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We give upper bounds on limit multiplicities of certain nontempered representations of unitary groups
U (a, b), conditionally on the endoscopic classification of representations. Our result applies to some
cohomological representations, and we give applications to the growth of cohomology of cocompact arith-
metic subgroups of unitary groups. The representations considered are transfers of products of characters
and discrete series on endoscopic groups, and the bounds are obtained using Arthur’s stabilization of the
trace formula and the classification established by Mok, and Kaletha, Minguez, Shin and White.
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1. Introduction

Let G be a semisimple Lie group and let 0 ⊂ G be an arithmetic lattice. Such a group is an analogue of
the “Z-points of G”: is realized as the intersection G(Q)∩ K ⊂ G(A f ) for a choice of algebraic group
G/Q such that G(R)= G and K a compact-open subgroups of the finite adelic points of G. A natural
invariant to study is the group cohomology H i (0,C). Yet beyond some low-rank examples, the dimension
of this cohomology has only been computed explicitly for specific instances of 0; for example [11; 21].
A variant of the problem is to study this question in towers: one studies the asymptotic properties of
dim H i (0n,C) for sequences 0n of nested subgroups as n → ∞; see for example [10; 12; 35].

A central family of such sequences 0n are congruence towers 0(pn). These are obtained by fixing a
suitable prime p and considering sequences of subgroups K (pn)= K p K p(pn). The group K p is a fixed
compact-open subgroup of G(Ap

f ), the finite adelic points away from p, and

K p(pn)= G(Qp)∩ {g ∈ GLn(Zp) | g ≡ I mod pn}
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for a choice of embedding G(Qp) ↪→ GLn(Qp). The resulting nested sequence of subgroups 0(pn)=

G(Q)∩ K (pn) are referred to as principal p-power congruence towers.
This article is motivated by the study of rates of growth of dim H i (0(pn),C) as n grows, for 0(pn)

cocompact.
These dimensions can be expressed representation-theoretically by using Matsushima’s formula [36]:

H i (0(pn),C)=

⊕
π

m(π, pn)H i (g, K ;π).

Here the sum is taken over isomorphism classes of unitary representations of G, the number m(π, pn) is
the multiplicity of π in the regular representation of G on L2(0(pn)\G), and H i (g, K ;π) is the (g, K )-
cohomology of π . Following the work of Vogan and Zuckerman [49], the finitely many representations
contributing nontrivially to the above sum are well-understood. Thus the question is reduced to the growth
of multiplicities m(π, pn) of cohomological representations.

Multiplicity growth rates are best understood for discrete series representations, which contribute
to cohomology only in the middle degree. In that case, DeGeorge and Wallach [19] and later Savin
[43] have shown that m(π, pn) grows proportionally to the index [0(1) : 0(pn)]. This leaves open the
question of multiplicity growth for cohomological representations in lower degrees. In general, these are
nontempered, and DeGeorge and Wallach show that their multiplicities m(π, pn) satisfy

m(π, pn)/[0(1) : 0(pn)] n→∞
−−−→ 0.

Sarnak and Xue [42] have predicted upper bounds on growth, interpolating between the rate for discrete
series and the constant multiplicity of the trivial representation. Here “ f (n)≪ g(n)” means that for n
large enough, f (n) is bounded by a constant multiple of g(n), and ≪ϵ indicates that the implied constants
depends on ϵ.

Conjecture 1 (Sarnak and Xue). Let π be a unitary representation of G and let

p(π)= inf{p ≥ 2 | the K -finite matrix coefficients of π are in L p(G)}.

Then

m(π, pn)≪ϵ [0(1) : 0(pn)](2/p(π))+ϵ .

By definition, the representation π is tempered if p(π)= 2. Thus Sarnak and Xue expect the failure of
temperedness to dictate the rate of growth of m(π, pn).

1.1. Main Theorem. In this article, we give upper bounds on the multiplicity growth of certain cohomo-
logical representations of unitary groups. The results are conditional on the endoscopic classification
of representations, as discussed in Section 1.2. Let E/F be a CM extension of number fields with
F ̸= Q, and p a prime of F such that the cardinality Nm(p) of the residue field is large enough, see
Section 4.2. Let a ≤ N/2 and let G be a unitary group defined from a Hermitian form of signature
((a, N − a), (N , 0), . . . , (N , 0)) relative to E/F . Finally, let 0(pn) be a sequence of principal level
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cocompact lattices in G, defined in Section 4. Denote by ν(n) the unique n-dimensional irreducible
representation of SL2(C). Our main theorem concerns cohomological representations π of G satisfying
the following two conditions:

(i) π belongs to a cohomological Arthur packet associated to a parameter ψ with ψ |SL2(C)= ν(2k)⊕
ν(1)N−2k .

(ii) π does not appear in any other Arthur packet.

Such π are endoscopic transfers of products of discrete series with characters, from endoscopic groups of
G of the form U (2k)× U (N − 2k). They exist if a + k ≥ N/2. For example, they include a family πk

described in Section 5 and which contributes to cohomology in degrees

i = i(N , a, k)=

{
((N − 2)/2)2 + 2a − k2 N even,
((N − 1)/2)2 + a − k2 N odd.

We recall that f (n)≪ g(n) means that for n large enough, f is bounded by a constant multiple of g.

Theorem 2. Assume the endoscopic classification of representations for unitary groups stated in [26]. Let
0(pn) be a tower of principal level cocompact lattices in G = U (a, N − a), such that the size Nm(p) of
the residue field is large enough. Let N/2> k ≥ N/2 − a, and let π be a cohomological representation of
G satisfying properties (i) and (ii) above. Then

m(π, pn)≪ Nm(pn)N (N−2k).

In particular, Conjecture 1 holds for π .

Our method of proof leads us to believe that these bounds are sharp, in the sense that one should be
able to achieve them for a suitable choice of lattices. Indeed, our strategy is to decompose the multiplicity
count and show that the leading term comes from a smaller group for which exact asymptotics are known.
We expect that the other terms can be made to oscillate and not contribute in the limit. For G = U (2, 1),
this type of method was carried out successfully by Simon Marshall [34].

Our representations do not account for all of the cohomology, but in some low degrees, we expect them
to do so asymptotically. For example, the smallest nonzero degree i for which H i (0(pn),C) is nontrivial
is i = a. When N is odd, the representations associated to k = (N − 1)/2 contribute asymptotically all
the cohomology in degree a, yielding the following bounds.

Corollary 3. Under the assumptions of Theorem 2, assume additionally that N is odd. Then

dim Ha(0(pn),C)≪ Nm(pn)N .

In order to describe the more general range of degrees in which we predict that the representations we
can control contribute all the cohomology, we state our main technical theorem. It concerns bounds on
limit multiplicity for representations belonging to a prescribed archimedean Arthur packet. This result
does not require that the representations be cohomological, and our most general limit multiplicity result
is the following.
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Theorem 4. Under the assumptions of Theorem 2, let ψ∞ be an Arthur parameter with regular infinitesi-
mal character and such that ψ∞ |SL2(C)= ν(2k)⊕ ν(1)N−2k . Let π∞ ∈5ψ∞

, and let 9ψ∞,1 be the set of
Arthur parameters for G whose specialization at infinity is ψ∞, and associated to representations with
trivial central character. Then∑

ψ∈9ψ∞,1

∑
π=π∞⊗π f ∈5ψ

m(π) dimπ
K (pn)
f ≪ Nm(pn)N (N−2k), (1)

where m(π) denotes the multiplicity of π in L2
disc(G(F)\G(AF ), 1).

These types of Arthur parameters seem to control the growth of certain degrees of cohomology. The
combinatorics of intersections between various Arthur packets rapidly get complicated, but here is a
sample of behavior we expect.

Conjecture 5. Let G = U (N − a, a) be as above. Then:

(i) The representations belonging to Arthur packets attached to parameters ψ with ψ |SL2= ν(N − ℓ)⊕

ν(1)ℓ contribute asymptotically all the cohomology in degrees a · ℓ for 0 ≤ ℓ≤ N − 2(a − 1).

(ii) For these degrees,
dim Ha·ℓ(0(pn),C)≪ Nm(pn)N ·ℓ.

The range of degrees to which the conjecture applies is larger for smaller values of a, i.e., when G is
farther from being quasisplit. For a = 1, Marshall and Shin [35] proved (ii) under some assumptions on
p, and conjectured (i).

1.1.1. Outline of the proof. The results are proved in the framework of endoscopy, Arthur parameters, and
the stable trace formula. The theorem is a consequence of the endoscopic classification of representations
for unitary groups. The classification is a result of Mok [38] if the group G is quasisplit, and of Kaletha,
Minguez, Shin and White [26] for inner forms, building on the seminal work of Arthur [5]. It gives a
decomposition of the regular representation of G(AF ) on the discrete spectrum

L2
disc(G(F)\G(AF ))≃

⊕
ψ

⊕
π∈5ψ

m(π)π

where the irreducible summands π = ⊗
′
vπv are automorphic representations; they appear in the discrete

spectrum with multiplicity m(π). This decomposition is given in terms of Arthur packets 5ψ indexed by
Arthur parameters ψ . These parameters are formal objects

ψ = ⊞i (µi ⊠ ν(mi ))

where each µi is a cuspidal automorphic representation of GLni and ν(mi ) is the unique irreducible
mi -dimensional representation of SL2(C). Such a ψ is associated to a packet of representations of a
unitary group of rank N if

∑
i ni mi = N and if ψ is self-dual in a suitable sense. The parameters stand

in for homomorphisms
ψ : L F × SL2(C)→

L G
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where L G is the L-group of G and L F is the Langlands group of F , an object whose existence is at
the present moment only hypothetical. Despite Arthur parameters being purely formal objects, one can
consider the restriction ψ |SL2(C):= ⊕iν(mi )

ni which is an actual finite-dimensional representation. The
classification of parameters in terms of this restriction plays a central role in our argument, and we refer
to the group SL2(C) used to build Arthur parameters as the “Arthur SL2”.

Endoscopy is a specific instance of the principle of functoriality in the Langlands program. It concerns
certain groups H , the so-called endoscopic groups of G, and states that if ψ factors through an embedding
L H ↪→ L G, then there must be trace identities between the characters of the representations π ∈5ψ and
those of representations πH of H in a corresponding packet 5H

ψ . The character identities are witnessed
through the trace formula Idisc,ψ( f ). In the case of our parameters with regular infinitesimal character,
this distribution computes the trace of convolution by a smooth, compactly supported function f on the
subspace of L2

disc spanned by the representations π ∈ 5ψ . More specifically, the character identities
appear in a decomposition of Idisc,ψ( f ) referred to as the stabilization of the trace formula (written here
in a simplified version for exposition purposes):

Idisc,ψ( f )=

∑
H

SH
disc,ψ( f H ). (2)

Here the sum runs over all endoscopic groups H such that ψ factors through L H . The distributions
SH

disc,ψ( f H ) are stable, meaning that they satisfy a strengthening of the conjugacy-invariance property of
characters of representations.

The summands SH
disc,ψ( f ), initially defined inductively, can be expanded explicitly as linear combina-

tions of traces trπ( f ) of the representations π ∈5ψ ; this is the so-called stable multiplicity formula.
We write here a simplified version of the stable multiplicity formula in which we have omitted constants
which can be ignored in the asymptotic questions we are concerned with

SH
disc,ψ( f H )=

∑
π∈5ψ

ξ(π, H) trπ( f ). (3)

The coefficients ξ(π, H) arise from characters of a 2-group Sψ , the group of connected components of
the centralizer of the image of ψ . More precisely, there are two mappings

{representations π ∈5ψ } → {characters of Sψ },

{H such that ψ factors through L H} → {elements of Sψ },

the second of which is a bijection. In this way, the coefficient ξ(π, H) in the decomposition of the stable
term SH

disc,ψ( f H ) is the value of the character associated to π on the group element corresponding to H .
In this context, the steps of the proof of Theorem 2 can be outlined as:

(i) (Section 5.2) Determine the parameters ψ associated to the packets containing cohomological repre-
sentations. This relies on work of Arthur [4] and Adams and Johnson [1].
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(ii) (Section 4.2) Write the dimension of cohomology as
∑

ψ Idisc,ψ( f (pn)) for a specific function f (pn),
summing over the parameters ψ computed in the first step.

(iii) (Section 2.6.2) Fix a cohomological parameter ψ . Use the stabilization of the trace formula to
decompose

Idisc,ψ( f (pn))=

∑
H

SH
disc,ψ( f (pn)H ).

(iv) (Section 3.2) By interpreting the coefficients ξ(π, H) appearing in the stable multiplicity formula (3)
as values of characters of Sψ , conclude that there is a specific endoscopic group Hψ whose contribution
bounds that of all the others in (2), i.e., such that

Idisc,ψ( f (pn))≤ K (ψ)SHψ
disc,ψ( f (pn)Hψ )

for a constant K (ψ) computed in terms ψ |SL2(C) and of the number of irreducible summands of ψ , and
which can be uniformly bounded in terms of the rank N of the unitary group. The group Hψ depends only
on ψ |SL2(C). As such it is determined by the parameter ψ∞ and ultimately by the choice of cohomological
representations.

(v) (Sections 3.3 and 4.4) Bound the stable trace SHψ
disc,ψ( f (pn)Hψ ) in terms of the multiplicity m(πHψ , pn)

for a family πHψ of representations of Hψ . This relies on the fundamental lemma, proved by Laumon and
Ngô for unitary groups [33], but also on a variant for congruence subgroups due to Ferrari [17]. In order
to control the discrepancy between SHψ

disc,ψ and I Hψ
disc,ψ , we make use of the notion of hyperendoscopy, also

introduced by Ferrari.

(vi) (Sections 4.3 and 5.3) The representations πHψ obtained via steps (i)-(v) from parameters such that
ψ |SL2(C)= ν(2k)⊕ ν(1)N−2k are the product of a discrete series representation and a character. Their
limit multiplicity is thus known by results of Savin [43], which gives the desired bounds.

Remark 6. Some comments on possible extensions of the result: the proof exploits the fact that for a global
A-parameter ψ , the restriction ψ |SL2(C) is determined locally at any place. Here, archimedean restrictions
associated to cohomological representations propagate to global and everywhere-local restrictions and
induce slow rates of growth. But there is nothing special about infinity: similar methods could provide
information about automorphic representations which belong to Arthur packets with large Arthur SL2.

The endoscopic classification was of course proved by Arthur [5] for quasisplit orthogonal and
symplectic groups, and Taïbi [46] extended the key result used here, namely the stable multiplicity
formula, to some classes of inner forms. It is likely the case that similar methods could be a good starting
point to provide analogous bounds for these groups.

The restrictions on the types of representations we deal with are rooted in restrictions on the Arthur
parameters we consider. These have two simple pieces which witness opposite extreme behaviors when
restricted to the Arthur SL2. This allows us to obtain bounds by “applying endoscopy once”. To extend
the results to e.g., representations associated to global parameters with an arbitrary number of simple
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pieces, one could iterate the inductive process of steps (iv) and (v) and bound representations coming
from hyperendoscopic groups, i.e., endoscopic groups of endoscopic groups.

Our proof method is in the lineage of a body of recent work applying the framework of endoscopy to
growth of cohomology. Most notably, bounds on multiplicity growth of all nontempered cohomological
representations were obtained by Marshall [34] for G = U (2, 1), and Marshall and Shin [35] for G =

U (N , 1) and a level n divisible by primes splitting in the CM extension used to define the unitary group.

1.2. Conditionality. Our results are conditional on the endoscopic classification of representations for
inner forms of unitary groups, a result which remains to be fully proved in several ways. As explained
in the introduction of [26] and in [38, Section 2.6] the classification depends on upcoming work of
Chaudouard and Laumon on the weighted fundamental lemma. It also depends, through its dependency
on [5], on several papers of Arthur not yet made public. Moreover, the proof of the classification in [26]
is not itself complete: in particular, the results appearing here as Theorems 19 and 23 are only proved for
generic parameters. A full proof is expected in [27].

2. L-groups, parameters, and the trace formula

2.1. Notation. Let E/F be a CM extension of number fields with Galois group 0E/F , algebraic closure
F and absolute Galois groups 0F and 0E . We denote places of F and E by v and w respectively, and let
Ev = E ⊗F Fv for v a place of F . Let F∞ = F ⊗Q R, the product of all archimedean completions of F .
Let OF and OE be rings of integers, and AF and AE be adèle rings, with Nm : AE → AF the norm map.
Let A

f
F be the finite adèles, so that we have AF = F∞ × A

f
F .

Fix χκ for κ ∈ {±1}, a pair of Hecke characters of E . We fix χ+1 to be trivial and the character χ−1 is
chosen so that its restriction to AF/F× is the quadratic character associated to E by class field theory.

If F is a field and G/F is a reductive group, we will denote the center of G by ZG or by Z(G).
If F is global, we denote G(Fv) by Gv and G(F∞) by G∞. For H ⊂ G(AF ), we use the notation
H f = H ∩ G(A f

F ). The complexified Lie algebra of G∞ will be denoted g∞.

2.2. Unitary groups and their L-groups.

2.2.1. Quasisplit unitary groups. We now introduce unitary groups and their L-groups, following the
exposition of Kaletha, Minguez, Shin and White [26, Section 0]. Let E/F be a quadratic algebra: either
the CM extension introduced above or one of its localizations Ev/Fv , in which case we have Ev ≃ Fv× Fv
when v is split. If this is the case, fix an identification Ev = Fv × Fv . Let σ ∈ AutF (E) be the nontrivial
element of 0E/F if E is a field, and the involution σ(x, y)= (y, x) if E = F × F . If E is a split quadratic
algebra, set 0E := 0F . Let 8N be the antidiagonal N × N matrix

8N =

 1
...

(−1)N−1

 . (4)
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Let UE/F (N ) (sometimes denoted U (N )) be the reductive group over F with UE/F (F)≃ GLN (F), with
Galois action

τN (g)=

{
τ(g), τ ∈ 0E ,

Ad(8N )τ (g)−t , τ ∈ 0F \0E .

We have UE/F (N , E)= GLN (E), and we can identify

UE/F (N , F)= {g ∈ GLN (E) | Ad(8N )σ (g)−t
= g}, (5)

a quasisplit unitary group with maximal (nonsplit) torus given by the group of diagonal matrices, and a
Borel subgroup consisting of upper-triangular matrices. If E = F × F , we have U (N )≃ GLN and we fix
an isomorphism to identify them.

If F is global, we consider the various localizations of U (N , F). If v splits in E , we have U (N , Fv)≃
GLN (Fv). Otherwise U (N , Fv) is a quasisplit unitary group over Fv , which determines it uniquely up to
isomorphism as we shall see below.

2.2.2. Inner forms. An inner form of U (N ) is a pair (G, ξ) consisting of an algebraic group G/F together
with an isomorphism ξ : G(F)→ U (N , F) such that for all σ ∈ 0F , the automorphism ξ−1

◦σ ◦ ξ ◦σ−1

is inner. Though the choice of ξ is always present, it will sometimes be implicit in our notation. We will
denote U (N ) by G∗ when we want to highlight that it is the quasisplit form of G.

Remark 7. In this article, we always require that the inner forms be groups defined with respect to a
Hermitian space over E .

We now discuss which possible groups G can arise as inner forms of UE/F (N ) in the cases where F
is local or global.

2.2.3. Local inner forms and the Kottwitz sign. If v is archimedean, the classification of inner forms is
well-known: a unitary group over Fv=R is determined by its signature p+q = N , with U (p, q)≃U (q, p).
Since the notation U (N ) is reserved for quasisplit groups, we denote the compact inner form of U (N ,R)

by UN (R).
For v nonarchimedean, the classification of unitary groups coming from Hermitian forms over quadratic

algebras over Fv is due to Landherr [31]: If N is odd, there is one class of Hermitian forms up to
isomorphism, so the group U (N , Fv) is the unique unitary group of rank N . If N is even, there are two
isomorphism classes of unitary groups, only one of which (the one containing U (N , Fv)) is quasisplit.

One associates to an inner form Gv of UEv/Fv (N ) a Kottwitz sign e(Gv). We record the formulas for
e(Gv) as computed in [29]:

• For Fv = R, let q(Gv) be half the dimension of the symmetric space associated to the group Gv.
Then e(Gv)= (−1)q(Gv)−q(G∗

v).

• For Fv nonarchimedean, let r(Gv) be the rank of Gv. Then e(Gv)= (−1)r(Gv)−r(G∗
v).

Kottwitz proves [29] that for G defined over a global field, the local signs cancel out and
∏
v e(Gv)= 1.
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2.2.4. Global inner forms. We describe the classification of global forms of unitary groups, following
the discussion in Section 0.3.3 of [26]. For N odd, any collection of local inner twists, quasisplit at all
but finitely many places, can be realized as the localization of a global inner twist.

Fo N even, the behavior of the place v in E determines cohomological invariants attached to Gv . For
each v, we have H 1(0Fv ,G∗,ad

v )≃ Z/2Z. If v is split in E , the invariant of Gv depends on the division
algebra Dv such that Gv = ResDv

Fv GLMv
. Since we only consider unitary groups coming from Hermitian

forms, this invariant is always 0 for us. At finite nonsplit places, the quasisplit group U (N )v and its
unique inner form correspond respectively to 0 and 1 in Z/2Z. At the infinite places, the signature (p, q)
determines the invariant N/2 + q ∈ Z/2Z. For a collection of local Gv to come from a global unitary
group, the all but finitely many nonzero invariants associated to Gv must sum up to zero. Consequently,
we have:

Lemma 8. Let E/F be a CM extension of number fields. There exists an inner form G of UE/F (N ) with
any choice of signature at the infinite places. Moreover G can be chosen to be quasisplit outside of a set
of places of size at most 1.

Remark 9. The authors of [26] work with a refinement of the notion of inner form. Recall that isomor-
phism classes of inner forms of G are in bijection with H 1(0F ,Gad). In addition to this, they introduce
the notion of pure inner form, a triple consisting of G, the map ξ , and a cocycle z ∈ Z1(0F ,G) compatible
with the inner twist ξ . The map sending a pure inner form to z induces a bijection between isomorphism
classes of pure inner forms and H 1(0F ,G). Inner forms of U (N ) which can be realized as pure inner
forms are those coming from a Hermitian space, i.e., precisely the groups we work with. We will point out
dependency on z whenever it appears: in the normalization of transfer factors, and the pairings associated
to local Arthur packets. Due to our rather rudimentary use of the stable trace formula, the choice of pure
inner form does not affect our results.

2.2.5. L-groups. Throughout, we will work with the Weil group version of the L-group, primarily because
it is well-suited to our description of local parameters. In terms of the actual definition of the L-group,
this choice is purely cosmetic as the Galois actions involved will always factor through a quotient of
order at most 2.

For G/F with F either local or global, fix a root datum. The L-group of G is a semidirect product

L G = Ĝ ⋊ WF .

Here the group Ĝ is the complex dual group of G, and the action of WF on Ĝ is induced by the Galois
action on the root datum of G. As a consequence, if G is split then L G = Ĝ × WF , and in particular,
L GLN (F)= GLN (C)× WF . If G ′/F is an inner form of G then by definition G ′(F)≃ G(F) and the
corresponding Galois actions differ by an inner automorphism. These induce isomorphisms of root data
and Galois actions, and L G ≃

L G ′.
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For F global, we will sometimes abuse notation and denote by L Gv the L-group of the base change of
G to a completion Fv. In this situation, the embedding WFv → WF induces a map L Gv →

L G which
restricts to the identity on Ĝ.

The L-group of U (N ) (and of any inner form) is defined as

LU (N )= GLN (C)⋊ WF

where WF acts through the order two quotient 0E/F . The nontrivial element σ ∈ 0E/F acts by σ(g)=

8−1
N g−t8N of GLN , where 8N is as in (4).

2.2.6. Morphisms of L-groups. A morphism of L-groups, or L-morphism, is a continuous morphism

η :
L H →

L G

which commutes with the projections onto WF . In practice, all morphisms of L-groups considered here
will be admissible, i.e., induced by an algebraic map Ĥ → Ĝ and such that the image of elements of WF

are semisimple.
Denote the Weil restriction ResE

F GLN by G(N ). In particular, G(N )(F)= GLN (E) and G(N )(E)≃

GLN (E)× GLN (E). As such, the connected component Ĝ(N ) of L G(N ) is the product of two copies
of GLN (C), and WF acts through 0E/F via the automorphism that interchanges the two factors. Many
objects associated to a unitary group U (N ) depend on a choice of embedding of L-groups from LU (N )
to L G(N ).

To define the L-embedding ηκ :
LU (N )→

L G(N ), recall the characters χκ from Section 2.1. If F is
global, we will use these characters, and if F = Fv is local, we will momentarily also denote by χκ the
restriction of χκ to E×

v . Let IN be the identity matrix. For each κ ∈ {±1} we define ηκ as

ηκ(g ⋊ 1)= (g, t g−1)⋊ 1, g ∈ Ĝ,

ηκ(IN ⋊ σ)= (χκ(σ )IN , χ
−1
κ (σ )IN )⋊ σ, σ ∈ WE ,

ηκ(IN ⋊wc)= (κ8N ,8
−1
N )⋊wc.

(6)

We consider a second class of L-embeddings ξκ :
L(U (N1)× · · · × U (Nr ))→

LU (N ), for
∑

Ni = N
into LU (N ). Put κi = (−1)N−Ni for each i , and let κ = (κ1, . . . , κr ). Given χ with signature κ , and for a
choice of wc as above, the embedding ξκ is defined as

ξκ(g1, . . . , gr ⋊ 1)= diag(g1, . . . , gr )⋊ 1, gi ∈ GLNi (C),

ξκ(IN1, . . . , INr ⋊ σ)= diag(χκ1(σ )IN1, . . . , χκr (σ )INr )⋊ σ, σ ∈ WE ,

ξκ(IN1, . . . , INr ⋊wc)= diag(κ18N1, . . . , κr8Nr ) ·8
−1
N ⋊wc.

(7)

Note that the composite embedding ηκ ◦ ξκ gives an embedding

ηκ·κ :
L(U (N1)× · · · × U (Nr ))→

L G(N ) (8)

with signature κ · κ = (κκ1, . . . , κκr ).
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Remark 10. The need to consider several embeddings depending on κ stems from the possibility that
parameters for the pair (U (N ), η+) may factor through different embeddings of the products of groups
U (Ni ) associated to different signs.

2.3. Parameters. We introduce the discrete automorphic spectrum of a unitary group G, and the local
and global parameters which will classify the (constituents of) automorphic representations, following
[5], [26], and [38].

2.3.1. Automorphic representations. Let G/F be a reductive group. Fix a closed subgroup X ⊂ ZG(AF )

and a maximal compact subgroup of K of G(AF ), which in turn determines maximal compact subgroups
Kv of Gv = G(Fv) for any v. We consider the right-regular representation of G(AF ) on

L2
disc(G(F)\G(AF ), ω),

the discrete part of the space of square-integrable functions which transform by ω under the action of X.
We will omit the ω when we allow for any central character. In our initial cases of interest, G/F will be
an anisotropic inner form of UE/F (N ), the group X will be the full center, the central character ω will be
trivial, and the entire automorphic spectrum will be discrete. However for induction purposes we will
consider arbitrary central character data (X, ω) and allow for L2(G(F)\G(AF ), ω) to have a continuous
part. The discrete spectrum decomposes as

L2
disc(G(F)\G(AF ))=

⊕
m(π)π

where m(π) denotes the multiplicity of π , and the irreducible constituents are automorphic representa-
tions. Each π is a restricted tensor product π = ⊗

′
vπv with each πv an irreducible admissible unitary

representation of Gv . All but finitely many πv are spherical with respect to Kv . The representation πv is
said to be tempered if its Kv-finite matrix coefficients belong to L2+ϵ(Gv) for all ϵ > 0.

After fixing a maximal compact subgroup K∞ of G∞, we replace π∞ by the dense subspace of K∞-
finite smooth vectors, which we view as an admissible (g∞, K∞)-module. This is no loss of information
since unitary admissible representations are determined by their underlying (g∞, K∞)-modules [28, 9.2].

2.3.2. Local Langlands parameters. Let F be a local field with Weil group WF . The Langlands group
L F of F is defined as

L F :=

{
WF F is archimedean,
WF × SU(2,R) F is nonarchimedean.

A local Langlands parameter for the reductive group G/F is a continuous homomorphism ϕ : L F →
L G

satisfying certain conditions (see [9] for a discussion):

(i) The map ϕ commutes with the projections L F → WF and L G → WF .

(ii) In the nonarchimedean case, the restriction ϕ |SU(2,C) is algebraic.

(iii) The image of WF under ϕ consists of semisimple elements of L G.
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(iv) If the image of ϕ in Ĝ factors through a parabolic subgroup of Ĝ, then this parabolic subgroup must
be the dual P̂ of a parabolic subgroup P of G.

Continuous maps that satisfy condition (i) are known as L-homomorphisms. If they additionally satisfy
(ii)–(iii) they are called admissible. If they satisfy (iv), they are called relevant, or G-relevant. Finally,
we say that ϕ is bounded if WF has bounded image in Ĝ. We will denote the collection of Ĝ-conjugacy
classes of Langlands parameters for G by 8(G).

2.3.3. Local Arthur parameters. In order to describe the nontempered spectrum of G, we con-
sider enhancements of Langlands parameters known as Arthur parameters. These are admissible
L-homomorphisms

ψ : L F × SL2(C)→
L G

such that ψ |L F is bounded. We denote the set of Ĝ-conjugacy classes of Arthur parameters by 9(G).
We refer to the SL2(C) factor in the above product as the “Arthur SL2”, and say that ψ is bounded if it
restricts trivially to the Arthur SL2.

Each Arthur parameter ψ determines a Langlands parameter ϕψ as follows. Recall (e.g., [47]) that the
Weil group WF is naturally equipped with a norm homomorphism | · | to C×. Then ϕψ is defined as the
composition

ϕψ : WF →
L G, ϕψ(σ )= ψ

(
σ,

(
|σ |

1/2 0
0 |σ |

−1/2

))
.

We now give a more detailed description of local Arthur parameters in the case where G = U (N ),
following Section 2.2 of Mok [38]. Specifically, we use the map ηκ introduced in Section 2.2.6 to realize
9(U (N )) as a set of N -dimensional representations satisfying an appropriate self-duality condition.

We first describe a natural bijection between 9(G(N )), and 9(GLN (E)). To produce an element
of 9(G(N )), one starts with ψ ∈ 9(GLN (E)), i.e., an admissible N -dimensional representation of
L E ×SL2(C), and promotes it to a L-morphism ψ ′

: L F ×SL2(C)→
L G(N ) by choosing wc ∈ WF \WE

and defining
ψ ′(σ, g)= (ψ(σ, g), ψc(σ, g))⋊ σ, (σ, g) ∈ L E × SL2(C)

ψ ′(wc)= (ψ(w2
c ), IN )⋊wc,

where ψc(σ, g) = ψ(w−1
c σwc, g). The resulting bijection 9(G(N )) ≃ 9(GLN (E)) is independent of

the choice of wc. Moreover, if ψc
≃ ψ∨ where ψ∨ is the contragredient of ψ , then ψ is called conjugate

self-dual. More precisely, the parameter ψ is conjugate self-dual of parity ±1, depending on the parity of
the resulting bilinear form.

The map ηκ introduced in (6) then induces a mapping

ηκ∗ :9(U (N ))→9(G(N ))≃9(GLN (E)) (9)

which is shown by Mok, following work of Gan, Gross and Prasad [18], to be an injection whose image
consists precisely of the subset of 9(GLN (E)) of conjugate self-dual representations of parity (−1)N+1κ .
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2.3.4. Global Arthur parameters. In lieu of global parameters, Arthur [5, Section 1.4] introduces formal
objects realized by combining cuspidal automorphic representations of GLN and representations of the
Arthur SL2. Echoing the local discussion, global Arthur parameters are first defined in terms of G(N ),
and Arthur parameters for U (N ) are the ones factoring through a fixed embedding of L-groups.

A global Arthur parameter for GLN is an unordered sum

ψN
= ⊞iψ

Ni
i , ψ

Ni
i = µi ⊠ ν(mi ).

Here µi is a cuspidal automorphic representation of GLni (AE) and ν(mi ) is the irreducible mi -dimensional
representation of SL2(C), with mi ni = Ni and

∑
i Ni = N . Departing from our references, we immediately

restrict our attention to the set of Arthur parameters such that the ψNi
i are pairwise distinct: we denote this

set 9(N ) instead of 9ell(N ). The collection 9(N ) contains a distinguished subset 9sim(N ) of simple
parameters with a unique summand ψN . Following the theorem of Mœglin and Waldspurger [37], this
subset 9sim(N ) parametrizes the discrete spectrum of GLN .

We now give the construction of global Arthur parameters for a quasisplit unitary group G = U (N ),
following Section 1.3.4 of [26]. We start by restricting our attention to the set 9̃(N )⊂9(N ) of parameters
for which each of the µi is conjugate self-dual, i.e., satisfies µi = µi

∨ where µ= µ ◦ σ and σ ∈ 0E/F is
nontrivial.

To record the parameter in relation to the embedding ηκ , we introduce the group Lψ . If ψN decomposes
as a sum of µi ⊠ ν(mi ), we associate to each index a pair (UE/F (ni ), ηκ i ) as in Section 2.2.6. Here the
choice of sign κi is determined by µi . Then Lψ is the fiber product Lψ =

∏
i (

LUE/F (ni )→ WF ). There
is a natural map ψ̃N

: Lψ × SL2(C)→
L G(N ) given by the direct sum

ψ̃N
= ⊕(ηκ i ⊗ ν(mi )).

A global Arthur parameter for (UE/F (N ), ηκ) is then defined as a pair ψ = (ψN , ψ̃)where ψN
∈ 9̃(N ),

and

ψ̃ : Lψ × SL2(C)→
LUE/F (N )

is an L-homomorphism such that ηκ ◦ ψ̃ = ψ̃N . It is useful to remember that ψN encodes the arithmetic
information of the automorphic representations of GLni , and that ψ̃ is an actual homomorphism. As such,
we can (and will) discuss the centralizer of the image of ψ̃ . Two Arthur parameters are equivalent if the
ψ̃ are Û (N )-conjugate, and we denote the set of equivalence classes of ψ as above by 9(U (N ), ηκ).
Note that we have again broken off from our references in the choice of notation: our set 9(U (N ), ηκ) is
the one that the authors of [26] denote 92(UE/F (N ), ηκ). Finally, note that the map ηκ,∗ sending ψ to
ψN is an injection: this allows us to view 9(U (N ), ηκ) as a subset of 9(N ). If (G, ξκ) is a product as
in (8), we can similarly define 9(G, ξκ). Via the block-diagonal embedding

∏
i GLNi ↪→ GLN , we can

identify 9(G, ξκ)≃
∏

i 9(U (Ni ), ηκi ).

Remark 11. We have made two constraints on the set of parameters under consideration here which bear
highlighting. We require:
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(i) That the irreducible summands ψi be pairwise distinct. In Mok’s description of the parameters in
[38, Section 2.4] this amounts to requiring that all the li = 1.

(ii) That each irreducible summand be conjugate self-dual. This is stricter than requiring ψ to be
conjugate self-dual since we could have had µ∨

i ≃ µ j .

Parameters satisfying these conditions are called elliptic. These restrictions will give us control on the
group Sψ to be introduced below, whose characters determine which products of local representations
occur in the discrete spectrum. It is also the case that only the parameters in the set which we denote
by 9(U (N ), ηκ) correspond to packets whose members actually appear in the decomposition of L2

disc,
although this fact is far from obvious and is one of the main theorems in [38] and [26]. Following this
result, global elliptic parameters are also called square-integrable.

2.3.5. Localization. We now describe how a global Arthur parameter ψ ∈ 9(U (N ), ηκ) gives rise to
local Arthur parameters ψv at each place v. Each cuspidal representation µ of GLN factors as a restricted
tensor product µ= ⊗

′µv over places v of F . The µv are admissible representations of GLN (Fv). The
local Langlands correspondence for GLN [23; 24; 44] associates to µv a parameter ϕµv ∈ 8(GLN ).
Following [5], we define the localization of ψ at v as the direct sum

ψv = ⊕iψv,i , ψv,i = ϕµv,i ⊗ ν(mi ).

These localizations a priori only belong to 9(G(N )). The fact that they are in the image of the map (9)
is one of the central theorems of [38].

2.3.6. Parameters of inner forms. Let (G, ξ) be an inner form of G∗
= U (N ). A local Arthur parameter

for G is simply a G-relevant parameter for U (N ), see Section 2.3.2. Globally, a parameter ψ ∈9(G∗, ηκ)

is G-relevant if it is so everywhere locally [26, Section 1.3.7]. We denote by 9(G, ξ) the collection of
G-relevant parameters in 9(G∗, ηκ). In summary, we have the following chain of inclusions:

9(G, ξ)⊂9(G∗, ηκ)⊂ 9̃(N )⊂9(N ),

where the parameters in 9̃(N ) are conjugate self-dual, those in 9(G∗, ηκ) factor through the embedding
ηκ , and those in 9(G, ξ) are additionally G-relevant.

2.3.7. Parameters and conjugacy classes. We attach families of conjugacy classes to objects introduced
above, following [5, Section 1.3]. For F global, G reductive, and any finite set S of places of F containing
the archimedean ones, let CS(G) denote the set of collections c = {cv}v /∈S , where each cv is a semisimple
conjugacy class in Ĝ. For two sets S and S′, let c ∼ c′ if cv = c′

v for almost all v. Denote the set of such
equivalence classes by C(G). As we did for parameters, let C(N ) := C(GL N ). We associate elements
of C(G) to automorphic representations π of G. Factoring π = ⊗

′
vπv , let c(π)= {c(πv)} ∈ C(G) be the

Satake parameters of all the unramified πv. Note also that an L-embedding η :
L G →

L G(N ) such as
those introduced in Section 2.2.6 gives rise to a map η∗ : C(G)→ C(N ).

When G = GLN one can associate an element of C(N ) to each ψ ∈ 9(N ). Starting with simple
parametersψ ∈9sim(N ), use the recipe for the representation πψ prescribed by Moeglin and Waldspurger’s
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theorem [37] and let c(ψ) := c(πψ). If ψ is not simple, apply the process to its simple constituents and
associate to ψ the conjugacy class coming from the diagonally embedded product of the GLNi inside of
GLN . This produces a mapping

9(N )→ C(N ), ψ 7→ c(ψ)

which is injective, following Jacquet and Shalika [25]. Denote its image by Caut(N ).

2.3.8. Stabilizers and quotients. For ψ either local or global, we have

Sψ := Cent(Im(ψ), Ĝ), Sψ := Sψ/Z(Ĝ)WF , Sψ := π0(Sψ).

As mentioned previously, when ψ is global then Im(ψ) really means Im(ψ̃). Localization of parameters
ψ 7→ ψv induces a mapping Sψ → Sψv . When G is unitary, the groups Sψ can be readily computed,
as the four authors do in [26, page 63]. In particular, for F global and ψ ∈9(G∗, ηκ) decomposing as
ψ = ⊞r

i=1ψi , we have
Sψ = (Z/2Z)r−1. (10)

The reader who looks at the computations in [26] will notice that this is the point where we use the
assumptions from Remark 11. Finally, we introduce the element

sψ := ψ

(
1,

(
−1 0
0 −1

))
∈ Sψ . (11)

We will sometimes conflate sψ and its image in the quotient Sψ .

Remark 12. The authors of [26] work with the centralizer quotient S♮ψ , which agrees with Sψ for G local
and unitary. If the local group Gv is isomorphic to GLN ,v (the only possibility for us at split places, since
our unitary groups arise from Hermitian forms) then S♮ψ ≃ C×. However, if Gv = GLN ,v, then only the
trivial character of S♮ψ arises in the character identities, as will be discussed in Section 2.5.6. Thus there
is no loss in working instead with the group Sψ = {1}. In the global situation, the characters of S♮ψ that
arise all factor through Sψ [26, page 89]. Note that we follow Arthur’s convention and use the notation
Sψ instead of Sψ as in [26].

2.3.9. Epsilon factors. The last invariant attached to a global parameter ψ is the character ϵψ of Sψ ,
defined by Arthur in [5, Section 1.5]. The definition involves the symplectic root number ϵ(1/2, µα) of an
automorphic L-function L(s, µα) for a product of general linear groups, obtained by composingψ with the
adjoint representation. As such ϵψ encodes arithmetic data in the decomposition of L2

disc(G(F)\G(AF )).
Note that ϵψ only depends onψ and in particular is independent of the inner form of G∗ under consideration,
as discussed in [26, page 89].

2.4. Endoscopic data. An endoscopic datum for G/F is a triple (ξ, H, s) where:

• s is a semisimple element of Ĝ.

• H/F is a connected, quasisplit group.

• ξ :
L H →

L G is an L-embedding.
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The triple must satisfy certain conditions, see [26, Section 1.1.1], including that ξ(Ĥ) is the connected
component of the centralizer of s in Ĝ. We will work only with elliptic endoscopic data, characterized
by the requirement that ξ(Z(Ĥ)WF )0 ⊂ (Z(Ĝ))WF . As such, we denote the set of conjugacy classes of
elliptic endoscopic data for G by E(G), dropping the “ell” subscript appearing in our references. An
endoscopic datum of G for which L H ̸≃

L G will be called proper. We will frequently abuse notation and
refer to H as a stand-in for the full datum, and denote the other two elements of the triple by ξH and sH .
Lastly, we will also use the formalism of endoscopic data for our unitary groups and denote by Ẽ(N )
the set of pairs consisting of a product G of quasisplit unitary groups together with the L-embedding
ξ = ηκ,κ from Section 2.2.6, and by Ẽsim(N ) the subset of Ẽ(N ) for which G = U (N ).

For any inner form G of UE/F (N ), the set E(G) consists of pairs

(H, ξ)= (U (N1)× U (N2), ξκ), N1, N2 ≥ 0, N1 + N2 = N ,

where ξκ was defined in (7). The signature κ = ((−1)N−N1, (−1)N−N2) depends on the respective ranks
of the groups. The equivalence class of endoscopic data is then uniquely determined by N1; see [38,
Section 2.4].

2.4.1. Endoscopic data and parameters. Let F be global and G/Fbe unitary and ψ = (ψN , ψ̃) ∈

9(G∗, ηκ) be an Arthur parameter. Let (H, ξH , sH ) ∈ E(G), and let ψH
= (ψN ,H , ψ̃H ) ∈9(H, ηκ ◦ξH )

be an Arthur parameter for H satisfying ψN
= ψN ,H and ψ̃ = ξH ◦ ψ̃H . In this situation, we will abuse

notation and write that ψ = ξH ◦ψH . Since sH commutes with H , it also commutes with the image of ψ̃ .
We thus get a mapping

(H, ψH ) 7→ (ξH ◦ψH , sH ) (12)

from the set of pairs (H, ψH ) onto the set of pairs consisting of a parameter ψ for G and an element s of
the centralizer Sψ . The importance of the quotient Sψ comes from the fact that for each ψ , the map (12)
descends to a bijection between Sψ and the set of endoscopic data such that ψ factors through ξH . We
state this result below, under simplifying assumptions: G global unitary and ψ square-integrable.

Lemma 13. Let F be global and G∗
= UE/F (N ). Let ψ = (ψ̃, ψN ) ∈9(G∗, ηκ). The map (12) induces

a bijection
(H, ψH )↔ (ψ, s)

where the left-hand side runs over pairs where H stands in for an endoscopic datum (H, ξ, s) and
ψH

= (ψ̃H , ψN ,H ) ∈ 9(H, ηκ ◦ ξH ) with ψN
= ψN ,H and ψ̃ = ξ ◦ ψ̃H , and the right-hand side runs

over elements of Sψ .

Proof. The proof occupies Section 1.4 of [26], and the above statement is a reformulation of Lemma 1.4.3
therein. The square-integrability assumption on ψ implies that Sψ and a fortiori Sψ are finite. Thus
Sψ = Sψ and we use the latter. □

2.5. Packets. Here, we introduce A-packets of representations associated to Arthur parameters, and the
character identities relating their traces to those of corresponding representations for endoscopic groups.
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2.5.1. Local Arthur packets. Let (G, ξ) be a unitary group over a local field. The main local results of
Mok [38, Theorem 2.5.1] and Kaletha, Minguez, Shin and White [26, Theorem 1.6.1] associate to each
Arthur parameter ψ ∈9(G, ξ) a finite set5ψ of irreducible unitary representations of G(F) called a local
Arthur packet. This packet 5ψ is empty if ψ is not relevant, and contains only tempered representations
when ψ is bounded. Each nonempty 5ψ is equipped with a pairing

⟨ · , · ⟩ : Sψ ×5ψ → {±1}. (13)

In this way, every π ∈5ψ gives rise to a character of Sψ . Unramified representations correspond to the
trivial character. The pairing depends on the triple (G, ξ, z) realizing G as a pure inner twist, as discussed
in Remark 9.

For F archimedean, all π ∈5ψ have the same infinitesimal character. We recall how to compute it
from ϕψ following [39]. The group WR is an extension of C× by the group ⟨σ ⟩ of order 2. For each ψ ,
there is a torus T̂ ∈ Ĝ such that

ϕψ |C× (z)= zµ z̄ν, µ, ν ∈ X∗(T̂ ).

The infinitesimal character of the representations π ∈5ψ is then identified with µ ∈ X∗(T̂ )≃ X∗(T ) via
the Harish-Chandra isomorphism.

Lemma 14. Let ψ ∈ 9(G) be an archimedean Arthur parameter with regular infinitesimal character,
and let H ∈ E(G) be such that ψ = ξκ ◦ψH for ψH

∈9(H). Then the infinitesimal character of ψH is
also regular.

Proof. By assumption, ψ((z, 1), I )= zµ z̄ν and the weights appearing in µ are distinct. The parameter ϕ
factors through ξκ :

L H →
L G. Referring to (6), the restriction of ξκ to C×

⊂ WR ⊂
L H is trivial, since

it factors through χκ , which takes values in ±1. Thus the weights of the z-part of ϕH
|C× are also distinct,

and the infinitesimal character of the corresponding packet is regular. □

For any local F , we record a result initially proved by Mok about the central character of the represen-
tations in the packet 5ψ for the quasisplit group G∗.

Proposition 15 [26, Proposition 1.5.2, 2]. The Langlands parameter of the central character ωπ :

Z(G∗)(F)→ C× of any π ∈5ψ is given by the composition

L F
ϕψ
−→

L G∗ (det⋊ id)◦ηκ
−−−−−−→ C× ⋊ WF .

2.5.2. Global Arthur packets. Let ψ ∈9(G, ξ) be global with localizations ψv . The global Arthur packet
5ψ is then defined as

5ψ = {π = ⊗vπv | πv ∈5ψv , ⟨ · , πv⟩ψv = 1 for almost all v}.

It is equipped with a pairing

⟨ · , · ⟩ψ : Sψ ×5ψ → {±1}, ⟨ · , π⟩ψ =

∏
v

⟨ · , πv⟩ψv (14)
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determined by the maps Sψ → Sψv induced by localization. We note once again that this pairing depends
on the full inner twist (G, ξ). However, the local dependence on the pure inner twist, i.e., the dependency
on the cocycle z appearing in the local definition of the pairing, cancels out globally. This is detailed in
[26, Section 1.7].

2.5.3. Test functions. Continuing with F global, we fix a maximal compact subgroup K of G(AF ). The
group K determines a maximal compact subgroup Kv ⊂ Gv at each place v: we choose K so that Kv

is hyperspecial at all the unramified v. We also fix for each v a Haar measure µv on Gv satisfying
µv(Kv) = 1, and a corresponding measure µ =

∏
v µv on G(AF ). The local Hecke algebra H(Gv)

consists of smooth, compactly supported, left and right Kv-finite functions on Gv. We will call its
elements local test functions. The global Hecke algebra is the restricted product H(G)= ⊗

′
vH(Gv): it

consists of smooth, compactly supported, K -finite functions. Each such test function is a finite sum of
factorizable test functions of the form f =

∏
v fv, where each fv ∈ H(Gv) and all but finitely many fv

are the characteristic function of Kv.
For πv a smooth, admissible representation of Gv, each fv ∈ H(Gv) gives rise to an operator πv( fv)

on the underlying vector space of πv, defined as follows:

πv( fv)(x)=

∫
Gv

fv(g)πv(g)(x) dµv.

This operator is of trace class, and we denote its trace by trπv( fv). Likewise globally, the algebra H(G)
acts on L2

disc(G(F)\G(AF )) and on its irreducible constituents π . We denote the trace of convolution by
f by tr R( f ) (when considering the right-regular representation on L2

disc(G(F),G(AF ))) or by trπ( f )
(when f acts on π irreducible).

2.5.4. Stable distributions and transfer. We introduce stable distributions on the local and global Hecke
algebras, following Sections 3.1 and 4.2 of [38] respectively. Let γ ∈ G(Fv) and let G(Fv)γ be its
centralizer. For f ∈ H(G(Fv)), let fG(Fv)(γ ) :=

∫
G(Fv)/G(Fv)γ

f (gγ g−1)dµv be the orbital integral
associated to γ and f . It only depends on the G(Fv) conjugacy class of γ .

We now introduce transfer, which makes use of stable conjugacy classes: the union of the finitely
many conjugacy classes of G(Fv) that are G(Fv)-conjugate. Let G(Fv) first be a quasisplit unitary group.
Each stable conjugacy class δ gives rise to a linear functional

f G
v (δ)=

∑
γ

1v(δ, γ ) fG(Fv)(γ ), (15)

where the sum is taken over representatives γ of all the conjugacy classes of G(Fv). The factor 1(δ, γ )
is equal to 1 if γ ∈ δ and to 0 otherwise. This construction gives a map from H(Gv) to functions on stable
conjugacy classes. Denote the image of this map by S(Gv). A linear functional on H(Gv) is said to be
stable if it factors through S(Gv).

Now let Gv be an arbitrary unitary group. For each endoscopic group Hv of Gv, the construction
of transfer factors by Langlands and Shelstad [32] and Kottwitz and Shelstad [30] gives rise to maps
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H(Gv) → S(Hv). The transfer factors are a significantly more delicate generalization of the 1(δ, γ )
above; in particular, their normalization in [26, Section 1.1.2] (and thus the notion of transfer) depends on
the choice of pure inner form as in Remark 9. This provides a system of maps from the Hecke algebras to
their stable counterparts, and two functions fv ∈ H(Gv) and f Hv

v ∈ H(Hv) will be said to form a transfer
pair if their images under their respective maps to S(Hv) agree. Although f Hv

v is not uniquely determined
by fv, we may abuse terminology and refer to a choice of f Hv

v as the transfer of fv.
To extend the notion of transfer to global test functions, it is first necessary to know that the transfer of

characteristic functions of maximal compact subgroups of Gv are the corresponding functions on Hv.
This is the fundamental lemma, now a theorem due to Laumon and Ngô [33] in the case of unitary groups,
and to Ngô [40] in general, after reductions by Waldspurger [50; 51].

Theorem 16 (fundamental lemma). Let Gv and Hv be unramified reductive groups over a nonarchimedean
local field Fv . Let K (Gv) and K (Hv) be respective choices of hyperspecial maximal compact subgroups.
Then their characteristic functions fv = 1K (Gv) and f Hv

v = 1K (Hv) form a transfer pair.

With this in mind, the transfer of a factorizable global test function f =
∏
v fv ∈ H(Gv) is the product

f H
=

∏
v f Hv

v of its transfers, a definition extended linearly to all of H(G). We will likewise define
the global stable Hecke algebra S(G∗) := ⊗

′
vS(G∗

v). A linear functional on H(G∗) is stable if it factors
through S(G∗).

2.5.5. Local character identities. The transfer of representations between G and its endoscopic groups
H is encoded via identities between linear combinations of characters; the coefficients are determined by
the pairings (13). We start with distributions f G(ψ) on H(G). Let F be local and G∗/F be a quasisplit
unitary group or a product thereof, and ψ be an Arthur parameter of G∗. Then Mok attaches a stable
linear form to ψ .

Theorem 17 [38, Theorem 3.2.1(a)]. Let ψ ∈ 9(G∗). Then there exists a unique stable linear form
f 7→ f G∗

(ψ) on H(G∗), determined by transfer properties to GLN . If G∗
= G∗

1 × G∗

2 and ψ = ψ1 ×ψ2,
then f G∗

(ψ)= f G∗

1(ψ1)× f G∗

2(ψ2).

We will not discuss in detail the character identities relating f G∗

(ψ) to traces on GLN , save for
reminding the reader that this distribution is related to the trace trπψ,N ( f ) where πψ,N corresponds to
ψ under the Local Langlands Correspondence. We will focus on the relation between the f H (ψH ) for
the groups H ∈ E(G) and the characters of representations in 5ψ . If G = G∗, these identities were
established by Mok, and for inner forms by Kaletha, Minguez, Shin and White. Recall that sψ is the
distinguished element of Sψ defined in (11).

Theorem 18 [38, Theorem 3.2.1(b)]. Let G∗ be a quasisplit unitary group, let ψ ∈9(G∗), and let 5ψ

be the associated Arthur packet equipped with the pairing of equation (13). Let sH ∈ Sψ be such that
(H, ψH ) correspond to (ψ, sH ) under the correspondence of Lemma 13. Then for a transfer pair ( f, f H )

we have
f H (ψH )=

∑
π∈5ψ

⟨sψsH , π⟩ trπ( f ).
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Theorem 19 [26, Theorem 1.6.1]. Let (G, ξ) be an inner form of U (N ) and let ψ , 5ψ , H , sH , and
( f, f H ) be as above. Let e(G) be the Kottwitz sign. Then

f H (ψH )= e(G)
∑
π∈5ψ

⟨sψsH , π⟩ trπ( f ).

Remark 20. Let us recall a discussion from the introduction: the proofs in [26] are not given in full
generality. For example, Theorem 19 is only proved for bounded parameters. The authors of [26]
anticipate that the proof will appear in a pair of papers, the first of which [27] should contain the results
we use here.

2.5.6. Local packets for general linear groups. As discussed in Section 2.2.1, if F is local and corresponds
to a place splitting in our global CM extension, then G ≃ GLN . In this situation the local Arthur packet
and the pairing are especially simple.

Theorem 21 [38, Section 2]. If G =GLN andψ is an Arthur parameter for G, then the packet5ψ contains
one element: the irreducible representation associated to ϕψ by the local Langlands correspondence. The
character ⟨ · , πψ ⟩ is trivial.

We now consider character of identities between representations of G and those of its endoscopic
groups. They are alluded to in [38] and [26], but we give a more explicit description based on [45,
Section 3.3]. For G = GLN , stable and regular conjugacy classes coincide, so S(G)= H(G). Since the
global extension giving rise to our unitary group is CM, we may assume that F is nonarchimedean. If
H = GLN1 × GLN2 with N1 + N2 = N , then the embedding ξκ realizes H as a Levi subgroup of G. Let
P = H N be a parabolic subgroup of G containing H . Given f ∈ H(G), define the constant term along
P as

f P(h) := δ
1/2
P (h)

∫
N

∫
K

f (khnk−1) dk dn, h ∈ H(F).

Here the integrals are taken with respect to suitably normalized Haar measures and δP is the modulus
character. The function f P

v is smooth and compactly supported, and by results of van Dijk [15], it satisfies
the requisite orbital integrals identities to be a transfer of f , so we let f H

:= f P . If f is unramified, then
f H is the image of f under the map H(G)ur

→ H(H)ur induced by the Satake isomorphism. Thus this
notion of transfer satisfies the fundamental lemma.

For a parameter ψ of G, we let f G(ψ)= trπψ( f ) [26, Section 1.5] for the unique πψ ∈5ψ and extend
this definition multiplicatively to products of general linear groups. Let πH

ψ be the unique representation
in the packet associated to ψH . It follows from the local Langlands correspondence (see for example [23,
page 6] and note that the twist therein is accounted for here in the definition of the embedding ξκ ) that
πψ = IP(π

H
ψ ), where IP denotes normalized parabolic induction with respect to P . In view of this and

of Theorem 21, the local character identities for GLN amount to an equality of traces between trπ( f H )

and the trace of f on the corresponding induced representation. Again this is a result of van Dijk, which
we record below.



Limit multiplicity for unitary groups and the stable trace formula 2201

Theorem 22 [15, Section 5]. Let G, H, P , and f H be as above. Let π be a unitary irreducible
representation of H and let IP(π) be its normalized parabolic induction with respect to P. Then
trπ( f H )= tr IP(π)( f ).

2.6. The trace formula and its stabilization. We now introduce Arthur’s trace formula following [26,
Section 3] (see [5, Section 3] for a more detailed exposition), focusing on the statements needed for our
applications. The rough picture is as follows: for F a number field, and a connected reductive group G/F ,
the trace formula Idisc (sometimes denoted I G

disc) is a distribution on the Hecke algebra H(G), defined in
terms of the traces of intertwining operators on variants of L2

disc(G(F)\G(AF )) indexed by a system of
Levi subgroups of G. The contribution of the group G itself is the trace tr Rdisc( f ) := tr R( f ) introduced
in Section 2.5.3. The trace formula admits two decompositions: a spectral one into a sum over the
contributions of ψ ∈9(G, ξ), and an endoscopic one (or stabilization) into a sum of stable distributions
on endoscopic groups. Our proof will follow from the interplay of these two decompositions.

2.6.1. Contribution of a parameter. We start by directly introducing the distributions given by the
contribution of each Arthur parameter as in [26, Section 3.3]. For following paragraphs, let (G, ηκ·κ) be a
pair consisting an inner form of a (possible product of) unitary groups, and an embedding ηκ·κ :

L G →

L G(N ) as in Section 2.2.6. When G is an inner form of U (N ), we have ηκ·κ = ηκ .
Recall C(G), the set of families of conjugacy classes introduced in Section 2.3.7. To any automorphic

representation π of G, we can associate an element cπ ∈ C(G) by letting cπ,v be the Satake parameter
of πv at all the unramified places v. Likewise, we associate to π an infinitesimal character µπ . Then
for c ∈ C(G) and a positive real number t , the distribution Idisc,t,c is described in [26, Section 3.1]. It
is the restriction of the traces defining Idisc to representations π such that c = cπ , and such that µπ
satisfies |Imµπ | = t under a suitable metric. To go from conjugacy classes to parameters, recall that
in Section 2.3.7 we identified 9(N ) with Caut(N ) ⊂ C(N ). To each ψN

∈ 9(N ) is thus associated an
element c(ψN )∈ Caut(N ) as well as a positive real number t (ψN ) coming from the infinitesimal character
of ψN . For each parameter ψN

∈9(N ), we follow [26, Section 3.3] and define

Idisc,ψN ,ηκ·κ =

∑
c 7→c(ψN )

t 7→t (ψN )

Idisc,t,c.

The sum runs over the c ∈ C(G) that map to c(ψN ) under the map C(G)→ C(N ) induced by ηκ·κ . When
G∗

=U (N ), we follow [26, Section 3.3] and shorten Idisc,ψN ,ηκ to Idisc,ψ when ψ = (ψN , ψ̃)∈9(G∗, ηκ),
using the injection ηκ,∗ of Section 2.3.4. We similarly obtain distributions tr Rdisc,c,t , Rdisc,ψN ,ηκ,κ and
tr Rdisc,ψN ,ηκ := tr Rdisc,ψ . If we have G∗

∈ Ẽsim(N ), as well as (H, ξκ) ∈ E(G) and ψ ∈9(G∗, ηκ), we
will also shorten notation and denote I H

disc,ψ = I H
disc,ψN ,ξκ◦ηκ

.
An essential step in the proof of the endoscopic classification of representations is showing that

tr Rdisc,ψ computes the traces of the representations in 5ψ , provided that ψ satisfies the two conditions
of Remark 11.
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Theorem 23 [38, (5.7.27); 26, proof of Theorem 5.0.5]. Let ψ ∈ 9(G, ξ) be a square-integrable
parameter associated to 5ψ , and let f ∈ H(G). Then

tr Rdisc,ψ( f )=

∑
π∈5ψ

m(π) trπ( f ).

In the notation of Section 2.5, the multiplicity m(π) is equal to 1 if ⟨π, · ⟩ψ = ϵψ as characters of Sψ ,
and 0 otherwise; see [26, Section 1.7]. Note again that [26, Theorem 5.0.5] is stated, but not fully proved,
in the case of nongeneric parameters, as mentioned in the introduction and in Remark 20.

Following a result of Bergeron and Clozel, the distributions tr Rdisc,ψ and Idisc,ψ agree if the infinitesimal
character is regular.

Theorem 24 [7, Theorem 6.2]. Let G be a connected reductive group. Let ψ ∈9(G) be a global Arthur
parameter such that ψ∞ has regular infinitesimal character. Then the contributions of the Levi subgroups
M ̸= G to the distribution Idisc,ψ vanish. In particular for all f ∈ H(G) we have Idisc,ψ( f )= tr Rdisc,ψ( f ).

If H = U (N1)× U (N2), and ψH
= ψ1 ×ψ2 we can write

Rdisc,ψH ( f )= Rdisc,ψ1( f1) · Rdisc,ψ2( f2), f = f1 × f2 ∈ H(H).

Following the above result, we can also write this as Idisc,ψH ( f ) provided that ψH has regular infinitesimal
character.

2.6.2. Stabilization. We now recall the identity that drives our theorems: the stabilization of Idisc,ψ ,
i.e., its decomposition into sum of stable traces of the transfers f H of f for the endoscopic groups
H ∈ E(G). Our references are to Arthur [5], but the versions for unitary groups are formally identical; see
for example [26, (3.3.2)] and [38, (4.2.1)]. Recall that 9̃(N ) is the set of conjugate self-dual parameters,
and 9(G, ξ)⊂ 9̃(N ).

Theorem 25 [5, Corollary 3.3.2(b)]. Suppose that ψ ∈ 9̃(N ) and let f ∈ H(G). Then for each endoscopic
datum (H, ξH ) ∈ E(G) there is a constant ι(G, H) and stable distributions SH

disc,ψ on H(H), defined
inductively, such that

Idisc,ψ( f )=

∑
H∈E(G)

ι(G, H)SH
disc,ψ( f H ). (16)

Remark 26. For unitary groups, the global factor ι(G, H) is introduced in [38, Section 4.2] and [26,
Section 3.1]. It is independent of the inner form G. If G = U (N ) and H = U (N1)× U (N2), then
following [38, 4.2] we have

ι(G, H)=


1, N1 N2 = 0,
1
2 , N1, N2 ̸= 0, N1 ̸= N2,
1
4 , N1 = N2 ̸= 0.

(17)
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3. Upper bounds from the stabilization

In this section we unpack the summands of the stabilization of Idisc,ψ and extract upper bounds on the
trace of test functions from the character identities.

3.1. The stable multiplicity formula. Letψ= (ψN , ψ̃)∈9(G∗, ηκ). Recall the decomposition from (16):

Idisc,ψ( f )=

∑
H∈E(G)

ι(G, H)SH
disc,ψ( f H ). (18)

The stable multiplicity formula expresses each SH
disc,ψ as a sum of traces. If fv is a local test function and

ψv a local parameter, the formula for f Hv (ψv) was given in Section 2.5.5. If f =
∏
v fv and ψ are global,

we write f H (ψ) :=
∏
v f Hv (ψv). The group Sψ and the element sψ were defined in Section 2.3.8, and

ϵψ in Section 2.3.9. The stable multiplicity formula, only defined for quasisplit groups, is the following
expression:

Theorem 27 [38, Theorem 5.1.2]. For ψ ∈9(G, ηκ), we have

SG
disc,ψ( f )= |Sψ |

−1ϵG
ψ (sψ)σ (S

0
ψ) f G(ψ).

For any connected reductive group S, the quantity σ(S) was defined by Arthur in [5, Section 4.1].
The centralizers Sψ of our ψ are always finite, so S0

ψ is trivial and σ(S0
ψ)= 1; see [38, Remark 5.1.4].

The stable multiplicity formula is stated for G a unitary group (in which case the map ψ 7→ ψN is
injective), but can be extended to products H ∈ E(G). Let 9(H, ψN ) be the set consisting of parameters
ψH

= (ψN ,H , ψ̃H ) with ψN ,H
= ψN . The stable multiplicity formula for H , given in [38, (5.6.3)], is

SH
disc,ψ( f H )=

∑
ψH ∈9(H,ψN )

1
|SψH |

ϵH
ψ (s

H
ψH )σ (S0

ψH ) f H (ψH ). (19)

We combine (18) and (19) and rewrite the resulting expression as a sum over pairs (H, ψH ) to get

Idisc,ψ( f )=

∑
(H,ψH )

ι(G, H)
1

|SψH |
ϵH
ψ (s

H
ψH )σ (S0

ψH ) f H (ψH ). (20)

We now collect the terms that can be bounded uniformly, and let

C(ψ, H) := ι(G, H)σ (S0
ψH )|SψH |

−1. (21)

Lemma 28. Let ψ ∈9(G∗, ηκ) and let (H, ξH , sH ) ∈ E(G) be an endoscopic datum such that ψ factors
through ξH . Then:

(i) The contribution of (H, ψH ) to the sum (20) is equal to C(ψ, H)ϵH
ψ (s

H
ψ ) f H (ψH ).

(ii) The constant C(ψ, H) is bounded uniformly in ψ and H : it always satisfies 2−(N+1)
≤ C(ψ, H)≤ 1,

where N is the rank of G.
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Proof. Part (i) follows immediately from (20) and it suffices to exhibit the bound on C(ψ, H). As stated
above, we have σ(S0

ψ)= 1 since ψ is elliptic. We also gave uniform bounds on ι(G, H) in (17) and on
|Sψ | in (10). □

In Lemma 13, we gave a bijection between Sψ and the set of pairs (H, ψH ). We use it to reindex the
sum (20) and obtain the expression

Idisc,ψ( f )=

∑
sH ∈Sψ

C(ψ, sH )ϵ
H
ψ (s

H
ψH ) f H (ψH ). (22)

This sum depends on parameters and representations of H , which we want to rewrite in terms of G.
For ϵψ , we use Mok’s so-called endoscopic sign lemma.

Lemma 29 [38, Lemma 5.6.1]. Let (H, ξ, sH ) ∈ E(G) and ψ ∈ 9(G∗, ηκ) be such that (H, ψH )

corresponds to (ψ, sH ). Let ϵG∗

ψ and ϵH
ψ be the respective characters of ψ and ψH . Let s H

ψH be the image
of ψH (−I ) in the quotient SH

ψ associated to H. Then we have

ϵH
ψ (s

H
ψH )= ϵG∗

(sψsH ).

We can now rewrite Idisc,ψ( f ) in a form conducive to extracting bounds.

Proposition 30. Let ψ ∈9(G, ξ), and let f ∈ H(G) be factorizable. Then

Idisc,ψ( f )=

∑
sH ∈Sψ

C(ψ, sH )ϵ
G∗

ψ (sψsH )
∏
v

( ∑
πv∈5ψv

⟨sψvsHv , πv⟩ trπv( fv)
)

=

∑
sH ∈Sψ

C(ψ, sH )
∑
π∈5ψ

ϵG∗

ψ (sψsH )⟨sψsH , π⟩ trπ( f ). (23)

Proof. We start from the equality (22):

Idisc,ψ( f )=

∑
sH ∈Sψ

C(ψ, sH )ϵ
H
ψ (s

H
ψ ) f H (ψH ).

The distribution f H (ψH ) was defined as f H (ψH )=
∏
v f Hv

v (ψH
v ). Each local factor can be written in

terms of the trace of representations in 5ψv by Theorems 18, 19, and 22. In all cases, the identity is

f Hv
v (ψHv

v )= e(Gv)
∑

πv∈5ψv

⟨sψvsHv , πv⟩ trπv( fv).

The local Kottwitz signs cancel out globally, and using Lemma 29, we rewrite

Idisc,ψ( f )=

∑
sH ∈Sψ

C(ψ, sH )ϵ
G∗

ψ (sψsH )
∏
v

( ∑
πv∈5ψv

⟨sψvsHv , πv⟩ trπv( fv)
)
.

At all but finitely many v, we have fv = 1Kv
for a hyperspecial maximal compact subgroup Kv . At these

places, trπv( fv) is only nonzero on Kv-unramified representations πv . Unramified local packets contain
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exactly one unramified representation following [26, Proposition 1.5.2(5)] so we interchange the sum and
product to get ∏

v

( ∑
πv∈5ψv

⟨sψvsHv , πv⟩ trπv( fv)
)

=

∑
π∈5ψ

(∏
v

⟨sψvsHv , πv⟩

)
trπ( f )

for π = ⊗vπv. Using the definition ⟨ · , π⟩ :=
∏
v⟨ · , πv⟩, we rewrite

Idisc,ψ( f )=

∑
sH ∈Sψ

C(ψ, sH )
∑
π∈5ψ

ϵG∗

ψ (sψsH )⟨sψsH , π⟩ trπ( f ). □

3.2. Upper bounds and the dominant group. Recall once more the bijection (H, ψH )↔ (ψ, sH ) from
Section 2.4.1. We will single out one object on either side, and show that for certain f , its contribution to
the distribution Idisc,ψ( f ) bounds the others. Recall that sψ ∈ Sψ was the image of the matrix −I ∈ SL2

under ψ .

Definition 31. Let (Hψ , ψHψ ) be the pair corresponding to the pair (ψ, sψ) containing the distinguished
element sψ under the bijection (H, ψH )↔ (ψ, sH ).

Note that it is possible that Hψ = G, for example when ψ is bounded.

Definition 32. Let ψ ∈9(G, ξ) and let (H, ξH , sH ) be such that ψ factors through ξH . Let f be a global
test function. Then define

S(ψ, sH , f )= C(ψ, sH )
∑
π∈5ψ

ϵG∗

ψ (sψsH )⟨sψsH , π⟩ trπ( f ).

Proposition 30 can then be reformulated as stating that

Idisc,ψ( f )=

∑
sH ∈Sψ

S(ψ, sH , f ). (24)

Lemma 33. If H = Hψ , then

S(ψ, sψ , f )= C(ψ, sψ)
∑
π∈5ψ

tr(π)( f ). (25)

Proof. This follows since sHψ = sψ by definition. Since Sψ ≃ (Z/2Z)r−1, this implies that ϵG∗

ψ (s2
ψ)= 1

and ⟨s2
ψ , π⟩ = 1 for all π . □

This allows us to state our main application of the stable trace formula.

Theorem 34. Let G be a unitary group, let ψ ∈9(G, ξ), and let f ∈ H(G) be a factorizable test function
with trπ( f ) real and nonnegative for all π ∈5ψ . Then there exist a constant C(ψ) such that

Idisc,ψ( f )≤ C(ψ)S(ψ, sψ , f ).

The constant C(ψ) satisfies 2−(N+1)
≤ C(ψ)≤ 22N ; it is thus bounded above and below independently

of ψ .



2206 Mathilde Gerbelli-Gauthier

Proof. We compare the various terms appearing in (24):

Idisc,ψ( f )=

∑
sH ∈Sψ

S(ψ, sH , f ).

Ignoring for a moment the constants C(ψ, sH ), the summands only differ from one another via the signs
ϵG∗

ψ (sψsH )⟨sψsH , π⟩ ∈ {±1} appearing as coefficients of the traces trπ( f ). In the term coming from sψ ,
we get

S(ψ, sψ , f )= C(ψ, sψ)
∑
π∈5ψ

tr(π)( f )

from Lemma 33. For any other sH ∈ Sψ , the coefficients ϵG∗

ψ (sψsH )⟨sψsH , π⟩ have the potential to be
equal to −1. Thus if trπ( f )≥ 0 for all π ∈5ψ , we have

S(ψ, sH , f )= C(ψ, sH )
∑
π∈5ψ

ϵG∗

ψ (sψsH )⟨sψsH , π⟩ trπ( f )

≤ C(ψ, sH )
∑
π∈5ψ

tr(π)( f )=
C(ψ, sH )

C(ψ, sψ)
· S(ψ, sψ , f ).

Summing over the sH we get

Idisc,ψ( f )≤

(∑
sH ∈Sψ C(ψ, sH )

C(ψ, sψ)

)
S(ψ, sψ , f ) := C(ψ)S(ψ, sψ , f ).

For the bounds, we showed in Lemma 28 that 2−(N+1)
≤ C(ψ, sH )≤ 1. As for the cardinality of Sψ , it is

bounded between 1 and 2N−1 as we saw in Section 2.3.8. □

In practice, the group Hψ is easily computed from ψ |SL2 .

Lemma 35. Let ψ = ⊞i (µi ⊠ ν(mi )) ∈9(N ) be a global square-integrable Arthur parameter, and let
N1 =

∑
mi ≡1 mod 2 mi . Then the group Hψ is

Hψ = U (N1)× U (N − N1).

Proof. By definition sψ = ψ(1,−I ) ∈ GLN . The image of −I under the m-dimensional representation
of SL2 is (−1)m+1 Im . Thus sψ = diag(−IN1, IN2), where N1 =

∑
mi ≡1 mod 2 mi and N2 = N − N1, with

centralizer GLN1 × GLN2 . □

The image ψ(SL2) and the group Hψ are determined by any localization ψv(SL2). In Section 5, we
will use this, together with the known (archimedean) parameters of cohomological representations, to
bound growth of cohomology.

3.3. Hyperendoscopy. We recall the notion of hyperendoscopic datum first introduced by Ferrari [17].
We will use it to bound the expression S(ψ, sψ , f ). As pointed out by Dalal [13], the results of [17] do
not quite hold in full generality, but they do hold for unitary groups, which have simply connected derived
subgroups.
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Definition 36. A chain of hyperendoscopic data for the (local or global) group G is a collection

H = (G, H1, . . . , Hq),

where H1 is a proper endoscopic datum for G and Hi+1 is a proper endoscopic datum for Hi .

The integer p(H)= q is the depth of the datum. Denote

ι(H)= (−1)p(H)ι(G, H1) · ι(H1, H2) · · · · · ι(Hq−1, Hq),

and IHdisc := I Hq
disc. As with endoscopic data, two chains of hyperendoscopic data will be considered

equivalent if they are conjugate under Ĝ. Ferrari denotes by HE(G) the collection of equivalence classes
of chains of hyperendoscopic data for G. If ψ ∈ 9(G) is an Arthur parameter, we will denote by
HE(G, ψ) the collection of equivalence classes of chains of hyperendoscopic data H ∈ HE(G) such that
ψ factors through the embedding ξp(H) associated to Hp(H). Note that the depth of chains in HE(G, ψ)
is bounded above by the number of simple constituents of ψ .

If H ∈ HE(G) is a chain of hyperendoscopic data, and f G is a test function, we inductively define
f Hi+1 = ( f Hi )Hi+1 . The function f Hp(H) depends on a choice of transfer f Hi at each step. We allow this,
but require that our choice of f Hi be consistent over chains that are truncations of one another. The
following is the specialization to a parameter ψ of a trick initially discovered by Ferrari [17, 3.4.2].

Proposition 37. Let (G, η) ∈ Ẽ(N ) be quasisplit and let ψN
∈9(N ). Then

SG
disc,ψN ,η

( f )=

∑
H∈HE(G,ψ)

ι(H)I Hq

disc,ψN ,η◦ξp(H)
( f Hq ).

Proof. If ψN
∈9sim(N ), then I G

disc,ψN ,η
( f )= SG

disc,ψN ,η
( f ) and the result holds trivially. Otherwise, we

have that
SG

disc,ψN ,η
( f )= I G

disc,ψN ,η
( f )−

∑
H∈E(G,ψN )

ι(G, H)SH
disc,ψN ,η◦ξ

( f H ). (26)

By induction, for each H in E(G, ψ), we have

SH
disc,ψN ,η◦ξ

( f H )=

∑
H∈HE(G,ψ)

ι(H)I Hq

disc,ψN ,η◦ξp(H)
( f Hq ). (27)

By construction, each H ∈ HE(G, ψN ) is obtained from a hyperendoscopic datum H′
∈ HE(H, ψN ) for

some H ∈ E(G, ψN ), and p(H)= p(H′)+ 1. Substituting (27) into (26) yields the result. □

Recall that when G ∈ Ẽsim(N ), the map ψ 7→ψN is injective. On the other hand, if H is an product of
unitary groups, there could be several parameters ψH for H such that ψH

7→ ψN under ηκ·κ . From [38,
Section 5.6] we see that if H = H1 × H2 with Hi = U (Ni ), and f H

= f H1 × f H2 , then

SH
disc,ψN ,ηκ·κ

( f H )=

∑
ψH =ψ1×ψ2,ψH 7→ψN

SH1
disc,ψ1

( f H1)× SH2
disc,ψ2

( f H2).

The expression S(ψ, sH , f ) of Definition 32 picks out one of these summands.
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Definition 38. Let H = H1 × H2 as above, and let H ∈ HE(H) with p(H)= q. Then Hq = Hq1 × Hq2

with Hqi ∈ HE(Hi ). Let ψH
= ψ1 ×ψ2 ∈9(H, ηκ·κ). For a test function f Hq = f Hq1 × f Hq2 , define

I Hq

disc,ψH ( f H )= I
Hq1
disc,ψ1

( f Hq1 )× I
Hq2
disc,ψ2

( f Hq2 ).

Here we use the notation I
Hqi
disc,ψi

as in Section 2.6 since U (Ni ) ∈ Ẽsim(Ni ).

Corollary 39. Let H = H1× H2 as above and let ψH
=ψ1×ψ2 ∈9(H, ξκ) so that (H, ψH ) corresponds

to (ψN , sH ) under the correspondence of Lemma 13. Assume that f H
= f H1 × f H2 . Then

S(ψ, sH , f )= ι(G, H)
∑

H∈HE(H,ψ)

ι(H)I Hq

disc,ψH ( f Hq ).

Proof. We see in [38, Section 5.6] that the term SH1
disc,ψ1

( f H1)× SH2
disc,ψ2

( f H2) is equal to

1
|Sψ1 ||Sψ1 |

ϵH1(ψ1)ϵ
H2(ψ2) f H1(ψ1) f H2(ψ2)=

1
|Sψ |

ϵH (ψ) f H (ψ).

By the argument of Proposition 30, the last expression is equal to

1
|Sψ |

∑
π∈5ψ

ϵG∗

ψ (sψsH )⟨sψsH , π⟩ trπ( f )=
S(ψ, sH , f )·
|Sψ |C(ψ, sH )

=
S(ψ, sH , f )
ι(G, H)

.

Applying Proposition 37 to each factor of SH1
disc,ψ1

( f H1)× SH2
disc,ψ2

( f H2), we get

S(ψ, sH , f )
ι(G, H)

=

( ∑
H1∈HE(H1,ψ1)

ι(H1)I
Hq1
disc,ψ1

( f Hq1 )

)
·

( ∑
H2∈HE(H2,ψ2)

ι(H2)I
Hq2
disc,ψ2

( f Hq2 )

)
=

∑
H∈HE(H,ψ)

ι(H)I Hq

disc,ψH ( f Hq ). □

4. Limit multiplicity

Here we apply the results of the previous section to the limit multiplicity problem.

4.1. Level structures. Let OE and OF be the rings of integers of the global fields E and F . We introduce
sets of places of F :

• S f is a finite set of finite places of F , containing the places which ramify in E as well as the places
below those where the character χ− introduced in Section 2.1 is ramified.

• S∞ is the set of all infinite places of F .

• S0 ⊊ S∞ is a nonempty subset of the infinite places.

• S = S f ∪ S∞.
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Note that the third requirement implies that F ̸= Q. Let p be an ideal of F with residue characteristic
strictly greater than N 2

[F : Q]+ 1, corresponding to a place vp /∈ S. For each finite place v of F , denote
by OFv the ring of integers of Fv , and let ÔF =

∏
v OFv , and similarly for ÔE . We define the subgroups

U (N , pn)⊂ U (N ,A
f
F ) to be

U (N , pn) := {g ∈ U (N , ÔF )⊂ GLN (ÔE) | g ≡ IN (p
nOE)}.

For any finite place v of F , let U (N , pn)v = U (N , pn)∩U (N )v . At the expense of possibly enlarging the
set S f , note that for all v /∈ S∪{vp}, the subgroup U (N , pn)v is a hyperspecial maximal compact subgroup
of U (N )v. This gives level structures on the quasisplit group U (N ). If H = U (N1)× · · · × U (Nr ) is a
product of quasisplit unitary groups, we define level subgroups H(pn)= U (N1, p

n)× · · · × U (Nr , p
n).

Let (G, ξ) be an inner form of U (N , F) defined with respect to a Hermitian inner product and
with prescribed signatures U (av, bv) at the archimedean places. We require that Gv be compact at the
archimedean places contained in S0: this ensures that the group G is anisotropic. Following Lemma 8, if
N is odd, the group G can be chosen so that Gv is quasisplit at all finite places. If N is even, then G is
determined by choosing at most one place v ∈ S f , up to again enlarging S f . Once that choice is made,
the group G can be chosen to be quasisplit away from {v} ∪ S∞. In both cases, this group G is realized
as an inner form (G, ξ) as in Section 2.2.2.

For each finite v /∈ S f , the inner twist induces isomorphisms ξv : Gv ≃ U (N )v. For each natural
number n, we fix a compact subgroup K (pn)=

∏
v Kv(p

n) of G(AF ) as follows: at all finite v /∈ S, we
let Kv(p

n) = ξ−1
v (U (N , pn)v); at v ∈ S f , the subgroup Kv(p

n) is an arbitrary open compact subgroup
fixed once and for all independently of n; at the archimedean places we let Kv(p

n)≃ Uav (R)×Ubv (R) be
a maximal compact subgroup. Let K f (p

n)=
∏
v<∞

Kv(p
n) and K∞(p

n)=
∏
v|∞ Kv(p

n). We may use
the notation Kv instead of Kv(p

n) for v ̸= vp. We extend these definitions to products of unitary groups.
We now define the (cocompact since G is anisotropic) lattices

0(pn) := G(F)∩ K f (p
n).

Recall that G∞ =
∏
v|∞ Gv and let XG = G∞/K∞ZG∞

. Assume that G∞ has at least one noncompact
factor. The diagonal embedding 0(pn) ↪→

∏
v|∞ Gv induces an action 0(pn)↷ XG , and we let X (pn) :=

0(pn)\XG . We start by comparing them to their disconnected counterparts realized as adelic double
quotients. Let

Y (pn)= G(F)\G(AF )/K (pn)ZG(AF ).

The quotient Y (pn) is a disjoint union of finitely many connected locally symmetric spaces, each associated
to a conjugate ot K (pn). In particular, the summand corresponding to K (pn) is X (pn).

Proposition 40. Let G be an inner form of U (N ) and Y (pn) be defined as above. The cardinality of the
set of components π0(Y (pn)) is bounded independently of n.

Proof. We adapt an argument from [16, Section 2]. Considering G as a subgroup of GLN /E , let
det : G → U (1, E/F) be the determinant map and let G1

= ker(det). This map induces a fibering of
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Y (pn) over
U (1, F)\U (1,AF )/ det(Z(AF )K (pn)).

The fibers are adelic double quotients for the group G1, which is simply connected and has at least one
noncompact factor at infinity. So by [41, 7.12], the group G1 satisfies strong approximation with respect
to the set S∞ and G1(F) is dense in G1(A

f
F ), making the fibers connected. Thus we find that

π0(Y (pn))≃ U (1, F)\U (1,AF )/ det(Z(AF )K (pn))= E1
\A1

E/ det(Z(AF )K (pn)).

Now the image det(Z(AF )) is the subgroup (A1
E)

N of A1
E . For each finite placew, the factor corresponding

to Ew in the quotient A1
E/(A

1
E)

N is a finite set. It follows that by increasing the level in powers of a single
prime p, one can only produce a bounded number of components. □

We now fix a unitary irreducible admissible representation π∞ = ⊗v|∞πv of G∞ with trivial central
character and such that πv is the trivial representation if Gv is compact. Denote

m(π∞, p
n) := dim HomG∞

(π∞, L2(0(pn)\G∞)). (28)

Since X (pn) is one of the connected components of Y (pn), we have

m(π∞, p
n)≤ dim HomG∞

(π∞, L2(Y (pn)))=

∑
π=π∞⊗π f

m(π) dimπ
K f (p

n)

f . (29)

We will be interested in the asymptotics of the multiplicities m(π∞, p
n) as n → ∞.

4.2. Choice of test functions. We define test functions whose traces will compute the multiplicity of
archimedean representations at level pn . Recall that µv denotes the Haar measure on Gv.

Definition 41. At each finite place v, let fv(pn) := 1Kv(pn)/µv(Kv(p
n)).

Definition 42. Let v ∈ S0 be an archimedean place such that Gv is compact. Let fv(pn) be equal to the
constant function fv = µv(Gv)

−1.

The traces of these test functions count the dimension of spaces of K (pn)-fixed vectors. At v ∈ S0,
they only detect the trivial representation and have vanishing trace on all other representations of Gv.
We want functions that play the same role at the noncompact archimedean places: they should detect
representations πv contained in a specific subset 50

ψv
⊂5ψv and vanish on 5ψv \50

ψv
. The key is that

we will only be working with Arthur packets attached to parameters ψ all having one specific ψ∞. As
such, the test function at an infinite place v only needs to isolate πv ∈50

v from the other finitely many
representations in the same packet.

Lemma 43. Let ψv be a local Arthur parameter with associated Arthur packet 5ψv . Fix a subset
50
ψv

⊂5ψv . Then there exists a function f 0
v ∈ H(Gv) such that

trπv( f 0
v )=

{
1, πv =50

ψv
,

0, otherwise,
πv ∈5v.
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Proof. This follows directly from linear independence of characters for admissible representations. If v is
archimedean this was proved by Harish-Chandra in [22]. □

Definition 44. Let v be a noncompact archimedean place, let ψv be an Arthur parameter and fix a subset
50
ψv

⊂5ψv . Let fv(pn)= fv(pn,50
ψv
) be the function f 0

v described above.

Definition 45. Let the function f (pn) be defined as f (pn)=
∏
v fv(pn

v). We will also denote f f (p
n)=∏

v∤∞ fv(pn
v).

Given a choice of ψ∞ and 50
ψ∞

, the function f (pn) satisfies the assumption of Theorem 34: it is
factorizable and has nonnegative trace on π ∈5ψ .

Proposition 46. Let ψ ∈9(G, ξ). For each v ∈ S∞ \ S0, fix a subset 50
ψv

and a corresponding function
f (pn)= f (pn,50

ψv
). Then we have

tr Rdisc,ψ( f (pn))=

∑
π

m(π) dimπ
K f (p

n)

f

where the sum is taken over representations π = (⊗v|∞πv)⊗π f ∈5ψ such that for archimedean v, the
representation πv is trivial if v ∈ S0 and πv ∈50

v otherwise.

Proof. As stated in Theorem 23, the distribution tr Rdisc,ψ( f ) computes the sum of trπ( f )=
∏
v trπv( fv)

over all representations in the packet5ψ . At the finite places, the trace of convolution by the characteristic
function of a compact open subgroup Kv is equal to the product µv(Kv) · dimπKv

v . For archimedean
places v ∈ S0, the representations πv are finite-dimensional so the only representation with a Kv-fixed
vector is the trivial representation. At v ∈ S∞ \ S0, the function fv(pn) was chosen precisely to detect
πv ∈50

ψv
. □

The key input allowing us to compare multiplicity growth on G and H ∈ E(H) is a fundamental lemma
for congruence subgroups, proved by Ferrari [17].

Theorem 47 [17, Theorem 3.2.3]. Let p be a prime of F with localization Fvp and residue field kp. Let
Nm(p) be the cardinality of kp and let p be its characteristic. Assume that p > N 2

[F : Q] + 1. Let
H ∈ E(G), and d(G, H)= (dim G − dim H)/2. Then the functions

fvp(p
n)=

1Kvp (p
n)

µvp(Kvp(p
n))

and f H
vp
(pn)= Nm(p)−n·d(G,H)

1Kvp (p
n)H

µvp(Kvp(p
n)H )

form a transfer pair.

4.3. Adaptation of previous limit multiplicity results. Here, we collect all the results so far and import
known upper bounds from the literature to prove our main limit multiplicity results. We start with a
discussion of central characters.
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4.3.1. Central character data. Our initial discussion of the discrete spectrum in Section 2.3.1 included
the prescription of a subgroup X ⊂ ZG(AF ), and we recalled in Proposition 15 that in the case where
G = UE/F (N ), the central character of representations in a packet 5ψ is determined explicitly in terms
of ψ . We now need to extend this discussion to central characters of H ∈ E(G). For this, we will denote
XG = ZG(AF ), and XH = Z H (AF ). As described in [5, Section 3.2], the group XG can be viewed
canonically as a subgroup of XH , and we can speak of (XG, ω) as a central character datum of H , though
it is not properly speaking a character Z H (AF ). This can be extended inductively to H ∈ EH(G). From
Proposition 15 and the definition of the embeddings in (7), we get the following.

Lemma 48. Let G be a unitary group and (H, ξH ) ∈ E(G). Let ψ ∈9(G, ξ) be associated to the central
character datum (XG, ω), and be such that ψ = ξH ◦ψH . Then the central character datum (XG, ω

′)

associated to ψH is determined by ω and ξH .

4.3.2. Sets of parameters.

Definition 49. Let G be a reductive group, ψ∞ a parameter of G∞, and (X, ω) a central character.
We denote by 9(G, ψ∞, ω) the set of ψ ∈ 9(G) such that (ψ)∞ = ψ∞ and such that the associated
representations in the packet of ψ have central character ω.

Definition 50. Letting G be as above, and (H, ξ) ∈ E(G) or H = G, we define for f ∈ H(H),

I H
disc,ψ∞,ω

( f )=

∑
ψ∈9(G,ψ∞,ω)

I H
disc,ψ( f ). (30)

We will need to rewrite the right-hand side of (30) as a sum over parameters of H . By definition, for
each ψ ∈9(G, η), we have

I H
disc,ψ( f )=

∑
cH η◦ξ→c(ψ)

I H
disc,cH ( f ),

for cH
∈ C(H). But following the main theorem of the spectral expansion of the trace formula [38,

Proposition 4.3.4] applied to each of the simple factors of H , shows that I H
disc,cH ( f ) = 0 unless cH

=

c(ψH,N ) is attached to a parameter ψH
= (ψ̃H , ψN ,H ). By the assumption cH η◦ξ

−→ c(ψ), we mush have
ψH,N

= ψN , and ψ̃ must factor through L H . Thus we can rewrite∑
ψ∈9(G,ψ∞,ω)

I H
disc,ψ( f )=

∑
ψ∈9(G,ψ∞,ω)

∑
ψH 7→ψ

I H
disc,ψH ,ω

( f ).

In the arguments of this section, we will work with three families of groups, and three sets of parameters,
which we describe now.

• The group G ∈ Ẽsim(N ) is the inner form of UE/F (N ) for which we ultimately want to produce
bounds. These will be obtained in Theorem 56 by taking a sum over 9(G, ψ∞, 1), for the trivial
central character of ZG .
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• The group H = Hψ = U (N1) × U (N2) with N1 + N2 = N belongs to the endoscopic datum
(H, ξ, s) ∈ E(G) whose stable trace gives the upper bounds in Theorem 34. In the lead-up to
Theorem 34, for each ψ ∈9(G, ξ), we singled out a parameter ψH such that ξ ◦ψH

=ψ . Through
this choice, the parameter ψ∞ of G∞ determines a unique parameter ψH

∞
of H∞. In Proposition 54,

the sum will be taken over the set 9(H, ψH
∞
, ω) for a suitable central character ω.

• The difference between the distribution giving the upper bounds in Theorem 34 and I H
disc,ψH is

expressed in Corollary 39 in terms of hyperendoscopic data (Hq , ξq) for H . We will consider

parameters such that ξq(ψ
Hq ) ∈5(H, ψH

∞
, ω). We have ψHq

∞ = ψ
H1

q
∞ ×ψ

H2
q

∞ and we will give upper
bounds on the multiplicities of representations associated to each of these factors in Propositions 51
and 52.

4.3.3. Upper bounds for hyperendoscopic groups. We start by adapting limit multiplicity results of Savin
[43], which will form the basis for our inductive proof. Since Savin’s result applies to semisimple groups,
we pay attention to the central characters and components of locally symmetric spaces. We first give
bounds for bounded parameters. The result is stated in terms of any G and H , but will be specialized to
G = U (N2) and H = H 2

q .

Proposition 51. Let G ∈ Ẽsim(N ) and H ∈ HE(G) be a hyperendoscopic group. Let ψ∞ ∈9(G∞) be a
bounded parameter with regular infinitesimal character. Let (XG, ω) be a central character datum for G
such that ω |(XG∩G∞) is the central character associated to ψ∞ by Proposition 15. Let vp be an unramified
finite place of F , associated to the prime p, and let f (pn)=

∏
v fv(pn) ∈ H(H) be such that:

• fv(pn) is independent of n if v ̸= vp.

• fvp(p
n)= 1K (pn)/µ(K (pn)), for K (pn) as in Section 4.1.

• f (pn) satisfy the assumptions of Theorem 34.

Then

|I H
disc,ψ∞,ω

( f (pn))| ≪ Nm(pn)dim H−1.

Proof. Since the infinitesimal character of ψ∞ is regular, we can equate

I H
disc,ψ∞,ω

( f (pn))= tr RH
disc,ψ∞,ω

( f (pn))=

∑
ψH

∞ 7→ψ∞

∑
ψH ∈9(H,ψH

∞,ω
′)

∑
π∈5

ψH

m(π) trπ( f (pn)),

where (X, ω′) is the central character datum associated to ψ as in Lemma 48. Since the first sum is finite,
we will bound ∣∣∣∣ ∑

ψH ∈9(H,ψH
∞,ω

′)

∑
π∈5

ψH

m(π) trπ( f (pn))

∣∣∣∣.
For each π , we have trπ( f (pn)) =

∏
v trπv( fv(pn)). At v | ∞, the packet is always the same, so

|trπ∞( f∞)| is uniformly bounded. For each finite v, there is an open compact subgroup K ′
v ⊂ Gv,

depending on n only if v = vp, such that |trπv fv(pn)| ̸= 0 =⇒ dimπ
K ′
v

v ̸= 0. Indeed, since fv(pn) is
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Kv-finite, where Kv is a maximal compact subgroup, there is a subgroup K ′
v ≤ Kv of finite index such

that fv(pn) is K ′
v-invariant, so that convolution by fv is a projection onto πK ′

v
v . At all but finitely many

places the group Kv is hyperspecial, we have fv(pn) = 1Kv
and we can take K ′

v = Kv. Thus we have
|trπv fv|< C( fv) dimπK ′

v and by Bernstein’s uniform admissibility [8], the right-hand side is bounded
uniformly, with C( fv(pn)) = 1 at v /∈ S. At v = vp, we have K ′

v = Kv(p
n). Let K ′(pn) =

∏
v<∞

K ′
v.

From our restriction on the central character, we thus have∣∣∣∣ ∑
9(H,ψH

∞,ω
′)

∑
π∈5

ψH

m(π) trπ( f (pn))

∣∣∣∣ ≤ C(ψ∞, S)
∑

π :π∞∈5
ψH

∞

ω(π)=ω′

m(π) dimπ
K ′(pn)
f ,

where C(ψ∞, S) is a constant depending only on ψ∞ and S.
Since ψH

∞
is bounded, any representation π∞ ∈5ψH

∞
is tempered, which implies that π ∈5H

ψ occur in
the cuspidal part of the discrete spectrum [52, Theorem 4.3]. Thus for each π∞ ∈5ψH

∞
we have∑

π=π∞·π f
ω(π)=ω′

m(π) dimπ
K ′(pn)
f ≤ dim HomH∞

(π∞, L2
cusp(H(F)\H(AF ), ω

′)K ′(pn)).

The right-hand side of the inequality is equal to

m(π∞, p
n, ω′) := dim HomH∞

(π∞, L2
cusp(H(F)\H(AF )/K ′(pn), ω′)). (31)

The space Y ∗

H (p
n) := H(F)\H(AF )/K ′(pn) carries commuting actions of H∞ and Z H (AF ), inducing

representations on L2
cusp(Y

∗

H (p
n)). For n large enough, the character ω′ is trivial on XG ∩ K ′(pn), and

thus appears in the representation of XG on L2
cusp(Y

∗

H (p
n)). It is this ω′-isotypic subspace that we denote

by L2
cusp(Y

∗

H (p
n), ω′).

To bound m(π∞, p
n, ω′), consider first the case where the central character datum for XH is trivial:

this setup is similar to that of Proposition 40. We have H = U (N1)× · · · × U (Nr ); let H 1
= SU(N1)×

· · · × SU(Nr ). The representation π∞ of H∞ restricts to an irreducible representation ρ∞ of H 1
∞

; see [2,
Section 2]. Let

X H (p
n)= H 1(F)\H 1(A)/K 1(pn), K 1(pn)= K ′(pn)∩ G1(A).

The group H 1 is simply connected and has no compact factors at infinity, so X H (p
n) is connected [41].

Following a result of Savin [43], we have

m(ρ∞, p
n) := dim HomH1

∞
(ρ∞, L2

cusp(X H (p
n)))≍ Vol(X H (p

n))≍ Nm(p)n·dim H1
.

We now consider general central characters. The space Y ∗

H (p
n) is a disjoint union of finitely many locally

symmetric spaces, associated to conjugates of K 1(pn), and the theorem of Savin applies to each of them.
Let T = H/H 1, and let ν denote the quotient map, through which all central characters factor, see
Proposition 15. Following [14, 2.7.1], the set π0(Y ∗

H (p
n)) is a torsor for the finite group

Tpn := T (AF )/T (F)ν(K ′(pn)).
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Denote by XG,pn the image of XG in this quotient. The action of XG,pn on π0(Y H (pn)) is induced by
multiplication in Tpn , thus π0(Y ∗

H (p
n)) is a finite union of [Tpn : XG,pn ] many principal homogeneous

spaces for XG,pn . Thus as a XG,pn -representation, the space Hom(π∞, L2
cusp(Y

∗

H (p
n))) caries finitely many

copies of the regular representation of XG,pn , and all characters of XG factoring through XG,pn occur with
equal multiplicity. The group XG is the adelic points of torus of diagonal matrices isomorphic to U (1),
and T ≃ U (1)r . So each character ω′ of XG factoring through XG,pn does so with multiplicity

m(π∞, p
n, ω′)= m(ρ∞, p

n)[Tpn : T H
pn ] = m(ρ∞, p

n)
[T (1) : T (pn)]

[XG,1 : XG,pn ]
≍ Nm(pn)dim H−1.

Summing over all π∞ in 5ψ∞
, we conclude. □

We now give bounds for parameters where ψ(SL2) is maximally large. In the final proof, the group G
will be specialized to U (N1).

Proposition 52. Let G ∈ Ẽsim(N ), andψ∞ ∈9(G∞). Let f (pn)=
∏
v fv(pn) satisfy the same assumptions

as in Proposition 51. Let ψ∞ ∈9(G∞) be a parameter with regular infinitesimal character and such that
ψ∞ |SL2= ν(N ). Let (XG, ω) be a central character datum. Then there is a constant M depending only
on G, ψ∞, and the set S of bad places (and in particular neither on n nor on ω) such that

|I G
disc,ψ∞,ω

( f (pn))|< M.

Proof. The proof is a simplified version of that of Proposition 51. The restriction of the infinitesimal
character and on the possible representations at infinity gives

|I G
disc,ψ∞,ω

( f (pn))| ≤ C(ψ∞, S)
∑

π :π∞∈5ψ∞

ω(π)=ω

m(π) dimπ
K ′(pn)
f .

The assumption on the Arthur SL2 implies that the representations π∞ ∈ 5ψ∞
are one-dimensional;

see, e.g., [4, Section 5]. Thus they factor through the determinant map ν, and, as above, through
the action of the quotient T (AF )/T (F). It follows that in this case the multiplicity m(π∞, p

n, χ) is
bounded above by |T (AF )/T (F)ν(K (pn))|. Recall here that XG = Z(AF ). If ω were trivial, then
the representations contributing to m(π∞, p

n, ω) would be bounded above by the size of the quotient
|T (AF )/T (Q)ν(K (pn) · Z(AF ))|, which we showed in Proposition 15 to be bounded independently of
n. But by the proof of Proposition 51, the representation of XG on Hom(π∞, L2

cusp(Y
∗H(pn))) factors

through a sum of copies of the regular representation of a finite quotient XG,pn . As such, all characters of
XG appearing in the quotient do so with equal multiplicity. Thus the bound M also holds for ω. □

4.4. Limit multiplicity for G. Before we assemble the results for various endoscopic groups, we bound
the number of central character data (XH , ω) of a given level and restriction to XG .

Lemma 53. Let H ∈ E(G). Let (XG, ω) be a central character datum for G. For each n, fix a level
structure K H

f (p
n) as in Section 4.1. Define

4(ω, pn)= {(XH , ωH ) : ωH |XG = ω,ωH (XH ∩ K H
f (p

n))= ωH (XH ∩ Z H (F))= 1}.

Then we have |4(ω, pn)| ≪ Nm(pn).
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Proof. Central characters of H = UE/F (N1)×UE/F (N2) are products ωH = ω1 ×ω2 of characters of the
respective centers. The condition upon restriction to Z H (F) implies that these are of the form ωi = θi ◦det
for θi a Hecke character of A1

E . Given a choice of θ1, the condition that ωH |XG = ω restricts θ2 to at
most N2 different characters. The restriction on conductor thus implies that |4(χ, pn)| ≪ |4(apn)|,
where 4(apn) consists of Hecke characters θ1 of A1

E/E1 whose conductor divides apn; the presence of a
conductor away from p comes from the possibility that at places v ∈ S f , the (fixed) subgroup K H

v (p
n) is

not maximal. The number of such characters grows like Nm(pn). □

We now assemble the results of Section 4.3 to give upper bounds for the contribution of parameters
where all but one summand have trivial Arthur SL2. We start by bounding the contribution of each
hyperendoscopic group of Hψ .

Proposition 54. Let G ∈ Ẽsim(N ), and H = (UE/F (N1)× UE/F (N2), ξ) ∈ E(G). Let ψ∞ and ψH
∞

be
such that:

(1) ψ∞ = ξ ◦ψH
∞

.

(2) ψ∞ = ψ∞,1 ⊕ψ∞,2 with ψ∞,1 |SL2= ν(N1) and ψ∞,2 |SL2= ν(1)N2 .

(3) Each ψi,∞ factors through LU (Ni ).

Let (XG, ω) be a central character datum for H consistent with to ψH
∞

. Assume that p is large enough to
apply the results of Theorem 47. Let Hq ∈ HE(H), and let f (pn) be the sequence of test functions defined
in Definition 45. Then

|I Hq

disc,ψH
∞,ω
( f Hq (pn))| ≪ Nm(pn)N (N−N1).

Proof. Since Hq is a hyperendoscopic group of H we have Hq = H 1
q × H 2

q , where ψi factors through H i
q .

The growth rate in the theorem is defined up to constants, so we can assume that f Hq (pn)= f H1
q (pn)×

f H2
q (pn); this is true locally almost everywhere by the Fundamental Lemma. Indeed, at all v /∈ S ∪ {vp},

the function f Hq
v (pn) can be taken to be the characteristic function of a hyperspecial maximal compact

subgroup of Hq,v. At v = vp, we iterate the conclusion of Theorem 47 to get

f Hq
vp (p

n)= Nm(p)−n·d(G,Hq )
1Kvp (p

n)Hq

µ(Kvp(p
n))

:=
Nm(p)−n·d(G,Hq )

µ(Kvp)(p
n)/µ(Kvp(p

n)Hq )
ϕvp(p

n). (32)

Write ϕvp(p
n)= ϕ1

vp
(pn)×ϕ2

vp
(pn), and for i = 1, 2, let

ϕH i
q (pn)= ϕi

vp
(pn) ·

∏
v ̸=vp

f
H i

q
v (pn), ϕHq (pn)= ϕH1

q (pn)×ϕH2
q (pn).

Each of the two functions ϕH i
q (pn) satisfies the identical assumptions of Propositions 51 and 52. We

also recall that H = U (N1)× U (N2), and we shorten U (Ni )= H i . We also have ψH
= ψ1 ⊕ψ2 with

ψi landing in L H i . Thus if we fix data (XH1, ω1) and (XH2, ω2) coming from H 1 and H 2 respectively,
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we find that∣∣∣∣ ∑
9(H,ψH

∞,ω1×ω2)

I Hq

disc,ψH (ϕ
Hq (pn))

∣∣∣∣ ≤

∑
9(H,ψH

∞,ω1×ω2)

|I
H1

q
disc,ψ1

(ϕ1(pn))| · |I
H2

q
disc,ψ2

(ϕ2(pn))|

= |I
H1

q
disc,ψ∞,1,ω1

(ϕ1(pn))| × |I
H2

q
disc,ψ∞,2,ω2

(ϕ2(pn))|

≪ M · Nm(pn)dim H2
q −1.

The quantity in the left-hand side above isn’t quite what we want to measure. First, we want to replace
the choice of a pair of central characters ω1 ×ω2 by a sum over all parameters with central character
datum (XG, ω). In Lemma 53, we saw that the number of products ω1 ×ω2 of level pn which restrict to
ω on XG is ≪ Nm(pn). Second, we slightly modify the test functions. From (32), we have

f Hq (pn)= C(G, Hq , n)ϕHq (pn), C(G, Hq , n)≍ Nm(p)n·d(G,Hq ).

Thus combining our upper bounds with these modifications we obtain

|I Hq

disc,ψH
∞,ω
( f Hq (pn))| ≪ Nm(pn)(1+d(G,Hq ))

∣∣∣∣ ∑
ψH ∈9(H,ψH

∞,ω1×ω2)

I Hq

disc,ψH (ϕ
Hq (pn))

∣∣∣∣
≪ Nm(pn)d(G,Hq )+dim H2

q

= Nm(pn)dim(G)/2−dim(H1
q )/2+dim(H2

q )/2.

Recall that dim G = N 2, and that since the dual group of H 1
q receives an N1-dimensional irreducible

representation of SL2, we have dim(H 1
q ) = N 2

1 . Finally, it follows that dim(H 2
q ) ≤ (N − N1)

2, which
gives us the desired upper bounds. □

Remark 55. Note that the only situation in which this upper bound has a chance of being sharp is when
dim H 2

q = (N − N1)
2, i.e., when Hq = H .

We have now collected all the facts leading up to our limit multiplicity theorem.

Theorem 56. Let ψ∞ be an Arthur parameter with regular infinitesimal character, and such that
ψ∞ |SL2(C)= ν(2k)⊕ ν(1)N−2k . Let (XG, 1) be the trivial central character. Fix 50

ψ∞
⊂ 5ψ∞

. For
each ψ ∈9(G, ψ∞, 1), let

50
ψ = {π = ⊗

′

vπv ∈5ψ | π∞ ∈50
ψ∞
.}

Then ∑
ψ∈9(G,ψ∞,1)

∑
π∈50

ψ

m(π) dimπ
K (pn)
f ≪ Nm(pn)N (N−2k). (33)
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Proof. From Proposition 46, we take f (pn) as in Section 4.2 and write∑
ψ∈9(G,ψ∞,1)

∑
π∈50

ψ

m(π) dimπ
K (pn)
f =

∑
ψ∈9(G,ψ∞,1)

tr Rdisc,ψ( f (pn))

=

∑
ψ∈9(G,ψ∞,1)

Idisc,ψ( f (pn)) (Theorem 24)

≤

∑
ψ∈9(G,ψ∞,1)

C(ψ)S(ψ, sHψ , f (pn)),

where the last inequality follows from the results of Section 3.2, where the notation C(ψ) was defined,
since f (pn) takes only positive values. The group Hψ is determined by the localization ψv of ψ at any
place v, and in particular by ψ∞. Thus Hψ is the same for any ψ ∈9(G, ψ∞, 1) since by definition they
all localize to the same ψ∞. By the assumption on ψ∞, we have Hψ = UE/F (2k)× UE/F (N − 2k), and
the parameters satisfy the assumptions of Proposition 54. To lighten the notation, we denote Hψ by H
and sψ by sH for the end of the proof.

The parameterψH corresponding to sH under the bijection of Lemma 13, we have shown in Corollary 39
that

S(ψ, sH , f (pn))= ι(G, H)
∑

H∈HE(H,ψ)

ι(H)I Hq

disc,ψH ( f Hq (pn)).

For each summand on the right-hand side, we sum over 9(H, ψH , ω), where (XG, ω) is determined
by ψH as in Lemma 48. We then apply Proposition 54 with N1 = 2k. Note that we have ensured in
Lemma 14 that the infinitesimal character of the representations of Hq,∞ associated to all ψHq

∞ are regular.
This gives us the following bounds:∣∣∣∣ ∑

ψ∈9(H,ψ∞,1)

I Hq

disc,ψH ( f Hq (pn))

∣∣∣∣ ≪ Nm(pn)N (N−2k).

We conclude by summing over the finitely many Hq ∈ HE(H, ψ). □

5. Applications to growth of cohomology

We now apply the results of Section 4 to cohomology of arithmetic groups. This section is concerned
with local questions at infinity, and the notation is different from the rest of the paper. From now until
Section 5.3, G will be a Lie group.

5.1. Cohomological representations. Given a Lie group G, let G̃ denote the unitary dual of G.

Theorem 57 (Matsushima’s formula [36]). Let G be a connected semisimple Lie group with maximal
compact subgroup K and complexified Lie algebra g. Let 0 ⊂ G be a cocompact lattice and let
X0 = 0\G/K . For π ∈ G̃, denote by m(π, 0) the multiplicity of π in the right-regular representation of
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G on L2(0\G). Then

dim(H i (X0,C))=

∑
π∈G̃

m(π, 0) dim(H i (g, K ;π)).

The H i (g, K ;π) which appear in the right-hand side are the so-called (g, K ) cohomology groups
of π . We say that π is cohomological if H∗(g, K ;π) ̸= 0; such representations were characterized by
Vogan and Zuckerman [49].

Theorem 58 [49]. Let G, g be as above. Let K a maximal compact subgroup of G and g = k⊕ s be
the corresponding Cartan decomposition with k the Lie algebra of K . The group G has finitely many
cohomological representations π , and H i (g, K ;π) ̸= 0 if and only if :

(i) π has the infinitesimal character of the trivial representation of G.

(ii) HomK (π,∧
is) ̸= 0.

Where the action of K on ∧
is is induced by the adjoint representation.

The results apply only to semisimple groups: they are extended to U (a, b) in [48], and condition (ii)
above implies that cohomological representations have trivial central character. Below, we give a concrete
parametrization of cohomological representations of U (a, b) in terms of refinements of partitions of a +b
which are compatible with the signature (a, b). More details can be found in [6] and [20].

5.1.1. Cohomological representations and ordered bipartitions. In [49], cohomological representations
Aq are built from so-called θ-stable parabolic subalgebras q = l⊕ u. In [6, Section 5], Bergeron and
Clozel show that for U (a, b), the data of the algebra q can be encoded in a choice of centralizing Levi
subgroup L(q)=

∏
U (ai , bi )⊂ U (a, b) whose Lie algebra is l. Thus q’s are parametrized by ordered

tuples
B = ((a1, b1), . . . , (ar , br ))

of pairs of nonnegative integers with
∑

ai = a and
∑

bi = b. We call these tuples B ordered bipartitions
of (a, b) and denote the associated Levi subgroup L B , and the corresponding representation by πB .

The ordered bipartitions of (a, b) almost parametrize the cohomological representation of U (a, b),
but there is redundancy. Specifically, πB ≃ πB ′ if B ′ has adjacent pairs of the form (a1, 0), (a2, 0) (resp.
(0, b1)(0, b2)) which are collapsed into (a1 + a2, 0) (resp. (0, b1 + b2)) in B. We will say that an ordered
bipartition is reduced if all pairs in which one entry is zero are maximally broken up.

Example 59. The following ordered bipartition is not reduced:

((3, 1), (2, 0), (1, 0), (0, 3)).

It is associated to the same cohomological representation as the following reduced ordered bipartition:

((3, 1)(1, 0)(1, 0)(1, 0)(0, 1)(0, 1)(0, 1)).

The cohomology of πB can be expressed in terms of B.
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Proposition 60 [49, Proposition 3.2]. Let q = l⊕ u be a θ -stable parabolic subalgebra and let g = k⊕ s

be the Cartan decomposition. Let R = dim u∩ s. Then

H i (g, K , Aq)≃ Homl∩k(∧
i−Rs,C).

In particular, the smallest nonvanishing degree of cohomology of Aq is R, which, writing Aq = πB

and referring once more to [6] and [20], is equal to

R =
dim(s)− dim(s∩ l)

2
= ab −

r∑
i=1

ai bi . (34)

In particular, if ai bi = 0 for all pairs, i.e., if L is compact, then πB is a discrete series representation and
only has cohomology in degree ab.

5.2. Arthur parameters of cohomological representations. We turn our attention to archimedean pa-
rameters ψ whose associated Arthur packets contain cohomological representations. These are obtained
via embedding of L-groups from parameters associated to the trivial representation of Levi subgroups
of G = U (a, b). The packets associated to these parameters were constructed by Adams and Johnson
[1] in conversation with work of Arthur [4], in a language predating the current formulation of the
endoscopic classification of representations. Arancibia, Moeglin and Renard [3] have shown that Adams
and Johnson’s construction yields the same packets as those appearing in the endoscopic classification in
[38] and [26].

To begin, note that there is a natural way to associate to an ordered bipartition B of (a, b) an ordered
partition PB of N , namely by letting

PB = (N1, . . . , Nr ), Ni = ai + bi .

Let B be an ordered bipartition, and L B be the associated Levi subgroup. Then L̂ ≃
∏

i GLNi (C) ↪→ Ĝ,
is determined by PB . The description of L L , i.e., of the Galois action on L̂ , is given in Section 2.2.5.
Cohomological Arthur parameters depend on an embedding ξL̂,Ĝ :

L L ↪→ L G extending the map L̂ ↪→ Ĝ.
To define ξL̂,Ĝ , it suffices to give the image of WR inside of L G. Recall that WR is an extension of C×

by a group of order 2, which we write as C×
⊔ σC× with σ 2

= −1. We give Arthur’s construction from
Section 5 of [4]. The construction of Aq in [49] depends on an element α of the Lie algebra t of a compact
torus. Let T be the torus with Lie algebra t and let ψL̂,Ĝ : WR →

L G be the map sending C× into T̂ so
that for any λ∨

∈ X∗(T ), we have

λ∨(ψL̂,Ĝ(z))= z⟨ρQ ,λ
∨
⟩ z̄−⟨ρQ ,λ

∨
⟩

where ρQ = ρĜ − ρL̂ , the difference of half-sums of positive roots. Let the element (1 ⋊ σ) map to
nQ ⋊σ , where for any group G, nG is an element in the derived group of Ĝ such that ad nG interchanges
the positive and negative roots of (Ĝ, T̂ ), and with nQ = n−1

L nG . Putting this together and denoting the
embedding of L̂ into Ĝ by ι, define ξL̂,Ĝ(g, w)= ι(g)ψL̂,Ĝ(w).
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Now let ψ0,L̂ : SL2(C) × WR →
L L be the Arthur parameter of the packet containing the trivial

representation of L . It is trivial on WR and sends SL2 to the principal SL2 of L̂ . Then the Arthur
parameter of G corresponding to the Levi subgroup L̂ is the composition

ψL̂ := ξL̂,Ĝ ◦ψ0,L̂ : SL2 ×WR →
L G.

Adams and Johnson [1] and more recently Nair and Prasad [39] have given a description of the packets
attached to the parameters ψL̂ .

Proposition 61 [1, Section 3.3]. Let L̂ be a Levi subgroup of Ĝ, dual to a Levi L(q) attached to a θ -stable
parabolic subalgebra q. The parameter ψL̂ = ξĜ,L̂ ◦ψ0,L̂ corresponds to a packet 5ψ consisting of the
representations Aq such that L̂(q)= L̂.

We now translate the descriptions of the packets 5ψL̂
given in [1] and [4] into our parametrization by

ordered bipartitions.

Proposition 62. Let P = (N1, . . . , Nr ) be an ordered partition of N and ψP :=ψL̂ P
be the corresponding

parameter. Then the packet 5P := 5ψP consists precisely of the cohomological representations πB

associated to bipartitions B such that PB = P.

Proof. We explained above how L B gives rise to ψL̂ B
=ψL̂ PB

; the parameters ψL̂ B
and ψL̂ B′

are equivalent
if they are Ĝ-conjugate. The isomorphism classes of representations πB correspond to Levi subgroups
L B containing the fixed torus T , so we need only consider conjugation by NĜ(T̂ ). This action induces
an action of the Weyl group W (T̂ , Ĝ) on T̂ and on the root datum (X∗(T ),1(T ), X∗(T̂ ),1(T̂ )). Note
that the action of conjugation by T̂ on cohomological Arthur parameters will only modify ψL̂ by scaling
the entries of nQ . This has no impact on the parameter since nQ was only specified up to scalars in the
construction of ψL̂ .

Thus to determine which Levi subgroups L B ′ give rise to the conjugacy class of L̂ P , we consider the
action of W (Ĝ, T̂ ) (denoted W (g, t) in [1]) on the set of ordered bipartitions. Following the description
of L B given in [6], ordered bipartitions are determined ultimately by an element α ∈ t. The entries of
conjugate elements w ·α will have the same values, but these values will be distributed differently among
the two pieces of t belonging to U (a) and U (b). We denote the values appearing in the entries of α by zi .
The data being preserved by conjugation is the number of entries ai +bi which are associated to the same
value zi , as well as the ordering of the zi . Transitivity of the Weyl group action then ensures that all the
possible B such that PB = P give rise to ψP . □

5.3. Limit multiplicity for cohomological representations. We now give results on growth of cohomology.
We return our usual notation, in which F is global, p is a prime of F , and the subscript “∞” denotes the
collection of all the archimedean places. Fix the set S0 as in Section 4.1 so that it contains all but one
archimedean place v0. Let G be the inner form of UE/F (N ) such that Gv0 ≃ U (a, b) and all the other
factors at infinity are compact. Define the groups K (pn) and 0(pn) as in Section 4.1. By Matsushima’s
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formula and the inequality (29), we have

hi (pn) := dim(H i (0(pn),C)≤

∑
π=1|S0|

⊗πv0⊗π f

m(π)hi (gv0, Kv0;πv0) dimπ
K f (p

n)

f .

We can now give our theorem for growth of cohomology.

Theorem 63. Let ψ∞ be the cohomological parameter of G∞ associated to a reordering of (2k, 1, . . . , 1).
Let

hi
ψ∞
(pn)=

∑
ψ∈9(ψ∞)

∑
π∈5ψ

m(π)hi (gv0, Kv0;πv0) dimπ
K f (p

n)

f .

Then

hi
ψ∞
(pn)≪ Nm(pn)N (N−2k).

Proof. The possible contribution to cohomology of a given representation πv0 is bounded, so we need
only bound the contribution to m(π∞, p

n) coming from packets attached to parameters specializing
to ψ∞, for each π∞ ≃ πv0 ⊗ 1[F :Q]−1

∈ 50
ψ∞

. The result then follows from Theorem 56, provided
that cohomological parameters satisfy its assumptions. From Theorem 58 and the following comment,
cohomological representations have the (regular) infinitesimal character of the trivial representation, and
trivial central character. From the discussion in Section 5.2, reorderings of (2k, 1, . . . , 1) correspond
to parameters for which ψ(SL2)= ν(2k)⊕ ν(1)N−2k . Thus the assumptions are satisfied and the result
holds. □

Note that the theorem does not in fact bound m(π∞, p
n) for a general π∞ ∈5ψ∞

. Indeed, since Arthur
packets are not disjoint, the representation π∞ could also appear in a different Arthur packet whose growth
we do not bound. More specifically, if π∞ = πB ⊗ 1[F :Q]−1

∈50
ψ∞

where B is an ordered bipartition
described in Section 5.1.1, it could be the case that B is the reduction of an ordered bipartition B ′, for
example if we had

B = ((1, 1), (1, 0), (1, 0), (0, 1)), B ′
= ((1, 1), (2, 0), (0, 1)).

On the other hand, if B is not the reduction of another ordered bipartition, then π∞ = πB does not appear
in any other archimedean Arthur packet and the theorem produces upper bounds for m(π∞, p

n). We
record this discussion below.

Corollary 64. Let B = ((a1, b1), . . . , (ar , br )) be a reduced ordered bipartition such that:

(i) The associated partition PB is a reordering of (2k, 1, . . . , 1).

(ii) We have (ai , bi ) ̸= (ai+1, bi+1) for all i .

Then

m(πB, p
n)≪ Nm(pn)N (N−2k).
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Example 65. Assume that a < b in the signature of U (a, b). A family of partitions satisfying the
conditions of Corollary 64 are the suitable reorderings of

B j =

{
((0, 1), . . . , (1, 0), (0, 1), (a − j, b − j − 2), (0, 1), (1, 0), . . . , (0, 1)) N even,
((a − j, b − j − 1), (0, 1), (1, 0), . . . , (0, 1), (1, 0), (0, 1)) N odd,

where 1 ≤ j ≤ a − 1 if N is even (resp. 0 ≤ j ≤ a − 1 is N is odd.) The computations of Section 5.1.1
show that their lowest degree of cohomology is

i = i(N , a, j)=

{
j (N − j − 2)+ 2a N even,
j (N − j − 1)+ a N odd.

Note that j =
1
2(N − 2k − 2) for N even (resp. j =

1
2(N − 2k − 1) for N odd) which gives the family

alluded to in the introduction.

Additionally, the smallest i > 0 for which hi (pn) ̸= 0 is i = a. When N is odd, one can check that
representations as above with j = 0 are the only source of cohomology in degree a. In this situation, we
get bounds on Betti numbers.

Corollary 66. Keeping the assumptions of Theorem 63, assume additionally that N is odd and that a < b.
Then

ha(pn)≪ Nm(pn)N .

Proof. This follows from Theorem 63 with 2k = N − 1 provided that

ha(pn)=

∑
ψ∞

ha
ψ∞
(pn),

where the sum is taken over finitely many parameters ψ∞ associated to a reordering of (1, N − 1).
Since there are finitely many Arthur of U (a, b) with cohomological representations, this amounts to
showing that representations with cohomology in degree a belong only to packets 5ψ∞

associated to
these partitions. Going back to Proposition 60 and the following discussion, in particular to (34), we find
that the only representations with cohomology in degree a are of the form πB for B a reordering of

((0, 1), (a, b − 1)).

These cannot be reduced, nor are they the reduction of other ordered bipartitions so by Proposition 62,
they only belong to packets associated to parameters corresponding ordered partitions are reorderings of
(1, a + b − 1)= (1, N − 1), which was exactly our requirement. □

5.4. Comparison with the Sarnak–Xue conjecture. Finally, we compare our results with the conjecture
of Sarnak and Xue [42] relating multiplicity growth to decay of matrix coefficients. For an irreducible
unitary representation π∞ of a Lie group G, Sarnak and Xue define

p(π∞)= inf{p ≥ 2 | K -finite matrix coefficients of π∞ are in L p(G)}.
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They then conjecture the following bounds for unitary π∞:

m(π∞, p
n)≪ϵ V ol(X (pn))(2/p(π∞))+ϵ .

We will now show that the Sarnak and Xue conjecture holds for the representations for which we have
proved upper bounds on multiplicity growth.

Proposition 67. Let π∞ = πB be as in Corollary 64. Then

2
p(πB)

≥
N − 2k
N − 1

.

Since m(πB, p
n)≪ Nm(pn)N (N−2k) and the volume of X (pn) grows like Nm(pn)N 2

−1 we obtain the
following.

Corollary 68. For πB as in Corollary 64, we have

m(πB, p
n)≪ Vol(X (pn))N (N−2k)/(N 2

−1)
≪ Vol(X (pn))2/p(πB)

and the Sarnak–Xue conjecture holds.

The remainder of the section sets up and gives a proof of Proposition 67.

5.4.1. Computation of the rate of decay. For cohomological representations, we will give bounds on
p(πB) from the descriptions of πB as Langlands quotients given in [49]. For this section we follow
the notation of Knapp [28, Sections 7 and 8]. We start by bounding p(π) for π an arbitrary Langlands
quotient in terms of the inducing data.

We recall the setup for the definition of Langlands quotients. First, fix an Iwasawa decomposition

G = K A0 N0, g = kgagng (35)

of G. Here K a maximal compact subgroup, A0 a maximal split torus, N0 unipotent. By letting
M0 = Z K (A0), this gives rise to a minimal parabolic subgroup S0 = M0 A0 N0. Let S = M AN be
parabolic and regular with respect to S0, which is to say that A ⊂ A0 is split, M is the no longer
necessarily compact Levi component, and N ⊂ N0 unipotent. Denote by a (resp. a0) the Lie algebra of A
(resp. A0), and by aM the Lie algebra of the maximal split torus of M , so that a0 = a⊕aM . Let ρ0 be the
half-sum of the positive roots of a0 in g. Let σ be a discrete series representation of M and ν ∈ a∗ be
real-valued and in the open positive Weyl chamber. Denote by ν0 the extension of ν to a0 by setting it to
be zero on aM , and let ρ0 ∈ a∗

0 be the half-sum of the positive roots of a0 in g. Denote by U (S, σ, ν) the
corresponding parabolically induced representation, and by J (S, σ, ν) its Langlands quotient.

The proof of the upcoming proposition depends on a collection of results from [28]; before stating it we
recall the setup and some nomenclature. When studying the decay of matrix coefficients, one introduces
a class of so-called spherical functions ϕG

ν associated to ν ∈ a∗

0, and defined by

ϕG
ν (g)=

∫
K

e−(ν+ρ0)H(g−1k) dk
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where H(g)= log(ag) ∈ a0 is defined using the Iwasawa decomposition (35). Paraphrasing Knapp, these
are “useful yardsticks” to measure the decay of matrix coefficients. For example, it is known that the
K -finite matrix coefficients of discrete series are dominated by ϕG

0 . As their name indicates, the spherical
functions are K -invariant. A generalization of this notion is that of a τ -spherical function associated to a
pair τ = (τ1, τ2) of representations of K : a τ -spherical function is valued in the space U1 ⊗ U∨

2 and is
left τ1- and right τ2-equivariant.

In [28, Section VII.8], Knapp studies representations π by producing and studying an asymptotic
expansion of the τ -spherical functions associated to the K -types of π . The functions Fλ−ρ0 associated
to λ ∈ a∗

0 appearing in this asymptotic expansion control rates of decay of the τ -spherical function in
various directions along A0. The λ− ρ0 such that Fλ−ρ0 contributes nontrivially to the decomposition of
the τ -spherical functions of π are called exponents of π . A leading exponent of π is an exponent µ− ρ0

of π , maximal in the sense that for any comparable exponent λ− ρ0, the difference µ− λ is a linear
combination of simple roots with nonnegative integer coefficients.

Proposition 69. Let ω1, . . . , ωdim a0 denote the basis of a0 dual to the basis of a∗

0 consisting of the simple
roots. Then

p(J (S, σ, ν))≤ inf{p ≥ 2 | p⟨ν0 − ρ0, ω j ⟩<−2⟨ρ0, ω j ⟩ for all ω j }. (36)

Proof. The lemma follows from the combination of results in [28]. From [28, 8.48], the K -finite matrix
coefficients of J (S, σ, ν) belong to L p(G) if and only if for all ωi and all leading exponents µ− ρ0 of
J (S, σ, ν), the following inequality is satisfied:

p⟨Reµ− ρ0, ω j ⟩<−2⟨ρ0, ω j ⟩. (37)

In [28, 8.47], we see that all leading exponents µ satisfy ⟨Reµ,ω j ⟩ ≤ ⟨ν0, ω j ⟩ provided there exists
an integer q ≥ 0 such that the K -finite matrix coefficients of J (S, σ, ν) are bounded above on A+

0 by
a multiple of e(ν0−ρ)(log a)(1 + Nm a)q . This upper bound is established for U (S, σ, ν) and a fortiori
for J (S, σ, ν) by propositions 7.14 and 7.15 of [28], together with the fact that as a discrete series, the
K -finite matrix coefficients of σ are dominated by a multiple of the spherical function ϕM

0 . □

We now give an explicit bounds for p(πB) in terms of B, for a class of representations including those
of Proposition 67.

Proposition 70. Let G = U (a, b) with a + b = N , and let B = ((a1, b1), . . . , (ar , br )) be a reduced
ordered bipartition of (a, b). Assume that there is a single index k such that min{ak, bk} ̸= 0, and let
Nk = ak + bk . Then

2
p(πB)

≥
N − Nk

N − 1
.

Proof. In light of Proposition 69, we will realize πB as a Langlands quotient J (S, σ, ν), and show that
for the corresponding ν0 we have

inf{p ≥ 2 | p⟨ν0 − ρ0, ω j ⟩<−2⟨ρ0, ω j ⟩ for all ω j } =
2(N − 1)
N − Nk

.
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To simplify the computations, note that it is equivalent to show that

max
ω j

{
⟨ν0, ω j ⟩

⟨ρ0, ω j ⟩

}
=

Nk − 1
N − 1

. (38)

We recall the descriptions of cohomological representations as Langlands quotients is given in [49,
Section 6]. Let L B =

∏
i U (ai , bi ) be the Levi subgroup attached to the representation πB and fix an

Iwasawa decomposition L = (K ∩ L)AN . By assumption, A has rank ck = min{ak, bk}; denote its Lie
algebra by a, and let ν be the half-sum of the roots of a in the Lie algebra n of N . Let M be the centralizer
of A in G, and fix S a choice of parabolic subgroup with Levi M A, such that ν is in the open positive
Weyl chamber. Then by [49, Theorem 6.16], there is a discrete series representation σ of M such that
πB ≃ J (S, σ, ν).

To conclude, we put ourselves back in the framework of Proposition 69. Let S0 = A0 M0 N0 ⊂ S be
a minimal parabolic subgroup. Then if aM is the Lie algebra of a maximal split torus in M , we have
a0 = a⊕aM and dim a0 = c := min{a, b}. Let α1, . . . , αc be the simple roots of a0 in g. Recall that ν0 is
obtained by extending ν by 0 to aM . Thus we can write ν0 =

∑ck
j=1 j (Nk− j)α j and ρ0 =

∑c
j=1 j (N− j)α j .

Since the ωi are by construction the dual basis to the αi , we have

⟨ν0, ω j ⟩

⟨ρ0, ω j ⟩
=

{
(Nk − j)/(N − j), j ≤ ck,

0, j > ck .

The maximum is achieved when j = 1. □
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