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We study towers of varieties over a finite field such as y? = f(x*") and prove that the characteristic
polynomials of the Frobenius on the étale cohomology show a surprising £-adic convergence. We prove
this by proving a more general statement about the convergence of certain invariants related to a skew-
abelian cohomology group. The key ingredient is a generalization of Fermat’s little theorem to matrices.
Along the way, we will prove that many natural sequences of polynomials (p,(x)),=1 € Z[x]" converge
£-adically and give explicit rates of convergence.
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Notation 1. We will work throughout over a fixed finite field ;. A curve C over [, refers to a smooth,
projective, geometrically connected scheme of dimension 1. The base change to the algebraic closure
I]_:q is denoted by C. We denote its étale cohomology with Z, coefficients by Hélt(é ,Zy). By standard
functoriality arguments, it comes endowed with a linear action of the geometric Frobenius o,. We fix an
auxiliary prime £ throughout and for simplicity assume that £ > 2 and ¢ = 1 (mod ¢).!

1. Introduction

The eigenvalues of the Frobenius on the étale cohomology of a smooth, projective variety over a finite
field carry significant arithmetic information. By the Weil conjectures, these eigenvalues are algebraic
integers and their absolute values under any complex embedding are understood.

We draw inspiration from Iwasawa theory to study the asymptotic behavior of these eigenvalues in
an “Iwasawa tower” and in particular, we show that there is a strong ¢-adic convergence statement to be
made in many natural examples. The Iwasawa algebras arising in this study are noncommutative due

MSC2020: primary 11R23; secondary 11G20.
Keywords: Iwasawa theory, L-functions over finite fields.

I As usual, the theorems go through if £ = 2 with appropriately stronger hypothesis. For instance, if £ = 2 then we need
g =1 (mod ¢2).
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to the nontrivial action of the Frobenius on this monodromy group and we hope that this perspective is

interesting too. Let us begin with an example.

Example 2. Consider the smooth projective curves C, corresponding to the equations
Y%= X% +1 over Fs.

They define a tower --- — C, — C; with maps C,+; — C, defined by (X,Y) — (X%, Y). The
characteristic polynomial of o5 on Hélt(é nsZyg) s

n—2

fu@) i=det(1 —opx | HA(Co, Z¢)) = (1 — 2x +52%) [ (1 + 27572,

i=1
Note that f,,_;(x) divides f,(x) and the inverse of the roots of g,(x) = f,(x)/fu—1(x) are of the form
V/5¢ for ¢ aroot of unity of order 2"~ for n > 3. In Section 4, we show that for n sufficiently large,
the normalized (by @« — «/|«| so that the complex absolute value is 1) roots of g, (x) are exactly all
possible ¢-th roots of the normalized roots of g, (x).?

In fact, we prove the same statement for towers of Fermat curves (from which the above follows) and
Artin—Schreier curves. The proof of this statement follows from realizing the roots of g, (x) as Jacobi
sums and using results of Coleman [1987] on identities for Gauss sums (coming from the Gross—Kubota
p-adic Gamma function [Gross and Koblitz 1979]).

1.1. A congruence on characteristic polynomials. This prompts the question of what happens in a more
general context. For instance, we could take amap f : C — P! or f: C — A for A an abelian variety of
dimension d and pull back by the following diagrams:

c, —L p! c, —I A
lnn lz_mf" or lnn [e"]

We denote the first family of examples by Case A and the second family by Case B. Note that in both
the families, the C, — C are geometrically (branched) Galois extensions with an abelian Galois group
G, =2 /E”Z)b for b =1 or 2d in Cases A and B respectively. Note that the G, themselves have an
action of o, and this will be crucial.

We define M, = Hélt(é Y Hélt(é , Zy), fn(x) to be the characteristic polynomial of o, on M, and
gn to be the characteristic polynomial det(l — oyx | M,,/M,_1). It does not seem to be true that g,
determines g, as in Example 2. Nonetheless, the following weaker convergence statement is true.

Let k,, be the order of o, acting on p¢ = G, [£"] in Case A while in Case B, k, is a close relative of
the order of o, acting on A[£"]. In particular, it is independent of C and can be made completely explicit.
In either case k, is of the form max{1, £"7"°} with ny depending on which case we are considering.

Zwe note that the complex norm || is independent of the embedding to C by the Weil conjectures
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Theorem (Theorem 19). In the above set up (with some mild assumptions on f and q):

(1) We have a factorization into monic polynomials

fu@) =T g0

n<m
where the g, are independent of m.

(2) There exist polynomials hy(y), hn(y) € Z[y] such that, in Case A

gn(x) = Ry (x*n).
while in Case B
gn(x) = Iy (x*n).

(3) In Case A, for n sufficiently large so that k,\ = Lk, (Lemma 21), we have the £-adic convergence

hnt1(y) = hy(y) (mod £").
In particular, the following -adic limit exists in Z,[y]:
hoo(y) = lim_h, ().
n—oo
In Case B, for n > ng sufficiently large so that k11 = £k,, we have the congruence
~ ~p(b—
hns1 () =hy () (mod £,

In particular, the following £-adic limit exists in Z,[y] with exp, log defined formally as power series:

3 . 1 3
hoo(y) = exp( lim —o—r 10g(hn(y)))-

n—oo f

The first two properties of the theorem are fairly standard and follow from understanding the structure
of M), as a module over Z¢[G,, o,4] and in particular, depends on o, having “large” orbits when acting
upon the characters of G,.> The main body of the paper proves a more abstract statement (Theorem 26)
about the convergence of certain invariants of a nonabelian cohomology group which implies the third
part of the above theorem on the towers of curves.

We note that this more abstract statement can be applied to many more geometric contexts than just
our two examples of towers of curves above although we do not pursue this in our paper. It applies to any
tower of varieties with an action of an abelian group such that the Frobenius action on the cohomology
has a “large” orbit. For instance, we could take hypersurfaces of the form

fe§, o xth=0c P, -

3As a reviewer pointed out, part 2 has been “known for a long time and rediscovered several times”, for instance see [Gordon
1979, Lemma 1.1]. For completeness, we give our own proof too.
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All the interesting cohomology is concentrated in the middle dimensional cohomology and the above
theorem holds for the characteristic polynomial of the Frobenius action on this middle dimensional
cohomology group.

We will see in Section 3 that Mo =1lim, M), is a free module for a certain skew-abelian Iwasawa algebra
and in particular, the characteristic polynomials we study are all determined by a Galois cohomology
class with coefficients in matrices over a ring of power series. The bulk of this paper consists in studying
the ¢-adic properties of these power series.

A key role in the study of the study of these algebraic properties is played by the following generalization
of Fermat’s little theorem (conjectured by Arnold [2006] and proven by Zarelua [2008]):

Theorem (Arnold and Zarelua, Theorem 29). Let A be a r x r matrix over Zy. Then, the congruence
(A" = r(A”") (mod ")

holds for any prime £ and any n € N.

Arnold’s conjecture goes back to before Arnold (Janichen [1921] and Schur [1937]). For a more recent
expository survey and applications to topology and dynamics; see Zarelua [2008]. Arnold’s conjecture
has since been proven many times in the literature; for instance, see [Mazur and Petrenko 2010]. We
give a new proof of a slightly refined statement since we will use a similar technique in proving our main
theorem.*

To keep notation simple, we state a special (yet nontrivial) case of our general £-adic convergence

theorem.
Theorem (Theorems 23 and 26). Let F(t) be a r x r matrix with entries in Z,[t]. Suppose that q is a
prime such that g — 1 is divisible by € but not £%. For each n > 1, we define the matrix

enfl

Ay =[] Fei)
i=1

with characteristic polynomial p,(x). Then, the limit ps(x) = lim, p,(x) exists and we have the

congruence
Pnt1(x) = py(x) (mod ).

We note that even in the simplest case where r = 1, the above theorem is not obvious.

1.2. Some questions for future work. We pose a few questions suggested by this work.

Question 3. Our main theorem establishes the existence of £-adic limits /4o (x), fzoo(x) in the two cases.
In some simple cases, the %, (x) are independent of n for n large enough and by the proof of the Weil
conjectures, are known to in fact be polynomials over Z while a-priori s (x) is only defined over Z,.

Are the roots of i, (x) always transcendental numbers (except in the cases where 4, is eventually
constant)?

“4In the course of writing this paper, we found essentially the same proof by Qiaochu Yuan in a blog post from 2009.
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Question 4. Even if the roots of s, (x) are transcendental, is it possible to describe them using simple
£-adic transcendental functions?

Question 5. What information about the original morphism f : C — P! does hoo(x) remember? In the
classical Iwasawa theory set up, the limiting characteristic polynomials turn out to be equal to various
£-adic L-functions up to a unit (by the main conjecture of Iwasawa theory), can we hope for something
similar in this case?

Question 6. Let (A, 0,) be as in Section 3 and M a finite, free A module with a o, semilinear endo-
morphism & : M — M. It might be possible and interesting to completely classify such endomorphisms
® in the hope of a more conceptual proof of the main results. This question is reminiscent of Manin’s
classification of Dieudonne modules [Manin 1963]. Indeed, the (M ® A, (v), @) form a “compatible”
system of an “£-adic analogue of Dieudonne modules” over the “compatible” system of cyclotomic local
rings with endomorphism (A, (v), 04) as n varies - this final sentence is purely impressionistic!

Question 7. Let Q : Z;] — Z} be a linear automorphism and for v € Z7, let k, (v) be the smallest positive
integer so that 0™y = v (mod £"). Let A : Z; — Z; be an arbitrary linear form. Does the sequence

kn (v)

SuOv)i= Y cp@
j=1

defined in Remark 32 converge to 0 as n — 0o? If so, what is the rate of convergence and is it uniform as
v ranges over primitive vectors?

Outline of the paper. For expository reasons, the paper is not presented in strictly logical order. Section 3
is independent of the rest of the paper and its main results (Theorems 23 and 26) are used in proving our
main geometric result (Theorem 19). The reader interested in the geometry and willing to take the £-adic
analysis on faith can skip Section 3. The reader interested only in the £-adic convergence results can skip
Section 2.

2. On the cohomology of a tower of curves

In this section, we reduce Theorem 19 to an abstract statement about the convergence of characteristic
polynomials of a sequence of matrices.

We fix an odd prime ¢ and a finite field [, with g large enough to be specified soon. For a variety
X/[F,, the notation Héit(}_( » Z¢) denotes as usual the étale cohomology of the variety X xp, [_Fq with Z,
coefficients. The Frobenius o, acts on it through a linear automorphism.

2.1. Two families of Iwasawa towers.

Definition 8. Let C /[, be a curve. We will be interested in the following two classes of towers:
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Case A: Given a nonconstant map f : C — P!, we can construct extensions 7, : C, — C by the pull
back diagram:

c, —I p!

lm, Jj "

c 1, p

The C, form an inverse system with an action by the group
I,=7/0"7 x7Z

where we denote a generator for the first factor by 6 (corresponding to 6(¢) = ¢t) and a generator for
the second factor by o, corresponding to the Frobenius operation. They satisfy the commutation identity

0,0 =0%0y.

We require the 7, : C, — C to be totally ramified over the preimage f~!({0, co}) — for instance, this is
satisfied if f is unramified over 0, oo or more generally, if the ramification indices of f over 0, co are
coprime to £. This guarantees that the C,, are geometrically irreducible.

Case B: Given an abelian variety A/[F, of dimension d and amap f : C — A, we construct 77, : C, — C
by the pullback diagram:

Co L A
TTn [e"]
c L5 a
We require the C, to be geometrically irreducible, this is achieved for instance if the induced map
nlét( f): nlét(C ) —> nf’t(A) on the étale fundamental groups is surjective. In this case, the C, are acted
upon by (with b = 2d)

I, =(Z/0"7)"xZ.

The first factor can be identified with A[€"] and we denote a basis of it by «y, ..., a4, B1, ..., Ba SO that
the Frobenius o, (corresponding to the second factor) acts by a b x b matrix Q as

o4V = Qv

for v € A[€"]. The congruence Q =1 (mod ¢) is equivalent to o, acting as the identity on A[£]. This can
always be achieved by a finite extension of the base field [, and we suppose that g is large enough so
that O =1 (mod ¢£).> Note that 1 is not an eigenvalue of Q since o, —1: A — A has finite degree equal
to A([Fy).

SIf ¢ =2, we would need Q =1 (mod ¢2).
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Remark 9. These aren’t the only cases our main theorem applies to and in fact, we can even generalize
to higher dimensions. What is important is that our tower of varieties has an action by a pro-¢ abelian
group as above and that the growth in cohomology is “regular” in the tower so that as a module over
the group algebra, the rank of the cohomology groups are constant. For example, we could take Fermat
hypersurfaces of the form

d
X, : fo" =0cpit!
=0

with action by G,, = (Z/€"Z)?. The only interesting cohomology group is in degree i = b, in which
case it is a rank 1 module over Z;[G,] ([Anderson 1987, Theorem 6] for instance) and a straightforward

variant of Theorem 14 shows that growth in cohomology is regular.

Remark 10. Note that the automorphism groups I',, aren’t abelian but they are very close to being abelian,
being the extension of an abelian group by the Frobenius action. Therefore one could view this as an
example of skew-abelian Iwasawa theory.

In the remainder of this subsection we prove some basic results about the cohomology of these towers
(ignoring the Frobenius action initially).

Lemma 11. For a finite extension of curves f : X — Y, Hélt(Y, Zy) is a direct factor of Hélt()_(, Zy).

Proof. Since Hélt(Y , Zy) is dual to the Tate module 7 (Y), it suffices to show the corresponding fact for
the Tate modules of X and Y, i.e., we need to show that the natural map f : T,(X) — T,(Y) is surjective
and that the kernel is torsion free.

One easily checks the following composite map

Jac(Y) L5 Jac(X) L5 Jac(Y)

is simply multiplication by the degree of f, for instance by using an isomorphism Jac(X) = Pic(X) and
computing the map explicitly in terms of divisors supported away from the ramification locus. This shows
that the second map is surjective which in turn implies that the map on Tate modules Ty (f) : Ty (X) — T¢(Y)
is surjective.

Moreover, the kernel of T, ( f) is torsion free since if [ P, ],>1 € T;(X) mapped to zero, then P, € ker(f)
which would imply that deg( f) > £" for all n which is a contradiction. U

When the extension is generically Galois, we can say more.

Lemma 12. Suppose f : X — Y is a generically Galois (branched) extension of (smooth, proper) curves
with Galois group G. Then, Hélt(l_/, Zy) is exactly the submodule of Hélt()_(, Zy) fixed by the G action.

Proof. Let us first suppose that X, Y are not necessarily proper but that f : X — Y is unramified. By the
Hochschild—Serre spectral sequence,

H'(G, H{(X, Zy)) = HL™ (Y, Zy).
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If we want to let » +s5 = 1, then we have eitherr =0, s =1 orr =1, s =0. But, Hgt()_(, Zy) = Zy with

the trivial G action and therefore
H'(G, Hy(X, 7)) = Hom(G, Z;) =0

since G is torsion and Z, is torsion free. This causes the spectral sequence to degenerate at the (1, 1)
term and we have the required isomorphism

HY(Y,Z) = HY(G, H (X, Zy)).

Now, for a general (branched) f: X — Y, let T C Y be the ramification divisoron Y and f~/(T) =S C X
its preimage in X with U = X —§, V =Y —T. With this set-up, we have following commutative diagram:

Hi(X,Zy) — HyWU,Zy)

] I

He’lt(ya Z[) — Hélt(va Z[)

Note that the cokernels along the horizontal rows have weight 2 (i.e., oy acts by g on the cokernel) as
can be seen either from the excision long exact sequence or from the Lefschetz fixed point theorem for
compactly supported cohomology along with Poincaré duality. On the other hand Hé]t(Y v Zyp), Hélt(I? ,Zy)
are both of weight 1 (by the Weil conjectures, for instance).

The above diagram is G-equivariant since S, T are. Therefore, the G-invariants of Hélt()_( ,Zy) are
contained in Hélt( V., Z,) but the above weight argument shows that it is in fact contained in Hélt(I? ,Zy) as
required. O

Let us return to our specific towers above.

Definition 13. In Case A, let G, = Z/¢"Z with generator 6 while in Case B, let G,, = (Z/¢"Z)" with
generators o;, B; as discussed before. We also define the group algebra R, = Z,[G,].

By Lemma 11 and 12, M,, = Hélt(én, Zg)/Hélt(E, Zy) is a free Zy module with an action of R,, described
by the following theorem with g¢ the genus of C.

Theorem 14. Let us define
_ {Zgo +s5s—2 inCaseA,

2502 in Case B,

where in Case A, s is the number of preimages of 0, oo for the defining map f : C — PL.
As R, modules, we have an exact sequence

0—7Z,— R, — M, — 0,
where G, acts trivially on the first term.

As a preliminary to the above theorem, we use Riemann—Hurwitz to compute the dimensions of M,,.
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Lemma 15. Let g, be the genus of C,. M,, is a free 7, module of rank 2(g,, — go) and in Case A, we have
dimz, M, = (¢" — 1)(2go+5 —2)

while in Case B, we have
dimz, M, = (2" — 1)(2go — 2).

Proof. By Lemmas 11 and 12, M,, is a free Z, module. It remains to compute its Z, rank (= 2(g, — go)).
In Case A, let Sy, S0 C C([I_:q) be the preimages of 0, oo under f so that s = |Sg| 4 |Sco|. Note that 7,
is only ramified over Sy, Soc and by assumption, it is totally ramified to order ¢ over these points. By
Riemann—Hurwitz, we then have

280 —2=10"(2g0—2) +s(" —1) = 2(gn — g0) = (" — 1)(2go + 5 — 2).
In Case B, m, is unramified and of degree £”" and therefore, we simply have
28, —2=1£""(2g0 —2) => 2(gs — 80) = (" = 1)(280 —2). u

We finish the proof of Theorem 14 by using the Lefschetz fixed point theorem to compute the character
of M in terms of fixed points.

Proof. In Case A, let g € G, be nontrivial. Since g is not the identity, the only points it fixes on C, are
the points lying over 0, co under the map C,, — P!. In the notation of the previous lemma, there are s
such points in total and the local index at each point is +1. Moreover, g acts trivially on the degree 0, 2
cohomology groups. Therefore, by the Lefschetz fixed point formula

tr(g | Hy(Cn, Z0)) =2 —s
and since G acts trivially on Cy,
tr(g | Hgi(Cp. Z0)) = te(g | Ho(C, Z¢)) = —(2g0 +5 —2) = —.
On the other hand, the identity id € G,, of course acts trivially so that
tr(id | Hg(Cn, Z0)) — tr(id | Hg(C, Z¢)) = 2(gn — g0) =r(¢" = 1)

where the final equality is by the previous lemma.
In Case B, any g # id € G,, acts on the abelian variety A by a nontrivial translation and hence has no
fixed points on either C,, or A. As before, by the Lefschetz fixed point theorem

tr(g | Hy(Cn, Z0)) — tr(g | Hy(C, Z¢)) =2 —2g0 = —r.
The identity element has trace equal to

dim Hg (Cy, Z¢) — dim Hg (C, Z¢) = 2(gn — g0) = r(¢"" = 1).
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If we then examine the exact sequence
0—-Z7Z,—-R,—>X—0,

we see that X has the character we computed above in both cases for M, proving that X = M, as G,
representations. O

Remark 16. As an immediate corollary of the above theorem, we notice that in both Case A and B,
for every nontrivial character x : G, — 7%, the corresponding eigenspace M, (x) of M, ® Z;[Le] is of
dimension 2gy 4+ s — 2 and 2gy — 2 in the two cases respectively. In particular it is independent of n and
we call the characters appearing in P, = M,,/M,,_; “new” or “primitive” characters of level n.

We fix a set of generators 71, ..., t, for G, = (Z/E"Z)b and identify characters x of G, by vectors
v=1,...,vp) € Z /Z”Z)b by defining x,(t;) = ti“" . Under this identification, primitive characters
correspond exactly to primitive vectors as defined below in Definition 18. We denote the eigenspace of
Xv by My (v).

The exact sequence in the above theorem implies that M,, is not a free R, module but nevertheless, the

inverse limit My, :=lim,, M,, is a free module over A = Z[Ty, ..., Tp]] = lim, R,,.
Lemma 17. Let 60y, ..., 6, be the generators of G, = (Z/€"Z)" as above. Then the projective limit
My = Lann M, is a free module of rank r over A = Z,([Ti, ..., Tpll. The Frobenius o, acts semilinearly

on Mw, i.e., 04 is Zy linear and satisfies
o,0(14+T;) =0,(1+T;)00y
where we identify 1+ T; with 0; so that o, acts on 1 + T; through its action on lim, G,.

Proof. By the above theorem, we have the following identification as Z,;[ G, ]-modules

2161, ..., 0] )
)

= (
n n b -1
o =1.....60 = LTI (X0 o/

1

since ]_[ﬁ’:] (Zﬁ”:_ol 9ij ) generates the unique 1-dimensional Z, submodule of Z,[G,] with trivial G,
action. Using this explicit presentation, we define a map

AN =(ZTh,....Tp]) = Mx

by mapping, for each factor, the 7; — 6; — 1 in each term in the projective limit. We will prove that this
map is an isomorphism. Since the map is defined on each factor, we can assume henceforth that » = 1.
The kernel of the induced map to M, is generated by the elements

En
n g}’t i
A+ —1=) :( _)Ti] fori=1,...,b

j=1 7
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A5=)-fIE0))

i=1 i=1 "j=1

and

As n — o0, these elements tend to 0 in the (¢, T1, . . ., Tp)-adic topology of A so that the map A — M
is injective. On the other hand, surjectivity is also clear since the 8; generate G,, and consequently the
0; — 1 generate Z[G,]. The Frobenius action is induced through this morphism, thus completing the
proof. U

2.2. On the distribution of Frobenius eigenvalues in towers of curves. In this subsection, we prove
that the characteristic polynomials f,(x) of o, on Hélt(én, Zy) in our two cases satisfy some striking
congruences. We will treat the cases uniformly by letting Q = ¢, b =1 in Case A.

Definition 18. For R a discretely valued ring (DVR) or a quotient of a DVR, we call v € R primitive if
at least one of its coordinates is a unit. We denote the space of primitive vectors by P(R?).

For a primitive vector v € Hélt(é ns Zg), we define k, (v) to be the smallest positive integer such that
0y =y (mod £"). We define k, to be the minimum of k, (v) as v ranges over primitive vectors.
Lemma 21 shows the existence of a positive integer 8, such that k,(v) = =B for n > By. Moreover,
10 = MaXy primitive Bv 18 finite so that k,, = £"~"° for n > ny.

Theorem 19. Let C,, be as in Case A or B of Definition 8 and
Jn(x) = det(1 — OgX | My)

be the characteristic polynomial of the Frobenius o, acting on M,, = Hélt(é ns2Z¢)/ Hélt(é , Zyp). It satisfies
the following properties:

(1) We have a factorization into monic polynomials

Sn@) =T g @)

n<m
where the g, are independent of m.

(2) There exist polynomials hy(y), h,(y) such that, in Case A

80 (x) = hy (x*). 2)

While in Case B
8n (x) = Ay (x*). 3)

(3) In Case A, for n > ng (Lemma 21), we have the £-adic convergence

hpi1(y) = hy(y) (mod £7). “4)
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In particular, the following €-adic limit exists in Z,[y]:
hoo(y) = lim h,(y).
n—oo
In Case B, for n > ny, we have the congruence

i1 () = ()" (mod £7). 5)

In particular, the following £-adic limit exists in Z,|y] with exp, log defined formally as power series:

- . 1 ~
hoo(y) = exp (nlgglo oG- 10g(hn(y))>-

Remark 20. The Frobenius o, is known to act semisimply on the étale cohomology of a curve and
conjectured to act semisimply with rational coefficients on any variety over [Fq.6 While the following
proof simplifies slightly if we use the semisimplicity of o, on M,, we do not assume this so that the
following proof can be adapted more easily to cases where semisimplicity is not known.

Proof. Part 1, i.e., equation (1) is an immediate consequence of Lemma 11 once we define g,(x) to be
the characteristic polynomial of o, on P, = M, /M,,_;.

To prove Part 2, i.e., equations (2) and (3), we treat the two cases simultaneously by takingb=1, Q0 =g¢q
in Case A. Recall the notation that, for v € Z? , M, (v) is the eigenspace of G, for the character x,(#;) = tl.”".
The eigenspaces M, (v) get permuted by o, in the following manner:

o4 My(v) — M,,(Q_lv)
and therefore 05”(1)) is an automorphism of M, (v). We will prove that a Jordan block of a;(”(v) acting
on M, (v) C P, (with eigenvalue A # 0) corresponds to k, (v) distinct Jordan blocks of o, acting on P,

(with eigenvalues p!/%()) Since this claim is independent of passing to an extension, we replace P, by
P, ®z, Qp.
To that end, let my, ..., my € M,(v) be some generalized eigenvectors of aqk" corresponding to a pure

Jordan block of eigenvalue A (possibly defined over an extension Z;) so that

0,5" (miy1) =Amip1+m;
with the convention that my = 0). We will first show that the eigenvector m for o5 ® corresponds to
g q p

kn (v) distinct eigenvectors for o,. For m; € M, (v), let m; ; = oqj_l (m;) for j=1,...,k,(v). Note that

kn
0g (Mit1k, ) =04 O mi1) = Amir+mi .

For each u a k, root of A, n, = ZI;”:(T) w~/my_; is an eigenvector of o,. Indeed, we have
kn (v)—1
og(ny) = Z wlmy g +)»M_k"(v)m1,1 = ny.
j=1

6Semisimplicity for abelian varieties.


https://mathoverflow.net/a/104105/58001
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Therefore, the n;, are each an eigenvector of o, and the subspace N = span(n,, : k@ =3y is stable
under o, and contains

1 .
m i =-—— In, forj=1,..., k,(v).
1,j &, (0) k; nony J n (V)
=3
Passing to the quotient P,/N therefore corresponds to replacing the my, ..., ms by mo, ..., mg (with

my now an eigenvalue of o,;"(v)) and we continue inductively to show that each m; corresponds to &, (v)
distinct generalized eigenvectors n; ;, with eigenvalue w.

Let g,,,(x) = det(I —o,x) be the characteristic polynomial of o, on N, (v) = @f":((';)_l M,(Q'(v)).
This module has dimension exactly &, (v) times the dimension of M,,(v) and since for each generalized
eigenvector m; of M,(v), we have constructed k,(v) distinct generalized eigenvectors n; , of N,(v)
corresponding to the &, (v) distinct roots of A, the n; ,, together in fact span N, (v).

The identity
kn ()

1_[ a _xl’bgkj;,(v)) -1 _xkn(U)Mkn(U)

j=1
then shows that g, ,(x) = hn,v(xk" @)y for some polynomial 4, ,(y) with roots y = A = ;Lk"(”). We note
that the above proof in fact computes the 4, ,(x) to be exactly the characteristic polynomial of aqk ") on
M, (v). Since

g =[] g
VeP(Z/e"7)/~

where the product is over a set of representatives for the o, action on primitive vectors, the proof of
part (2) in Case A is completed by defining

=] e

veP(Z/t 7))~

and setting y = x*».

For Case B, we define (again as a product over a similar set of representatives for the o, action on
primitive vectors)

ﬁn ()’) = 1_[ hn,v(ykn(v)/kn)

veP @/ T)P |~
so that (with y = xkn)
a=J] e@=[] G =M.
veP(Z/e )b |~ VEPZ/eT)b [~

Finally, we prove Part (3), i.e., equations (4) and (5). Let us fix a generating set my, ..., m, for M,
over Z; G, 1= Z[11, ..., t;,]/(tf" —1:i=1,...,b). Since M, is not a free Z;[G,] module, it might not
be completely clear what a generating set should mean. For our purposes, it suffices to choose my, ..., m,
so that under any specialization that maps the #; to £" roots of unity, the m; specialize to a genuine basis



2164 Asvin G.

over the induced specialization of M,,. That this is indeed possible follows from the explicit description of
the M, as G, modules in Lemma 17. Such a specialization corresponds to a representation x, : G, — Q
for v € Z’Z and we denote the induced specialization also by y, : M, — M, (v)

In terms of the my, ..., m,, o, acting on M), can be represented by some invertible matrix F(zq, ..., ).
From this point on, we will be concerned only with this matrix F(t, ..., t,). Since o, skew commutes

with the ¢;, we have
ky (v)

kn kn (v)—i
op® =[] Fe2"" ™.

i=1

Therefore, with respect to the basis x,(m1), ..., xy(m,) of M, (v), the action of cr;" @) corresponds to

evaluating the above product using the character x, and is represented by the matrix

kn(v)

A =[] Fe2™"™)
i=1

of Section 3 (and we note that A, (v) is independent of our choice of F or the my, ..., m,). As noted
above, the A, ,(y) are the characteristic polynomials of qu,,(u) on M, (v) and therefore, correspond to the
Pn.v(y) in Section 3. We further see that the I, (y) correspond to the polynomials r,(y) of Theorem 26

and by this theorem, we have the required congruence:

hni1(y) = ha(y) (mod £7). O

3. On the convergence of a skew-abelian Iwasawa theoretic invariant

In this section, we prove a general, abstract result about the convergence of a certain cohomological
invariant defined for a skew commutative Iwasawa algebra. The set up is as follows.

We fix an odd prime ¢ and positive integers b, r throughout this section.” All cohomology groups in
this section represent group cohomology unless indicated otherwise. All congruences in this paper are in
Z, (and hence only concerned with the £-adic valuation) unless explicitly mentioned otherwise.

Let A =7 Ti, ..., Tp] be the b dimensional Iwasawa algebra and set t;, = 1 4+ T;. It is a local ring
with maximal ideal m = (¢, Ty, ..., Tp). Note that for A € Z;, the expression
A
A A k
i} =(1+T) =Z(k)r,.
k>0
converges in A. For v = (vy,...,vp) € (Zy)?, we define t¥ = (tlv', R t;;”). We suppose that A has an

endomorphism o, acting through a matrix Q = Q;; € GL(Z,) in the following way:

0,(t") =12 = 0, (T}) = []_[(1 + Tj)Qﬂ} — 1 for all ;.
J

7 As usual, the arguments of this paper go through if £ = 2 with minor, standard modifications.
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We note that the action is well defined since o, (T;) € m. For v € 7%, we denote the size of the orbit of
v under Q in (Zg/Z”Zg)b by k, (v).8 We also define

k,= min k,(v).
v primitive

Assumption. We suppose henceforth that O =1 (mod £) and that Q fixes no vectors.’

Lemma 21. Let v be a primitive vector. Then there exist integers o > 1, B, > 0 so that

P ifn > a4+ B,
1 otherwise.

kn(v) = {

Moreover, there is some (minimal) By such that 8, < By for all primitive v.
In particular, we have
0 =2=Poifn >ng:=a+ Po,
kn = .
1 otherwise.
Proof. Since Q =1 (mod £), we have log Q = £* X for o > 1 with X € M(Z;) not divisible by £. Since
{>3,

(me*)?

(Q" —Dv=-exp(mlog Q)v —v=ml*Xv+ X2v4---.

Since Q does not fix any vectors, Xv # 0 so let 8, be the largest value such that Xv =0 (mod Py, We
see that k, (v) is the smallest m so that (Q™ — I)v is divisible by ¢". Since X*v =0 (mod ¢#v) for any
k > 1 too, the £-adic valuation of (Q™ — I)v is determined by the leading term m{* X v so that

P it > a4+ By,
1 otherwise.

kn(v) = {

It remains to show that there is a uniform upper bound on S,.

Let 7 : Z? — [F]Z be the reduction map. The primitive vectors correspond to the subspace P =
b (I]:Z —{0}) which is a closed (and open) subset of le. Therefore P is compact and by continuity of
multiplication by X,

X73={Xv:v€P}CZ}g

is compact and closed too. By assumption on Q, XP does not contain 0 (since this would correspond to
a fixed point of Q). This implies that XP is in fact bounded away from 0, i.e, there is some minimal Sy
so that the image of XP in (Z/ 2P+17,)P does not contain 0 so that B, < By for every primitive v (and
Bo = By for some primitive v). O

Remark 22. It is easy to see why we need to restrict to v primitive and to Q not having any fixed vectors.
If Qv =, then k,,(v) =1 and if v = £°vy, then k,(v) = 1 for n < s which is an obstruction to a uniform
bound on n.

8i.e., 01y =y (mod £") and ky, (v) is the least such positive integer.

9 ¢ = 2, then we would need to assume that Q =1 (mod 4).
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3.1. A cohomological interpretation. Let M be a free A module of rank r with a A-linear endomorphism
®: M — M. Upon picking a basis my, ..., m, for M, we express ® as a matrix F (71, ..., Tp) with
entries in A. We suppose that ® skew commutes with o, in the following sense:

og0F =F(oy(T1),...,04(Tp))00y.

Note that o, acts on GL,(A) through its action on A. This data of M and the endomorphism ® as above
gives rise to an element 7 in the nonabelian cohomology group H' (Zoy, GL,(A)) in the following way:
Given a F as above, we can define a cocycle representative by n(o,) = F' € GL,(A). A change of
basis by a matrix P € GL,(A) corresponds to F' — P (o, (T1), ..., oq(Tb))FP_1 which is exactly the
boundary action. Therefore, the cohomology class n € H ! (Zoy, GL,(A)) depends only on (M, ®).
For a positive integer n and v = (vy, ..., Vp) € 7%, note that since T; = Qﬂ," — 1 is in the maximal ideal
of Z4[¢e], we can define the quotient

2T, ..., Tpl
Al’l(v) = V1 Vpy °
(tl :é‘gn,---vtb:;gn)
We note that aq"(v) fixes the ideal (1y — ¢, ..., th — &pr) C Ze[[Th, - .., Tp] and thus descends to an

endomorphism of A, (v).
Henceforth, we fix n € H 1(Zoq, GL,(A)),v € Z? and define the following sequence of invariants
(implicitly depending on 1) taking values in polynomials in one variable:

restriction
_—

Pn—(y) 1v e H'(Zo,, GL(A)) H'(Zo}™ , GL, (A (1)) 2% A, (0)[¥] 3 Pau(y)

where for the first map, we restrict along Zoqf”(v) C Zoy and push forward along the quotient GL, (A) —

GL, (A, (v)) and for the second map, since 05”(1)) acts trivially on GL, (A, (v)), we have

H'(Zoy™, GL, (A, (v))) = Hom(Zo,"™, GL, (A, (v)))/conjugacy = GL, (A, (v))/conjugacy

which shows that the characteristic polynomial is a well defined invariant. Tracing through the definition
in terms of the value of F =n(o,) forne H ! (Zog, GL,(A)), pu,v(y) has the following explicit formula.
Forv e Z?, we denote F () =, ..., 0 = Q”,,”) by F(¢;.) and define

kn

). Fiy =[[FeE™ (©6)

i=1

kn (v)—1 v

An(v) == F(¢2

where we implicitly use that Q¥ y = v (mod £") for the second equality. The characteristic polynomial
of A, (v) is exactly

P (y) =detd—yA,(v)).

Equivalently, it is the characteristic polynomial of aqk n(v) acting on A, (v).

As the main results of this section, we will prove two £-adic convergence results regarding the sequence
of polynomials p, ,(y) as n — oo.
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Theorem 23. Suppose that Q = q 1 is a scalar matrix. For n sufficiently large so that k,| = Lk, the

characteristic polynomials satisfy the congruence

Pnt1,0(Y) = puv(y) (mod kyq1).

Remark 24. Unfortunately, this strong congruence is not true in general if Q is not scalar (even if r = 1)
as the following example shows. Take £ =35, g1 =6, go = 11 and let Q be the diagonal matrix with entries
q1, q2. Take F(t), ) = 1+t13t2 andv=(1,1) ¢ Z%. Computation shows that A3(v) =49, A>(v) =7 so that
the difference is only divisible by 7 and not k3 = 49 as the above theorem would suggest. Nevertheless, the
computational evidence also suggests that the A, (v) still converge, just with a slower rate of convergence.
As we will see in Remark 32, this will be related to the vanishing of certain sums of roots of unity.

For our geometric applications, the following statement is sufficient. Recall that P((Z/¢"Z)?) denotes
the space of primitive vectors. It is acted upon by Q and we denote a set of representatives for the orbits
of Q7 acting on P((Z/£"Z)") by P((Z/€"Z)")/ ~. For v' = Qu, we note that p, , = p,.,/ so that p, ,
is independent of the choice of representative. The following polynomial depends only on the class 7.

Definition 25. With A, (v) and p,, as before, define
=[] panO .
veP((Z/ 0 T)b) )~

Theorem 26. Let Q be any matrix in the kernel of GLy(Z¢) — GLy(F¢). For n > ng so that k1 = Lk,
We have

b—1
1) =r, () (mod €").
If O = q 1, we have the stronger congruence
b—1
rast() =7, (y) (mod €").

Remark 27. When b = 1, the two bounds agree since all matrices are scalar! Note that Theorem 23 only
implies the following weaker congruence for b = 1:

rny1(y) =ry(y) (mod kyqp).

Remark 28. Numerical evidence shows that these congruences are in fact sharp and the bounds in
Theorems 23 and 26 are realized in most cases (but not always!). For instance, withr =1,b =2, =3
and Q = (1 + ¢%) I a scalar matrix, the computation

1 1 11
Ay —, — ) — 4, ,—— ) =70¢
(1—@ 1—@) (1—5 1—({)

shows the sharpness of Theorem 23. The same example also shows the sharpness of part 2 of Theorem 26.
Letd>1land 13,1, € Zy sothatr3(y) =1—13y + - - - andrf(y):l—rgy—i—.... Then

73 — 01y = 5600°.
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Both the theorems above will depend on the following generalization of Fermat’s little theorem to
matrices to deal with the case when r > 1. This generalization of Fermat’s little theorem can be seen as
the degenerate case of Theorem 23 when F(T1, ..., Tp) = Fy is constant in the 7;.

3.2. A generalization of Fermat’s little theorem to matrices. In this subsection we state and prove
a generalization of Fermat’s little theorem to the case of matrices. As noted in the introduction, this
generalization was conjectured by Arnold [2006] and proved by Zarelua [2008] (and many other following
works). Our proof is short and apparently new and therefore we present it here.!”

Theorem 29 (Arnold and Zarelua). Let A € M, (Z;). Then
r A" =t AY (mod "1,

In fact, we also have
det(1 — xA”""y = det(1 — xA”") (mod £"+1).

Proof. We fix a n. Since we are proving a congruence modulo £"*!, we can replace A by a r x r matrix
with nonnegative integer entries. Let G be the directed multigraph with adjacency matrix A, i.e it has r
vertices labeled from 1 to r and there are a;; many edges from i to j.

A closed path of length n on the graph corresponds to a sequence of edges ey, ..., e,— such that the
in-vertex of e;4 is the out-vertex of e¢; and the path starts and ends at the same vertex. The quantity tr A"
has the graph theoretic interpretation of being the number of closed paths of length n on G.

Now, consider a closed path P of length ¢"*!. The cyclic group of order £”*! acts on the path by
permuting

e1,...,e4—1) =~ (e2,...,en_1,€1).

Since we are working modulo £"*!, we can ignore those paths P where the orbit by this action has
size "', The remaining paths P are exactly those which are concatenations of £ copies of a path of
length ¢". These are exactly counted by tr(A“") and therefore we have shown the required congruence

(A" = (A" (mod £,

To prove the corresponding congruence for characteristic polynomials, we use the well known determinant
to trace exponential identity (as formal power series in x)

dy,d
det(1 —xB) =exp(—zw>. (7)

d>1 d
Let d = dyt¢ for dy coprime to £. The congruence above on powers of A% then implies that
(A% = r(A9Y") (mod dem ).
Since £ > 2, = B (mod £") for n > 1 implies that exp(«) = exp(8) (mod £").

101n the course of writing this paper, we found essentially the same proof by Qiaochu Yuan in a blog post from 2009.


https://rjlipton.wpcomstaging.com/2009/08/07/fermats-little-theorem-for-matrices/
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To see this, let 7 € Z, such that £" | r. We will show that ¢’ = 1 (mod £"). Supposing this, we see that
a=p (mod ") = ¢* P =1 (mod ") = ¢ = ef (mod ¢")

since e? € Z,[[x] in our case.

To show that ¢’ = 1 (mod £"), we argue by cases. The terms appearing in the Taylor expansion of
exp(?) are of the form ¢"/r!. If r = 1, then £" |¢. In general, Legendre’s formula shows that " /r is
divisible by 0nr for Spri=nr—r/({—1). For r > 2, note that

r

Opnr>n << nr— % —n>0=2n> which is always true for n > 1.

e
We finish our proof now by noting that the congruences on the traces implies (by the exponential

identity)
det(1 —xA“"") = det(1 — xA”") (mod £"*1). O

3.3. A proof of the main congruences. In this subsection, we prove Theorems 23 and 26. It will help to
set up some notation and make some easy reductions first.

Recall that F (T, ..., Tp) is a power series in the 7; and to define A,41(v), we are required to evaluate
FaT, = ;;,"H — 1 (fori =1, ..., b) which is in the maximal ideal for the local ring Z,;[¢,+1]. Since we
are interested in a congruence modulo &, (v) (or k,4+1), we can truncate the F at some finite degree d
so that (gpn+1 — 14 =0 (mod kn+1(v)) and suppose that it is a polynomial in the #; = 7; + 1 of the form

_ i I
F=>" Fit}' -1
TeNb

where the F; are r x r matrices over Z,.
Let p > 1 and for a tuple J = (I1,...,1,) € (N?)?, we define F; = ]_[i.):] Fp;. Using the standard
notation ( -, - ) for inner products (and considering N? Z?), we also define the linear form

Ay =) (I;, 0 ).

M-

j=1

In terms of this notation, we see that

A= > Fgl

JE(Nb)dk”l+l (v)
where we have implicitly used that Q%+ ™y = v (mod £**!). We denote cyclic permutations by
T(J) = (127 13’ L] Ip» Il)

and if k,(v) | p, we note that
Ay (v) =A;(Qv) (mod £"). (8)
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Notation 30. We will argue by considering each tuple along with its cyclic permutations. To that end, we
fix some notation that we will use repeatedly. Let K = (/y, ..., I,) be a tuple of length p such that it
is nonperiodic.11 For any 6 =rp € N, we define Jx(§) = (11, ..., Is) := (K, ..., K) to be the tuple of
length § where K is concatenated to itself r times. We suppose that r = rof® with ro coprime to £.

We need one more lemma (which will in fact control the rate of congruence) before the proof of
Theorem 23.

Lemma 31. For n > 0, suppose p is an integer multiple of k,. For any w € Z,,
L i
Sp.n(w) 1= Z é‘qn Y =0 (mod p).

Proof. Let w = £™wq with wg a unit. Since qk" =1 (mod ¢") and p/k, € Z, we see that

Spn(w) = Z;‘i“ﬁ?—

where we use the convention that {_,, = 1 if m > 0. Therefore, we can suppose that w is a unit and

—m

p =k, without loss of generality. Let logg = ¢*x with x a unit so that g' — 1 =i0% (mod £2*+1). We
now have two cases to consider. Either o > n in which case ¢/, " = ¢yn and

Spn(w) = p¢ =0 (mod p)

or o < n. In this second case, note that the ;gi Y are all pairwise distinct for i <k, = "¢,
Ifl<j<i<{" % then

i _J < Kn—a _— é_(’?i_qj)w — é‘gn —Hwlx+-- ;é 1.
In fact, the ;‘@qniw are a complete set of roots for the polynomial z* * = ¢% and S, ,(w) is equal to the
linear term of this polynomial which is 0 thus completing the proof. U

Proof of Theorem 23. For this proof, recall that Q = ¢ I is a scalar matrix so that k,(v) = k, for all
primitive v. We reduce the congruence on the characteristic polynomials p, , to a congruence on traces
using the exponential identity (7)

d
Puo(y) = exp(— > (Al (v))%)

d>0

as in the proof of Theorem 29. Upon fixing n such that k, | = £k, it suffices to show the congruence
ty = tr(A, | (v) — tr(A%(v)) = 0 (mod dky1).

Hje., the tuples i J are pairwise distinct for 1 <i < p.
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We will consider the contributions to #, from each tuple and its cyclic permutations. In the notation of
Notation 30, we take § = dk,+1 and J = Jg(dk,+1) and if £ | r, Jy = Jx (dk,). Note that

1% ) —rp _1
M@= g (I4q "+ +q ) = qq_—/\K(v).

p—1
i=1
Since ¢! — 1 =i log(q) + %(i log(q))2 + - - is exactly divisible by i log(qg), there exists some w € Z,

so that
q—rp -1 _ ZS/O

g -1 p

w=Lw= A;(v) =Lwrg ). 9)

Moreover, there exists some y € Z; so that g% =14 ¢"y (mod ¢"*') and therefore

—1 —1
Y g =y i Ee+z"+1y% (mod €"1) = A, (v) = €Ay, (v) (mod €*F).  (10)
i=l1 i=0

We now have to consider two cases:

First, suppose s = 0. In this case, the only contributions from tuples that are repetitions of K and its
cyclic permutations comes from tr(Aff +1(v)) and is of the form

p p p

Ayi g (V) (gt fwh
S tw(Fa et =w(EN Y oY = w(E) Y gl
i=1 i=1 i=1

where for the first equality, we use that the trace is invariant under cyclic permutations and (8) while
for the second equality, we use (9) above and that s = 0 by assumption. Now, rp = dk,; and since r
is coprime to ¢, k,4 being a £-power necessarily divides p. In fact, p and dk, 4 have the same £-adic
valuation. Thus, we can apply Lemma 31 to conclude

P P
Ayi () Mg _
Y e (Fu )i =0 (mod p) <= > " tr(Fu ), =0 (mod dkyyy).

i=1 i=1

Next, suppose s > 0. In this case, we will have contributions from both tr(Az 4+1(v)) and tr(Aﬁ(v)) and
they are of the form

P P P
A () Ay (V) - ) P
> tr(Fu)g,il =Y (Fag)ge 0 = () —te(FL )Y g4V

i=1 i=1 i=1

p .
r ¢ ips
= (tr(F) —tr(F ) Y gl e
i=1
=0 (mod rp =dky+1)
where the first equality follows from invariance of trace under cyclic permutations and (10) while the
second equation follows from (9). For the last congruence, Theorem 29 implies that

tr(Fy) —te(F/“) =0 (mod r).
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Moreover, since dk, 1 =rp, we see that p is divisible by dk,,1£* and in particular by k, ;. Therefore,
we can apply Lemma 31 to conclude

p ,
Z nglﬂﬁf(v) =0 (mod p). 0
i=1

Remark 32. We remark that the failure of this proof for the general case (see Remark 24) happens exactly
at Lemma 31. If Q is not scalar, it is no longer true that A ;(Qv) = QA (v) and consequently, there exist
examples (with A a linear form) such that

kn (v) }
S,(A;v) = Z g’xn(Qﬁ”) # 0 (mod k,(v)).
=1

Nevertheless, the above proof shows that if the S, (A;; v) — 0 as n — oo, then the characteristic
polynomials p, ,(y) will also converge as n — oo. If A;(log(Q)v) # 0, a variation of Lemma 31 still
applies to S, (As; v). In fact, numerical evidence supports the vanishing of the limit (for A; an arbitrary
linear form) but we do not know how to prove it.

From now on, we again let Q =1 (mod £) be a general matrix. We recall some notation before the
proof of Theorem 26. We let V = Zlg be a free Z, module, V,, =V /€"V,P(V,) to be the primitive vectors
in V,, and P(V,,)/ ~ to be a set of representatives under the action by Q. The characteristic polynomials
we are interested in are

nM= [ e,

veP((Z /€ T)P) )~
We also fix n sufficiently large and define (in the notation of Lemma 21)

V,= {ve V:kn(v)

n

=B, =>Py—e<=Xv=0 (modzf‘”)} cV.

By the last equivalent condition, we see that V, is a (nonempty) submodule of V. Since Q commutes
with log(Q) and hence also X, we see that Q preserves V,. When Q =¢ 1, V, = V since g8, = By for
all primitive v. Also define V, , to be the image of V, in V/£"V under the reduction map. Note that, in
general, V, Z (Z/¢"Z)¢ for some ¢ and is only a-priori a finite Z/¢"Z module.

So, let M be an arbitrary finite Z, module and n > 0 be the smallest value such that "M = 0. An
element v € M is said to be primitive (generalizing our usual notion) when £"~'v # 0 and the set of

primitive elements is denoted P(M). Our two definitions of primitive are compatible in the sense that
PVen) =PV/E"V)YNV,,.

We need one more lemma (analogous to Lemma 31 and also the determining factor for the rate of
convergence) before the proof of Theorem 26.
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Lemma 33. Let M be as above with

X:M—7Z
a character. Then, we have the congruence
> x(@)=0 (mod " ").
veP(M)
If M = (Zy/0"Z,)", we have the stronger congruence
> x()=0 (mod £~ D).
veP (M)

Proof. Let |[M| = m, note that Sy :==)_ _,, x(v) =0 (mod m). There are two cases to consider: First, if
x 1is the trivial character, then S3; = m and the congruence is clear. Second, if x is not trivial, we can
find some my € M so that x (mg) % 1 and Sy = x (mp) Sy = Sy =0=0 (mod m).
Define
N={veM: (" 'v=0cM

so that P(M) = M — N. The module M has size at least £ and the module N has size at least £" .
Therefore, we have

D X = x@) =Y x(w)=Sy—Sy=0 (mod ")
veP(M) veM weN
since |M|=|N|=0 (mod ¢"1).
If M = (Z;/€"Z,)" so that N = (Z;/€"~'Z,)", then the above argument shows the stronger congruence
Y @ =Y x@ - x(w)= Sy — Sy =0 (mod £"1P). O
veP(M) veM weN
We now prove Theorem 26, along the same general lines as the proof of Theorem 23.

Proof of Theorem 26. By the exponential identity (7), we have
f
tr A; (v)
ra(y) = exp(— > +yfkn<v>/k,,).
veP(V/E1V)/~ >0

Let us fix some d = dot¢ (with dy coprime to £) and collect the terms corresponding to y¢ so that with

k
Cyn= Z % tr Azk”/k"(”)(v), we have r,,(y) = exp(— Z Cd,,,yd>.
vePVen)/~ " d=0

As in the proof of Theorem 29, the congruence
b—1
() =1,y () (mod £"),

is reduced to the congruence
—1
Cins1=0""1Cy, (mod £M).
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Since a representative v € P(V, )/ ~ represents k, (v) many vectors in P(V, ,) and A, (Qv) is conjugate
to A,(v) so that their powers have the same traces, we can express Cy , as a sum over all primitive
vectors by

Cin= Y. dk — tr Ak k) (),
vEP(Ve,n)

Therefore we are reduced to proving the congruence

hi= Y dkl Y I S dk Jie— AT (1) =0 (mod £7)
n+1
UGP(V‘I’”«FI) UEP(Ve n)

where we have implicitly used the assumption that # is sufficiently large so that k,41 = £k,. Since every
vector in P(V, ;) has ob many lifts to P(V, ,+1), we also have

1 dkl‘l kn n n
h=ge— 2 (wA e —wagt (v)(v))
" e PVemin)

Note that in the expansion
tr Azkn/kn(v)(v) — Z tr(Fy );)\J(U)
JG(N[’)‘”‘”

the tuples all have size dk, independent of v. As before, we will argue by fixing a tuple K and considering
the contributions from tuples that are multiples of K and their cyclic permutations. In the notation of
Notation 30, let J = Jx (dk;+1) and when £ | r, Jo = Jx (dk;).

First, we suppose that s = 0. In this case, the only contribution to #, from K will be through J and will

be of the form |
7 > uFpg,l.
" ePVenin)

We note that {e,,’ W

that

is a character on V, ,41 and therefore, by Lemma 33, there exists some 7, € Z, such

1 A () o
E tr(F])é‘[nJJrl = T)\,j‘
Ahntt v ) Ahen+1

Moreover, for any cyclic permutation t/J of J, the corresponding contribution is of the same form as
before since Q' permutes P(V, 1)

1 A7 (Q'v) 1 Ly () a
T Z tr(Fri )l = T Z tw(Fe,l" = 7K lTA,
P Vi) T veP (V) nt

Therefore, the contribution from all the cyclic permutations of J is together equal to

n

tr(F;)T;, =0 (mod £")
n+1

since the ¢-adic valuation of p is equal to the ¢-adic valuation of dkj, .
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Next, suppose s > 0. In this case, the contribution from K will be through J and Jy. Since v € V,, dk, 41

is divisible by &, (v) so that Q iy =y 4i€"Yv for some Y € Mj,(Z;) and
-1

T+0 % 4 @Dy — py 40" Y Yy = o 4 £ %Yv = ¢v (mod £"+1).

i=0

This implies that

dky
Ag(v) = Z(Ii, g A+ Q... 4 9 Ddknyyy = L2 j,(v) (mod 2

i=1

) _ A

which is equivalent to ¢,,” = ¢,.° . Therefore, the contribution from J, Jy in ¢, is of the form
1 r r/t rg(v) o r r/e
dkn+l (tr(Fk) _tr(Fk )) Z é‘gnil - dkn+1 (tr(Fk) —tI‘(Fk ))T)\,j’

VEP(Ven+1)
As above, the cyclic permutations of K give rise to exactly the same contribution so that the total
contribution from all cyclic permutations of K is

pt"
dkn+1

(tr(F) —tw(F)T;, =0 (mod £")

since (tr(Fy) — tr(Fkr/e)) is divisible by r by Theorem 29 and rp = dk; 4.
When Q = ¢ 1, the proof is exactly the same as above except that we have the stronger congruence

Z tr(F)¢, " =0 (mod £").
UEP(Ve,n+1)

This follows from the second part of Lemma 33 since V, =V = Zlg inthis case and V, ,+1 = (Z, /E”“Zg)b .
O

Remark 34. As one sees from the proof, the modulus of the congruence in Theorem 26 depends on the
structure of V, 1.
4. Explicit examples

In this section, we prove that the normalized eigenvalues of the characteristic polynomials /4, ,(x) defined
in the proof of Theorem 19 are independent of »n for n sufficiently large in the following two examples:

o Fermat Curves: This is the family of curves defined by the equation
C,:x" —i—y‘m +z" =0 c P

We have maps

i > Cr—> Cpy = - — C; = P!

with G, = Aut(C,,/C)) = ([Lgt1)2 and the element (¢1, &) acts by [x 1y :z] = [x&1: & @ z].
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o Artin—Schreier Curves: This is the family of curves defined by the projective closure of the equation
Cp:y! —y=x" CcP*/F,.

The automorphism group in this case is G, = F; X p¢n. An element (a, ¢) in this group acts on the
curve by (x,y) = ({x,y+a).

Remark 35. The results of this section work in somewhat greater generality, for instance we don’t need
to restrict to Fermat or Artin—Schreier curves of degree a power of £. The results also work for various
quotients of these curves such as the superelliptic curves y" = x*" +a.

Since the computations in other cases are exactly analogous, we only deal with the above two cases.

Throughout this section, we identify characters y : pg — Z, with vectors v € Z, by x (V) : &en — &
We also fix a compatible family of additive characters v, : Fyn — 7, that satisty v, = tr(Fyn /) o Yry.

In both of the above families of curves, we can decompose M,, = Hélt(é n, Z¢) into one dimensional
eigenspaces M, (x) indexed by characters x of G,. In the Fermat curve case, the characters are naturally
indexed by v € (Z /£"7)* while in the second case, the characters are indexed by (¥, v) where v is an
additive character of F, and v € Z/¢"Z.

Given a character x : g — 7, and g =1 (mod £"), we can define a multiplicative character of [F;
since the map x — x@~1/¢ induces a surjection

[FZ; —> Mgn (ﬂ:q) = Men

and we compose this surjection with x. By a slight abuse of notation, we also denote this character by x.
The following well-known theorem [Katz 1981, Corollary 2.2 and Lemma 2.3] identifies the eigenvalues
of the Frobenius o, on M () with Gauss and Jacobi sums respectively.

Theorem 36. We assume that g =1 (mod £"):

e For the Fermat curves Cy, let 1 = (x, x2) be a character of G, = (e )?. The eigenvalues of o, on
the eigenspace M, (n) are given by the Jacobi sum

—Jy(xs x2) ==Y (@) xa(1 —x).
xely
o For the Artin—Schreier curves, let n = (Y, x) be a character of G, =y X . The eigenvalues of
o4 on the eigenspace M, (n) are given by the Gauss sums

—8g (W X) ==Y _ (D)X ().

xel,

Proof. We sketch the proof for completeness. In the case of Fermat curves, we would like to count points

on the affine curve x*" + y* = —1 while in the case of Artin—Schreier curves, we would like to count

points on y¥ —y = x*".
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‘We have the identities
(ZYI

X) =
‘ X 0  otherwise,
X:Fg—pen
and

ifx = v —
)3 1//(X):{q if x =y1—y,

0 otherwise.

We can use these identities to test if an element x € [, is a £"-th power or of the form y? — y and therefore
use it to count points.
For the Fermat curve, we have

ClF)= Y > x®x)

ztw==1 y xy:F— pun

while for Artin—Schreier curves

CiF) =) Y ¥ (@x ().

ZEH:q WsX

Exchanging the summation, this shows that the point counts on the two curves can be expressed in terms
of Jacobi and Gauss sums respectively. Finally, we use the Weil-conjectures to identify eigenvalues of the
Frobenius action with Jacobi/Gauss sums by varying over all powers of g. O

Let us return to the set-up of Theorem 19. The roots of the characteristic polynomial #,, , (x) therefore
correspond to (—J, (X1, Xz))k" =—Jgk (X1, X2) with v corresponding to the character x;, x» and similarly
for the Gauss sum in the two cases we are interested in. Put another way, we choose the minimal g so
that ¢ — 1 is exactly divisible by £" and we are looking for a relation between these values for varying »n.

Luckily, the exact statement we need is a result of Coleman [1987] proved using the p-adic Gamma
function of Gross and Koblitz [1979]. Stated in our notation and specialized to our needs, [Coleman 1987,
Theorem 11] takes the following form:

Theorem 37 (Coleman). Let v € Z;, g = p’ be such that £" exactly divides q — 1. In the notation of the

previous theorem, we have
84t Wy Xqt (V) = 84 (W, Xq(0)) xq (V) (£)cq
forcy = cl{ and cp = (— 1) p=Y72 where r depends only on L.

Proof. In Theorem 11 of [loc. cit.], take b = v/£"!, d = £. Note that there is exactly one orbit of size ¢
and ¢ = (4/—p€_1¢d(0))f, r =rg+ (£ —1)/2 in the notation of that paper. O

The following theorem is an immediate consequence of Coleman’s theorem and is the required relation.



2178 Asvin G.

Theorem 38. Suppose that q is such that £" exactly divides g — 1. Let vy, v € Zy, x4n (v;) multiplicative
characters of g (Fym) corresponding to v; and Y, : Fyn — 7 a compatible series of additive characters
as above.

Then, we have the following identities:

Jq(Xq (v1), Xq(UZ)) _ ‘](]‘Z(Xq‘Z (v1), Xq* (v2))

ql2 POE (In

and
8a(W, XqW)xqg()(€)  gge (W, x40 (V) 12
g2 - g2 . (12)

Proof. We first prove (11). We have the well known identity

Jo (X1, x2)84 (W, x1x2) = 8&¢(¥, x1)84 (Y, x2)-

By Theorem 37, we then have

8qt (W, xqt (1)) gt (W, xgt(v2))
84t (W, x1x2)

_ 8q(W, Xg(01))gq (¥, xq(v2))eq

a 8a(¥. X1x2)

= Jg(Xq(W1), xq(v2))cq

Jat (Xgt V1), Xqt(v2)) =

where ¢ = p/. Since ¢, = £¢“~V/2, we recover (11) up to a sign by dividing by ¢*/?. Finally, upon
reducing Theorem 23 (mod £), we note that the normalized eigenvalues are all congruent (mod ¢) and
therefore the sign has to be +1.

Equation (12) follows in exactly the same manner from Theorem 37. U

Remark 39. We note that the above theorem is in exact accord with Case A, Theorem 19 since in the
notation of that theorem, it shows that the roots of 4,11 (y) are equal to the roots of /2, (y). In other words,
we not only have a congruence h,,41(y) = h,(y) (mod £"), we have an equality h,{(y) = h,(y) in the
two cases considered in this section.
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