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Piotr Achinger and Junecue Suh

We extend the results of Deligne and Illusie on liftings modulo p2 and decompositions of the de Rham
complex in several ways. We show that for a smooth scheme X over a perfect field k of characteristic p >0,
the truncations of the de Rham complex in max(p−1, 2) consecutive degrees can be reconstructed as
objects of the derived category in terms of its truncation in degrees at most one (or, equivalently, in terms
the obstruction class to lifting modulo p2). Consequently, these truncations are decomposable if X admits
a lifting to W2(k), in which case the first nonzero differential in the conjugate spectral sequence appears
no earlier than on page max(p, 3) (these corollaries have been recently strengthened by Drinfeld, by
Bhatt and Lurie, and by Li and Mondal). Without assuming the existence of a lifting, we describe the
gerbes of splittings of two-term truncations and the differentials on the second page of the conjugate
spectral sequence, answering a question of Katz.

The main technical result used in the case p > 2 belongs purely to homological algebra. It concerns
certain commutative differential graded algebras whose cohomology algebra is the exterior algebra,
dubbed by us abstract Koszul complexes, of which the de Rham complex in characteristic p is an example.

In the Appendix, we use the aforementioned stronger decomposition result to prove that Kodaira–
Akizuki–Nakano vanishing and Hodge–de Rham degeneration both hold for F-split (p+1)-folds.

1. Introduction

1A. Decompositions of the de Rham complex. Deligne and Illusie [1987] showed that for a smooth
scheme X over a perfect field k of characteristic p > 0, a flat lifting of the Frobenius twist X ′

= F∗

k X
to W2(k) induces a splitting of the truncation of the de Rham complex in degrees [0, 1], i.e., an isomorphism
in the derived category

OX ′ ⊕ �1
X ′/k[−1]

∼
−→ τ≤1(FX/k,∗�

•

X/k).

Using the algebra structure of the de Rham complex, they further show that it induces an isomorphism⊕
i<p

�i
X ′/k[−i] ∼

−→ τ<p(FX/k,∗�
•

X/k).

With their method, it is unclear if one could extend this further to an isomorphism between
⊕

i≥0 �i
X ′/k[−i]

and FX/k,∗�
•

X/k if dim X ≥ p, i.e., whether the de Rham complex �•

X/k is decomposable. As a step
further, Deligne and Illusie prove using duality that this is the case if dim X = p.
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It is as of today an open problem whether there exists a smooth X over k liftable to W2(k), necessarily
of dimension dim X > p, for which the de Rham complex is not decomposable.1 In this paper, as a
small contribution to this question, we investigate the ways in which the truncation τ≤1(FX/k,∗�

•

X/k)

determines the truncations τ[a,b](FX/k,∗�
•

X/k). Our first result is the following:

Theorem 1.1. Let X be a smooth scheme over a perfect field k of characteristic p > 0 which is liftable
to W2(k). Then the truncations

τ[a,b](FX/k,∗�
•

X/k)

are decomposable for a ≤ b < a + p − 1 when p > 2, and for a ≤ b ≤ a + 1 when p = 2.

The above result immediately implies that in the conjugate spectral sequence

E i j
2 = H i (X ′, �

j
X ′/k) ⇒ H i+ j (X, �•

X/k) (1-1)

the differentials d i j
r are zero for 2 ≤ r < p when p > 2, and for r = 2 when p = 2. As a sample corollary,

we obtain the following criterion for degeneration of spectral sequences.

Corollary 1.2. For X as in Theorem 1.1, suppose that

H i (X, �
j
X/k) = 0 for |i − j | ≥ p.

Then the conjugate spectral sequence (1-1) degenerates. If moreover X is proper over k, then the Hodge
to de Rham spectral sequence

E i j
1 = H j (X, �i

X/k) ⇒ H i+ j (X, �•

X/k)

degenerates as well.

1B. Truncations of the de Rham complex. Our methods give information about truncations of the
de Rham complex without assuming liftability modulo p2. Our results in this direction are the strongest
and most explicit for truncations in two consecutive degrees. Namely, for a general smooth X over k (not
necessarily liftable to W2(k)) and for q ≥ 1, the truncated complex τ[q−1,q](FX/k,∗�

•

X/k) can be described
as the mapping fiber of δq

[−q] for a map

δq
: �

q
X ′/k → �

q−1
X ′/k[2],

that is, a class
δq

∈ Ext2(�q
X ′/k, �

q−1
X ′/k),

which is the “cup product” with the negative of the deformation obstruction class

δ1
= − obs(X ′/k/W2(k)) ∈ Ext2(�1

X ′/k,OX ′) ≃ H 2(X ′, TX ′/k) (1-2)

to the existence of a lifting of X ′ to W2(k) (see Corollary 4.3). The result in particular implies that the
two-term truncation τ[q−1,q](FX/k,∗�

•

X/k) is decomposable if X ′ lifts to W2(k), and yields a description

1Added in proof : This problem has been recently resolved by Petrov [2023], who constructed such a variety.
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of the differentials on the second page of the conjugate spectral sequence — answering a natural question
of Katz.

Theorem 1.3 (see Corollary 4.4). In the above situation, the differential

d i j
2 : H i (X ′, �

j
X ′/k) → H i+2(X ′, �

j−1
X ′/k)

in the conjugate spectral sequence (1-1) is induced by the cup product with the negative of the obstruction
class obs(X ′/k/W2(k)).

Deligne and Illusie [1987, § 3] define the gerbe of splittings sc K of a two-term complex K , and
relate the gerbe of splittings of τ≤1(FX/k,∗�

•

X/k) to the gerbe of liftings of X ′ to W2(k). This provides
a “categorification” of the equality (1-2). In the same vein, for p > 2, our description of the class
of τ[q−1,q](FX/k,∗�

•

X/k) can be upgraded to a morphism of gerbes (see Theorem 3.9)

∧
q

: sc(τ≤1(FX/k,∗�
•

X/k)) → sc(τ[q−1,q](FX/k,∗�
•

X/k)).

Let us now discuss longer truncations of the de Rham complex. The assertion of Theorem 1.1 is
subsumed by a recent beautiful observation of Drinfeld [2020, § 5.12.1] (a proof appeared in Bhatt
and Lurie [2022]): a lifting of X ′ to W2(k) induces a µp-action on the de Rham complex FX/k,∗�

•

X/k ,
which one can use to show that the truncations τ[q−p+1,q](FX/k,∗�

•

X/k) are decomposable for all q (even
more recently, Li and Mondal [2021] found an independent proof). However, the method of proof of
Theorem 1.1 is completely different and provides interesting information even if X is not liftable to W2(k).
It is deduced from the following result (when p > 2) and Corollary 4.3 (when p = 2) alluded to above.

Theorem 1.4. Let X be a smooth scheme over a perfect field k of characteristic p > 0, let q be an integer,
and let m < p − 1. One then has an isomorphism in the derived category of X ′,

τ[q−m,q](FX/k,∗�
•

X/k) ≃ τ≥q−m(L0q(τ≤1 FX/k,∗�
•

X/k)),

where L0q is the derived q-th divided power.

1C. Abstract Koszul complexes. The proof of Theorem 1.4 has very little to do with algebraic geom-
etry. To state the main technical result behind it, we need the notion of an abstract Koszul complex
(Definition 2.1), which is a certain commutative differential graded algebra (cdga) K in a ringed topos for
which the multiplication induces isomorphisms∧q H1(K ) ∼

−→ Hq(K ) for all q ≥ 0.

Thanks to the Cartier isomorphism, the de Rham complexes FX/k,∗�
•

X/k in characteristic p > 0 are
examples of such, and hence the result below immediately implies Theorem 1.4.

Theorem 1.5 (see Theorem 2.8). Let K be an abstract Koszul complex in a ringed topos (X,O) satisfying
the flatness condition (2-1), and let q ≥ m ≥ 1 be integers such that m! is invertible in O. Suppose that
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either q = m or that m + 1 is a nonzero divisor in O. Then there exists an isomorphism in the derived
category

τ≥q−m
(
L0q(τ≤1(K ))

)
∼

−→ τ[q−m,q](K ). (1-3)

In (1-3), L0q is again the derived q-th divided power, and the source of the map can be more concretely
realized as τ≥q−m of the Koszul complex

· · · → 0q−i (K 0) ⊗
∧i (Z1K )︸ ︷︷ ︸

degree i

→ · · · → K 0
⊗

∧q−1(Z1K ) →
∧q(Z1K )︸ ︷︷ ︸

degree q

→ 0 → · · · .

For m = 1 (and assuming that 2 is a nonzerodivisor), we again obtain more refined information
regarding τ[q−1,q]K , including the differentials on the second page of the spectral sequence

E i j
2 = H i (X,H j (K )) ⇒ H i+ j (X, K ) (see Corollary 4.3).

As observed by Kato [1989], logarithmic de Rham complexes are abstract Koszul complexes, and
hence Theorem 1.1 works also in the log case. The inspiration for Theorem 2.8 came from the result of
Steenbrink [1995, § 2.8] describing the nearby cycle complex R9Q for a complex semistable degeneration
in terms of the logarithmic structure; see also [Achinger and Ogus 2020, § 4]. It is an interesting question
whether Steenbrink’s result can be extended to work with integral coefficients; the nearby cycles R9Z

are coconnective E∞-algebra versions of abstract Koszul complexes, but we do not know whether they
admit cdga models (see Remark 2.11 and Example 2.3). An affirmative answer would give an application
unrelated to the Deligne–Illusie theorem, refining [Achinger and Ogus 2020, Theorem 4.2.2(1)], providing
a description of the two-step truncations τ[q−1,q] of certain logarithmic nearby cycle complexes.

1D. The case p = 2 (Theorem 4.1). The description of the truncations τ[q−1,q](FX/k,∗�
•

X/k) and its
corollary, Theorem 1.3, can be deduced from the “abstract Koszul complex” machinery and Theorem 1.4,
but only for p > 2. In contrast, the assertion of Theorem 1.5 is vacuous if 2 ·O = 0. Accordingly, the
computation of the class of τ[q−1,q]FX/k,∗�

•

X/k , occupying the entire Section 4 is much harder in the
case p = 2, and uses more information about the de Rham complex than merely its abstract Koszul
complex structure. For this technical point, we highlight the passage from (4-3) to (4-4).

It could be worthwhile to extend the methods used in the case of p = 2 in order to “compute” the
truncations τ[q−p+1,p] in p consecutive degrees, and it would be interesting to extract the exact abstract
properties of the de Rham complex in positive characteristic needed for the proof. Its relationship with
the aforementioned result of Drinfeld, Bhatt–Lurie, and Li–Mondal remains elusive.

The results concerning the truncations τ[q−1,q](FX/k,∗�
•

X/k) and Theorem 1.3, including the case p = 2,
presented here are due to the second author and appeared in his 2007 Ph.D. thesis. After the first author
proved Theorem 1.4, the authors decided to publish their results together.

1E. Application to F-split ( p+1)-folds. As an illustration of this circle of ideas, using the refinement of
the Deligne–Illusie theorem due to Drinfeld, Bhatt–Lurie, and Li–Mondal, we prove in the Appendix that
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the Kodaira–Akizuki–Nakano vanishing theorem and the degeneration of the Hodge to de Rham spectral
sequence both hold for F-split (p+1)-folds in characteristic p.2

Notation. If K is a cochain complex in an abelian category, we write Zi K = ker(d : K i
→ K i+1),

Bi K = im(d : K i−1
→ K i ), and Hi (K ) = Zi K/Bi K , denote by τ≤b(K ) the subcomplex

τ≤b(K ) = [ · · · → K b−1
→ Zb K → 0 → · · · ]

and by τ≥a(K ) the quotient K/τ≤a(K ), and define τ[a,b](K ) = τ≥aτ≤b(K ). We call K decomposable if
it is isomorphic in the derived category to the complex with zero differential

⊕
Hi (K )[−i].

A commutative differential graded algebra (cdga) is an associative graded ring K =
⊕

n∈Z K n which is
graded-commutative (i.e., xy = (−1)mn yx for x ∈ K m , y ∈ K n), endowed with a differential d : K → K
mapping K n to K n+1 and satisfying d(xy)=dx ·y+(−1)nx ·dy for x ∈ K n . We say that K is coconnective
if K n

= 0 for n < 0.

2. Abstract Koszul complexes

2A. Definition and examples. We work in a ringed topos (X,O).

Definition 2.1 (abstract Koszul complex). A coconnective commutative differential graded O-algebra K
is called an abstract Koszul complex if the following conditions are satisfied:

(i) O → H0(K ) is an isomorphism.

(ii) For every q ≥ 1, the multiplication map H1(K )⊗q
→ Hq(K ) factors through an isomorphism

µq
:
∧q H1(K ) ∼

−→ Hq(K ).

Example 2.2 (De Rham complex in characteristic p > 0). Let X be a smooth scheme over a perfect
field k of characteristic p > 0, and let FX/k : X → X ′ be its relative Frobenius. Let K = FX/k,∗�

•

X/k be
the de Rham complex, treated as a cdga over OX ′ . Then the Cartier isomorphisms

C : Hi (FX/k,∗�
•

X/k)
∼

−→ �i
X ′/k

are multiplicative, and hence K is an abstract Koszul complex over (X ′,OX ′).
More generally, if f : (X,MX ) → (S,MS) is a morphism of fine log schemes over Fp which is smooth

and of Cartier type, then the log de Rham complex FX/S,∗�
•

(X,MX )/(S,MS)
is an abstract Koszul complex

[Kato 1989, Theorem 4.12].

Example 2.3 (nearby cycle complexes; see, e.g., [Steenbrink 1995, § 2]). Let X be a complex manifold
and let D =

⋃
Dα be a divisor with simple normal crossings on X . Let j : U = X \ D ↪→ X be the

complementary open immersion, and let K = R j∗QU . Since we are working with rational coefficients,

2Added in proof : These results have recently been improved upon by Petrov (private communication, 2023), who showed that
the assumption on dimension is not necessary.
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we can find a cdga model for K (e.g., [Kříž and May 1995, Part II, Corollary 1.5]). The purity theorem
implies that

Ri j∗QU =
∧i

(⊕
QDα

)
,

so any cdga model of K is an abstract Koszul complex over (X, QX ). Moreover, one has an isomorphism
in the derived category [Steenbrink 1995, Lemma 2.7] (see also [Achinger and Ogus 2020, § 4])

τ≤1(R1 j∗ZU ) ≃ [OX
exp
−→ Mgp

],

where Mgp is the sheaf of meromorphic functions without zeros or poles on U . Variants of this construction
exist for the nearby cycle complexes R9Q for a semistable degeneration over a disc, and there exist
analogs in ℓ-adic étale cohomology (with Qℓ coefficients).

Recall [SGA 42 1972, exposé V, Definition 1.1] that an O-module M is flat if the functor (−)⊗O M
is exact on the category of all O-modules. By the Deligne–Lazard theorem [SGA 42 1972, exposé V,
théorème 8.2.12], an O-module is flat if and only if it is a local inductive limit (see [SGA 42 1972,
exposé V, § 8.1]) of free O-modules of finite rank.

In the following, we will work with abstract Koszul complexes satisfying the additional flatness
condition:

the O-modules K 0, B1K , Z1K , and H1(K ) are flat. (2-1)

In particular, this implies that the modules Hq(K ) ≃
∧q Hq(K ) are flat for all q ≥ 0. The above condition

is satisfied in the situation of Examples 2.2 and 2.3.

2B. Koszul complexes. Our goal is to show that to a certain extent, the underlying complex of an abstract
Koszul complex satisfying the flatness condition (2-1) is determined by its truncation in degrees ≤ 1
(Theorem 2.8). We achieve this using the notion of the Koszul complex of a map u : P → Q; see [Illusie
1971, chapitre I, § 4.3] and [Kato and Saito 2004, § 1.1–1.2].

Recall first that if M and N are O-modules, then for every q ≥ 0 there is a natural decomposition of
the divided (resp. exterior) power

0q(M ⊕ N ) =

⊕
a+b=q

0a M ⊗ 0b N
(

resp.
∧q(M ⊕ N ) =

⊕
a+b=q

∧a M ⊗
∧b N

)
.

In what follows, we will use the comultiplication maps

ηq
: 0q M → (0q−1 M) ⊗ M

(
resp. ηq

:
∧q M → M ⊗

∧q−1 M
)

obtained as the composition of 0q
(
resp.

∧q
)

of the diagonal map M → M ⊕ M and the projection
to the (a, b) = (q−1, 1)-part (resp. (a, b) = (1, q−1)-part) in the above decomposition of 0q(M ⊕ M)
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resp. of

∧q(M ⊕ M)
)
. Explicitly, we have

ηq(x [e1]
1 · · · x [er ]

r ) =

r∑
i=1

(x [e1]
1 · · · x [ei −1]

i · · · x [er ]
r ) ⊗ xi (e1 + · · · + er = q),

ηq(x1 ∧ · · · ∧ xq) =

q∑
i=1

(−1)i−1xi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xq .

Sometimes we omit the superscript q when it is clear from the context.

Definition 2.4 (Koszul complex Kosq(u)). Let u : P → Q be a map of O-modules, and let q ≥ 0 be an
integer. Then the q-th Koszul complex Kosq(u) is the cochain complex whose i-th term is

Kosq(u)i
= 0q−i (P) ⊗

∧i (Q),

with differential d : Kosq(u)i
→ Kosq(u)i+1 defined as the composition

0q−i (P) ⊗
∧i (Q)

η⊗id
// 0q−i−1(P) ⊗ P ⊗

∧i (Q)

id⊗u⊗id
��

0q−i−1(P) ⊗ Q ⊗
∧i (Q)

id⊗∧

// 0q−i−1(P) ⊗
∧i+1(Q)

Concretely, with e1 + · · · + er = q − i , x1, . . . , xr ∈ P , and y ∈
∧i Q,

d(x [e1]
1 · · · x [er ]

r ⊗ y) =

r∑
j=1

(x [e1]
1 · · · x [e j −1]

j · · · x [er ]
r ) ⊗ u(x j ) ∧ y.

We note here that our convention differs slightly from that in [Kato and Saito 2004] and [Illusie 1971],
who use

∧i (Q) ⊗ 0q−i (P) as the i-th term. The two complexes, ours and theirs, are isomorphic via
the map which is (−1)i times the map switching the two tensor factors in degree i . The reason for
this convention is that later in Proposition 3.2 we will obtain the left comultiplication maps on exterior
powers, which in applications to the de Rham complex will be compatible with interior multiplication of
differential forms.

Proposition 2.5. Let u : P → Q be a map of flat O-modules, and let F(u) = [P u
−→ Q] be the two-term

cochain complex with P in degree zero (the mapping fiber). There exist natural isomorphisms in the
derived category

Kosq(u) ≃ L3q(F[1])[−q] ≃ L0q(F),

where L3q (resp. L0q ) is the derived exterior (resp. divided) power.

Proof. Combine [Kato and Saito 2004, Corollary 1.2.7] with [Illusie 1971, chapitre I, 4.3.2.1]. See also
[Illusie 1972, chapitre VIII, lemme 2.1.2.1]. □

Corollary 2.6. For a map u : P → Q between flat O-modules, the complex Kosq(u), treated as an object
of the derived category, depends only on F(u) = [P → Q] up to quasi-isomorphism. In particular,
if F(u) is decomposable, then so is Kosq(u).
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Proposition 2.7 (compare [Steenbrink 1995, Lemma 1.4]). Let u : P → Q be a map of O-modules. There
exist unique arrows

0q−i (ker u) ⊗
∧i (Q) → Zi (Kosq(u)) and αi

: 0q−i (ker u) ⊗
∧i (cok u) → Hi (Kosq(u))

making the following diagram commute:

0q−i (P) ⊗
∧i (Q) Kosq(u)i

0q−i (ker u) ⊗
∧i (Q) //

��

OO

Zi (Kosq(u))

OO

��

0q−i (ker u) ⊗
∧i (cok u)

αi
// Hi (Kosq(u))

Moreover, the map αi is an isomorphism if P , Q, ker u, im u, and cok u are all flat.

Proof. The first assertion is straightforward. The second is reduced as in [Illusie 1971, chapitre I, 4.3.1.6]
using the Deligne–Lazard theorem to the case where P , Q, ker u, im u, and cok u are free O-modules of
finite rank. In this case, splitting the surjection Q → cok u one can write u = u′

⊕u′′, where u′
: P → im u

and u′′
: 0 → cok u. The assertion then holds for u′ (by [Illusie 1971, chapitre I, 4.3.1.6]) and for u′′

(trivially), for all q, and then the assertion for u = u′
⊕ u′′ follows from the isomorphism [Illusie 1971,

chapitre I, 4.3.1.5]

Kos•(u) = Kos•(u′) ⊗ Kos•(u′′),

where Kos•(u) =
⊕

q≥0 Kosq(u)[q]. □

2C. Truncations of abstract Koszul complexes. The following theorem is the main result of this section.

Theorem 2.8. Let m ≥ 0 be an integer such that m! is invertible in O, and let q ≥ m. Suppose that either
q = m, or that m + 1 is not a zero divisor in O. Let K be an abstract Koszul complex on (X,O) satisfying
the flatness condition (2-1), and write

τ≤1K = [K 0 ∂
−→ Z1K ]

for its truncation in degrees ≤ 1. Then the multiplication maps

Kosq(∂)i
= 0q−i (K 0) ⊗

∧i (Z1K ) = Symq−i (K 0) ⊗
∧i (Z1K ) → K i

for q − m ≤ i ≤ q (where we can identify 0q−i with Symq−i as q − i ≤ m, so that (q − i)! is invertible
in O) induce a quasi-isomorphism

τ≥q−m(L0q(τ≤1(K )) = τ≥q−m Kosq(∂) ∼
−→ τ[q−m,q](K ). (2-2)
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Proof. The multiplication maps define a morphism of “naive truncations”

Kosq(∂)≥q−m
=

µ

��

[Symm(K 0) ⊗
∧q−m(Z1K )

��

// · · · //
∧q(Z1K )]

��

τ≤q(K )≥q−m
= [K q−m // · · · // Zq K ]

To obtain the desired morphism µ : τ≥q−m Kosq(∂) → τ[q−m,q](K ), we need to check that the map

Kosq(∂)q−m
→ K q−m

takes the image of Kosq(∂)q−m−1
→ Kosq(∂)q−m into Bq−m K = d K q−m−1. This is clear if q = m, so

suppose that (m + 1) is not a zero divisor.
Let z ∈ Kosq(∂)q−m be the image of w ∈ Kosq(∂)q−m−1, and consider (m + 1)w as an element of the

submodule

Symm+1(K 0) ⊗
∧q−m−1(Z1K ) ⊆ 0m+1(K 0) ⊗

∧q−m−1(Z1K ).

Let u ∈ K q−m−1 be the image of (m + 1)w under the multiplication map

Symm+1(K 0) ⊗
∧q−m−1(Z1K ) → K q−m−1.

Then du = (m + 1)µ(z) in K q−m , where µ(z) is the image of z under the multiplication map, and
hence µ(z) gives an (m+1)-torsion class in Hq−m(K ). Since by assumption Hq−m(K ) ≃

∧q−m H1(K )

is flat and m + 1 is not a zero divisor, µ(z) ∈ d K m−q−1 as desired.
Finally, the maps induced by µ : τ≥q−m Kosq(∂) → τ[q−m,q](K ) on cohomology can, thanks to

Proposition 2.7, be identified with the maps

µi
:
∧i H1(K ) → Hi (K ) for q − m ≤ i ≤ q,

which are isomorphisms by assumption. □

Remark 2.9. Implicit in the above proof is the subcomplex K̃osq(u) of Kosq(u) whose i-th term equals
Symq−i K ⊗

∧i (Z1K ). The two complexes agree in degrees ≥ q − m, and more generally the quotient
Kosq(u)q−i/K̃osq(u)q−i is annihilated by i !. This subcomplex probably does not have any “derived
meaning”, (for example, it is not clear that it is decomposable if τ≤1(K ) is), but its advantage is that there
is a multiplication map µ : K̃osq(u) → K .

Remark 2.10. For an illustration of Theorem 2.8, let us see what happens in the “minimal” situation
where it does not apply. To this end, let us consider the de Rham complex K = [Fp[x] → Fp[x] dx] of the
polynomial ring Fp[x] over Fp, treated as a complex of modules over Fp[x p

]. Set m = p−1 and q = p, and
let us check that the intermediate assertion in the proof of Theorem 2.8, that µ :Kosq(∂)q−m

→ K q−m takes
the image of dKos : Kosq(∂)q−m−1

→ Kosq(∂)q−m into Bq−m K = d K q−m−1, does not hold. Explicitly,
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the groups and maps in question form the diagram

0
p
Fp[x p](Fp[x])

dKos
//

?
��

0
p−1
Fp[x p](Fp[x]) ⊗ Fp[x] dx Symp−1

Fp[x p](Fp[x]) ⊗ Fp[x] dx

µ

��

µ

��

d(Fp[x])
� � // Fp[x] dx

Let us consider the element x [p] in the top left corner. Its image under the Koszul differential is
x [p−1]

⊗ dx = −x p−1
⊗ dx , whose image under µ is −x p−1 dx , a nonexact form.

This calculation suggests a link with the Cartier operator in the situation where K is the de Rham
complex of a smooth scheme in characteristic p. And indeed, we shall see it again in the proof of
Theorem 4.1.

Remark 2.11. Our proof of Theorem 2.8 makes use of an explicit model of the cdga K . Thus, for
example, if K and K ′ are equivalent cdgas to which the theorem applies, it is not obvious whether the
isomorphisms (2-2) we obtain for K and K ′ are compatible. More importantly, it does not apply to the
more general case of coconnective E∞-algebras or cosimplicial commutative rings whose cohomology
algebras satisfy axioms (i)–(ii) of Definition 2.1.

Corollary 2.12. Let K be an abstract Koszul complex, and let n be such that n! is invertible in O. Suppose
that τ≤1(K ) is decomposable. Then for a ≤ b < a + n, the complex τ[a,b](K ) is decomposable. Moreover,
the complex τ≤n(K ) is decomposable as well.

2D. Application to de Rham cohomology. We now establish some of the straightforward consequences
for de Rham cohomology mentioned in the introduction. The remaining ones shall be established at the
end of Section 4.

Proof of Theorem 1.1, case p > 2. Let K = FX/k,∗�
•

X/k . By Example 2.2, this is an abstract Koszul
complex over the ringed space (X ′,OX ′). By [Deligne and Illusie 1987, théorème 2.1], the liftability
assumption implies that the complex τ≤1(K ) is decomposable. Corollary 2.12 with m = p − 1 implies
that τ[a,b](K ) is decomposable for a ≤ b < a + p − 1, as desired. □

Proof of Corollary 1.2. The differentials on the Er -page of (1-1) depend only on the truncations
τ[a,b](�

•

X/k) with a ≤ b < a + r , and hence all differentials on the pages Er with r < p vanish. Suppose
that d i j

r ̸= 0. Then in particular H i (X, �
j
X/k) and H i+r (X, �

j−r+1
X/k ) are both nonzero, and hence

|i − j | < p and |(i + r) − ( j − r + 1)| = |(i − j) + 2r − 1| < p,

which implies r < p, but that forces d i j
r = 0, hence a contradiction. Therefore (1-1) degenerates.

For X proper over k, one can deduce the degeneration of the Hodge to de Rham spectral sequence as
in [Deligne and Illusie 1987, corollaire 2.4]. □

Remark 2.13. As in [Deligne and Illusie 1987, § 4] and [Kato 1989, Theorem 4.12(2)], analogous
assertions hold for a smooth and separated morphism of Fp-schemes X → S, or more generally for a
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smooth morphism of Cartier type f : (X,MX ) → (S,MS) between fine log schemes over Fp, assuming
that there exists a fine log scheme (S̃,MS̃) over Z/p2Z such that S̃ is flat over Z/p2Z and a smooth lifting

f̃ ′
: (X̃ ′,MX̃ ′) → (S̃,MS̃)

of f ′ (the base change f under the absolute Frobenius (S,MS) → (S,MS)). Here Fp and Z/p2Z are
given the trivial log structure.

3. Truncations in two consecutive degrees and gerbes of splittings

In the following, we make a more detailed analysis of the truncations τ[q−1,q]K for an abstract Koszul
complex K , as well as their associated gerbes of splittings. We keep working in the category of modules
in a ringed topos (X,O).

3A. First-order attachment maps. For a complex K and an integer q , the truncation

τ[q−1,q]K = [ · · · → 0 → K q−1/Bq−1
→ Zq K → 0 → · · · ]

fits inside the functorial exact triangle

Hq−1(K )[1 − q] → τ[q−1,q]K → Hq(K )[−q]
δ

q
K [−q]

−−−→ Hq−1(K )[2 − q],

yielding a morphism

δ
q
K : Hq(K ) → Hq−1(K )[2]

such that δ
q
K [−q] is the unique morphism making the above triangle distinguished (see [Achinger and

Ogus 2020, Proposition 2.1.1]). Thus the truncation τ[q−1,q]K is determined by the map δ
q
K , as the

mapping fiber of δ
q
K [−q]; it is decomposable if and only if δ

q
K = 0. We note for future reference the effect

of the shift functor on the maps δ
q
K :

δ
q
K [p]

= (−1)pδ
p+q
K . (3-1)

The maps δ
q
K describe the differentials on the second page of the spectral sequence

E pq
2 = H p(X,Hq(K )) ⇒ H p+q(X, K ).

Namely, the differential

d pq
2 : H p(X,Hq(K )) → H p+2(X,Hq−1(K )) = H p(X,Hq−1(K )[2])

is the map induced by δ
q
K on H p(X, −).

3B. Gerbe of splittings. We recall the gerbe of splittings described in [Deligne and Illusie 1987]. Let

K = [K 0 d
−→ K 1

]

be a two-term complex (i.e., K i
= 0 for i ̸= 0, 1), and suppose that the two conditions below hold:
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(1) H1(K ) is locally free of finite rank, and

(2) the projection of K 0 onto B1
= im(d) locally admits a section.3

One then constructs the gerbe sc(K ) under Hom(H1(K ),H0(K )) over X [Deligne and Illusie 1987,
§ 3.2] as the stackification of the prestack sc′(K ) whose objects are local splittings

s : H1(K ) → K 1

of the projection K 1
= Z1K → H1(K ), and where morphisms s → s ′ are maps

h : H1(K ) → K 0

such that dh = s ′
− s. The automorphisms of an object s are then identified with Hom(H1(K ),H0(K )),

and this makes sc(K ) into a gerbe under Hom(H1(K ),H0(K )). We denote by

cl sc K ∈ H 2(X, Hom(H1(K ),H0(K ))
)
= Ext2(H1(K ),H0(K )) = Hom(H1(K ),H0(K )[2])

the class of the gerbe sc K . The following result relates this class to the map δ1
K defined previously.

Lemma 3.1 [Deligne and Illusie 1987, proposition 3.3]. Let K = [K 0
→ K 1

] be a two-term complex
satisfying (1) and (2) above. Then, one has the following equality in Hom(H1(K ),H0(K )[2]):

cl sc K = −δ1
K .

A bit more generally, suppose that q is an integer and K a complex satisfying the following conditions:

(1) K i
= 0 for i ̸= q − 1, q ,

(2) Hq(K ) is locally free of finite rank, and

(3) the projection of K q−1 onto Bq
= im(d) locally admits a section.

Then we denote by sc[q−1,q](K ) the gerbe of splittings of the complex

· · · → 0 → K q−1
→ K q

→ 0 → · · ·

concentrated in degrees 0 and 1 and with d being equal to the original differential of K , rather than
(−1)q−1 times that; this convention has the consequence that

cl sc[q−1,q](K ) = (−1)q−1 cl sc(K [q − 1])

in H 2(X, Hom(Hq ,Hq−1)). Combined with Lemma 3.1 and (3-1), this implies the following generaliza-
tion of Lemma 3.1:

cl sc[q−1,q](K ) = −δ
q
K .

When there is no confusion as to what q is, we simply write sc(K ) for sc[q−1,q](K ).

3C. Truncated Koszul complexes. Let K =[K 0 d
−→ K 1

] be a two-term complex of modules over (X,O),
and let q ≥ 1. Using the Koszul complex, one can build another two-term complex, concentrated in

3As pointed out to us by the referee, condition (2) is in fact not needed for the construction. Indeed, if s′
− s : H1(K ) → B1,

then locally there exists an h : H1
→ K 0 such that s′

− s = dh.
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degrees [q − 1, q]:

τ≥q−1(Kosq(d)) =

[
· · · → 0 →

K 0
⊗

∧q−1K 1

d(02K 0 ⊗
∧q−2K 1)

→
∧q K 1

→ 0 → · · ·

]
.

By Proposition 2.7 we have morphisms

αq
:
∧q H1(K ) → Hq(Kosq(d)) and αq−1

: H0(K ) ⊗
∧q−1 H1(K ) → Hq−1(Kosq(d)), (3-2)

which are isomorphisms if K 0, K 1, H0(K ), and H1(K ) are flat. The following result describes the
maps δ

q
Kosq (d)

and hence the truncation τ≥q−1(Kosq(d)).

Proposition 3.2. Let K = [K 0 d
−→ K 1

] be a two-term complex and let q ≥ 1. Suppose that K 0, K 1,
H0(K ), and H1(K ) are flat. Then the following diagram is commutative:

∧q H1(K )
ηq

//

αq

��

H1(K ) ⊗
∧q−1 H1(K )

δ1
K⊗id

// H0(K ) ⊗
∧q−1 H1(K )[2]

αq−1

��

Hq(Kosq(d))
δ

q
Kosq (d)

// Hq−1(Kosq(d))[2]

In other words, using the identifications (3-2), we have the equality

δ
q
Kosq (d)

= (δ1
K ⊗ id) ◦ ηq

of maps
∧q H1(K ) → H0(K ) ⊗

∧q−1 H1(K )[2].

Proof. Let us abbreviate Hi (K ) to Hi . We first check that the two-term complexes τ≥q−1 Kosq(d) and the
naive (q−1)-shift of K ⊗

∧q−1 H1 form the middle square inside a commutative diagram with exact rows

0 // H0
⊗

∧q−1 H1

id
��

//
K 0

⊗
∧q−1K 1

d(02(K 0) ⊗
∧q−2K 1)

β

��

//
∧q K 1

α

��

//
∧q H1

ηq

��

// 0

0 // H0
⊗

∧q−1 H1 // K 0
⊗

∧q−1 H1
d⊗id

// K 1
⊗

∧q−1 H1 // H1
⊗

∧q−1 H1 // 0

We define the maps α and β as follows. The map β is uniquely determined by

β(w ⊗ z1 ∧ · · · ∧ zq−1) mod d(02(K 0) ⊗
∧q−2K 1) = w ⊗ [z1] ∧ · · · ∧ [zq ].

It is well defined because elements of the form

d(w[2]
⊗ z1 ∧ · · · ∧ zq−1) = w ⊗ dw ∧ z1 ∧ · · · ∧ zq−1

or
d(wv ⊗ z1 ∧ · · · ∧ zq−1) = v ⊗ dw ∧ z1 ∧ · · · ∧ zq−1 + w ⊗ dv ∧ z1 ∧ · · · ∧ zq−1

are sent to zero, since [dw] = 0 = [dv]. The map α is the composition∧q K 1 ηq
−→ K 1

⊗
∧q−1K 1 id⊗proj.

−−−−→ K 1
⊗

∧q−1 H1 .
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The commutativity of the left- and rightmost squares is trivial to check. To see that the middle square
commutes, we take (the class of) w ⊗ z1 ∧ · · · ∧ zq−1 ∈ K 0

⊗
∧q−1K 1, and compute

α(d(w⊗z1 ∧· · ·∧zq−1)) = α(dw∧z1 ∧· · ·∧zq−1)

=

q∑
i=1

(−1)i zi ⊗[dw]∧[z1]∧· · ·∧[̂zi ]∧· · ·∧[zq−1]+dw⊗[z1]∧· · ·∧[zq−1]

= dw⊗[z1]∧· · ·∧[zq−1] = (d ⊗ id)(β(w⊗z1 ∧· · ·∧zq−1)).

Now, our commutative diagram of complexes translates into a commutative square in the derived
category,

∧q H1
δ

q
Kosq (d)

//

ηq

��

H0
⊗

∧q−1 H1
[2]

id
��

H1
⊗

∧q−1 H1

δ1
K ⊗id

// H0
⊗

∧q−1 H1
[2]

This implies the required assertion. □

3D. Two-term truncations of abstract Koszul complexes. The following result relates the maps δ
q
K and δ1

K

for a cdga K .

Proposition 3.3. Suppose 2 is a nonzerodivisor in O. Let K be a coconnective commutative differential
graded algebra such that K 0, Z1K , H0(K ), and H1(K ) are flat. Let q ≥ 1 be an integer such that
Hq−1(K ) is flat. Then the following diagram commutes:

∧q H1(K )

mult.
��

ηq
// H1(K ) ⊗

∧q−1 H1(K )
δ1

K ⊗id
// H0(K ) ⊗

∧q−1 H1(K )[2]

mult.
��

Hq(K )
δ

q
K

// Hq−1(K )[2]

Proof. Write τ≤1K = [K 0 ∂
−→ Z1K ]. The proof of Theorem 2.8 (with m = 1) provides a morphism of

complexes

µ : τ≥q−1 Kosq(∂) → τ[q−1,q]K .

By functoriality of the maps δq , we have a commutative square

Hq(τ≥q−1 Kosq(∂)) //

µ

��

Hq−1(τ≥q−1 Kosq(∂))[2]

��

Hq(τ[q−1,q]K ) // Hq−1(τ[q−1,q]K )[2]
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That is, a commutative square

∧q H1(K ) //

��

H0(K ) ⊗
∧q−1 H1(K )[2]

��

Hq(K ) // Hq−1(K )[2]

The assertion then follows from Proposition 3.2. □

Remark 3.4. The proof of [Achinger and Ogus 2020, Theorem 4.2.2(1)] implies the assertion of
Proposition 3.3 under the stronger assumption that q! is invertible in O. However, the argument does
not use the cdga structure of K , only a weaker structure of a commutative monoid in the derived
category K ⊗

L K → K . In particular, the assertion holds for some E∞-algebras which are not a priori
equivalent to cdgas.

Remark 3.5. In [Achinger and Ogus 2020, Lemma 2.1.1], it is shown that the maps δ
q
K are compatible

with the derived tensor product in the following way. If K and L are complexes and i and j are integers
such that Hi (K ) and H j (L) are flat O-modules, then the following square commutes:

Hi (K ) ⊗H j (L)

��

δi
K ⊗1+(−1)i

⊗δ
j
L
//
(
Hi−1(K )[2] ⊗H j (L)

)
⊕

(
Hi (K ) ⊗H j−1(L)[2]

)
��

Hi+ j (K ⊗
L L)

δ
i+ j
K⊗L L

// Hi+ j−1(K ⊗
L L)[2]

If q! is invertible in O, so that
∧q H1(K ) is a direct summand of H1(K )⊗q , the assertion of Proposition 3.3

can be deduced from this result.
For illustration, let us see how to do this for q = 2. We set L = K and i = j = 1 in the above diagram,

obtaining the middle square of the diagram below:

∧2 H1(K )

x∧y 7→
1
2 (x⊗y−y⊗x)

��

η2
// H1(K ) ⊗H1(K )

id⊗δ1
K

// H1(K ) ⊗H0(K )[2]

1
2 (shuffle,id)

��

H1(K ) ⊗H1(K )

��

δ1
K ⊗1−1⊗δ1

K
//
(
H0(K )[2] ⊗H1(K )

)
⊕

(
H1(K ) ⊗H0(K )[2]

)
��

H2(K ⊗
L K )

��

δ2
K⊗L K

// H1(K ⊗
L K )[2]

��

H2(K )
δ2

K

// H1(K )[2]
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Here, the bottom square certifies the functoriality of δ2 with respect to the multiplication map K ⊗
L K → K .

Commutativity of the top square is easy to check. Then, commutativity of the exterior square gives the
required assertion.

Corollary 3.6. Suppose 2 is a nonzerodivisor in O. Let K be an abstract Koszul complex satisfying the
flatness condition (2-1) and let q ≥ 1. We have the following commutative diagram:

∧q H1(K )

∼

��

ηq
// H1(K ) ⊗

∧q−1 H1(K )
δ1

K⊗id
//
∧q−1 H1(K )[2]

∼

��

Hq(K )
δ

q
K

// Hq−1(K )[2]

In other words, using the vertical identifications, we have the equality

δ
q
K = (δ1

K ⊗ id) ◦ ηq

in Hom(Hq(K ),Hq−1(K )[2]).

Corollary 3.7. Suppose 2 is a nonzerodivisor in O. Let K be an abstract Koszul complex satisfying the
flatness condition (2-1) and let q ≥ 1. Then

cl sc[q−1,q](K ) = ηq(cl sc(τ≤1K )).

Corollary 3.8. Suppose that 2 is a nonzerodivisor in O. Let K be an abstract Koszul complex satisfying
the flatness condition (2-1). Then the differential

d pq
2 : H p(X,Hq(K )) → H p+2(X,Hq−1(K ))

equals the cup product with the class

δ1
K = − cl sc(τ≤1K ) ∈ H 2(X, Hom(H1(K ),H0(K ))

)
,

followed by evaluation.

3E. Morphisms of gerbes of splittings. Let K be an abstract Koszul complex satisfying the flatness
condition (2-1). In Corollary 3.7, under the assumption that 2 is a nonzerodivisor in O, we calculated
the gerbe classes cl sc[q−1,q] K in terms of the class cl sc(τ≤1K ). Below, under the stronger assumption
that 2 is invertible, we promote this equality into a morphism of gerbes.

Theorem 3.9. For each integer q ≥ 1, there is a morphism

∧
q

: sc(τ≤1K ) → sc(τ[q−1,q]K )

of gerbes over X , under which the obstruction classes correspond by the relation

cl sc(τ[q−1,q]K ) = ctrq(cl sc τ≤1(K )),
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where ctrq
: Hom(H1,H0) → Hom(Hq ,Hq−1) denotes the morphism which maps a local section f of

the source to the one of the target by the formula

ctrq( f ) : ω1 ∧ · · · ∧ωq 7→

q∑
j=1

(−1) j−1 f (ω j )ω1 ∧ · · · ∧ω j−1 ∧ ω j+1 ∧ · · · ∧ωq .

(Compare the formula for ctrq with the explicit formula for ηq in Section 2B.)

Notation. Before proceeding to the proof, we gather some notation concerning Čech cohomology.
We denote by Č(U•, K •) the Čech resolution of a complex K • with respect to a hypercovering U•.
The differential induced by that of K • will still be denoted by d, while the Čech differential on the
component Č(Up, K q),

(−1)q
p+1∑
i=0

(−1)i d∗

i ,

will be denoted by ď . Then the total differential

D = d + ď

is the differential of the total complex Č(U•, K •).
When we compute the obstruction classes, we will use some notation which may not be standard. As

usual, for each integer m ≥ −1, we denote by [m] the set of integers i such that 0 ≤ i ≤ m (empty set
for [−1]). And we denote by di j : [m − 2] → [m] the unique increasing injection omitting i and j , where
0 ≤ i < j ≤ m. For example, for m = 2, we have

d02 = d2 ◦ d0 = d0 ◦ d1 : [0] → [2]

(which maps 0 onto 1), where di : [m − 1] → [m] denotes the unique increasing injection omitting i .
On the other hand, we denote by pri : [0] → [m] (resp. pri j : [1] → [m]) the unique map sending 0 to i

(resp. 0 to i and 1 to j) for 0 ≤ i ≤ m (resp. for 0 ≤ i < j ≤ m).

Proof of Theorem 3.9. In order to prove Theorem 3.9, we first describe the morphism, show that it is well
defined, and then calculate the obstruction class.

Construction of the functor ∧q . We construct ∧
q

: sc τ≤1K → sc τ[q−1,q]K by stackifying a morphism
between the corresponding prestacks: sc′ τ≤1K → sc′ τ[q−1,q]K .

Given an object of sc′(τ≤1K ) over U , that is, a section s :H1
→Z1 of the projection Z1

→H1 over U ,
we define ∧

q(s) as the composite morphism

Hq
≃

∧q(H1)
∧

q (s)
−−−→

∧q(Z1)
prod

−−→ Zq ,

where prod means product; it is clearly a section of Zq
→ Hq over U .
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Let s0 and s1 be two objects of sc′(τ≤1K ) over U and let h be a homotopy from s0 to s1. Then we
need to define a corresponding homotopy ∧

q(h) from ∧
q(s0) to ∧

q(s1). We first define a map

∧
′q(h) : (H1)⊗q

→ K q−1/Bq−1

by letting it send ω1 ⊗ · · · ⊗ωq (where ω j are local sections of H1) to the class of

q∑
j=1

(−1) j−1h(ω j )s0(ω1) ∧ · · · ∧ s0(ω j−1) ∧ s1(ω j+1) ∧ · · · ∧ s1(ωq)

modulo Bq−1.
It is easy to show that it factors through

∧qH1: if, say, ω1 = ω2 = ω, then the alternating sum on the
right reduces to the difference of the first two terms

h(ω)s1(ω) ∧ s1(ω3) ∧ · · · ∧ s1(ωq) − h(ω)s0(ω) ∧ s1(ω3) ∧ · · · ∧ s1(ωq),

which is equal to

h(ω) dh(ω) ∧ s1(ω3) ∧ · · · ∧ s1(ωq),

which is a coboundary since 2 is invertible. Thus we have defined ∧
q(h):

(H1)⊗q

∧
′q (h)

&&����∧q(H1)
∧

q (h)

// K q−1/Bq−1

Then the following calculation shows that ∧
q(h) is really a homotopy:

(∧q(s1) − ∧
q(s0))(ω1 ∧ · · · ∧ωq)

=

q∑
j=1

s0(ω1) ∧ · · · ∧ s0(ω j−1) ∧ {s1(ω j ) − s0(ω j )} ∧ s1(ω j+1) ∧ · · · ∧ s1(ωq)

=

q∑
j=1

s0(ω1) ∧ · · · ∧ s0(ω j−1) ∧ {dh(ω j )} ∧ s1(ω j+1) ∧ · · · ∧ s1(ωq)

=

q∑
j=1

(−1) j−1 dh(ω j ) ∧ s0(ω1) ∧ · · · ∧ s0(ω j−1) ∧ s1(ω j+1) ∧ · · · ∧ s1(ωq)

= d[∧
q(h)(ω1 ∧ · · · ∧ωq)].

Functoriality of ∧q . Now in order to show that the morphism ∧
q is a functor, we must show that it is

compatible with the composition of homotopies; so let h : s0 ⇒ s1 and h′
: s1 ⇒ s2 be two such in the
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source. We first define a second homotopy operator

Hq
2 (h, h′) : (H1)⊗q

→ K q−2, ω1 ⊗ · · · ⊗ωq 7→

∑
1≤ j<k≤q

(−1) j+k+1h(ω j )h′(ωk)s( j, k),

where s( j, k) is equal to

s0(ω1) ∧ · · · ∧ s0(ω j−1) ∧ s1(ω j+1) ∧ · · · ∧ s1(ωk−1) ∧ s2(ωk+1) ∧ · · · ∧ s2(ωq).

To show that ∧
q(h + h′) and ∧

q(h) + ∧
q(h′) are the same homotopies, it suffices to demonstrate the

formula
[∧

q(h + h′) − {∧
q(h) + ∧

q(h′)}](ω1 ∧ · · · ∧ωq) = d Hq
2 (ω1 ⊗ · · · ⊗ωq).

One expands the left-hand side and groups the terms involving h and h′ separately:
q∑

j=1

(−1) j−1
{h(ω j )+h′(ω j )}s0(ω1)∧· · ·∧s0(ω j−1)∧s2(ω j+1)∧· · ·∧s2(ωq)

−

q∑
j=1

(−1) j−1h(ω j )s0(ω1)∧· · ·∧s0(ω j−1)∧s1(ω j+1)∧· · ·∧s1(ωq)

−

q∑
j=1

(−1) j−1h′(ω j )s1(ω1)∧· · ·∧s1(ω j−1)∧s2(ω j+1)∧· · ·∧s2(ωq)

=

q∑
j=1

(−1) j−1h(ω j )s0(ω1)∧· · ·∧s0(ω j−1)∧{s2(ω j+1)∧· · ·∧s2(ωq)−s1(ω j+1)∧· · ·∧s1(ωq)}

+

q∑
k=1

(−1)k−1h′(ωk){s0(ω1)∧· · ·∧s0(ωk−1)−s1(ω1)∧· · ·∧s1(ωk−1)}∧s2(ωk+1)∧· · ·∧s2(ωq).

The differences in the curly brackets are themselves alternating sums, so the last expression is equal to
q∑

j=1

(−1) j−1h(ω j )s0(ω1)∧· · ·∧s0(ω j−1)

∧

{ ∑
k> j

(−1)k−( j+1) dh′(ωk)∧s1(ω j+1)∧· · ·∧s1(ωk−1)∧s2(ωk+1)∧· · ·∧s2(ωq)

}

+

q∑
k=1

(−1)k−1h′(ωk)

{ ∑
j<k

(−1) j−1(−dh(ω j ))∧s0(ω1)∧· · ·∧s0(ω j−1)∧s1(ω j+1)∧· · · s1(ωk−1)

}
∧s2(ωk+1)∧· · ·∧s2(ωq)

=

∑
1≤ j<k≤q

(−1) j+k+1
{h(ω j ) dh′(ωk)+h′(ωk) dh(ω j )}∧s( j, k),

and this is now equal to
d Hq

2 (h, h′)(ω1 ⊗ · · · ⊗ωq). (3-3)

This completes the proof of the fact that ∧
q is a functor.
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Calculation of obstruction classes. Finally, we relate the obstruction elements. Let U• → X be an open
hypercovering such that one has

(1) a section s : H1
→ Z1 of the canonical projection Z1

→ H1 over U0, and

(2) a homotopy h : H1
→ K 0 over U1 satisfying

d∗

1 s − d∗

0 s = dh. (3-4)

Then, by definition, the class of

obs = obs1 = d∗

0 h − d∗

1 h + d∗

2 h ∈ 0(U2, Hom(H1,H0))

in H 2(X, Hom(H1,H0)) is cl sc τ≤1K . On the other hand, by applying ∧
q to s and h, one sees that the

class of

obsq = d∗

0 (∧qh) − d∗

1 (∧qh) + d∗

2 (∧qh) ∈ 0(U2, Hom(Hq ,Hq−1))

in H 2(X, Hom(Hq ,Hq−1)) is cl sc τ[q−1,q]K .
Now let ω1 ∧ · · · ∧ωq be a local section of Hq

≃
∧qH1. Then the evaluation of obsq at ω1 ∧ · · · ∧ωq

is equal to
q∑

j=1

(−1) j+1 d∗

0 h(ω j ) d∗

01s(ω1) ∧ · · · ∧ d∗

01s(ω j−1) ∧ d∗

02s(ω j+1) ∧ · · · ∧ d∗

02s(ωq)

−

q∑
j=1

(−1) j+1 d∗

1 h(ω j ) d∗

01s(ω1) ∧ · · · ∧ d∗

01s(ω j−1) ∧ d∗

12s(ω j+1) ∧ · · · ∧ d∗

12s(ωq)

+

q∑
j=1

(−1) j+1 d∗

2 h(ω j ) d∗

02s(ω1) ∧ · · · ∧ d∗

02s(ω j−1) ∧ d∗

12s(ω j+1) ∧ · · · ∧ d∗

12s(ωq).

One groups the terms around the second sum and gets
q∑

j=1

(−1) j+1(d∗

0 h − d∗

1 h + d∗

2 h)(ω j ) · d∗

01s(ω1) ∧ · · · ∧ d∗

01s(ω j−1) ∧ d∗

12s(ω j+1) ∧ · · · ∧ d∗

12s(ωq)

+

q∑
j=1

(−1) j+1 d∗

0 h(ω j ) d∗

01s(ω1) ∧ · · · ∧ d∗

01s(ω j−1)

∧ {d∗

02s(ω j+1) ∧ · · · ∧ d∗

02s(ωq) − d∗

12s(ω j+1) ∧ · · · ∧ d∗

12s(ωq)}

+

q∑
j=1

(−1) j+1 d∗

2 h(ω j ){d∗

02s(ω1) ∧ · · · ∧ d∗

02s(ω j−1) − d∗

01s(ω1) ∧ · · · ∧ d∗

01s(ω j−1)}

∧ d∗

12s(ω j+1) ∧ · · · ∧ d∗

12s(ωq).

The first alternating sum reduces to the “main” term we want, when taken modulo the coboundaries
(Bq−1). In the last two sums, one first notes that, as h is a homotopy from d∗

0 s to d∗

1 s, it follows that d∗

0 h
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is a homotopy from d∗

0 d∗

0 s to d∗

0 d∗

1 s, that is,

d∗

0 h : d∗

01s ⇒ d∗

02s.

Similarly, d∗

2 h is a homotopy from d∗

02s to d∗

12s. Essentially by repeating the last three equalities leading
up to (3-3), this time with a minus sign, one sees that the last two sums add up to

−d Hq
2 (d∗

0 h, d∗

2 h)(ω1 ⊗ · · · ⊗ωq),

which is a coboundary. Therefore, reducing modulo Bq−1, one gets

ev(obsq , ω1 ∧ · · · ∧ωq) = ev
(
ctrq(obs1), ω1 ∧ · · · ∧ωq

)
.

This means

cl sc τ[q−1,q]K = ctrq cl sc τ≤1K ,

which completes the proof. □

Remark 3.10. The construction of the map between gerbes can also be carried out using the language of
higher topos theory [Lurie 2009]. Let us give a brief outline.

Let p : Y → Z be a map of spaces, or more generally in any ∞-category C. On can then build the
space sc(p) of splittings of p as the homotopy fiber of

p : HomC(Z , Y ) → HomC(Z , Z)

over the identity idZ . Similarly, if p : Y → Z is a map in the derived ∞-category of a ringed topos (X,O),
one obtains a sheaf of spaces sc(p) of splittings of p.

In the special case when Y is a two-term complex K = [K 0 d
−→ K 1

] satisfying the conditions in
Section 3B and Y → Z is the projection K → H1(K )[−1], the sheaf sc(p) is a sheaf of groupoids
(a stack) and can be identified with the gerbe of splittings sc K .

Applying the functor τ≥q−1L0q to the map p : K →H1(K )[−1] one obtains (simply by functoriality)
a morphism of sheaves of spaces

sc(p) → sc(τ≥q−1L0q(p)).

By inspection, the map τ≥q−1L0q(p) is the projection

τ[q−1,q] Kosq(d) → Hq(Kosq(d))[−q] =
∧q H1(K )[−q].

This way one obtains by abstract nonsense a morphism of gerbes sc K → sc(τ[q−1,q] Kosq(d)).
In the case when K is an abstract Koszul complex satisfying the flatness condition (2-1), the morphism

of gerbes sc τ≤1K → sc τ[q−1,q]K obtained this way should agree with the one constructed in Theorem 3.9,
though we did not check it.
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4. Gerbes of splittings of the de Rham complex

Our method of explicating the truncations τ[q−1,q]K for an abstract Koszul complex K in terms of the
truncation τ≤1K requires that 2 be a nonzerodivisor. In this section, we describe these two-term truncations
in the case of the de Rham complex in characteristic p > 0 by calculating the class

cl sc(τ[q−1,q]F∗�
•

X/S).

The calculation uses more information about the de Rham complex than its being an abstract Koszul
complex, namely the nature of the Cartier isomorphism (which we use only for p = 2). As a corollary,
we deduce that τ[q−1,q](F∗�

•

X/S) is decomposable if τ≤1(F∗�
•

X/S) is, and obtain a description of the d2

differentials in the conjugate spectral sequence.

Theorem 4.1. Let S be a scheme of characteristic p > 0 and X/S a smooth separated scheme of finite
type. Then for each integer q, the class

cl sc(τ[q−1,q]F∗�
•

X/S)

is the image of the class

cl sc(τ≤1 F∗�
•

X/S)

under the contraction map (described in Theorem 3.9).

Proof. We put K = F∗�
•

X/S , with F : X → X ′ the relative Frobenius of X/S.
To calculate the class, we take an open hypercovering U• → X ′ such that

(1) over U0, one has a section s : H1
→ Z1 of the projection Z1

→ H1 and a section

σ (q)
: Hq

→ (H1)⊗q

of the canonical projection (H1)⊗q
→ Hq , and

(2) over U1, one has a homotopy h : H1
→ K 0 such that

dh = d∗

1 s − d∗

0 s : H1
→ Z1.

(Let us recall that H1 is locally free over OX ′ , and hence so is Hq
=

∧qH1 for all integers q .) The locally
free kernel of the projection (H1)⊗q

→ Hq being denoted by Iq , the 1-cocycle

d∗

0 σ (q)
− d∗

1 σ (q)
∈ 0(U1, HomOX ′ (H

q , Iq))

represents the obstruction, in H 1(X ′, Hom(Hq , Iq))= Ext1OX ′
(Hq , Iq), to the global existence of a section.
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Let us calculate the class

cl sc τ[q−1,q]K ∈ H 2(X ′, Hom(Hq ,Hq−1))

in characteristic p ≥ 2. For ease of notation, we denote σ (q) simply by σ when no confusion is likely.
To do so, we may choose the composite morphism

Hq σ (q)

−−→ (H1)⊗q s⊗q
−−→ (Z1)⊗q ∧

−→ Zq ,

which we denote by (s∧q) ◦ σ , as the section of the projection Zq
→ Hq over U0.

Then one forms (the negative of) the Čech difference

d∗

1 (s∧q) ◦ d∗

1 σ − d∗

0 (s∧q) ◦ d∗

0 σ = [(d∗

1 s)∧q
− (d∗

0 s)∧q
] ◦ d∗

0 σ − (d∗

1 s)∧q
◦ (d∗

0 σ − d∗

1 σ).

One notes that the second term is zero, since the image of d∗

0 σ − d∗

1 σ is contained in Iq , which in turn is
annihilated by (d∗

1 s)∧q , for the wedge product is strictly graded commutative.
Then one expresses — over U1 — the remaining first term as the differential of something:

((d∗

1 s)∧q
− (d∗

0 s)∧q)(ω1 ⊗ · · · ⊗ωq)

=

q∑
j=1

(d∗

0 s)ω1 ∧ · · · ∧ (d∗

0 s)ω j−1 ∧ (d∗

1 s − d∗

0 s)ω j ∧ (d∗

1 s)ω j+1 ∧ · · · ∧ (d∗

1 s)ωq

= d
q∑

j=1

(−1) j+1h(ω j )(d∗

0 s)ω1 ∧ · · · ∧ (d∗

0 s)ω j−1 ∧ (d∗

1 s)ω j+1 ∧ · · · ∧ (d∗

1 s)ωq .

One defines η = η(q)
= η(ω1 ⊗ · · · ⊗ωq) to be

q∑
j=1

(−1) j+1h(ω j )(d∗

0 s)ω1 ∧ · · · ∧ (d∗

0 s)ω j−1 ∧ (d∗

1 s)ω j+1 ∧ · · · ∧ (d∗

1 s)ωq

in order to have a commutative diagram

Hq
d∗

1 (s∧q )◦d∗

1 σ−d∗

0 (s∧q )◦d∗

0 σ
//

d∗

0 σ ##

Zq

(H1)⊗q η̄
// K q−1/Bq−1

d

99

in which η̄ means the composite of η followed by K q−1
→ K q−1/Bq−1.

With this, we calculate the class of the gerbe by forming the Čech difference over U2:

(d∗

0 − d∗

1 + d∗

2 )(η̄ ◦ d∗

0 σ) = d∗

0 η̄ ◦ d∗

01σ − d∗

1 η̄ ◦ d∗

01σ + d∗

2 η̄ ◦ d∗

02σ

= (d∗

0 − d∗

1 + d∗

2 )η̄ ◦ d∗

01σ − d∗

2 η̄ ◦ (d∗

01σ − d∗

02σ). (4-1)
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Let us put obs1 = (d∗

0 − d∗

1 + d∗

2 )h, which represents the class of sc τ≤1K . Then the first summand in
the second line of (4-1) can be expressed in terms of obs1:

(d∗

0 −d∗

1 +d∗

2 )η̄(ω1 ⊗· · ·⊗ωq)

=

q∑
j=1

(−1) j+1d∗

0 h(ω j ) d∗

01s(ω1)∧· · ·∧d∗

01s(ω j−1)∧d∗

02s(ω j+1)∧· · ·∧d∗

02s(ωq)

−

q∑
j=1

(−1) j+1 d∗

1 h(ω j ) d∗

01s(ω1)∧· · ·∧d∗

01s(ω j−1)∧d∗

12s(ω j+1)∧· · ·∧d∗

12s(ωq)

+

q∑
j=1

(−1) j+1 d∗

2 h(ω j ) d∗

02s(ω1)∧· · ·∧d∗

02s(ω j−1)∧d∗

12s(ω j+1)∧· · ·∧d∗

12s(ωq)

=

q∑
j=1

(−1) j+1 obs1(ω1) d∗

01s(ω1)∧· · ·∧d∗

01s(ω j−1)∧d∗

12s(ω j+1)∧· · ·∧d∗

12s(ωq)

+

q∑
j=1

(−1) j+1 d∗

0 h(ω j ) d∗

01s(ω1)∧· · ·∧d∗

01s(ω j−1)∧
{
(d∗

02s∧(q− j)
−d∗

12s∧(q− j))(ω j+1 ⊗· · ·⊗ωq)
}

+

q∑
j=1

(−1) j+1 d∗

2 h(ω j )
{
(d∗

02s∧( j−1)
−d∗

01s∧( j−1))(ω1 ⊗· · ·⊗ω j−1)
}
∧d∗

12s(ω j+1)∧· · ·∧s(ωq).

Again, as in the three equalities leading up to (3-3), the differences in the curly brackets are themselves
alternating sums, and one sees that the sum of the last two alternating sums is equal to

−d Hq
2 (d∗

0 h, d∗

2 h)(ω1 ⊗ · · · ⊗ωq),

hence is zero modulo Bq−1. On the other hand, the first alternating sum is equal to

ev
(
ctr(obs1), ω1 ∧ · · · ∧ωq

)
.

Now we analyze the second summand in the second line of (4-1). It is the cup product of two
cohomology classes:

η̄|Iq ∈ 0(U1, Hom(Iq ,Hq−1)) representing [η̄|Iq ] ∈ Ext1(Iq ,Hq−1)

and

d∗

0 σ − d∗

1 σ ∈ 0(U1, Hom(Hq , Iq)) representing [σ ] ∈ Ext1(Hq , Iq).

When q is less than p = char(S), [σ ] is zero, for in this case one disposes of a canonical section of

(H1)⊗q
→ Hq ,

namely the antisymmetrization.
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On the other hand, if p is odd, then [η̄|Iq ] is zero, because (even more strongly) η̄ itself kills Iq : for
example, it maps a local section

ω ⊗ ω ⊗ ω3 ⊗ · · · ⊗ωq

of Iq to the element

[h(ω) d∗

1 s(ω) − h(ω) d∗

0 s(ω)] ∧ d∗

1 s(ω3) ∧ · · · ∧ d∗

1 s(ωq) = h(ω) dh(ω) ∧ ω3 ∧ · · · ∧ωq (modBq−1),

which is a coboundary when 2 is invertible
(
d(h(ω)2) = 2h(ω) dh(ω)

)
.

So let us restrict our attention to the case p = 2 and show that the class [η̄|Iq ] is still zero. First, one can
easily check that η̄ : (H1)⊗q

→ K q−1/Bq−1, and a fortiori η̄|Iq : Iq
→ Zq−1/Bq−1

=Hq−1, is symmetric
in the sense that any element of the form

ω1 ⊗ · · · ⊗ω j−1 ⊗ (ω j ⊗ ω j+1 + ω j+1 ⊗ ω j ) ⊗ ω j+2 ⊗ · · · ⊗ωq

(when 1 = −1, adding is subtracting) maps to zero under η̄. Therefore, one has a commutative diagram

Iq // //
� _

��

Iq/Jq η̃
//

� _

��

Hq−1

��

� _

��

(H1)⊗q // // Symq(H1) // K q−1/Bq−1

where the composite of the two horizontal arrows in the first row (resp. in the second row) is equal to η̄|Iq

(resp. η̄), and Jq denotes the (locally free) kernel of the projection (H1)⊗q
→ Symq(H1).

We get a notational advantage by taking the quotient by Jq : now Iq/Jq is generated by the images of
local sections of the form

ω ⊗ ω ⊗ ω3 ⊗ · · · ⊗ωq . (4-2)

Such a local section is mapped under η̃ onto

h(ω) dh(ω) ∧ d∗

0 s(ω3) ∧ · · · ∧ d∗

0 s(ωq) (modBq−1) = [h(ω) dh(ω) (modB1)] ∧ω3 ∧ · · · ∧ωq . (4-3)

We prove that [η̄|Iq ] is zero by finding a 0-cochain z with coefficients in Hom(Iq ,Hq−1), that is, a section
of this sheaf over U0, such that η̄|Iq = d∗

0 z −d∗

1 z. As we know that η̄|Iq factors through η̃ : Iq/Jq
→Hq−1,

it suffices to find z̃ : Iq/Jq
→ Hq−1 such that

η̃ = d∗

1 z̃ − d∗

0 z̃.

But from (4-3) and the fact that C−1W ∗ dh(ω) = [h(ω) dh(ω)], one sees that

η̃(ω ⊗ ω ⊗ ω3 ⊗ · · · ⊗ωq) = (C−1W ∗ dh(ω)) ∧ ω3 ∧ · · · ∧ωq . (4-4)
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We denote here by W the base change of the absolute Frobenius endomorphism of S, so that the diagram

X ′ W
//

��

X

��

S
frobS

// S

is cartesian, by W ∗ the pullback morphism of differential forms

�1
X/S → W∗�

1
X ′/S

and by C−1 the (inverse) Cartier operation

�1
X ′/S → H1(F∗�

•

X/S)

(see [Katz 1970, § 7] and recall p = 2). Thus the last expression is the same as

C−1W ∗(d∗

1 sω) ∧ ω3 ∧ · · · ∧ωq − C−1W ∗(d∗

0 sω) ∧ ω3 ∧ · · · ∧ωq ,

and one is led to define over U0

z̃ : Iq/Jq
→ Hq−1

so that it maps the local section (4-2) modulo Jq to

C−1W ∗(sω) ∧ ω3 ∧ · · · ∧ωq .

As pointed out earlier, local sections of the form (4-2) generate Iq/Jq , so such z̃ is unique if exists at all.
Now its existence can be shown locally: if one has a basis e1, . . . , ed of H1 over OX ′ , then the images of
the sections

{e j1 ⊗ · · · ⊗ e jq : 1 ≤ j1 ≤ · · · ≤ jq ≤ d with at least one repetition}

under Iq
→ Iq/Jq form a local basis of Iq/Jq , and then one can let z̃ map the class of e j1 ⊗ · · · ⊗ e jq to

C−1W ∗(s(ω jk )) ∧ (the rest),

where jk is an index that repeats: if two or more indices repeat, whichever one is chosen, the result is
zero, and if an index repeats itself three or more times, it doesn’t matter which consecutive terms are
chosen, for 1 = −1 and the sign doesn’t matter.

Then one needs to show that any local section of the form (4-2) is mapped as desired under z̃ thus
defined. One expresses the sections ω, ω3, . . . , ωq as linear combinations of the {ei } and one sees that it
boils down to showing the linearity in each variable ω3, . . . , ωq , which is evident, as well as the linearity
“in the variable ω ⊗ ω”, which is less so.
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Let ω = αξ + βθ , where α, β are sections of OX ′ and ξ, θ sections of H1. Then one calculates

C−1W ∗(s(αξ + βθ)) = C−1W ∗(F∗α · s(ξ) + F∗β · s(θ))

= C−1(α2W ∗s(ξ) + β2W ∗s(θ))

= (F∗α)2C−1W ∗s(ξ) + (F∗β)2C−1W ∗s(θ),

where F∗
: OX ′ → F∗OX is the canonical pullback morphism; here one uses the fact that W ◦ F is equal

to the absolute Frobenius of X .
On the other hand, if one expands ω⊗ω as α2ξ ⊗ ξ +β2θ ⊗ θ +αβ(ξ ⊗ θ + θ ⊗ ξ), then the last term

is symmetric (i.e., lies in J2), and hence we get the same result this way.
This can also be explained with the diagram

Z1
⊆ F∗�

1
X/S

F∗(W ∗)
// F∗W∗�

1
X ′/S

F∗W∗C−1
// F∗W∗H

1(K ) = (FX ′)∗H
1(K )

H1(K )

s

OO

over U0, where FX ′ denotes the absolute Frobenius of X ′; it shows that the map

ω 7→ C−1W ∗s(ω)

is 2-linear, while “extracting” ω out of ω ⊗ω would be 2−1-linear; hence these nonlinearities cancel each
other and the map ω ⊗ ω 7→ C−1W ∗s(ω) is linear.

This shows that z̃, hence the 0-cochain z which is obtained by composing z̃ with the projection
Iq

→ Iq/Jq , is well defined and has the desired property. Therefore the class [η̄|Iq ] is zero, and the only
thing that contributes to the class (4-1) is the q-th contraction of obs1. This ends the proof. □

By the construction (Theorem 3.9) and the calculation (Theorem 4.1), we immediately get:

Corollary 4.2. With the notation as in Theorem 4.1, suppose that X ′/S is liftable to S̃. Then for each
integer q , the truncation τ[q−1,q]F∗�

•

X/S of length 2 is decomposable in the derived category D(X ′,OX ′).

Proof. This follows from [Deligne and Illusie 1987, 3.5] (which identifies the obstruction to liftability to
the decomposability of τ≤1 FX/S,∗�

•

X/S) and Theorems 3.9 and 4.1 (which relate the decomposability of
τ[0,1]FX/S,∗�

•

X/S with that of τ[q−1,q]FX/S,∗�
•

X/S). □

In particular, we extend the (special) case of Corollary 3.6 applied to the de Rham complex in
characteristic p > 2, even to the case of p = 2.

Corollary 4.3. Let X be a smooth variety over a perfect field k. Then we have the equality

δ
q
FX/k,∗�

•

X/k
= (id ⊗ δ1

K ) ◦ ηq

in Hom(�
q
X ′/k, �

q−1
X ′/k[2]).
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Finally, we answer the question of Katz:

Corollary 4.4. Let S be a scheme of characteristic p > 0, f : X → S a smooth separated morphism of
finite type, and f ′

: X ′
→ S (resp. F : X → X ′) the base change of f by the Frobenius endomorphism

of S (resp. the relative Frobenius). Suppose S̃ is a flat Z/p2-scheme whose reduction modulo p yields S.
Then the morphism in the conjugate spectral sequence

d i j
2 : Ri f ′

∗
�

j
X ′/S → Ri+2 f ′

∗
�

j−1
X ′/S,

where one identifies H j (F∗�
•

X/S) with �
j
X ′/S via the Cartier isomorphism, can be canonically regarded

as the cup product with the additive inverse of the obstruction class (in H 2(X ′, TX ′/S)) to lifting X ′/S
over S̃.

Proof. We first remark that by [Deligne and Illusie 1987, 3.9] it can be directly seen that the obstruction
class to lifting does not depend on the choice of a flat Z/p2-lifting S̃ of S. Then the corollary follows
from [Deligne and Illusie 1987, 3.5] and Theorems 3.9 and 4.1. □

Appendix: F-split schemes of dimension p + 1

Let k be a perfect field of characteristic p > 0. As mentioned in the introduction, Drinfeld, Bhatt–Lurie,
and Li–Mondal (see [Li and Mondal 2021, Remark 5.7] for context) have obtained the following result.

Theorem A.1 [Drinfeld 2020, § 5.12.1; Bhatt and Lurie 2022, Remark 4.7.18; Li and Mondal 2021,
Corollary 5.5]. Let X be a smooth scheme over a perfect field k of characteristic p > 0. Suppose that X
is liftable to W2(k). Then the truncations

τ[q−p+1,q]FX/k,∗�
•

X/k

are decomposable for all q.

Below, we employ this in order to show Kodaira–Akizuki–Nakano vanishing and Hodge–de Rham
degeneration for F-split smooth projective schemes of dimension at most p + 1.

Recall [Mehta and Ramanathan 1985] that a k-scheme X is F-split if the morphism F∗

X :OX → FX,∗OX

is a split injection. Since k is perfect, this is equivalent to the splitting of F∗

X/k : OX ′ → FX/k,∗OX . It is
well known that every F-split scheme over k admits a flat lifting to W2(k) (see [Illusie 1996, § 8.5] for
the smooth case or [Langer 2015, § 8, Proposition 4] for the general case).

If X is F-split and if L is a line bundle on X , then tensoring the split injection OX → FX,∗OX with L
and taking cohomology shows that for all i , H i (X, L) is a direct summand of H i (X, L ⊗ FX,∗OX ). By
the projection formula and the fact that Frobenius is affine this latter summand equals H i (X, F∗

X L) =

H i (X, L p), and hence the Frobenius pullback maps

F∗

X : H i (X, L) → H i (X, L p)

are injective. Thus, if H i (X, Lm) = 0 for m ≫ 0, then already H i (X, L) = 0. Consequently, if X is
moreover smooth (or just Gorenstein) and projective, then H i (X, L−1) = 0 for i < dim X and L ample,
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that is, Kodaira vanishing holds on X . Similar reasoning with L = OX shows that

F∗

X : H i (X,OX ) → H i (X,OX )

is bijective for all i ≥ 0.

Theorem A.2 (Kodaira–Akizuki–Nakano vanishing). Let X be a smooth projective scheme over k of
dimension d = p + 1. If X is F-split, then Kodaira–Akizuki–Nakano vanishing holds for X , i.e., for every
ample line bundle L , we have

H i (X, L−1
⊗ �

j
X/k) = 0 for i + j < d = p + 1.

Proof. By Serre vanishing, the assertion holds for L pm
for m ≫ 0. Therefore we may assume that it

holds for L p. Following the proof of [Deligne and Illusie 1987, lemme 2.9], we form the complex
K •

= (L ′)−1
⊗ FX/k,∗�

•

X/k , where L ′ is the pullback of L to X ′, and write the two spectral sequences

I E i j
1 = H j (X ′, (L ′)−1

⊗ FX/k,∗�
i
X/k) ⇒ H i+ j (X ′, K •) (A-1)

and

II E i j
2 = H i (X ′, (L ′)−1

⊗ �
j
X ′/k) ⇒ H i+ j (X ′, K •). (A-2)

Now the projection formula gives I E i j
1 = H j (X, L−p

⊗�i
X/k), which vanishes for i+ j ≤ p by assumption.

Consequently the abutment H r (X ′, K •) vanishes for r ≤ p.
We now investigate the second spectral sequence. Since X is F-split, it lifts to W2(k). Theorem A.1

implies that the differentials on II E i j
r are zero for r ≤ p. For dimensional reasons, there are no nonzero

differentials for r > p + 1, and the only two nonzero differentials on II E i j
p+1 are

d0,p
p+1 : H 0(X ′, (L ′)−1

⊗ �
p
X ′/k) → H p+1(X ′, (L ′)−1)

and

d0,p+1
p+1 : H 0(X ′, (L ′)−1

⊗ ωX ′/k) → H p+1(X ′, (L ′)−1
⊗ �1

X ′/k).

We will show that d0,p
p+1 = 0, which will then imply that in (A-2) we have

II E i j
2 = II E i j

p+1 = II E i j
∞

= 0 for i + j ≤ p.

Note that H p(X ′, K •) = 0 implies 0 = II E0,p
p+2 = ker(d0,p

p+1), i.e., d0,p
p+1 is injective.

By Lemma A.3 below applied to E = L−1 and the map FX−/k : X−
→ X , where X−

= (Fk)
−1(X) is

the Frobenius untwist of X , we have a commutative square:

H 0(X ′, (L ′)−1
⊗ �

p
X ′/k)

d0,p
p+1(L)

//

��

H p+1(X ′, (L ′)−1)

F∗

X ′/k
��

0 = H 0(X, L−p
⊗ �

p
X/k)

d0,p
p+1(F∗

X−/k
L−1)

// H p+1(X, L−p)
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(In fact the left vertical map is zero.) Here we use the identification (F∗

X−/k(L−1))′ = F∗

X/k(L ′)−1 = L−p

and the bottom map is deduced similarly for (the pullback to X− of) L p in place of L . The vertical right
map is injective because X is F-split and we have a commutative diagram

H p+1(X, L−1)

F∗

X

**

W ∗

∼
// H p+1(X ′, (L ′)−1)

F∗

X/k

// H p+1(X, L−p)

(W : X ′
→ X being the projection), and the horizontal maps are injective by the previous paragraph. We

conclude that H 0(X ′, (L ′)−1
⊗ �

p
X ′/k) = 0. □

In the proof above, as well as in the proof of Hodge–de Rham degeneration below, we need the
following functoriality result.

Lemma A.3. For a vector bundle E on a smooth k-scheme X , write K •(E) to denote the complex
E ′

⊗ FX/k,∗�
•

X/k . Let f : Y → X be a map of smooth k-schemes. Then f induces a map of complexes
f ∗K •(E) → K •( f ∗E) and hence a map of spectral sequences

II E i j
2 (E) = H i (X ′, E ′

⊗ �
j
X ′/k) ⇒

��

H i+ j (X ′, K •(E))

��

II E i j
2 ( f ∗E) = H i (Y ′, ( f ∗E)′ ⊗ �

j
Y ′/k) ⇒ H i+ j (Y ′, K •( f ∗E))

where the maps H i (X ′, E ′
⊗ �

j
X ′/k) → H i (Y ′, ( f ∗E)′ ⊗ �

j
Y ′/k) are induced by the composition

H i (X ′, E ′
⊗ �

j
X ′/k) → H i (Y ′, ( f ′)∗(E ′) ⊗ ( f ′)∗�

j
X ′/k) → H i (Y ′, ( f ′)∗(E ′) ⊗ �

j
Y ′/k).

Proof. This follows from the commutative diagram below:

Y //

f
��

Y ′ //

f ′

��

Y

f
��

X //

##

X ′

��

// X

��

Spec(k)
Fk

// Spec(k)

Note that ( f ′)∗(E ′) ≃ ( f ∗E)′. □

Theorem A.4 (Hodge–de Rham degeneration). Let X be a smooth projective scheme over k of dimension
d = p + 1. If X is F-split, then the Hodge to de Rham spectral sequence

I E i j
1 = H j (X, �i

X/k) ⇒ H i+ j (X, �•

X/k)

degenerates.
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Proof. Since X is proper, it is enough to show that the conjugate spectral sequence

II E i j
2 = H i (X ′, �

j
X ′/k) ⇒ H i+ j (X, �•

X/k)

degenerates. Since X is F-split, it lifts to W2(k), and then Theorem A.1 implies that the differentials on
the page II E i j

r of the conjugate spectral sequence are zero for r ≤ p.
Since dim X = p + 1, the only possibly nonzero differentials in this spectral sequence are therefore

d0,p
p+1 : H 0(X ′, �

p
X ′/k) → H p+1(X ′,OX ′)

and
d0,p+1

p+1 : H 0(X ′, ωX ′/k) → H p+1(X ′, �1
X ′/k).

We will show that d0,p
p+1 = 0. Indeed, functoriality of the above maps with respect to Frobenius (Lemma A.3

with E = OX and the relative Frobenius FX−/k) gives a commutative square

H 0(X ′, �
p
X ′/k)

F∗

X/k
��

d0,p
p+1

// H p+1(X ′,OX ′)

F∗

X/k
��

H 0(X, �
p
X/k)

d0,p
p+1 for X−

// H p+1(X,OX )

where X−
= (F−1

k )∗X is again the Frobenius untwist of X . Since the Frobenius is zero on �i for i > 0, the
left vertical map is zero. On the other hand, since X is F-split, the right vertical map is an isomorphism.
Therefore the top map d0,p

p+1 is zero.

Finally, we obtain the vanishing of d0,p+1
p+1 by comparing dimensions and duality. Indeed, we have

dim H p+2(X, �•

X/k) = dim H p(X, �•

X/k) (Poincaré duality)

=

∑
i+ j=p

dim H i (X ′, �
j
X ′/k) (since d0,p

p+1 = 0)

=

∑
i+ j=p+2

dim H i (X ′, �
j
X ′/k) (Serre duality),

so d0,p+1
p+1 = 0. □

Remark A.5 (see [Li and Mondal 2021, Corollary 5.6] and [Bhatt and Lurie 2022]). In fact, the results
of Drinfeld, Bhatt–Lurie, and Li–Mondal yield more than we have stated in Theorem A.1. Namely, for X
smooth over k and liftable to W2(k), there exists a decomposition in the derived category

FX/k,∗�
•

X/k ≃

p−1⊕
i=0

Ki

where H j (Ki ) = 0 unless i and j are congruent modulo p. This implies that in the conjugate spectral
sequence, as well as in the second spectral sequence used in the proof of Theorem A.2, nonzero differentials
may appear only on pages Er where r is congruent to one modulo p. We only used this with r ≤ p, and
it would be interesting to obtain new vanishing and degeneration theorems using this stronger fact.
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