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Dedicated to the memory of Robert A. Liebler, a friend and mentor, and a passionate advocate
for studying the action of finite nonabelian groups on combinatorial designs.

Difference sets have been studied for more than 80 years. Techniques from algebraic number theory, group
theory, finite geometry, and digital communications engineering have been used to establish constructive
and nonexistence results. We provide a new theoretical approach which dramatically expands the class of
2-groups known to contain a difference set, by refining the concept of covering extended building sets
introduced by Davis and Jedwab in 1997. We then describe how product constructions and other methods
can be used to construct difference sets in some of the remaining 2-groups. In particular, we determine
that all groups of order 256 not excluded by the two classical nonexistence criteria contain a difference
set, in agreement with previous findings for groups of order 4, 16, and 64. We provide suggestions for
how the existence question for difference sets in 2-groups of all orders might be resolved.

1. Motivation and overview

Difference sets were introduced by Singer [1938] as regular automorphism groups of projective geometries.
These examples are contained in the multiplicative group of a finite field, and hence the difference sets in
those geometric settings occur in cyclic groups. In the decades following, difference sets were discovered
in other abelian groups and subsequently in nonabelian groups. The central objective is to determine
which groups contain at least one difference set. Researchers have developed a range of techniques in
pursuit of this objective, taking advantage of connections with design theory, coding theory, cryptography,
sequence design, and digital communications.

A k-subset D of a group G of order v is a difference set with parameters (v, k, λ) if, for all nonidentity
elements g in G, the equation

xy−1
= g

has exactly λ solutions (x, y)with x, y ∈ D; the related parameter n is defined to be k−λ. The complement
of a difference set with parameters (v, k, λ) is itself a difference set, with parameters (v, v−k, v−2k +λ)

and the same related parameter n. The difference set is nontrivial if 1< k<v−1. A (v, k, λ) difference set
in G is equivalent to a symmetric (v, k, λ) design with a regular automorphism group G [Beth et al. 1999].

Davis was supported by NSA grant H98230-12-1-0243. Jedwab was supported by NSERC.
MSC2020: 05B10, 05E18.
Keywords: difference set, nonabelian, 2-group, construction.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://msp.org/ant/
https://doi.org/10.2140/ant.2023.17-2
https://doi.org/10.2140/ant.2023.17.359
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


360 T. Applebaum, J. Clikeman, J. A. Davis, J. F. Dillon, J. Jedwab, T. Rabbani, K. Smith and W. Yolland

Given an element A =
∑

g∈G agg in the group ring ZG, where each ag ∈ Z, we write A(−1) for the
element

∑
g∈G agg−1. It is customary in the study of difference sets to abuse notation by identifying a

subset D of a group G with the element of the group ring ZG which is its {0, 1}-valued characteristic
function. The subset D of G is then a difference set if and only if the {0, 1}-valued characteristic function
D satisfies the equation

DD(−1)
= n + λG in ZG,

in which n represents n1G . Throughout, we shall instead identify the subset D of G with the element of
ZG which is its {±1}-valued characteristic function (taking the value −1 for each element of G in D,
and +1 for each element of G not in D). Under this convention, the subset D of G is a difference set if
and only if the {±1}-valued function D satisfies

DD(−1)
= 4n + (v− 4n)G in ZG.

When v = 4n, this reduces to
DD(−1)

= |G|, (1)

in which case the subset D is called a Hadamard difference set because the {±1}-valued v× v incidence
matrix, whose rows and columns are indexed by the elements of G and whose (g, h) entry is the coefficient
of g−1h in D, is a Hadamard matrix.

Example 1.1 [Bruck 1955]. Let G = C4
2 = ⟨x1, x2, x3, x4⟩, where C2 denotes the multiplicative cyclic

group of order 2. The set
D = {1, x1, x2, x3, x4, x1x2x3x4}

is a (16, 6, 2) Hadamard difference set in G. We identify this set with the element D = −1 − x1 − x2 −

x3 − x4 − x1x2x3x4 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 of
the group ring ZG, and then DD(−1)

= 16.

We call a group containing a Hadamard difference set a Hadamard group, and denote the class of
Hadamard groups by H. It is an outstanding problem in combinatorics to determine which groups belong
to the class H; see [Davis and Jedwab 1996] for a survey and [Jungnickel and Schmidt 1998] for a
summary of subsequent results. This paper focuses on determining which 2-groups (namely groups whose
order is a power of 2) belong to H. The relation v = 4n between the parameters of a difference set forces
the parameters to be

(v, k, λ)= (4N 2, 2N 2
− N , N 2

− N ) (2)

for some integer N [Kesava Menon 1962]. Here N can be positive or negative, and the two values ±N
give the parameters of complementary difference sets and designs. A nontrivial difference set in a 2-group
must also have parameters of the form (2), where N = 2d for some positive integer d [Mann 1965]. We
therefore restrict attention to the parameters

(v, k, λ)= (22d+2, 22d+1
− 2d , 22d

− 2d),
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where d is a nonnegative integer. The groups of order 22d+2 form a rich source of potential Hadamard
difference sets: there are 2 nonisomorphic groups of order 4 (both of which contain a trivial Hadamard
difference set); 14 of order 16; 267 of order 64; 56,092 of order 256; and 49,487,367,289 groups of order
1024 [Besche et al. 2002; Burrell 2022; Sloane 2022].

The following product construction contains, as a special case, the earlier result [Kesava Menon 1962;
Turyn 1965] that the class H is closed under direct products.

Theorem 1.2 (Dillon [1985] product construction). Suppose that H1, H2 ∈ H, and that G is a group
containing subgroups H1 and H2 satisfying G = H1 H2 and H1 ∩ H2 = 1. Then G ∈ H.

Proof. Let D1 and D2 be difference sets in H1 and H2, respectively, and let D = D1 D2. By hypothesis,
every element g of G has a unique representation g = h1h2 for some h1 ∈ H1 and h2 ∈ H2, and so D is
{±1}-valued. Then

DD(−1)
= (D1 D2)(D1 D2)

(−1)
= D1 D2 D(−1)

2 D(−1)
1 = D1|H2|D

(−1)
1 = |H1||H2| = |G|. □

In a seminal paper, Turyn used algebraic number theory to prove a first nonexistence result for Hadamard
2-groups.

Theorem 1.3 [Turyn 1965]. Let G be a group of order 22d+2 containing a normal subgroup K of order
less than 2d such that G/K is cyclic. Then G ̸∈ H.

Corollary 1.4 (Turyn exponent bound). Suppose G ∈ H is an abelian group of order 22d+2. Then G has
exponent at most 2d+2.

Dillon later proved a second nonexistence result for Hadamard 2-groups.

Theorem 1.5 [Dillon 1985]. Let G be a group of order 22d+2 containing a normal subgroup K of order
less than 2d such that G/K is dihedral. Then G ̸∈ H.

In the ensuing 35 years since the publication of [Dillon 1985], no further nonexistence results for
Hadamard 2-groups have been found. In this paper we shall present constructive results that identify new
Hadamard 2-groups. In preparation, we introduce some further conventions that will be used throughout.

Let
Er := Cr

2 = ⟨x1, x2, . . . , xr ⟩

be the elementary abelian group of order 2r . The group Er is isomorphic to the additive group of the vector
space Ur := GF(2)r comprising all binary r -tuples a = (a1, a2, . . . , ar ), and an explicit isomorphism is
given by

a = (a1, a2, . . . , ar ) 7→ xa
= xa1

1 xa2
2 · · · xar

r .

The characters of Er are the homomorphisms from Er into the multiplicative group {1,−1} given by

χu : xa
7→ (−1)u·a for all a ∈ Ur

as u ranges over Ur .
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We consider integer-valued functions on G to be interchangeable with elements of ZG: we identify an
integer-valued function F on G with the element

∑
g∈G F(g)g of the group ring ZG, and conversely we

identify a group ring element
∑

g∈G Fgg with the function F on G given by F(g)= Fg. The character
χu of Er may then be written in the group ring ZEr as

χu =

∑
a∈Ur

χu(xa)xa
=

∑
a∈Ur

(−1)u·axa
=

∑
a∈Ur

r∏
i=1

(−1)ui ai xai
i =

r∏
i=1

1∑
ai =0

(−1)ui ai xai
i =

r∏
i=1

(1+(−1)ui xi ). (3)

This is consistent with the common notation χ0 for the principal character, which takes the value 1 at
every group element; we identify this function in ZEr with the group ring element

∑
e∈Er

e, or simply Er .
For each nonzero u ∈ Ur , the complement of the subset of Er associated with the {±1}-valued function
χu is a subgroup of Er of index 2, and as u ranges over the nonzero values of Ur we obtain all 2r

− 1
subgroups of Er of index 2 in this way.

Example 1.6. Let E2 = C2
2 = ⟨x, y⟩. The four characters of E2 are the functions χu as u ranges over U2

= {(0, 0), (0, 1), (1, 0), (1, 1)}. Expressed in the group ring ZE2, these functions are

χ00 = 1 + x + y + xy = (1 + x)(1 + y),

χ01 = 1 + x − y − xy = (1 + x)(1 − y),

χ10 = 1 − x + y − xy = (1 − x)(1 + y),

χ11 = 1 − x − y + xy = (1 − x)(1 − y),

(where we abbreviate χ(0,1), for example, as χ01).
The subgroups of E2 corresponding to χ01, χ10, χ11 are {1, x}, {1, y}, {1, xy}, respectively.

The group ring interpretation of the characters of E2 shown in Example 1.6 illustrates the following
fundamental properties, which underlie our new constructions of difference sets. These properties can all
be derived directly from (3), noting that χ (−1)

v = χv for all v ∈ Ur .

Proposition 1.7. Let {χu : u ∈ Ur } be the set of characters of Er . Then for all u, v ∈ Ur , in the group ring
ZEr we have:

(i) χuχ
(−1)
v =

{
2rχu if u = v,

0 if u ̸= v.
(ii)

∑
u∈Ur

χu = 2r .

(iii)
∑

e∈Er
χu(e)=

{
2r if u = 0,
0 if u ̸= 0.

Since all characters of Er are {±1}-valued, Proposition 1.7(iii) implies that every nonprincipal character
on Er takes the values 1 and −1 equally often.

McFarland gave the following difference set construction based on hyperplanes of a vector space,
which produces examples in 2-groups. We prove the construction by interpreting the hyperplanes in terms
of characters.
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Theorem 1.8 (McFarland [1973] hyperplane construction). Let J be a group of order 2d+1. Then
J × Ed+1 ∈ H.

Proof. See [Dillon 2010]. Let {χu : u ∈ Ud+1} be the set of characters of Ed+1. Label the elements of J
arbitrarily as J = {gu : u ∈ Ud+1}, and let G = J × Ed+1. We see from Proposition 1.7(i) and (ii) that, in
the group ring ZG, the {±1}-valued function

D =

∑
u∈Ud+1

guχu (4)

on G satisfies

DD(−1)
=

∑
u,v∈Ud+1

guχuχ
(−1)
v g−1

v

= 2d+1
∑

u∈Ud+1

guχug−1
u (5)

= 2d+1
∑

u∈Ud+1

χu (6)

= 2d+1
· 2d+1

= |G|.

Therefore D corresponds to a Hadamard difference set in G. □

We shall show how the proof of Theorem 1.8 can be adapted so that the result still holds when Ed+1 is
a normal subgroup of index 2d+1 of a group G, but not necessarily a direct factor. The key consideration
is how to obtain (6) from (5). The following combinatorial result allows us to do so, by showing that there
is a choice for coset representatives gu of Ed+1 in G satisfying {guχug−1

u : u ∈ Ud+1} = {χu : u ∈ Ud+1}.
Note that a group H acts as a group of permutations on a set S if there is a homomorphism φ (called the
action of H on S) from H to the group of permutations of S.

Theorem 1.9 [Drisko 1998, Corollary 5]. Let p be a prime and let H be a finite p-group. Suppose that
H acts as a group of permutations on a set S of size |H | according to the action φ, and that S contains an
element that is fixed under φ. Then there is a bijection θ from S to H satisfying

{φ(θ(s))(s) : s ∈ S} = S.

The bijection θ in Theorem 1.9 selects an element θ(s) of the group H for each s ∈ S, so that the
resulting set of actions of θ(s) on s is a permutation of the set S. We now explain how this result can be
used to extend Theorem 1.8 as desired, proving a conjecture due to Dillon [1990b].

Corollary 1.10 [Drisko 1998, Corollary 9]. Let G be a group of order 22d+2 containing a normal subgroup
E ∼= Cd+1

2 . Then G ∈ H.

Proof. Let Ê = {χu : u ∈ Ud+1} be the set of characters of E ∼= Cd+1
2 . We wish to apply Theorem 1.9

with S = Ê and H = G/E . Since E is normal in G, and the complements of the subsets of E associated
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with the characters χu for nonzero u are exactly the subgroups of E of index 2, we have

gχug−1
∈ Ê for all g ∈ G and χu ∈ Ê .

Therefore G/E acts on Ê as a group of permutations under the conjugation action

φ(gE)(χu)= gχug−1 for all gE ∈ G/E and χu ∈ Ê,

and the element χ0 = E of Ê is fixed under φ. Theorem 1.9 then shows that there is a bijection θ from Ê
to G/E satisfying

{φ(θ(χu))(χu) : χu ∈ Ê} = Ê . (7)

Writing θ(χu)= gu E for each u ∈ Ud+1, this gives a set {gu : u ∈ Ud+1} of coset representatives for E in
G satisfying

{guχug−1
u : u ∈ Ud+1} = {χu : u ∈ Ud+1}. (8)

Use the coset representatives gu to define D as in (4). The proof of Theorem 1.8 now carries through
unchanged, using (8) to obtain (6) from (5). □

We next illustrate the construction described in Corollary 1.10, for a specific group of order 16.

Example 1.11. Let G be the order 16 modular group C8⋊5 C2 =⟨x, y : x8
= y2

= 1, yxy−1
= x5

⟩, and set
X = x4 and Y = y. Let E = ⟨X, Y ⟩ ∼= C2

2 , which is normal but not central in G, and let Ê = {χu : u ∈ U2}

be the set of characters of E :

χ00 = (1 + x4)(1 + y), χ01 = (1 + x4)(1 − y), χ10 = (1 − x4)(1 + y), χ11 = (1 − x4)(1 − y).

The center of G is ⟨x2
⟩.

The group G/E = {E, x E, x2 E, x3 E} acts on Ê as a group of permutations under the conjugation
action φ, under which E and x2 E map to the identity permutation on Ê , and x E and x3 E map to the
permutation of Ê that fixes χ00 and χ01 but swaps χ10 and χ11.

A bijection θ from Ê to G/E satisfying (7) is

θ(χ00)= E, θ(χ01)= x2 E, θ(χ10)= x E, θ(χ11)= x3 E,

and therefore
D = χ00 + x2χ01 + xχ10 + x3χ11

is a difference set in G.

The Turyn exponent bound of Corollary 1.4 gives a necessary condition for an abelian 2-group to
belong to H. A series of papers, including [Davis 1991] and [Dillon 1990a], gave constructions in pursuit
of a sufficient condition. Kraemer [1993] eventually showed that the necessary condition is also sufficient.
This result was proved again by Jedwab [1992] using the alternative viewpoint of a perfect binary array:
a matrix representation of the {±1}-valued characteristic function of a Hadamard difference set in an
abelian group.
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Theorem 1.12 [Kraemer 1993]. Let G be an abelian group of order 22d+2. Then G ∈ H if and only if G
has exponent at most 2d+2.

We next give an instructive example of a Hadamard difference set in an abelian 2-group, which illustrates
a fundamental insight on which this paper is based. The group ring elements Au in Example 1.13 are
presented for now without explanation of their origin, but will be revisited in Example 4.13. Group ring
elements A, B are orthogonal if AB(−1)

= 0.

Example 1.13. Let G = C2
8 = ⟨x, y⟩, and set X = x2 and Y = y2. Let K = ⟨X, Y ⟩ ∼= C2

4 and E2 =

⟨X2, Y 2
⟩ ∼= C2

2 , and let {χu : u ∈ U2} be the set of characters of E2. Define four group ring elements in
ZK by

A00 = A01 = A10 = 1 + X + Y − XY and A11 = 1 + X + Y + XY. (9)

Direct calculation shows that the Au satisfy the condition

Auχu A(−1)
u = 4χu for all u ∈ U2. (10)

Now in ZK let
B00 = A00χ00 = (1 + X + Y − XY )(1 + X2)(1 + Y 2),

B01 = A01χ01 = (1 + X + Y − XY )(1 + X2)(1 − Y 2),

B10 = A10χ10 = (1 + X + Y − XY )(1 − X2)(1 + Y 2),

B11 = A11χ11 = (1 + X + Y + XY )(1 − X2)(1 − Y 2).

Then from Proposition 1.7(i) and (10), the Bu = Auχu have the property, for all u, v ∈ U2, that

Bu B(−1)
v =

{
16χu if u = v,

0 if u ̸= v,
(11)

and in particular the Bu are pairwise orthogonal. It follows that the {±1}-valued function on G given by

D = B00 + y B01 + x B10 + xy B11

satisfies

DD(−1)
= 16(χ00 +χ01 +χ10 +χ11)= 64

by Proposition 1.7(ii), and so D corresponds to a Hadamard difference set in G.

We now show how the condition (10) satisfied by the group ring elements Au in Example 1.13 can be
used to construct difference sets in groups of order 64 other than C2

8 .

Proposition 1.14. Let G be a group of order 64 containing a normal subgroup K ∼= C2
4 . Then G ∈ H.

Proof. Let K = ⟨X, Y ⟩ ∼= C2
4 . Let E2 = ⟨X2, Y 2

⟩ be the unique subgroup of K isomorphic to C2
2 , and let

Ê2 = {χu : u ∈ U2} be the set of characters of E2. Define four group ring elements in ZK as in (9), and
for each u ∈ U2 let Bu be the {±1}-valued function Auχu on K . The Au satisfy (10), and therefore the
Bu have the pairwise orthogonality property (11) for all u, v ∈ U2.
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Now E2 is the unique subgroup of K isomorphic to C2
2 , and K is normal in G, so E2 is normal in G.

Therefore G/K acts on Ê2 as a group of permutations under the conjugation action

φ(gK )(χu)= gχug−1 for all gK ∈ G/K and χu ∈ Ê2,

and χ0 = E2 is fixed under φ. We may therefore apply Theorem 1.9 with S = Ê2 and H = G/K to show
that there is a set {gu : u ∈ U2} of coset representatives for K in G satisfying

{guχug−1
u : u ∈ U2} = {χu : u ∈ U2}. (12)

Let D be the {±1}-valued function on G defined by

D =

∑
u∈U2

gu Bu in ZG.

We calculate

DD(−1)
=

∑
u,v∈U2

gu Bu B(−1)
v g−1

v = 16
∑
u∈U2

guχug−1
u

by (11), and then from (12) and Proposition 1.7(ii) we have

DD(−1)
= 16

∑
u∈U2

χu = 64.

Therefore D corresponds to a Hadamard difference set in G. □

We use the proof of Proposition 1.14 as a model for establishing our principal result, stated below as
Theorem 1.15. The key idea is to determine group ring elements Au satisfying a condition analogous
to (10), which ensures that the associated group ring elements Bu = Auχu have an orthogonality property
analogous to (11). Application of Theorem 1.9 then allows us to construct a group ring element D
corresponding to a Hadamard difference set. By taking r = 2 in Theorem 1.15 and restricting the group
G to be abelian, and combining with the Turyn exponent bound of Corollary 1.4, we recover Kraemer’s
Theorem 1.12.

Theorem 1.15 (main result). Let d and r be integers satisfying d ≥ 1 and 2 ≤ r ≤ d + 1. Let G be a
group of order 22d+2 containing a normal abelian subgroup of index 2r , rank r , and exponent at most
2d−r+2. Then G ∈ H.

We remark that this paper develops several concepts previously used to construct difference sets. In
particular, the constructed group ring elements Bu can be interpreted as covering extended building sets,
as introduced by Davis and Jedwab [1997] (see the discussion at the end of Section 2). The novelty here
is that imposing the additional structure Bu = Auχu allows us to handle dramatically more nonabelian
groups than before, as illustrated in the proof of Proposition 1.14. Likewise, Proposition 1.14 itself
was previously established by Dillon [1990b; 2010] by decomposing a difference set in C2

8 into four
orthogonal group ring elements Bu as in Example 1.13. However, the generalization of Proposition 1.14
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to Theorem 1.15 relies crucially on recognizing the additional structure Bu = Auχu of these group ring
elements, whose importance was not previously apparent.

Each of the two groups of order 4 belongs to H trivially. The third column of Table 1 below shows the
number of groups of order 16, 64, and 256 which are possible members of H, after taking into account
those that are excluded by the necessary conditions of Theorems 1.3 and 1.5. We now summarize the
theoretical and computational efforts of many researchers over several decades to determine whether
these conditions are also sufficient for groups of these orders, with reference to results to be presented in
Section 4.

In the 1970s, Whitehead [1975] and Kibler [1978] independently showed by construction that each of
the 12 nonexcluded groups of order 16 belongs to H. We can recover this result by applying Theorem 1.15
to account for the 10 groups containing a normal subgroup isomorphic to C2

2 , and then using Proposition 4.1
to handle the remaining 2 groups.

In 1990, a collaborative effort led by Dillon showed by a combination of construction and computer
search that each of the 259 nonexcluded groups of order 64 belongs to H; Liebler and Smith [1993]
resolved the status of the final group at the conclusion of a sabbatical visit to Dillon by Smith. Using
the software package GAP [2020], we can streamline this effort by applying in sequence the following
construction methods: Theorem 1.15 to account for the 237 groups containing a normal subgroup
isomorphic to C3

2 or C2
4 ; the product construction of Proposition 4.7 to account for 17 further groups; the

transfer methods of Section 4C to account for 4 further groups; and the modified signature set method of
Section 4D to account for the final group.

In 2011, Dillon initiated a further collaborative effort to investigate the groups of order 256, whose
conclusion was that each of the 56,049 nonexcluded groups of order 256 belongs to H. Major contributions
were made by Applebaum [2013], and the status of the final group was resolved by Yolland [2016].
Using GAP, we can likewise streamline this effort by applying in sequence the following construction
methods: Theorem 1.15 to account for the 54,633 groups containing a normal subgroup isomorphic to C4

2

or C2
4 × C2 or C2

8 ; the product construction of Proposition 4.7 to account for 1,358 further groups; the
transfer methods of Section 4C to account for 57 further groups; and the modified signature set method
of Section 4D to account for the final group.

These theoretical and computational results are summarized in Theorem 1.16 and in Table 1.

Theorem 1.16. The necessary conditions of Theorems 1.3 and 1.5 for the existence of a difference set are
also sufficient in groups of order 4, 16, 64, and 256.

Theorem 1.16 naturally prompts the following question (about whose answer the authors of this paper
have different opinions).

Question 1.17. Are the necessary conditions of Theorems 1.3 and 1.5 for the existence of a difference
set in a 2-group also sufficient? That is, does every group G of order 22d+2, not containing a normal
subgroup K of order less than 2d such that G/K is cyclic or dihedral, belong to H?
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Group Total # # not excluded # in H by

order groups by Theorems 1.3, 1.5 Theorem 1.15 Sections 4A–4B Section 4C Section 4D

16 14 12 10 2
64 267 259 237 17 4 1

256 56,092 56,049 54,633 1,358 57 1

Table 1. Membership in H of 2-groups of order 16, 64, and 256. Figures in column 5
onwards are for groups not previously counted in column 4 onwards.

The answer to Question 1.17 is “yes” for d ≤ 3, by Theorem 1.16. It seems that resolution of this
question for d > 3 must depend only on theoretical methods: currently there is not even a database of
the 49,487,367,289 groups of order 1024 [Besche et al. 2002; Burrell 2022], and the authors do not
know how to estimate the proportion of the nonexcluded groups of order 22d+2 that are accounted for by
Theorem 1.15 as d grows large.

The rest of this paper is organized in the following way. In Section 2, we identify the “signature set”
property underlying the construction of Proposition 1.14. In Section 3, we prove our principal result of
Theorem 1.15 by restricting attention to signature sets on abelian 2-groups. In Section 4, we describe the
various other construction methods used to complete the determination of the groups of order 64 and
256 belonging to H, involving signature sets on nonabelian groups, products of perfect ternary arrays,
transfer methods, and a modification of signature sets. In Section 5, we provide implementation details
of the construction methods for groups of order 256 and describe how to quickly verify on a desktop
computer that all 56,049 nonexcluded groups of this order belong to H. In Section 6, we propose some
directions for future research.

2. Signature sets

In this section, we identify the structure underlying Proposition 1.14 and set out a framework for proving
our principal result, Theorem 1.15.

Definition 2.1. Let K be a group containing a normal subgroup E ∼= Cr
2 , and let {χu : u ∈ Ur } be the set

of characters of E . A signature block on K with respect to χu is a {±1}-valued function Au on a set of
coset representatives for E in K that satisfies

Auχu A(−1)
u =

|K |

2r χu in ZK .

A signature set on K with respect to E is a multiset {Au : u ∈ Ur }, where each Au is a signature block on
K with respect to χu .

Note that a trivial signature set on Cr
2 with respect to itself is given by

Au = 1 for each u ∈ Ur .
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We state two immediate consequences of Definition 2.1.

Lemma 2.2. Let K be a group containing a normal subgroup E ∼= Cr
2 , and suppose {Au : u ∈ Ur } is

a signature set on K with respect to E. Let Ê = {χu : u ∈ Ur } be the set of characters of E , and let
Bu = Auχu for each u ∈ Ur . Then:

(i) For each u ∈ Ur , the function Bu is {±1}-valued on K .

(ii) For all u, v ∈ Ur , in ZK we have

Bu B(−1)
v =

{
|K |χu if u = v,

0 if u ̸= v

(and so in particular the Bu are pairwise orthogonal).

Proof. (i) Each Au is a {±1}-valued function on a set of coset representatives for E in K , and each χu is
a {±1}-valued function on E . Therefore each Bu = Auχu is a {±1}-valued function on K .

(ii) For all u, v ∈ Ur , in ZK we have

Bu B(−1)
v = Auχuχ

(−1)
v A(−1)

v =

{
2r Auχu A(−1)

u if u = v,

0 if u ̸= v

by Proposition 1.7(i). Since the Au form a signature set on K with respect to E , this gives

Bu B(−1)
v =

{
|K |χu if u = v,

0 if u ̸= v.
□

The proof of the following theorem is modeled on that of Proposition 1.14. We remark that K need
not be a 2-group and need not be abelian.

Theorem 2.3. Let G be a group containing a normal subgroup E ∼= Cr
2 , and suppose K is a normal

subgroup of G of index 2r containing E. Suppose there exists a signature set on K with respect to E.
Then G ∈ H.

Proof. Let Ê = {χu : u ∈ Ur } be the set of characters of E . We shall apply Theorem 1.9 with S = Ê
and H = G/K . Since E is normal in G, and the complements of the subsets of E associated with the
characters χu for nonzero u are exactly the subgroups of E of index 2,

gχug−1
∈ Ê for all g ∈ G and χu ∈ Ê .

Therefore G/K acts on Ê as a group of permutations under the conjugation action

φ(gK )(χu)= gχug−1 for all gK ∈ G/K and χu ∈ Ê,

and the element χ0 = E of Ê is fixed under φ. Apply Theorem 1.9 to show that there is a set {gu : u ∈ Ur }

of coset representatives for K in G satisfying

{guχug−1
u : u ∈ Ur } = {χu : u ∈ Ur }. (13)
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By assumption, there is a signature set {Au : u ∈ Ur } on K with respect to E . Let Bu = Auχu for each
u ∈ Ur , and use the coset representatives gu to define

D =

∑
u∈Ur

gu Bu in ZG, (14)

which is a {±1}-valued function on G by Lemma 2.2(i). We calculate in ZG that

DD(−1)
=

∑
u,v∈Ur

gu Bu B(−1)
v g−1

v = |K |

∑
u∈Ur

guχug−1
u

by Lemma 2.2(ii). Then from (13) and Proposition 1.7(ii) we have

DD(−1)
= |K |

∑
u∈Ur

χu = 2r
|K | = |G|.

Therefore D corresponds to a Hadamard difference set in G. □

The motivating examples of Section 1 both occur as special cases of Theorem 2.3. Corollary 1.10 arises
by taking |G| = 22d+2 and r = d + 1, with E = K ∼= Cd+1

2 normal in G, and using a trivial signature set
on K with respect to itself. Proposition 1.14 arises by taking |G| = 64 and r = 2, with K = ⟨X, Y ⟩ ∼= C2

4

normal in G and E = ⟨X2, Y 2
⟩ (the unique subgroup of K isomorphic to C2

2 ), and using the nontrivial
signature set {Ai j : (i, j) ∈ U2} on K with respect to E specified in (9).

Theorem 2.3 establishes the existence of a difference set in G by reference to Theorem 1.9, whose
proof as given in [Drisko 1998] is not constructive. To construct such a difference set explicitly, one must
therefore determine suitable coset representatives for the normal subgroup K in G satisfying (13). This
determination currently requires a computer search that can be computationally expensive, particularly
for groups of order 256; see Section 5.

We point out a connection to the study of bent functions (see [Carlet and Mesnager 2016] for a survey),
which are equivalent to Hadamard difference sets in elementary abelian 2-groups. Take G = E2

d+1 and
E = K = Ed+1 in Theorem 2.3, and let {Au : u ∈ Ur } be a trivial signature set on K with respect to
E for which each Au is chosen arbitrarily in {±1}. In this case, the choice of coset representatives
{gu : u ∈ Ud+1} for K in G used to construct the difference set D in the proof of Theorem 2.3 is arbitrary.
Let a be the Boolean function on Ud+1 defined by

Au = (−1)a(u) for each u ∈ Ud+1.

Then the {0, 1}-valued characteristic function of D is the Maiorana–McFarland bent function f (u, v)=

π(u) · v+ a(u), where π is an arbitrary permutation of Ud+1.
In view of Theorem 2.3, our objective in Section 3 is to construct a signature set on a large class of

groups K (which we take to be abelian in Section 3, and nonabelian in Section 4). In the remainder of
this section, we introduce some preparatory results about signature sets.

We firstly show that a group automorphism of K fixing E maps a signature block on K to another
signature block on K .
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Proposition 2.4. Let K be a group containing a normal subgroup E ∼= Cr
2 , and let σ be a group

automorphism of K which fixes E. Suppose that Au is a signature block on K with respect to the character
χu of E , for some u ∈ Ur . Then σ induces a map on ZK under which σ(Au) is a signature block on K
with respect to the character σ(χu) of E.

Proof. The signature block Au is {±1}-valued on a set of coset representatives for E in K . Since
the automorphism σ fixes E , the images of these coset representatives under σ are also a set of coset
representatives for E in K on which σ(Au) is {±1}-valued. Furthermore

σ(Au)σ (χu)σ (Au)
(−1)

= σ(Auχu A(−1)
u )=

|K |

2r σ(χu),

so σ(Au) is a signature block on K with respect to the character σ(χu) of E . □

We next give a simple product construction for signature sets.

Proposition 2.5. Suppose there exists a signature set on a group Kr with respect to a normal subgroup
Er ∼= Cr

2 , and there exists a signature set on a group Ks with respect to a normal subgroup Es ∼= C s
2. Then

there exists a signature set on Kr × Ks with respect to Er × Es .

Proof. Let {Au : u ∈ Ur } be a signature set on Kr with respect to Er , and let {αv : v ∈ Us} be a signature
set on Ks with respect to Es . We claim that {Auαv : u ∈ Ur , v ∈ Us} is a signature set on Kr × Ks with
respect to its normal subgroup Er × Es .

The function Auαv is {±1}-valued on a set of coset representatives for Er × Es in Kr × Ks , because
Au is {±1}-valued on a set of coset representatives for Er in Kr and αv is {±1}-valued on a set of coset
representatives for Es in Ks .

Let {χu : u ∈ Ur } be the set of characters of Er , and let {ψv : v ∈ Us} be the set of characters of Es .
The set of characters of Er × Es is {χuψv : u ∈ Ur , v ∈ Us}, and for each u ∈ Ur and v ∈ Us we have

(Auαv)(χuψv)(Auαv)
(−1)

= Auχu(αvψvα
(−1)
v )A(−1)

u

= Auχu
|Ks |

2s ψvA(−1)
u

= (Auχu A(−1)
u )

|Ks |

2s ψv

=
|Kr |

2r χu
|Ks |

2s ψv

=
|Kr × Ks |

2r+s (χuψv). □

To illustrate the previously unrecognized power of the signature set approach, note that Applebaum
[2013] used computer search to show that 643 of the 714 groups of order 256, whose membership in H
was then undetermined, belong to H. Since all 643 of these groups contain a normal subgroup isomorphic
to C2

4 ×C2, this result follows directly from Theorem 2.3 simply by exhibiting a signature set on C2
4 ×C2

with respect to its unique subgroup isomorphic to C3
2 . This can be constructed by using Proposition 2.5
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to take the product of a signature set on C2
4 with respect to its unique subgroup isomorphic to C2

2 (see
Example 1.13) with a trivial signature set on C2 with respect to itself.

Finally, we derive constraints on a signature set in terms of |K | and |E |. We will use these constraints
to show how Theorem 2.3 can be viewed as refining a construction method for difference sets introduced
by Davis and Jedwab [1997], by interpreting a signature set on an abelian group as a special kind of
covering extended building set.

Lemma 2.6. Let K be a group containing a normal subgroup E ∼= Cr
2 , and suppose that {Au : u ∈ Ur } is

a signature set on K with respect to E. Let {χu : u ∈ Ur } be the set of characters of E , and let Bu = Auχu

for each u ∈ Ur . Then the number of times the {±1}-valued function Bu on K takes the value −1 is{ 1
2 |K | if u ̸= 0,
1
2 |K | ±

√
2r−2|K | if u = 0.

Proof. By Lemma 2.2(i), each Bu is {±1}-valued on K .

Case 1: u ̸= 0. By Proposition 1.7(iii), the number of times the {±1}-valued function χu on E takes the
value −1 is 1

2 |E |. Since Au is a {±1}-valued function on a set of coset representatives for E in K , the
number of times Bu = Auχu takes the value −1 is 1

2 |E ||K : E | =
1
2 |K |.

Case 2: u = 0. Let c ∈ {0, 1, . . . , |K |} be the number of times that B0 takes the value −1, and let J be a
group of order 2r . By Theorem 2.3, the group G = J × K contains a Hadamard difference set D whose
corresponding {±1}-valued function is defined in (14) as

D = g0 B0 +

∑
u ̸=0

gu Bu (15)

for some choice of coset representatives {gu : u ∈ Ur } for K in G. By (2), the parameters of the difference
set D satisfy

|G| = 2r
|K | = 4N 2 and |D| = 2N 2

− N

for some integer N , and eliminating N gives

|D| = 2r−1
|K | ±

√
2r−2|K |.

But |D| equals the number of times that the function D takes the value −1, which from (15) and the
result for Case 1 gives

|D| = c + (2r
− 1) 1

2 |K |.

Equate the two expressions for |D| to give

c =
1
2 |K | ±

√
2r−2|K |. □
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Note from Example 1.13 that the number of times the function Au takes the value −1 is not determined
for u ̸= 0 solely from the hypotheses of Lemma 2.6. However, for u = 0 this number is determined
as 1

2r

(
|K |

2 ±
√

2r−2|K |
)

by Lemma 2.6 and the relation B0 = A0χ0, because the {±1}-valued function
χ0 = E takes the value 1 exactly 2r times.

We can now interpret Theorem 2.3 in the framework of [Davis and Jedwab 1997] for the case
that K is abelian. Suppose {Au : u ∈ Ur } is a signature set on an abelian group K with respect to
E = ⟨x1, x2, . . . , xr ⟩ ∼= Cr

2 , and let Bu = Auχu for each u ∈ Ur . In the language of [Davis and Jedwab
1997], we claim that the subsets

{1
2(K −Bu) : u ∈Ur

}
of K then form a

( 1
2 |K |,

√
2r−2|K |, 2r ,±

)
covering

extended building set on K (satisfying the key additional constraint that Bu = Auχu for each u). To prove
the claim, we require firstly that∣∣ 1

2(K − Bu)
∣∣ =

{1
2 |K | ±

√
2r−2|K | for a single value of u,

1
2 |K | for all other values of u.

This is given by Lemma 2.6, because
∣∣ 1

2(K − Bu)
∣∣ is the number of times that the {±1}-valued function

Bu takes the value −1. To complete the proof of the claim, we also require that, for each nonprincipal
character ψ of the abelian group K (namely a nontrivial homomorphism from K to the complex roots of
unity), ∣∣ψ(1

2(K − Bu)
)∣∣ =

{√
2r−2|K | for a single value of u that depends on ψ,

0 for all other values of u.

This is given by applying ψ to the case u = v of Lemma 2.2(ii) to obtain |ψ(Bu)|
2

= |K |ψ(χu), and
noting that ψ maps each xi to {1,−1} so that from (3) we have

ψ(χu)=

{
2r for a single value of u that depends on ψ,
0 for all other values of u.

3. Proof of main result

In this section we prove our main result, Theorem 1.15, as a corollary of Theorem 3.1 below. For an
abelian 2-group K of rank r , we shall abbreviate “a signature set on K with respect to its unique subgroup
isomorphic to Cr

2 ” as “a signature set on K ”.

Theorem 3.1. Let d and r be integers satisfying d ≥ 1 and 2 ≤ r ≤ d +1. Let Kd,r be the set of all abelian
groups of order 22d−r+2, rank r , and exponent at most 2d−r+2. Then there exists a signature set on each
Kd,r ∈ Kd,r .

Note in Theorem 3.1 that if E is the unique subgroup of Kd,r ∈ Kd,r isomorphic to Cr
2 , then E is

normal in G. We may therefore apply Theorem 2.3 to obtain Theorem 1.15 as a corollary of Theorem 3.1.
We shall prove Theorem 3.1 using a recursive construction for signature sets on abelian 2-groups. To

illustrate the main ideas, we begin with a proof of the special case r = 2.

Theorem 3.2 (rank 2 case of Theorem 3.1). Let d be a nonnegative integer. Then there exists a signature
set on Kd = C2

2d .
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Proof. The proof is by induction on d ≥ 1. The case d = 1 is true because there exists a trivial signature
set on C2

2 .
Assume all cases up to d − 1 ≥ 1 are true. Let Kd−1 = ⟨X, Y ⟩, where X2d−1

= Y 2d−1
= 1. By the

inductive hypothesis, there exists a signature set {Ai j : (i, j)∈ U2} on Kd−1 with respect to ⟨X2d−2
, Y 2d−2

⟩.
By associating the group ring ZKd−1 with the quotient ring Z[X, Y ]/⟨1 − X2d−1

, 1 − Y 2d−1
⟩, we may

regard each group ring element Ai j as a polynomial Ai j (X, Y ) in X and Y , and regard each character of
⟨X2d−2

, Y 2d−2
⟩ as a polynomial

χi j (X, Y )= (1 + (−1)i X2d−2
)(1 + (−1) j Y 2d−2

) for (i, j) ∈ U2.

By assumption, in the polynomial ring Z[X, Y ]/⟨1 − X2d−1
, 1 − Y 2d−1

⟩ we have

Ai j (X, Y )χi j (X, Y )Ai j (X, Y )(−1)
= 22d−4χi j (X, Y ) for each (i, j) ∈ U2. (16)

Let Kd = ⟨x, y⟩, where x2d
= y2d

= 1, and let E = ⟨x2d−1
, y2d−1

⟩. We wish to construct a signature set
{αi j : (i, j) ∈ U2} on Kd with respect to E . Define the αi j in ZKd in terms of the polynomials Ai j via

α00 = (1 + x2d−2
)A00(x, y2)+ y(1 − x2d−2

)A10(x, y2),

α01 = (1 + x2d−2
)A01(x, y2)+ y(1 − x2d−2

)A11(x, y2),

α10 = (1 + y2d−2
)A10(x2, y)+ x(1 − y2d−2

)A11(x2, y),

α11 = (1 + x2d−2
y2d−2

)A10(x2, xy)+ x(1 − x2d−2
y2d−2

)A11(x2, xy),

(17)

and let the characters of E be

ψi j = (1 + (−1)i x2d−1
)(1 + (−1) j y2d−1

) for each (i, j) ∈ U2.

We first use Proposition 2.4 to show it is sufficient to prove for each (i, j) ̸= (1, 1) that αi j is a signature
block with respect to ψi j . Let σ be the group automorphism of Kd that maps x to itself and maps y to xy.
Then σ(α10)= α11 by definition, and σ fixes E , and

σ(ψ10)= (1 − x2d−1
)(1 + x2d−1

y2d−1
)= (1 − x2d−1

)(1 − y2d−1
)= ψ11.

Therefore if α10 is a signature block on Kd with respect to ψ10, then α11 is a signature block on Kd with
respect to ψ11 by Proposition 2.4.

We next show that α00 is a {±1}-valued function on a set of coset representatives for E in Kd , and a
similar argument shows that the same holds for α01 and α10. By definition, A00(X, Y ) is {±1}-valued on
exactly one of the four values

{X i Y j , X i Y j+2d−2
, X i+2d−2

Y j , X i+2d−2
Y j+2d−2

}

for 0 ≤ i < 2d−2, 0 ≤ j < 2d−2. Therefore A00(x, y2) is {±1}-valued on exactly one of the four values

{x i y2 j , x i y2 j+2d−1
, x i+2d−2

y2 j , x i+2d−2
y2 j+2d−1

}

for 0 ≤ i < 2d−2, 0 ≤ j < 2d−2, and so (1 + x2d−2
)A00(x, y2) is {±1}-valued on exactly one of the four

values

{x i y2 j , x i y2 j+2d−1
, x i+2d−1

y2 j , x i+2d−1
y2 j+2d−1

}
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for 0 ≤ i < 2d−1, 0 ≤ j < 2d−2. Likewise, y(1 − x2d−2
)A10(x, y2) is {±1}-valued on exactly one of the

four values

{x i y2 j+1, x i y2 j+2d−1
+1, x i+2d−1

y2 j+1, x i+2d−1
y2 j+2d−1

+1
}

for 0 ≤ i < 2d−1, 0 ≤ j < 2d−2. Combining, α00 is {±1}-valued on exactly one of the four values

{x i y j , x i y j+2d−1
, x i+2d−1

y j , x i+2d−1
y j+2d−1

}

for 0 ≤ i < 2d−1, 0 ≤ j < 2d−1.
It remains to show that in ZKd we have

αi jψi jα
(−1)
i j = 22d−2ψi j for each (i, j) ̸= (1, 1). (18)

Using x2d
= 1, for i, k ∈ {0, 1} we have the identity

(1 + x2d−1
)(1 + (−1)i x2d−2

)(1 + (−1)k x−2d−2
)=

{
2(1 + x2d−1

)(1 + (−1)i x2d−2
) if i = k,

0 if i ̸= k,

and multiplication by 1 + (−1) j y2d−1
for j ∈ {0, 1} then gives

(1 + (−1)i x2d−2
)ψ0 j (1 + (−1)k x−2d−2

)=

{
2(1 + x2d−1

)χi j (x, y2) if i = k,
0 if i ̸= k.

(19)

We can now establish (18) for (i, j)= (0, 0). Using (17), we calculate

α00ψ00α
(−1)
00 = ((1 + x2d−2

)A00(x, y2)+ y(1 − x2d−2
)A10(x, y2))×ψ00

× ((1 + x−2d−2
)A00(x, y2)(−1)

+ y−1(1 − x−2d−2
)A10(x, y2)(−1))

= 2(1 + x2d−1
)A00(x, y2)χ00(x, y2)A00(x, y2)(−1)

+ 2(1 + x2d−1
)A10(x, y2)χ10(x, y2)A10(x, y2)(−1), (20)

using (19) with i ̸=k to remove the terms involving A00(x, y2)A10(x, y2)(−1) and A10(x, y2)A00(x, y2)(−1),
and using (19) with i = k to simplify the surviving terms. Take X = x and Y = y2 in (16) to show that, in
the polynomial ring Z[x, y]/⟨1 − x2d−1

, 1 − y2d
⟩,

Ai j (x, y2)χi j (x, y2)Ai j (x, y2)(−1)
= 22d−4χi j (x, y2) for each (i, j) ∈ U2.

This implies that, in the polynomial ring Z[x, y]/⟨1 − x2d
, 1 − y2d

⟩,

(1 + x2d−1
)Ai j (x, y2)χi j (x, y2)Ai j (x, y2)(−1)

= 22d−4(1 + x2d−1
)χi j (x, y2) for each (i, j) ∈ U2.

Substitution in (20) then gives

α00ψ00α
(−1)
00 = 22d−3(1 + x2d−1

)(χ00(x, y2)+χ10(x, y2))= 22d−2ψ00,

so (18) holds for (i, j)= (0, 0).
A similar derivation gives

α01ψ01α
(−1)
01 = 22d−3(1 + x2d−1

)(χ01(x, y2)+χ11(x, y2))= 22d−2ψ01,

α10ψ10α
(−1)
10 = 22d−3(1 + y2d−1

)(χ10(x2, y)+χ11(x2, y))= 22d−2ψ10,

so that (18) holds for (i, j)= (0, 1) and (i, j)= (1, 0).
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Therefore the αi j form a signature set on Kd with respect to E . This shows that case d is true and
completes the induction. □

We next illustrate the recursive construction method used in the proof of Theorem 3.2.

Example 3.3. A trivial signature set {A1
i j : (i, j) ∈ U2} on C2

2 with respect to itself is given by

A1
i j = 1 for all (i, j) ∈ U2.

Apply the recursion (17) with d = 2 to obtain the signature set {A2
i j : (i, j) ∈ U2} on C2

4 = ⟨x, y⟩ with
respect to ⟨x2, y2

⟩ ∼= C2
2 given by

A2
00 = A2

01 = (1 + x)+ y(1 − x)= 1 + x + y − xy,

A2
10 = (1 + y)+ x(1 − y)= 1 + x + y − xy,

A2
11 = (1 + xy)+ x(1 − xy)= 1 + x − x2 y + xy.

Apply the recursion (17) again with d = 3 to obtain the signature set {A3
i j : (i, j) ∈ U2} on C2

8 = ⟨x, y⟩

with respect to ⟨x4, y4
⟩ ∼= C2

2 given by

A3
00 = (1 + x2)A2

00(x, y2)+ y(1 − x2)A2
10(x, y2)

= (1 + x2)(1 + x + y2
− xy2)+ y(1 − x2)(1 + x + y2

− xy2),

A3
01 = (1 + x2)A2

01(x, y2)+ y(1 − x2)A2
11(x, y2)

= (1 + x2)(1 + x + y2
− xy2)+ y(1 − x2)(1 + x − x2 y2

+ xy2),

A3
10 = (1 + y2)A2

10(x
2, y)+ x(1 − y2)A2

11(x
2, y)

= (1 + y2)(1 + x2
+ y − x2 y)+ x(1 − y2)(1 + x2

− x4 y + x2 y),

A3
11 = (1 + x2 y2)A2

10(x
2, xy)+ x(1 − x2 y2)A2

11(x
2, xy)

= (1 + x2 y2)(1 + x2
+ xy − x3 y)+ x(1 − x2 y2)(1 + x2

− x5 y + x3 y).

We note that the recursion (17) in the proof of Theorem 3.2 has a simpler form when expressed in
terms of group ring elements Bi j = Ai jχi j and βi j = αi jψi j , namely

β00(x, y)= (1 + x2d−1
)(B00(x, y2)+ y B10(x, y2)),

β01(x, y)= (1 + x2d−1
)(B01(x, y2)+ y B11(x, y2)),

β10(x, y)= (1 + y2d−1
)(B10(x2, y)+ x B11(x2, y)),

β11(x, y)= (1 − y2d−1
)(B10(x2, xy)+ x B11(x2, xy)).

We now prove Theorem 3.1 in full generality, using the proof of Theorem 3.2 as a model. We abbreviate
some of the proof, focusing attention on the parts for which a new argument or additional care is needed.

Proof of Theorem 3.1. The proof is by induction on d ≥ 1. In the case d = 1, we have r = 2 and
K1,2 = {C2

2}. The case d = 1 is therefore true, because there exists a trivial signature set on C2
2 .
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Assume all cases up to d −1 ≥ 1 are true. We shall write u = (i, j, u3, . . . , ur ) ∈ Ur as (i, j, v), where
v = (u3, . . . , ur ). Let

Kd,r = C2a1 × · · · × C2ar = ⟨x, y, x3, . . . , xr ⟩ ∈ Kd,r ,

where x2a1
= y2a2

= x2a3
3 = · · · = x2ar

r = 1 and d −r +2 ≥ a1 ≥ a2 ≥ · · · ≥ ar ≥ 1 and
∑

i ai = 2d −r +2.
The unique subgroup of Kd,r isomorphic to Cr

2 is Ed,r = ⟨x2a1−1
, y2a2−1

, x2a3−1

3 , . . . , x2ar −1

r ⟩.
If ar = 1, then by the inductive hypothesis there is a signature set on the group ⟨x, y, x3, . . . , xr−1⟩ ∈

Kd−1,r−1. In that case we may use Proposition 2.5 to combine this with a trivial signature set on C2 in
order to obtain the required signature set on Kd,r with respect to Ed,r .

We may therefore take d − r + 2 ≥ a1 ≥ a2 ≥ · · · ≥ ar ≥ 2. This implies that r ≤ d , and if r > 2 then
a3 ≤ d −r +1 (otherwise 2d −r +2 =

∑
i ai ≥ 3(d −r +2)+ (r −3)2 = 3d −r , giving the contradiction

r ≤ d ≤ 2). By the inductive hypothesis, the group

C2a1−1 × C2a2−1 × C2a3 × · · · × C2ar = ⟨X, Y, x3, . . . , xr ⟩ ∈ Kd−1,r ,

where X2a1−1
= Y 2a2−1

= x2a3
3 = · · · = x2ar

r = 1, therefore contains a signature set {Ai jv : (i, j, v) ∈ Ur }

with respect to Ed−1,r = ⟨X2a1−2
, Y 2a2−2

, x2a3−1

3 , . . . , x2ar −1

r ⟩.
Regard each group ring element Ai jv as a polynomial in X, Y, x3, . . . , xr , but abbreviate this as

Ai jv(X, Y ) because we will make variable substitutions only for X and Y . Similarly, regard each
character of Ed−1,r as a polynomial

χi jv(X, Y )= (1 + (−1)i X2a1−2
)(1 + (−1) j Y 2a2−2

)τv

where

τv = (1 + (−1)u3 x2a3−1

3 ) . . . (1 + (−1)ur x2ar −1

r ).

By assumption, in the polynomial ring Z[X, Y, x3, . . . , xr ]/⟨1− X2a1−1
, 1−Y 2a2−1

, 1−x2a3
3 , . . . , 1−x2ar

r ⟩

we have

Ai jv(X, Y )χi jv(X, Y )Ai jv(X, Y )(−1)
= 22d−2rχi jv(X, Y ) for each (i, j, v) ∈ Ur . (21)

We wish to construct a signature set {αi jv : (i, j, v) ∈ Ur } on Kd,r with respect to Ed,r . Define the αi jv

in ZKd,r in terms of the polynomials Ai jv via

α00v = (1 + x2a1−2
)A00v(x, y2)+ y(1 − x2a1−2

)A10v(x, y2),

α01v = (1 + x2a1−2
)A01v(x, y2)+ y(1 − x2a1−2

)A11v(x, y2),

α10v = (1 + y2a2−2
)A10v(x2, y)+ x(1 − y2a2−2

)A11v(x2, y),

α11v = (1 + x2a1−2
y2a2−2

)A10v(x2, x2a1−a2 y)+ x(1 − x2a1−2
y2a2−2

)A11v(x2, x2a1−a2 y),

(22)

and let the characters of Ed,r be

ψi jv = (1 + (−1)i x2a1−1
)(1 + (−1) j y2a2−1

)τv for each (i, j, v) ∈ Ur .

We firstly use Proposition 2.4 to show it is sufficient to prove for each (i, j, v) ̸= (1, 1, v) that αi jv

is a signature block with respect to ψi jv. Let σ be the group automorphism of Kd,r that maps x to
itself and maps y to x2a1−a2 y (which has order 2a2). Then σ(α10v)= α11v by definition, and σ fixes Ed,r ,
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and σ(ψ10v)= ψ11v. Therefore if α10v is a signature block on Kd,r with respect to ψ10v, then α11v is a
signature block on Kd,r with respect to ψ11v by Proposition 2.4.

We next show that each α00v is a {±1}-valued function on a set of coset representatives for Ed,r in Kd,r ,
and a similar argument shows that the same holds for each α01v and α10v . Fix z = x i3

3 . . . x
ir
r . By definition,

A00v(X, Y ) is {±1}-valued on exactly one of the four values

{X i Y j z, X i Y j+2a2−2
z, X i+2a1−2

Y j z, X i+2a1−2
Y j+2a2−2

z}

for 0 ≤ i < 2a1−2, 0 ≤ j < 2a2−2. It follows that α00v is {±1}-valued on exactly one of the four values

{x i y j z, x i y j+2a2−1
z, x i+2a1−1

y j z, x i+2a1−1
y j+2a2−1

z}

for 0 ≤ i < 2a1−1, 0 ≤ j < 2a2−1.
It remains to show that in ZKd,r we have

αi jvψi jvα
(−1)
i jv = 22d−2r+2ψi jv for each (i, j, v) ̸= (1, 1, v). (23)

For i, j, k ∈ {0, 1}, we have the identity

(1 + (−1)i x2a1−2
)ψ0 jv(1 + (−1)k x−2a1−2

)=

{
2(1 + x2a1−1

)χi jv(x, y2) if i = k,
0 if i ̸= k,

(24)

from which we now establish (23) for (i, j, v)= (0, 0, v). We calculate

α00vψ00vα
(−1)
00v = ((1 + x2a1−2

)A00v(x, y2)+ y(1 − x2a1−2
)A10v(x, y2))×ψ00v

× ((1 + x−2a1−2
)A00v(x, y2)(−1)

+ y−1(1 − x−2a1−2
)A10v(x, y2)(−1))

= 2(1 + x2a1−1
)A00v(x, y2)χ00v(x, y2)A00v(x, y2)(−1)

+ 2(1 + x2a1−1
)A10v(x, y2)χ10v(x, y2)A10v(x, y2)(−1), (25)

using (24). Take X = x and Y = y2 in (21) to show that, in the polynomial ring Z[x, y, x3, . . . , xr ]/

⟨1 − x2a1
, 1 − y2a2

, 1 − x2a3
3 , . . . , 1 − x2ar

r ⟩,

(1+x2a1−1
)Ai jv(x, y2)χi jv(x, y2)Ai jv(x, y2)(−1)

=22d−2r (1+x2a1−1
)χi jv(x, y2) for each (i, j, v) ∈ Ur .

Substitution in (25) then gives

α00vψ00vα
(−1)
00v = 22d−2r+1(1 + x2a1−1

)(χ00v(x, y2)+χ10v(x, y2))= 22d−2r+2ψ00v,

so (23) holds for (i, j, v)= (0, 0, v).
A similar derivation gives

α01vψ01vα
(−1)
01v = 22d−2r+1(1 + x2a1−1

)(χ01v(x, y2)+χ11v(x, y2))= 22d−2r+2ψ01v,

α10vψ10vα
(−1)
10v = 22d−2r+1(1 + y2a2−1

)(χ10v(x2, y)+χ11v(x2, y))= 22d−2r+2ψ10v,

so that (23) holds for (i, j, v)= (0, 1, v) and (i, j, v)= (1, 0, v).
Therefore the αi jv form a signature set on Kd,r with respect to Ed,r . This shows that case d is true and

completes the induction. □

We now illustrate the recursive construction method used in the proof of Theorem 3.1.
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Example 3.4. We shall construct a signature set on C8 × C2
4 . By Example 3.3, there is a signature set

{A′

ik : (i, k) ∈ U2} on C2
4 = ⟨x, z⟩ with respect to ⟨x2, z2

⟩ given by

A′

00 = A′

01 = A′

10 = 1 + x + z − xz,

A′

11 = 1 + x − x2z + xz.

Use the product construction of Proposition 2.5 to combine this with a trivial signature set on C2, producing
a signature set {Ai jk : (i, j, k)∈ U3} on C4 ×C2 ×C4 = ⟨x, y, z⟩ with respect to ⟨x2, y, z2

⟩ ∼= C3
2 given by

A000 = A010 = A001 = A011 = A100 = A110 = 1 + x + z − xz,

A101 = A111 = 1 + x − x2z + xz.

Now apply the recursion (22) to produce a signature set {αi jk : (i, j, k) ∈ U3} on C8 ×C2
4 = ⟨x, y, z⟩ with

respect to ⟨x4, y2, z2
⟩ ∼= C3

2 given by

α000 = (1 + x2)(1 + x + z − xz)+ y(1 − x2)(1 + x + z − xz),

α001 = (1 + x2)(1 + x + z − xz)+ y(1 − x2)(1 + x − x2z + xz),

α010 = (1 + x2)(1 + x + z − xz)+ y(1 − x2)(1 + x + z − xz),

α011 = (1 + x2)(1 + x + z − xz)+ y(1 − x2)(1 + x − x2z + xz),

α100 = (1 + y)(1 + x2
+ z − x2z)+ x(1 − y)(1 + x2

+ z − x2z),

α101 = (1 + y)(1 + x2
− x4z + x2z)+ x(1 − y)(1 + x2

− x4z + x2z),

α110 = (1 + x2 y)(1 + x2
+ z − x2z)+ x(1 − x2 y)(1 + x2

+ z − x2z),

α111 = (1 + x2 y)(1 + x2
− x4z + x2z)+ x(1 − x2 y)(1 + x2

− x4z + x2z).

4. Further construction methods

As shown in Table 1, our main result (Theorem 1.15) uses signature sets on abelian groups to provide
constructions for difference sets in the great majority of the groups of order 64 and 256 that are not
excluded by Theorems 1.3 and 1.5. In this section, we describe the methods that were used to show that
the 22 remaining groups of order 64, and the 1,416 remaining groups of order 256, all belong to H.

In Section 4A, we present a construction method arising under Theorem 2.3 from a signature set on a
nonabelian group; recall that Definition 2.1 for a signature set does not require the group K to be abelian.
In Section 4B, we present a product construction using perfect ternary arrays, without constraining these
arrays in relation to a subgroup. In Section 4C, we describe three nonsystematic methods of transferring a
difference set in one group to another. We used the methods of Sections 4A–4C to establish that all but one
of the 22 remaining nonexcluded groups of order 64, and all but one of the 1,416 remaining nonexcluded
groups of order 256, belong to H. In Section 4D, we describe the construction of a Hadamard difference
set in both of these final groups using group representations. In Section 4E, we show that the signature set
construction of Section 4A and the perfect ternary array product construction of Section 4B are closely
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related and can sometimes be combined, which could in future assist in determining which 2-groups of
order larger than 256 belong to H.

4A. Signature set on nonabelian group. Our first construction method applies Theorem 2.3 to a signature
set on a nonabelian group to produce Hadamard difference sets in a variety of larger groups. We illustrate
this method by exhibiting a signature set on the quaternion group of order 8.

Proposition 4.1. Let Q = ⟨x, y : x4
= y4

= 1, yxy−1
= x−1, x2

= y2
⟩ be the quaternion group of order

8, and let G be a group of order 16 containing a subgroup isomorphic to Q. Then G ∈ H.

Proof. Let E1 = ⟨x2
⟩ ∼= C2, and let

χ0 = 1 + x2, χ1 = 1 − x2

be the characters of E1. Since E1 is the unique subgroup of Q isomorphic to C2, and Q has index 2 and
so is normal in G, we have that E1 is normal in G. Therefore by Theorem 2.3 with r = 1, it is sufficient to
exhibit a signature set {A0, A1} on Q with respect to E1 (and then according to (14) there is a difference
set in G of the form g0 A0χ0 + g1 A1χ1).

Let A = 1− x − y − xy, and let {A0, A1} = {A, A}. Then A is a {±1}-valued function on a set of coset
representatives for E1 in Q, and direct calculation shows that AA(−1)

= 4 in ZQ. Since E1 is a central
subgroup of Q, we therefore have in ZQ that

Auχu A(−1)
u = Au A(−1)

u χu = 4χu =
1
2 |Q|χu for u ∈ {0, 1},

as required. □

As noted prior to Table 1, we can use Theorem 1.15 and Proposition 4.1 to recover the classification
of Hadamard groups of order 16 carried out in the 1970s: Theorem 1.15 accounts for the 10 groups
containing a normal subgroup isomorphic to C2

2 , and Proposition 4.1 accounts for 2 further groups (the
generalized quaternion group and the semidihedral group) containing a subgroup isomorphic to Q.

Furthermore, using Proposition 2.5 we may now take the product of a signature set on Q with respect
to E1 given in the proof of Proposition 4.1, and a trivial signature set on C2, to give a signature set on
Q × C2 with respect to E1 × C2 ∼= C2

2 . Then from Theorem 2.3, every group of order 64 containing a
normal subgroup isomorphic to Q × C2 belongs to H.

We now use a Hadamard difference set to construct a signature set on certain groups of order 22d+1.

Proposition 4.2. Suppose D is a Hadamard difference set in a group H , and let E1 ∼= C2. Then {D, D}

is a signature set on H × E1 with respect to E1.

Proof. We are given that D is a {±1}-valued function on the set H of coset representatives for E1 in
H × E1. Let {A0, A1} = {D, D}, and write E1 = ⟨x⟩ so that the characters of E1 are χ0 = 1 + x and
χ1 = 1 − x . Since x commutes with D, we have in Z(H × E1) that

Auχu A(−1)
u = DD(−1)χu = |H |χu =

1
2 |H × E1|χu for u ∈ {0, 1},

as required. □
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Corollary 4.3. Suppose H ∈H. Let G be a group containing a normal subgroup E1 ∼= C2, and containing
H × E1 as a subgroup of index 2. Then G ∈ H.

Proof. By Proposition 4.2, there exists a signature set on H × E1 with respect to E1. Since E1 and H × E1

are both normal in G, we have G ∈ H by Theorem 2.3. □

The technique of constructing Hadamard difference sets from signature sets on nonabelian groups
appears to have significant potential, but we do not currently have a method of producing such signature
sets that is as powerful as the recursive construction used to prove Theorem 3.1 for abelian groups.

4B. Product of perfect ternary arrays. Our second construction method relies on a key feature of the
proof of Proposition 4.1, namely the existence of a {+1, 0,−1}-valued function A on the group Q
satisfying AA(−1)

= 4 in ZQ. This function A is also {±1}-valued on a set of coset representatives for a
subgroup of Q, but we do not require this additional structure in the following definition.

Definition 4.4. Let G be a group. A perfect ternary array in G is a {+1, 0,−1}-valued function T on G
satisfying T T (−1)

= c in ZG for some integer c.

The set of elements of a group G on which a group ring element A ∈ ZG is nonzero is the support of A;
the size of this set is the weight of A, written wt(A). We firstly show that the integer c in Definition 4.4 is
equal to the weight of the perfect ternary array, and that it is a square.

Lemma 4.5. Let G be a group, and suppose T =
∑

g∈G tgg is a perfect ternary array where each
tg ∈ {+1, 0,−1}. Then T T (−1)

= wt(T )=
(∑

g∈G tg
)2.

Proof. For some integer c, we have

c = T T (−1)
=

(∑
h∈G

thh
)(∑

g∈G

tgg−1
)

=

∑
k∈G

(∑
g∈G

tkgtg

)
k

by writing k = hg−1. Comparison of the coefficients of 1G and k ̸= 1G gives

c =

∑
g∈G

t2
g ,

0 =

∑
g∈G

tkgtg for k ̸= 1G .

(26)

These relations together give

c =

∑
k∈G

∑
g∈G

tkgtg =

∑
g∈G

(∑
h∈G

th

)
tg =

(∑
g∈G

tg

)2

.

The result follows by combining with (26), noting that
∑

g∈G t2
g = wt(T ) because T is {+1, 0,−1}-

valued. □
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By Lemma 4.5 and (1), we may regard a Hadamard difference set in a group G as a perfect ternary
array T in G for which T T (−1)

= |G|. A survey of results on the matrix representation of a perfect ternary
array in an abelian group is given in [Arasu and Dillon 1999]. We next give two examples of perfect
ternary arrays of weight 4, whose properties can be verified by direct calculation. The second example
appears in the proof of Proposition 4.1.

Example 4.6 (unpublished work of Dillon [1990]). (i) Suppose G is a group containing a nonidentity
element x and an involution (element of order 2) y that commutes with x . Then T = 1 − x − y − xy
is a perfect ternary array of weight 4 in G.

(ii) Let Q = ⟨x, y : x4
= y4

= 1, yxy−1
= x−1, x2

= y2
⟩ be the quaternion group of order 8. Then

T = 1 − x − y − xy is a perfect ternary array of weight 4 in Q.

Every perfect ternary array of weight 4 in a group of even order is equivalent to Example 4.6(i) or (ii)
[Bhattacharya and Smith 2008, Lemma 2].

We now construct a Hadamard difference set as a product of perfect ternary arrays.

Proposition 4.7 (unpublished work of Dillon [1990], Bhattacharya and Smith [2008]). Let T1, T2, . . . , Ts

be subsets of a group G, and let D =
∏s

i=1 Ti . Suppose that

(i) each Ti is a perfect ternary array in G,

(ii) wt(D)=
∏s

i=1 wt(Ti ),

(iii) wt(D)= |G|.

Then D corresponds to a Hadamard difference set in G.

Proof. By condition (ii), D is a {+1, 0,−1}-valued function on G. Now DD(−1)
=

∏s
i=1 wt(Ti ) by

Lemma 4.5, and then by conditions (ii) and (iii) we have DD(−1)
= |G|. □

Since a Hadamard difference set is a special case of a perfect ternary array, we may regard Theorem 1.2
as constructing a Hadamard difference set in G as the product D1 D2 of two perfect ternary arrays D1 and
D2 contained in subgroups H1 and H2 of G. In contrast, Proposition 4.7 constructs Hadamard difference
sets as the product of s perfect ternary arrays Ti , with the important relaxation that each Ti need not be
structurally constrained in relation to a subgroup of G.

This generality gives Proposition 4.7 considerable power. We take each Ti to be either a perfect ternary
array of weight 4 (having one of the two forms of Example 4.6), or else a Hadamard difference set in a
subgroup of G. This allows us to construct all 27 inequivalent difference sets in the 12 groups of order 16
contained in H [Bhattacharya and Smith 2008]; a difference set in 17 of the 22 remaining nonexcluded
groups of order 64; and a difference set in 1,358 of the 1,416 remaining nonexcluded groups of order 256;
see Table 1. However, the same generality means that testing whether a group G lies in H because of
Proposition 4.7 (involving a computer search over all suitable perfect ternary arrays) is significantly
slower than testing whether G lies in H because of Theorem 1.15 (involving simply testing whether G
contains a suitable normal abelian subgroup); see Section 5 for further details.
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4C. Transfer methods. The construction methods of previous sections are collectively sufficient to
demonstrate that the great majority of the groups of order 64 and 256 that are not excluded by Theorems 1.3
and 1.5 belong to H. The key in almost all of these demonstrations is the existence of a signature set
on a normal subgroup, from which a difference set arises using Theorem 2.3. Nonetheless, while the
signature set concept is very powerful, it does not appear to be sufficient to determine H completely. The
reason is that some groups (2 of order 64, and 10 of order 256) have the property that each of their normal
subgroups also occurs as a normal subgroup of a group that is not in H. We therefore require construction
methods that do not rely on a signature set. We now describe three such methods, each of which uses
a difference set in one group to discover a difference set in another (and so “transfers” a difference set
between the two groups).

The first transfer method makes use of the equivalence between a difference set in a group G and a
symmetric design on whose points G acts as a regular (sharply transitive) automorphism group. If the full
automorphism group of the design is sufficiently large, it may well contain other subgroups which also
act regularly on the points of the design; in this case, each of these subgroups also contains a difference
set. For example, the group C4

2 contains a difference set giving a (16, 6, 2) symmetric design whose
2-rank is 6, and the automorphism group of this design contains 12 nonisomorphic subgroups of order
16 acting regularly on the points of the design. We thereby transfer a single difference set in C4

2 to a
difference set in all 11 of the other Hadamard groups of order 16. Similarly, the group C6

2 contains a
difference set giving a (64, 28, 12) symmetric design whose 2-rank is 8, and the automorphism group of
this design contains 171 nonisomorphic subgroups of order 64 acting regularly on the points of the design.
We thereby transfer a single difference set in C6

2 to 170 of the other 258 Hadamard groups of order 64.
The second transfer method applies when a difference set gives an algebraic structure in the group

ring that also exists in other group rings. An example is Dillon’s proof [1985] of Theorem 1.5, which
transfers a putative difference set in a group with a large dihedral quotient to a difference set in a group
with a large cyclic quotient in order to apply the nonexistence result of Theorem 1.3. A second example
is Theorem 2.3, which can be viewed as using Theorem 1.9 to transfer a difference set in an abelian
group that contains K to a difference set in a variety of nonabelian groups containing K . A third example
is [Dillon 1990a, Theorem 2], which transfers a difference set among groups sharing a subgroup H of
index 2 and a central element g not in H . In general, suppose that a group G is known to contain a
difference set D, and that G contains a large normal subgroup K . Let {gu} be a set of coset representatives
for K in G, and partition the elements of D according to their membership of the cosets of K to write
D =

∑
u gu Du , where each Du ∈ ZK . Now let G ′ be a group having the same order as G and containing a

normal subgroup K ′ isomorphic to K . Let φ be an isomorphism from K to K ′. To transfer the difference
set D from G to G ′ we seek, by hand or by computer search, a set of coset representatives {g′

u} for K ′ in
G ′ for which

∑
u g′

uφ(Du) is a difference set in G ′.
The third transfer method takes advantage of the structure created by the GAP method for labeling

group elements. A difference set D with parameters (v, k, λ) in a group G of order v can be represented
in GAP as a k-subset S of the element labels {1, 2, . . . , v}. Given such a subset S representing a difference
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set in G, we test in GAP whether the same subset S also represents a difference set in another group G ′

of order v. This method appears to have a greater chance of success when the GAP numbering for G ′ is
close to that of G, which often occurs when G ′ has similar structure to G.

None of these three transfer methods is systematic, and it is not yet clear when they can be expected to
succeed. Nonetheless, we were able to apply them to show that all but one of the remaining 5 nonexcluded
groups of order 64, and all but one of the remaining 58 nonexcluded groups of order 256, belong to H;
see Table 1. We construct a difference set in the final group of order 64 and of order 256 in Section 4D.

4D. The final group of order 64 and of order 256. The final two groups whose membership in H we
wish to demonstrate are the order 64 modular group

M64 = C32 ⋊17 C2 = ⟨x, y : x32
= y2

= 1, yxy−1
= x17

⟩,

and the order 256 group

C64 ⋊47 C4 = ⟨x, y : x64
= y4

= 1, yxy−1
= x47

⟩

that is referenced in [GAP 2020] as SmallGroup(256, 536). These nonabelian groups are each a cyclic
extension of a cyclic group, and have small center and high exponent. Historically, they were the last
groups of their order whose membership in H was determined: M64 in 1991 [Liebler and Smith 1993],
and SmallGroup(256, 536) in 2016 [Yolland 2016].

We firstly describe the original construction method used in [Liebler and Smith 1993] and [Yolland
2016], which strengthens the representation theory approach used in [Davis and Smith 1994, Section 5]
to construct a difference set in the order 256 group C64 ⋊33 C4 = ⟨x, y : x64

= y4
= 1, yxy−1

= x33
⟩. We

shall then reinterpret these constructions as arising from a modification of a signature set.

Proposition 4.8. Let G be a 2-group, let g be a central involution in G, and let ♮ be the natural map from
G onto G/⟨g⟩. Suppose there are {+1, 0,−1}-valued functions D0, D1 on G for which D0(1 + g) and
D1(1 − g) have disjoint supports whose union is G, and for which

♮(D0)♮(D0)
(−1)

=
1
4 |G| in Z(G/⟨g⟩), (27)

D1(1 − g)D(−1)
1 =

1
4 |G|(1 − g) in ZG. (28)

Then G ∈ H.

Proof. We note that the existence of a central involution g in the 2-group G follows from the class equation
for finite groups. Let

D = D0(1 + g)+ D1(1 − g) in ZG, (29)

which is a {±1}-valued function on G by the assumption on the supports of D0(1 + g) and D1(1 − g).
We now calculate

DD(−1)
= 2D0(1 + g)D(−1)

0 + 2D1(1 − g)D(−1)
1 in ZG. (30)
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By (27), in Z(G/⟨g⟩) we have

1
4 |G|1G/⟨g⟩ = ♮(D0)♮(D0)

(−1)
= (D0⟨g⟩)(D(−1)

0 ⟨g⟩)= D0 D(−1)
0 ⟨g⟩,

so that in ZG we have

1
4 |G|(1 + g)= D0 D(−1)

0 (1 + g)= D0(1 + g)D(−1)
0

because g is central in G. Substitute this and (28) into (30) to obtain

DD(−1)
=

1
2 |G|(1 + g)+ 1

2 |G|(1 − g)= |G|.

Therefore D corresponds to a Hadamard difference set in G. □

When applying Proposition 4.8, we firstly seek a {+1, 0,−1}-valued group ring element D0 satisfying
condition (27), namely that ♮(D0) is a perfect ternary array of weight 1

4 |G| in the factor group G/⟨g⟩. We
then seek a {+1, 0,−1}-valued group ring element D1 satisfying (28) for which D0(1+g) and D1(1−g)
have disjoint supports whose union is G. It turns out that finding D0 is relatively easy, whereas finding
D1 is much more difficult.

Example 4.9 (Liebler and Smith [1993] construction for M64). We apply Proposition 4.8 to construct a
Hadamard difference set in M64 = C32 ⋊17 C2 = ⟨x, y : x32

= y2
= 1, yxy−1

= x17
⟩. The center of M64

is ⟨x2
⟩, so x16 is a central involution.

A {+1, 0,−1}-valued group ring element D0 satisfying

♮(D0)♮(D0)
(−1)

= 16 in Z(M64/⟨x16
⟩)

is given by
D0 = A00(1 + y)+ A01(1 − y),

where
A00 = −x7(1 + x8)+ (1 − x8), and A01 = x(1 + x8)+ x4(1 − x8).

This was easily found by hand, because the factor group M64/⟨x16
⟩ is isomorphic to the abelian group

C16 × C2.
A {+1, 0,−1}-valued group ring element D1 satisfying

D1(1 − x16)D(−1)
1 = 16(1 − x16) in ZM64

is given by
D1 = A10(1 + y)+ A11(1 − y),

where
A10 = (x6

− x5)(1 − x8), and A11 = (x2
+ x3)(1 + x8).

This was found by hand using the irreducible representations induced by the character (homomorphism)
that maps x16 to −1.
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Now D0(1+x16) has support (1+x+x4
+x7)⟨x8,y⟩, and D1(1−x16) has support (x2

+x3
+x5

+x6)⟨x8,y⟩.
These supports are disjoint and their union is M64. We conclude from the construction of Proposition 4.8
that D = D0(1 + x16)+ D1(1 − x16) corresponds to a difference set in M64.

Example 4.10 (Yolland [2016] construction for SmallGroup(256, 536)). We apply Proposition 4.8 to
construct a Hadamard difference set in G = C64 ⋊47 C4 = ⟨x, y : x64

= y4
= 1, yxy−1

= x47
⟩. The center

of G is ⟨x32
⟩, so x32 is a central involution.

A {+1, 0,−1}-valued group ring element D0 satisfying

♮(D0)♮(D0)
(−1)

= 64 in Z(G/⟨x32
⟩)

is given by

D0 = A00(1 + y2)+ A01(1 − y2),

where

A00 = ((1 − x8)− x2(1 + x8))(1 + x16)+ (x5
+ x6 y)(1 + x8)(1 − x16),

A01 = ((1 − x8)− x5(1 + x8))y(1 + x16)+ (−x3(1 − x8)y + x3(1 + x8))(1 − x16).

This was found by hand by seeking a perfect ternary array of weight 64 in the nonabelian factor group
G/⟨x32

⟩ ∼= C32 ⋊15 C4.
A {+1, 0,−1}-valued group ring element D1 satisfying

D1(1 − x32)D(−1)
1 = 64(1 − x32) in ZG

is given by

D1 = A10(1 + y2)+ A11(1 − y2),

where
A10 = −((x + x4

+ x9
+ x12

+ x14)(1 + x16)+ (x6
+ x7

− x15)(1 − x16)),

A11 = −((x − x9
+ x10)(1 + x16)+ (x2

+ x4
− x7

+ x12
− x15)(1 − x16))y.

This was found by a difficult computer search. Although a naive search for D1 involves a search space
of size 264, the search was shortened by using the irreducible representations induced by the character
(homomorphism) that maps x32 to −1, and by making some simplifying assumptions about the structure
of the target difference set [Yolland 2016].

Now D0(1 + x32) has support (1 + x2
+ x3

+ x5
+ (1 + x3

+ x5
+ x6)y)⟨x8, y2

⟩, and D1(1 − x32) has
support (x + x4

+ x6
+ x7

+(x + x2
+ x4

+ x7)y)⟨x8, y2
⟩. These supports are disjoint and their union is G.

We conclude from the construction of Proposition 4.8 that D = D0(1 + x32)+ D1(1 − x32) corresponds
to a difference set in G.

We now reinterpret Examples 4.9 and 4.10 as arising from a modification of a signature set.
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Lemma 4.11. Let G be a group containing a normal subgroup E ∼= Cr
2 , and let {χu : u ∈ Ur } be the set

of characters of E. Let Au be a {+1, 0,−1}-valued function on G for each u ∈ Ur , where the Au have
disjoint supports whose union is a set of coset representatives for Er in G. Suppose that∑

u∈Ur

Auχu A(−1)
u =

|G|

2r in ZG. (31)

Then G ∈ H.

Proof. Let

D =

∑
u∈Ur

Auχu in ZG,

which by the assumption on the supports of the Au is a {±1}-valued function on G. We calculate
DD(−1)

= |G| using Proposition 1.7(i), and so D corresponds to a Hadamard difference set in G. □

By Proposition 1.7(ii), one way to achieve (31) in Lemma 4.11 would be for the Au to satisfy the
condition in ZG that

Auχu A(−1)
u =

|G|

22r χu for each u ∈ Ur . (32)

Such a set of Au would be similar, but not identical, to a signature set on G with respect to E : the
conditions on the supports in Lemma 4.11 are different from those in Definition 2.1, and the constant in
(32) is |G|/22r rather than |G|/2r .

A crucial observation in reinterpreting Examples 4.9 and 4.10 is that a weaker condition than (32)
suffices. In particular, in the case r = 2, this condition can be weakened to

A0 jχ0 j A(−1)
0 j =

1
16 |G|χ0 j for each j ∈ {0, 1}, (33)

A10χ10 A(−1)
10 + A11χ11 A(−1)

11 =
1
16 |G|(χ10 +χ11), (34)

in which the expressions A10χ10 A(−1)
10 and A11χ11 A(−1)

11 behave like a “complementary pair” whose sum
is the same as if (32) held.

In Example 4.9, the group M64 contains the normal subgroup E2 = ⟨x16, y⟩ ∼= C2
2 whose characters are

χi j = (1 + (−1)i x16)(1 + (−1) j y) for (i, j) ∈ U2.

The difference set D takes the form

D = D0(1 + x16)+ D1(1 − x16)=

∑
(i, j)∈U2

Ai jχi j

where the Ai j take the values specified in the example. These Ai j satisfy the conditions of Lemma 4.11
on their supports. Since conjugation by x fixes χ00 and χ01 but swaps χ10 and χ11, we find by direct
calculation that

A0 jχ0 j A(−1)
0 j = 4χ0 j for each j ∈ {0, 1}
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and

A10χ10 A(−1)
10 + A11χ11 A(−1)

11 = (2(1 − x−1)χ10 + 2(1 − x)χ11)+ (2(1 + x−1)χ10 + 2(1 + x)χ11)

= 4(χ10 +χ11),

so that (33) and (34) hold.
The reinterpretation of Example 4.10 is similar. SmallGroup(256, 536) contains the normal subgroup

E2 = ⟨x32, y2
⟩ ∼= C2

2 , whose characters are

χi j = (1 + (−1)i x32)(1 + (−1) j y2) for (i, j) ∈ U2.

The difference set D takes the form

D = D0(1 + x32)+ D1(1 − x32)=

∑
(i, j)∈U2

Ai jχi j ,

where the Ai j take the values specified in the example. These Ai j satisfy the conditions of Lemma 4.11
on their supports. Conjugation by x fixes χ00 and χ01 but swaps χ10 and χ11, and we find once again
(after a long calculation) that (33) and (34) hold.

4E. Combination of signature sets and perfect ternary arrays. The nonabelian signature set approach
of Section 4A and the perfect ternary array product construction of Section 4B are closely related. For
example, Proposition 4.2 may be interpreted as constructing a signature set on H × E1 from a perfect
ternary array D in H . We now illustrate how a perfect ternary array in a factor group can be used to create
a signature block with respect to a specific character. We believe the illustrated method could be useful in
future studies of the existence pattern for Hadamard difference sets in 2-groups of order greater than 256.

Lemma 4.12. Let K be a group containing a central subgroup E ∼= Cr
2 , and let χ be a character of E.

Suppose that χ = Hχ ′ in ZE for some subgroup H of E. Let ♮ be the natural map from K onto K/H ,
and suppose that A is a {+1, 0,−1}-valued function on K for which ♮(A) is a perfect ternary array of
weight 22 j in K/H. Then

Aχ A(−1)
= 22 jχ in ZK .

Proof. Since ♮(A) is a perfect ternary array of weight 22 j in K/H , in Z(K/H) we have by Lemma 4.5
that

22 j 1K/H = ♮(A)♮(A)(−1)
= (AH)(A(−1)H)= AA(−1)H.

For k ∈ K , interpret the element k H in K/H as |H | elements in K , so that in the group ring ZK the
above equation becomes

22 j H = AA(−1)H.

By assumption we have χ = Hχ ′, and H and χ ′ are central in K because E is. Therefore in ZK we have

Aχ A(−1)
= AHχ ′ A(−1)

= AA(−1)Hχ ′
= 22 j Hχ ′

= 22 jχ. □
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In Lemma 4.12, note that the group ring condition χ = Hχ ′ is equivalent to H ∈ Ker(χ) when the
character χ is considered as a homomorphism of E . Also note that if E has index 22 j in K , and A is
{±1}-valued on a set of coset representatives for E in K , then the conclusion of Lemma 4.12 is that A is
a signature block on K with respect to χ .

We now use Lemma 4.12 to explain the origin of the signature set introduced in Example 1.13.

Example 4.13. Let K =⟨X, Y ⟩∼= C2
4 and E =⟨X2, Y 2

⟩∼= C2
2 , and let {χu : u ∈U2} be the set of characters

of E . We use Lemma 4.12 to construct the signature set

A00 = A01 = A10 = 1 + X + Y − XY and A11 = 1 + X + Y + XY

on K that was presented in Example 1.13 without explanation of its origin.
For χ = χ00 or χ10, take H = ⟨Y 2

⟩ and A = 1 − X − Y − XY . Then ♮(A) is a perfect ternary array of
weight 4 in K/H by Example 4.6(i), because ♮(Y ) is an involution that commutes with the nonidentity
element ♮(X). Lemma 4.12 then shows that A is a signature block on K with respect to χ00 and χ10. Since
A00χ00 = −XY Aχ00 and A10χ10 = X Aχ10 in ZK , it follows from Definition 2.1 and Proposition 1.7(i)
that A00 = A10 is a signature block on K with respect to both χ00 and χ10. By symmetry in X and Y , it
follows that A01 is also a signature block on K with respect to χ01.

For χ = χ11, take H = ⟨X2Y 2
⟩ and A = 1 + X + XY − X2Y . Then ♮(A) is a perfect ternary array of

weight 4 in K/H by Example 4.6(i), because ♮(XY ) is an involution that commutes with the nonidentity
element ♮(X). By Lemma 4.12 and the relation A11χ11 = Aχ11 in ZK , we conclude that A11 is a signature
block on K with respect to χ11.

5. Computer implementation for groups of order 256

In this section, we provide further details of the streamlined procedure used to establish that each of the
56,049 groups of order 256 not excluded by Theorems 1.3 and 1.5 belongs to H. We then describe online
databases containing difference sets found by this procedure, and explain how the overall result can be
quickly verified on a desktop computer using the accepted GAP package DifSets [Peifer 2019; DifSets
2019]. We note that DifSets provides (via the LoadDifferenceSets command) a listing of all inequivalent
difference sets in groups of order 16 and 64.

5A. Procedure. As previously summarized in Section 1, the streamlined procedure for groups of order
256 comprises three stages:

Stage 1: Use Theorem 1.15 to account for the 54,633 groups containing a normal subgroup isomorphic
to C4

2 or C2
4 × C2 or C2

8 .

Stage 2: Use the product construction of Proposition 4.7 to account for 1, 358 further groups.

Stage 3: Apply the transfer methods of Section 4C to account for 57 further groups, and the modified
signature set method of Section 4D to account for the final group. We do not describe this stage further.

The relationship between the groups handled by Stages 1 and 2 is shown in Figure 1.
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56,049 nonexcluded
groups of order 256

54,633 groups
accounted for by

Theorem 1.15

55,330 groups
accounted for by
Proposition 4.7

661 53,972 1,358

58

Figure 1. Theorem 1.15 and Proposition 4.7 show that at most 58 of the 56,049 nonex-
cluded groups of order 256 lie outside H.

In Stage 1, we wish to construct a difference set in a group G of order 256 containing a normal abelian
subgroup K , where K is isomorphic to C4

2 or C2
4 × C2 or C2

8 . A signature set on K is provided trivially
for the case C4

2 (see the remark following Definition 2.1), by Example 3.4 for the case C2
4 × C2, and

by Example 3.3 for the case C2
8 . We then apply the method in the proof of Theorem 2.3 to construct a

difference set in G. This requires a set {gu : u ∈ Ur } of coset representatives for K in G satisfying (13),
namely

{guχug−1
u : u ∈ Ur } = {χu : u ∈ Ur }.

The existence of such a set is guaranteed by Theorem 1.9, but the proof of this result in [Drisko 1998] is non-
constructive. We therefore conduct a search for a suitable set of coset representatives {gu}. This search is
exhaustive for the cases C2

4 ×C2 and C2
8 , but random for the case C4

2 whose search space has size 15!>1012.
The results of applying this search procedure to all 56,049 nonexcluded groups, for each of the three

choices of K independently, are shown in Figure 2.
In Stage 2, we distinguish six instances of the product construction of Proposition 4.7 according to the

form of its input perfect ternary arrays T1, T2, . . . , Ts .

(i) H64 · Q4 form. Take T1 to be a Hadamard difference set in a subgroup H1 of G of order 64, and
T2 to be a perfect ternary array of weight 4 in G having the form of Example 4.6(ii) where the
quaternion group Q = ⟨x, y⟩ of order 8 intersects H1 in the two-element subgroup {1, x2

}.

(ii) H64 · H4 form. Take T1 to be a Hadamard difference set in a subgroup H1 of G of order 64, and T2 to
be a Hadamard difference set in a subgroup H2 of G of order 4, where G = H1 H2 and H1 ∩ H2 = 1.

(iii) H16 · H16 form. For i = 1, 2, take Ti to be a Hadamard difference set in a subgroup Hi of G of
order 16, where G = H1 H2 and H1 ∩ H2 = 1.

(iv) H64 · T1 form. Take T1 to be a perfect ternary array of weight 4 in G having the form of
Example 4.6(i), and T2 to be a Hadamard difference set in a subgroup of G of order 64.
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56,049 nonexcluded
groups of order 256

42,268 groups contain
a normal subgroup
isomorphic to C4

2

49,165 groups contain
a normal subgroup

isomorphic to C2
4 × C2

684 groups contain
a normal subgroup
isomorphic to C2

8

5,132
37,120

11,697

16

336

0 332

1,416

Figure 2. Theorem 1.15 shows that at most 1,416 of the 56,049 nonexcluded groups of
order 256 lie outside H.

(v) H16 · T1 · T2 form. Take each of T1, T2 to be a perfect ternary array of weight 4 in G having either of
the two forms of Example 4.6, and T3 to be a Hadamard difference set in a subgroup of G of order 16.

(vi) T1 · T2 · T3 · T4 form. Take each of T1, T2, T3, T4 to be a perfect ternary array of weight 4 in G
having either of the two forms of Example 4.6.

For each of these six forms, we conduct a search for a suitable set of perfect ternary arrays satisfying
all the required conditions. The search for the forms (i) to (iii) is relatively fast because the search is
restricted to subgroups of the appropriate order. However, the search for the forms (iv) to (vi) is not
constrained in this way and can take considerably longer; the search for form (vi) sometimes requires
more than a day for a single group.

We therefore begin by searching all 56, 049 nonexcluded groups for each of the forms (i) to (iii)
independently, with results as shown in Figure 2. We then conduct a search for each of the forms (iv) to
(vi) in that order, but only over those groups in which no previous form has been found. The number of
groups accounted for and remaining at each step of Stage 2 is shown below:

H64 · Q4

and H64 · H4 H64 · T1 H16 · T1 · T2 T1 · T2 · T3 · T4

and H16 · H16

# groups accounted for 51,957 3,119 236 18
# groups remaining 4,092 973 737 719

The Stage 2 searches are exhaustive in that none of the remaining 719 groups contains a difference set
having one of the six forms (i) to (vi).
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56,049 nonexcluded
groups of order 256

42,799 groups
have an H64 · Q4 form
product construction

28,600 groups
have an H64 · H4 form
product construction

25,132 groups
have an H16 · H16 form

product construction

16,927
7,389

2,509

13,082

1,029

5,401 5,620

4,092

Figure 3. Forms H64 · Q4 and H64 · H4 and H16 · H16 of Proposition 4.7 show that at
most 4,092 of the 56,049 nonexcluded groups of order 256 lie outside H.

List List name Database name

L1 HDS256_Normal_02x02x02x02
L2 HDS256_Normal_04x04x02 HDS256_NormalSubgroupTransversal.txt
L3 HDS256_Normal_08x08

L4 HDS256_H64byQ4
L5 HDS256_H64byH4 HDS256_PTAProduct.txt
L6 HDS256_H16byH16

L7 HDS256_H64byT1
L8 HDS256_H16byT1byT2 HDS256_SubgroupProduct.txt
L9 HDS256_T1byT2byT3byT4

L10 HDS256 HDS256.txt

Table 2. Organization of difference set databases in [Smith 2022].

5B. Databases and verification. The website [Smith 2022] contains ten lists in GAP format, organized
into four databases as shown in Table 2.

Lists L1 to L3 correspond to the three circles in Figure 2 (Stage 1). Lists L4 to L6 correspond to the
three circles in Figure 3 (forms (i) to (iii) of Stage 2). Lists L7 to L9 correspond to forms (iv) to (vi) of
Stage 2. Each entry of the lists L1 to L9 contains at least two fields: a catalog number i that identifies the
group SmallGroup(256, i), and a list of 120 indices taken from {1, 2, . . . , 256} in which index j labels
group element j according to the GAP ordering given by Elements(SmallGroup(256, i)).
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The list L10 contains one entry for each of the 56,092 groups of order 256. If SmallGroup(256, i) is
one of the 43 groups excluded by Theorems 1.3 and 1.5 (see Table 1), then entry i of L10 is an empty list
of indices. Otherwise, this entry is a list of 120 indices corresponding to a representative difference set in
SmallGroup(256, i). The representative difference set is taken from list L1 if possible, otherwise from
L2, and so on to L9. This accounts for the origin of all but 58 of the nonempty entries of L10.

After reading the list HDS256 into the current directory, the following GAP code uses Peifer’s accepted
GAP package DifSets [2019] to verify that HDS256 contains an index list corresponding to a difference set
for 56,049 groups of the 56,092 groups of order 256, and an empty index list for the remaining 43 groups:

LoadPackage("DifSets");
empty := 0;
count := 0;
for i in [1..Length(HDS256)] do;

if HDS256[i] = [] then
empty := empty+1;

else
if IsDifferenceSet(SmallGroup(256,i), HDS256[i]) then

count := count+1;
fi;

fi;
od;
Print("HDS256 contains ", Length(HDS256), " index lists, of which\n");
Print(count, " correspond to a difference set and ", empty, "
are empty\n");

It took less than 20 minutes to run this code on a 2013 iMac desktop computer using a standard
implementation of GAP, producing the following output:

HDS256 contains 56092 index lists, of which
56049 correspond to a difference set and 43 are empty

Although we found it considerably more difficult to construct a difference set in some groups of order
256 than in others, there is no significant variation in verification time among groups of a given order
using the IsDifferenceSet command of DifSets.

6. Future directions

In this section, we propose directions for future research into Hadamard difference sets and their relations
to other combinatorial objects.

We have described in this paper a streamlined procedure for demonstrating that all groups of order 64
and 256, apart from those that are excluded by the classical nonexistence results of Theorems 1.3 and 1.5,
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belong to the class H of Hadamard difference sets. While we consider this to be a major achievement in
combinatorics, it is unsatisfactory that we do not yet have a completely theoretical demonstration.

We now propose the following directions for future research into Hadamard difference sets, with three
overall objectives in mind. The first objective is to simplify and unify the various techniques of Section 4,
removing the reliance on extensive computer search and the nonsystematic transfer methods. The second
objective is to develop recursive or direct construction techniques for nonabelian groups, that are as
powerful as Theorem 3.1 is for constructing signature sets on abelian groups. The third and ultimate
objective is to resolve Question 1.17.

D1. The concept of signature sets on abelian groups (Theorem 3.1) and on nonabelian groups (Section 4A)
appears to be very powerful. Develop construction methods to determine all nonabelian groups on
which there is a signature set relative to a normal elementary abelian subgroup.

D2. Apply Lemma 4.12 to create signature sets in nonabelian groups, generalizing the model of
Example 4.13.

D3. Understand when and why the transfer methods of Section 4C succeed.

D4. Develop a general theory based on the method of Section 4D so that transfer methods are no longer
needed for groups of order 64 and 256.

D5. Representation theory was used to help find the group ring element D1 in Examples 4.9 and 4.10.
Apply representation theory to unify and extend the construction methods of Section 4.

D6. In the study of bent functions, which are equivalent to Hadamard difference sets in elementary
abelian 2-groups, one asks how many inequivalent examples exist in a given group. Determine how
many inequivalent Hadamard difference sets in (not necessarily elementary abelian) 2-groups can be
constructed using the methods of this paper.

D7. Formulate a theoretical framework that can be systematically applied to determine all 2-groups
belonging to H.

D8. Extend the transfer methods of Section 4C to construct Hadamard difference sets in new groups
whose order is not a power of 2, for example in groups of order 100 [Golemac and Vučičić 2001],
144 [Vučičić 2019], or 400 [Mandić and Vučičić 2016].

We also propose some further research directions involving the relation of Hadamard difference sets to
other combinatorial objects:

D9. Difference sets in the Hadamard, McFarland, Spence, and Chen–Davis–Jedwab families have
parameters (v, k, λ) satisfying gcd(v, k − λ) > 1, and are known to share construction methods
based on covering extended building sets and semiregular relative difference sets [Davis and Jedwab
1997; Chen 1997]. Adapt the signature set approach for Hadamard difference sets in order to
construct difference sets in nonabelian groups for the other three families, and the associated
semiregular relative difference sets in nonabelian groups for all four families.
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D10. Determine how many inequivalent designs arise from the Hadamard difference sets constructed in
this paper.

D11. Determine how many inequivalent binary codes arise from the incidence matrices of the Hadamard
difference sets constructed in this paper.

References

[Applebaum 2013] T. Applebaum, Difference Sets in Non-Abelian 2-Groups, Honors thesis, University of Richmond, 2013.
[Arasu and Dillon 1999] K. T. Arasu and J. F. Dillon, “Perfect ternary arrays”, pp. 1–15 in Difference sets, sequences and their
correlation properties (Bad Windsheim, 1998), edited by A. Pott et al., NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 542,
Kluwer Acad. Publ., Dordrecht, 1999. MR Zbl

[Besche et al. 2002] H. U. Besche, B. Eick, and E. A. O’Brien, “A millennium project: constructing small groups”, Internat. J.
Algebra Comput. 12:5 (2002), 623–644. MR Zbl

[Beth et al. 1999] T. Beth, D. Jungnickel, and H. Lenz, Design theory, Vol. I, 2nd ed., Encyclopedia of Mathematics and its
Applications 69, Cambridge University Press, 1999. MR Zbl

[Bhattacharya and Smith 2008] C. Bhattacharya and K. W. Smith, “Factoring (16, 6, 2) Hadamard difference sets”, Electron. J.
Combin. 15:1 (2008), Research Paper 112, 16. MR Zbl

[Bruck 1955] R. H. Bruck, “Difference sets in a finite group”, Trans. Amer. Math. Soc. 78 (1955), 464–481. MR Zbl
[Burrell 2022] D. Burrell, “On the number of groups of order 1024”, Comm. Algebra 50:6 (2022), 2408–2410. MR Zbl
[Carlet and Mesnager 2016] C. Carlet and S. Mesnager, “Four decades of research on bent functions”, Des. Codes Cryptogr.
78:1 (2016), 5–50. MR Zbl

[Chen 1997] Y. Q. Chen, “On the existence of abelian Hadamard difference sets and a new family of difference sets”, Finite
Fields Appl. 3:3 (1997), 234–256. MR Zbl

[Davis 1991] J. A. Davis, “Difference sets in abelian 2-groups”, J. Combin. Theory Ser. A 57:2 (1991), 262–286. MR Zbl
[Davis and Jedwab 1996] J. A. Davis and J. Jedwab, “A survey of Hadamard difference sets”, pp. 145–156 in Groups, difference

sets, and the Monster (Columbus, OH, 1993), edited by K. T. Arasu et al., Ohio State Univ. Math. Res. Inst. Publ. 4, de Gruyter,
Berlin, 1996. MR Zbl

[Davis and Jedwab 1997] J. A. Davis and J. Jedwab, “A unifying construction for difference sets”, J. Combin. Theory Ser. A 80:1
(1997), 13–78. MR Zbl

[Davis and Smith 1994] J. A. Davis and K. Smith, “A construction of difference sets in high exponent 2-groups using
representation theory”, J. Algebraic Combin. 3:2 (1994), 137–151. MR Zbl

[DifSets 2019] D. Peifer, “GAP package DifSets: an algorithm for enumerating all difference sets in a group”, 2019, available at
https://www.gap-system.org/Packages/difsets.html. Version 2.3.1. Zbl

[Dillon 1985] J. F. Dillon, “Variations on a scheme of McFarland for noncyclic difference sets”, J. Combin. Theory Ser. A 40:1
(1985), 9–21. MR Zbl

[Dillon 1990a] J. F. Dillon, “Difference sets in 2-groups”, pp. 65–72 in Finite geometries and combinatorial designs (Lincoln,
NE, 1987), edited by E. S. Kramer and S. S. Magliveras, Contemp. Math. 111, Amer. Math. Soc., Providence, RI, 1990. MR
Zbl

[Dillon 1990b] J. F. Dillon, “A survey of difference sets in 2-groups: Hadamard groups of order 64”, University of Vermont,
1990. Presented at Marshall Hall conference.

[Dillon 2010] J. F. Dillon, “Some REALLY beautiful Hadamard matrices”, Cryptogr. Commun. 2:2 (2010), 271–292. MR Zbl
[Drisko 1998] A. A. Drisko, “Transversals in row-Latin rectangles”, J. Combin. Theory Ser. A 84:2 (1998), 181–195. MR Zbl
[GAP 2020] The GAP Group, “GAP: groups, algorithms, and programming”, 2020, available at http://www.gap-system.org.
Version 4.11.0.
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[Mandić and Vučičić 2016] J. Mandić and T. Vučičić, “On the existence of Hadamard difference sets in groups of order 400”,
Adv. Math. Commun. 10:3 (2016), 547–554. MR

[Mann 1965] H. B. Mann, Addition theorems: The addition theorems of group theory and number theory, Interscience Publishers
John Wiley & Sons, New York, 1965. MR Zbl

[McFarland 1973] R. L. McFarland, “A family of difference sets in non-cyclic groups”, J. Combinatorial Theory Ser. A 15
(1973), 1–10. MR

[Peifer 2019] D. Peifer, “An algorithm for enumerating difference sets”, J. Softw. Algebra Geom. 9:1 (2019), 35–41. MR Zbl
[Singer 1938] J. Singer, “A theorem in finite projective geometry and some applications to number theory”, Trans. Amer. Math.
Soc. 43:3 (1938), 377–385. MR Zbl

[Sloane 2022] N. J. A. Sloane, “Number of groups of order 2n”, 2022, available at https://oeis.org/A000679.
[Smith 2022] K. Smith, “Difference Set Databases”, 2022, available at https://tinyurl.com/DifferenceSetDatabase.
[Turyn 1965] R. J. Turyn, “Character sums and difference sets”, Pacific J. Math. 15 (1965), 319–346. MR Zbl
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