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Optimal lifting for the projective action of SL3(Z)

Amitay Kamber and Hagai Lavner

Let ϵ > 0 and let q → ∞ be a prime. We prove that with high probability, given x , y in the projective
plane over Fq , there exists γ ∈ SL3(Z), with coordinates bounded by q1/3+ϵ , whose projection to SL3(Fq)

sends x to y. The exponent 1
3 is optimal and the result is a high rank generalization of Sarnak’s optimal

strong approximation theorem for SL2(Z).

1. Introduction

In a letter to Miller and Talebizadeh, Sarnak [2015] proved the following lifting theorem, which he called
optimal strong approximation.

Theorem 1.1. Let 0 = SL2(Z), q ∈ Z>0, Gq = SL2(Z/qZ) and let πq : 0 → Gq be the quotient map.
Then for every ϵ > 0, as q → ∞, there exists a set Y ⊂ Gq of size |Y | ≥ |Gq |(1 − oϵ(1)), such that for
every y ∈ Y there exists γ ∈ 0 of norm ∥γ ∥∞ ≤ q3/2+ϵ , with πq(γ )= y, where ∥ · ∥∞ is the infinity norm
on the coordinates of the matrix.

The exponent 3
2 in Theorem 1.1 is optimal, as the size of Gq is asymptotic to q3, while the number of

γ ∈ SL2(Z) satisfying ∥γ ∥∞ ≤ T grows asymptotically like the Haar measure of the ball BT of radius T
in SL2(R) [Duke et al. 1993; Maucourant 2007], i.e., µ(BT )≍ T 2.

We use the standard notation x ≪z y to say that there is a constant C depending only on z such that
x ≤ Cy, and x ≍z y means that x ≪z y and y ≪z x .

We wish to discuss extensions of this theorem to SL3, with a view towards general SLN . If 0= SLN (Z),
then the number of γ ∈0 of satisfying ∥γ ∥∞ ≤ T also grows like the Haar measure of the ball of radius T in
SLN (R), i.e., µ(BT )≍ T N 2

−N [Duke et al. 1993; Maucourant 2007], while the size of Gq = SLN (Z/qZ)

is |Gq | ≍ q N 2
−1. One is therefore led to the following:

Conjecture 1.2. Let 0 = SLN (Z), q ∈ Z>0, Gq = SLN (Z/qZ) and let πq : 0 → Gq be the quotient map.
Then for every ϵ > 0, as q → ∞, there exists a set Y ⊂ Gq of size |Y | ≥ |Gq |(1 − oϵ(1)), such that for
every y ∈ Y there exists γ ∈ 0 of norm ∥γ ∥∞ ≤ q(N

2
−1)/(N 2

−N )+ϵ , with πq(γ ) = y, where ∥ · ∥∞ is the
infinity norm on the coordinates of the matrix.

While we were unable to prove Conjecture 1.2 even for N = 3, we prove a similar theorem for a
nonprincipal congruence subgroup of SL3(Z). For a prime q, let Fq be the field with q elements, let
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Pq = P2(Fq) be the 2-dimensional projective space over Fq , i.e., the set of vectors
( a

b
c

)
, a, b, c ∈ Fq not

all 0, modulo the equivalence relation
( a

b
c

)
∼

(
αa
αb
αc

)
for α ∈ F×

q . The group SL3(Fq) acts naturally on Pq ,
and by composing this action with πq we have an action 8q : SL3(Z)→ Sym(Pq).

Theorem 1.3. Let 0 = SL3(Z), and for a prime q let Pq = P2(Fq) and 8q : SL3(Z) → Sym(Pq) as
above. Then for every ϵ > 0, as q → ∞, there exists a set Y ⊂ Pq of size |Y | ≥ (1 − oϵ(1))|Pq |, such that
for every x ∈ Y , there exists a set Zx ⊂ Pq of size |Zx | ≥ (1−oϵ(1))|Pq |, such that for every y ∈ Zx , there
exists an element γ ∈ 0 satisfying ∥γ ∥∞ ≤ q1/3+ϵ , such that 8q(γ )x = y.

The exponent 1
3 is optimal, since the size of Pq is |Pq | ≍ q2, while the number of elements γ ∈ SL3(Z)

satisfying ∥γ ∥∞ ≤ T is ≍ T 6.
An alternative formulation of Theorem 1.3 is that for all but oϵ(|Pq |

2) of pairs (x, y) ∈ Pq × Pq , there
exists an element γ ∈ 0 satisfying ∥γ ∥∞ ≤ q1/3+ϵ such that 8q(γ )x = y. However, in this formulation
it is a bit harder to see why the exponent 1/3 is optimal, and our proof actually uses the formulation of
Theorem 1.3 as stated.

An important observation is that the premise of Theorem 1.3 actually fails for the point x =1=

(
0
0
1

)
∈ Pq .

Elements sending 1 to
( a

b
c

)
∈ Pq necessarily have the third column modulo q equivalent to

( a
b
c

)
(modulo

the action of F×
q ). Since there are only ≍ T 3 possibilities for the third column, we need to consider

matrices of infinity norm at least q2/3 in order to reach from x = 1 to almost all of y ∈ Pq . As a matter of
fact, one may use the explicit property (T) of SL3(R) from [Oh 2002] together with ideas from [Ghosh
et al. 2018] to deduce that if we allow the size of the matrices to reach q2/3+ϵ we may replace the set Y
in Theorem 1.3 by the entire set Pq .

We deduce Theorem 1.3 from a lattice point counting argument, in the spirit of the work of Sarnak and
Xue [1991]. To state it, we first define a different gauge of largeness on SL3(Z) by ∥γ ∥∞∥γ−1

∥∞. The
number of γ ∈ SL3(Z) satisfying ∥γ ∥∞∥γ−1

∥∞ ≤ T grows asymptotically like T 2 log T [Maucourant
2007]. Note that if ∥γ ∥∞ ≤ T then ∥γ−1

∥∞ ≤ 2T 2. In particular, the ball of radius 2T relatively to
∥ · ∥∞∥ ·

−1
∥∞ contains the ball of radius T 1/3 relatively to ∥ · ∥∞, and their volume is asymptotically the

same up to T o(1). The counting result is as follows:

Theorem 1.4. Let 0 = SL3(Z), and for a prime q let Pq = P2(Fq) and 8q : SL3(Z) → Sym(Pq) as
above. Then there exists a constant C > 0 such that for every prime q, T ≤ Cq2 and ϵ > 0 it holds that

|{(γ, x) ∈ SL3(Z)× P2(Fq) : ∥γ ∥∞∥γ−1
∥∞ ≤ T,8q(γ )(x)= x}| ≪ϵ q2+ϵT .

Underlying Conjecture 1.2 is the principal congruence subgroup 0(q) = kerπq . Let 1 =

(
0
0
1

)
∈ Pq .

Then the group

0′

0(q)=
{
γ ∈ SL3(Z) :8q(γ )(1)= 1

}
=

{(
∗ ∗ a
∗ ∗ b
∗ ∗ ∗

)
∈ SL3(Z) : a = b = 0 mod q

}
is a nonprincipal congruence subgroup of SL3(Z). Theorem 1.3 says that Conjecture 1.2 holds “on
average” for the nonprincipal congruence subgroup 0′

0(q).



Optimal lifting for the projective action of SL3(Z) 751

Conjecturally, such “optimal lifting on average” should hold for every sequence of congruence subgroups
of 0 = SLN (Z), i.e., subgroups of some 0(q), q > 1 an integer. We provide a further example of this
phenomenon for the action of SL3(Z) on flags of F3

q in Theorem 5.1.
Let us provide a spectral context for our results, namely Sarnak’s density conjecture for exceptional

eigenvalues. See also [Golubev and Kamber 2020] for a more detailed discussion.
Theorem 1.1 follows from Selberg’s conjecture about the smallest nontrivial eigenvalue of the Laplacian

of the hyperbolic surfaces 0(q)\H, where H is the hyperbolic plane and 0(q) is the q-th principal
congruence subgroup of 0 = SL2(Z). While Selberg’s conjecture remains widely open, Sarnak proved
Theorem 1.1 using density estimates on exceptional eigenvalues of the Laplacian, which are due to
Huxley [1986]. Similar density results were proved by Sarnak and Xue [1991] using lattice point counting
arguments, but only for arithmetic quotients which are compact. The compactness assumption was
removed in [Huntley and Katznelson 1993; Gamburd 2002] (and the results were moreover extended to
some thin subgroups of SL2(Z)). As a matter of fact, in rank 1 the density property is equivalent to the
lattice point counting property [Golubev and Kamber 2020].

In higher rank, Conjecture 1.2 would similarly follow from a naive Ramanujan conjecture for
0(q)\SLN (R), 0=SLN (Z), which says (falsely!) that the representation of SLN (R) on L2(0(q)\SLN (R))

decomposes into a trivial representation and a tempered representation. Burger, Li and Sarnak’s explanation
of the failure of the naive Ramanujan conjecture [Burger et al. 1992] is closely related to the behavior of
the point x0 = 1 ∈ Pq . As in rank 1, Theorem 1.4 should be equivalent to density estimates for 0′

0(q),
but there are some technical problems coming from the fact that SL3(Z) is not cocompact [Golubev and
Kamber 2020]. Closely related density results were recently proven by Blomer, Buttcane and Maga for
N = 3 in [Blomer et al. 2017], and for general N by [Blomer 2019], using the Kuznetsov trace formula,
and it is very likely that Theorem 1.3 can also be proven (and generalized to N > 3) using those density
arguments. There are some technical problems with the implementation of this approach, for example,
the results of [Blomer et al. 2017] and [Blomer 2019] concern cusp forms, and one has to deal with the
presence of nontempered Eisenstein representations and some other technical issues. Moreover, those
results are limited to subgroups similar to 0′

0(q), and are not available in the context of Theorem 5.1.
Our counting approach is more elementary, and is easier to generalize to other contexts.

The approach of this article can be carried far more generally. We refer to [Golubev and Kamber 2020]
where the approach is studied in detail and in great generality. In particular, counting results such as
Theorem 1.4 (called the weak injective radius property by Golubev and Kamber), imply optimal lifting
results such as Theorem 1.3; see [loc. cit., Theorem 1.5]. In particular, the right counting theorem will imply
Conjecture 1.2. Our restriction to N = 3 and the cases considered in Theorems 1.3 and 5.1 follows from the
fact that in those cases we can prove the relevant counting theorems, namely Theorems 1.4 and 5.2. Such
counting results are available in rank 1 following [Sarnak and Xue 1991], but as far as we know are new in
rank greater than 1. As explained in [Golubev and Kamber 2020], the counting theorems are closely related
to some spectral questions as in the rank 1 case discussed above, but the fact that the space is not compact
significantly complicates matters. We refer again to [Sarnak and Xue 1991] for a more complete discussion.
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Structure of the article. We provide a proof of Theorem 1.1 in Section 2, which serves as a guideline for
the harder case of SL3. The main difference between our proof and the proof in [Sarnak 2015] is that we
avoid using spectral decomposition, which is far harder in SL3.

In Section 3 we prove Theorem 1.4. The proof uses basic number theory and linear algebra.
In Section 4 we deduce Theorem 1.3 from Theorem 1.4. The argument is analytic, and uses various

tools from spectral analysis and representation theory, which include property (T), the pretrace formula
(in a disguised form), and bounds on Harish-Chandra’s 4 function. This section is based on a general
framework developed by the first author with Konstantin Golubev surrounding similar questions [Golubev
and Kamber 2020].

Finally, in Section 5 we prove Theorem 5.1 which is a variant of Theorem 1.3 for the action of SL3(Z)

on flags of F3
q .

2. Proof of Theorem 1.1

The basic input for the proof of Theorem 1.1 is the following counting result, proved in [Gamburd 2002,
Lemma 5.3]; it also appeared earlier, e.g., in [Huxley 1986].

Lemma 2.1. Let ϵ > 0. Then for every q ∈ N, the size of the set

{γ ∈ SL2(Z) : γ = I mod q, ∥γ ∥∞ ≤ T }

is bounded by ≪ϵ T ϵ(T 2/q3
+ T/q + 1).

Proof. Let γ =
(a

c
b
d

)
∈ SL2(Z) be in the set. It holds that γ − I ∈ q Mn(Z), so det(γ − I )= 0 mod q2, or

explicitly

(a − 1)(d − 1)− bc = 0 mod q2.

Since ad − bc = 1, we have a + d = 2 mod q2. Since both a and d are bounded in absolute value by T ,
the number of options for a + d is at most 4T/q2

+ 1. Similarly, the number of options for a is at most
2T/q + 1. Therefore, the number of options for (a, d) is ≪ (T/q2

+ 1)(T/q + 1).
To determine b, c, note that if ad ̸= 1, then bc = 1−ad ̸= 0, and by standard divisor bounds this gives

≪ϵ T ϵ options for (b, c). Otherwise, assuming q > 2, a = d = 1, and then b = 0 or c = 0 (or both). If
b = 0 then c has at most 2T/q + 1 options, while if c = 0, then b has at most 2T/q + 1 options.

All in all, the number of solution is bounded by

≪ϵ (T/q2
+ 1)(T/q + 1)T ϵ

+ T/q + 1 ≪ T ϵ(T 2/q3
+ T/q + 1). □

Our proof of Theorem 1.1 proceeds with some spectral analysis of hyperbolic surfaces associated to
SL2(Z) and its congruence subgroups, which will require some preliminaries. Let H be the hyperbolic
plane, with the model H = {z = x + iy ∈ C : y > 0}. The space H is equipped with the metric defined by
d(x + iy, x ′

+ iy′)= arccosh(1 + ((x − x ′)2 + (y − y′)2)/(2yy′)) and a measure defined by dx dy/y2. It
also has a natural SL2(R) action by Möbius transformation, i.e.,

(a
c

b
d

)
z = (az + b)/(cz + d).
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This action allows us to identify H with G/K , where G = SL2(R), and K = SO(2) is the stabilizer of
the point i ∈ H. We also assume that the Haar measure on G is normalized to agree with the measure on
H on right K-invariant measurable sets.

When using spectral arguments, it will be useful to use a bi-K-invariant (i.e., left and right K-invariant)
gauge of largeness of an element. We therefore define ∥g∥H = ed(i,gi)/2. Explicitly, by the Cartan
decomposition of G, g can be written as

g = k1

(
er/2

e−r/2

)
k2,

with k1, k2 ∈ K = SO(2), and r ∈ R≥0 unique. Then ∥g∥H = er/2. As the L2-norm of the coordinates
of γ is

√
er + e−r , ∥g∥H is closely related to the infinity norm on the coordinates, namely, there exists

a constant C > 0 such that C−1
∥g∥∞ ≤ ∥g∥H ≤ C∥g∥∞. We may therefore prove Theorem 1.1 using

the gauge ∥ · ∥H instead of ∥ · ∥∞. Two important properties of ∥ · ∥H are symmetry ∥g∥H = ∥g−1
∥H, and

submultiplicativity ∥g1g2∥H ≤ ∥g1∥H∥g2∥H. The submultiplicativity follows from the fact that d is a
G-invariant metric on H.

We define the function χT ∈ L1(K\G/K ) as the normalized probability characteristic function of the
set {g ∈ G : ∥g∥H ≤ T }, i.e.,

χT (g)=
1

2π(cosh(2 log T )− 1)

{
1 if ∥g∥H ≤ T,
0 if ∥g∥H > T .

Notice that 2π(cosh r −1) is the volume of the hyperbolic ball of radius r . Here and later by a probability
function we mean a nonnegative function with integral 1.

We also define ψT ∈ L1(K\G/K ) as the function

ψT (g)=
1
T

{
∥g∥

−1
H if ∥g∥H ≤ T,

0 if ∥g∥H > T .

There is a convolution of f ∈ L∞(G/K ) ∼= L∞(H) and χ ∈ L1(K\G/K ), which we usually think
as an action of χ on f . It is simply the convolution of the two functions, when both are considered as
invariant functions on G:

f ∗χ(x)=

∫
g∈G

f (xg−1)χ(g) dg =

∫
g∈G

f (g−1)χ(gx) dg.

It holds that f ∗χ ∈ L∞(H). For example, the value of f ∗χT at g0, is the average of f over the ball
{g0g ∈ G : ∥g∥H ≤ T }.

Lemma 2.2 (convolution lemma). For every g ∈ G, (χT ∗χT )(g)≪ ψT 2(g).

We refer to [Sarnak and Xue 1991, Lemma 2.1] or [Gamburd 2002, Proposition 5.1] for a proof.
Geometrically, the proof calculates the volume of an intersection of two hyperbolic balls. In Lemma 4.2
we give a spectral proof of a similar statement for SL3(R), which also works for SL2(R), but adds a factor
that is logarithmic in T .
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As in the statement Theorem 1.1, let q ∈ Z>0, 0 = SL2(Z), Gq = SL2(Z/qZ) and let πq : 0→ Gq be
the quotient map. Let 0(q)= kerπq .

We look at the locally symmetric space Xq := 0(q)\H ∼= 0\G/K . This space is a hyperbolic orbifold
of finite volume. By L2(Xq) we mean the Hilbert space of measurable functions on Xq with bounded
L2-norm relative to the finite measure on Xq , with the obvious inner-product. We still consider a function
on Xq = 0(q)\H = 0(q)\G/K as a left 0(q)-invariant function on H or on G. Right convolution
by functions from L1(K\G/K ) is defined for bounded functions on Xq , and extends to functions in
L2(Xq) as the convolution defines a bounded operator. In particular, we will consider right convolution
of f ∈ L2(Xq) with χT .

For x0 ∈ Xq , denote bT,x0(x) :=
∑

γ∈0(q) χT (x̃
−1
0 γ x), when x̃0 is any lift of x0 to G. It holds that

bT,x0 ∈ L2(Xq), and
∫

Xq
bT,x0(x) dx = 1.

In particular bT,e corresponds to the point 0(q)eK ∈ 0(q)\H, where e is the identity matrix in G.

Lemma 2.3. For f ∈ L2(Xq) bounded,

⟨ f, bT,x0⟩ = f ∗χT (x0).

Proof. By unfolding,

⟨ f, bT,x0⟩ =

∫
x∈0(q)\H

f (x)
∑
γ∈0(q)

χT (x
−1
0 γ x) dx

=

∫
x∈0(q)\H

∑
γ∈0(q)

f (γ x)χT (x
−1
0 γ x) dx

=

∫
x∈H

f (x)χT (x
−1
0 x) dx

=

∫
x∈H

f (x)χT (x
−1x0) dx

= f ∗χT (x0).

Notice that we used the fact that χT (g)= χT (g
−1), which is a simplification that will not occur in SL3. □

The following lemma uses the combinatorial Lemma 2.1 to get analytic information:

Lemma 2.4. It holds that

∥bT,e∥
2
2 ≪ϵ T ϵ

(
1
q3 +

1
T 2

)
.

In particular, for T = q3/2,

∥bT,e∥
2
2 ≪ϵ

T ϵ

q3 .

Proof. By Lemmas 2.3 and 2.2,

∥bT,e∥
2
2 = bT,e ∗χT (e)=

∑
γ∈0(q)

(χT ∗χT )(γ )≪

∑
γ∈0(q)

ψT 2(γ )=
1

T 2

∑
γ∈0(q) : ∥γ ∥H≤T 2

∥γ ∥
−1
H .
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We next apply discrete partial summation [Hardy and Wright 1979, Theorem 421] which says that for
g : 0(q)→ [1,∞], f : [1,∞] → R nice enough it holds that∑

γ :1≤g(γ )≤Y

f (g(γ ))= f (Y )
∣∣{γ : 1 ≤ g(γ )≤ Y }

∣∣ − ∫ Y

1

∣∣{γ : g(γ )≤ S}
∣∣ d f

d S
(S) d S. (2-1)

Apply this to g(γ )= ∥γ ∥H, f (x)= x−1 and Y = T 2,

1
T 2

∑
γ∈0(q) : ∥γ ∥H≤T 2

∥γ ∥
−1
H =

1
T 2

(
1

T 2 |{γ ∈ 0(q) : ∥γ ∥H ≤ T 2
}| +

∫ T 2

1
|{γ ∈ 0(q) : ∥γ ∥H ≤ S}|S−2 d S

)
≪ϵ T ϵ 1

T 2

(
1

T 2

(
T 4

q3 +
T 2

q
+ 1

)
+

∫ T 2

1

1
S2

(
S2

q3 +
S
q

+ 1
)

d S
)

≪ϵ T ϵ 1
T 2

(
T 2

q3 +
1
q

+
1

T 2 + 1
)

≪ T ϵ

(
1
q3 +

1
T 2

)
.

The first inequality follows from Lemma 2.1. □

Let π ∈ L2(Xq) be the constant probability function on Xq (recall that the space has finite volume).
Denote by L2

0(Xq) the set of functions of integral 0, or alternatively the set of functions orthogonal to π .
The deepest input to the proof is the following celebrated theorem of Selberg:

Theorem 2.5 (Selberg’s spectral gap theorem). There is an explicit τ > 0 such that for every f ∈ L2
0(Xq)

and T > 0 is holds that ∥ f ∗χT η∥2 ≪ T −ητ
∥ f ∥2.

Selberg’s theorem is usually stated as a lower bound on the spectrum of the Laplacian. However, it is
well known that it can be translated to a spectral gap of the convolution operators by large balls. The
statement is true in great generality (see, e.g., [Ghosh et al. 2013, Section 4]), but for the benefit of the
reader we give a sketch of the proof, based on [Golubev and Kamber 2019]. For r ≥ 0 we define an
operator

Ar : L2(Xq)→ L2(Xq),

by

Ar f (x)=

∫
K

∫
K

f
(

xk1

(
er/2 0

0 e−r/2

)
k2

)
dk1 dk2.

By [Golubev and Kamber 2019, Proposition 7.2] (or alternatively, by bounds on Harish-Chandra’s function
for SL2(R)), if the smallest nonzero eigenvalue of the Laplacian1 on L2(Xq) is larger than 1

4 −
( 1

2 − p−1
)2,

then for every f ∈ L2
0(Xq) it holds that

∥Ar f ∥2 ≤ (r + 1)e−r/p
∥ f ∥2.

Selberg’s spectral gap theorem says that the smallest nontrivial eigenvalue of the Laplacian is at
least 3

16 , so the above holds with p = 4. There are various results improving the value of p in Selberg’s
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theorem (see [Sarnak 2005]), and the best one is due to Kim and Sarnak, giving p =
64
25 . However, those

improvements are inconsequential for us. In any case, by comparing the definition, we see that

f ∗χT (x)=
1

2π cosh(2 log T )− 1

∫ 2 log T

0
2π sinh r(Ar f )(x) dr,

and therefore

∥ f ∗χT ∥2 ≤
1

2π cosh(2 log T )− 1

∫ 2 log T

0
2π sinh r∥Ar f ∥2 dr

≤
∥ f ∥2

cosh(2 log T )− 1

∫ 2 log T

0
(r + 1)er(1−1/4) dr

≤
2(log T + 1)2T 2(1−1/4)

∥ f ∥2

cosh(2 log T )− 1
.

For T large enough the above is

≪ T −2/5
∥ f ∥2,

which give us the needed result, with τ =
2
5 . The Kim–Sarnak bounds allows us to take τ =

32
25 + ϵ for

any ϵ > 0.
The important part of the theorem is the independence of τ from q. We fix this τ > 0 for the rest of

this section.
From Selberg’s theorem we deduce:

Lemma 2.6. For T = q3/2, and every ϵ > 0

∥bT,e ∗χT η −π∥2 ≪ϵ q−3/2−ητ+ϵ .

Proof. We have bT,e −π ∈ L2
0(Xq) and π ∗χT = π (as an average of the constant function is the constant

function).
Therefore,

∥bT,e ∗χT η −π∥2 = ∥(bT,e −π) ∗χT η∥2 ≪ T −ητ
∥bT,e −π∥2 ≪ϵ q−3/2−ητ+ϵ,

where in the first inequality we applied Theorem 2.5, and in the second inequality we applied ∥bT,e−π∥2 ≤

∥bT,e∥2 (bT,e −π is the orthogonal projection of bT,e onto L2
0(Xq)) and Lemma 2.4. □

The last lemma implies that the function bT,e ∗χT η is very close to the constant probability function π .
Let us show how this implies Theorem 1.1.

We have a map ι : Gq ∼= 0(q)\0 → Xq ∼= 0(q)\G/K , defined as ι(0(q)γ )= 0(q)γ K . For y ∈ Gq ,
we may consider the function bT0,ι(y). We choose T0 small enough (independently of q), so that the
functions bT0,ι(y) will have disjoint supports for ι(y) ̸= ι(y′). Specifically, it is enough to choose T0 such
that the ball of radius 2 log T0 around i and around γ i ̸= i for γ ∈ SL2(Z) are disjoint. We also notice
that ι has fibers of bounded size, specifically |SL2(Z)∩ K | = 4. This implies that for every ι(y), x ∈ Xq ,
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identified with some lifts ỹ, x̃ to SL2(R), there are at most 4 element γ ∈ 0(q) such that χT0
(ỹ−1γ x̃) ̸= 0.

Therefore,

∥bT0,ι(y)∥
2
2 ≤ 16∥χT0

∥
2
2.

In particular, ∥bT0,ι(y)∥2 is bounded uniformly in q .

Lemma 2.7. Assume that ⟨bT,e ∗ χT η , bT0,ι(y)⟩ > 0. Then there exists γ ∈ 0 such that πq(γ ) = y, and
∥γ ∥H ≤ T0T 1+η.

Proof. By Lemma 2.3, the condition implies that

(bT,e ∗χT η ∗χT0
)(ι(y)) > 0.

Treat the function as a left 0(q)-invariant and right K-invariant function on G. Let γy be a lift of y
to 0, i.e., πq(γy)= y. Therefore, bT,e ∗χT η ∗χT0

(γy) > 0.
By the definition of convolution, there are g′

1, g2, g3 ∈ G, such that g′

1 ∈ supp(bT,e), g2 ∈ supp(χT η),
g3 ∈ supp(χT0

), and such that g′

1g2g3 =γy . Looking at the definition of bT,e and g′

1, there are g1 ∈ supp(χT ),
γ ∈ 0(q) such that e−1γ g′

1 = g1 (we write e for the identity element instead of discarding it, anticipating
the case of SL3 below). Therefore γ−1eg1g2g3 = γy .

Write g = g1g2g3. By the above, ∥g∥H ≤ ∥g1∥H∥g2∥H∥g3∥H ≤ T0T 1+η. In addition, eg = γ γy , so
that g ∈ 0(q)γy . Therefore g ∈ 0 and πq(g)= y, as needed. □

We may now finish the proof of Theorem 1.1. Let η > 0 and write T = q3/2. Assume that Z ⊂ Gq is
the set of y ∈ Gq such that there is no γy ∈ 0 with ∥γy∥H ≤ T0T 1+η and πq(γy)= y. It suffices to prove
that for a fixed η > 0 it holds that |Z | = oη(q3).

By Lemma 2.7, for every y ∈ Z ,

⟨bT,e ∗χT η , bT0,ι(y)⟩ = 0.

Let B =
∑

y∈Z bT0,ι(y). Then by the above and the fact that ⟨π, bT0,ι(y)⟩ = 1/Vol(0(q)\H)≫ 1/q3,

|⟨bT,e ∗χT η −π, B⟩| ≫
|Z |

q3 .

On the other hand, by the choice of T0 and the remarks following it, ∥B∥
2
2 ≪ |Z |. Therefore, using

Lemma 2.6 and Cauchy-Schwarz,

|⟨bT,e ∗χT η −π, B⟩| ≪ ∥B∥2∥bT,e ∗χT η −π∥2 ≪ϵ

√
|Z |q−3/2−ητ+ϵ .

Combining the two estimates and taking ϵ = ητ/2 gives

|Z | ≪η q3−ητ
= oη(q3),

as needed.
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3. Proof of Theorem 1.4

Our goal is to prove that there exists a constant C > 0 such that for every prime q, ϵ > 0 and T ≤ Cq2,
we have ∣∣{(γ, x) ∈ SL3(Z)× P2(Fq) : ∥γ ∥∞∥γ−1

∥∞ ≤ T,8q(γ )x = x
}∣∣ ≪ϵ T q2+ϵ .

If γ mod q has no eigenspace of dimension 2 or 3, then it has at most 3 eigenvectors in P2(Fq). Call
such a γ good mod q and otherwise call it bad mod q. Recall that the number of γ ∈ SL3(Z) such
that ∥γ ∥∞∥γ−1

∥∞ ≤ T is bounded up to a constant by the measure of the corresponding set in SL3(R)

[Duke et al. 1993; Maucourant 2007], which is bounded for every ϵ > 0 by T 2+ϵ [Maucourant 2007]; see
also (4-3). Therefore, for T ≤ q2,∣∣{(γ, x) ∈ SL3(Z)× P2(Fq) : ∥γ ∥∞∥γ−1

∥∞ ≤ T,8q(γ )x = x, γ good mod q
}∣∣

≪
∣∣{γ ∈ SL3(Z) : ∥γ ∥∞∥γ−1

∥∞ ≤ T
}∣∣ ≪ T 2+ϵ

≪ T q2+ϵ .

We therefore restrict to the case of bad γ -s. Notice that bad elements do exist and may have a lot of
fixed points: e.g., the element I ∈ SL3(Z) is bad mod q and 8q(I ) fixes all of P2(Fq). There are two
types of bad elements:

• Elements γ ∈ SL3(Z) such that 8q(γ )= α ISL3(Fq ), for α ∈ Fq , α3
= 1. Such elements will fix the

entire space P2(Fq).

• In any other case, 8q(γ ) will have one eigenspace of dimension 2, and possibly another eigenspace
of dimension 1. Thus 8q(γ ) fixes at most q + 1 + 1 elements in P2(Fq).

Assuming that we choose C < 1
4 , it will hold that either ∥γ ∥∞ < q/2 or ∥γ−1

∥∞ < q/2. On the other
hand, if γ ̸= I and 8q(γ )= α ISL3(Fq ), then γ and γ−1 will have a nonzero entry divisible by q , which is
a contradiction. Therefore, we may assume that for each bad γ , 8q(γ ) will fix at most q + 1 elements
in P2(Fq).

It thus suffices to prove that for some C > 0, and T ≤ Cq2,∣∣{γ ∈ SL3(Z) : ∥γ ∥∞∥γ−1
∥∞ ≤ T, γ bad mod q

}∣∣ ≪ϵ T q1+ϵ .

Assume that γ is bad mod q and ∥γ ∥∞∥γ−1
∥∞ ≤ T . Without loss of generality assume that ∥γ ∥∞ ≤

∥γ−1
∥∞ ≤ T 1/2 < q/2. We identify elements of Fq with integers of absolute value at most q/2. Thus,

once we know the value of an entry of γ mod q we know the same entry in γ .
We divide the range of ∥γ ∥∞ into O(log T ) dyadic subintervals. Denote by S the bound on ∥γ ∥∞

and by R the bound on ∥γ−1
∥∞. Then it is enough to prove that there exists C > 0 such that for every

RS ≤ Cq2 and S ≤ R it holds that∣∣{γ ∈ SL3(Z) : ∥γ ∥∞ ≤ S, ∥γ−1
∥∞ ≤ R, γ bad mod q

}∣∣ ≪ϵ RSq1+ϵ .

It will be useful to understand the behavior of bad γ . Let α ∈ Fq\{0} be the eigenvalue of γ mod q
with an eigenspace of dimension 2. Then the third eigenvalue is α−2 mod q.
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From this it follows that (γ −α I )(γ −α−2 I )= 0 mod q , or,

γ +α−1γ−1
= α+α−2 mod q. (3-1)

By considering the trace of γ and γ−1 we have that

tr γ = α+ 2α−2 mod q, tr γ−1
= α−1

+ 2α2 mod q. (3-2)

Finally, identify α with some lift of it in Z. Then γ − α I mod q is of rank 1, which means that
det(γ −α I )= 0 mod q2. Since det γ = 1, we have

det(γ − x I )= 1 − tr γ−1x + tr γ x2
− x3,

and hence
α2 tr γ −α tr γ−1

= α3
− 1 mod q2. (3-3)

Denote the entries of γ by ai j , 1 ≤ i, j ≤ 3 and the entries of γ−1 by bi j , 1 ≤ i, j ≤ 3.
There are ≤ (2S +1)3 options for choosing the diagonal a11, a22, a33 of γ , and once we know them, we

know tr γ . By (3-2) α (when considered as an element of Fq ) is a root of a known third degree polynomial,
so there are at most 3 options for α. By (3-3) we know tr γ−1 mod q2. Since R ≤ RS ≤ Cq2 < q2/4, we
may assume that |tr γ−1

|< q2/2, so now we know tr γ−1.
By (3-1) we now know the diagonal b11, b22, b33 mod q of γ−1 mod q . Since the entries b11, b22, b33

are bounded in absolute value by R, we have at most 2R/q + 1 options for each of them. We may guess
b11, b22 and get b33 since we know tr γ−1.

In total, we had ≪ S3(R/q + 1)2 options so far. We call the case where ai i a j j = bkk for some
{i, j, k} = {1, 2, 3} exceptional. We will deal with it later and assume for now that we are in the
nonexceptional case.

Notice that a11a22 − a12a21 = b33, or

a12a21 = a11a22 − b33.

Since we are in the nonexceptional case, the right hand side is not 0. By the divisor bound there are
at most ≪ϵ qϵ options for a12, a21. Similarly, all the other entries a13, a31, a23, a32 have at most ≪ϵ qϵ

options.
In total, we counted ≪ϵ qϵS3(R/q + 1)2 bad γ -s in the nonexceptional case. We postpone the

exceptional case to the end of the proof. The same (and better) bounds hold for it as well.
It remains to show that

S3(R/q + 1)2 ≪ RSq,

assuming S ≤ R, RS ≤ Cq2.
If R ≤ q , then we need to show that S3

≪ RSq, or S2
≪ Rq, which is obvious since S ≤ R ≤ q .

If R > q then we need to show that S3 R2/q2
≪ RSq , or S2 R ≪ q3. Since RS ≤ Cq2, this reduces to

showing that S ≪ q , which is obvious since S2
≤ RS ≤ Cq2.
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Exceptional cases. Recall that the exceptional case is when ai i a j j = bkk for some {i, j, k} = {1, 2, 3}.
Assume without loss of generality that a11a22 = b33. Therefore a12a21 = a11a22 − b33 = 0.

We know that γ −α I mod q is of rank 1, so each determinant of a 2×2 submatrix of γ equals 0 mod q .
Therefore

(a11 −α)(a22 −α)− a12a21 = 0 mod q,

so
(a11 −α)(a22 −α)= 0 mod q.

Without loss of generality again, we may assume that a11 = α mod q . By our assumptions on the size
of the matrix, we may lift α to some fixed element in Z of absolute value ≤ q/2 and let a11 = α. By the
above, a12a21 = 0, and by symmetry again, we may assume that a21 = 0. Some more minors give:

a31(a22 −α)= a21a32 = 0 mod q. (3-4)

a31a23 = a21(a33 −α)= 0 mod q. (3-5)

We now divide into two cases according to whether a31 = 0:

Case 1 a11 = α, a21 = 0, a31 = 0. In this case, the matrix is of the form

γ =

α a12 a13

0 a22 a23

0 a32 a33

 .

Denote A =
(a22

a32

a23
a33

)
. It holds that α det A = 1. Therefore α= ±1 and det A = ±1. We also know that the

eigenvalues of A mod q are either ±1 (if α = −1) or 1 with multiplicity 2 (if α = 1). Therefore the trace
of A is either 0 or 2. We now separate into two further cases. In the first case a22 ̸= α and a33 ̸= α, or
equivalently a22a33 ̸= det A. In the second case we may assume without loss of generality that a22 = α.

Case 1a a11 = α, a21 = 0, a31 = 0, a22 ̸= α, a33 ̸= α. The entry a22 has 2S + 1 options, and it
determines the value of a33 since we know the trace of A. In this subcase it holds that
a23a32 = det A − a22a33 ̸= 0. By the divisor bound there are ≪ϵ Sϵ options for a23, a32 and
both are nonzero. We also know that the third column of γ −α I mod q is a multiple of the
second column, and now we know the ratio. This means that after we choose a12 in 2S + 1
ways it sets a13 uniquely. Therefore there are ≪ϵ S2+ϵ

≤ RSqϵ options in this case.

Case 1b a11 = α, a21 = 0, a31 = 0, a22 = α, a33 = 1. In this case a23a32 = det A − a22a33 = 0. If
a23 ̸= 0 then a32 = a12 = 0 and there are ≤ (2S +1)2 options for a23, a13. Similarly, if a32 ̸= 0
then a23 = 0 and once we know a12 we also know a13. Therefore there are ≪ S2

≤ RS option
in this case.

Case 2 a11 = α, a21 = 0, a31 ̸= 0. By (3-4), (3-5) we have a22 = α, a23 = 0, and hence

γ −α I =

 0 a12 a13

0 0 0
a31 a32 a33−α


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Since its rank mod q is 1 and a31 ̸= 0 the second and third columns are scalar multiples of the first, thus
a12 = a13 = 0. Therefore γ is of the form

γ =

 α 0 0
0 α 0

a31 a32 a33

 .

Since det γ = 1 it holds that α = ±1, a33 = 1 and there are ≪ S2
≤ RS options for γ .

4. Proof of Theorem 1.3

As in the proof of Theorem 1.1, the proof of Theorem 1.3 is analytic, and employs the combinatorial
Theorem 1.4 as an input. Since we wish to use the usual notations of dividing SL3(R) by SL3(Z) from
the left, we apply a transpose to the question as stated in Theorem 1.3.

Let

00(q)=


∗ ∗ ∗

∗ ∗ ∗

a b ∗

 ∈ SL3(Z) : a = b = 0 mod q

 .
We have a right action of 0 = SL3(Z) on 00(q). We let P tr

q = 00(q)\0 (it is obviously isomorphic to Pq

as a set with a 0 action). Then Theorem 1.3 can be stated in the following equivalent formulation:

Theorem 4.1. As q → ∞ among primes, for every ϵ > 0 there exists a set Y ⊂ 00(q)\0 = P tr
q of size

|Y |≥ (1−oϵ(1))|P tr
q |, such that for every x0 ∈Y , there exists a set Zx0 ⊂ P tr

q of size |Zx0 |≥ (1−oϵ(1))|P tr
q |,

such that for every y ∈ Zx0 , there exists an element γ ∈ 0 satisfying ∥γ ∥∞ ≤ q1/3+ϵ , such that x0γ = y.

Let K = SO(3) be the maximal compact subgroup of G = SL3(R). By the Cartan decomposition each
element g ∈ G can be written as

g = k1

a1

a2

a3

 k2,

with k1, k2 ∈ SO(3), and unique a1, a2, a3 ∈ R>0, satisfying a1 ≥ a2 ≥ a3 > 0 and a1a2a3 = 1. Define
∥g∥K = a1. Since K = SO(3) is compact there exists a constant C > 0 such that

C−1
∥g∥∞ ≤ ∥g∥K ≤ C∥g∥∞.

We may therefore prove Theorem 4.1 using ∥ · ∥K instead of ∥ · ∥∞.
The size ∥ · ∥K will play the same role as ∥ · ∥H in the SL2 case. Let us note some of its properties.

There is a constant C > 0 such that ∥g1g2∥K ≤ C∥g1∥K ∥g2∥K (actually, one may take C = 1, but this
detail will not influence us). A big difference from the SL2 case comes from the fact that ∥γ ∥K and
∥γ−1

∥K can be quite different. However, it does hold that ∥γ ∥K ≪ ∥γ−1
∥

2
K .
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It will also be useful to define another bi-K invariant gauge of largeness, by ∥g∥δ = a1a−1
3 , where

a1, a3 are as in the Cartan decomposition. It holds that there is a constant C > 0 such that

C−1
∥g∥∞∥g−1

∥∞ ≤ ∥g∥δ ≤ C∥g∥∞∥g−1
∥∞. (4-1)

Now we have ∥g∥δ = ∥g−1
∥δ , and there is C > 0 (which may be chosen to be C = 1 by extra analysis)

such that ∥g1g2∥δ ≤ C∥g1∥δ∥g2∥δ.
The relation between the two sizes is that ∥g∥δ ≤ ∥g∥

3
K , which follows from the fact that in the Cartan

decomposition a−1
3 = a1a2 ≤ a2

1 , so a1a−1
3 ≤ a3

1 .
We will want to estimate the size of balls relative to ∥ · ∥K and ∥ · ∥δ. For this, we use the following

formula for the Haar measure µ of G [Knapp 1986, Proposition 5.28], which holds up to multiplication
by a scalar C > 0: ∫

G
f (g) dµ= C

∫
K

∫
K

∫
a+

f (k exp(a)k ′)S(a) dk dk ′ da,

where

a+ =

a =

α1

α2

α3

 ∈ M3(R) : α1 ≥ α2 ≥ α3, α1 +α2 +α3 = 0

 ,
and

S(a)= sinh(α1 −α2) sinh(α2 −α3) sinh(α3 −α1).

Notice that for α1 −α2 ≥ 1, α2 −α3 ≥ 1, S(a) behaves like ∥a∥
2
δ . This implies that

µ({g ∈ G : ∥g∥K ≤ T })≍ T 6, (4-2)

and
µ({g ∈ G : ∥g∥δ ≤ T })≍ log(T)T 2. (4-3)

For completeness let us explain the calculation of (4-3), the calculation for (4-2) is similar; see
[Maucourant 2007; Gorodnik and Weiss 2007] for more accurate and general statements. To simplify
notations we identify a ∈ a+ with a = (α1, α2, α3) ∈ R3. The condition a1a−1

3 ≤ T translates under the
inverse of the exponential map and the Cartan decomposition to α1 −α3 ≤ log T . Denote

B(T )= {a ∈ a+ : α1 −α3 ≤ log T }

Since {g ∈ G : ∥g∥δ ≤ T } = K exp(B(T ))K ,

µ({g ∈ G : ∥g∥δ ≤ T })=

∫
a∈B(T )

S(a) da.

Let us parametrize the set B(T ) by looking at the vectors v1 = (1,−1, 0), v2 = (−1, 2,−1). Then
B(T )=

{
sv1 + tv2 : 0 ≤ s ≤

1
2 log T, 0 ≤ t ≤ s/2

}
. We therefore get

µ({g ∈ G : ∥g∥δ ≤ T })=

∫ 1
2 log T

0

∫ s/2

0
sinh(2s − 3t) sinh(3t) sinh(2s) dt ds.
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Using the upper bound sinh x ≤ ex , the above is upper bounded by

≤

∫ 1
2 log T

0

∫ s/2

0
e4s dt ds ≤

∫ 1
2 log T

0
se4s/2 ds ≪ log(T)T 2.

Using the lower bound sinh x ≥ ex/4 for x ≥ 1, we get the lower bound

≥

∫ 1
2 log T

1
2 log T −1

∫ s/2−1

1
e4s dt ds ≫ log(T)T 2.

Let χT , χT,δ ∈ L1(K\G/K ) be

χT (g)=
1

µ({g ∈ G : ∥g∥K ≤ T })

{
1 ∥g∥K ≤ T,
0 else,

χT,δ(g)=
1

µ({g ∈ G : ∥g∥δ ≤ T })

{
1 ∥g∥δ ≤ T,
0 else.

The functions χT , χT,δ are simply the probability characteristic functions of the balls according to ∥ · ∥K

and ∥ · ∥δ.
By (4-2), (4-3) and the definition of ∥ · ∥K , ∥ · ∥δ, for every g ∈ G,

χT (g)≫ log TχT 3,δ
(g).

Let ψT : G → R be

ψT (g)=
1
T

{
∥g∥

−1
δ ∥g∥δ ≤ T,

0 else.

For f : G → C, we let f ∗
: G → C be the function f ∗(g)= f (g−1).

Now we have the following version of Lemma 2.2:

Lemma 4.2 (convolution lemma). There exists a constant C > 0 such that for T ≥ 1

χT,δ ∗χT,δ(g)≤ (log T + 2)CψCT 2(g).

As a result, there exist a constant C ′ > 0 such that for T ≥ 1

χT ∗χ∗

T ≤ (log T + 2)C
′

ψC ′T 6(g).

Proof. Normalize K to have measure 1. Let 4 : G → R+ be Harish-Chandra’s function, defined as

4(g)=

∫
K
δ−1/2(gk) dk,

where δ : G → R>0 is defined, using the Iwasawa decomposition G = K P , as

δ

k

a1 ∗ ∗

0 a2 ∗

0 0 a3

 = a2
1a−2

3 .

(When restricted to P , δ is the modular function of P . Notice the similarity between δ(g) and ∥g∥
2
δ ,

hence the notation.)
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There are standard bounds on 4, given by (see, e.g., [Trombi and Varadarajan 1972, 2.1])

∥g∥
−1
δ ≤4(g)≪ (log∥g∥ + 1)C0∥g∥

−1
δ (4-4)

for some C0 > 0. Using these upper bounds, we find that for some C2 > 0,∫
G
χT,δ4(g) dg =

1
µ({g ∈ G : ∥g∥δ ≤ T })

∫
g:∥g∥δ≤T

4(g) dg ≪ (log T + 1)C2 T −1.

Harish-Chandra’s function 4 arises as follows; see, e.g., [Ghosh et al. 2013, Section 3]. Let (π, V )
be the spherical representation of G unitarily induced from the trivial character of P . It holds that if
f ∈ L1(K\G/K ) and v ∈ V is K-invariant, then

π( f )v =

∫
G

f (g)π(g)v dg =

(∫
G

f (g)4(g) dg
)
v.

Since π( f1 ∗ f2)v = π( f1)π( f2)v,∫
G
(χT,δ ∗χT,δ)(g)4(g) dg =

(∫
G
χT,δ(g)4(g) dg

)(∫
G
χT,δ(g)4(g) dg

)
≪ (log T + 1)2C2 T −2.

To show pointwise bounds, we notice that if χT,δ ∗ χT,δ(g) = R, then χT +1,δ ∗ χT +1,δ(g
′)≫ R, for

g′ in an annulus of size similar to that of g, i.e., for C−1
∥g∥δ ≤ ∥g′

∥δ ≤ C∥g∥δ for some C > 1. This
annulus is of measure ≍ ∥g∥

2
δ . Therefore,

χT,δ ∗χT,δ(g)∥g∥
2
δ4(g)≪

∫
G
(χT +1,δ ∗χT +1,δ)(g

′)4(g′) dg′
≪ (log T + 1)2C2 T −2,

and the first bound follows by applying the lower bound of (4-4).
The bound on χT follows from the bound on χT,δ and the relation between them. □

Now consider the locally symmetric space Xq =00(q)\G/K . As in the SL2 case, it has finite measure,
and we will consider the space L2(Xq), with the natural L2-norm.

We first discuss the spectral gap. We denote by L2
0(Xq) the functions in L2(Xq) of integral 0. Since χT

is bi-K-invariant and sufficiently nice, the function χT acts by convolution from the right on f ∈ L2(Xq),
and the resulting function is well defined pointwise if f is bounded. The operation sends L0(Xq) to itself.

Theorem 4.3 (spectral gap). There exists τ > 0 such that for T > 0 the operator χT satisfies for every
f ∈ L2

0(Xq),
∥ f ∗χT ∥2 ≪ T −τ

∥ f ∥2.

The theorem follows from explicit versions of property (T), or explicit versions of the mean ergodic
theorem (e.g., [Ghosh et al. 2013, Section 4]) which are actually true for all lattices in G = SL3(R)

uniformly in T and the lattice. It is remarkable that the proof of Theorem 4.3 is much simpler than the
proof of Theorem 2.5.

As in the SL2 case, we define for x0 ∈ Xq the function bT,x0(x)=
∑

γ∈00(q) χT (x̃
−1
0 γ x), where x̃0 is

any lift of x0 to G.
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We have a map ι : 00(q)\0→ Xq defined by ι(00(q)x0)= 00x0K ∈ Xq . By a slight abuse of notation
we write ι(00(q)x0)= ι(x0).

The map ι has fibers of bounded size (independently of q), and we may choose T0 small enough so
that ι(y) ̸= ι(y′) implies that bT0,ι(y) and bT0,ι(y′) have disjoint supports. In addition, bT0,ι(y) will have a
bounded L2-norm as a function in L2(Xq).

Lemma 4.4. For f ∈ L2(Xq) bounded,

⟨ f, bT,x0⟩ = ( f ∗χ∗

T )(x0).

The proof is the same as the proof of Lemma 2.3.

Lemma 4.5. Let C > 0, ϵ0 > 0 fixed. Let x0 ∈ 00(q)\0 and assume for T ′
≤ Cq2,

|{γ ∈ 0 : ∥γ ∥δ ≤ T ′, x0γ = x0}| ≪ϵ0 qϵ0 T ′.

Then there exists C ′ > 0 depending only on C such that for T = C ′q1/3 it holds that for every ϵ > 0,

∥bT,ι(x0)∥2 ≪ϵ0,ϵ q−1+ϵ0+ϵ .

Proof. Notice that γ ∈ 0 satisfies 00(q)x0γ = 00(q)x0 if and only if γ ∈ x−1
0 00(q)x0 (the last group is a

well defined subgroup of 0). Therefore we may rewrite the assumption in the following manner: For
every T ′

≤ Cq2,

|{γ ∈ 00(q) : ∥x−1
0 γ x0∥δ ≤ T ′

}| ≪ϵ0 qϵ0 T ′, (4-5)

where we identify x0 with a fixed element of 0 ≤ G.
Write using Lemma 4.4,

∥bT,ι(x0)∥
2
2 = ⟨bT,ι(x0), bT,ι(x0)⟩ = bT,ι(x0) ∗χ

∗

T (ι(x0))=
∑

γ∈00(q)

(χT ∗χ∗

T )(x
−1
0 γ x0)≪ϵ T ϵψC1T 6(x−1

0 γ x0),

where in the last inequality we used Lemma 4.2.
Therefore, the lemma will follow if we will prove that for T = C ′q1/3,∑

γ∈00

ψC1T 6(x−1
0 γ x0)= T −6

∑
γ∈00(q):∥x−1

0 γ x0∥δ≤C1T 6

∥x−1
0 γ x0∥

−1
δ

≪ q−2
∑

γ∈00(q):∥x−1
0 γ x0∥δ≤C2q2

∥x−1
0 γ x0∥

−1
δ

!
≪ϵ q−2+ϵ0+ϵ,

where C2 = C1C ′6.
So it suffices to show that ∑

γ∈00(q):∥x−1
0 γ x0∥

−1
δ ≤C2q2

∥x−1
0 γ x0∥δ

!
≪ϵ,ϵ0 qϵ+ϵ0 .
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Applying (2-1) (discrete partial summation), with g(γ )= ∥γ ∥δ, f (x)= x−1 and Y = C2q2, we have∑
γ∈00(q)

∥x−1
0 γ x0∥δ≤C2q2

∥x−1
0 γ x0∥

−1
δ ≪

∣∣{γ : ∥x−1
0 γ x0∥δ ≤ C2q2}∣∣ q−2

+

∫ C2q2

1

∣∣{γ : ∥x−1
0 γ x0∥δ ≤ S

}∣∣ S−2 d S.

Choosing C ′ small enough so that C2 = C1C ′6
≤ C and applying (4-5) we obtain the desired bound

for the last value:

≪ϵ,ϵ0 qϵ+ϵ0 + qϵ+ϵ0

∫ C3q2

1
S−1 d S ≪ϵ q2ϵ+ϵ0 . □

We denote by π ∈ L2(Xq) the constant probability function on Xq .
Using the counting result Theorem 1.4 we will now show that for many points x0 ∈ 00(q)\0 the

condition of Lemma 4.5 holds, and thus obtain:

Lemma 4.6. There exists C > 0, τ > 0, such that for every ϵ0 > 0, as q → ∞ among primes, there exists
a set Y ⊂ 00(q)\0 = P tr

q of size |Y | ≥ (1 − oϵ0(1))|00(q)\0|, such that for every 00x0 ∈ Y , it holds for
T = Cq1/3 that

∥bT,ι(x0) ∗χT η −π∥2 ≪ϵ0 q−1−ητ+ϵ0 .

Proof. By Theorem 1.4 and (4-1) it holds that for some C > 0, for all T ≤ Cq2 and ϵ > 0∑
x0∈00(q)\0

|{γ ∈ 0 : ∥γ ∥δ ≤ T, x0γ = x0}| ≪ϵ q2+ϵT .

Since |00(q)\0| = (1 + o(1))q2, we may choose a subset Y ⊂ 00(q)\0 of size

|Y | ≥ (1 − oϵ0(1))|00(q)\0|,

such that for every x0 ∈ Y ,

|{γ ∈ 0 : ∥γ ∥δ ≤ T, x0γ = x0}| ≪ϵ0 qϵ0 T .

We now apply Lemma 4.5 to every x0 ∈ Y to obtain

∥bT,ι(x0)∥2 ≪ϵ0 q−1+ϵ0 .

Next, we apply Theorem 4.3 as in Lemma 2.6 to deduce the final result. □

We may now finish the proof of Theorem 4.1, similar to the SL2 case.

Lemma 4.7. There is C ′ > 0 such that for x0, y ∈ 00(q)\0, if ⟨bT,ι(x0) ∗χT η , bT0,ι(y)⟩> 0, then there is
γ ∈ 0 such that x0γ = y, and ∥γ ∥K ≤ C ′T 1+η.

Proof. The proof is essentially the same as Lemma 2.7. We have by Lemma 4.4

bT,ι(x0) ∗χT η ∗χ∗

T0
(ι(y0)) > 0.
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Denote by x̃0, ỹ as some lifts of x0, y to 0. We get g1, g2, g3 ∈ G, γ ∈00(q) such that γ−1 x̃0g1g2g3 = ỹ,
with g1 ∈ supp(χT ), g2 ∈ supp(χT η), g3 ∈ supp(χ∗

T0
). Writing g = g1g2g3, we have that

∥g∥K ≪ ∥g1∥K ∥g2∥K ∥g3∥K ≪ T 1+η.

In addition g = x̃−1
0 γ ỹ ∈ x−1

0 00(q)y ⊂ 0, which says that x0γ = y, as needed. □

To complete the proof, fix ϵ > 0. Let x0 ∈ 00(q)\0 be in the set Y of Lemma 4.6. Denote by Z̃x0 the
set of elements y ∈ 00(q)\0 for which there is no γ ∈ 0 with ∥γ ∥K ≤ q1/3+ϵ

K such that x0γ = y. It is
enough to prove that Z̃x0 = o(|00(q)\0|)= o(q2).

Choose T = Cq1/3, and η small enough so that C ′T 1+η < q1/3+ϵ , with C as in Lemma 4.6 and C ′ as
in Lemma 4.7.

We denote B =
∑

y∈Z̃x0
bT,ι(y) ∈ L2(Xq). Then by Lemma 4.7

⟨bT,x0 ∗χT η −π, B⟩ =
|Z̃x0 |

Vol(Xq)
≫

|Z̃x0 |

q2 .

On the other hand, by the choice of x0 and Lemma 4.6,

⟨bT,x0 ∗χT η −π, B⟩ ≪ ∥B∥2∥bT,x0 ∗χT η −π∥2 ≪ϵ0

√
|Z̃x0 |q

−1−ητ+ϵ0 .

By combining the two estimates and choosing ϵ0 small enough, we get the desired result

|Z̃x0 | ≪ϵ0 q2−2ητ−2ϵ0 = o(q2).

5. Optimal lifting for the action on flags

In this section we prove optimal lifting for another action of SL3(Z). Let Bq be the set of complete flags
in F3

q , i.e.,

Bq = {(V1, V2) : 0< V1 < V2 < F3
q},

i.e., V1 ⊂ V2 are subspaces of F3
q , such that dim V1 = 1, dim V2 = 2.

There is a natural action 8q : SL3(Z)→ Sym(Bq). It gives rise to a nonprincipal congruence subgroup

0′

2(q)=


∗ a b

∗ ∗ c
∗ ∗ ∗

 ∈ SL3(Z) : a = b = c = 0 mod q

 .
Concretely,

0′

2(q)= {γ ∈ SL3(Z) :8q(γ )(1)= 1},

where

1 =

(
span

{(
0
0
1

)}
, span

{(
0
0
1

)
,
(

0
1
0

)})
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The result reads as follows:

Theorem 5.1. Let 0 = SL3(Z), and for a prime q let Bq and 8q : SL3(Z)→ Sym(Bq) as above. Then
for every ϵ > 0, as q → ∞, there exists a set Y ⊂ Bq of size |Y | ≥ (1 − oϵ(1))|Bq |, such that for every
x ∈ Y , there exists a set Zx ⊂ Bq of size |Zx | ≥ (1 − oϵ(1))|Bq |, such that for every y ∈ Zx , there exists
an element γ ∈ 0 satisfying ∥γ ∥∞ ≤ q1/2+ϵ , such that 8q(γ )x = y.

The exponent 1
2 is optimal, since the size of Bq is |Bq | ≍ q3, while the number of elements γ ∈ SL3(Z)

satisfying ∥γ ∥∞ ≤ T is ≍ T 6. This also hints why handling flags is harder than handling the projective
plane: The volume of the homogenous space is larger (q3 instead of q2). In comparison, the principal
congruence subgroup gives the much larger volume q8, and optimal lifting for it is still open.

The proof of Theorem 5.1 is very similar to the proof of Theorem 1.3. The analytic part is essentially
identical to Section 4, with some minor modifications coming from the fact that the size |Pq | ≍ q2 is
replaced by |Bq | ≍ q3. We therefore leave it to the reader.

The counting part needs a slightly more delicate argument. The needed result is an analog of
Theorem 1.4, as follows:

Theorem 5.2. There exists a constant C > 0 such that for every prime q , T ≤ Cq3 and ϵ > 0 it holds that

|{(γ, x) ∈ SL3(Z)× Bq : ∥γ ∥∞∥γ−1
∥∞ ≤ T,8q(γ )(x)= x}| ≪ϵ q3+ϵT .

We prove Theorem 5.2 in the rest of this section.
By dyadically dividing the range of ∥γ ∥∞ into O(log T ) subintervals, it is enough to prove that there

exists C > 0 such that for every S ≤ R and RS ≤ Cq3:

|{(γ, x) ∈ SL3(Z)× Bq : ∥γ ∥∞ ≤ S, ∥γ−1
∥∞ ≤ R,8q(γ )(x)= x}| ≪ϵ q3+ϵRS.

We identify 8q(γ ) ∈ SL3(Fq), and let P(t) ∈ Fq [t] be the characteristic polynomial of 8q(γ ).
We first notice that if x = (V1, V2)∈ Bq is a fixed point of8q(γ ), then V1 defines a projective eigenvector

of 8q(γ ), so 8q(γ ) has an eigenvector and P(t) has a root. Similarly, V2 is a two-dimensional invariant
subspace containing an eigenvector, so P(t) has at least two roots. We deduce that if 8q(γ ) has a fixed
point x ∈ Bq , then the polynomial P(t) splits. Assuming P(t) splits, we divide into several subcases:

(1) Assume that P(t) has three different roots, 8q(γ ) is diagonalizable, with eigenvectors v1, v2, v3.
Then 8q(γ ) fixes the points of the form (V1, V2), V1 = span{vi }, V2 = span{vi , v j }, for 1 ≤ i ̸= j ≤ 3.
So 8q(γ ) has 6 fixed points in Bq .

(2) Assume that P(t) has the roots (α, α, α−2), α3
̸= 1, and the eigenspace ker(8q(γ )−α I ) of eigenvalue

α eigenvalue α is of dimension 1. Then let v1 be an eigenvector of eigenvalue α, v2 an eigenvector of
eigenvalue α−2, and U = ker(8q(γ )−α I )2 the two-dimensional generalized eigenspace of eigenvalue α.
Then the fixed points of 8q(γ ) are of the form V1 = span{vi }, V2 = span{v1, v2} for 1 ≤ i ̸= j ≤ 2, or of
the form V1 = span{v1}, V2 = U . So 8q(γ ) has 3 fixed points in Bq .
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(3) Assume that P(t) has a triple root α ∈ Fq (with α3
= 1), and the eigenspace ker(8q(γ )−α I ) is one

dimensional, then the only fixed point is of the form V1 = ker(8q(γ )−α I ), V2 = ker(8q(γ )−α I )2. So
8q(γ ) has a unique fixed point in Bq .

(4) Assume that P(t) has roots (α, α, α−2), α3
̸= 1, and the eigenspace U = ker(8q(γ ) − α I ) of

eigenvalue α is of dimension 2, i.e., the Jordan form of 8q(γ ) isα 0 0
0 α 0
0 0 α−2

 , α3
̸= 1.

Let v1 ∈ U denote an eigenvector of eigenvalue α, and let v2 be an eigenvector of eigenvalue α−2. Then all
fixed points of 8q(γ ) are of the form V1 = span{vi }, v2 = span{vi , v j }, 1 ≤ i ̸= j ≤ 2, or V1 = span{v1},
V2 = U (for different choices of v1). There are (q +1) options for span{v1}, so in total8q(γ ) has 3(q +1)
fixed points in Bq .

(5) If P(t) has a unique root α ∈ Fq , α3
= 1, and the eigenspace U = ker(8q(γ )−α I ) of eigenvalue α

is of dimension 2, then the Jordan form of 8q(γ ) is of the formα 1 0
0 α 0
0 0 α

 α3
= 1.

In this case, the operator 8q(γ )−α is nilpotent, with dim Im(8q(γ )−α)= 1, dim ker(8q(γ )−α)= 2.
If x = (V1, V2) is a fixed point of 8q(γ ), then U = V2 ∩ ker(8q(γ )− α) satisfies either dim U = 2 or
dim U = 1:

• If dim U = 1, we must choose V1 = U , and V1 = (8q(γ )− α)V2, and by dimension counting
V1 = Im(8q(γ )− α). Therefore, V1 is uniquely defined and V2 can be chosen as any subspace
containing V1, in q + 1 ways.

• If dim U = 2, then V2 = ker(8q(γ )−α I ) is uniquely defined, and V1 can be chosen in q + 1 ways
as a subspace of V2.

We conclude that 8q(γ ) has 2(q + 1) fixed points in Bq .

(6) If P(t) has a unique root α ∈ Fq , α3
= 1 and 8q(γ )= α ISL3(Fq ), then every x ∈ Bq is a fixed point

of 8q(γ ).

As in Section 3, we call γ ∈ SL3(Z) bad mod q if 8q(γ ) has an eigenspace of dimension at least 2, i.e.,
corresponds to one of the last three cases above.

Theorem 5.2 will therefore follow from the following two lemmas:

Lemma 5.3. There exists C > 0 such that for every α ∈ Fq , α3
= 1, S ≤ R and RS ≤ Cq3

|{γ ∈ SL3(Z) : ∥γ ∥∞ ≤ S, ∥γ−1
∥∞ ≤ R, γ = α I mod q}| ≪ϵ qϵRS.
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Lemma 5.4. There exists C > 0 such that for every S ≤ R and RS ≤ Cq3

|{γ ∈ SL3(Z) : ∥γ ∥∞ ≤ S, ∥γ−1
∥∞ ≤ R, γ bad mod q}| ≪ϵ q2+ϵRS.

Proof of Lemma 5.3. We will give a short and nonefficient estimate, which may be improved significantly,
at least when α = 1 ∈ Fq .

Fix some lift of α to Z, such that α3
= 1 mod q2. Then (γ −α I )2 = 0 mod q2, so γ 2

− 2αγ +α2 I =

0 mod q2. Multiply by αγ−1 and we get that

γ−1
= 2α2

−αγ mod q2. (5-1)

By the inversion formula, it holds that ∥γ−1
∥∞ ≤ 2∥γ ∥

2
∞

. We may therefore assume that R ≤ 2S2, so
R3

≤ 2R2S2
≤ 2C2q6. By adjusting the constant C we may assume that ∥γ−1

∥∞ ≤ R ≤ q2/4, and (5-1)
then implies that given an entry of γ , we know the corresponding entry of γ−1.

As in Section 3, we denote the entries of γ by ai j and the entries of γ−1 by bi j .
Since γ = α I mod q, we may choose the diagonal of γ using ≪ (S/q + 1)3 options. By (5-1) we

know the diagonal of γ−1. We can write a12a21 = a11a22 − b33, and the right hand side is known. If
a11a22 −b33 ̸= 0 then there are ≪ Sϵ options for a12, a21. If a11a22 −b33 = 0 then there are ≪ (S/q +1)
options for a12, a21. The same is true for the other nondiagonal elements.

All in all, there are

≪ϵ (S/q + 1)3(S/q + 1 + Sϵ)3

options for γ . If S ≤ q this is obviously smaller than qϵRS. If S ≥ q , then we need to show that

(S/q)6 ≪ qϵRS

or S5/R ≪ q6+ϵ , which is true since

S5/R ≤ S4
≤ (RS)2 ≤ q6.

□

For the proof of Lemma 5.4 we will need the following:

Lemma 5.5. The number of solutions for (3-2), (3-3) in tr γ, tr γ−1
∈ Z, α ∈ Fq , |tr γ | ≤ S, |tr γ−1

| ≤ R
is bounded by ≪ (S/q + 1)(R/q + 1)+ q.

Proof. Assume that (x1, y1, α), (x2, y2, α) are solutions. Then by (3-2), x1 − x2 = y1 − y2 = 0 mod q.
Denote z = (x1 − y1)/q, w = (x2 − y2)/q. Notice that |z| ≤ 2S/q, |w| ≤ 2R/q. By (3-3) (z, w, α) is a
solution to αqz − qw = 0 mod q2, or

αz −w = 0 mod q. (5-2)

Therefore, A solutions with the same α∈Fq for (3-2),(3-3) give A solutions to (5-2) with the same α∈Fq .
So the total number of solutions is bounded by the number of solutions of (5-2) with |z|≤2S/q ,|w|≤2R/q ,
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α ∈ Fq . The last number is bounded by ≪ (S/q + 1)(R/q + 1)+ q, since every choice of z, w sets α
uniquely, unless z = w = 0. □

Proof of Lemma 5.4. Since our definition of a bad element mod q agrees with the definition in Section 4,
by Lemma 5.5 there are ≪ (S/q +1)(R/q +1)+q options for tr γ, tr γ−1, α. In our range of parameters
it holds that RS ≤ Cq3 and since ∥γ−1

∥∞ ≤ 2∥γ ∥
2
∞

, we may assume that R ≤ 2S2, so R ≪ q2, and
therefore (S/q + 1)(R/q + 1)+ q ≪ q .

There are at most S2 options for a11, a22, and knowing tr γ , we have now all of the diagonal of γ . By
(3-1), the diagonal of γ determines the diagonal of γ−1 mod q . Lifting, the first two entries b11, b22 have
just (R/q + 1)2 options, giving b33 for free. Thus there are at most ≪ q S2(R/q + 1)2 options.

In the nonexceptional case when the nondiagonal entries are nonzero, the rest of the matrix has ≪ϵ qϵ

options. So we should show that
q S2(R/q + 1)2 ≪ RSq2,

or S(R/q + 1)2 ≪ Rq . For R < q , this reduces to S ≪ Rq , which is obvious. For R > q , this reduces to
RS ≪ q3, which is again true.

Let us deal with the exceptional case. Without loss of generality we may assume that a11a22 = b33 and
a21 = 0. We further separate into cases:

(1) If all other nondiagonal entries besides a21 and a12 are nonzero, then we may guess the diagonal of γ
and γ−1 as before, and get the other nondiagonal entries using divisor bounds. The matrix γ is then of
the form ∗ ? ×

0 ∗ ×

× × ∗

 ,

with a12 the only unknown and where × denotes a nonzero value. Then we get that det γ = Ea12 + F ,
with E = a23a31 ̸= 0, F known, so a12 is determined uniquely from det γ = 1.

(2) If a31 = 0, then a11 = α = ±1, and the matrix is of the form±1 ∗ ∗

0 ∗ ∗

0 ∗ ∗

 .

As in the first exceptional case of Section 3, denote A =
(a22

a32

a23
a33

)
. We know that det A = α = ±1, and

either tr A = 0 mod q or tr A = 2 mod q. Therefore, a22, a33 have at most ≪ S(S/q + 1) options. If
a22a33 ̸= det A = ±1 then we get qϵ options for a23, a32 by the divisor bound. If a22a33 = det A = ±1,
then they are both ±1, and a23a32 = 0, so there are ≪ S options for A. So in any case A has at most
qϵS(S/q+1) options. The remaining two entries have at most S2 options, so all in all there are S3(S/q+1)
options. It remains to prove that

S3(S/q + 1)≪ RSq2,

which is a simple verification.
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(3) If a23 = 0 then a22 = α = ±1, and the matrix is of the form∗ ∗ ∗

0 ±1 0
∗ ∗ ∗

 .

We reduce to the previous case (after permuting indices and transposing).

(4) We may now assume a31 ̸= 0, a23 ̸= 0. If a13 = 0, we may assume a12 ̸= 0, otherwise we reduce to a
previous case. We now guess the diagonals as before, and further diverge into subcases:

(a) If a32 ̸= 0: Then since a23 ̸= 0 we have a23a32 = a22a33 −b11, so we have ≪ϵ qϵ options for a23, a32

by the divisor bound. Then the matrix is of the form∗ ? 0
0 ∗ ×

? × ∗

 .

From det γ = 1 we get a12a31, which is nonzero. By the divisor bound we are done.

(b) If a32 = 0, the matrix is of the form ∗ ? 0
0 ∗ ?
? 0 ∗

 .

From det γ = 1 we get a12a23a31, which is again nonzero, and by the divisor bound we are done.

(5) If a13 ̸= 0, a23 ̸= 0, a31 ̸= 0, a32 = 0. We may assume that a12 ̸= 0 otherwise we reduce to a previous
case. Then we guess the diagonals as usual, and since a31a13 ̸= 0 we know them in ≪ϵ qϵ ways by the
divisor bound. Then the matrix is of the form∗ ? ×

0 ∗ ?
× 0 α−2

 .

From det γ = 1 we get a12a23 which is nonzero, and by the divisor bound we are done. □
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Added in proof

In a recent preprint Jana and Kamber [2022, Theorem 6], following a breakthrough of Assing and Blomer
[2022], proved Conjecture 1.2 for q square-free.
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