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Maximizing Sudler products via
Ostrowski expansions and cotangent sums

Christoph Aistleitner and Bence Borda

There is an extensive literature on the asymptotic order of Sudler’s trigonometric product PN (α) =∏N
n=1|2 sin(πnα)| for fixed or for “typical” values of α. We establish a structural result which for a

given α characterizes those N for which PN (α) attains particularly large values. This characterization
relies on the coefficients of N in its Ostrowski expansion with respect to α, and allows us to obtain very
precise estimates for max1≤N≤M PN (α) and for

∑M
N=1 PN (α)

c in terms of M , for any c> 0. Furthermore,
our arguments give a natural explanation of the fact that the value of the hyperbolic volume of the
complement of the figure-eight knot appears generically in results on the asymptotic order of the Sudler
product and of the Kashaev invariant.

1. Introduction and statement of results

During the last decades many authors have studied the asymptotic order of the so-called Sudler product

PN (α)=

N∏
n=1

|2 sin(πnα)|, (1)

either on average (with respect to α) or for particular values of α. It is known that the order of (1) for a
fixed value of α depends sensitively on the Diophantine approximation properties of α, and in particular
on the continued fraction expansion of α. If α ∈ Q, then clearly the product (1) vanishes for all sufficiently
large N , so for the asymptotic analysis we can restrict ourselves to the case when α is irrational.

Of particular interest is the case when α is a quadratic irrational, which means that the continued
fraction expansion of α is eventually periodic. A remarkable result was recently obtained by Grepstad,
Kaltenböck and Neumüller [Grepstad et al. 2019], who proved that for the golden mean φ =

1
2(1 +

√
5),

0< lim inf
N→∞

PN (φ) <∞,

thereby solving a long-standing problem of Erdős and Szekeres [1959]. In [Aistleitner et al. 2020] this
result was complemented by

0< lim sup
N→∞

PN (φ)

N
<∞,
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so the asymptotic order of PN (φ) is completely understood. Interestingly, there is a transition in
the behavior of quadratic irrationals whose continued fraction expansion is of the particularly simple
form α = [0; ā] as the value of a increases (here and in the sequel, the overline denotes period): it turns
out that lim infN→∞ PN (α) > 0 as long as a ≤ 5, while lim infN→∞ PN (α)= 0 when a ≥ 6. A similar
characterization applies to lim supN→∞ PN (α)/N < ∞. A generalization of such a criterion to more
general quadratic irrationals can be found in [Grepstad et al. 2022].

Lubinsky [1999] proved that for any badly approximable α,

N−c1 ≪α PN (α)≪α N c2

with some c1, c2 ≥ 0, and asked for the smallest possible constants c1 = c1(α) and c2 = c2(α) for
which this holds.1 As noted in [Aistleitner and Borda 2022], for any badly approximable α, we have
that c2(α) = c1(α)+ 1. From what was said above for α = [0; ā], we have c1(α) = 0 and c2(α) = 1
for a ∈ {1, 2, 3, 4, 5}, but in general it seems to be very difficult to calculate the values of these two
constants. In [Aistleitner and Borda 2022] it was shown that for any quadratic irrational α,

c2(α)= c1(α)+ 1 =
1

4π
Vol(41) ·

aavg(α)

log λ(α)
+ O

(
1 + log A(α)

log λ(α)

)
. (2)

Here

Vol(41)= 4π
∫ 5

6

0
log(2 sin(πx)) dx ≈ 2.02988 (3)

is the hyperbolic volume of the complement of the figure-eight knot (more on this below; here and in the
sequel, “41” is the Alexander–Briggs notation for the figure-eight knot), aavg(α)= limk→∞(a1+· · ·+ak)/k
denotes the average of the partial quotients within a period, λ(α) is the (easily computable) number
for which the convergents pk/qk = [a0; a1, a2, . . . , ak] satisfy log qk ∼ (log λ(α))k as k → ∞, and
A(α)= maxk≥1 ak is the maximum of the partial quotients. The key purpose of the present paper is to
obtain a significantly improved version of (2), and to give a structural description of those values of N for
which PN (α) attains particularly large resp. small values. These two aims are very closely related; roughly
speaking, knowing the particular structure of those N which lead to extreme values of PN (α) allows us to
obtain improved estimates on c1(α) and c2(α), since the structural information allows a refined analysis
of the terms that control c1(α) and c2(α). The “structure” of N which is alluded to here is a particular
structure of the coefficients in its Ostrowski representation, which is a numeration system for integers
based on the continued fraction denominators of α. Very roughly speaking, it turns out that PN (α) is
particularly large resp. small if the Ostrowski coefficients of N are all 5

6 resp. 1
6 of their maximal possible

size; this fact will also give a natural explanation for the appearance of the constant Vol(41) in formula (2)
above, as well as in many other related formulas, such as those in [Bettin and Drappeau 2022b].

1Throughout the paper we write xN ≪ yN or xN = O(yN ) when |xN | ≤ CyN with some appropriate constant C > 0. All
implied constants are universal unless the opposite is explicitly indicated by a subscript; e.g., xN ≪α yN and xN = Oα(yN )
mean that the implied constant may depend on α.
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Before presenting our results, we note some connections to other areas of mathematics. Early in-
vestigations of the Sudler product were carried out by Erdős and Szekeres [1959] and Sudler [1964].
Since then such products have appeared in various contexts, including partition functions, KAM theory,
q-series, Padé approximations, and the analytic continuation of Dirichlet series. In particular, pointwise
upper bounds for Sudler products at quadratic irrationals played a crucial role in the counterexample
of Lubinsky [2003] to the Baker–Gammel–Wills conjecture, where they were used to bound the Taylor
series coefficients of the Rogers–Ramanujan function. Pointwise upper bounds for Sudler products also
played a key role in the solution of the “ten martini problem” by Avila and Jitomirskaya [2009]. For a
more detailed exposition of the connection between the Sudler product and other mathematical subjects
we refer the reader to [Aistleitner et al. 2018; Knill and Tangerman 2011; Verschueren and Mestel 2016].
Note that the Sudler product can be written using the q-Pochhammer symbol as

PN (α)= |(q; q)N | = |(1 − q)(1 − q2) · · · (1 − q N )| with q = e2π iα.

Compare this with the definition of the so-called Kashaev invariant of the figure-eight knot, given by

J41,0(q)=

∞∑
N=0

|(q; q)N |
2. (4)

This series is convergent if and only if α is rational (i.e., q is a root of unity). The Kashaev invariant is a
quantum knot invariant arising from the colored Jones polynomial, and the figure-eight knot is the simplest
hyperbolic knot. For more background, we refer the reader to [Bettin and Drappeau 2022b; Murakami
and Murakami 2001; Murakami 2011]. Here we only note that the Kashaev invariant can be written as
a sum of squares of Sudler products; however, by its very nature the Kashaev invariant is only interesting
when α is rational (since otherwise the series diverges), while the asymptotic order of the Sudler product
is only interesting when α is irrational (since otherwise the product vanishes for all sufficiently large
indices). However, it is possible to approximate the value of the Sudler product at an irrational α by the
value at a rational number close to α (such as a continued fraction approximation to α), thereby switching
from Kashaev invariants to Sudler products and vice versa; see [Aistleitner and Borda 2022] for a precise
statement. Generally, this connection suggests studying the asymptotic order of expressions of the form( M∑

N=1

PN (α)
2
)1

2

or, more generally, ( M∑
N=1

PN (α)
c
)1/c

for some c > 0,

which can be seen as describing the average order of PN (α) with respect to N . With this notation the
problem concerning the upper asymptotic order of PN (α) corresponds to the maximum norm, that is, to
the case c = ∞. In connection with a problem posed by Bettin and Drappeau [2022b], we [Aistleitner and
Borda 2022] settled the case when α is a quadratic irrational, showing that in this case for any real c > 0
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and any k ≥ 1,

log
( qk−1∑

N=0

PN (α)
c
)1/c

= Kc(α)k + Oα

(
max

{
1, 1

c

})
, (5)

and

log max
0≤N<qk

PN (α)= K∞(α)k + Oα(1)

with some constants Kc(α), K∞(α) > 0. We repeat that K2(α) in (5) is closely related to the Kashaev
invariant as defined in (4). Note also that the constants in the question of Lubinsky can be expressed as
c2(α)= c1(α)+ 1 = K∞(α)/ log λ(α), where λ(α) > 1 is the same easily computable constant as in (2).
However, in [Aistleitner and Borda 2022] it remained open whether Kc(α) actually depends on c or not.
This is related to the question whether PN (α) is exceptionally large only for a very small number of
indices N causing the sum in (5) to be essentially dominated by a small number of summands which
are of extremal size. In this paper we prove that this is not the case, and that (under certain technical
assumptions) the overall order of the sum

∑qk−1
N=0 PN (α)

c is not caused by a small number of exceptionally
large summands. In particular, Kc(α) does indeed depend on c.

We close this discussion by noting that the Kashaev invariant features prominently in the seminal
paper of Zagier [2010] on quantum modular forms, where it is introduced as being “the most mysterious
and in many ways the most interesting” example. Zagier records certain modularity properties of the
function J41,0, and suggests that the function h(α)= log(J41,0(e

2π iα)/J41,0(e
2π i/α)), relating the value

of the Kashaev invariant at α to its value at 1/α, appears to be continuous at irrationals. This continuity
hypothesis has been driving much of the recent research in this area, but as a whole it is still wide open.
See [Aistleitner and Borda 2022; Bettin and Drappeau 2022a; 2022b].

We now state our main results. For the rest of the paper, we fix an irrational α = [a0; a1, a2, . . . ] with
convergents pk/qk = [a0; a1, . . . , ak].

Theorem 1. Assume that
log ak

ak+1
≤ T for all k ≥ k0 (6)

with some constants k0, T ≥ 1. Let N =
∑K−1

k=0 bkqk be the Ostrowski expansion of a nonnegative integer,
and set

N ∗
=

K−1∑
k=0

b∗

k qk, with b∗

k =
⌊ 5

6ak+1
⌋
. (7)

Then

log PN (α)= log PN∗(α)−

K−1∑
k=0

dk(N )+ OT

( K∑
k=1

1
ak

)
+ Oα(1)

with some dk(N ) satisfying the following for all 0 ≤ k ≤ K − 1:

(i) dk(N )≥ 0.2326(bk − b∗

k )
2/ak+1, with equality if bk = b∗

k .
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(ii) If bk ≤ 0.99ak+1, then

dk(N )= ak+1

∫ b∗

k/ak+1

bk/ak+1

log|2 sin(πx)| dx + OT

(
|bk − b∗

k |

ak+1
+ I{bk≤0.01ak+1} log ak+1

)
. (8)

Remark. In the formula above I{bk≤0.01ak+1} denotes the indicator of bk ≤ 0.01ak+1. Formula (8) gives
the precise asymptotics of dk(N ) in the regime bk − b∗

k ≈ ak+1. Using a first-order Taylor approximation
of log|2 sin(πx)| around x =

5
6 , we immediately deduce from (8) that

dk(N )=
π

√
3

2
·
(bk − b∗

k )
2

ak+1
+ OT

(
|bk − b∗

k |

ak+1
+

|bk − b∗

k |
3

a2
k+1

)
, (9)

yielding the precise asymptotics in the regime bk − b∗

k = o(ak+1).

Theorem 1 asserts that PN (α) is particularly large when N = N ∗, and that an integer N whose Ostrowski
expansion deviates significantly from that of N ∗ will lead to much smaller values of PN (α). The magnitude
of PN (α)/PN∗(α) is quantified in terms of the “distance” between the Ostrowski expansions of N and N ∗.
As simple illustrative examples we mention that Theorem 1 with T = 1 applies to α = [0; ā], and also to
well-approximable irrationals with a1 ≤ a2 ≤ · · · ≤ ak → ∞. Note that we do not claim that the maximum
is attained at precisely N ∗; however, for example, for α = [0; ā] it follows that the Ostrowski coefficients
of the integer at which the maximum max0≤N<qK PN (α) is attained satisfy bk =

5
6a + O(1/ε) for all

but ≤ εK indices 0 ≤ k ≤ K − 1.
The significance of the value 5

6 in our definition of N ∗ in (7) is that it is a solution of the equation
|2 sin(πx)| = 1. From the proofs it will become visible that choosing a value of bk smaller than 5

6ak+1

essentially means missing out on potential factors which exceed 1, while choosing bk larger than 5
6ak+1

essentially leads to extra factors which are smaller than 1; clearly both effects are counterproductive if
our aim is to maximize PN (α). The heuristic reasoning underpinning all the constructions and results in
the present paper will be described in some detail in Section 2.1 below. The value 0.2326 in property (i)
is explained by

1
(5/6)2

∫ 5
6

0
log|2 sin(πx)| dx =

9 Vol(41)

25π
= 0.23260748 . . .

Any constant less than 9 Vol(41)/(25π) would work; the sharpness of this value is easily seen by letting
bk/ak+1 → 0 in (8). The values 0.99 resp. 0.01 in property (ii), on the other hand, are basically accidental;
any constants C < 1 resp. C > 0 would work, with the implied constants depending also on the choice
of C . The reason why we have to stay away from x = 0 and x = 1 is that the function log|2 sin(πx)| has
singularities there.

Condition (6) is related to the behavior of a cotangent sum; see Section 3.2. Probably this condition
could be relaxed in some way, but it seems very difficult to obtain a version of Theorem 1 without any
regularity assumption on the relative size of the partial quotients, since for a number α whose partial
quotients are of very different orders of magnitude the “optimal” Ostrowski coefficients b∗

k should depend
on a1, a2, . . . , ak+1 in a more complicated way than the one suggested by (7); see also Figure 2 below.
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Formulas (8) and (9) allow us to give precise estimates for the number of integers 0 ≤ N < qK for
which PN (α) is particularly large. This is stated in Theorem 2 below. The value 0.01 in the statement of
the theorem could of course again be replaced by any C > 0, with the implied constants depending also
on C > 0.

Theorem 2. Assume that (6) holds and let N ∗ be defined as in (7). Then for any real c ≥ 0.01,

log
( qK −1∑

N=0

PN (α)
c
)1/c

= log PN∗(α)+
1
2c

K∑
k=1

log
2ak
√

3c
+OT

( K∑
k=1

(
log1/2(ak/c + 2)

c1/2a1/2
k

+
log3/2(ak/c + 2)

c3/2a1/2
k

+
1
ak

))
+Oα(1), (10)

and

log max
0≤N<qK

PN (α)= log PN∗(α)+ OT

( K∑
k=1

1
ak

)
+ Oα(1). (11)

Our third result shows that because of the particular structure of N ∗, we can calculate the value
of PN∗(α) up to a very high precision.

Theorem 3. Assume that (6) holds, and let N ∗ be defined as in (7). Then

log PN∗(α)=
1

4π
Vol(41)

K∑
k=1

ak +
1
2

K∑
k=1

log ak + OT

( K∑
k=1

1 + log(akak+1)

ak+1

)
+ Oα(1).

Let us now compare the results obtained here with the previously known best results. Consider first
α= [0; ā]. In [Aistleitner and Borda 2022] we proved that for any 0< c ≤ ∞, the constant Kc(α) defined
in (5) satisfies

Kc(α)=
1

4π
Vol(41)a + O

(
max

{
1, 1

c

}
(1 + log a)

)
,

with the dependence on c hidden in the error term. Taking the asymptotics as K → ∞ in Theorems 2
and 3, we immediately obtain the improvement

Kc(α)=
1

4π
Vol(41)a +

1
2

log a +
1
2c

log 2a
√

3c

+ O
(

log1/2(a/c + 2)
c1/2a1/2 +

log3/2(a/c + 2)
c3/2a1/2 +

1 + log a
a

)
, 0.01 ≤ c ≤ ∞.

Note that the dependence on c is visible in the regime c ≪ (a log log(a + 2))/ log(a + 2); above
this threshold, the term (1/(2c)) log(2a/

√
3c) is negligible compared to the error term (1 + log a)/a,

and Kc(α) becomes indistinguishable from

K∞(α)=
1

4π
Vol(41)a +

1
2

log a + O
(

1 + log a
a

)
.
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As for the question of Lubinsky, the previously known best result (from [Aistleitner and Borda 2022]),
c2(α)= c1(α)+ 1 =

1
4π Vol(41) · (a/ log a)+ O(1), is improved to

c2(α)= c1(α)+ 1 =
1

4π
Vol(41) ·

a
log a

+
1
2

+ O
(1

a

)
, a ≥ 2.

Theorems 2 and 3 give similar improvements for more general badly approximable irrationals whose
partial quotients are roughly of the same order of magnitude; this is measured by the parameter T ≥ 1
in (6).

We also obtain improvements for certain well-approximable irrationals. It is known [Aistleitner and
Borda 2022; Bettin and Drappeau 2022b] that if the average partial quotient (a1 +· · ·+ak)/k diverges to
infinity, then under some mild additional assumptions on α for any real c > 0 we have

log
( qk−1∑

N=0

PN (α)
c
)1/c

∼
1

4π
Vol(41)(a1 + · · · + ak) as k → ∞,

and
log max

0≤N<qk
PN (α)∼

1
4π

Vol(41)(a1 + · · · + ak) as k → ∞.

Theorems 2 and 3 improve these under condition (6) by identifying logarithmic correction terms.
While the main focus of this paper is maximizing the value of Sudler products, we mention that

our results also shed light on minimal values. These two problems are closely related: we observed in
[Aistleitner and Borda 2022] that for an arbitrary irrational α and any 0 ≤ N < qK we have

log PN (α)+ log PqK −N−1(α)= log qK + O
(

1 + log max1≤k≤K ak

aK+1

)
,

and, in particular,

log max
0≤N<qK

PN (α)+ log min
0≤N<qK

PN (α)= log qK + O
(

1 + log max1≤k≤K ak

aK+1

)
.

Therefore PN (α) is particularly small when PqK −N−1(α) is particularly large, and vice versa. More
precisely, by following the steps in the proof of Theorem 3 we deduce that under assumption (6),
N∗ :=

∑K−1
k=0

⌊1
6ak+1

⌋
qk satisfies

log PN∗
(α)= −

1
4π

Vol(41)

K∑
k=1

ak +
1
2

K∑
k=1

log ak + OT

( K∑
k=1

1 + log(akak+1)

ak+1

)
+ Oα(1).

The negative coefficient is explained by
∫ 1

6
0 log(2 sin(πx)) dx = − Vol(41)/(4π); see (3). The previous

two formulas, Theorem 2 and the fact log qK =
∑K

k=1 log ak + O(
∑K

k=1 1/ak) yield

log min
0≤N<qK

PN (α)= log PN∗
(α)+ O

(
1 + log max1≤k≤K ak

aK+1

)
+ OT

( K∑
k=1

1 + log(akak+1)

ak+1

)
+ Oα(1),

a perfect analogue of (11).
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Before coming to the more technical parts, we briefly lay out the further content of this paper. In
Section 2 we introduce a perturbed version of the Sudler product, which allows a decomposition of a full
product PN (α) into subproducts whose number of factors is always a continued fraction denominator
of α, thereby naturally bringing into play the Ostrowski expansion of N . In Section 2.1 we give a detailed
heuristic sketch of how this decomposition leads to Theorems 1, 2 and 3. In particular it will become
clear how the constant 5

6 in the definition of N ∗ and how the constant Vol(41) in the conclusion of the
theorems arise. A key ingredient (in the heuristic as well as in the actual proofs) is the fact that the
shifted products Pqk have a limiting behavior, in an appropriate sense. This has been experimentally
observed in [Aistleitner et al. 2020], and in the present paper we give proofs for this fact, which is stated as
Theorems 4 and 5 in Section 2.2. Section 3 contains approximation formulas for shifted Sudler products
and in particular Proposition 12, which plays a central role in the proofs of the theorems. To obtain our
approximation formula we introduce a certain cotangent sum which controls an important part of the
behavior of the shifted Sudler product. Such cotangent sums have a rich arithmetic structure, and we
make crucial use of a reciprocity formula of Bettin and Conrey [2013]. Sections 4–6 contain the proofs
of Theorems 1–3, respectively, and finally Section 7 contains the proofs of Theorems 4 and 5.

2. Shifted Sudler products

Let

PN (α, x) :=

N∏
n=1

|2 sin(π(nα+ x))|, α, x ∈ R

denote a shifted form of the Sudler product. Given a nonnegative integer with Ostrowski expansion
N =

∑K−1
k=0 bkqk , let us also introduce the notation

εk(N ) := qk

K−1∑
ℓ=k+1

(−1)k+ℓbℓ∥qℓα∥. (12)

It is then easy to see that

PN (α)=

K−1∏
k=0

bk−1∏
b=0

Pqk

(
α, (−1)k(bqk∥qkα∥ + εk(N ))/qk

)
, (13)

which will serve as a fundamental tool in the proof of our results. This product form of PN (α) was
first used by Grepstad, Kaltenböck and Neumüller [Grepstad et al. 2019], and later also in [Aistleitner
et al. 2020; Grepstad et al. 2020; 2022]; for a detailed proof of (13) see [Aistleitner and Borda 2022,
Lemma 2]. As we will see, here −1< bqk∥qkα∥ + εk(N ) < 1, and therefore understanding the behavior
of the function Pqk (α, (−1)k x/qk) on the interval (−1, 1) will play a crucial role.

2.1. The heuristic picture. Before we give the details of how to estimate the components of the product
in (13), we present a heuristic picture of how the factors in this product formula behave, what the
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Figure 1. The function Pqk (α, (−1)k x/qk) for k = 4 and α = [0; ā], with a = 5 (dotted),
a = 15 (dashed) and a = 50 (solid line). The picture remains virtually identical for a
larger choice of k. Note how the functions in the plot approach |2 sin(πx)| (light gray)
as the value of a increases. Details are given in Section 2.2 below.

significance of the Ostrowski coefficients of N is, why the Sudler product is essentially maximized
at numbers N having all the Ostrowski coefficients at 5

6 of their maximal possible size, and how the
hyperbolic volume of the complement of the figure-eight knot as defined in (3) appears. Assume
that 0 ≤ N < qK , so that N has Ostrowski expansion N =

∑K−1
k=0 bkqk . Recall that 0 ≤ bk ≤ ak+1. Very

roughly, we have qk∥qkα∥ ≈ 1/ak+1. It turns out that Pqk (α, (−1)k x/qk)≈ |2 sin(πx)|. This observation
is formalized in a precise form in Proposition 12 below; see also Figure 1 and Theorems 4 and 5. Thus,
ignoring the numbers εk(N ) in (13) for the moment, we have

Pqk

(
α, (−1)k(bqk∥qkα∥ + εk(N ))/qk

)
≈ |2 sin(πb/ak+1)|,

and so, offhandedly discarding the factor corresponding to b = 0, we have

bk−1∏
b=0

Pqk

(
α, (−1)k(bqk∥qkα∥ + εk(N ))/qk

)
≈

bk−1∏
b=1

|2 sin(πb/ak+1)|. (14)

Note that b/ak+1 ∈[0, 1]. We have 2 sin(πx)≥1 for x ∈
[ 1

6 ,
5
6

]
, and 2 sin(πx)≤1 for x ∈

[
0, 1

6

]
∪

[5
6 , 1

]
.

This suggests that in order to maximize the product in (14), we should choose bk ≈
5
6ak+1, since by

doing so we catch as many factors exceeding 1 while avoiding unnecessary factors smaller than 1; in
other words, PN (α) is essentially maximized when N = N ∗. This heuristic also gives us a rough general
approximation for the value of PN (α). Using (13) and assuming that all ak’s are “large”, we roughly have

PN (α)≈

K−1∏
k=0

exp
( bk−1∑

b=1

log(2 sin(πb/ak+1))

)
≈ exp

( K−1∑
k=0

ak+1

∫ bk/ak+1

0
log(2 sin(πx)) dx

)
.
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In particular, for N = N ∗ when bk/ak+1 ≈
5
6 , the hyperbolic volume of the complement of the figure-eight

knot naturally appears, and we have

PN∗(α)≈ exp
( K−1∑

k=0

ak+1

∫ 5
6

0
log(2 sin(πx)) dx

)
= exp

(
1

4π
Vol(41)

K∑
k=1

ak

)
;

recall the definition of Vol(41) in (3). If we want to minimize PN (α) instead, the same reasoning suggests
that we should choose bk ≈

1
6ak+1 to catch as many factors smaller than 1 as possible. While this heuristic

serves as a good basic illustration of the behavior of the Sudler product, the actual situation clearly is
much more delicate; in particular, the function log(2 sin(πx)) has singularities at x = 0 and x = 1, which
carefully have to be taken care of.

Now let us come back to the influence of the numbers εk(N ). As sketched above, the term bqk∥qkα∥

in (14) is of order roughly b/ak+1. By (12) we roughly have |εk(N )| ≤ 1/ak+1, so typically the εk(N )’s
are small in comparison with bqk∥qkα∥. We also see in the definition given in (12) that the number εk(N )
depends on the Ostrowski coefficients bk+1, bk+2, . . . . It turns out that we cannot simply ignore the
influence of the εk(N )’s; quite on the contrary, controlling the influence of these numbers has been a
key ingredient in recent work such as [Aistleitner et al. 2020; Grepstad et al. 2019], and they also play a
crucial role in the present paper. In particular, the influence of the εk(N )’s is crucial for all those factors
in Pqk

(
α, (−1)k(bqk∥qkα∥+ εk(N ))/qk

)
for which b is such that b/ak+1 is either very close to 0 or very

close to 1. The punchline is the following. If a number N has an Ostrowski representation which is
very different from the one of N ∗, then by the coarse argument sketched above we know that PN (α)

is much smaller than PN∗(α). On the other hand, if N has an Ostrowski representation which is very
similar to that of N ∗ (or in particular if N = N ∗), then we know what the values of the εk(N )’s are, since
they depend on the Ostrowski coefficients of N . In other words, once we have established a structural
result which controls the Ostrowski expansion of those N for which PN (α) is large (Theorem 1), we can
obtain a very precise result on the maximal asymptotic order of PN (α) (combining (11) of Theorem 2
and Theorem 3), since control of the Ostrowski coefficients of N allows us to control the numbers εk(N ),
which in turn gives us exact control of the order of PN (α).

There is a further important effect, which is particularly strong when α has some partial quotients
which are very much larger than others. As Lemma 8 and Proposition 12 below will show, a more precise
approximation for Pqk is

Pqk (α, (−1)k x/qk)≈ |2 sin(πx)|e(log ak)/ak+1,

where the exponential factor comes from a cotangent sum; see also Figure 2 and Sections 2.2 and 3.2.
If ak and ak+1 are of similar size, then the factor e(log ak)/ak+1 is negligible. However, if ak is much larger
than ak+1, then this factor plays a significant role.

The heuristic sketched above suggests that in such a case the corresponding Ostrowski coefficients
should be chosen significantly larger than 5

6ak+1, since there is a wider range of values of x for which
Pqk (α, (−1)k x/qk) exceeds 1. However, very remarkably, this line of reasoning turns out to be wrong,
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Figure 2. The function Pq4(α, x/q4) for α=[0; 2, 50] (solid line). Note that this function
is much larger than |2 sin(πx)| (light gray), which reflects the fact that a4 = 50 is much
larger than a3 = 2. In contrast, Pq5(α,−x/q5) (dotted line) is virtually indistinguishable
from |2 sin(πx)|. Note that Pq5(α,−x/q5) crosses the line at height 1 (dashed line)
near x =

5
6 , as the initial heuristics suggested, but Pq4(α, x/q4) crosses this line at a

much larger value of x near x = 0.95, misleadingly suggesting a larger choice of the
corresponding Ostrowski coefficient in order to maximize the Sudler product.

and the Ostrowski coefficient maximizing the Sudler product remains at 5
6ak+1. The reason is that while

a larger choice of bk leads to a larger value of the k-th factor of the Sudler product in (13), a larger
choice of bk also leads to a larger negative value of εk−1, which in turn leads to a smaller value of
the (k−1)-st factor. If we try to choose a larger value of bk for some k for which (log ak)/ak+1 is large,
then, astonishingly, the magnifying effect that this has on the k-th factor in (13) is exactly canceled out by
the corresponding demagnifying effect on the (k−1)-st factor, so that overall it turns out to be better to
stick with bk ≈

5
6ak+1. This is a very surprising effect, which is mentioned as a “remarkable cancellation”

in the proof of Proposition 15(ii). We note in passing that there is a second unexpected cancellation in
this paper, when the additive constant in the conclusion of Theorem 3 turns out to be zero in formula (59).
In both cases, we cannot give a convincing heuristic explanation of why these cancellations occur.

2.2. Limit functions of shifted Sudler products. Aistleitner, Technau and Zafeiropoulos [Aistleitner et al.
2020] proved that for α = [0; ā] the function Pqk (α, (−1)k x/qk) converges pointwise on R as k → ∞,
and gave an explicit formula for the limit function Gα(x) in the form of an infinite product. They also
observed experimentally that as the value of a increases the graph of Gα(x) starts to resemble that
of |2 sin(πx)|. The speed of convergence of Pqk (α, (−1)k x/qk)→ Gα(x) as k → ∞ is very fast, so the
graphs depicted in Figure 1 for k = 4 are practically indistinguishable from those of the corresponding limit
functions Gα(x). In the present paper we develop a general framework to estimate Pqk (α, (−1)k x/qk)

in terms of a cotangent sum; see Proposition 12. This in particular allows us to quantify the deviation
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Figure 3. Left: The function Pqk (α, (−1)k x/qk) for k = 4 and α = [0; 15], which
virtually equals the corresponding limit function Gα(x). Right: We obtain an excellent
approximation from the right-hand side of (15), leaving out the O-term. The difference is
so small that it would be invisible on a full-scale plot as on the left, so we have zoomed
into the small box indicated there to show the deviation between the two functions.
The actual value of Pqk (α, x/qk) is plotted as a solid line, the approximation from (15)
as a dotted line. Obviously we obtain a much better approximation than the crude
Pqk (α, (−1)k x/qk)≈ |2 sin(πx)| of Figure 1.

of Pqk (α, (−1)k x/qk) from |2 sin(πx)|. For the particular case of α = [0; ā], when passing to the limit
functions Gα(x) by letting k → ∞, we obtain

Gα(x)= |2 sin(πx)| ·
∣∣∣∣1 +

C − D
x + 1

∣∣∣∣ · ∣∣∣∣1 +
C
x

∣∣∣∣ · ∣∣∣∣1 +
D

x − 1

∣∣∣∣
× exp

(
C

(
log

a
2π

−
0′(2 + x)
0(2 + x)

)
+ O

(
1 + log a
(2 − |x |)2a2

))
(15)

in the range |x | ≤ 2 − 2/a, where 0 is the gamma function,

C =
1

√
a2 + 4

and D =

√
a2 + 4 − a

2
√

a2 + 4
.

In particular, we roughly have

Gα(x)= |2 sin(πx)|e(log a)/a
+ O

(
1
a

)
= |2 sin(πx)| + O

(
1 + log a

a

)
, |x | ≤ 1.99, (16)

but (15) is of course more precise. Observe that the effect of the factors 1 + (C − D)/(x + 1), 1 + C/x ,
1 + D/(x − 1) is that they shift the zeroes −1, 0, 1 of |2 sin(πx)| by roughly (C − D)∼ 1/a, C ∼ 1/a,
D ∼ 1/a2 to the left, respectively. The admissible range of x in the approximations (15) and (16) could
be extended by the inclusion of more correction factors; however, in the context of Sudler products only
shifts x in the range x ∈ (−1, 1) can occur, so from our perspective there is no reason to aim at a wider
range for x .
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In a recent paper [Grepstad et al. 2022] the remarkable convergence property of Pqk (α, (−1)k x/qk) was
generalized to arbitrary quadratic irrationals α = [a0; a1, . . . , ak0, ak0+1, . . . , ak0+p]; we recall that the
overline denotes period. The only difference is that in general we have p different limit functions Gα,r (x),
1 ≤ r ≤ p, and Pqk (α, (−1)k x/qk) → Gα,r (x) holds pointwise on R as k → ∞ along the arithmetic
progression k ∈ pN + k0 + r . Generalizing (15), the following result states that all these limit functions
are close to |2 sin(πx)| whenever the partial quotients of α are all large, and are roughly of similar order
of magnitude; the latter property is measured by the parameter T .

Theorem 4. Let α = [a0; a1, . . . , ak0, ak0+1, . . . , ak0+p] be a quadratic irrational, and assume that

max
1≤r≤p

(log ak0+r )/ak0+r+1 ≤ T with some constant T ≥ 1.

For any 1 ≤ r ≤ p and any |x | ≤ max{1, 2 − 2/ak0+r+1},

Gα,r (x)= |2 sin(πx)| ·
∣∣∣∣1 +

Cr − Dr

x + 1

∣∣∣∣ · ∣∣∣∣1 +
Cr

x

∣∣∣∣ · ∣∣∣∣1 +
Dr

x − 1

∣∣∣∣
× exp

(
Cr

(
log

ak0+r

2π
−
0′(2 + x)
0(2 + x)

)
+ O

(
T + log(ak0+r−1ak0+r )

(2 − |x |)ak0+r ak0+r+1
+

T
(2 − |x |)2a2

k0+r+1

))
,

where 0 is the gamma function,

Cr = lim
m→∞

qk0+r+mp∥qk0+r+mpα∥ and Dr = lim
m→∞

qk0+r−1+mp∥qk0+r+mpα∥.

Based on these results for quadratic irrationals with large partial quotients, it is not difficult to come up
with the intuition that for a well-approximable irrational the corresponding limit function is precisely
|2 sin(πx)|.

Theorem 5. Assume that supk≥1 ak = ∞. Then

Pqkm
(α, (−1)km x/qkm )→ |2 sin(πx)| as m → ∞

locally uniformly on R for any increasing sequence of positive integers km such that

1 + log max1≤ℓ≤km aℓ
akm+1

→ 0 as m → ∞.

If in addition limk→∞(1 + log ak)/ak+1 = 0, then the same holds along the full sequence km = m.

3. Approximation of shifted Sudler products

The main result of this section is Proposition 12 in Section 3.5 below, which is an approximation formula
for the inner product over 0≤b ≤bk −1 in the decomposition formula (13). As we will see, lower estimates
are much more difficult to prove than upper estimates, especially when the points bqk∥qkα∥+ εk(N ) are
close to 0 or 1, requiring a somewhat tedious case analysis throughout the paper. This is explained by the
fact that log|2 sin(πx)| is bounded above but not below, and has singularities at x = 0 and x = 1.
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3.1. Continued fractions. We start by recalling some basic facts about continued fractions; see [Allouche
and Shallit 2003; Rockett and Szüsz 1992; Schmidt 1980] for background. The convergents satisfy the
recursion qk+1 = ak+1qk + qk−1 with initial conditions q0 = 1, q1 = a1, and pk+1 = ak+1 pk + pk−1 with
initial conditions p0 = a0, p1 = a0a1 + 1. If either k ≥ 1, or k = 0 and a1 > 1, then the following hold:

(i) By the best rational approximation property, ∥nα∥ ≥ ∥qkα∥ for all 1 ≤ n < qk+1.

(ii) The integer closest to qkα is pk , and (−1)k(qkα− pk)= ∥qkα∥.

(iii) 1/(qk∥qkα∥)= [ak+1; ak+2, ak+3, . . . ] + [0; ak, ak−1, . . . , a1].

Note that (iii) follows easily from the well-known algebraic identity

[a0; a1, . . . , ak, x] =
pk x + pk−1

qk x + qk−1

with x = [ak+1; ak+2, ak+3, . . . ], and the fact that qk−1/qk = [0; ak, ak−1, . . . , a1]. In particular, (iii)
implies that 1/(ak+1 + 2)≤ qk∥qkα∥ ≤ 1/ak+1.

The recursion ∥qk+1α∥ = −ak+1∥qkα∥ +∥qk−1α∥ and the identity |α− pk/qk | + |α− pk+1/qk+1| =

1/(qkqk+1), in other words, qk+1∥qkα∥ + qk∥qk+1α∥ = 1, are also classical. Finally, recall the identity

qk+1 pk − qk pk+1 = (−1)k+1, k ≥ 0. (17)

The Ostrowski expansion of a nonnegative integer N is the unique representation N =
∑K−1

k=0 bkqk , where
0 ≤ b0 < a1 and 0 ≤ bk ≤ ak+1 are integers which satisfy the rule that bk−1 = 0 whenever bk = ak+1.

We first prove a useful estimate for εk(N ), as defined in (12). Note that in the product formula (13)
only those indices k appear for which bk ≥ 1; otherwise the inner product is empty, and by convention
equals 1. For all intents and purposes, εk(N ) is thus only defined for those k for which bk ≥ 1.

Lemma 6. Let N =
∑K−1

k=0 bkqk be the Ostrowski expansion of a nonnegative integer. For any k ≥ 0 such
that bk ≥ 1,

−1<−qk∥qkα∥ + qk∥qk+1α∥ ≤ εk(N )≤ qk∥qk+1α∥< 1
2 . (18)

If bk+1 ≤ (1 − δ)ak+2 with some δ > 0, then εk(N ) ≥ −
(
1 −

1
3δ

)
qk∥qkα∥. If condition (6) holds, then

εk(N )≥ −(1 − 1/(eT
+ 2)) for any k ≥ k0 such that bk ≥ 1.

Proof. The estimate (18) was already observed in [Aistleitner and Borda 2022, Lemma 3]. To see the
second claim, assume that bk+1 ≤ (1 − δ)ak+2. Then

εk(N )≥ −qk(bk+1∥qk+1α∥ + bk+3∥qk+3α∥ + · · · )

≥ −qk
(
(1 − δ)ak+2∥qk+1α∥ + ak+4∥qk+3α∥ + · · ·

)
= −qk

(
(1 − δ)(∥qkα∥ −∥qk+2α∥)+ (∥qk+2α∥ −∥qk+4α∥)+ · · ·

)
= −qk

(
(1 − δ)∥qkα∥ + δ∥qk+2α∥

)
.
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It is not difficult to see that ∥qk+2α∥ ≤
2
3∥qkα∥. In particular, we have εk(N )≥ −

(
1 −

1
3δ

)
qk∥qkα∥, as

claimed.
To see the last claim, assume that (6) holds. We then have qk∥qkα∥≤1−1/(eT

+2) for all k ≥k0. Indeed,
this trivially follows from qk∥qkα∥ ≤ 1/ak+1 if ak+1 ≥ 2. If ak+1 = 1, then property (iii) of continued
fractions above gives the more precise bound 1/(qk∥qkα∥)≥1+1/(ak +1). By condition (6), here ak ≤ eT ,
and qk∥qkα∥ ≤ 1−1/(eT

+2) follows. Formula (18) thus gives εk(N )≥ −qk∥qkα∥ ≥ −(1−1/(eT
+2)),

as claimed. □

3.2. A cotangent sum. The cotangent sum

qk−1∑
n=1

n
qk

cot
(
π

npk

qk

)
(19)

will play an important role in our estimates for the shifted Sudler products. This sum is called the
“Vasyunin sum” after the foundational work of Vasyunin [1995]. It is related to the Báez-Duarte–Nyman–
Beurling criterion for the Riemann hypothesis; see in particular [Maier and Rassias 2019]. As we already
observed in [Aistleitner and Borda 2022], a general result of Lubinsky [1999, Theorem 4.1] implies that
for an arbitrary irrational α, ∣∣∣∣qk−1∑

n=1

n
qk

cot
(
π

npk

qk

)∣∣∣∣ ≪ (1 + log max
1≤ℓ≤k

aℓ)qk . (20)

A reciprocity formula of Bettin and Conrey [2013] provides a precise evaluation of (19). In particular,
under assumption (6) we can isolate a main term; this main term is responsible for the exponential
correction factor in Theorem 4. We now give an approximate evaluation of a shifted version of (19).

Lemma 7. Assume (6). For any k ≥ 4 and any x ∈ (−1, 1),

qk−1∑
n=1

n
qk

cot
(
π

npk + (−1)k x
qk

)
=
(−1)kqk

π

(
log

ak

2π
−
0′(1 + x)
0(1 + x)

+ O
(

T + log(ak−1ak)

(1 − |x |)ak

))
+ Oα(1),

where 0 is the gamma function.

Proof. Let

Ck(x)=

qk−1∑
n=1

n
qk

cot
(
π

npk + (−1)k x
qk

)
denote the shifted cotangent sum in the statement of the lemma. We first prove the claim for x = 0, and
then extend it to x ∈ (−1, 1).

It follows from the identity (17) that the multiplicative inverse of (−1)k+1 pk modulo qk is qk−1. We
also have the continued fraction expansion qk−1/qk = [0; ak, ak−1, . . . , a1]. By a reciprocity formula
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of Bettin and Conrey [2013] (see also [Bettin 2015, Proposition 1]), we have

qk−1∑
n=1

n
qk

cot
(
π

npk

qk

)
= (−1)k+1

qk−1∑
n=1

n
qk

cot
(
π

nqk−1

qk

)

= (−1)k+1qk

k∑
ℓ=1

(−1)ℓ

vℓ

(
1
πvℓ

+ψ

(
vℓ−1

vℓ

))
, (21)

where qk−1 is the multiplicative inverse of qk−1 modulo qk , the fractions uℓ/vℓ=[0; ak, ak−1, . . . , ak−ℓ+1]

are the convergents of qk−1/qk (with the convention v0 = 1), and ψ : C\(−∞, 0] → C is an analytic
function with asymptotics

ψ(x)=
log(1/(2πx))+ γ

πx
+ O(log(1/x))

as x → 0 along the positive reals, with γ denoting the Euler–Mascheroni constant. The ℓ= 1 term is

−
1
v1

(
1
πv1

+ψ

(
v0

v1

))
= −

1
ak

(
log(ak/(2π))+ γ

π/ak
+ O(1 + log ak)

)
= −

1
π

(
log

ak

2π
+ γ + O

(
1 + log ak

ak

))
.

The terms 2 ≤ ℓ≤ k − k0 are negligible due to the assumption (log ak)/ak+1 ≤ T :

k−k0∑
ℓ=2

1
vℓ

∣∣∣∣ 1
πvℓ

+ψ

(
vℓ−1

vℓ

)∣∣∣∣ ≪

k−k0∑
ℓ=2

1
vℓ

·
1 + log(vℓ/vℓ−1)

vℓ−1/vℓ

≪

k−k0∑
ℓ=2

1 + log ak−ℓ+1

vℓ−1

≪
1 + log ak−1

ak
+

k−k0∑
ℓ=3

T
vℓ−2

≪
1 + log ak−1

ak
+

T
ak
.

Finally, the terms k − k0 + 1 ≤ ℓ≤ k satisfy

k∑
ℓ=k−k0+1

1
vℓ

∣∣∣∣ 1
πvℓ

+ψ

(
vℓ−1

vℓ

)∣∣∣∣ ≪

k∑
ℓ=k−k0+1

1 + log ak−ℓ+1

vℓ−1
≪α

1
vk

=
1
qk
.

Using the previous three formulas in (21), we get

Ck(0)=
(−1)kqk

π

(
log

ak

2π
+ γ + O

(
T + log(ak−1ak)

ak

))
+ Oα(1). (22)

This proves the claim when x = 0; note that −0′(1)/0(1)= γ .
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Next, let x ∈ (−1, 1), and consider the derivative

C ′

k(x)=

qk−1∑
n=1

(−1)k+1πn

q2
k sin2(π((npk + (−1)k x)/qk)

)=

qk−1∑
n=1

(−1)k+1n
πq2

k ∥(n(−1)k pk + x)/qk∥
2

+ O(1). (23)

In the second step we used the general estimate π/sin2(πy)= 1/(π∥y∥
2)+ O(1). We now isolate a small

number of integers n which give the main contribution in (23). Recall once again that qk−1 pk ≡ (−1)k+1

(mod qk). Let 0< |a| ≤ ak be an integer. Then the solution of the congruence n(−1)k pk ≡ a (mod qk) is
n ≡ −aqk−1 (mod qk); the unique representative of this residue class in 1 ≤ n ≤ qk −1 is n = qk −aqk−1

if 1 ≤ a ≤ ak , and n = −aqk−1 if −ak ≤ a ≤ −1. The contribution of these 2ak integers n in (23) is

(−1)k+1

π

( ak∑
a=1

qk − aqk−1

q2
k ∥a/qk + x/qk∥

2
+

−1∑
a=−ak

−aqk−1

q2
k ∥a/qk + x/qk∥

2

)

=
(−1)k+1

π

( ak∑
a=1

qk

(a + x)2
+

ak∑
a=1

(
aqk−1

(a − x)2
−

aqk−1

(a + x)2

))

=
(−1)k+1qk

π

∞∑
a=1

1
(a + x)2

+ O
(

qk(1 + log ak)

(1 − |x |)2ak

)
.

Note that we used the assumption k ≥ 4 to ensure that (ak +1)/qk ≤
1
2 . Since the contribution of all other

integers n in (23) is

≪

∑
ak<|a|≤

1
2 qk

1
qk(1 − |x |)2∥a/qk∥

2 ≪
qk

(1 − |x |)2ak
,

we get

C ′

k(x)=
(−1)k+1qk

π

∞∑
a=1

1
(a + x)2

+ O
(

qk(1 + log ak)

(1 − |x |)2ak

)
.

By integrating and identifying the resulting infinite series as a special function we get

Ck(x)− Ck(0)=
(−1)k+1qk

π

∞∑
a=1

(
1
a

−
1

a + x

)
+ O

(
qk(1 + log ak)

(1 − |x |)ak

)

=
(−1)k+1qk

π

(
γ +

0′(1 + x)
0(1 + x)

+ O
(

1 + log ak

(1 − |x |)ak

))
,

and the claim for general x ∈ (−1, 1) follows from the special case (22). □

3.3. A modified cotangent sum. We will actually need a slightly modified version of the cotangent sum
in Lemma 7, defined as

Vk(x) :=

qk−1∑
n=1

sin(πn∥qkα∥/qk) cot
(
π

n(−1)k pk + x
qk

)
. (24)
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Lemma 8. (i) For any k ≥ 1, the derivative of Vk(x) on the interval (−1, 1) satisfies

V ′

k(x) < 0 and |V ′

k(x)| ≪
1

(1 − |x |)2ak+1
.

(ii) For any k ≥ 1,

|Vk(0)| ≪
1 + log max1≤ℓ≤k aℓ

ak+1
.

(iii) Assume (6). For any k ≥ 4 and any x ∈ (−1, 1),

Vk(x)
qk∥qkα∥

= log
ak

2π
−
0′(1 + x)
0(1 + x)

+ O
(

T + log(ak−1ak)

(1 − |x |)ak

)
+ Oα

(
1
qk

)
.

In particular,

Vk(x)=
log ak

ak+1
+ O

(
T

(1 − |x |)ak+1

)
+ Oα

(
1

qk+1

)
.

Proof. Let x ∈ (−1, 1). Clearly,

V ′

k(x)=

qk−1∑
n=1

sin(πn∥qkα∥/qk)
−π

qk sin2(π(n(−1)k pk/qk + x/qk)
) < 0.

By the general inequality |sin(πy)| ≥ 2∥y∥ and

∥n(−1)k pk/qk + x/qk∥ ≥ (1 − |x |)∥npk/qk∥,

we also have

|V ′

k(x)| ≪

qk−1∑
n=1

∥qkα∥

qk(1 − |x |)2∥npk/qk∥
2 ≪

qk∥qkα∥

(1 − |x |)2
≪

1
(1 − |x |)2ak+1

.

In the second step we used the fact that as n runs in the interval 1 ≤ n ≤ qk − 1, the integers npk attain
each nonzero residue class modulo qk exactly once. This finishes the proof of (i).

Next, note that the general estimate sin y = y+O(|y|
3) implies the error of replacing sin(πn∥qkα∥/qk)

by πn∥qkα∥/qk in the definition of Vk(x) is

≪

qk−1∑
n=1

n3
∥qkα∥

3

q3
k

∣∣∣∣cot
(
π

n(−1)k pk + x
qk

)∣∣∣∣ ≪

qk−1∑
n=1

∥qkα∥
3

(1 − |x |)∥npk/qk∥
≪

∥qkα∥
3qk log qk

1 − |x |
,

and hence

Vk(x)= π∥qkα∥

qk−1∑
n=1

n
qk

cot
(
π

n(−1)k pk + x
qk

)
+ O

(
∥qkα∥

3qk log qk

1 − |x |

)
.

Claims (ii) and (iii) thus follow from (20) and Lemma 7, respectively. □
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3.4. The reflection and transfer principles. In our previous paper [Aistleitner and Borda 2022] we
showed the useful identity

PN (p/q) · Pq−N−1(p/q)= q

for any reduced fraction p/q and any integer 0 ≤ N < q . We also proved that

|log PN (pk/qk)− log PN (α)| ≪
1 + log max1≤ℓ≤k aℓ

ak+1

for an arbitrary irrational α and all 0 ≤ N < qk . We called these results the reflection and transfer
principles, respectively; the latter terminology comes from the fact that it helps transfer results between
rational and irrational settings. In this section we establish similar principles for shifted Sudler products.

Proposition 9. Let p/q be a reduced fraction. For any 0 ≤ N < q and any x ∈ R,

PN (p/q, x) · Pq−N−1(p/q,−x)=

{
|sin(πqx)|/|sin(πx)| if x ̸∈ Z,

q if x ∈ Z.
(25)

In particular, for any x ∈ R,

Pq−1(p/q, x)=

{
|sin(πqx)|/|sin(πx)| if x ̸∈ Z,

q if x ∈ Z.
(26)

Proof. For a given x ∈ R consider the factorization

tq
− e2π iqx

= (t − e2π i x)

q−1∏
j=1

(t − e2π i( j/q+x)).

Dividing both sides by (t − e2π i x) and letting t → 1, we get
q−1∏
j=1

(1 − e2π i( j/q+x))=

{
(1 − e2π iqx)/(1 − e2π i x) if x ̸∈ Z,

q if x ∈ Z.

Therefore

Pq−1(p/q, x)=

q−1∏
n=1

|1 − e2π i(np/q+x)
| =

q−1∏
j=1

|1 − e2π i( j/q+x)
| =

{
|sin(πqx)|/|sin(πx)| if x ̸∈ Z,

q if x ∈ Z,

as claimed in (26). Next, let 0 ≤ N < q. By the definition of shifted Sudler products and the previous
formula,

PN (p/q, x) ·
q−1∏

n=N+1

|2 sin(π(np/q + x))| = Pq−1(p/q, x)=

{
|sin(πqx)|/|sin(πx)| if x ̸∈ Z,

q if x ∈ Z.

A simple reindexing shows that here
q−1∏

n=N+1

|2 sin(π(np/q + x))| =

q−N−1∏
j=1

∣∣2 sin
(
π((q − j)p/q + x)

)∣∣ = Pq−N−1(p/q,−x),

which proves (25). □
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Corollary 10. Let k ≥ 1 and 0 ≤ M < qk be integers, and define

Bk,M(x) := log
PM(α, (−1)k x/qk)

PM(pk/qk, (−1)k x/qk)
−

M∑
n=1

sin(πn∥qkα∥/qk) cot
(
π

n(−1)k pk + x
qk

)
. (27)

Then

log Pqk (α, (−1)k x/qk)= log
(

|2 sin(π(∥qkα∥ + x/qk))|
|sin(πx)|

|sin(πx/qk)|

)
+ Vk(x)+ Bk,qk−1(x),

with the convention |sin(πx)|/|sin(πx/qk)| = qk when x/qk ∈ Z.

Proof. By the definitions (27) of Bk,M(x) and (24) of Vk(x),

log Pqk−1(α, (−1)k x/qk)= log Pqk−1(pk/qk, (−1)k x/qk)+ Vk(x)+ Bk,qk−1(x). (28)

Using the identity (26), here

log Pqk−1(pk/qk, (−1)k x/qk)= log
|sin(πx)|

|sin(πx/qk)|
.

Adding log
∣∣2 sin

(
π(qkα+ (−1)k x/qk)

)∣∣ = log|2 sin(π(∥qkα∥ + x/qk))| to both sides of (28), the claim
follows. □

In the claim of Corollary 10 we consider Vk(x) to be a first-order correction term, and Bk,qk−1(x) to
be an error term. The following proposition gives estimates for Bk,M(x); we call it the transfer principle
for shifted Sudler products. In fact, in the present paper we will only use it with M = qk − 1.

Proposition 11. (i) Let k ≥ 1 and 0 ≤ M < qk be integers, and assume that qk∥qkα∥ ≤ 1 − ck and
−1< x ≤ 1 − qk∥qkα∥/(1 − ck) for some ck such that 10/q2

k ≤ ck < 1. Then

−C
log(4/ck)

(1 − |x |)2a2
k+1

≤ Bk,M(x)≤ C
1

a2
k+1qk

with a universal constant C > 0.

(ii) Let N =
∑K−1

k=0 bkqk be the Ostrowski expansion of a nonnegative integer. For any 1 ≤ k ≤ K − 1,
any 0 ≤ M < qk and any 0 ≤ b ≤ bk − 1, we have

Bk,M(bqk∥qkα∥ + εk(N ))≤ C
1

a2
k+1qk

with a universal constant C > 0.

Proof of Proposition 11 (i). Using trigonometric identities we can write

PM(α, (−1)k x/qk)

PM(pk/qk, (−1)k x/qk)
=

∣∣∣∣ M∏
n=1

sin
(
π(nα+ (−1)k x/qk)

)
sin

(
π(npk/qk + (−1)k x/qk)

) ∣∣∣∣ =

∣∣∣∣ M∏
n=1

(1 + xn + yn)

∣∣∣∣, (29)

where
xn := cos(πn(α− pk/qk))− 1 = cos(πn∥qkα∥/qk)− 1
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and
yn := sin(πn(α− pk/qk)) cot

(
π(npk/qk + (−1)k x/qk)

)
= sin(πn∥qkα∥/qk) cot

(
π(n(−1)k pk/qk + x/qk)

)
.

Assume first that 0 ≤ x ≤ 1 − qk∥qkα∥/(1 − ck). From the Taylor expansions of sine and cosine, and the
estimate

∥n(−1)k pk/qk + x/qk∥ ≥ (1 − x)∥npk/qk∥ ≥ (1 − x)/qk, (30)

we get that for any 0< n < qk ,

|xn| ≤
π2n2

∥qkα∥
2

2q2
k

≤
1
2

ck (31)

and

|yn| ≤
sin(πn∥qkα∥/qk)∣∣sin

(
π(n(−1)k pk/qk + x/qk)

)∣∣ ≤
π∥qkα∥

π(1 − x)/qk −π3(1 − x)3/(6q3
k )

≤
qk∥qkα∥

1 − x
·

1
1 −π2/(6q2

k )

≤ (1 − ck)
1

1 −π2/(6q2
k )

≤ 1 −
3
4

ck .

The point is that each factor in (29) is bounded away from zero, as 1 + xn + yn ≥
1
4 ck ; in particular, the

absolute values in (29) can be removed. Since yn is a decreasing function of x ∈ (−1, 1), the same holds
if −1< x < 0.

Observe that for any t ≥ −1 +
1
4 ck ,

et−2t2 log(4/ck) ≤ 1 + t ≤ et .

Indeed, one readily verifies that the function e−t+2t2 log(4/ck)(1 + t) attains its minimum on the interval[
−1 +

1
4 ck,∞

)
at t = 0. Applying this estimate with t = xn + yn in each factor of (29), we obtain

exp
( M∑

n=1

(xn + yn)− 2
M∑

n=1

(xn + yn)
2 log(4/ck)

)
≤

PM(α, (−1)k x/qk)

PM(pk/qk, (−1)k x/qk)

≤ exp
( M∑

n=1

(xn + yn)

)
. (32)

By (31), we have
M∑

n=1

|xn| ≪

M∑
n=1

1
a2

k+1q2
k

≪
1

a2
k+1qk

and
M∑

n=1

x2
n log(4/ck)≪

M∑
n=1

log(4/ck)

a4
k+1q4

k
≪

log(4/ck)

a4
k+1q3

k

.

From (30) we get

|yn| ≤
sin(πn∥qkα∥/qk)∣∣sin

(
π(n(−1)k pk/qk + x/qk)

)∣∣ ≪
∥qkα∥

(1 − |x |)∥npk/qk∥
,
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and hence
M∑

n=1

y2
n log(4/ck)≪

M∑
n=1

∥qkα∥
2 log(4/ck)

(1 − |x |)2∥npk/qk∥
2 ≪

log(4/ck)

(1 − |x |)2a2
k+1

.

The estimate (32) thus simplifies as

−C
log(4/ck)

(1 − |x |)2a2
k+1

≤ log
PM(α, (−1)k x/qk)

PM(pk/qk, (−1)k x/qk)
−

M∑
n=1

yn ≤ C
1

a2
k+1qk

with some universal constant C > 0, which proves the claim. □

Proof of Proposition 11 (ii). We argue as in the previous proof. First, we claim that in (29) the absolute
values can be removed at the point x = bqk∥qkα∥ + εk(N ). To see this, note that

nα+ (−1)k x/qk = (−1)k
(
(n + bqk)∥qkα∥ + εk(N )

)
/qk + npk/qk .

By Lemma 6, here

(n + bqk)∥qkα∥ + εk(N )≤ (b + 1)qk∥qkα∥ + qk∥qk+1α∥< qk+1∥qkα∥ + qk∥qk+1α∥ = 1,

and also

(n + bqk)∥qkα∥ + εk(N )≥ εk(N ) >−1.

Consequently, |nα + (−1)k x/qk − npk/qk | < 1/qk . We clearly also have |x | < 1, and therefore the
points nα+ (−1)k x/qk and npk/qk + (−1)k x/qk both lie in the open interval centered at npk/qk ̸∈ Z of
radius 1/qk . Since the function sin(πy) does not have a zero in this interval, we have

sin(π(nα+ (−1)k x/qk))

sin(π(npk/qk + (−1)k x/qk))
> 0.

Hence (29) indeed holds without the absolute values; that is,

PM(α, (−1)k x/qk)

PM(pk/qk, (−1)k x/qk)
=

M∏
n=1

sin(π(nα+ (−1)k x/qk))

sin(π(npk/qk + (−1)k x/qk))
=

M∏
n=1

(1 + xn + yn)

with xn , yn as in the previous proof. The upper bound

PM(α, (−1)k x/qk)

PM(pk/qk, (−1)k x/qk)
exp

(
−

M∑
n=1

yn

)
≤ exp

( M∑
n=1

xn

)
≤ exp

(
C

1
a2

k+1qk

)
immediately follows, as claimed. □

3.5. Key estimate for shifted Sudler products. We emphasize that in the following proposition we do
not assume condition (6), so it could serve as a starting point for various generalizations of the results in
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this paper. In the proofs of our theorems, condition (6) will ensure that in the claim of the proposition the
contribution of the cotangent sum (the sum expressed in terms of Vk(x)) is negligible compared to the
sum which is expressed in terms of log|2 sin(πx)|.

Proposition 12. Let N =
∑K−1

k=0 bkqk be the Ostrowski expansion of a nonnegative integer. For any k ≥ 1
such that bk ≥ 1,

bk−1∑
b=0

log Pqk

(
α, (−1)k(bqk∥qkα∥ + εk(N ))/qk

)
=

bk−1∑
b=1

log
∣∣2 sin

(
π(bqk∥qkα∥ + εk(N ))

)∣∣ + bk−1∑
b=0

Vk(bqk∥qkα∥ + εk(N ))

+ log
(
2π(bkqk∥qkα∥ + εk(N ))

)
+ Ek(N ),

where Ek(N ) ≤ C/(ak+1qk) with a universal constant C > 0. If in addition k ≥ 20 log(20/δ), bk ≤

(1− δ)ak+1 and qk∥qkα∥ ≤ 1− δ with some δ > 0, then Ek(N )≥ −C(log(2/δ)/δ2)(1/ak+1 +1/q2
k ) with

a universal constant C > 0.

Proof. For the sake of readability, put f (x) = |2 sin(πx)| and εk = εk(N ). Applying Corollary 10 at
x = bqk∥qkα∥ + εk and summing over 0 ≤ b ≤ bk − 1, we get

bk−1∑
b=0

log Pqk

(
α, (−1)k(bqk∥qkα∥ + εk)/qk

)
=

bk−1∑
b=0

log
(

f ((b + 1)∥qkα∥ + εk/qk)
f (bqk∥qkα∥ + εk)

f (b∥qkα∥ + εk/qk)

)
+

bk−1∑
b=0

Vk(bqk∥qkα∥ + εk)

+

bk−1∑
b=0

Bk,qk−1(bqk∥qkα∥ + εk).

Observe that the first sum on the right-hand side has a telescoping part. Peeling off the b=0 term, we obtain

bk−1∑
b=0

log Pqk

(
α, (−1)k(bqk∥qkα∥ + εk)/qk

)
=

bk−1∑
b=1

log f (bqk∥qkα∥ + εk)+

bk−1∑
b=0

Vk(bqk∥qkα∥ + εk)+ log
(

f (bk∥qkα∥ + εk/qk)
f (εk)

f (εk/qk)

)

+

bk−1∑
b=0

Bk,qk−1(bqk∥qkα∥ + εk),

with the convention that f (εk)/ f (εk/qk)= qk if εk = 0. It remains to estimate the error term

Ek(N ) := log
(

f (bk∥qkα∥ + εk/qk)

2π(bkqk∥qkα∥ + εk)
·

f (εk)

f (εk/qk)

)
+

bk−1∑
b=0

Bk,qk−1(bqk∥qkα∥ + εk).
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First, we prove the upper bound for Ek(N ). Using Bk,qk−1(bqk∥qkα∥ + εk) ≤ C/(a2
k+1qk) from

Proposition 11(ii) and elementary estimates for the sine function,

Ek(N )≤ log
(

f (bk∥qkα∥ + εk/qk)

2π(bkqk∥qkα∥ + εk)
· qk

)
+

bk−1∑
b=0

C
a2

k+1qk
≤

C
ak+1qk

,

as claimed.
Next, assume, in addition, that k ≥ 20 log(20/δ), bk ≤ (1− δ)ak+1 and qk∥qkα∥ ≤ 1− δ. By Lemma 6,

for any 0 ≤ b ≤ bk − 1, the point x = bqk∥qkα∥ + εk satisfies

x ≤ ((1 − δ)ak+1 − 1)qk∥qkα∥ + qk∥qk+1α∥

= ((1 − δ)ak+1 − 1)qk∥qkα∥ + 1 − qk+1∥qkα∥

≤ 1 − (1 + δ)qk∥qkα∥,

and also

x ≥ εk ≥ −qk∥qkα∥ ≥ −(1 − δ).

Hence we can apply Proposition 11(i) with ck = δ/(1 + δ). Note that the assumption k ≥ 20 log(20/δ)
ensures that ck ≥ 10/q2

k . Since we also have |x | ≤ 1 − δ, we obtain

bk−1∑
b=0

Bk,qk−1(bqk∥qkα∥ + εk)≥

bk−1∑
b=0

(
−

C log(4/ck)

δ2a2
k+1

)
≥ −

C log(2/δ)
δ2ak+1

.

Finally, using the general estimate sin y = y(1 + O(y2)) we get

f (bk∥qkα∥ + εk/qk)= 2π(bk∥qkα∥ + εk/qk)(1 + O(1/q2
k ))

and
f (εk)

f (εk/qk)
= qk(1 + O(ε2

k ))= qk(1 + O(1/a2
k+1)).

Therefore

log
(

f (bk∥qkα∥ + εk/qk)

2π(bkqk∥qkα∥ + εk)
·

f (εk)

f (εk/qk)

)
= log(1 + O(1/a2

k+1 + 1/q2
k ))= O(1/a2

k+1 + 1/q2
k ).

Altogether we get Ek(N )≥ −C(log(2/δ)/δ2)(1/ak+1 + 1/q2
k ), as claimed. □

4. Proof of Theorem 1

Throughout this section we assume that (6) holds with some k0, T ≥ 1. Let δT > 0 be a small enough con-
stant depending only on T ; for the convenience of the reader we mention that δT = min

{
1/(4πe2T ), 1

100

}
is a suitable choice. We may assume that k0 ≥ 20 log(20/δT ). Let us now introduce a sequence which
will play a key role in the proof of Theorem 1.
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Definition. Let N be a nonnegative integer with Ostrowski expansion N =
∑K−1

k=0 bkqk . For any k0 ≤

k ≤ K − 1, let uk(N )= 1 if bk = 0, and let

uk(N )=

( bk−1∏
b=1

∣∣2 sin
(
π(bqk∥qkα∥ + εk(N ))

)∣∣) exp
( bk−1∑

b=0

Vk(bqk∥qkα∥ + εk(N ))
)

× 2π(bkqk∥qkα∥ + εk(N ))

if bk ≥ 1. Finally, let UN =
∏K−1

k=k0
uk(N ).

Summarizing the results of the previous section, we can rephrase Proposition 12 in terms of UN .

Proposition 13. For any nonnegative integer with Ostrowski expansion N =
∑K−1

k=0 bkqk , we have

log PN (α)= log UN −

K−1∑
k=k0

Fk(N )+ OT

( K∑
k=1

1
ak

)
+ Oα(1)

with some Fk(N ) satisfying Fk(N ) ≥ 0 for all k0 ≤ k ≤ K − 1, and Fk(N ) = 0 for all k0 ≤ k ≤ K − 1
such that bk ≤ (1 − δT )ak+1.

We have thus reduced the problem of estimating PN (α) to UN , and the rest of the section is devoted
to studying the latter sequence. Our main strategy will be to start with an arbitrary nonnegative integer
N =

∑K−1
k=0 bkqk , and to change its Ostrowski coefficients one by one; we call such a transformation

a projection. After finitely many projections we will transform all Ostrowski coefficients bk with
k0 ≤ k ≤ K − 1 to b∗

k =
⌊5

6ak+1
⌋
. Keeping track of the effect of each projection, we will be able to

compare UN to UN∗ .

Proof of Proposition 13. Let Ek(N ) be as in Proposition 12 if bk ≥ 1, and Ek(N )= 0 if bk = 0. By the
definition earlier in this section, for any k0 ≤ k ≤ K − 1 we have

bk−1∏
b=0

Pqk

(
α, (−1)k(bqk∥qkα∥ + εk(N ))/qk

)
= uk(N )eEk(N ),

and hence from the factorization (13) we get

PN (α)=

( k0−1∏
k=0

bk−1∏
b=0

Pqk

(
α, (−1)k(bqk∥qkα∥ + εk(N ))/qk

))
UN

K−1∏
k=k0

eEk(N ). (33)

We start by finding upper and lower bounds for the first factor independent of N . For an upper bound,
simply use Pqk (α, x)≤ 2qk to get

k0−1∏
k=0

bk−1∏
b=0

Pqk

(
α, (−1)k(bqk∥qkα∥ + εk(N ))/qk

)
≤ 2q1+···+qk0 ≪α 1.
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To see a lower bound, let 0 ≤ k ≤ k0 − 1 and 0 ≤ b ≤ bk − 1. Then

Pqk

(
α, (−1)k(bqk∥qkα∥ + εk(N ))/qk

)
=

qk∏
n=1

∣∣2 sin
(
π((n + bqk)α+ (−1)kεk(N )/qk)

)∣∣.
Here (n + bqk) ≤ qk + (ak+1 − 1)qk < qk+1, and thus by the best rational approximation property and
Lemma 6,

∥(n + bqk)α+ (−1)kεk(N )/qk∥ ≥ ∥(n + bqk)α∥ − |εk(N )|/qk ≥ ∥qkα∥ −∥qk+1α∥.

It follows that ∥(n + bqk)α+ (−1)kεk(N )/qk∥ ≫α 1, and hence

Pqk

(
α, (−1)k(bqk∥qkα∥ + εk(N ))/qk

)
≫α 1.

The first factor in (33) is thus both ≪α 1 and ≫α 1, so

log PN (α)= log UN +

K−1∑
k=k0

Ek(N )+ Oα(1).

By Proposition 12, here Ek(N )≤ C/(ak+1qk) for all k0 ≤ k ≤ K −1, and Ek(N )≥ −C(log(2/δT )/δ
2
T )×

(1/ak+1 + 1/q2
k ) for all k0 ≤ k ≤ K − 1 such that bk ≤ (1 − δT )ak+1 with a universal constant C > 0. Let

Fk(N )= max{−Ek(N ), 0} if bk > (1 − δT )ak+1, and Fk(N )= 0 otherwise. Then

Fk(N )= −Ek(N )+ OT

(
1

ak+1
+

1
q2

k

)
for all k0 ≤ k ≤ K − 1, and the claim follows. □

4.1. Key estimate for projections. We now introduce the main technical tool in the proof of Theorem 1,
and establish its key property.

Definition. Let N =
∑K−1

k=0 bkqk be the Ostrowski expansion of a nonnegative integer, and let k0 ≤ m ≤

K − 1 and 0 ≤ B ≤ (1 − δT )am+1 be integers. The projection of N with respect to the index m and the
integer B is projm,B(N ) := N ′

=
∑K−1

k=0 b′

kqk , where b′

k = bk for all k ̸= m, and b′
m = B.

Proposition 14. Let N =
∑K−1

k=0 bkqk be the Ostrowski expansion of a nonnegative integer, and let
k0 ≤ m ≤ K −1 and 0 ≤ B ≤ (1−δT )am+1 be integers. Assume that bk ≤ (1−δT )ak+1 for all k0 ≤ k <m.
If m > k0, then projm,B(N )= N ′ satisfies

log UN ′ − log UN ≥ log um(N ′)− log um(N )− (log(bm−1 + 1))
b′

m − bm

am+1
− OT

(
|b′

m − bm |

am+1

)
. (34)

If m > k0 and bm ≤ (1 − δT )am+1, then (34) holds with equality. If m = k0, then (34) with the term
−(log(bm−1 + 1))(b′

m − bm)/(am−1) removed holds with equality.

Proof. For the sake of readability, let f (x)= |2 sin(πx)|. By definition (12), we have

εk(N ′)− εk(N )= (−1)k+m(b′

m − bm)qk∥qmα∥ for all k0 ≤ k < m, (35)
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and εk(N ′) = εk(N ) for all m ≤ k ≤ K − 1. Recalling the definition on page 691, it follows that
uk(N ′)= uk(N ) for all m < k ≤ K − 1, and hence

log UN ′ − log UN = log um(N ′)− log um(N )+
m−1∑
k=k0

(log uk(N ′)− log uk(N )). (36)

Let k0 ≤ k ≤ m − 1, and consider the corresponding term in the sum on the right-hand side of (36).
If b′

k = bk = 0, then log uk(N ′)= log uk(N )= 0. Otherwise,

log uk(N ′)− log uk(N )=

bk−1∑
b=1

log
f (bqk∥qkα∥ + εk(N ′))

f (bqk∥qkα∥ + εk(N ))

+

bk−1∑
b=0

(
Vk(bqk∥qkα∥ + εk(N ′))− Vk(bqk∥qkα∥ + εk(N ))

)
+ log

bkqk∥qkα∥ + εk(N ′)

bkqk∥qkα∥ + εk(N )
. (37)

To estimate the second term in (37), note that by Lemma 6 we have

bqk∥qkα∥ + εk(N )≥ −(1 − δT ),

and that by the assumption bk ≤ (1 − δT )ak+1,

bqk∥qkα∥ + εk(N )≤ bkqk∥qkα∥ ≤ 1 − δT .

Lemma 8(i) implies that |V ′

k(x)| ≪T 1/ak+1 on the interval [−(1 − δT ), 1 − δT ], and therefore∣∣∣∣ bk−1∑
b=0

(
Vk(bqk∥qkα∥ + εk(N ′))− Vk(bqk∥qkα∥ + εk(N ))

)∣∣∣∣ ≪T |εk(N ′)− εk(N )|.

Using (35),

m−1∑
k=k0

|εk(N ′)− εk(N )| ≤ |b′

m − bm | · ∥qmα∥

m−1∑
k=k0

qk ≪ |b′

m − bm | · ∥qmα∥qm−1 ≤
|b′

m − bm |

am+1
,

consequently from (36) and (37) we get

log UN ′ − log UN = log um(N ′)− log um(N )

+

m−1∑
k=k0,
bk≥1

( bk−1∑
b=1

log
f (bqk∥qkα∥ + εk(N ′))

f (bqk∥qkα∥ + εk(N ))
+ log

bkqk∥qkα∥ + εk(N ′)

bkqk∥qkα∥ + εk(N )

)

+ OT

(
|b′

m − bm |

am+1

)
. (38)

Next, we show that the sum over k0 ≤k ≤m−2 in the previous formula is negligible. Let k0 ≤k ≤m−2. By
assumption, bk+1 ≤ (1−δT )ak+2, and so εk(N )≥ −

(
1−

1
3δT

)
qk∥qkα∥ and εk(N ′)≥ −

(
1−

1
3δT

)
qk∥qkα∥
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follow from Lemma 6. In particular, bqk∥qkα∥ + εk(N ) and bqk∥qkα∥ + εk(N ′) both lie in the interval[(
b−1+

1
3δT

)
qk∥qkα∥, 1−δT

]
for all 1 ≤ b ≤ bk −1. Since |(log f (x))′| ≪T 1/

((
b − 1 +

1
3δT

)
qk∥qkα∥

)
on this interval, we have

bk−1∑
b=1

∣∣∣∣log
f (bqk∥qkα∥ + εk(N ′))

f (bqk∥qkα∥ + εk(N ))

∣∣∣∣ ≪T

bk−1∑
b=1

|εk(N ′)− εk(N )|(
b − 1 +

1
3δT

)
qk∥qkα∥

≪T ak+1(log ak+1)|εk(N ′)− εk(N )|

≪T ak+1ak+2qk |b′

m − bm | · ∥qmα∥

≤ qk+2|b′

m − bm | · ∥qmα∥,

where we used (35) and condition (6). Since bkqk∥qkα∥+ εk(N ) and bkqk∥qkα∥+ εk(N ′) both lie in the
interval

[1
3δT qk∥qkα∥, 2

]
, and |(log x)′| ≪T ak+1 on this interval, we similarly get∣∣∣∣log

bkqk∥qkα∥ + εk(N ′)

bkqk∥qkα∥ + εk(N )

∣∣∣∣ ≪T ak+1|εk(N ′)− εk(N )| ≪ qk+1|b′

m − bm | · ∥qmα∥.

From the previous two formulas and
∑m−2

k=k0
qk+2 ≪ qm we get

m−2∑
k=k0,
bk≥1

∣∣∣∣ bk−1∑
b=1

log
f (bqk∥qkα∥ + εk(N ′))

f (bqk∥qkα∥ + εk(N ))
+ log

bkqk∥qkα∥ + εk(N ′)

bkqk∥qkα∥ + εk(N )

∣∣∣∣ ≪T
|b′

m − bm |

am+1
,

and hence if m > k0, (38) simplifies as

log UN ′ − log UN = log um(N ′)− log um(N )

+

bm−1−1∑
b=1

log
f (bqm−1∥qm−1α∥ + εm−1(N ′))

f (bqm−1∥qm−1α∥ + εm−1(N ))

+ I{bm−1≥1} log
bm−1qm−1∥qm−1α∥ + εm−1(N ′)

bm−1qm−1∥qm−1α∥ + εm−1(N )
+ OT

(
|b′

m − bm |

am+1

)
. (39)

If m = k0, then (39) holds with the second and third terms on the right-hand side removed, and the claim
for m = k0 follows.

Let m> k0. To proceed, we distinguish between two cases: Case 1 is εm−1(N ) <−
(
1−

1
3δT

)
qm∥qmα∥,

and Case 2 is εm−1(N ) ≥ −
(
1 −

1
3δT

)
qm∥qmα∥. We will show that (34) holds in Case 1, and that (34)

holds with equality in Case 2. Note that this will prove the proposition; indeed, (34) follows in either
case, whereas by Lemma 6 the additional assumption bm ≤ (1 − δT )am+1 ensures that we are in Case 2.

Case 1: Assume that εm−1(N ) <−
(
1 −

1
3δT

)
qm∥qmα∥. By assumption, b′

m ≤ (1 − δT )am+1, and hence
εm−1(N ′)≥ −

(
1−

1
3δT

)
qm∥qmα∥ follows from Lemma 6. In particular, εm−1(N ) < εm−1(N ′), and hence

I{bm−1≥1} log
bm−1qm−1∥qm−1α∥ + εm−1(N ′)

bm−1qm−1∥qm−1α∥ + εm−1(N )
≥ 0. (40)
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If bm−1 = 0 or 1, then (34) follows from (39); therefore we may assume that bm−1 ≥ 2. Since (log f (x))′ =
π cot(πx), for any 1 ≤ b ≤ bm−1 − 1 we have

log
f (bqm−1∥qm−1α∥ + εm−1(N ′))

f (bqm−1∥qm−1α∥ + εm−1(N ))
=

∫ bqm−1∥qm−1α∥+εm−1(N ′)

bqm−1∥qm−1α∥+εm−1(N )
π cot(πx) dx

≥ π cot
(
π(bqm−1∥qm−1α∥ + εm−1(N ′))

)
· (εm−1(N ′)− εm−1(N )).

Using |π cot(πx)− 1/x | ≪T 1 for all |x | ≤ 1 − δT , we get

bm−1−1∑
b=1

π cot
(
π(bqm−1∥qm−1α∥ + εm−1(N ′))

)
=

bm−1−1∑
b=1

1
bqm−1∥qm−1α∥ + εm−1(N ′)

+ OT (am)

= am log(bm−1 + 1)+ OT (am).

The previous two formulas give

bm−1−1∑
b=1

log
f (bqm−1∥qm−1α∥ + εm−1(N ′))

f (bqm−1∥qm−1α∥ + εm−1(N ))

≥ am(log(bm−1 + 1))(εm−1(N ′)− εm−1(N ))+ OT
(
am |εm−1(N ′)− εm−1(N )|

)
= −(log(bm−1 + 1))

b′
m − bm

am+1
+ OT

(
|b′

m − bm |

am+1

)
,

and therefore (39) and (40) imply the desired inequality (34). This concludes the proof of Case 1.

Case 2: Assume that εm−1(N )≥ −
(
1 −

1
3δT

)
qm∥qmα∥. Repeating arguments from above, we now have

I{bm−1≥1} log
bm−1qm−1∥qm−1α∥ + εm−1(N ′)

bm−1qm−1∥qm−1α∥ + εm−1(N )
= OT

(
|b′

m − bm |

am+1

)
. (41)

If bm−1 = 0 or 1, then the sum in (39) is empty, and it follows that (34) holds with equality; thus
we may again assume that bm−1 ≥ 2. Since we are in Case 2, for any 1 ≤ b ≤ bm−1 − 1 the points
bqm−1∥qm−1α∥ + εm−1(N ) and bqm−1∥qm−1α∥ + εm−1(N ′) lie in the interval[(

b − 1 +
1
3δT

)
qm−1∥qm−1α∥, (b + 1)qm−1∥qm−1α∥

]
.

Note that here (b + 1)qm−1∥qm−1α∥ ≤ 1 − δT . We have (log f (x))′ = π cot(πx), and |(log f (x))′′| =

|π/sin2(πx)| ≪T 1/(b2q2
m−1∥qm−1α∥

2) on the same interval. Applying a second-order Taylor formula,
we thus get

log
f (bqm−1∥qm−1α∥ + εm−1(N ′))

f (bqm−1∥qm−1α∥ + εm−1(N ))
= π cot

(
π(bqm−1∥qm−1α∥ + εm−1(N ′))

)
(εm−1(N ′)− εm−1(N ))

+ OT

(
(εm−1(N ′)− εm−1(N ))2

b2q2
m−1∥qm−1α∥2

)
.
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The contribution of the error term is negligible:

bm−1−1∑
b=1

(εm−1(N ′)− εm−1(N ))2

b2q2
m−1∥qm−1α∥2

≪ a2
m(εm−1(N ′)−εm−1(N ))2 = a2

mq2
m−1(b

′

m −bm)
2
∥qmα∥

2
≤

|b′
m − bm |

am+1
.

Arguing as in Case 1, the previous two formulas yield

bm−1−1∑
b=1

log
f (bqm−1∥qm−1α∥ + εm−1(N ′))

f (bqm−1∥qm−1α∥ + εm−1(N ))
= −(log(bm−1 + 1))

b′
m − bm

am+1
+ OT

(
|b′

m − bm |

am+1

)
,

and therefore (39) and (41) imply that (34) holds with equality. This concludes the proof of Case 2. □

4.2. Regularizing and optimizing projections. We introduced the concept of a projection in the definition
on page 692. Starting with a nonnegative integer with Ostrowski expansion N =

∑K−1
k=0 bkqk , our strategy

is to apply projections to N in two rounds. In the first, we project the coefficients with bk >(1−δT )ak+1 to

b∗∗

k :=

{
0 if ak+1 = 2,

⌊(1 − δT )ak+1⌋ if ak+1 ̸= 2
(42)

in increasing order of the indices k0 ≤ k ≤ K −1. We call such a transformation a regularizing projection;
its aim is to get away from the singularity of log|2 sin(πx)| at x = 1. We note that the special value
of b∗∗

k in the case ak+1 = 2 (0 instead of 1) serves a technical purpose, and will not cause difficulties
in the end. After the first round of projections N is transformed into an integer whose k-th Ostrowski
coefficient is ≤ (1 − δT )ak+1 for all k0 ≤ k ≤ K − 1. As we will see, the value of UN does not decrease
up to a small error during the first round.

In the second round we project each Ostrowski coefficient to b∗

k =
⌊5

6ak+1
⌋

, in increasing order of the
indices k0 ≤ k ≤ K − 1. We call such a transformation an optimizing projection. We now estimate the
effect of a projection on the value of UN based on its type.

Proposition 15. Let N =
∑K−1

k=0 bkqk be the Ostrowski expansion of a nonnegative integer, and let
k0 ≤ m ≤ K − 1.

(i) Regularizing projection: Assume that bk ≤ (1−δT )ak+1 for all k0 ≤k<m, and that bm>(1−δT )am+1.
Then projm,b∗∗

m
(N )= N ′ satisfies

log UN ′ − log UN ≥ −OT (1/am+1)− Oα(1/qm).

(ii) Optimizing projection: Assume that bk ≤ (1 − δT )ak+1 for all k0 ≤ k ≤ K − 1, and that bk = b∗

k for
all k0 ≤ k < m. Then projm,b∗

m
(N )= N ′ satisfies

log UN ′ − log UN

= am+1

∫ b′
m/am+1

bm/am+1

log|2 sin(πx)| dx+OT

(
|b′

m−bm |

am+1
+I{bm≤0.01am+1} log am+1

)
+Oα(1/qm), (43)
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and also

log UN ′ − log UN ≥ 0.2326
(b′

m−bm)
2

am+1
− OT (1/am+1)− Oα(1/qm). (44)

We first prove a lemma that will help in the case am+1 ≪ 1 and then give the proofs of parts (i) and (ii)
of Proposition 15.

Lemma 16. Let N =
∑K−1

k=0 bkqk be the Ostrowski expansion of a nonnegative integer. Let k0 ≤ m ≤ K −1.
If am+1 ≤ A with some constant A ≥ 1, then

log um(N )≤ OT,A(1)+ Oα(1/qm). (45)

If in addition bm ≤ (1 − δT )am+1 and bm+1 ≤ (1 − δT )am+2, then (45) holds with |log um(N )| instead
of log um(N ) on the left-hand side.

Proof. Recall the definition on page 691. If bm = 0, then um(N )= 1, and we are done. So assume bm ≥ 1.
First, we prove the upper bound. From the definition of um(N ) we immediately see that

um(N )≤ 2A exp
( bm−1∑

b=0

Vm(bqm∥qmα∥ + εm(N ))
)

4π.

Lemma 8(i) implies that Vm is decreasing on (−1, 1), and |V ′
m(x)| ≪T 1/am+1 on [−(1 − δT ), 0]. It is

then readily seen that
bm−1∑
b=0

Vm(bqm∥qmα∥ + εm(N ))≤ bm Vm(0)+ OT (1)= OT,A(1)+ Oα(1/qm),

and the claim log um(N )≤ OT,A(1)+ Oα(1/qm) follows.
Next, assume in addition, that bm ≤ (1 − δT )am+1 and bm+1 ≤ (1 − δT )am+2. By Lemma 6 we then

have εm(N ) ≥ −
(
1 −

1
3δT

)
qm∥qmα∥. Therefore the points bqm∥qmα∥ + εm(N ) for 1 ≤ b ≤ bm − 1 are

bounded away from 0 and 1, and hence

bm−1∏
b=1

∣∣2 sin
(
π(bqm∥qmα∥ + εm(N ))

)∣∣ ≫T,A 1.

Similarly, since the points bqm∥qmα∥+ εm(N ) for 0 ≤ b ≤ bm − 1 lie in the interval [−(1 − δT ), 1 − δT ]

and |V ′
m(x)| ≪T 1/am+1 on this interval by Lemma 8(i), we have∣∣∣∣ bm−1∑

b=0

Vm(bqm∥qmα∥ + εm(N ))
∣∣∣∣ = bm |Vm(0)| + OT (1)= OT,A(1)+ Oα(1/qm).

Finally, note that
2π(bmqm∥qmα∥ + εm(N ))≥ 2π ·

1
3δT qm∥qmα∥ ≫T,A 1.

The previous three estimates and the definition of um(N ) show that log um(N )≥ −OT,A(1)− Oα(1/qm),
as claimed. □
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Proof of Proposition 15 (i). For the sake of readability, let f (x)= |2 sin(πx)| and εm = εm(N )= εm(N ′).
Since bm > b′

m , and in particular −(log(bm−1 + 1))(b′
m − bm)/(am+1)≥ 0, Proposition 14 gives

log UN ′ − log UN ≥ log um(N ′)− log um(N )− OT

(
|b′

m − bm |

am+1

)
. (46)

Let A ≥ 1 be a large constant depending only on T (and δT ), to be chosen. We will distinguish between
three cases depending on the size of am+1.

Case 1: Assume that am+1 = 1 or 2. Then, by construction, b′
m = b∗∗

m = 0, and hence um(N ′) = 1.
From (46) and Lemma 16 we thus get log UN ′ − log UN ≥ −OT (1)− Oα(1/qm), and the claim follows.

Case 2: Assume that 3 ≤ am+1 ≤ A. Then, by construction, b′
m = b∗∗

m ≥ 2. Recalling the definition on
page 691, we have

log um(N ′)− log um(N )

= −

bm−1∑
b=b′

m

log f (bqm∥qmα∥ + εm)−

bm−1∑
b=b′

m

Vm(bqm∥qmα∥ + εm)+ log
b′

mqm∥qmα∥ + εm

bmqm∥qmα∥ + εm
.

Since −log f (x) is bounded from below, the first term is ≥ −OA(1). Similar to the proof of Lemma 16,
it is easy to see that the second term is ≥ −OT,A(1)− Oα(1/qm). Finally, the last term is

log
b′

mqm∥qmα∥ + εm

bmqm∥qmα∥ + εm
≥ log

b′
m − 1

bm + 1
≥ −OT (1).

Hence log um(N ′)− log um(N )≥ −OT,A(1)− Oα(1/qm), and the claim follows from (46).

Case 3: Assume that am+1 > A. By the definition on page 691, we again have

log um(N ′)− log um(N )

= −

bm−1∑
b=b′

m

log f (bqm∥qmα∥ + εm)−

bm−1∑
b=b′

m

Vm(bqm∥qmα∥ + εm)+ log
b′

mqm∥qmα∥ + εm

bmqm∥qmα∥ + εm
.

From Lemma 8, in particular from the fact that Vm(x) is decreasing, we get

−

bm−1∑
b=b′

m

Vm(bqm∥qmα∥ + εm)≥ −(bm − b′

m)Vm(0)

= −(bm − b′

m)
log am

am+1
− OT

(
|b′

m − bm |

am+1

)
− Oα

(
|b′

m − bm |

qm+1

)
≥ −T (bm − b′

m)− OT

(
|b′

m − bm |

am+1

)
− Oα(1/qm).

Since bmqm∥qmα∥ + εk and b′
mqm∥qmα∥ + εk are bounded away from zero, we also have

log
b′

mqm∥qmα∥ + εm

bmqm∥qmα∥ + εm
≪

|bm − b′
m |

am+1
.
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By the previous two formulas, (46) simplifies to

log UN ′ − log UN ≥ −

bm−1∑
b=b′

m

log f (bqm∥qmα∥+εm)−T (bm −b′

m)− OT

(
|b′

m − bm |

am+1

)
− Oα(1/qm). (47)

For all b′
m ≤ b ≤ bm − 1,

bqm∥qmα∥ + εk(N )≥ (⌊(1 − δT )am+1⌋ − 1)qm∥qmα∥ ≥ 1 − 2δT

provided that A is large enough in terms of T and δT . Choosing δT ≤ 1/(4πe2T ) ensures log f (x)≤ −2T
on the interval [1 − 2δT , 1). Hence every term in the sum in (47) is ≤ −2T , and we get

log UN ′ − log UN ≥ T (bm − b′

m)− OT

(
|b′

m − bm |

am+1

)
− Oα(1/qm).

Choosing A large enough in terms of T and δT , the second error term is negligible compared to T (bm −b′
m).

Hence log UN ′ − log UN ≥ −Oα(1/qm), and the claim follows. □

Proof of Proposition 15 (ii). Again, let f (x) = |2 sin(πx)| and εm = εm(N ) = εm(N ′). If m = k0, then
both sides of (43) and (44) are Oα(1), and we are done. We may thus assume that m > k0. By the
assumption bm−1 = b∗

m−1 =
⌊ 5

6am
⌋

we have

−(log(bm−1 + 1))
b′

m − bm

am+1
= −(b′

m − bm)
log am

am+1
+ O

(
|b′

m − bm |

am+1

)
,

so Proposition 14 now gives

log UN ′ − log UN = log um(N ′)− log um(N )− (b′

m − bm)
log am

am+1
− OT

(
|b′

m − bm |

am+1

)
. (48)

Let A ≥ 1 be a large constant depending only on T , to be chosen. We distinguish between four cases.

Case 1: Assume that am+1 ≤ A. By Lemma 16, both log um(N ′) and log um(N ) are OT,A(1)+ Oα(1/qm).
Since |b′

m − bm |(log am/am+1)≪T,A 1, from (48) we get

log UN ′ − log UN = OT,A(1)+ Oα(1/qm),

and the claims (43) and (44) follow.

Case 2: Assume that am+1 > A and 1 ≤ bm ≤ b′
m . From the definition on page 691 we now get

log um(N ′)− log um(N )

=

b′
m−1∑

b=bm

log f (bqm∥qmα∥ + εm)+

b′
m−1∑

b=bm

Vm(bqm∥qmα∥ + εm)+ log
b′

mqm∥qmα∥ + εm

bmqm∥qmα∥ + εm
.

The assumption bk ≤ (1−δT )ak+1 for all k0 ≤k ≤ K −1 and Lemma 6 imply that εm ≥−
(
1−

1
3δT

)
qm∥qmα∥.
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We claim that the last term satisfies

log
b′

mqm∥qmα∥ + εm

bmqm∥qmα∥ + εm
≪T

|b′
m − bm |

am+1
+ I{bm≤0.01am+1} log am+1.

Indeed, if bm > 0.01am+1, then the points bmqm∥qmα∥ + εm and b′
mqm∥qmα∥ + εm lie in an interval

bounded away from zero, and |(log x)′| ≪T 1 on such an interval; the upper bound |b′
m − bm |/am+1

follows. If bm ≤ 0.01am+1, then

0 ≤ log
b′

mqm∥qmα∥ + εm

bmqm∥qmα∥ + εm
≤ log

2( 1
3δT

)
qm∥qmα∥

≪T log am+1,

and the claimed upper bound follows once again.
Observe also that for all bm ≤ b ≤ b′

m −1, the point bqm∥qmα∥+εm lies in
[
0, 5

6

]
. Using Lemma 8(iii)

we thus deduce
b′

m−1∑
b=bm

Vm(bqm∥qmα∥ + εm)= (b′

m − bm)
log am

am+1
+ OT

(
|b′

m − bm |

am+1

)
+ Oα(1/qm),

and hence

log um(N ′)− log um(N )=

b′
m−1∑

b=bm

log f (bqm∥qmα∥ + εm)+ (b′

m − bm)
log am

am+1

+ OT

(
|b′

m − bm |

am+1
+ I{bm≤0.01am+1} log am+1

)
+ Oα(1/qm).

With a remarkable cancellation of (b′
m − bm)(log am/am+1), Equation (48) thus simplifies to

log UN ′ −log UN =

b′
m−1∑

b=bm

log f (bqm∥qmα∥+εm)+OT

(
|b′

m − bm |

am+1
+ I{bm≤0.01am+1} log am+1

)
+Oα(1/qm).

We now prove (43). Assume first that bm > 0.01am+1. Then for all bm ≤ b ≤ b′
m − 1, the point

bqm∥qmα∥+εm lies in an interval bounded away from 0 and 1. Using qm∥qmα∥ = 1/am+1 + O(1/a2
m+1)

and |εm | ≤ 1/am+1 we deduce

|log f (bqm∥qmα∥ + εm)− log f (b/am+1)| ≪ 1/am+1,

and hence
b′

m−1∑
b=bm

log f (bqm∥qmα∥ + εm)=

b′
m−1∑

b=bm

log f (b/am+1)+ O
(

|b′
m − bm |

am+1

)
.

Since |log f (x)| ≪
∣∣x −

5
6

∣∣ on our interval bounded away from 0 and 1, each term in the previous sum
is ≪ |bm − b′

m |/am+1. Therefore, by interpreting the sum as a Riemann sum,

b′
m−1∑

b=bm

log f (b/am+1)= am+1

∫ b′
m/am+1

bm/am+1

log f (x) dx + O
(

|b′
m − bm |

am+1

)
,
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and (43) follows provided that bm > 0.01am+1. If bm ≤ 0.01am+1, then for any bm ≤ b ≤ b′
m − 1, the

point bqm∥qmα∥+εm lies in
[(

b −1+
1
3δT

)
qm∥qmα∥, 5

6

]
. Since |(log f (x))′| = |π cot(πx)| ≪T am+1/b

on this interval, we now have

b′
m−1∑

b=bm

|log f (bqm∥qmα∥ + εm)− log f (b/am+1)| ≪T

b′
m−1∑

b=bm

1
b

≪ log am+1.

Note that |log f (b/am+1)| ≪ log am+1, so by interpreting the sum as a Riemann sum, we now have

b′
m−1∑

b=bm

log f (b/am+1)= am+1

∫ b′
m/am+1

bm/am+1

log f (x) dx + OT (log am+1),

and (43) follows in the case bm ≤ 0.01am+1 as well.
Next, we deduce (44) from (43). Choosing A large enough in terms of T , the error term in (43) is

negligible compared to the main term (in both cases bm ≤ 0.01am+1 and bm > 0.01am+1). Elementary
calculations show that

min
y∈[0,5/6)

1
(5/6 − y)2

∫ 5
6

y
log f (x) dx =

1
(5/6)2

∫ 5
6

0
log f (x) dx = 0.23260748 . . .

Indeed, the left-hand side is an increasing function of y on
[
0, 5

6

)
; to see that its derivative is nonnegative,

it is enough to check that

1
5/6 − y

∫ 5
6

y
log f (x) dx ≥

1
2 log f (y),

and this follows from the concavity of log f (x). Therefore, up to a negligible O(1/am+1) error in the
numerical constants,

am+1

∫ b′
m/am+1

bm/am+1

log f (x) dx ≥ am+1 · 0.2326
(
bm/am+1 −

5
6

)2
≥ 0.2326

(b′
m − bm)

2

am+1
.

This finishes the proof of (43) and (44) in Case 2.

Case 3: Assume that am+1 > A and bm = 0. Then log um(N )= 0, and

log um(N ′)− log um(N )

=

b′
m−1∑
b=1

log f (bqm∥qmα∥ + εm)+

b′
m−1∑
b=0

Vm(bqm∥qmα∥ + εm)+ log(b′

mqm∥qmα∥ + εm).

Following the steps of Case 2 (observe that in the first sum the summation now starts at b = 1 instead
of b = bm = 0), we get

log UN ′ − log UN = am+1

∫ b′
m/am+1

1/am+1

log f (x) dx + OT (log am+1)+ Oα(1/qm).
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The error of replacing the lower limit of integration by zero is negligible:

am+1

∫ 1/am+1

0
log f (x) dx ≪ log am+1,

and (43) follows. We deduce (44) from (43) as in Case 2.

Case 4: Assume that am+1 > A and b′
m ≤ bm ≤ (1−δT )am+1. Working on the interval

[ 5
6 , 1−δT

]
instead

of
[
0, 5

6

]
, the proof of (43) is entirely analogous to that in Case 2. Deducing (44) from (43) is even

simpler. Indeed, note that by concavity, log f (x)≤ −π
√

3
(
x −

5
6

)
, the right-hand side being a tangent

line. Hence up to a negligible O(1/am+1) error in the numerical constants,

am+1

∫ b′
m/am+1

bm/am+1

log f (x) dx ≥ am+1

∫ bm/am+1

b′
m/am+1

π
√

3
(
x −

5
6

)
dx ≥

π
√

3
2

·
(b′

m − bm)
2

am+1
.

The lower bound (44) thus follows, in fact with the better numerical constant π
√

3
2 ≈ 2.72. □

4.3. Completing the proof.

Proof of Theorem 1. Let N =
∑K−1

k=0 bkqk be the Ostrowski expansion of a nonnegative integer, and let
N ∗

=
∑K−1

k=0 b∗

k qk with b∗

k =
⌊ 5

6ak+1
⌋

. Noting that Fk(N ∗)= 0 for all k, from Proposition 13 we get

log PN (α)− log PN∗(α)= log UN − log UN∗ −

K−1∑
k=k0

Fk(N )+ OT

( K∑
k=1

1
ak

)
+ Oα(1),

where Fk(N )≥ 0 for all k, and Fk(N )= 0 for all k such that bk ≤ (1 − δT )ak+1.
Let us now successively apply projections to N in two rounds, as described in Section 4.2: the first

round consists of regularizing projections in increasing order of the indices k0 ≤ k ≤ K −1, and the second
round consists of optimizing projections in increasing order of the indices. This way N is transformed into
the integer

∑k0−1
k=0 bkqk +

∑K−1
k=k0

b∗

k qk . Since UN does not depend on the first k0 Ostrowski coefficients,
Proposition 15 allows us to write log UN∗ − log UN =

∑K−1
k=k0

(d reg
k (N )+ dopt

k (N )), and hence

log PN (α)− log PN∗(α)= −

K−1∑
k=k0

(d reg
k (N )+ dopt

k (N )+ Fk(N ))+ OT

( K∑
k=1

1
ak

)
+ Oα(1).

Here d reg
k (N ) resp. dopt

k (N ) describe the effect of the regularizing resp. optimizing projection with respect
to the index k, and by Proposition 15, they satisfy the following for all k0 ≤ k ≤ K − 1:

(i) If bk ≤ (1 − δT )ak+1, then d reg
k (N )= 0.

(ii) If bk > (1 − δT )ak+1, then d reg
k (N )≥ −OT (1/ak+1)− Oα(1/qk).

(iii) If bk ≤ (1 − δT )ak+1, then

dopt
k = ak+1

∫ b∗

k/ak+1

bk/ak+1

log|2 sin(πx)| dx + OT

(
|bk − b∗

k |

ak+1
+ I{bk≤0.01ak+1} log ak+1

)
+ Oα(1/qk).
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(iv) dopt
k (N )≥ 0.2326

(bk − b∗

k )
2

ak+1
− OT (1/ak+1)− Oα(1/qk).

(v) If bk = b∗

k , then dopt
k (N )= 0.

Note that if bk > (1 − δT )ak+1, then bk is first projected to b∗∗

k as defined in (42), and then to b∗

k .
Proposition 15(ii) thus yields property (iv) with b∗∗

k in place of bk . Choosing δT small enough, property (iv)
also holds as stated with an arbitrarily smaller numerical constant. Observe also that the special value
of b∗∗

k in the case ak+1 = 2 does not cause any problem.
It follows that we can introduce small error terms ξk(N )= OT (1/ak+1)+ Oα(1/qk) such that dk(N ) :=

d reg
k (N )+dopt

k (N )+ Fk(N )+ξk(N ) satisfies dk(N )≥ 0.2326(bk −b∗

k )
2/ak+1 for all k0 ≤ k ≤ K −1 with

equality if bk = b∗

k , and also

dk(N )= ak+1

∫ b∗

k/ak+1

bk/ak+1

log|2 sin(πx)| dx + OT

(
|bk − b∗

k |

ak+1
+ I{bk≤0.01ak+1} log ak+1

)
for all k0 ≤ k ≤ K − 1 such that bk ≤ (1 − δT )ak+1. Since the contribution of the error terms ξk(N ) is
negligible, we also have

log PN (α)− log PN∗(α)= −

K−1∑
k=k0

dk(N )+ O
( K∑

k=1

1
ak

)
+ Oα(1).

Finally, introduce dk(N ), 0 ≤ k < k0, in any way which satisfies the desired properties, and observe that∑k0−1
k=0 dk(N )= Oα(1). This concludes the proof of Theorem 1. □

5. Proof of Theorem 2

Note that (11) follows directly from Theorem 1, in particular from dk(N )≥ 0; alternatively, it also follows
from taking the limit in (10) as c → ∞. It will thus be enough to prove (10).

The main idea of the proof is that if we choose an integer N randomly from the interval 0 ≤ N < qK ,
then its Ostrowski coefficients bk , 0 ≤ k ≤ K − 1, are almost independent random variables, close to
being uniformly distributed on {0, 1, . . . , ak+1}. As a Gaussian tail estimate will show, the coefficients
|bk −b∗

k |≫
√

ak+1 log ak+1 have negligible contribution. By Theorem 1, and in particular (9), we thus have

qK −1∑
N=0

PN (α)
c
≈

a1∑
b0=0

a2∑
b1=0

· · ·

aK∑
bK−1=0

PN∗(α)c exp
(

−

K−1∑
k=0

π
√

3c
2

·
(bk − b∗

k )
2

ak+1

)

≈ PN∗(α)c
K−1∏
k=0

∑
n∈Z

exp
(

−
π

√
3cn2

2ak+1

)

≈ PN∗(α)c
K−1∏
k=0

√
2ak+1
√

3c
,

which explains the main term in (10). We now give the formal proof.
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Proof of Theorem 2. Let c ≥ 0.01, and consider the intervals

Jk = [0, 0.99ak+1] ∩ [b∗

k − rk, b∗

k + rk] ∩ Z,

where

rk = 10

√
ak+1

c
log

(
ak+1

c
+ 2

)
.

First, we prove the lower bound in (10). Note that for any b = (b0, b1, . . . , bK−1)∈ J0× J1×· · ·× JK−1,
the expression Nb =

∑K−1
k=0 bkqk is the Ostrowski expansion of an integer 0 ≤ Nb < qK ; moreover, we

obtain each integer at most once. We wish to apply Theorem 1 to Nb, and simply discard all other integers
in [0, qK ) not of this form. Since for all bk ∈ Jk we have

|bk − b∗

k |

ak+1
+

|bk − b∗

k |
3

a2
k+1

≪ Ek,c :=
log1/2(ak+1/c + 2)

c1/2a1/2
k+1

+
log3/2(ak+1/c + 2)

c3/2a1/2
k+1

,

Theorem 1 and (9) yield

PNb(α)= PN∗(α) exp
(

−

K−1∑
k=0

π
√

3
2

·
(bk − b∗

k )
2

ak+1

)
exp

(
OT

( K∑
k=1

(
Ek,c +

1
ak

))
+ Oα(1)

)
.

Consequently,

log
( qK −1∑

N=0

PN (α)
c
)1/c

≥ log
( ∑

b∈J0×J1×···×JK−1

PNb(α)
c
)1/c

≥ log PN∗(α)+
1
c

log
∑

b∈J0×J1×···×JK−1

exp
(

−

K−1∑
k=0

π
√

3c
2

·
(bk − b∗

k )
2

ak+1

)

− OT

( K∑
k=1

(
Ek,c +

1
ak

))
− Oα(1).

The sum over b factors:

∑
b∈J0×J1×···×JK−1

exp
(

−

K−1∑
k=0

π
√

3c
2

·
(bk − b∗

k )
2

ak+1

)
=

K−1∏
k=0

∑
bk∈Jk

exp
(

−
π

√
3c

2
·
(bk − b∗

k )
2

ak+1

)
.

Now let A > 0 be a large universal constant, to be chosen. We establish a lower bound in each of the
cases ak+1/c > A and ak+1/c ≤ A separately. First, assume that ak+1/c > A. We then have

rk = 10

√
ak+1

c
log

(
ak+1

c
+ 2

)
≤

ak+1

10000c
≤

ak+1

100
,
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provided that A > 0 is large enough. In particular, [b∗

k − rk, b∗

k + rk] ⊂ [0, 0.99ak+1]. It is now easy to
see that ∑

bk∈Jk

exp
(

−
π

√
3c

2
·
(bk − b∗

k )
2

ak+1

)
≥

∑
−rk≤n≤rk

exp
(

−π
√

3cn2

2ak+1

)

=

∫ rk

−rk

exp
(

−π
√

3cx2

2ak+1

)
dx + O(1)

=

√
2ak+1
√

3c
+ O(1),

and so
1
c

log
∑

bk∈Jk

exp
(

−
π

√
3c

2
·
(bk − b∗

k )
2

ak+1

)
≥

1
2c

log
2ak+1
√

3c
− O

(
1

ak+1

)

in the case ak+1/c > A. If ak+1/c ≤ A, then by noting that b∗

k ∈ Jk , the left-hand side of the previous
formula is nonnegative, and thus the previous formula remains true. Altogether we obtain the lower bound

log
( qK −1∑

N=0

PN (α)
c
)1/c

≥ log PN∗(α)+
1
2c

K∑
k=1

log
2ak
√

3c
− OT

( K∑
k=1

(
Ek,c +

1
ak

))
− Oα(1).

Next, we prove the upper bound in (10). Applying Theorem 1 to all 0 ≤ N < qK , we get

log
( qK −1∑

N=0

PN (α)
c
)1/c

= log PN∗ +
1
c

log
qK −1∑
N=0

exp
(

−c
K−1∑
k=0

dk(N )
)

+ OT

( K∑
k=1

1
ak

)
+ Oα(1).

For the sake of readability, note that 0.2326> 1
5 . Letting

gk(x)=


π

√
3

2
·
(x − b∗

k )
2

ak+1
if x ∈ Jk,

(x − b∗

k )
2

5ak+1
if x ̸∈ Jk,

we have dk(N )≥ gk(bk)− OT (Ek,c). Hence, by extending the range of summation,

log
( qK −1∑

N=0

PN (α)
c
)1/c

≤ log PN∗ +
1
c

log
∑

b∈ZK

exp
(

−c
K−1∑
k=0

gk(bk)

)
+ OT

( K∑
k=1

(
Ek,c +

1
ak

))
+ Oα(1).

The sum over b factors again:

1
c

log
∑

b∈ZK

exp
(

−c
K−1∑
k=0

gk(bk)

)
=

1
c

K−1∑
k=0

log
∑
bk∈Z

exp
(

−cgk(bk)

)
.
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Now let B > 0 be a large universal constant, to be chosen. Assume first that ak+1/c> B. Then, as before,
[b∗

k − rk, b∗

k + rk] ⊂ [0, 0.99ak+1] provided that B > 0 is large enough. Therefore∑
bk∈Z

exp(−cgk(bk))≤

∑
|bk−b∗

k |≤rk

exp
(

−
π

√
3c

2
·
(bk − b∗

k )
2

ak+1

)
+

∑
|bk−b∗

k |>rk

exp
(

−c
(bk − b∗

k )
2

5ak+1

)

≤

∫
∞

−∞

exp
(

−π
√

3cx2

2ak+1

)
dx +

∫
(−∞,−rk)∪(rk ,∞)

exp
(

−cx2

5ak+1

)
dx + O(1)

=

√
2ak+1
√

3c
+ O(1),

and consequently
1
c

log
∑
bk∈Z

exp(−cgk(bk))≤
1
2c

log
2ak+1
√

3c
+ O

(
1

ak+1

)
.

If ak+1/c ≤ B, then simply using gk(bk)≥ (bk −b∗

k )
2/(5ak+1) we similarly deduce that the left-hand side

of the previous formula is ≤ O(1/c); consequently, the previous formula remains true. Altogether we
obtain the upper bound

log
( qK −1∑

N=0

PN (α)
c
)1/c

≤ log PN∗(α)+
1
2c

K∑
k=1

log
2ak
√

3c
+ OT

( K∑
k=1

(
Ek,c +

1
ak

))
+ Oα(1).

This concludes the proof of (10). □

6. Proof of Theorem 3

In this section we estimate PN∗(α). By Proposition 13 it is enough to consider UN∗ ; in particular, we will
need to estimate

log uk(N ∗)=

b∗

k −1∑
b=1

log
∣∣2 sin

(
π(bqk∥qkα∥ + εk(N ∗))

)∣∣ + b∗

k −1∑
b=0

Vk(bqk∥qkα∥ + εk(N ∗))

+ log
(
2π(b∗

k qk∥qkα∥ + εk(N ∗))
)
.

The first sum can be handled with a straightforward application of a second-order Euler–Maclaurin
formula. Since it provides an elementary explanation for the appearance of the constant Vol(41), we
include a detailed proof in Lemma 17 below. An estimate for the second sum follows from Lemma 8(iii);
Theorem 3 will then be an immediate corollary.

We now give a formal proof. We will need the value of the integrals∫
∞

1

B2({x})

(x − 5/6)2
dx =

1
3

− log
0

( 1
6

)
25/631/3π1/2 (49)

and ∫
∞

1

B2({x})

x2 dx = −
11
12

+ log(21/2π1/2), (50)
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where B2(x)=
1
2 x2

−
1
2 x +

1
12 is the second Bernoulli polynomial, and 0 is the gamma function. Indeed,

by Stirling’s formula for the gamma function,

n∑
k=1

log
(
k −

5
6

)
= log

0
(
n +

1
6

)
0

( 1
6

) =
(
n −

5
6

)
log

(
n −

5
6

)
−

(
n −

5
6

)
+ log

√
2π

(
n −

5
6

)
− log0

( 1
6

)
+ o(1).

On the other hand, applying a second-order Euler–Maclaurin formula we get

n∑
k=1

log
(
k −

5
6

)
=

∫ n

1
log

(
x −

5
6

)
dx +

1
2

(
log

(
n −

5
6

)
+ log

( 1
6

))
+

1
12

(
1/

(
n −

5
6

)
− 6

)
+

∫ n

1

B2({x})(
x −

5
6

)2 dx,

and by comparing the asymptotics as n → ∞ in the previous formulas, (49) follows; the proof of (50) is
analogous.

Lemma 17. Let N ∗
=

∑K−1
k=0 b∗

k qk with b∗

k =
⌊ 5

6ak+1
⌋

. For any 0 ≤ k ≤ K − 2,

b∗

k −1∑
b=1

log
∣∣2 sin

(
π(bqk∥qkα∥ + εk(N ∗))

)∣∣
=

Vol(41)

4πqk∥qkα∥
−

1
3

log ak+1 − log
0( 1

6)

(2π)5/6
+ O

(
1

ak+1
+

1 + log ak+1

ak+2

)
,

whereas for k = K − 1,

b∗

k −1∑
b=1

log
∣∣2 sin

(
π(bqk∥qkα∥ + εk(N ∗))

)∣∣ =
Vol(41)

4πqK−1∥qK−1α∥
+

1
2

log aK + O
(

1
aK

)
.

Proof. For the sake of readability, let f (x)= |2 sin(πx)| and εk = εk(N ∗). By the definition (12) of εk

and the construction of b∗

k , for all 0 ≤ k ≤ K − 2, we have

εk = qk

K−1∑
ℓ=k+1

(−1)k+ℓ 5
6aℓ+1∥qℓα∥ + O

(
qk

K−1∑
ℓ=k+1

∥qℓα∥

)
= −

5
6qk∥qkα∥ + O(qk∥qk+1α∥),

and, in particular,
εk

qk∥qkα∥
= −

5
6

+ O
(

1
ak+2

)
, (51)

whereas εK−1 = 0. Since b∗

k+1 ≤
5
6ak+2, Lemma 6 also gives qk∥qkα∥ + εk ≥ 1/(18ak+1).

Consider the following function F , along with its first and second derivatives:

F(x)= log f (xqk∥qkα∥ + εk),

F ′(x)= π cot(π(xqk∥qkα∥ + εk))qk∥qkα∥,

F ′′(x)= −
π2q2

k ∥qkα∥
2

sin2(π(xqk∥qkα∥ + εk))
.
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Applying a second-order Euler–Maclaurin formula, we get

b∗

k −1∑
b=1

F(b)=
∫ b∗

k −1

1
F(x) dx +

F(b∗

k − 1)+ F(1)
2

+
F ′(b∗

k − 1)− F ′(1)
12

−

∫ b∗

k −1

1
F ′′(x)B2({x}) dx . (52)

First, we estimate the main term∫ b∗

k −1

1
F(x) dx =

1
qk∥qkα∥

∫ (b∗

k −1)qk∥qkα∥+εk

qk∥qkα∥+εk

log f (y) dy.

Here by construction (b∗

k − 1)qk∥qkα∥+ εk =
5
6 + O(1/ak+1). Since log f

( 5
6

)
= 0, the error of replacing

the upper limit of integration by 5
6 is negligible:

1
qk∥qkα∥

∣∣∣∣ ∫ 5
6

(b∗

k −1)qk∥qkα∥+εk

log f (y) dy
∣∣∣∣ ≪

1
ak+1

.

The effect of replacing the lower limit of integration by 0 is

1
qk∥qkα∥

∫ qk∥qkα∥+εk

0
log f (y) dy =

1
qk∥qkα∥

∫ qk∥qkα∥+εk

0
log(2πy) dy + O

(
1

a2
k+1

)
=

(
1 +

εk

qk∥qkα∥

)(
log(2π(qk∥qkα∥ + εk))− 1

)
+ O

(
1

a2
k+1

)
.

From the previous three formulas and (51) it follows that the main term in (52) is, for all 0 ≤ k ≤ K − 2,∫ b∗

k −1

1
F(x) dx =

1
qk∥qkα∥

∫ 5
6

0
log f (y) dy +

1
6

+
1
6

log
3ak+1

π
+ O

(
1

ak+1
+

1 + log ak+1

ak+2

)
, (53)

whereas for k = K − 1,∫ b∗

K−1−1

1
F(x) dx =

1
qK−1∥qK−1α∥

∫ 5
6

0
log f (y) dy + 1 + log

aK

2π
+ O

(
1

aK

)
. (54)

Next, consider the second and third terms in (52). It is easy to see that F(b∗

k − 1) ≪ 1/ak+1 and
F ′(b∗

k − 1)≪ 1/ak+1. Further,

F(1)= log f (qk∥qkα∥ + εk)= log(2π(qk∥qkα∥ + εk))+ O
(

1
a2

k+1

)
,

and using π cot(πy)= 1/y + O(|y|) on
(
0, 5

6

]
,

F ′(1)= π cot(π(qk∥qkα∥ + εk))qk∥qkα∥ =
qk∥qkα∥

qk∥qkα∥ + εk
+ O

(
1

a2
k+1

)
.

Hence, by (51), for 0 ≤ k ≤ K − 2 we have

F(b∗

k − 1)+ F(1)
2

+
F ′(b∗

k − 1)− F ′(1)
12

= −
1
2

−
1
2

log
3ak+1

π
+ O

(
1

ak+1
+

1
ak+2

)
, (55)
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whereas for k = K − 1,

F(b∗

K−1 − 1)+ F(1)
2

+
F ′(b∗

K−1 − 1)− F ′(1)
12

= −
1

12
−

1
2

log
aK

2π
+ O

(
1

aK

)
. (56)

Finally, consider the last term in (52). Using π2/sin2(πy)= 1/y2
+ O(1) on

(
0, 5

6

]
,

−

∫ b∗

k −1

1
F ′′(x)B2({x}) dx =

∫ b∗

k −1

1

B2({x})

(x + εk/(qk∥qkα∥))2
dx + O

(
1

ak+1

)
.

Therefore, by (51) and the improper integrals (49) and (50), for all 0 ≤ k ≤ K − 2 we have

−

∫ b∗

k −1

1
F ′′(x)B2({x}) dx =

1
3

− log
0(1

6)

25/631/3π1/2 + O
(

1
ak+1

+
1

ak+2

)
, (57)

whereas for k = K − 1,

−

∫ b∗

K−1−1

1
F ′′(x)B2({x}) dx = −

11
12

+ log(21/2π1/2)+ O
(

1
aK

)
. (58)

We have thus estimated all terms in (52). The claim for 0 ≤ k ≤ K −2 follows from (53), (55) and (57),
whereas the claim for k = K − 1 follows from (54), (56) and (58). □

Proof of Theorem 3. Let εk = εk(N ∗). Applying Proposition 13 and noting that Fk(N ∗)= 0 for all k we get

log PN∗(α)=

K−1∑
k=0

b∗

k −1∑
b=1

log|2 sin(π(bqk∥qkα∥ + εk))| +

K−1∑
k=0

b∗

k −1∑
b=0

Vk(bqk∥qkα∥ + εk)

+

K−1∑
k=0

I{b∗

k ≥1} log(2π(b∗

k qk∥qkα∥ + εk))+ OT

( K∑
k=1

1
ak

)
+ Oα(1).

Note that I{b∗

k ≥1} = I{ak+1≥2}. The first sum was evaluated in Lemma 17. We can estimate the second sum
by interpreting it as a Riemann sum and using Lemma 8(iii). Note that the endpoints are εk = O(1/ak+1)

and (b∗

k − 1)qk∥qkα∥+ εk =
5
6 + O(1/ak+1). Since the points bqk∥qkα∥+ εk for b = 0, 1, . . . , b∗

k − 1 lie
in the interval

[
−(1−1/(eT

+2)), 5
6

]
, and since by Lemma 8 the function Vk is monotonically decreasing

and satisfies |Vk(x)| ≪T (1 + log ak)/ak+1 on this interval, we have

b∗

k −1∑
b=0

Vk(bqk∥qkα∥ + εk)

=
1

qk∥qkα∥

∫ 5
6

0
Vk(x) dx + OT

(
1 + log ak

ak+1

)
=

∫ 5
6

0

(
log

ak

2π
−
0′(1 + x)
0(1 + x)

)
dx + OT

(
1 + log(ak−1ak)

ak
+

1 + log ak

ak+1

)
+ Oα

(
1

qk+1

)
=

5
6

log
ak

2π
− log0

(
1 +

5
6

)
+ OT

(
1 + log(ak−1ak)

ak
+

1 + log ak

ak+1

)
+ Oα

(
1

qk+1

)
.
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Clearly,

I{b∗

k ≥1} log(2π(b∗

k qk∥qkα∥ + εk))= log
(5

6
· 2π

)
+ OT

(
1

ak+1

)
.

Summing over 0 ≤ k ≤ K − 1, from the previous two formulas and Lemma 17 we get

log PN∗(α)=
1

4π
Vol(41)

K−1∑
k=0

1
qk∥qkα∥

−
1
3

K−2∑
k=0

log ak+1 +
1
2

log aK −K log
0

( 1
6

)
(2π)5/6

+
5
6

K−1∑
k=0

log ak

+K
(
−

5
6

log(2π)− log0
(

1+
5
6

)
+log

(5
6

·2π
))

+OT

( K−1∑
k=1

1+ log(akak+1)

ak+1

)
+Oα(1).

Observe that with a remarkable cancellation the coefficient of K vanishes. Indeed, by Euler’s reflection
formula 0(x)0(1 − x)= π/sin(πx) we have 0

( 1
6

)
0

( 5
6

)
= 2π , and hence

− log
0( 1

6)

(2π)5/6
−

5
6

log(2π)− log0
(

1 +
5
6

)
+ log

(5
6

· 2π
)

= 0. (59)

The previous formula for log PN∗(α) thus simplifies to

log PN∗(α)=
1

4π
Vol(41)

K−1∑
k=0

1
qk∥qkα∥

+
1
2

K∑
k=1

log ak + OT

( K−1∑
k=1

1 + log(akak+1)

ak+1

)
+ Oα(1).

Using, for example, property (iii) of continued fractions in Section 3.1, we see that here 1/(qk∥qkα∥)=

ak+1 + O(1/ak + 1/ak+2), and the claim follows. □

7. Proof of Theorems 4 and 5

7.1. Quadratic irrationals. In this section we estimate the limit functions of Pqk (α, (−1)k x/qk) for a
given quadratic irrational α. In order to make our estimates uniform on the interval of interest (−1, 1),
we isolate the singularities at x = −1 and 1. To this end, let us introduce the modified cotangent sum

V ∗

k (x) :=

∑
1≤n≤qk−1,

n ̸=qk−1,qk−qk−1

sin(πn∥qkα∥/qk) cot
(
π

n(−1)k pk + x
qk

)
.

Observe that by excluding n = qk−1 resp. n = qk − qk−1, we avoid n(−1)k pk ≡ −1 (mod qk) resp.
n(−1)k pk ≡ 1 (mod qk). In particular, V ∗

k (x) does not have a singularity on (−2, 2). The evaluation in
Lemma 8(iii) has a perfect analogue for V ∗

k (x).

Lemma 18. Assume (6). For any k ≥ 4 and any x ∈ (−2, 2),

V ∗

k (x)
qk∥qkα∥

= log
ak

2π
−
0′(2 + x)
0(2 + x)

+ O
(

T + log(ak−1ak)

(2 − |x |)ak

)
+ Oα(1/qk).
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Proof. Following the proof of Lemma 8 with obvious modifications, we get

V ∗

k (x)= π∥qkα∥

∑
1≤n≤qk−1,

n ̸=qk−1,qk−qk−1

n
qk

cot
(
π

n(−1)k pk + x
qk

)
+ O

(
∥qkα∥

3qk log qk

2 − |x |

)
.

It remains to prove

C∗

k (x) :=

∑
1≤n≤qk−1,

n ̸=qk−1,qk−qk−1

n
qk

cot
(
π

npk + (−1)k x
qk

)

=
(−1)kqk

π

(
log

ak

2π
−
0′(2 + x)
0(2 + x)

+ O
(

T + log(ak−1ak)

(2 − |x |)ak

))
+ Oα(1). (60)

From Lemma 7 we obtain

C∗

k (0)=

qk−1∑
n=1

n
qk

cot
(
π

npk

qk

)
−

qk−1

qk
cot

(
π
(−1)k+1

qk

)
−

qk − qk−1

qk
cot

(
π
(−1)k

qk

)

=
(−1)kqk

π

(
log

ak

2π
+ γ − 1 + O

(
T + log(ak−1ak)

ak

))
+ Oα(1),

where γ = −0′(1)/0(1) is the Euler–Mascheroni constant. Note that we used cot(π/qk)= qk/π + O(1)
and that qk−1/qk ≪ 1/ak is negligible. Following the proof of Lemma 7 with obvious modifications (note
that excluding n = qk−1 and n = qk − qk−1 corresponds to excluding a = ±1), we get that the derivative
of C∗

k (x) satisfies

C∗

k
′
(x)=

(−1)k+1qk

π

∞∑
a=2

1
(a + x)2

+ O
(

qk(1 + log ak)

(2 − |x |)2ak

)
.

By integrating,

C∗

k (x)− C∗

k (0)=
(−1)k+1qk

π

∞∑
a=2

(
1
a

−
1

a + x

)
+ O

(
qk(1 + log ak)

(2 − |x |)ak

)

=
(−1)k+1qk

π

(
γ − 1 +

0′(2 + x)
0(2 + x)

+ O
(

1 + log ak

(2 − |x |)ak

))
,

and (60) for general x ∈ (−2, 2) follows. □

Next, let us introduce the appropriately modified version of Bk,M(x) from (27): for any integers k ≥ 1
and 0 ≤ M < qk , let

B∗

k,M(x) := log
P∗

M(α, (−1)k x/qk)

P∗

M(pk/qk, (−1)k x/qk)
−

∑
1≤n≤M,

n ̸=qk−1,qk−qk−1

sin(π∥qkα∥/qk) cot
(
π

n(−1)k pk + x
qk

)
,
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where

P∗

M(α, (−1)k x/qk) :=

∏
1≤n≤M,

n ̸=qk−1,qk−qk−1

∣∣2 sin
(
π(nα+ (−1)k x/qk)

)∣∣,
and P∗

M(pk/qk, (−1)k x/qk) is defined analogously.

Proposition 19. Let k ≥ 1 and 0 ≤ M < qk be integers, and assume that qk∥qkα∥ ≤ 2(1 − ck) and
−2< x ≤ 2 − qk∥qkα∥/(1 − ck) with some 100/q2

k ≤ ck < 1. Then

−C
log(4/ck)

(2 − |x |)2a2
k+1

≤ B∗

k,M(x)≤ C
1

a2
k+1qk

with a universal constant C > 0.

Proof. This is an obvious modification of the proof of Proposition 11(i). □

Proof of Theorem 4. Let α = [a0; a1, . . . , ak0, ak0+1, . . . , ak0+p] be a quadratic irrational, and assume that
max1≤r≤p(log ak0+r )/ak0+r+1 ≤ T with some constant T ≥ 1. From Corollary 10 we deduce

log Pqk (α, (−1)k x/qk)

= log
(

|2 sin(π(∥qkα∥ + x/qk))|
|sin(πx)|

|sin(πx/qk)|

)
+

∑
n∈{qk−1,qk−qk−1}

log

∣∣sin(π(nα+ (−1)k x/qk))
∣∣∣∣sin(π(npk/qk + (−1)k x/qk))

∣∣ + V ∗

k (x)+ B∗

k,qk−1(x). (61)

Recall from the proof of Lemma 6 that qk∥qkα∥ ≤ 1 − 1/(eT
+ 2). Applying Proposition 19 with ck =

1/(eT
+2)≤ 1

2 we thus obtain that for all |x | ≤ max{1, 2−2/ak+1} and all large enough k (in terms of T ),

|B∗

k,qk−1(x)| ≪
T

(2 − |x |)2a2
k+1

.

Applying Lemma 18, formula (61) thus simplifies to

log Pqk (α, (−1)k x/qk)

= log
(

|2 sin(π(∥qkα∥ + x/qk))|
|sin(πx)|

|sin(πx/qk)|

)
+

∑
n∈{qk−1,qk−qk−1}

log

∣∣sin(π(nα+ (−1)k x/qk))
∣∣∣∣sin(π(npk/qk + (−1)k x/qk))

∣∣ + qk∥qkα∥

(
log

ak

2π
−
0′(2 + x)
0(2 + x)

)

+ O
(

T + log(ak−1ak)

(2 − |x |)akak+1
+

T
(2 − |x |)2a2

k+1

)
+ Oα(1/qk). (62)

We now let k → ∞ along the arithmetic progression pN + k0 + r , and claim that every term in (62)
(except the first error term) converges. Indeed, we clearly have qk∥qkα∥ → Cr and qk−1∥qkα∥ → Dr
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with some constants Cr , Dr > 0 depending on α. The limit of the first term in (62) is

log
(

|2 sin(π(∥qkα∥ + x/qk))|
|sin(πx)|

|sin(πx/qk)|

)
→ log

(
|2 sin(πx)| ·

∣∣∣∣1 +
Cr

x

∣∣∣∣).
Using trigonometric identities, we once again write∣∣sin

(
π(nα+ (−1)k x/qk)

)∣∣∣∣sin
(
π(npk/qk + (−1)k x/qk)

)∣∣ = |1 + xn + yn|

with
xn := cos(πn(α− pk/qk))− 1 = cos(πn∥qkα∥/qk)− 1

and
yn := sin(πn∥qkα∥/qk) cot

(
π(n(−1)k pk/qk + x/qk)

)
.

For both n = qk−1 and n = qk − qk−1 we have xn → 0. For n = qk−1,

yqk−1 = sin(πqk−1∥qkα∥/qk) cot(π(x − 1)/qk)→
Dr

x − 1
,

whereas for n = qk − qk−1,

yqk−qk−1 = sin(π(qk − qk−1)∥qkα∥/qk) cot(π(x + 1)/qk)→
Cr − Dr

x + 1
.

Note that we used cot(πy)= 1/(πy)+ O(1) as y → 0. Therefore the limit of the second term in (62) is∑
n∈{qk−1,qk−qk−1}

log

∣∣sin
(
π(nα+ (−1)k x/qk)

)∣∣∣∣sin
(
π(npk/qk + (−1)k x/qk)

)∣∣ → log
∣∣∣∣1 +

Dr

x − 1

∣∣∣∣ + log
∣∣∣∣1 +

Cr − Dr

x + 1

∣∣∣∣.
From (62) we thus get that for all |x | ≤ max{1, 2 − 2/ak0+r+1},

log Gα,r (x)= log
(

|2 sin(πx)| ·
∣∣∣∣1 +

Cr

x

∣∣∣∣) + log
∣∣∣∣1 +

Dr

x − 1

∣∣∣∣ + log
∣∣∣∣1 +

Cr − Dr

x + 1

∣∣∣∣
+ Cr

(
log

ak0+r

2π
−
0′(2 + x)
0(2 + x)

)
+ O

(
T + log(ak0+r−1ak0+r )

(2 − |x |)ak0+r ak0+r+1
+

T
(2 − |x |)2a2

k0+r+1

)
,

as claimed. □

7.2. Well approximable irrationals.

Proof of Theorem 5. Let α be such that supk≥1 ak = ∞. It will be enough to prove that

Pqkm
(α, (−1)km x/qkm )e

−Vkm (0) → |2 sin(πx)| locally uniformly on R (63)

for any increasing sequence of positive integers km such that akm+1 → ∞ as m → ∞; recall that Vk(x)
was defined in (24). Indeed, under the stronger assumption

1 + log max1≤ℓ≤km aℓ
akm+1

→ 0 as m → ∞,
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we have Vkm (0)→ 0 by Lemma 8(ii), and thus (63) holds without the factor e−Vkm (0), as claimed. If in
addition (1 + log ak)/ak+1 → 0 (in particular, ak+1 → ∞), then Vk(0)→ 0 by Lemma 8(iii), and (63)
follows without the factor e−Vkm (0) along the full sequence km = m, as claimed.

Fix a large integer A > 0, and let us prove that the convergence in (63) is uniform on [−A, A]. Let

S = Sk = {1 ≤ n ≤ qk − 1 : npk ≡ a (mod qk) with some integer 0< |a| ≤ A},

and let us introduce the modified cotangent sum

V ∗∗

k (x)=

∑
1≤n≤qk−1,

n ̸∈S

sin(πn∥qkα∥/qk) cot
(
π

n(−1)k pk + x
qk

)
.

Note that V ∗∗

k (x) does not have a singularity on (−A −1, A +1). Following the steps in Section 7.1 with
obvious modifications (see (61)), we get

log Pqk (α, (−1)k x/qk)

= log
(

|2 sin
(
π(∥qkα∥ + x/qk)

)
|

|sin(πx)|
|sin(πx/qk)|

)
+

∑
n∈S

log

∣∣sin
(
π(nα+ (−1)k x/qk)

)∣∣∣∣sin
(
π(npk/qk + (−1)k x/qk)

)∣∣
+ V ∗∗

k (x)+ B∗∗

k,qk−1(x).

Here B∗∗

k,qk−1(x) is the perfect analogue of B∗

k,qk−1(x) in (61), and satisfies

|B∗∗

k,qk−1(x)| ≪
1

a2
k+1

, x ∈ [−A, A],

by an obviously modified form of Proposition 19 with ck =
1
2 . Following the steps in the proof of Lemma 8,

it is easy to see that the derivative of V ∗∗

k (x) satisfies |V ∗∗

k
′(x)| ≪ 1/ak+1 on [−A, A]. Therefore for

any x ∈ [−A, A],

V ∗∗

k (x)= V ∗∗

k (0)+ O
(

A
ak+1

)
= Vk(0)−

∑
n∈S

sin(πn∥qkα∥/qk) cot
(
π

n(−1)k pk

qk

)
+ O

(
A

ak+1

)
= Vk(0)+ O

( ∑
0<|a|≤A

∥qkα∥

∣∣∣∣cot
(
π

a
qk

)∣∣∣∣ + A
ak+1

)

= Vk(0)+ O
(

A
ak+1

)
.

By the previous three formulas and the usual trigonometric identities,

Pqk (α, (−1)k x/qk)e−Vk(0) = |2 sin(πx)|
|sin(π(∥qkα∥ + x/qk))|

|sin(πx/qk)|

( ∏
n∈S

|1 + xn + yn|

)
eO(A/ak+1)
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uniformly on [−A, A], where

xn := cos(πn(α− pk/qk))− 1 = cos(πn∥qkα∥/qk)− 1

and

yn := sin(πn∥qkα∥/qk) cot
(
π(n(−1)k pk/qk + x/qk)

)
.

To see (63), it will thus be enough to prove that

|2 sin(πx)|
|sin(π(∥qkα∥ + x/qk))|

|sin(πx/qk)|

∏
n∈S

|1 + xn + yn| → |2 sin(πx)| uniformly on [−A, A] (64)

along any subsequence k = km such that akm+1 → ∞.
First, let x ∈ [−A, A]\

⋃A
a=−A

(
a −

1
100 , a +

1
100

)
. Then

|sin(π(∥qkα∥ + x/qk))|

|sin(πx/qk)|
∼ 1 +

qk∥qkα∥

x
,

as well as

|xn| ≪ ∥qkα∥
2
≪ 1/ak+1 and |yn| ≪A 1/ak+1,

all uniformly in x . Hence

|sin(π(∥qkα∥ + x/qk))|

|sin(πx/qk)|

∏
n∈S

|1 + xn + yn| ∼

(
1 + O

(
1

ak+1

)) ∏
0<|a|≤A

∣∣∣∣1 + OA

(
1

ak+1

)∣∣∣∣
= 1 + OA

(
1

ak+1

)
,

uniformly in x . Thus the convergence in (64) is indeed uniform on [−A, A]\
⋃A

a=−A

(
a −

1
100 , a +

1
100

)
.

Next, let x ∈
(
a −

1
100 , a +

1
100

)
with some 0< |a| ≤ A. Then

|2 sin(πx)|
∏
n∈S

|1 + xn + yn| = |2 sin(πx)| ·
∣∣∣∣1 + O

(
1

|x − a|ak+1

)∣∣∣∣ ∏
0<|a′

|≤A
a′

̸=a

(
1 + OA

(
1

ak+1

))

= |2 sin(πx)| + OA

(
1

ak+1

)
,

uniformly in x ∈
(
a −

1
100 , a +

1
100

)
; indeed, |sin(πx)|/|x −a| ≪ 1 follows from the fact that |sin(πx)| has

a zero at every integer. Therefore the convergence in (64) is also uniform on
(
a −

1
100 , a +

1
100

)
. Finally,

let x ∈
(
−

1
100 ,

1
100

)
. Then

|2 sin(πx)|
|sin(π(∥qkα∥ + x/qk))|

|sin(πx/qk)|
∼ |2 sin(πx)|

(
1 +

qk∥qkα∥

x

)
= |2 sin(πx)| + O

(
1

ak+1

)
,

uniformly in x ∈
(
−

1
100 ,

1
100

)
. Therefore the convergence in (64) is uniform on

(
−

1
100 ,

1
100

)
. This finishes

the proof of (64). □
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