each local ring Qm in the decomposition
of Q = k[x1, . . . , xn]/( f1, . . . , fn)= Qm1 × . . .× Qms is equal to the residue field of the corresponding
zero. If each residue field Qmi is a separable extension of k, then the A1-degree of f is equal to sum of
the scaled trace forms TrQmi /k(⟨J ( f )|mi ⟩) (see e.g., [7, Definition 1.2]), where J ( f )|mi is the determinant
of the Jacobian of f evaluated at the point mi . In [27] the last named author uses the scaled trace form
for several A1-Euler number computations. However, Theorem 1.2 yields a formula for degA1

( f ) for any
f with only isolated zeros and without any restriction on the residue field of each zero. Moreover, we
can even compute degA1

( f ) without solving for the zero locus of f .

8B. The A1-Euler characteristic of Grassmannians. Let G :=Grk(r, n) be the Grassmannian of r -planes
in kn . In order to compute χA1

(G), we first need to describe Nisnevich coordinates and compatible
trivializations for G and TG . We then need to choose a convenient section of TG and describe the resulting
endomorphism A

r(n−r)
k . The tangent bundle TG → G is isomorphic to p :Hom(S,Q)→ G, where S → G

and Q → G are the universal sub- and quotient bundles.

2Nisnevich coordinates consist of an open neighborhood U of x and an étale map ψ : U → An
k that induces an isomorphism

of residue fields k(x)∼= k(ψ(x)) [17, Definition 18].
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We now describe Nisnevich coordinates on G and a compatible trivialization of TG , following [31].
Let d = r(n − r) be the dimension of G, and let {e1, . . . , en} be the standard basis of kn . Let Ad

k =

Spec k[{xi, j }
r,n−r
i, j=1]

∼= U ⊂ G be the open affine subset consisting of the r -planes

H({xi, j }
r,n−r
i, j=1) := span

{
en−r+i +

n−r∑
j=1

xi, j e j

}r

i=1
.

The map ψ : U → Ad
k given by ψ(H({xi, j }

r,n−r
i, j=1)) = ({xi, j }

n−r,r
i, j=1) yields Nisnevich coordinates (ψ,U )

centered at ψ(span{en−r+1, . . . , en})= (0, . . . , 0). For the trivialization of TG |U , let

ẽi =

{
ei i ≤ n − r,
ei +

∑n−r
j=1 xi−(n−r), j e j i ≥ n − r + 1.

Then {ẽ1, . . . , ẽn} is a basis for kn , and we denote the dual basis by {φ̃1, . . . , φ̃n}. Over U , the bundles
S∗ and Q are trivialized by {φ̃n−r+1, . . . , φ̃n} and {ẽ1, . . . , ẽn−r }, respectively. Since

TG ∼= Hom(S,Q)∼= S∗
⊗Q,

we get a trivialization of TG |U given by {φ̃n−r+i ⊗ ẽ j }
r,n−r
i, j=1. By construction, our Nisnevich coor-

dinates (ψ,U ) induce this local trivialization of TG . It follows that the distinguished element of
Hom(det TG |U , det TG |U ) sending the distinguished element of det TG |U (determined by the Nisnevich
coordinates) to the distinguished element of TG |U (determined by our local trivialization) is just the
identity, which is a square.

Next, we describe sections of TG → G and the resulting endomorphisms Ad
k → Ad

k . Let {φ1, . . . , φn}

be the dual basis of the standard basis {e1, . . . , en} of kn . A homogeneous degree 1 polynomial α ∈

k[φ1, . . . , φn] gives rise to a section s of S∗, defined by evaluating α. In particular, given a vector
t =

∑n
i=1 ti ẽi in H({xi, j }

r,n−r
i, j=1), we use the dual change of basis

φ j =

{
φ̃ j +

∑r
i=1 xi, j φ̃n−r+i j ≤ n − r,

φ̃ j j ≥ n − r + 1
to set

s(t)= α

(
t1 +

r∑
i=1

xi,1tn−r+i , . . . , tn−r +

r∑
i=1

xi,n−r tn−r+i , tn−r+1, . . . , tn

)
.

Note that t1 = · · · = tn−r = 0 if and only if t ∈ H({xi, j }
r,n−r
i, j=1), so s(t) ∈ k[tn−r+1, . . . , tn]. Taking n

sections s1, . . . , sn of S∗, we get a section of TG ∼= Hom(S,Q) given by

S (s1,...,sn)
−−−−→ An

k → Q,

where the second map is quotienting by {ẽn−r+1, . . . , ẽn}. We obtain our map Ad
k → Ad

k by applying
the trivializations {φ̃n−r+i ⊗ ẽ j }

r,n−r
i, j=1 of TG . Explicitly, take n sections s1, . . . , sn of S∗. Since ei =
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ẽi −
∑n−r

j=1 xi−(n−r), j e j for i > n − r , we have

s j e j ≡ s j e j −

r∑
i=1

xi, j sn−r+i e j mod (ẽn−r+1, . . . , ẽn),

for all j ≤ n − r . Recall that e j = ẽ j for j ≤ n − r . The coordinate of Ad
k → Ad

k corresponding to
φ̃n−r+i ⊗ ẽ j is thus the coefficient of tn−r+i in s j (t)−

∑r
ℓ=1 xℓ, j sn−r+ℓ(t).

For a general section σ of p : TG → G, the finitely many zeros of σ will all lie in U . In this case, the
A1-Euler characteristic of G is equal to the global A1-degree of the resulting map Ad

k → Ad
k , which can

computed using the Bézoutian.

Example 8.2 (Grk(2, 4)). Let
α1 = φ2 = φ̃2 + x1,2φ̃3 + x2,2φ̃4,

α2 = φ3 = φ̃3,

α3 = φ4 = φ̃4,

α4 = φ1 = φ̃1 + x1,1φ̃3 + x2,1φ̃4.

Evaluating at t = (0, 0, t3, t4) in the basis {ẽi }, we have

s1 = x1,2t3 + x2,2t4,

s2 = t3,

s3 = t4,

s4 = x1,1t3 + x2,1t4.

It remains to read off the coefficients of t3 and t4 of

s1 − x1,1s3 − x2,1s4 = (x1,2 − x1,1x2,1)t3 + (x2,2 − x1,1 − x2
2,1)t4,

s2 − x1,2s3 − x2,2s4 = (1 − x1,1x2,2)t3 + (−x1,2 − x2,1x2,2)t4.

We thus have our endomorphism σ : A4
k → A4

k defined by

σ = (x1,2 − x1,1x2,1, x2,2 − x1,1 − x2
2,1, 1 − x1,1x2,2,−x1,2 − x2,1x2,2).

Using the Sage implementation of the Bézoutian formula for the A1-degree [8], we can calculate
χA1

(Grk(2, 4))= degA1
(σ )= 2H + ⟨1, 1⟩.

Using a computer, we performed computations analogous to Example 8.2 for r ≤ 5 and n ≤ 7. These
A1-Euler characteristics of Grassmannians are recorded in Figure 1.

Recall that the Euler characteristics of real and complex Grassmannians are given by binomial coef-
ficients. In particular, these Euler characteristics satisfy certain recurrence relations related to Pascal’s
rule. The computations in Figure 1 indicate that an analogous recurrence relation is true for the A1-
Euler characteristic of Grassmannians over an arbitrary field. In fact, this recurrence relation is a direct
consequence of a result of Levine [20].
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n r = 1 2 3 4 5
2 H ⟨1⟩

3 H + ⟨1⟩ H + ⟨1⟩ ⟨1⟩

4 2H 2H + ⟨1, 1⟩ 2H ⟨1⟩

5 2H + ⟨1⟩ 4H + ⟨1, 1⟩ 4H + ⟨1, 1⟩ 2H + ⟨1⟩ ⟨1⟩

6 3H 6H + ⟨1, 1, 1⟩ 10H 6H + ⟨1, 1, 1⟩ 3H

7 3H + ⟨1⟩ 9H + ⟨1, 1, 1⟩ 16H + ⟨1, 1, 1⟩ 16H + ⟨1, 1, 1⟩ 9H + ⟨1, 1, 1⟩

Figure 1. More examples of χA1
(Grk(r, n)).

Proposition 8.3. Let 1 ≤ r < n be integers. Then

χA1
(Grk(r, n))= χA1

(Grk(r − 1, n − 1))+ ⟨−1⟩
rχA1

(Grk(r, n − 1)).

Proof. Fix a line L in kn . Let Z be the closed subvariety consisting of all r-planes containing L
(which is isomorphic to Grk(r − 1, n − 1)), and let U be its open complement (which is isomorphic
to an affine rank r bundle over Grk(r, n − 1)). We then get a decomposition Grk(r, n) = Z ∪ U . Since
Grk(l,m) ∼= Grk(m − l,m), we have χA1

(Grk(l,m)) = χA1
(Grk(m − l,m)). We can thus apply [20,

Proposition 1.4(3)] to obtain

χA1
(Grk(r, n))= χA1

(Grk(n − r, n))

= χA1
(Grk(n − r, n − 1))+ ⟨−1⟩

rχA1
(Grk(n − r − 1, n − 1))

= χA1
(Grk(r − 1, n − 1))+ ⟨−1⟩

rχA1
(Grk(r, n − 1)). □

We can now apply a theorem of Bachmann and Wickelgren [2] to completely characterize χA1
(Grk(r, n)).

Theorem 8.4. Let k be field of characteristic not equal to 2. Let nC :=
(n

r

)
, and let nR :=

(
⌊n/2⌋

⌊r/2⌋

)
. Then

χA1
(Grk(r, n))=

nC + nR

2
⟨1⟩ +

nC − nR

2
⟨−1⟩.

Proof. By [2, Theorem 5.8], we can restrict this computation to two different possibilities. We will
prove by induction that χA1

(Grk(r, n)) mod H has no ⟨2⟩ summand. The desired result will then follow
from [2, Theorem 5.8] by noting that nC and nR are the Euler characteristics of GrC(r, n) and GrR(r, n),
respectively.

Since An
k is A1-homotopic to Spec k, we have χA1

(An
k )=χ

A1
(Spec k)=⟨1⟩. Using this observation and

the decomposition Pn
k =

⋃n
i=0 Ai

k (and a result analogous to [20, Proposition 1.4(3)]), Hoyois computed
the A1-Euler characteristic of projective space [15, Example 1.7]:

χA1
(Pn

k )=

{ n
2 H + ⟨1⟩ n is even,
n+1

2 H n is odd.

Note that Grk(0, n) ∼= Grk(n, n) ∼= Spec k and Grk(1, n) ∼= Grk(n − 1, n) ∼= Pn−1
k . In particular,

χA1
(Grk(i, n)) mod H is either trivial or ⟨1⟩ for i = 0, 1, n − 1, or n. This forms the base case of our
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a b

a + b

a b

a + ⟨−1⟩b

Figure 2. Addition rules for modified Pascal’s triangle.

induction, with the inductive step given by Proposition 8.3 — namely, if χA1
(Grk(r − 1, n − 1)) mod H

and χA1
(Grk(r, n − 1)) mod H only have ⟨1⟩ and ⟨−1⟩ summands, then

(χA1
(Grk(r − 1, n − 1))+ ⟨−1⟩

rχA1
(Grk(r, n − 1))) mod H

only has ⟨1⟩ and ⟨−1⟩ summands. □

8C. Modified Pascal’s triangle for χA1
(Grk(r, n)). Pascal’s triangle gives a mnemonic device for

binomial coefficients and hence for the Euler characteristics of complex and real Grassmannians. The
recurrence relation of Proposition 8.3 indicates that a modification of Pascal’s triangle can also be used to
calculate the A1-Euler characteristics of Grassmannians. Explicitly, each entry in the modified Pascal’s
triangle is an element of GW(k). The two diagonal edges of this triangle correspond to χA1

(Grk(0, n))=
⟨1⟩ and χA1

(Grk(n, n))= ⟨1⟩. Elements of each row of the modified Pascal’s triangle are obtained from
the previous row by the addition rule illustrated in Figure 2.

We rewrite the data recorded in Figure 1 in a modified Pascal’s triangle in Figure 3. The rows correspond
to the dimension n of the ambient affine space kn , while the southwest-to-northeast diagonals correspond
to the dimension r of the planes kr in the ambient space.
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=

1

r
=

2

r
=

3

r
=

4

r
=

5

r
=

6

r
=

7

n = 2 H

n = 3 H + ⟨1⟩ H + ⟨1⟩

n = 4 2H 2H + 2⟨1⟩ 2H

n = 5 2H + ⟨1⟩ 4H + 2⟨1⟩ 4H + 2⟨1⟩ 2H + ⟨1⟩

n = 6 3H 6H + 3⟨1⟩ 10H 6H + 3⟨1⟩ 3H

n = 7 3H + ⟨1⟩ 9H + 3⟨1⟩ 16H + 3⟨1⟩ 16H + 3⟨1⟩ 9H + 3⟨1⟩ 3H + ⟨1⟩

Figure 3. Modified Pascal’s triangle for χA1
(Grk(r, n)) (see Section 8C).
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