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We study classes determined by the Kazhdan–Lusztig basis of the Hecke algebra in the K -theory and
hyperbolic cohomology theory of flag varieties. We first show that, in K -theory, the two different
choices of Kazhdan–Lusztig bases produce dual bases, one of which can be interpreted as characteristic
classes of the intersection homology mixed Hodge modules. In equivariant hyperbolic cohomology, we
show that if the Schubert variety is smooth, then the class it determines coincides with the class of the
Kazhdan–Lusztig basis; this property was known as the smoothness conjecture. For Grassmannians, we
prove that the classes of the Kazhdan–Lusztig basis coincide with the classes determined by Zelevinsky’s
small resolutions. These properties of the so-called KL Schubert basis show that it is the closest existing
analogue to the Schubert basis for hyperbolic cohomology; the latter is a very useful testbed for more
general elliptic cohomologies.
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1. Introduction

Let G be a split semisimple linear algebraic group with a fixed Borel subgroup B and a maximal torus
T ⊂ B. Let P be a parabolic subgroup containing the Borel subgroup B. The varieties G/P and G/B
are called flag varieties, and they are among the most concrete objects in algebraic geometry, because
of the Bruhat decompositions. For instance, the equivariant cohomology (Chow group) of flag varieties
is freely spanned by the classes of Schubert varieties X (w). Similarly, the equivariant K -theory of flag
varieties is spanned by the structure sheaves of Schubert varieties. The field of studying intersection
theory of these classes is called Schubert calculus, and is related to combinatorics, representation theory,
and enumerative geometry.
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Due to the failure of Schubert varieties being smooth, the present paper deals with two different
directions in generalizing classical Schubert calculus. The first one is concerned with the Chern classes.
Although the classical Chern class theory does not work for the singular Schubert varieties, there are
generalizations to this case, which are called Chern–Schwartz–MacPherson (CSM) classes [MacPherson
1974; Schwartz 1965a; 1965b] in homology and motivic Chern (MC) classes in K -theory [Brasselet et al.
2010; Aluffi et al. 2019; Fehér et al. 2021]. These generalized Chern classes of Schubert cells are closely
related to the corresponding stable bases of the cotangent bundle T ∗G/B, defined by Maulik and Okounkov
[2019; 2017] in their study of quantum cohomology/K -theory of Nakajima quiver varieties. These classes
are permuted by various Demazure–Lusztig operators [Aluffi and Mihalcea 2016; Aluffi et al. 2017; 2019;
Su 2017; Su et al. 2020; Mihalcea et al. 2022], and are related to unramified principal series representations
of the Langlands dual group over a nonarchimedean local field [Su et al. 2020; Aluffi et al. 2019].

We focus on the Kazhdan–Lusztig bases of the Hecke algebra, which are related to the intersection
cohomology of Schubert varieties. Classically, there are two choices of Kazhdan–Lusztig bases. In this
paper, we consider the K -theory classes determined by these two collections of Kazhdan–Lusztig bases.
The cohomology case is studied in [Mihalcea and Singh 2020]. We first show that they are dual to each other
in Theorems 13 and 22. These dualities are closely related to the characteristic classes of mixed Hodge
modules, studied by J. Schürmann and his collaborators [Schürmann 2011; 2017; Brasselet et al. 2010].
Moreover, we interpret one collection of these classes as the motivic Hodge Chern classes of the intersection
homology mixed Hodge modules of the Schubert varieties, which immediately implies that they are
invariant under the Serre–Grothendieck duality; see Proposition 17 and Corollary 19.

The other direction is to look at more general cohomology theories, namely the equivariant oriented
cohomology theories of Levine and Morel. They are those contravariant functors hT from the category of
smooth (quasi)projective varieties to the category of commutative rings such that for any proper map of
varieties, a pushforward of the cohomology groups is defined. One can then define Chern classes, where
the first Chern class of the tensor product of line bundles determines a one-dimensional commutative
formal group law. The structure of the equivariant oriented cohomology of flag varieties is studied in
[Calmès et al. 2016; 2019; 2015; Lenart et al. 2020]. Roughly speaking, there is an algebra generated by
push–pull operators between hT (G/B) and hT (G/P), called the formal affine Demazure algebra DF ,
whose dual D∗

F is isomorphic to hT (G/B).
Since Schubert varieties are not smooth in general, their fundamental classes are not defined beyond

the Chow group and K -theory. To resolve the singularities of a Schubert variety X (w), one often uses
the Bott–Samelson resolution, which is defined by fixing a reduced decomposition of the Weyl group
element w. For an oriented cohomology beyond singular cohomology/K -theory, the classes determined
by such resolutions depend on the choice of the reduced decomposition. This corresponds to the fact that,
for general hT , the push–pull operators do not satisfy the braid relations [Hoffnung et al. 2014]. Because
of this fact, there are no canonically defined Schubert classes.

Aiming for the definition of Schubert classes, in [Lenart and Zainoulline 2017; Lenart et al. 2020], the
authors consider the so-called hyperbolic cohomology, denoted by h. This corresponds to a 2-parameter
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Todd genus, and is the first interesting case after K -theory in terms of complexity. A Riemann–Roch type
map is defined from K -theory to the hyperbolic cohomology theory, which induces an action of the Hecke
algebra (considered on the K -theory side) on the hyperbolic cohomology of G/B. In this way, the action
of the Kazhdan–Lusztig basis defines classes KLw in hT (G/B), called KL Schubert classes. In [Lenart
and Zainoulline 2017; Lenart et al. 2020], there is a conjecture stating that, if the Schubert variety X (w)
is smooth, then its fundamental class coincides with the class KLw. This conjecture is proved in those
works in some special cases. Our first main result proves this conjecture in full generality:

Theorem 28. If the Schubert variety X (w) is smooth, then the class determined by X (w) in hT (G/B)
coincides with the KL Schubert class KLw.

The idea of the proof is as follows: if X (w) is smooth, then all the Kazhdan–Lusztig polynomials
Py,w for any y ≤ w are equal to 1, so the Kazhdan–Lusztig basis for w is the sum of the Demazure–
Lusztig operators. As mentioned above, the MC classes of Schubert cells in K -theory are permuted by
the Demazure–Lusztig operators. So the MC class of X (w) coincides with the KL class in K -theory,
and the restriction formula for the former is obtained in [Aluffi et al. 2019] by generalizing a result of
Kumar [1996]. By using the Riemann–Roch type map from K -theory to hyperbolic cohomology, we
compare the restriction formulas of the class KLw and of the class of the smooth Schubert variety X (w), and
prove the smoothness conjecture (Theorem 28). For partial flag varieties, a similar property is also proved.

As mentioned above, the Kazhdan–Lusztig basis defines classes in the K -theory of flag varieties,
but they do not coincide with the fundamental classes of Schubert varieties, whether smooth or not.
However, in hT (G/B), our Theorem 28 shows that, for smooth Schubert varieties, their fundamental
classes coincide with the classes defined by the Kazhdan–Lusztig basis. It is unclear to us why such
phenomena appear, and we hope to explore this in a future project.

Restricting to type A Grassmannians, we prove more geometric and combinatorial properties. For
example, Zelevinsky constructed small resolutions of all Schubert varieties [Zelevinskiı̆ 1983]. Our
second main result is the following:

Theorem 42. The KL Schubert classes for the Grassmannian coincide with the hyperbolic cohomology
classes of the corresponding Zelevinsky resolutions.

To prove this theorem, note that Zelevinsky’s small resolutions are similar to the Bott–Samelson
resolutions, except that, instead of using minimal parabolic subgroups, one considers more general
parabolic subgroups. So the small resolution classes can be computed by using relative push–pull
operators between hyperbolic cohomology of G/P and G/Q. These operators were studied in [Calmès
et al. 2019]. On the other hand, in [Kirillov and Lascoux 2000], a factorization of the Kazhdan–Lusztig
basis elements for Grassmannians is exhibited. By carefully transforming this factorization, one can write
the Kazhdan–Lusztig basis elements as products of “relative” Kazhdan–Lusztig elements. Finally, by
identifying the latter with the relative push–pull operators, one proves Theorem 42. By the uniqueness of
the Kazhdan–Lusztig basis, it follows that all small resolution classes are the same.
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There have been important developments in Schubert calculus for general cohomology theories.
More specifically, for elliptic cohomology, a stable basis in the cotangent bundle T ∗G/B was defined
(see [Aganagic and Okounkov 2021; Okounkov 2021], which generalizes stable bases for cohomology
and K -theory), and canonical classes were associated with Bott–Samelson resolutions of Schubert
varieties [Rimányi and Weber 2020; Kumar et al. 2020]. The elliptic cohomology used in the latter
papers can be considered as the oriented cohomology theory associated with a certain elliptic formal
group law determined by the Jacobi theta functions; meanwhile, the mentioned cohomology classes are
elliptic analogues of the CSM classes in ordinary cohomology and the MC classes in K -theory. On
the other hand, the hyperbolic formal group law we consider here comes from a singular cubic curve
(in Weierstrass form), so it is a singular elliptic formal group law; see [Buchstaber and Bunkova 2010].
The properties of the KL Schubert basis proved in this paper (namely, the smoothness conjecture and the
interpretation in terms of the Zelevinsky small resolutions) show that this basis is the closest existing
analogue to the Schubert basis for hyperbolic cohomology. Furthermore, the latter is a very useful testbed
for more general elliptic cohomologies.

The paper is organized as follows. In Section 2, we recall the algebraic construction of the equivariant
oriented cohomology of flag varieties. In Section 3, we recall basic facts about the Hecke algebra,
MC classes, and the smoothness criterion. In Section 4, we use Kazhdan–Lusztig bases to define the
two collections of KL classes in KT (G/B) and KT (G/P), and show that they are dual to each other.
We also give a geometric interpretation for one of them using mixed Hodge modules. In Section 5,
we recall the definition of KL Schubert classes in hyperbolic cohomology, and prove the smoothness
conjecture. In Section 6, we prove Theorem 42, which connects small resolutions for Grassmannians
with the corresponding KL Schubert classes.

2. Formal affine Demazure algebra and its dual

We recall the definition of the formal affine Demazure algebra and its relation with equivariant generalized
(oriented) cohomology of flag varieties following [Hoffnung et al. 2014; Calmès et al. 2016; 2019] and
especially the paper [Calmès et al. 2015].

Notation. Let G be a semisimple simply connected linear algebraic group over C, and fix B a Borel
subgroup with a maximal torus T ⊂ B. Let X∗(T ) denote the character lattice of T . Let W = NG(T )/T
be the Weyl group.

Let 6 denote the set of associated roots and let 6+ denote the subset of roots in B. For any root α,
let α > 0 (resp. α < 0) denote α ∈6+ (resp. −α ∈6+).

Let 5 = {α1, . . . , αn} denote the set of simple roots. Let ℓ : W → Z denote the length function.
For any J ⊂5, denote by WJ the parabolic subgroup corresponding to J , by wJ its longest element,
and by W J (resp. J W ) the set of minimal length representatives of left (resp. right) cosets W/WJ

(resp. WJ \W ). Specifically, w0 := w5 ∈ W is the longest element. More generally, if J ′
⊂ J ⊂ 5,

write wJ/J ′ := wJwJ ′ ∈ W J ′

(resp. wJ ′\J := wJ ′wJ ), that is, wJ/J ′ (resp. wJ ′\J ) is the maximal element
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(in terms of the Bruhat order) in the set WJ ∩ W J ′

(resp. WJ ∩
J ′

W ). Write 6J := {α ∈6 | sα ∈ WJ } and
6±

J :=6J ∩6±. Throughout the paper, we use the notation \ for right cosets, not set difference, which
is denoted by −.

Formal group algebra. Let F be a one-dimensional formal group law over a commutative unital ring R.
The formal group algebra R[[X∗(T )]]F is defined to be the quotient of the completion

R[[xλ | λ ∈ X∗(T )]]/JF ,

where JF is the closure of the ideal generated by ⟨x0, F(xλ, xµ)− xλ+µ | λ,µ∈ X∗(T )⟩. For simplicity it
will be denoted by S. It can be shown that if {ω1, . . . , ωn} is a basis of X∗(T ), then S is (noncanonically)
isomorphic to R[[ω1, . . . , ωn]].

Localized twisted group ring. Let Q = S[(1/xα) | α > 0], and QW = Q ⊗R R[W ]. Denote the canonical
left Q-basis of QW by δw, w ∈ W , and define a product on QW by

(pδw) · (p′δw′) := pw(p′)δww′ for p, p′
∈ Q, w,w′

∈ W.

In particular, we have δv p = v(p)δv for p ∈ Q.

Push-pull elements. For each root α, define the formal push–pull element

Yα := (1 + δsα )
1

x−α
∈ QW .

For any reduced word w = si1 · · · sik , where si is the simple reflection corresponding to the i-th simple
root in 5, define Iw = (i1, . . . , ik), and YIw = Yαi1

· · · Yαik
. The product YIw depends on the choice of the

reduced sequence, unless the formal group law F is of the form x + y +βxy with β ∈ R. For simplicity,
write δi := δsi , Yi := Yαi and x±i := x±αi .

Formal affine Demazure algebra. Let DF be the subring of QW generated by elements of S and push–pull
elements Yi for i = 1, . . . , n. This is called the formal affine Demazure algebra. It is proved in [Calmès
et al. 2016] that DF is a free left S-module with basis {YIw | w ∈ W }.

Example 1. If R = Z and Fm(x, y)= x + y − xy (multiplicative formal group law), then

S ∼= Z[X∗(T )]∧, xα 7→ 1 − e−α,

where the completion is taken with respect to the kernel of the augmentation map eλ 7→ 1. The ring DF

is then isomorphic to the (completed) affine 0-Hecke algebra.

For J ′
⊂ J ⊆5, write

x J/J ′ :=

∏
α∈6−

J −6−

J ′

xα, x J := x J/∅.

Fixing a set of left coset representatives WJ/J ′ of WJ/WJ ′ , we define a push–pull element

YJ/J ′ :=

( ∑
w∈WJ/J ′

δw

)
1

x J/J ′

∈ QW , YJ := YJ/∅ =

( ∑
w∈WJ

δw

)
1
x J
. (1)
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Note that the definition of YJ/J ′ depends on the choice of WJ/J ′ , and in general YJ/J ′ might not be in DF .
Similarly, fixing a set of right coset representatives WJ ′\J of WJ ′\WJ , one can define YJ ′\J . If J =5,
x5 and Y5 are correspondingly defined. For instance, if J = {i}, then Y{i} = Yαi . Note that in general
YJ/J ′ ∈ QW , but YJ ∈ DF . We have

YJ/J ′YJ ′ = YJ = YJ ′YJ ′\J . (2)

There is an anti-involution ι of DF , defined by

ι(pδv) := δv−1 p
v(x5)

x5
= v−1(p)

x5
v−1(x5)

δv for p ∈ Q, v ∈ W. (3)

For example, it is easy to prove that ι(YJ )= YJ , and

ι(YIw)= YI −1
w
, (4)

if I −1
w is the sequence obtained from Iw by reversing the order.

Dual of the Demazure algebra. Let D∗

F denote the S-linear dual HomS(DF , S)with dual basis Y ∗

Iw , w∈ W .
One can also consider the Q-linear dual Q∗

W = HomQ(QW , Q), which is isomorphic to the set-theoretic
Hom(W, Q). There is the dual basis fw, w ∈ W of Q∗

W such that fw(δv) = δKr
w,v and fw · fv = δKr

w,v fw,
where δKr

w,v is the Kronecker symbol. It turns Q∗

W into a commutative ring with identity 1 =
∑

w fw.
By definition, we have D∗

F ⊂ Q∗

W (where the former is a S-module, and the latter is considered as
a Q-module), and the product on Q∗

W restricts to the product on D∗

F .

Two actions on the dual. There are actions denoted by • and ⊙ of the ring QW on its Q-linear dual Q∗

W

defined by

(pδv)•(q fw) := qwv−1(p) fwv−1 and (pδv)⊙(q fw) := pv(q) fvw for v,w∈ W, p, q ∈ Q. (5)

It follows from [Lenart et al. 2020, § 3] that the •-action is Q-linear, while the ⊙-action is not, and the two
actions commute. We also have z •pte = ι(z)⊙pte. Moreover, the two actions induce (via the embeddings
DF ⊂ QW and D∗

F ⊂ Q∗

W ) corresponding actions of DF on D∗

F . For homology and K -theory, the • and ⊙

actions correspond to the right and left actions considered in [Mihalcea et al. 2022].

The class of a point. For each w ∈ W define the element

ptw := x5 • fw = w(x5) fw,

and call it the class of a point. From the definition, we have z • pte = ι(z)⊙ pte for z ∈ QW , where e ∈ W
denotes the identity element.

Generalized (oriented) cohomology. Given a formal group law F over R, let h be the corresponding free
algebraic generalized (oriented) cohomology theory obtained from the algebraic cobordism � of Levine
and Morel [2007] by tensoring with F , i.e.,

h(−) :=�(−)⊗�(pt) R.
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Here �(pt) is the Lazard ring, the coefficient ring of universal formal group law, and �(pt)→ R is the
evaluation map defining F . Note that such theories are different from the usual generalized cohomology
theories from algebraic topology, since the formal group laws do not need to be Landweber exact (since
the localization sequences are only right exact; see [Levine and Morel 2007, § 3.2]). We refer to [Levine
and Morel 2007] for all the properties of such theories.

In particular, for the additive formal group law Fa(x, y)= x + y one obtains the Chow ring and for
the multiplicative group law Fm one gets the usual K -theory.

Equivariant generalized cohomology. Let hT be the respective T -equivariant generalized (oriented)
cohomology theory of [Calmès et al. 2015, § 2]. Replacing hT if necessary by its characteristic completion
(see Section 3 there), the main result of [Calmès et al. 2015] says that the formal affine Demazure
algebra DF and its dual D∗

F are related to generalized cohomology hT (G/B) and hT (G/PJ ) as follows:

(1) There is an isomorphism D∗

F
∼= hT (G/B), which maps the element YI −1

w
• pte = YIw ⊙ pte to the

Bott–Samelson class determined by the sequence Iw.

(2) Via the above isomorphism, the map Y5 •_ : D∗

F → (D∗

F )
W ∼= S coincides with the map hT (G/B)→

hT (Spec(k)).

(3) The group W acts on D∗

F by restriction of the •-action via the embedding W ⊂ DF . For any subset
J ⊂5, one has an isomorphism (D∗

F )
WJ ∼= hT (G/PJ ), and the map YJ : D∗

F → (D∗

F )
WJ coincides

with the pushforward map hT (G/B)→ hT (G/PJ ). More generally, the map YJ/J ′ • _ : Q∗

W → Q∗

W

restricts to a map (D∗

F )
WJ ′ → (D∗

F )
WJ , which corresponds to hT (G/PJ ′)→ hT (G/PJ ).

(4) The embedding D∗

F → Q∗

W coincides with the restriction to T -fixed points map hT (G/B) →

Q ⊗S hT (W ), and the element ptw is mapped to the class ew of T -fixed points of G/B.

Remark 2. Observe that the localization axiom [Calmès et al. 2015, A3] used to prove the above properties
can be replaced by a weaker CD-property of [Neshitov et al. 2018, Defintion 3.3] which holds for any hT

defined using the Borel construction (see [Neshitov et al. 2018, Example 3.6]).

Generalized Bott–Samelson varieties. Let Pi , Qi , for i = 1, . . . ,m, be a collection of parabolic subgroups
such that Qi ⊂ Pi ∩ Pi+1 and Qm := B. Define

Z = P1 ×
Q1 P2 ×

Q2 × · · · ×
Qm−1 Pm .

There is a canonical map

π : Z/Qm → G/Qm, (p1, . . . , pm) 7→ p1 p2 · · · pm .

The following lemma will be used in Section 6 in identifying the small resolution of Zelevinsky with the
factorization of Grassmannian Kazhdan–Lusztig basis of Kirillov and Lascoux.

Lemma 3. Under the isomorphism hT (G/B)∼= D∗

F and viewing hT (G/P)∼= (D∗

F )
WP , we have

π∗(1)= (YPm/Qm−1YPm−1/Qm−2 · · · YP2/Q1YP1) • pte .
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Proof. We use induction on m. If m = 1, then the map is π : P1/Q1 → G/Q1. We have the following
commutative diagram:

P1/Q1

q

��

π
// G/Q1

pP1/Q1
��

pt i
// G/P1

Here i is the embedding of the identity point. Then

π∗(1)= π∗q∗(1)= (pP1/Q1)
∗i∗(1).

According to [Calmès et al. 2015, Lemma 8.8], we see that i∗(1)= YP1
• pte, and p∗

P1/∅ is the embedding
(D∗

F )
WP1 ↪→ (D∗

F )
WQ1 ⊂ D∗

F . So it holds when m = 1.
Now write Z ′

= P1 ×
Q1 P2 ×

Q2 · · · ×
Pm−2 Qm−1. We then have the commutative diagram

Z ′
×

Qm−1 Pm/Qm
π

//

q
��

G/Qm

pPm /Qm

��

Z ′/Qm−1
pPm /Qm−1◦π ′

// G/Pm

where π ′
: Z ′/Qm−1 → G/Qm−1 is the map multiplying all components together. Then

π∗(1)= π∗q∗(1)= (pPm/Qm )
∗(pPm/Qm−1)∗π

′

∗
(1).

From [Calmès et al. 2015, p. 137], we see that (pPm/Qm−1)∗ corresponds to YPm/Qm−1
• _ , and (pPm/Qm )

∗

is just the embedding (DF )
WPm ↪→ (DF )

WQm . The conclusion then follows from induction. □

Corollary 4. Via the isomorphism hT (G/B)∼= D∗

F , we have

π∗(1)= (YP1/Q1 · · · YPm−1/Qm−1YPm )⊙ pte .

Proof. Note YP/QYQ = YP for any P ⊃ Q, and YP • pte = YP ⊙ pte (see [Lenart et al. 2020, (3.5), (3.8)]).
If m = 2, we have

π∗(1)= (YP2/Q1YP1) • pte = YP2/Q1
• YP1 ⊙ pte = YP2/Q1

• YP1/Q1 ⊙ YQ1 ⊙ pte
= YP2/Q1

• YP1/Q1 ⊙ YQ1
• pte = YP1/Q1 ⊙ (YP2/Q1YQ1) • pte = YP1/Q1 ⊙ YP2 ⊙ pte .

The general case then follows similarly. □

We prove a lemma that will be used later in Section 6:

Lemma 5. We have
YP1/Q1YP2/Q2 · · · YPm−1/Qm−1YPm = YP1YQ1\P2 · · · YQm−1\Pm .

Proof. This follows from recursive use of the identities (2) and the assumption that Qi ⊂ Pi ∩ Pi+1. For
example, one has

YPm−1/Qm−1YPm = YPm−1/Qm−1YQm−1YQm−1\Pm = YPm−1YQm−1\Pm .

By induction, the formula holds. □
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3. Hecke algebra, motivic Chern class, and the smoothness criterion

In this section, we recall the definition of the Kazhdan–Lusztig basis and the motivic Chern (MC) classes.

The multiplicative case. Set R = Z[t, t−1, (t + t−1)−1
], where t is a parameter. Definitions of Section 2

applied to the multiplicative formal group law Fm over R give the respective formal group algebra and its
localization,

Sm := R[[X∗(T )]]Fm and Qm := Sm

[ 1
xα

∣∣ α > 0
]
,

the localized twisted group algebra and the formal affine Demazure algebra,

Qm,W := Qm ⊗R R[W ] and Dm := ⟨Sm, Y1, . . . , Yn⟩ ⊂ Qm,W .

The Demazure–Lusztig elements. Define the Demazure–Lusztig elements in Qm,W as

τi := Y m
i (t − t−1eαi )− t =

t−1
− t

1 − e−αi
+

t − t−1e−αi

1 − e−αi
δm

i .

It can be shown that τi ∈ Dm for i = 1, . . . , n satisfy the standard quadratic relation τ 2
i = (t−1

− t)τi + 1,
and the braid relations. So they generate the Hecke algebra H over R.

Remark 6. Let y =−t−2. On D∗
m

∼= R⊗Z KT (G/B), as operators, t−1τi ⊙_ agrees with T L
i , and t−1τi •_

agrees with T R,∨
i , respectively, where the latter are notions from [Mihalcea et al. 2022, Section 5.3] and

[Aluffi et al. 2019].

The Kazhdan–Lusztig basis. Consider the involution of the Hecke algebra H → H , z 7→ z̄ such that

t̄ = t−1, τi = τ−1
i . (6)

There is a basis of H over R denoted by {γw}w∈W and called the Kazhdan–Lusztig basis. It is invariant
under this involution and satisfies

γw ∈ τw +

∑
v<w

tZ[t]τv.

We set tw = tℓ(w) and
γw =

∑
v≤w

twt−1
v Pv,w(t−2)τv,

where Pv,w are the Kazhdan–Lusztig polynomials. In addition to this, there is another canonical basis
defined by (see [Kazhdan and Lusztig 1979]),

γ̃w :=

∑
v∈W

ϵwϵvt−1
w tvPv,w(t2)τv ∈ τw +

∑
v<w

t−1Z[t−1
]τv,

where ϵw is (−1)ℓ(w). Since the Schubert variety X (wJ ) ⊂ G/B is smooth, the Kazhdan–Lusztig
polynomials satisfy Pv,wJ = 1 for any v ≤ wJ . Thus, γwJ =

∑
v≤wJ

twJ t−1
v τv.

More generally, for J ′
⊂ J ⊆5, write

γJ := γwJ , γJ/J ′ :=

∑
v∈WJ ∩W J ′

twJ/J ′ t−1
v τv, γJ ′\J :=

∑
v∈WJ ∩J ′ W

twJ ′\J
t−1
v τv. (7)
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It is not difficult to see that

γJ = γJ/J ′γJ ′ = γJ ′γJ ′\J . (8)

If Q ⊂ P are the parabolic subgroups corresponding to J ′
⊂ J , respectively, write γP/Q = γJ/J ′ . For

γJ/J ′ and γJ ′\J , the analogue of Lemma 5 holds. It will be used in considering KL Schubert classes in
hyperbolic cohomology of partial flag varieties below.

Motivic Chern classes. We recall the definition of the motivic Chern classes, following [Brasselet et al.
2010; Fehér et al. 2021; Aluffi et al. 2019]. Let X be a nonsingular quasiprojective complex algebraic
variety with an action of the torus T . Let GT

0 (var/X) be the (relative) Grothendieck group of varieties
over X . By definition, it is the free abelian group generated by isomorphism classes [ f : Z → X ] where Z
is a quasiprojective T -variety and f is a T -equivariant morphism modulo the usual additivity relations

[ f : Z → X ] = [ f : U → X ] + [ f : (Z − U )→ X ],

for any T -invariant open subvariety U ⊂ Z .

Theorem 7. There exists a unique natural transformation MC−t−2 : GT
0 (var/X)→ KT (X)[t−2

] satisfying
the following properties:

(1) It is functorial with respect to T -equivariant proper morphisms of nonsingular, quasiprojective
varieties.

(2) It satisfies the normalization condition

MC−t−2[idX : X → X ] =

∑
(−1)i t−2i[∧i T ∗

X
]
=: λ−t−2(T ∗

X ) ∈ KT (X)[t−2
].

The nonequivariant case is proved in [Brasselet et al. 2010], and the equivariant case is shown in [Aluffi
et al. 2019; Fehér et al. 2021].

Let

D(−) := (−1)dim X RHomOX (−, ωX )

be the Serre–Grothendieck duality functor on KT (X), where ωX :=
∧dim X T ∗

X is the canonical bundle
of X . Extend it to KT (X)[t±1

] by setting D(t i )= t−i .

Definition 8. Let Z ⊂ X be a T -invariant subvariety.

(1) Define the motivic Chern class of Z to be

MC−t−2(Z) := MC−t−2([Z ↪→ X ]).

(2) Further assume that Z is pure-dimensional. Define the Segre motivic Chern class of Z as follows
(see [Mihalcea et al. 2022, Definition 6.2]):

SMC−t−2(Z) := t−2 dim Z
·
D(MC−t−2(Z))
λ−t−2(T ∗

X )
.
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Smoothness of Schubert varieties. Consider the variety of complete flags G/B. Let X (w)◦ := BwB/B
and Y (w)◦ := B−wB/B be the Schubert cells. The closures X (w) := X (w)◦ and Y (w) := Y (w)◦ are
the Schubert varieties. Observe that u ≤ v with respect to the Bruhat order if and only if X (u)⊂ X (v).
Let ptmw = w(x5) f m

w ∈ Q∗

m,W denote the class of the T -fixed point ew corresponding to w ∈ W . Note
that here f m

w is the standard basis in Q∗

m,W defined in Section 2, and the superscript m is to indicate the
multiplicative formal group law.

The key property of the motivic Chern classes of the Schubert cells that we need are listed below.

Theorem 9. (1) [Mihalcea et al. 2022, Theorem 7.6] For any w ∈ W , we have

MC−t−2(X (w)◦)= t−1
w τw ⊙ ptme .

(2) [Aluffi et al. 2019, Theorem 9.1] For any u ≤ w ∈ W , the Schubert variety X (w) is smooth at eu if
and only if

MC−t−2(X (w))|u =

∏
α>0, usα≰w

(1 − euα)
∏

α>0, usα≤w

(1 − t−2euα),

where MC−t−2(X (w))|u denotes the pullback of MC−t−2(X (w)) to the fixed point eu .

Remark 10. (1) This theorem is used to prove the Bump, Nakasuji and Naruse’s conjectures about
Casselman bases in unramified principal series representations; see [Bump and Nakasuji 2011; 2019;
Naruse 2014; Aluffi et al. 2019; Su 2019].

(2) The “only if” direction of part (2) follows directly from basic properties of motivic Chern classes,
and it holds in a much more general setting; see [Aluffi et al. 2019, § 9.1].

Proof. The first part follows from the reference mentioned. The second one follows from the fact
δw0 ⊙

(
MC−t−2(Y (w))

)
= MC−t−2(X (w0w)). □

Given w ∈ W , define the coefficients aw,u ∈ Qm by the formulas

0w :=

∑
v≤w

t−1
v τv =

∑
u≤w

aw,uδm
u ∈ Qm,W . (9)

Note that if the Schubert variety X (w) is smooth, then Pv,w = 1 for all v ≤ w, so 0w = t−1
w γw. It is

immediate to get the following corollary from Theorem 9.

Corollary 11. For any u ≤w ∈ W , the Schubert variety X (w) is smooth at the fixed point eu if and only if

aw,u =

∏
α>0, usα≤w

1 − t−2euα

1 − euα .

Proof. By Theorem 9(1) and Equation (9), we have

MC−t−2(X (w))=

∑
v≤w

MC−t−2(X (v)◦)=

∑
v≤w

t−1
v τv ⊙ ptme

=

∑
v≤w

aw,vδm
v ⊙ ptme =

∑
v≤w

aw,v
∏
α>0

(1 − evα) fv.
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Thus, we have
MC−t−2(X (w))|u = aw,u

∏
α>0

(1 − euα).

The corollary follows from this and Theorem 9(2). □

4. Dual bases in K -theory and characteristic classes of mixed Hodge modules

In this section, we use the two Kazhdan–Lusztig bases of the Hecke algebra to define two collections
of classes in K -theory, and show that they are actually dual to each other. We also give a geometric
interpretation of one of these collections using the intersection homology mixed Hodge modules. These
are also generalized to the partial flag variety case.

K -theory KL classes.

Definition 12. We define two collections of classes (called KL classes) in KT (G/B)[t±1
] as follows:

Cw := γw ⊙ ptme and C̃w := γ̃w−1w0
• ptmw0

.

They form a basis of the localized K -theory Qm ⊗Sm KT (G/B).
Let ⟨−,−⟩ denote the usual nondegenerate tensor product pairing on KT (G/B)[t±1

], i.e., ⟨ f, g⟩ =

Y m
5

• ( f · g) for f, g ∈ KT (G/B)[t±1
]. The first result of this section is the following.

Theorem 13. For any w, v ∈ W , we have

⟨Cw, C̃v⟩ = δKr
w,v

∏
α>0

(t − t−1e−α).

We first recall that the Segre motivic Chern classes of Schubert cells enjoy the following properties.

Lemma 14. (1) For any v ∈ W , we have

(τw0v)
−1

• ptmw0
= tw0v

∏
α>0

(1 − t−2e−α)SMC−t−2(Y (v)◦).

(2) For any u, v ∈ W , we have〈
MC−t−2(X (u)◦),SMC−t−2(Y (v)◦)

〉
= δKr

u,v.

Proof. The first part follows from Remark 6 and [Mihalcea et al. 2022, Theorem 7.4], while the second
one follows from [loc. cit., Theorem 7.1]. □

Remark 15. By definition, (t−1τi )|t=∞ = Y m
i − 1. Thus, from Theorem 9(1), we get

MC−t−2(X (w)◦)|t=∞ = t−a
w τw ⊙ ptme |t=∞ = [OX (w)(−∂X (w))] =: Iw,

where ∂X (w)=
⋃
v<w X (v) is the boundary of the Schubert variety X (w), and Iw denotes its ideal sheaf.

On the other hand, (t−1τ−1
i )|t=∞ = Y m

i . Thus, the first part of the lemma gives

SMC−t−2(Y (v)◦)|t=∞ = (tw0vτw0v)
−1

• ptmw0
|t=∞ = [OY (v)].
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Therefore, setting t = ∞ in the second part of the lemma, we get the classical fact

⟨Iw, [OY (v)]⟩ = δKr
u,v.

Proof of Theorem 13. First of all, we have the following inversion formula for the Kazhdan–Lusztig
polynomials (see [Kazhdan and Lusztig 1979, Theorem 3.1]):∑

z

ϵyϵz Px,z Pw0 y,w0z = δKr
x,y .

Therefore, ∑
z

ϵxϵz Pw0z,w0x Pz,y = δKr
x,y . (10)

By definition and Theorem 9(1),

Cw =

∑
u≤w

twt−1
u Pu,w(t−2)τu ⊙ ptme =

∑
u≤w

twPu,w(t−2)MC−t−2(X (u)◦). (11)

On the other hand, since γ̃w is invariant under the involution, we get

γ̃w =

∑
v∈W

ϵwϵvtwt−1
v Pv,w(t−2)τ−1

v−1 .

Thus,
C̃w = γ̃w−1w0

• ptmw0

=

∑
v≥w

ϵwϵvtw−1w0 t−1
v−1w0

Pv−1w0,w−1w0(t
−2)τ−1

w0v
• ptmw0

=

∏
α>0

(1 − t−2e−α)
∑
v≥w

ϵwϵvtw−1w0 Pv−1w0,w−1w0(t
−2)SMC−t−2(Y (v)◦), (12)

where the last step follows from Lemma 14(1).
Therefore, we have

⟨Cw, C̃y⟩ =

∏
α>0

(1 − t−2e−α)twty−1w0

∑
u

Pu,w

∑
v

ϵvϵy Pv−1w0,y−1w0δ
Kr
u,v

=

∏
α>0

(1 − t−2e−α)twty−1w0

∑
u

Pu,wϵuϵy Pw0u,w0 y

=

∏
α>0

(t − t−1e−α)δKr
w,y,

where the first equality follows from Lemma 14(2), the second follows from Pu,v = Pu−1,v−1 , and the
third one follows from (10).

An immediate corollary of the proof is the following.

Corollary 16. If the Schubert variety X (w) is smooth, then

Cw =

∑
u≤w

tw MC−t−2(X (u)◦)= tw MC−t−2(X (w)) ∈ KT (G/B)[t±1
].

Proof. It follows directly from (11) and the fact Pu,w = 1 for all u ≤ w. □
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Characteristic classes of mixed Hodge modules. For any parabolic subgroup PJ , let K 0(MHM(G/PJ , B))
denote its Grothendieck group of B-equivariant mixed Hodge modules. Recall there is a motivic Hodge
Chern transformation (see [Schürmann 2011, Definition 5.3 and Remark 5.5])

MHC−t−2 : K 0(MHM(G/PJ , B))→ K B(G/PJ )[t±1
] ≃ KT (G/PJ )[t±1

]

such that for any [ f : Z → G/PJ ] ∈ G B
0 (var/(G/PJ )),

MC−t−2([ f : Z → G/PJ ])= MHC−t−2([ f!QH
Z ]), (13)

where [QH
Z ] :=[k∗QH

pt ]∈ K 0(MHM(Z , B)) and k : Z →pt is the structure morphism. The construction also
works for B−-equivariant mixed Hodge modules, where B− is the opposite Borel subgroup. The natural
transformation MC−t−2 commutes with the Serre–Grothendieck dual as follows [loc. cit., Corollary 5.19]:

MHC−t−2 ◦D = D ◦ MHC−t−2 . (14)

Here the first D is the dual of the mixed Hodge modules, and the second one is the Serre–Grothendieck
dual. Both are denoted by D, if no confusion is possible.

For any u ∈ W , let iu : X (u)◦ ↪→ G/B and ju : Y (u)◦ ↪→ G/B be the inclusions. Then, by (13),

MC−t−2(X (u)◦)= MHC−t−2([iu!Q
H
X (u)◦]),

where QH
X (u)◦ is the constant mixed Hodge module on the Schubert cell X (u)◦. Since D◦ jv! = jv∗◦D, and

D(QH
Y (v)◦)= QH

Y (v)◦[2 dim Y (v)◦](dim Y (v)◦),

where [2 dim Y (v)◦] means shift by 2 dim Y (v)◦ and (dim Y (v)◦) denotes the twist by the Tate Hodge
module QH (1)⊗ dim Y (v)◦, Equation (14) gives

SMC−t−2(Y (v)◦)=
MHC−t−2([ jv∗QH

Y (v)◦])

λ−t−2(T ∗

G/B)
.

Using these, Lemma 14(2) can also be proved using mixed Hodge modules, by Schürmann. For the
analogue in equivariant homology, see [Schürmann 2017, Theorem 1.2].

For any Schubert variety X (w), let [ICH
X (w)] ∈ K 0(MHM(G/B, B)) denote the intersection homology

Hodge module on X (w). Then it is well known that (see [Kazhdan and Lusztig 1980; Tanisaki 1987;
Kashiwara and Tanisaki 2002])

[ICH
X (w)] =

∑
u≤w

ϵwPu,w(t−2)[iu!Q
H
X (u)◦].

Thus,

MHC−t−2([ICH
X (w)])=

∑
u≤w

ϵwPu,w(t−2)MC−t−2(X (u)◦).

Comparing with (11), we get the following geometric interpretation of the KL classes Cw in Definition 12.
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Proposition 17. For any w ∈ W ,

Cw = twϵw MHC−t−2([ICH
X (w)]) ∈ KT (G/B)[t±1

].

Remark 18. If X (w) is smooth or rationally smooth (i.e., [ICH
X (w)] = QH

X (w)[dim X (w)]), then

Cw = twϵw MHC−t−2([ICH
X (w)])= tw MC−t−2(X (w)).

This is compatible with Corollary 16.

An immediate corollary is the following.

Corollary 19. The canonical basis Cw is invariant under the Serre–Grothendieck duality, i.e.,

D(Cw)= Cw ∈ KT (G/B)[t±1
].

Proof. Since
D(ICH

X (w))= ICH
X (w)(dim X (w)),

Equation (14) and Proposition 17 give

D(Cw)= D
(
twϵw MHC−t−2([ICH

X (w)])
)
= t−1

w ϵw MHC−t−2
(
D([ICH

X (w)])
)
= Cw. □

Parabolic case. In this subsection, we generalize the above results to the parabolic case. Let J ⊂ 5

be a subset of simple roots, with corresponding parabolic subgroup PJ . Schubert cells and varieties
and opposite Schubert cells and varieties of G/PJ are indicated by subscripts J . Recall there exist
parabolic Kazhdan–Lusztig polynomials (see [Deodhar 1987; Kashiwara and Tanisaki 2002]), denoted
by P J

v,w ∈ Z[t−2
], where v,w ∈ W J . Here our P J

v,w is the u = −1 parabolic KL polynomials in
[Deodhar 1987], which are also denoted by P J,q

v,w in [Kashiwara and Tanisaki 2002, Remark 2.1]. We
have the following property, which generalizes [Deodhar 1987, Proposition 3.4].

Lemma 20 [Lenart et al. 2020, Proposition 5.19]. For any w, v ∈ W J and u ∈ WJ ,

Pvu,wwJ = P J
v,w.

Let Qu,w := Pw0w,w0u denote the usual inverse KL polynomials, which satisfy∑
w

ϵuϵwQu,wPw,v = δKr
u,v.

For any u, w ∈ W J , let Q J
u,w ∈ Z[t−2

] denote the inverse parabolic KL polynomial (see [Kashiwara and
Tanisaki 2002]).1 Then ∑

w∈W J

ϵuϵwQ J
u,wP J

w,v = δKr
u,v. (15)

Moreover, it is related to the usual Qu,w as follows (see [Kashiwara and Tanisaki 2002, Proposition 2.6]
or [Soergel 1997]):

Q J
u,w =

∑
v∈WJ

ϵvϵwJ QuwJ ,wv.

1Our Q J
u,w is denoted by Q J,q

u,w in [Kashiwara and Tanisaki 2002].
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Following (11) and (12), we define the parabolic canonical bases in KT (G/PJ )[t±1
] as follows.

Definition 21. For any w ∈ W J , let

C J
w :=

∑
u∈W J ,u≤w

twP J
u,w(t

−2)MC−t−2(X (u)◦J ),

C̃ J
w :=

∏
α∈6+−6+

J

(1 − t−2e−α)
∑

v∈W J ,v≥w

ϵwϵvtwJw−1w0 Q J
w,v(t

−2)SMC−t−2(Y (v)◦J ).

If J = ∅, then C∅
w = Cw, and C̃∅

w = C̃w, as defined before.
Let ⟨−,−⟩J denote the nondegenerate tensor product pairing on KT (G/PJ ). The parabolic analogue

of Lemma 14(2) also holds (see [Mihalcea et al. 2022, Theorem 7.2]): for any u, v ∈ W J ,〈
MC−t−2(X (u)◦J ),SMC−t−2(Y (v)◦J )

〉
J = δKr

u,v.

Combining this with (15), we immediately get the following generalization of Theorem 13.

Theorem 22. For any u, w ∈ W J ,

⟨C J
w, C̃ J

u ⟩J = δKr
u,w

∏
α∈6+−6+

J

(t − t−1e−α).

We now investigate the relation between KL classes of G/B and G/PJ . For any w ∈ W J , let us still
use iu to denote the inclusion X (u)◦J ↪→ G/PJ . Then the following identity holds in K 0(MHM(G/PJ , B))
(see [Kashiwara and Tanisaki 2002, Corollary 5.1]):

[ICH
X (w)J

] =

∑
u∈W J ,u≤w

ϵwP J
u,w[iu!Q

H
X (u)◦J

].

Thus, we get the following parabolic analogue of Proposition 17 and Corollary 19.

Proposition 23. For any w ∈ W J ,

C J
w = twϵw MHC−t−2([ICH

X (w)J
]).

Moreover, let DJ denote the Serre–Grothendieck duality functor on G/PJ . Then

DJ (C J
w)= C J

w.

Recall πJ : G/B → G/PJ denotes the natural projection. The relation between Cw and C J
w is given

by the following proposition.

Proposition 24. Let PJ (t)=
∑

v∈WJ
tv be the Poincaré polynomial of WJ . Then for any w ∈ W J ,

πJ∗(CwwJ )= t−1
wJ

PJ (t2)C J
w ∈ KT (G/PJ )[t±1

].

Proof. By [Aluffi et al. 2019, Remark 5.5], for any u ∈ W J and v ∈ WJ ,

πJ∗(MC−t−2)(X (uv)◦)= t−2
v MC−t−2(X (u)◦J ),
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which also follows directly from the following identity about mixed Hodge modules:

πJ !(iuv!Q
H
X (uv)◦)= QH

X (u)◦J
[−2ℓ(v)](−ℓ(v)).

Thus,

πJ∗(CwwJ )=

∑
u∈W J ,u≤w

∑
v∈WJ

twtwJ Puv,wwJπJ∗ MC−t−2(X (uv)◦)

=

∑
u∈W J ,u≤w

twtwJ P J
u,w MC−t−2(X (u)◦J )

∑
v∈WJ

t−2
v

= C J
w

∑
v∈WJ

t−2
v twJ = C J

w

∑
v∈WJ

t−1
wJ

t2
wJ

t−2
v = C J

w

∑
v∈WJ

t−1
wJ

t2
vwJ

= C J
wt−1
wJ

PJ (t2),

where the second equality follows from Lemma 20. □

5. The smoothness conjecture for hyperbolic cohomology

In this section, we use the smoothness criterion to prove the smoothness conjecture. Since we will be
working with multiplicative and hyperbolic formal group laws at the same time, we add superscripts or
subscripts m (resp. t) in the multiplicative case (resp. hyperbolic case).

The hyperbolic case. Consider the hyperbolic formal group law over R = Z[t, t−1, µ−1
]

Ft(x, y) :=
x + y − xy
1 −µ−2xy

,

where µ= t + t−1. Note that R depends on only one parameter t . The definitions of Section 2 applied
to Ft give the respective rings

St , Qt , Qt,W , Dt .

Consider a map of formal group laws

g : Ft → Fm, g(x)=
(1 − t2)x

x − (t2 + 1)
,

so that Fm(g(x), g(y))= g(Ft(x, y)). It induces ring embeddings

ψ : Sm ↪→ St , ψ( f (xλ))= f (g(xλ)) for f (x) ∈ R[[x]],

and

ψ : Qm ↪→ R
[

1
1 − t2

]
⊗ Qt . (16)

Consequently, we have a ring embedding

ψ : Qm,W → R
[

1
1 − t2

]
⊗R Qt,W , ψ(pδm

w )= ψ(p)δt
w for p ∈ Qm, w ∈ W.

It can be shown that
ψ(τi )= µY t

i − t ∈ Dt ⊂ Qt,W . (17)

Note that in (16), for the target, we have to invert t2
− 1, but for the one in (17), it is not necessary.
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One of the most interesting properties of ψ is the following (see [Lenart et al. 2020, Corollary 5.5 (2)]):

µ−ℓ(wJ/J ′ )ψ(γJ/J ′)Y t
J ′ = Y t

J . (18)

In other words, ψ(γJ/J ′) behaves like a replacement of YJ/J ′ ; see [Lenart et al. 2020, Remark 5.6]. In
particular, letting J ′

= ∅, one then has

µ−ℓ(wJ )ψ(γwJ )= Y t
J .

Let h denote the respective oriented cohomology theory for the hyperbolic formal group law Ft .

Definition 25. Define the KL Schubert class for w ∈ W J to be

KLJ
w := µ−ℓ(wwJ )ψ(γwwJ )⊙ ptte ∈ (D∗

t )
WJ ∼= hT (G/PJ ).

Remark 26. Following [Lenart et al. 2020], one can define a certain involution on some subset NJ :=

ψ(H)⊙ ptte ⊂ D∗
t so that KLJ

v is invariant under such an involution, similar to the parabolic Kazhdan–
Lusztig basis of Deodhar.

Writing the Kazhdan–Lusztig basis as γw =
∑

v≤w bw,vδv, bw,v ∈ Sm , we then have in KT (G/B)

Cw = γw ⊙ ptme =

∑
v≤w

bw,vδv ⊙

( ∏
α>0

(1 − eα) f m
e

)
=

∑
v≤w

bw,vv
( ∏
α>0

(1 − eα)
)

f m
v .

On the other hand, inside hT (G/B), we have

KLw = µ−ℓ(w)ψ(γw)⊙ ptte = µ−ℓ(w)
∑
v≤w

ψ(bw,v)v
( ∏
α>0

x−α

)
f t
v .

Here xα ∈ St . It would be interesting to compare the two classes in different cohomology theories. Here
is an example.

Example 27. We consider the SL3 case, so there are two simple roots α1, α2. Recall that in Sm , we have
xλ = 1−e−λ. Write x̂λ = t − t−1e−λ. For simplicity, write x±i± j := x±αi ±α j and x̂±i± j = x̂±αi ±α j . Inside
H ⊂ Qm,W , we have

γsi = (δsi + 1)
x̂−i

x−i
,

γs1s2 = (δs1s2 + δs2)
x̂−1−2 x̂−2

x−1−2x−2
+ (δs1 + 1)

x̂−1 x̂−2

x−1x−2
,

γs1s2s1 = (δs1s2s1 + δs1s2 + δs2s1 + δs1 + δs2 + 1)
x̂−1 x̂−2 x̂−1−2

x−1x−2x−1−2
.

Recall that ptme = x−1x−2x−1−2 f m
e ∈ D∗

m . So inside D∗
m

∼= KT (G/B)⊗Z R, we have

Ce = ptme ,

Cs1 = x̂−1x−2x−1−2 f m
e + x̂1x−2x−1−2 f m

s1
,

Cs1s2 = x̂−1 x̂−2x−1−2 f m
e + x̂1 x̂−1−2x−2 f m

s1
+ x̂−1 x̂2x−1−2 f m

s2
+ x̂1 x̂1+2x−2 f m

12,
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Cs1s2s1 = x̂−1 x̂−2 x̂−1−2 f m
e + x̂1 x̂−2 x̂−1−2 f m

s1
+ x̂−1 x̂2 x̂−1−2 f m

s2
+ x̂1 x̂1+2 x̂−1−2 f m

s1s2

+ x̂2 x̂1+2 x̂−1 f m
s2s1

+ x̂1 x̂2 x̂1+2 f m
s1s2s1

.

Note that so far in this example all notation is in Sm , Qm,W or D∗
m .

On the other hand, one can compute KLw ∈ hT (G/B) as follows: Note that ψ(x̂i/xi )= µ/xi (where
the first xi is in Sm and the second xi is in St ). Then

KLe = ptte, KLs1s2 = x−1−2 f t
e + x−2 f t

s1
+ x−1−2 f t

s2
+ x−2 f t

s1s2
,

KLs1 = x−1x−1−2 f t
e + x−1−2x−2 f t

s1
, KLs1s2s1 = f t

e + f t
s1

+ f t
s2

+ f t
s1s2

+ f t
s2s1

+ f t
s1s2s1

.

In this case, all Schubert varieties are smooth, and it is easy to verify that the classes KLw coincide with
the Schubert classes.

We now prove the smoothness conjecture [Lenart et al. 2020, Conjecture 5.14]. Several special cases
were proved in [Lenart and Zainoulline 2017; Lenart et al. 2020], such as the case of w = wJ/J ′ for J ′

⊂

J ⊆5 (i.e., w has “relative” maximal length), and that of Schubert varieties in complex projective spaces.

Theorem 28. If the Schubert variety X (w) is smooth, then the class determined by X (w) in hT (G/B)
coincides with the KL Schubert class KLw.

Proof. Since X (w) is smooth, Pv,w = 1 for any v ≤ w; see [Billey and Lakshmibai 2000, 6.1.19].
Therefore,

γw =

∑
v≤w

twt−1
v τv = tw

∑
v≤w

t−1
v τv = tw0w = tw

∑
v≤w

aw,vδm
v .

From the definition of ψ , it is easy to verify that

ψ

(
1 − t−2eα

1 − eα

)
=

t−1µ

x−α

. (19)

Then for any w ∈ W , we have

KLw = µ−ℓ(w)ψ(γw)⊙ ptte

= µ−ℓ(w)ψ

(
tw

∑
v≤w

aw,vδm
v

)
⊙ ptte

= µ−ℓ(w)tw
∑
v≤w

ψ

( ∏
α>0, vsα≤w

1 − t−2euα

1 − euα

)
δt
v ⊙ ptte (by Corollary 11)

= µ−ℓ(w)tw
∑
v≤w

( ∏
α>0, vsα≤w

t−1µ

x−vα

)
· v(x t

5) f t
v (by (5) and (19))

=

∑
v≤w

v

( ∏
α<0 xα∏

α<0, vsα≤w xα

)
f t
v

=

∑
v≤w

∏
α>0 x−α∏

α>0, sαv≤w x−α

f t
v .



454 Cristian Lenart, Changjian Su, Kirill Zainoulline and Changlong Zhong

Here the fifth identity follows from the well-known fact that

if X (w) is smooth, then |{α > 0 | sαv ≤ w}| = ℓ(w) for any v ≤ w ∈ W ,

and the last one is proved as follows: for any v ≤ w ∈ W ,∏
α<0 xvα∏

α<0, vsα≤w xvα
=

∏
α>0, sαv<v xα ·

∏
α>0, v<sαv x−α∏

α>0, sαv<v xα ·
∏
α>0, v<sαv≤w x−α

=

∏
α>0, sαv<v x−α ·

∏
α>0, v<sαv x−α∏

α>0, sαv<v x−α ·
∏
α>0, v<sαv≤w x−α

=

∏
α>0 x−α∏

α>0, sαv≤w x−α

.

Comparing with the restriction formula of [X (w)] in [Lenart et al. 2020, (5.6)], we see that KLw =[X (w)].
The proof is finished. □

We now look at the case of partial flag varieties. Let PJ be the parabolic subgroup with the projection
map πJ : G/B → G/PJ . Let wJ be the longest element in the subgroup WJ of W determined by J , and
W J

⊂ W be the set of minimal length representatives of W/WJ . Recall X (w)J denotes the Schubert
variety of G/PJ determined by w ∈ W J .

For G/PJ , the definition of the KL Schubert class KLJ
w corresponding to w ∈ W J is defined by using

the so-called parabolic Kazhdan–Lusztig basis. According to the paragraph right after [Lenart et al. 2020,
Definition 5.9], via the embedding π∗

J : hT (G/PJ )→ hT (G/B), we have

π∗

J (KLJ
w)= KLwwJ .

Corollary 29. Conjecture 5.14 of [Lenart et al. 2020] holds for any partial flag variety G/PJ ; that is,
if the Schubert variety X (w)J of G/PJ is smooth for w ∈ W J , then the KL Schubert class KLJ

w of w
coincides with the fundamental class [X (w)J ].

Proof. We have the following commutative diagram:

π−1
J (X (w)J )

i ′

//

πJ

��

G/B

πJ

��

X (w)J
i

// G/PJ

Moreover, π−1
J (X (w)J )= X (wwJ ). Since X (w)J is smooth, X (wwJ ) is also smooth. Thus, Theorem 28

implies [X (wwJ )] = KLwwJ . On the other hand, by proper base change, we obtain

π∗

J [X (w)J ] = π∗

J i∗[1X (w)J ] = i ′

∗
π∗

J [1X (w)J ] = i ′

∗
[1X (wwJ )] = [X (wwJ )],

where the third equality follows from the fact that the pullback π∗

J preserves identity. Since π∗

J (KLJ
w)=

KLwwJ , and π∗

J is injective, we get KLJ
w = [X (wwJ )] ∈ hT (G/PJ ). □
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6. KL Schubert classes and small resolutions

In this section, we give a geometric interpretation of the KL Schubert classes (for hyperbolic cohomology)
in the case of type A Grassmannians.

For subsets J ′
⊂ J ⊆5, for hyperbolic cohomology, we will use relative push–pull elements Y t

J/J ′

defined in (1). For simplicity, we will skip the superscript t . Moreover, if Q ⊂ P are the parabolic
subgroups corresponding to J ′

⊂ J , respectively, we will write YP/Q = YJ/J ′ .
Consider the Grassmannian Grd(C

n−d) = SLn/PJ , where the set of simple roots 5 is identified
with {1, . . . , n−1} and J :=5−{d}. Fix a Schubert variety X (λ) of it, which is indexed by a partition λ=

(λ1 ≥· · ·≥λl >0) contained inside the d×(n−d) rectangle; here we mean that λ is identified with a Young
diagram (in English notation), whose top left box is placed on the top left box of the mentioned rectangle.

Alternatively, the Schubert variety X (λ) is indexed by a d-subset Iλ of [n] := {1, . . . , n}, which is
constructed as follows. Place the above d × (n − d) rectangle inside the first quadrant of the xy-plane
so that its southwest corner is the origin. Label each horizontal (resp. vertical) unit segment whose left
(resp. bottom) endpoint is a lattice point (x, y) by x + y + 1. Consider the lattice path from (0, 0) to
(n − d, d) defining the southeast boundary of the Young diagram λ when embedded into the d × (n − d)
rectangle as stated above. Then Iλ consists of the labels on the vertical steps of this path.

Yet another indexing of the Schubert variety X (λ) is by a Grassmannian permutation wλ in the
symmetric group W = Sn , which has its unique descent in position d. Written in one-line notation,
wλ consists of the entries in Iλ followed by the entries in [n] − Iλ, where both sets of entries are
ordered increasingly. Here we use − for set difference. Thus, wλ belongs to the set W J of lowest coset
representatives modulo the parabolic subgroup WJ . Moreover, it has the reduced decomposition

wλ =

→∏
(i, j)∈λ

sd+ j−i , (20)

where (i, j) is the box of the Young diagram λ in row i and column j , while in the product we scan the
rows of λ from bottom to top, and each row from right to left.

Example 30. We use as a running example the same one as in [Billey and Lakshmibai 2000, Example
9.1.11], namely n = 10, d = 5, λ = (5, 5, 3, 2, 2), Iλ = {3, 4, 6, 9, 10}. In order to illustrate (20), we
place the number d + j − i in the box (i, j) of λ, as follows:

98765
87654

543
32
21

(21)

Thus, we have

wλ = [3, 4, 6, 9, 10, 1, 2, 5, 7, 8] = (s2s1)(s3s2)(s5s4s3)(s8s7s6s5s4)(s9s8s7s6s5). (22)
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In [Billey and Lakshmibai 2000, Section 9.1], the permutation wλ is identified with the d-subset Iλ,
and they are encoded into a 2 × m matrix (

k1 · · · km

a1 · · · am

)
, (23)

which can be read off from the above lattice path as follows. The entries 0< k1 < · · ·< km ≤ n are the
labels of the last steps in consecutive sequences of vertical (unit) steps. The entries a1, . . . , am are the
lengths of these sequences. The numbers b0, . . . , bm−1 calculated in [Billey and Lakshmibai 2000] are
the lengths of the sequences of horizontal steps, where we set b0 := 0 if l < d (i.e., if the lattice path
starts with a vertical step). Recall that we also set a0 = bm := ∞.

Recall that the Schubert variety X (λ) has small resolutions, which were defined by Zelevinsky [1983].
We briefly recall their construction following [Billey and Lakshmibai 2000, Section 9.1]. This construction
starts with the choice of an index i , with 0 ≤ i < m, such that bi ≤ ai and ai+1 ≤ bi+1 (any such choice
can be made). While it is clear that such an index always exists, we avoid the choice of i = 0 if l < d.
Then, a new permutation w2 is obtained from w1

:= wλ via a certain procedure, which can be rephrased
as follows. Consider the i-th outer corner of λ (counting from 0), from southwest to northeast, where
the origin is an outer corner if and only if l < d. Consider the rectangle R1 (inside λ) whose southeast
vertex is the mentioned outer corner, and which is maximal in that its removal from λ still leaves a
Young diagram. It is clear that the size of R1 is bi × ai+1. Then w2 is the Grassmannian permutation
corresponding to the Young diagram λ− R1.

The above procedure is then iterated. We thus tile the Young diagram λ with rectangles R1, . . . , Rr .
Let us denote by pi and qi the height and width of Ri , respectively. We also define the sequence of
Grassmannian permutations w1, . . . , wr so that the Young diagram of wi is λi

:= λ − ρi−1, where
ρ j

:= R1 ∪ · · · ∪ R j . In particular, the Young diagram of wr is Rr , and the Schubert variety X (wr ) is
smooth. Note that r = m if l = d, and r = m − 1 if l < d .

Example 31. We continue Example 30. The encoding of wλ by the 2 × m matrix (23) and the successive
choices of w1, w2, w3 based on it are described in detail in [Billey and Lakshmibai 2000]. In our setup,
the tiling of λ with the corresponding rectangles R1, R2, R3 is illustrated below (the number in a box is
the index of the rectangle to which that box belongs).

22233
22233

133
33
33

In order to complete the construction of the Zelevinsky resolution, following [Billey and Lakshmibai
2000, Section 9.1], we need the stabilizer Pwλ of the Schubert variety X (λ)= X (wλ). This is the parabolic
subgroup corresponding to the subset 5− {k1, . . . , km}; compare (23). More generally, consider the
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stabilizers Pi := Pwi , for i = 1, . . . , r , and Pr+1 := PJ ; for simplicity, we use the same notation for the
corresponding subsets of 5. Also let Qi := Pi ∩ Pi+1, for i = 1, . . . , r , both as parabolic subgroups and
subsets of 5. Then the Zelevinsky resolution of X (w) is expressed as follows:

P1 ×
Q1 P2 × · · · ×

Qr−2 Pr−1 ×
Qr−1 X (wr )=: X̃(wλ)→ X (wλ). (24)

Therefore, by Corollaries 4 and 29, the pushforward of the fundamental class of X̃(wλ) inside hT (G/B)
is the element

YP1/Q1 · · · YPr/Qr YJ ⊙ ptte . (25)

Example 32. Continuing Example 31, the operator in (25) is written explicitly as

Y(5−{4,6})/(5−{4,5,6}) Y(5−{5})/(5−{5,7}) Y(5−{7})/(5−{5,7}) Y5−{5}.

Indeed, the parabolic subsets Pi for these examples were exhibited in [Billey and Lakshmibai 2000],
while they can also be read off from the Young diagram of λ= (5, 5, 3, 2, 2) as indicated above.

We will now state the main technical result of this section, Theorem 34, which is interesting itself, and
is needed to make the connection with the KL Schubert classes for the Grassmannian; compare [Lenart
et al. 2020]. To this end, we introduce more notation in the above setup. Given the rectangle Ri , with its
embedding into the Young diagram of λ and the first quadrant, let Ci and Di be the sets of labels on its
left vertical side and its top horizontal side, respectively. Let

ci := min Ci , di := max Di = ci + pi + qi − 1, C ′

i := Ci − {max Ci }, D′

i := Di − {di }.

Finally, let Ji := Ci ⊔ D′

i and J ′

i := C ′

i ⊔ D′

i .
We also need to define the subsets K ′

i ⊊ Ki of 5 for i = 1, . . . , r . First recall that above we defined the
shape ρi as the union of the rectangles R1, . . . , Ri . It is not hard to see that ρi is a union of completely
disjoint Young diagrams (i.e., they do not share even a single point), aligned from southwest to northeast.
Let Ci be set of indices j ∈ {1, . . . , i} such that the left side of R j is contained in the left boundary of a
component of ρi . Similarly, let Di be set of indices k ∈ {1, . . . , i} such that the top side of Rk is contained
in the top boundary of a component of ρi . We now define

K ′

i :=

( ⊔
j∈Ci

C ′

j

)
⊔

( ⊔
k∈Di

D′

k

)
, Ki := K ′

i ⊔ {max Ci }.

Note that Ji ⊆ Ki and J ′

i ⊆ K ′

i .

Example 33. Continuing Example 32, we have

K ′

1 = J ′

1 = ∅⊊ K1 = J1 = {5}, K ′

3 = {1, 2, 3, 4, 6, 8, 9} ⊊ K3 = {1, 2, 3, 4, 5, 6, 8, 9},

K ′

2 = J ′

2 = {6, 8, 9} ⊊ K2 = J2 = {6, 7, 8, 9}, J ′

3 = {1, 2, 3, 4, 6} ⊊ J3 = {1, 2, 3, 4, 5, 6}.

As indicated above, all this information is easily read off from the Young diagram of λ= (5, 5, 3, 2, 2).
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Theorem 34. In H ⊂ Qm,W , we have

γwλwJ = γJ1/J ′

1
· · · γJr/J ′

r
γJ = γK1/K ′

1
· · · γKr/K ′

r
γJ . (26)

In order to prove Theorem 34, we start by recalling some results from [Kirillov and Lascoux 2000],
related to the factorization of Kazhdan–Lusztig elements for the Grassmannian. This paper introduces
an element Zwλ of the Hecke algebra, defined as a product of linear factors in the generators, which are
associated with the boxes of the Young diagram λ. Instead of recalling the precise definition, which
is not needed here, we will state a weaker form of the factorization, which turns out to be related to
factorizations in (26). We will use notation introduced above.

The rectangle Ri corresponds to the Grassmannian permutation

vi
:= (sci +qi −1 · · · sci )(sci +qi · · · sci +1) · · · (sci +pi +qi −2 · · · sci +pi −1);

compare (20) and Example 30. It is not hard to see that we have the following factorization of wλ, which
corresponds to a reduced decomposition of wλ obtained from (20) only by commuting simple reflections:

wλ = v1
· · · vr . (27)

Example 35. In our running example, the reduced decomposition corresponding to (27) (to be compared
with (22) and also (21)) is

wλ = [3, 4, 6, 9, 10, 1, 2, 5, 7, 8] = (s5)︸︷︷︸
v1

((s8s7s6)(s9s8s7))︸ ︷︷ ︸
v2

((s2s1)(s3s2)(s4s3)(s5s4)(s6s5))︸ ︷︷ ︸
v3

.

The factorization of Zwλ needed here is the following one, which corresponds to the factorization (27)
of wλ:

Zwλ = Zv1 Zw2 = Zv1 · · · Zvr . (28)

See the proof of [Kirillov and Lascoux 2000, Theorem 3] for details.
The connection between the element Zwλ and the corresponding parabolic Kazhdan–Lusztig basis

element is made in [Kirillov and Lascoux 2000, Theorem 3].

Theorem 36 [Kirillov and Lascoux 2000]. In H ⊂ Qm,W , we have

ZwλγJ = γwλwJ .

The proof of Theorem 34 also relies on the following lemmas.

Lemma 37. Consider J ′
⊂ J ⊆5, and assume that J ⊂ [a, b] with a, b ∈5. If A ⊆5− [a − 1, b + 1],

then we have
γJ/J ′ = γJ⊔A/J ′⊔A ∈ Qm,W , YJ/J ′ = YJ⊔A/J ′⊔A ∈ Qt,W .

Proof. As the sets of simple roots corresponding to J and A are orthogonal to each other, we have
6−

J⊔A =6−

J ⊔6−

A and WJ⊔A = WJ × WA, and similarly for J replaced by J ′. Therefore, we have

wJ/J ′ := wJwJ ′ = wJwAwJ ′wA =: wJ⊔A/J ′⊔A, x J/J ′ = x J⊔A/J ′⊔A, (29)
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and WJ/WJ ′ is in a natural bijection with WJ⊔A/WJ ′⊔A. The stated equalities follow by plugging these
facts into (7) and the definition (1) of the relative push–pull operator. □

Lemma 38. (1) We have

K1 = J1 ⊋ K ′

1 = J ′

1 ⊊ K2 ⊋ K ′

2 ⊊ · · · ⊊ Kr ⊋ K ′

r ⊆ J.

(2) For every i = 1, . . . , r , we have

γJi/J ′

i
= γKi/K ′

i
∈ Qm,W , γJ ′

i \Ji = γK ′

i \Ki ∈ Qm,W ,

YJi/J ′

i
= YKi/K ′

i
∈ Qt,W , YJ ′

i \Ji = YK ′

i \Ki ∈ Qt,W .

Proof. It is clear that K ′
r ⊆ J . Thus, in order to complete the first part, we need to prove K ′

i−1 ⊊ Ki ,
for i = 2, . . . , r . This is obvious if the rectangle Ri is, by itself, a connected component of the shape ρi .
Other than this, there are three ways in which Ri can be attached to ρi−1, which are indicated below; the
boxes of Ri are marked with ⋆ , and the empty boxes form the relevant component(s) of ρi−1.

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ (30)

Note that the height (respectively width) of Ri is strictly greater than the number of rows (respectively
columns) of the relevant Young diagram to its right (respectively at the bottom). It is also useful to
observe that all unit segments with the same label form a northwest to southeast staircase shape, and the
labels increase by 1 as we move northeast.

Let B denote the set of labels on the boundary of the rectangle Ri . Using the above notation, in all
three cases in (30), we have

B = Ci ⊔ Di = {ci , . . . , di }, Ki − B = K ′

i−1 − B, Ki ∩ B = Ci ⊔ D′

i = B − {di } =: Ji .

On the other hand, we have di ̸∈ K ′

i−1; indeed, in the first and last case in (30), the label di is on the left
side of a rectangle R j with j ∈ Ci−1, but di ̸∈ C ′

j , because it is the top label on the mentioned side. We
conclude that K ′

i−1 ⊆ Ki . In fact, the inclusion is strict because we also have ci +qi −1 ∈ (Ki ∩ B)− K ′

i−1.
For the second part, we note that, in addition to the above facts, we have K ′

i ∩ B = C ′

i ⊔ D′

i =: J ′

i and
ci −1 ̸∈ Ki . For the latter part, note that, in the last two cases in (30), the label ci −1 is on the left side of
a rectangle R j with j ∈ Ci and j ̸= i , but ci − 1 ̸∈ C ′

j , because it is the top label on the mentioned side.
The proof is concluded by applying Lemma 37. □

Proof of Theorem 34. By using the analogue of Lemma 5 for γ , we have

γK2/K ′

2
· · · γKr/K ′

r
γJ = γK2 γK ′

2\K3 · · · γK ′

r−1\Kr γK ′
r \J = γK ′

1
γK ′

1\K2 γK ′

2\K3 · · · γK ′

r−1\Kr γK ′
r \J . (31)
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We now prove the theorem using induction on r , with base case r = 0, which is trivial. We have

γwλwJ

♯1
= ZwλγJ

♯2
= Zv1 Zw2γJ

♯3
= Zv1γw2wJ

♯4
= Zv1γJ2/J ′

2
· · · γJr/J ′

r
γJ

♯5
= Zv1γK2/K ′

2
· · · γKr/K ′

r
γJ

♯6
= Zv1γK ′

1
γK ′

1\K2 · · · γK ′

r−1\KrγK ′
r \J

♯7
= γK1γK ′

1\K2 · · · γK ′

r−1\KrγK ′
r \J

♯8
= γK1/K ′

1
γK2/K ′

2
· · · γKr/K ′

r
γJ

♯9
= γJ1/J ′

1
γJ2/J ′

2
· · · γJr/J ′

r
γJ .

Here ♯1, ♯3, and ♯7 are based on Theorem 36, ♯2 on (28), ♯4 on the induction hypothesis, ♯5 and ♯9 on
Lemma 38(2), ♯6 and ♯8 on (31), and ♯8 on (8); additionally, in ♯7 we use the fact that

K1 = J1 = C1 ⊔ D′

1 = {c1, . . . , d1 − 1}, K ′

1 = J ′

1 = C ′

1 ⊔ D′

1 = K1 − {max C1},

and thus we have v1wK ′

1
= wK1 . □

Remark 39. We could not have carried out the above proof using only one of the pairs (Ji , J ′

i ) and (Ki , K ′

i ).
Indeed, the first pair does not satisfy the property in Lemma 38(1), which is crucial in the proof. On the
other hand, the induction procedure cannot be applied based on the second pair because the respective
sets for λ1

= λ and λ2 (corresponding to w2) are different.

In order to relate Theorem 34 to the Zelevinsky resolution, and more specifically to the operator (25),
we need the following result.

Lemma 40. For every i = 1, . . . , r , we have

YJi/J ′

i
= YKi/K ′

i
= YPi/Qi .

Proof. By using Lemma 38(2), it suffices to prove YJi/J ′

i
= YPi/Qi . Moreover, it suffices to consider i = 1,

as we can just replace the partition λ1
= λ with λi . Recall that P1 is obtained by considering the lattice

path from (0, 0) to (n − d, d) defining the southeast boundary of λ1, and by excluding from 5 the last
label in each sequence of vertical steps. Similarly, P2 corresponds to λ2

:= λ− R1.
Let B denote the set of labels on the boundary of the rectangle R1; see the diagram below, where the

boxes of R1 are marked with ⋆ .

⋆⋆⋆

⋆⋆⋆
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Using the above notation, we have B = C1 ⊔ D1 = {c1, . . . , d1}. Based on the above interpretation
of P1 and P2, we deduce

P1 ∩ B = C1 ⊔ D′

1 =: J1 = B − {d1},

P2 ∩ B = C ′

1 ⊔ D1, which implies Q1 ∩ B = C ′

1 ⊔ D′

1 =: J ′

1,

P1 − B ⊂ P2 − B, which implies P1 − B = Q1 − B.

Moreover, we have c1 − 1 ̸∈ P1 and d1 ̸∈ P1. Thus, we are under the hypotheses of Lemma 37, so the
conclusion follows. □

We now rephrase Theorem 34 as follows, via the map ψ .

Corollary 41. We have

µ−ℓ(wλwJ )ψ(γwλwJ )= YP1/Q1 · · · YPr/Qr YJ ∈ Dt . (32)

Proof. We start by observing that

wKi/K ′

i
= wJi/J ′

i
= vi

⇒ ℓ(wKi/K ′

i
)= pi qi = |Ri |, (33)

where |Ri | denotes the number of boxes of the rectangle Ri . Here the first equality is based on (29) and
the fact that this result can be applied to the pairs (Ji , J ′

i ) and (Ki , K ′

i ), as discussed in the proof of
Lemma 38; the second equality is clear by the definition of vi .

We now apply µ−ℓ(wλwJ )ψ( · ) to the first and last part of (26). After doing this, the latter can be written
as follows:

µ−ℓ(wλwJ )ψ(γK1/K ′

1
) · · ·ψ(γKr/K ′

r
)ψ(γJ )

♯1
=

(
µ

−ℓ(wK1/K ′
1
)
ψ(γK1/K ′

1
)
)
· · ·

(
µ

−ℓ(wKr /K ′
r
)
ψ(γKr/K ′

r
)
)
(µ−ℓ(wJ )ψ(γJ ))

♯2
=

(
µ

−ℓ(wK1/K ′
1
)
ψ(γK1/K ′

1
)
)
· · ·

(
µ

−ℓ(wKr /K ′
r
)
ψ(γKr/K ′

r
)
)
YJ

♯3
=

(
µ

−ℓ(wK1/K ′
1
)
ψ(γK1/K ′

1
)
)
· · ·

(
µ

−ℓ(wKr /K ′
r
)
ψ(γKr/K ′

r
)
)
YK ′

r
YK ′

r \J

♯4
=

(
µ

−ℓ(wK1/K ′
1
)
ψ(γK1/K ′

1
)
)
· · ·

(
µ−ℓ(wKr−1/K ′r−1 )ψ(γKr−1/K ′

r−1
)
)
YKr YK ′

r \J

= · · ·
♯5
= YK1YK ′

1\K2 · · · YK ′
r \J

♯6
= YK1/K ′

1
· · · YKr/K ′

r
YJ

♯7
= YP1/Q1 · · · YPr/Qr YJ .

Here ♯1 is based on (33) and the fact that ℓ(wλ) =
∑

i |Ri |. Equalities ♯2 and ♯4 are based on (18),
♯3 on (2), ♯5 on the repeated use of an argument similar to ♯3 followed by ♯4, ♯6 on Lemma 5 and ♯7 on
Lemma 40. □

We now state the main result of this section.

Theorem 42. The KL Schubert classes for the Grassmannian coincide with the hyperbolic cohomology
classes of the corresponding Zelevinsky resolutions.
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Proof. The result is now immediate by comparing the left- and right-hand sides of (32) with Definition 25
and (25), respectively. □

Remark 43. Theorem 42 implies that all the Zelevinsky resolutions of a Schubert variety in the Grass-
mannian have the same class in hyperbolic cohomology (i.e., the corresponding KL Schubert class). This
agrees with a result of Totaro [2000], which says that the algebraic theories in a larger class (defined by
Krichever [Buchstaber and Bunkova 2010]), which includes hyperbolic cohomology, are invariant under
small resolutions.
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