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Sums of two squares are strongly biased towards
quadratic residues

Ofir Gorodetsky

Chebyshev famously observed empirically that more often than not, there are more primes of the form
3 mod 4 up to x than of the form 1 mod 4. This was confirmed theoretically much later by Rubinstein
and Sarnak in a logarithmic density sense. Our understanding of this is conditional on the generalized
Riemann hypothesis as well as on the linear independence of the zeros of L-functions.

We investigate similar questions for sums of two squares in arithmetic progressions. We find a
significantly stronger bias than in primes, which happens for almost all integers in a natural density sense.
Because the bias is more pronounced, we do not need to assume linear independence of zeros, only a
Chowla-type conjecture on nonvanishing of L-functions at 1

2 . To illustrate, we have under GRH that the
number of sums of two squares up to x that are 1 mod 3 is greater than those that are 2 mod 3 100% of
the time in natural density sense.

1. Introduction

1A. Review of sums of two squares in arithmetic progressions. Let S be the set of positive integers
expressible as a sum of two perfect squares. We denote by 1S the indicator function of S. It is multiplicative
and for a prime p we have

1S(pk)= 0 if and only if p ≡ 3 mod 4 and 2∤k. (1-1)

Landau [1908] proved that

#(S ∩ [1, x])∼
K x√
log x

where K =
∏

p≡3 mod 4(1 − p−2)−1/2/
√

2 ≈ 0.764 is the Landau–Ramanujan constant; see [Hardy
1940, Lecture IV] for Hardy’s account of Ramanujan’s unpublished work on this problem. Landau’s
method yields an asymptotic expansion in descending powers of log x , which gives an error term
Ok(x/(log x)k+1/2) for each k ≥ 1.1 Prachar [1953] proved that sums of two squares are equidistributed
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1A more complicated main term, leading to a significantly better error term (conjecturally Oε(x1/2+ε), but no better than
that), is described e.g., in [Gorodetsky and Rodgers 2021, Appendix B]; compare [Ramachandra 1976; Montgomery and Vaughan
2007, page 187; David et al. 2022, Theorem 2.1].
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in arithmetic progressions, in the following sense. If (a, q)= 1 then

S(x; q, a) := #{n ∈ S : n ≤ x, n ≡ a mod q} ∼
(4, q)
(2, q)q

∏
p | q

p≡3 mod 4

(
1 +

1
p

) K x√
log x

as x → ∞ as long as a ≡ 1 mod (4, q); see Iwaniec’s work [1976] on the half-dimensional sieve for
results allowing q to vary with x . The condition a ≡ 1 mod (4, q) is necessary: otherwise (a, q)= 1 and
a ̸≡ 1 mod (4, q) imply a ≡ 3 mod 4. However, S is disjoint from 3 mod 4.

1B. Main theorem and corollary. Here we consider a Chebyshev’s bias phenomenon for S. We ask,
what can be said about the size of the set

{n ≤ x : S(n; q, a) > S(n; q, b)} (1-2)

for distinct a, b mod q with a ≡ b ≡ 1 mod (4, q) and (a, q)= (b, q)= 1? These conditions guarantee
that S(n; q, a)∼ S(n; q, b)→ ∞ as n → ∞, so it is sensible to study (1-2). We let χ−4 be the unique
nonprincipal Dirichlet character modulo 4. Motivated by numerical evidence (based on n ≤ 108) showing
S(n; 3, 1)− S(n; 3, 2) and S(n; 5, 1)− S(n; 5, 3) are positive much more frequently than not, we were
led to discover and prove the following.

Theorem 1.1. Fix a positive integer q. Assume that the generalized Riemann hypothesis (GRH) holds for
the Dirichlet L-functions L(s, χ) and L(s, χχ−4) for all Dirichlet character χ modulo q. Then, whenever
a, b satisfy a ≡ b ≡ 1 mod (4, q), (a, q)= (b, q)= 1 and

Cq,a,b :=

∑
χ mod q
χ2

=χ0

(χ(a)−χ(b))
(

1 −
χ(2)
√

2

)−1/2√
L
( 1

2 , χ
)
L
( 1

2 , χχ−4
)
> 0 (1-3)

we have, as x → ∞,
#{n ≤ x : S(n; q, a) > S(n; q, b)} = x(1 + o(1)).

Here (and later) χ0 is the principal character modulo q. Observe that χ(a) = χ(b) = 1 for χ = χ0

as well as for χ = χ0χ−4 (if 4 | q), so these two characters may be omitted from the sum (1-3). As we
explain in Remark 1.2 below, L

( 1
2 , χ

)
L
( 1

2 , χχ−4
)

is nonnegative under the conditions of Theorem 1.1;
the square root we take in (1-3) is the nonnegative one.

Remark 1.2. Under GRH for (nonprincipal) real χ , we have L
( 1

2 , χ
)

≥ 0 since otherwise there is a
zero of L(s, χ) in

( 1
2 , 1

)
by the intermediate value theorem. Similarly, L

( 1
2 , χχ−4

)
≥ 0 if χ ̸= χ0χ−4.

Conrey and Soundararajan [2002], proved, unconditionally, that for a positive proportion of quadratic
characters χ we have L(s, χ) > 0 on

( 1
2 , 1

)
implying L

( 1
2 , χ

)
≥ 0. Chowla’s conjecture [1965] states that

L
( 1

2 , χ
)
̸= 0 for all real Dirichlet characters. It was studied extensively; see e.g., Soundararajan [2000].

If χ(a)= 1 for all real characters modulo q then a is a quadratic residue modulo q , and vice versa. Let
us specialize a to be a quadratic residue modulo q and b to be a nonquadratic residue. We observe that
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(on GRH) (χ(a)− χ(b))
√

L
( 1

2 , χ
)
L
( 1

2 , χχ−4
)

is nonnegative for each real χ mod q that is not χ0 or
χ0χ−4. Hence, under GRH and our assumptions on a and b, a necessary and sufficient condition for (1-3)
to hold is that L

( 1
2 , χ

)
L
( 1

2 , χχ−4
)
̸= 0 for some real χ mod q with χ(b)= −1. One way to guarantee

this is to assume Chowla’s conjecture. We state this as the following corollary.

Corollary 1.3. Suppose that G RH holds for χ and χχ−4 as χ varies over all Dirichlet characters
modulo q. Let a and b be quadratic and nonquadratic residues modulo q, respectively, with (a, q) =

(b, q)= 1 and a ≡ b ≡ 1 mod (4, q). If L
( 1

2 , χ
)
L
( 1

2 , χχ−4
)
̸= 0 for some χ mod q with χ(b)= −1 then

S(n; q, a) > S(n; q, b) (1-4)

holds for a density-1 set of integers. In particular, if Chowla’s conjecture holds then (1-4) holds for a
density-1 set of integers.

It would be interesting to try and establish the positivity of (1-3), possibly in a statistical sense, without
hypotheses like Chowla’s conjecture.

For a given Dirichlet character χ , one can computationally verify that L
( 1

2 , χ
)

is nonzero, and in
fact compute all zeros of L(s, χ) up to a certain height; see Rumely [1993] which in particular shows
L
( 1

2 , χ
)
̸= 0 for characters of conductor ≤ 72. Nowadays computing L

( 1
2 , χ

)
is a one-line command in

Mathematica, and so the verification of (1-3) is practical for fixed q , a and b.
We expect the expression in (1-3) to be nonzero as long as χ(a) ̸= χ(b) for some real character, or

equivalently, if a/b is nonquadratic residue modulo q. It is instructive to consider the following two
possibilities for a and b separately:

• Suppose a, b and a/b are all nonquadratic residues, a situation that could occur only if the modulus
q is composite. Although the expression Cq,a,b should be nonzero and give rise to a bias, it seems
the sign is very difficult to predict. Interestingly, for primes, as we shall review below, there is no
bias in this case.

• If exactly one of a and b is a quadratic residue then Corollary 1.3 tells us the direction of the bias (if
it exists) is towards the quadratic residue. A sufficient condition for the bias to exist is Chowla’s
conjecture.

1C. Comparison with primes. Chebyshev’s bias was originally studied in the case of primes, that is,
replacing S by the set of primes. Letting π(x; q, a) be the numbers of primes up to x lying in the arithmetic
progression a mod q , Chebyshev [1853, pages 697–698] famously observed that π(x; 4, 3) > π(x; 4, 1)
happens more often than not.

Littlewood [1914] showed that π(x; 4, 3) − π(x; 4, 1) changes sign infinitely often. Knapowski
and Turán [1962] conjectured that π(x; 4, 3) > π(x; 4, 1) holds 100% of the time in natural density
sense. This was refuted, under GRH, by Kaczorowski [1992; 1995], who showed (conditionally) that
{x : π(x; 4, 3) > π(x; 4, 1)} does not have a natural density, and that its upper natural density is strictly
less than 1.
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Rubinstein and Sarnak [1994] studied the set

{x : π(x; q, a) > π(x; q, b)} where a ̸≡ b mod q and (a, q)= (b, q)= 1.

They showed, under GRH and the grand simplicity hypothesis (GSH) that this set has logarithmic density
strictly between 0 and 1. Additionally, the logarithmic density is greater than 1

2 if and only if a is a
nonquadratic residue and b is a quadratic residue. In particular, no bias is present at all if both a and b
are nonquadratic residues, as opposed to the sums of two squares analogue.

GSH asserts that the multiset of γ ≥ 0 such that L
( 1

2 + iγ, χ
)

= 0, for χ running over primitive
Dirichlet characters, is linearly independent over Q; here γ are counted with multiplicity. It implies
Chowla’s conjecture (since 0 is linearly dependent) and that zeros of L(s, χ) are simple. As opposed to
Chowla, it is very hard to gather evidence for GSH, even for individual L-functions. However, see [Best
and Trudgian 2015] for such evidence in the case of ζ . In the literature, this hypothesis also goes under
the name linear independence (LI).

1D. Strong biases. Chebyshev’s bias was studied in various settings and for various sets, e.g., [Ng 2000;
Moree 2004; Fiorilli 2014a; 2014b; Devin 2020; 2021; Bailleul 2021], in particular for products of a
fixed number of primes [Dummit et al. 2016; Ford and Sneed 2010; Meng 2018; Devin and Meng 2021].

As far as we are aware, Theorem 1.1 is the first instance where a set of integers of arithmetic interest —
in this case sums of two squares — is shown to exhibit a complete Chebyshev’s bias, that is, a bias that
holds for a natural density-1 set of integers:

#{n ≤ x : M(n; q, a) > M(n; q, b)} = x(1 + o(1))

where M(n; q, a) counts elements up to n in a set M ⊆ N that are congruent to a modulo q . A key issue
here is the natural density: Meng [2020] has a related work about a bias that holds for a logarithmic
density-1 set of integers (see Section 2E). Recently, Devin proposed a conjecture [2021, Conjecture 1.2]
on a bias in logarithmic density 1. See Fiorilli [2014b; 2014a] for biases, in logarithmic density, that come
arbitrarily close to 1, and Fiorilli and Jouve [2022] for complete biases in “Frobenius sets” of primes
(that generalize arithmetic progressions).

We also mention a very strong bias was proved by Dummit, Granville and Kisilevsky [Dummit et al.
2016] who take Chebyshev’s observation to a different direction. They show that substantially more than
a quarter of the odd integers of the form pq up to x , with p, q both prime, satisfy p ≡ q ≡ 3 mod 4.

In the function field setting, complete biases were established in various special situations (e.g., for
low degree moduli) [Cha 2008, Corollary 4.4; Cha et al. 2016, Theorem 1.5; Devin and Meng 2021,
Example 6]. See also the work of Porritt [2020] on which we elaborate in Section 2B.

2. Origin of the bias, computational evidence and a variation

2A. Review of the original bias. Fix a modulus q . All the constants below might depend on q . We give
an informal explanation for the origin of the bias. It is instructive to start with the case of primes. By
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orthogonality of characters,

π(x; q, a)−π(x; q, b)=
1

φ(q)

∑
χ0 ̸=χ mod q

(χ(a)−χ(b))
∑
n≤x

1n is a primeχ(n).

The generating function of primes was studied by Riemann [2013], who showed that∑
n≥1

1n is a prime

ns =

∑
k≥1

µ(k)
k

log ζ(sk)

for ℜs > 1. Here µ is the Möbius function, ζ is the Riemann zeta function and the logarithm is chosen so
that log ζ(s) is real if s is real and greater than 1. More generally, given a Dirichlet character χ we have∑

n≥1

1n is a primeχ(n)
ns =

∑
k≥1

µ(k)
k

log L(sk, χ k).

We may also write this L-function identity in terms of arithmetic functions

1n is a primeχ(n)=
3(n)χ(n)

log n
+

∑
k≥2

µ(k)3(n1/k)χ(n)
log n

1n is a k-th power (2-1)

=
3(n)χ(n)

log n
−

1
2 1n=p2,p primeχ

2(p)+α(n)χ(n), (2-2)

where 3 is the von Mangoldt function and α is supported only on cubes and higher powers and its sum is
negligible for all practical purposes. Under GRH we can show that (see [Rubinstein and Sarnak 1994,
Lemma 2.1]) ∑

n≤x

χ(n)3(n)
log n

=

∑
n≤x χ(n)3(n)

log x
+ O

( √
x

(log x)2

)
and (still under GRH) we can use the explicit formula to show that

∑
n≤x χ(n)3(n) is typically of order

≍
√

x , in the sense that
1
X

∫ 2X

X

∣∣∣∣
∑

n≤x χ(n)3(n)
√

x

∣∣∣∣2

dx ≪ 1; (2-3)

see [Montgomery and Vaughan 2007, Theorem 13.5]. Under linear independence, one can show that the
random variable

e−y/2
∑
n≤ey

χ(n)3(n)

has a limiting distribution with expected value 0 (here y is chosen uniformly at random between 0
and Y , and Y → ∞). The exponential change of variables leads to the appearance of logarithmic
density. To summarize, (log x/

√
x)

∑
n≤x χ(n)3(n)/ log n (with x = ey) has expectation 0 and order of

magnitude ≍ 1. The bias comes from the term −1n=p2,p primeχ
2(p)/2. Indeed,

−
1
2

∑
n≤x

1n=p2,p primeχ
2(p)= −

1
2

∑
p≤

√
x

χ2(p).
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If χ is a nonreal character, χ2 is nonprincipal and GRH guarantees this sum is o(
√

x/ log x). However, if
χ is real, this sum is of the same order of magnitude as

∑
n≤x χ(n)3(n)/ log n, namely it is

−
1
2

∑
n≤x

1n=p2,p primeχ
2(p)= −

1
2(π(

√
x)+ O(1))∼ −

√
x

log x

using the prime number theorem.
Rubinstein and Sarnak replaced

∑
n≤x χ(n)3(n)/ log n with

∑
n≤x χ(n)3(n)/ log x using partial

summation. This is advantageous as we have a nice explicit formula for the sum of χ(n)3(n). However,
one can work directly with χ(n)3(n)/ log n, whose generating function is log L(s, χ), and this was done
by Meng [2018] in his work on Chebyshev’s bias for products of k primes. Meng’s approach is more
flexible because it works even when the generating function has singularities which are not poles. So while
−L ′(s, χ)/L(s, χ)=

∑
n≥13(n)χ(n)/ns is meromorphic with simple poles at zeros of L(s, χ), which

leads to the explicit formula by using the residue theorem, Meng’s approach can deal with − log L(s, χ)
directly although it does not have poles, rather it has essential singularities. Meng’s work applies in
particular to k = 1 and k = 2, thus generalizing Rubinstein and Sarnak as well as Ford and Sneed [2010].

2B. The generating function of sums of two squares. Let us now return to sums of two squares. Let a, b
be residues modulo q with (a, q)= (b, q)=1 and a ≡b≡1 mod (4, q). Orthogonality of characters shows

S(x; q, a)− S(x; q, b)=
1

φ(q)

∑
χ0 ̸=χ mod q

(χ(a)−χ(b))
∑
n≤x

1S(n)χ(n). (2-4)

We want to relate
∑

n≤x 1S(n)χ(n) to L-functions and their zeros, and obtain an analogue of the explicit
formula for primes. The generating function of sums of two squares was studied by Landau [1908], who
showed that for ℜs > 1, ∑

n≥1

1S(n)
ns =

√
ζ(s)L(s, χ−4)H(s) (2-5)

where H has analytic continuation to ℜs> 1
2 . Here the square root is chosen so that

√
ζ(s) and

√
L(s, χ−4)

are real and positive for s real and greater than 1. This representation of the generating function plays a
crucial role in the study of the distribution of sums of two squares; see e.g., [Gorodetsky and Rodgers 2021].

Later, Shanks [1964, page 78] and Flajolet and Vardi [1996, pages 7–9] (compare [Radziejewski 2014,
equation (3); Gorodetsky and Rodgers 2021, Lemma 2.2]) proved independently the identity

∑
n≥1

1S(n)
ns =

√
ζ(s)L(s, χ−4)(1 − 2−s)−1

∏
k≥1

(
(1 − 2−2ks)ζ(2ks)

L(2ks, χ−4)

)2−k−1

, (2-6)

and their proof can yield an analogue of (2-6) with a twist by χ(n). Shanks and Flajolet and Vardi were
interested in efficient computation of the constant K , and this identity leads to

K =
1

√
2

∏
k≥1

(
ζ(2k)(1 − 2−2k

)

L(2k, χ−4)

)2−k−1

.
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Since both sides of (2-6) enjoy Euler products, this identity can be verified by checking it locally at each
prime; one needs to check p = 2, p ≡ 1 mod 4 and p ≡ 3 mod 4 separately using (1-1). For the purpose
of this paper we do not need the terms corresponding to k > 1 in (2-6). What we need is stated and proved
in Lemma 3.5, namely that

F(s, χ) :=

∑
n≥1

1S(n)χ(n)
ns =

√
L(s, χ)L(s, χχ−4)

4

√
L(2s, χ2)

L(2s, χ2χ−4)
G(s, χ) (2-7)

for G which is analytic and nonvanishing in ℜs > 1
4 and bounded in ℜs ≥

1
4 + ε for each ε > 0. The

important feature of this formula is that it allows us to analytically continue F(s, χ) to the left of ℜs =
1
2

(once we remove certain line segments), as opposed to (2-5) whose limit is ℜs > 1
2 . See the discussion at

the end Section 3B.
Recently, a formula very similar to (2-7) was used by Porritt [2020] in his study of character sums

over polynomials with k prime factors, and k tending to ∞. We state his formula in the integer setting.
Let � be the additive function counting prime divisors with multiplicity. He showed that, for complex z
with |z|< 2, we have [Porritt 2020, (4)]∑

n≥1

z�(n)χ(n)
ns = L(s, χ)z L(2s, χ2)(z

2
−z)/2 Ez(s, χ)

for Ez(s, χ) which is analytic in ℜs >max
{1

3 , log2|z|
}
. He then proceeds to apply a Selberg–Delange

type analysis, leading to an explicit formula for a polynomial analogue of
∑

n≤x,�(n)=k χ(n) where k
grows like a log log x for a ∈ (0, 21/2) (in the polynomial world, q and q1/2 replace 2 and 21/2, where q
is the size of the underlying finite field). His results show a strong Chebyshev’s bias once a > 1.2021 . . .
[Porritt 2020, Theorem 4].

2C. Analyzing singularities. We shall analyze each of the sums in (2-4). We first observe that we do not
need to analyze the sums corresponding to χ or χχ−4 being principal, because these characters do not
contribute to (2-4) (as χ0(a)= χ0(b)).

Assume GRH and let χ be a nonprincipal character such that χχ−4 is also nonprincipal. We apply
a truncated Perron’s formula to

∑
n≤x 1S(n)χ(n) (Corollary 3.3). We then want to shift the contour

to ℜs =
1
2 − c

(
c =

1
10 , say

)
and apply the residue theorem. We cannot do it, because L(s, χ) and

L(s, χχ−4) have zeros on ℜs =
1
2 so F(s, χ), which involves the square root of L(s, χ)L(s, χχ−4),

cannot be analytically continued to ℜs ≥
1
2 − c. Let us analyze the zeros and poles, in the half-plane

ℜs > 1
4 , of L(s, χ), L(s, χχ−4), L(2s, χ2) and L(2s, χ2χ−4). These are the functions which appear in

(2-7) and dictate the region to which we may analytically continue F(s, χ):

• We have zeros of L(s, χ), L(s, χχ−4) on ℜs =
1
2 (only) by GRH. We do not have poles at s = 1

because we assume χ , χχ−4 are nonprincipal.

• Under GRH, L(2s, χ2) and L(2s, χ2χ−4) have no zeros in ℜs > 1
4 .
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Figure 1. Contour of integration.

• If χ2 is principal then L(2s, χ2) has a simple pole at s =
1
2 . Similarly, if χ2χ−4 is principal then

L(2s, χ2χ−4) has a simple pole at s =
1
2 . If χ2 and χ2χ−4 are nonprincipal then these L-functions

have no poles.

We call these zeros and poles “singularities of F”. They all lie on ℜs =
1
2 . We construct an open set Aχ

by taking the half-plane ℜs > 1
4 are removing the segments

{
σ + i t :

1
4 < σ ≤

1
2

}
for every singularity

1
2 + i t . This domain is simply connected and L(s, χ), L(s, χχ−4), L(2s, χ2) and L(2s, χ2χ−4) have no
poles or zeros there. Hence, they have well-defined logarithms there and we may analytically continue
F(s, χ) to Aχ .

Although we cannot literally shift the contour to the left of ℜs =
1
2 , we can move to a contour which

stays in Aχ and is to the left of ℜs =
1
2 “most of the time”. Specifically, we shall use truncated Hankel

loop contours going around the singularities, joined to each other vertically on ℜs =
1
2 − c, as in Meng

[2018; 2020]. The precise contour is described in Section 3D. See Figure 1 for depiction. A truncated
Hankel loop contour around a singularity ρ of F(s, χ) is a contour Hρ traversing the path depicted in
Figure 2. It is parametrized in (3-13).

Given a character χ and a singularity ρ of F(s, χ) we let

f (ρ, χ, x) :=
1

2π i

∫
Hρ

F(s, χ)x s ds
s
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ρ

r

Figure 2. Truncated Hankel loop contour around ρ with radius r .

be the Hankel contour integral around ρ. By analyticity, the value of f (ρ, χ, x) is independent of r (once
r is small enough) and for our purposes we choose r = o(1/ log x). We end up obtaining∑

n≤x

1S(n)χ(n)≈

∑
ρ:L(ρ,χ)L(ρ,χχ−4)=0

or ρ=1/2

f (ρ, χ, x). (2-8)

See Lemma 3.10 for a statement formalizing (2-8) (in practice we sum only over zeros up to a certain
height). If F(s, χ)∼ C(s − ρ)m asymptotically as s → ρ+ (i.e., as s − ρ tends to 0 along the positive
part of the real line) for one of the singularities ρ, it can be shown that

f (ρ, χ, x)∼
C

0(−m)
xρ

ρ
(log x)−1−m (2-9)

as x → ∞. An informal way to see this is∫
Hρ

F(s, χ)x s ds
s

≈
C
ρ

∫
Hρ

(s − ρ)m x s ds =
Cxρ

ρ
(log x)−1−m

∫
(log x)(Hρ−ρ)

zmez dz

and the last integral gives (2-9) by Hankel’s original computation [Tenenbaum 2015, Theorem II.0.17].2

In particular, from analyzing
√

L(s, χ)L(s, χχ−4) we have

f (ρ, χ, x)∼ cρ
xρ

ρ
(log x)−1−mρ/2, cρ =

lims→ρ+ F(s, χ)(s − ρ)−mρ/2

0(−mρ/2)
,

for any given ρ ̸=
1
2 where mρ is the multiplicity of ρ in L(s, χ)L(s, χχ−4). As mρ ≥ 1, we are led to

think of
∑

ρ ̸=1/2 f (ρ, χ, x) as a quantity of order ≍
√

x(log x)−3/2. However, we are not able to use
(2-9) in order to bound

∑
ρ ̸=1/2 f (ρ, χ, x) efficiently. We proceed via a different route and show

1
X

∫ 2X

X

∣∣∣∣
∑

ρ ̸=1/2 f (ρ, χ, x)
√

x(log x)−3/2

∣∣∣∣2

dx ≪ 1 (2-10)

without making use of (2-9). It follows that
∑

ρ ̸=1/2 f (ρ, χ, x)≪
√

x(log x)−3/2 most of the time. This
estimate is analogous to (2-3) and its proof is similar too. We believe this sum is ≪ε

√
x(log x)ε−3/2

always but are not able to show this. This is similar to how GRH can show
∑

n≤x 3(n)χ(n)≪
√

x(log x)2,

2To justify the first passage it suffices to show
∫
Hρ

|G(s)xs
| |ds|= o(xℜρ(log x)−1−m) for G(s)= F(s, χ)/s−C(s−ρ)m/ρ,

which is possible in our case.
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Figure 3. Graph of S(x; 3, 1)− S(x; 3, 2) up to 107.

but the true size in this question is expected to be ≪ε

√
x(log x)ε. Here one should think of f (ρ, χ, x)

as an analogue of the expression −xρ/ρ from the explicit formula.
Finally, let us analyze the contribution of the (possible) singularity at 1

2 . If L
( 1

2 , χ
)
L
( 1

2 , χχ−4
)
= 0 or

if χ2χ−4 is principal we can show (e.g., using (2-9)) that f
( 1

2 , χ, x
)
≪

√
x(log x)−5/4; see Lemma 4.4.

The constant 5
4 arises from analyzing

√
L(s, χ)L(s, χχ−4) and 4

√
L(2s, χ2)/L(2s, χ2χ−4) and applying

(2-9) with m ≥
1
4 . It follows from (2-8) and (2-10) that

1
X

∫ 2X

X

∣∣∣∣
∑

n≤x 1S(n)χ(n)
√

x(log x)−5/4

∣∣∣∣2

dx ≪ 1

unless χ2 is principal and L
( 1

2 , χ
)
L
(1

2 , χχ−4
)
̸= 0. This remaining case leads to the bias. Indeed, we

have

F(s, χ)∼ C
(
s −

1
2

)−1/4

as s →
1
2
+

because of the fourth root in 4
√

L(2s, χ2), and this allows us to show (Lemma 4.5) that

f
( 1

2 , χ, x
)
≍

√
x(log x)−3/4.

This is bigger than the typical contribution of all the other singularities by (log x)1/2. In one line, the
bias comes from the fact that the value of m in the asymptotic relation F(s, χ)∼ C(s − ρ)m (s → ρ+,
ρ a singularity) is minimized when χ2 is principal, ρ =

1
2 and L

( 1
2 , χ

)
L
( 1

2 , χχ−4
)
̸= 0, in which case

m = −
1
4 .
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b
1 4 2 7 8 11 13 14

1 1.427 9.698 1.427 9.931 9.698 9.931
4 1.427 9.698 1.427 9.931 9.698 9.931
2 8.271 8.504 8.271 8.504

a 7 -8.271 0.233 0.233
11 -0.233
13 0.233

Table 1. Values of C15,a,b.

b
1 4 2 7 8 11 13 14

1 93.99 99.99 86.12 99.98 99.99 99.99
4 96.28 99.97 90.72 99.99 99.99 99.96
2 99.90 99.85 99.93 99.90

a 7 0.03 57.99 57.99
8 99.52 99.96 99.99

11 40.19
13 59.23

Table 2. Percentage of n ≤ 107 with S(n; 15, a) > S(n; 15, b).

2D. Computational evidence. We examine the bias for q ∈{3, 5, 15}. For q =3 we only have two relevant
residues modulo q , namely 1 mod 3 (quadratic), and 2 mod 3 (nonquadratic). We have L

( 1
2 , χ

)
≈0.480 for

the unique nonprincipal Dirichlet character modulo 3 and L
( 1

2 , χχ−4
)
≈ 0.498. Under GRH, Corollary 1.3

predicts S(x; 3, 1) > S(x; 3, 2) for almost all x . Up to 108, 96.8% of the time S(x; 3, 1) > S(x; 3, 2).
See Figure 3 for the (quite oscillatory) graph of S(x; 3, 1)− S(x; 3, 2) up to 107.

For q = 5 we have 4 possible residues: 1 and 4 mod 5, both quadratic, and 2 and 3 mod 5, non-
quadratic. We have L

( 1
2 , χ

)
≈ 0.231 and L

( 1
2 , χχ−4

)
≈ 1.679 for χ , the unique nonprincipal qua-

dratic character modulo 5. Corollary 1.3 predicts, under GRH, that S(x; 5, 1) and S(x; 5, 4) are al-
most always greater than S(x; 5, 2) and S(x; 5, 3). The value of C5,a,b is simply χ(a)− χ(b) times
(1 + 1/

√
2)−1/2

√
L
( 1

2 , χ
)
L
( 1

2 , χχ−4
)
. For (a, b) ∈ {(1, 2), (1, 3), (4, 2), (4, 3)} its value is ≈ 0.7309,

since χ(a)= 1 and χ(b)= −1. For (a, b) ∈ {(1, 2), (1, 3), (4, 2), (4, 3)}, we find that the percentage of
integers n ≤ 107 with S(n; 5, a) > S(n; 5, b) are 96.1%, 95.2%, 95.3% and 94.6%, respectively.

For q = 15 we have the quadratic residues 1, 4 and the nonquadratic residues 2, 7, 8, 11, 13, 14. We
expect S(x; 5, a)− S(x; 5, b) to be positively biased for a ∈ {1, 4} and b ∈ {2, 7, 8, 11, 13, 14}. Moreover,
we expect a bias also for S(x; 5, a)−S(x; 5, b)whenever a ̸=b ∈{2, 7, 8, 11, 13, 14} and a/b ̸≡4 mod 15,
which means (a, b) ̸= (2, 8), (7, 13), (11, 14). The direction of the bias in this case is harder to predict. See
Table 1 for a table of the values of C15,a,b and Table 2 for #{n ≤ 107

: S(n; 15, a) > S(n; 15, b)}/107 (in
percentages). We omit pairs with a ≥ b due to symmetry and pairs a, b with a/b being a quadratic residue.
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We see that the two tables are correlated. This is not a coincidence: the proof of Theorem 1.1 actually
shows that S(x; q, a)− S(x; q, b)= φ(q)−1CqCq,a,b

√
x/(log x)3/4 + E(x) where Cq is positive constant

depending only on q and E(x) is a function which, on average, is smaller than
√

x/(log x)3/4. Concretely,
(1/X)

∫ 2X
X |E(x)|2 dx ≪ X/(log X)5/2. So, for most values of x , S(x; q, a)− S(x; q, b) is proportional

to Cq,a,b.

2E. Martin’s conjecture. Let ω be the additive function counting prime divisors (without multiplicity).
Meng [2020] states a conjecture of Greg Martin, motivated by numerical data, saying that{

x :

∑
n≤x

n≡1 mod 4

ω(n) <
∑
n≤x

n≡3 mod 4

ω(n)
}

contains all sufficiently large x . Meng assumed GRH and GSH to prove that this set has logarithmic
density 1. He also obtains results for other moduli under Chowla’s conjecture, and studies an analogous
problem with the completely additive function �. Meng [2020, Remark 4] writes: “In order to prove the
full conjecture, one may need to formulate new ideas and introduce more powerful tools to bound the
error terms of the summatory functions”. We are able to prove a natural density version of Meng’s result,
making progress towards Martin’s conjecture. We do not assume GSH.

Theorem 2.1. Fix a positive integer q. Assume that GRH holds for the Dirichlet L-functions L(s, χ) for
all Dirichlet character χ modulo q. Then, whenever a, b satisfy (a, q)= (b, q)= 1 and

Dq,a,b :=

∑
χ mod q
χ2

=χ0

(χ(a)−χ(b))L
( 1

2 , χ
)
> 0 (2-11)

we have, as x → ∞,

#
{

n ≤ x :

∑
m≤n

m≡a mod q

ω(m) <
∑
m≤n

m≡b mod q

ω(m)
}

= x(1 + o(1))

and

#
{

n ≤ x :

∑
m≤n

m≡a mod q

�(m) >
∑
m≤n

m≡b mod q

�(m)
}

= x(1 + o(1))

The proof is given in Section 6. If a is a quadratic residue modulo q and b is not, a sufficient condition
for Dq,a,b to be positive is Chowla’s Conjecture.

3. Preparatory lemmas

Given a Dirichlet character χ modulo q we write

F(s, χ)=

∑
n∈S

χ(n)
ns =

∏
p ̸≡3 mod 4

(1 −χ(p)p−s)−1
∏

p≡3 mod 4

(1 −χ2(p)p−2s)−1.
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This converges absolutely for ℜs > 1. For ℜs = 1 (or smaller) it does not, because such convergence
implies

∑
p ̸≡3 mod 4,p ∤q 1/p converges. Observe that F(s, χ) does not vanish for ℜs > 1.

We shall use the convention where σ and t denote the real and complex parts of s ∈ C.

3A. Perron.

Lemma 3.1 (effective Perron’s formula [Tenenbaum 2015, Theorem II.2.3]). Let F(s)=
∑

n≥1 an/ns be
a Dirichlet series with abscissa of absolute convergence σa <∞. For κ >max{0, σa}, T ≥ 1 and x ≥ 1
we have ∑

n≤x

an =
1

2π i

∫ κ+iT

κ−iT
F(s)x s ds

s
+ O

(
xκ

∑
n≥1

|an|

nκ(1 + T |log(x/n)|)

)
, (3-1)

with an absolute implied constant.

This lemma leads to the following, which is a variation on [Tenenbaum 2015, Corollary II.2.4].

Corollary 3.2. Suppose |an| ≤ 1. Let F(s)=
∑

n≥1 an/ns . Then, for x, T ≫ 1,∑
n≤x

an =
1

2π i

∫ 1+1/log x+iT

1+1/log x−iT
F(s)x s ds

s
+ O

(
1 +

x log x
T

)
, (3-2)

with an absolute implied constant.

Proof. Since |an| ≤ 1 we have σa ≤ 1 so that we may apply Lemma 3.1 with κ = 1 + 1/ log x . The
contribution of n ≤ x/2 to the error term is

≪ x
∑

n≤x/2

1
T n

≪
x log x

T
.

The contribution of n ≥ 2x to the error is

≪ x
∑
k≥1

∑
n∈[2k x,2k+1x)

1
nκT k

≪ x
∑
k≥1

2−k/log x

T
≪

x log x
T

.

Finally, if n ∈ (x/2, 2x), the contribution is

≪

∑
n∈(x/2,2x)

1
1 + T |log(x/n)|

≪ 1 +
x log x

T

where the second inequality follows e.g., by the argument in [Tenenbaum 2015, Corollary II.2.4]. □

As a special case of this corollary we have

Corollary 3.3. Let χ be a Dirichlet character. We have

∑
n≤x
n∈S

χ(n)=
1

2π i

∫ 1+1/log x+iT

1+1/log x−iT
F(s, χ)x s ds

s
+ O

(
1 +

x log x
T

)
. (3-3)
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Remark 3.4. Since |F(s, χ)| ≤
∑

n≥1 n−1−1/ log x
≪ log x when ℜs = 1+1/ log x , we see that perturbing

the parameter T (appearing in the range of integration) by O(1) incurs an error of O(x log x/T ) which
is absorbed in the existing error term.

3B. Analytic continuation. Given a Dirichlet series G(s) associated with a multiplicative function g(n),
which converges absolutely for ℜs > 1 and does not vanish there, we define the k-th root of G as

G1/k(s)= exp
(

log G(s)
k

)
for each positive integer k, where the logarithm is chosen so that arg G(s)→ 0 as s → ∞. The function
G1/k is also a Dirichlet series, since

G1/k(s)=

∏
p

exp
(

log
∑

i≥0 g(pi )/pis

k

)
.

Lemma 3.5. Let χ be a Dirichlet character modulo q. We have, for ℜs > 1,

F(s, χ)=
√

L(s, χ)L(s, χχ−4)
4

√
L(2s, χ2)

L(2s, χ2χ−4)
G(s, χ)

for G which is analytic and nonvanishing in ℜs > 1
4 and bounded in ℜs ≥

1
4 + ε. If χ is real then

G
(

1
2
, χ

)
=

(
1 −

χ(2)
√

2

)−1/2(
1 −

12 ∤q

2

)1/4 ∏
p≡3 mod 4

p ∤q

(
1 −

1
p2

)−1/4

. (3-4)

Proof. We have, for ℜs > 1,

log G(s, χ)= log F(s, χ)−
log L(s, χ)

2
−

log L(s, χχ−4)

2
+

log L(2s, χ2χ−4)

4
−

log L(2s, χ2)

4
(3-5)

=
− log(1 −χ(2)2−s)

2
+

log(1 −χ2(2)2−2s)

4
+

∑
p≡3 mod 4

gp(s, χ) (3-6)

for

gp(s, χ)=
− log(1 −χ2(p)p−2s)

2
+

log(1 −χ2(p)p−2s)− log(1 +χ2(p)p−2s)

4
.

Each gp is analytic in ℜs > 0. Fix c > 0. For ℜs ≥ c we have

gp(s, χ)=
χ4(p)

4
p−4s

+ Oc(p−6c)= Oc(p−4c)

by Taylor expanding log(1 + x). In particular, if c =
1
4 + ε we have∣∣∣∣ ∑

p≡3 mod 4

gp(s, χ)
∣∣∣∣ ≪

∑
p≡3 mod 4

p−4c
≪

∑
n≥1

n−1−4ε <∞
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and so G may be extended to ℜs> 1
4 via (3-6). As each gp is analytic in ℜs> 1

4 , and
∑

p≡3 mod 4 gp(s, χ)
converges uniformly in ℜs ≥

1
4 + ε for every choice of ε > 0, it follows that log G is analytic in ℜs > 1

4
and so is G. The formula for G

( 1
2 , χ

)
for real χ follows from evaluating gp at s =

1
2 and observing

χ2
= χ0. □

Assuming GRH for L(s, χ) where χ is nonprincipal, L(s, χ)1/k may be analytically continued to the
region

C \
({
σ + i t : L

( 1
2 + i t, χ

)
= 0 and σ ≤

1
2

}
∪ {σ : σ ≤ −1}

)
(3-7)

and is nonzero there (because of trivial zeros of L(s, χ) we have to remove {σ : σ ≤ −1}). For χ principal
we have a singularity at s = 1 and so L(s, χ)1/k may be analytically continued to

C \
({
σ + i t : L

( 1
2 + i t, χ

)
= 0 and σ ≤

1
2

}
∪ {σ : σ ≤ 1}

)
. (3-8)

Hence, given χ which is nonprincipal and such that χχ−4 is nonprincipal, we have the following. Under
GRH for χ , χχ−4, χ2 and χ2χ−4, we may continue F(s, χ) analytically to{

s ∈ C : ℜs > 1
4

}
\
{
σ + i t : L

( 1
2 + i t, χ

)
L
(1

2 + i t, χχ−4
)
= 0 and σ ≤

1
2

}
(3-9)

if both χ2 and χ2χ−4 are nonprincipal; otherwise we may continue it to{
s ∈ C : ℜs > 1

4

}
\
({
σ + i t : L

( 1
2 + i t, χ

)
L
( 1

2 + i t, χχ−4
)
= 0 and σ ≤

1
2

}
∪

{
σ : σ ≤

1
2

})
. (3-10)

3C. L-function estimates. We quote three classical bounds on L-functions from the book of Montgomery
and Vaughan [2007].

Lemma 3.6 [Montgomery and Vaughan 2007, Theorem 13.18 and Example 8 in Section 13.2.1]. Let χ
be a Dirichlet character. Under GRH for L(s, χ), there exists a constant A depending only on χ such that
the following holds. Uniformly for σ ≥

1
2 and |t | ≥ 1,

|L(s, χ)| ≤ exp
(

A
log(|t | + 4)

log log(|t | + 4)

)
.

Lemma 3.7 [Montgomery and Vaughan 2007, Theorem 13.23]. Let χ be a Dirichlet character. Suppose
|t | ≫ 1. Under GRH for L(s, χ), there exists a constant A depending only on χ such that the following
holds. Uniformly for σ ≥

1
2 + 1/ log log(|t | + 4) and |t | ≥ 1,∣∣∣∣ 1

L(s, χ)

∣∣∣∣ ≤ exp
(

A
log(|t | + 4)

log log(|t | + 4)

)
.

Lemma 3.8 [Montgomery and Vaughan 2007, Corollary 13.16 and Example 6(c) in Section 13.2.1]. Let
σ ∈

( 1
2 , 1

)
be fixed. Let χ be a primitive Dirichlet character. We have, as |t | → ∞,

|log L(s, χ)| ≪σ

(log(|t | + 4))2−2σ

log log(|t | + 4)
.

The following is a consequence of the functional equation.
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Lemma 3.9 [Montgomery and Vaughan 2007, Corollary 10.10]. Let χ be a Dirichlet character and
ε ∈ (0, 1). We have |L(s, χ)| ≍ |L(1 − s, χ)|(|t | + 4)1/2−σ uniformly for ε ≤ σ ≤

1
2 and |t | ≥ 1, where

the implied constants depend only on χ and ε.

These four lemmas are originally stated for primitive characters. However, if χ is induced from a
primitive character ψ , then in ℜs > 0 the ratio L(s, χ)/L(s, ψ) is equal to the finite Euler product∏

p:χ(p)=0(1 −ψ(p)/ps). This product is bounded away from 0 and from ∞ when ℜs ≥ ε, so we can
convert results for L(s, ψ) to results for L(s, χ) as long as we restrict our attention to σ ≥ ε.

3D. Contour choice. Let χ be a nonprincipal Dirichlet character modulo q . Fix c ∈
(
0, 1

8

) (
say, c =

1
10

)
.

Let T ≫ 1.
We want to use Cauchy’s integral theorem to shift the vertical contour appearing in (3-3) to the left of

ℜs =
1
2

(
namely to ℜs =

1
2 − c

)
, at the “cost” of certain horizontal contributions. As we want to avoid

zeros of L(s, χ)L(s, χχ−4) and poles and zeros of L(2s, χ2)/L(2s, χ2χ−4)
(
which by GRH can only

occur at s =
1
2

)
, we will use (truncated) Hankel loop contours to go around the relevant zeros and poles;

the integrals over these loops will be the main contribution to our sum. It will also be convenient for
1
2 − iT and 1

2 + iT to avoid zeros of L(s, χ)L(s, χχ−4); this is easy due to Remark 3.4, showing that
changing T by O(1) does not increase the error term arising from applying Perron’s (truncated) formula.
We replace the range [1 + 1/ log x − iT, 1 + 1/ log x + iT ] with [1 + 1/ log x − iT ′′, 1 + 1/ log x + iT ′

]

where T − 1 ≤ T ′, T ′′
≤ T and

L
(1

2 + i t, χ
)
L
( 1

2 + i t, χχ−4
)
̸= 0

for every t ∈ [T ′, T )∪ (−T,−T ′′
]. Let

γ1 < γ2 < · · ·< γm (3-11)

be the imaginary parts of the zeros of L(s, χ)L(s, χχ−4) on σ =
1
2 with t ∈ (−T, T ) (without multiplic-

ities), and, if either χ2 or χ2χ−4 is principal, we include the number 0 (if it is not there already). Let
r ∈ (0, 1) be a parameter that will tend to 0 later. Consider the contour

I1 ∪

m⋃
j=1

(J j ∪H1/2+iγ j )∪ Jm+1 ∪ I2 (3-12)

where I1 traverses the horizontal segment

I1 =

{
σ − iT ′′

:
1
2 − c ≤ σ ≤ 1 +

1
log x

}
from right to left, I2 traverses the horizontal segment

I2 =

{
σ + iT ′

:
1
2 − c ≤ σ ≤ 1 +

1
log x

}
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from left to right, J j traverses the following vertical segment from its bottom point to the top:

J j =
{1

2 − c + i t : γ j−1 ≤ t ≤ γ j
}

where
γ0 := −T ′′, γm+1 := T ′,

and finally each Hρ traverses the following truncated Hankel loop contour in an anticlockwise fashion:{
s ∈ C :

1
2 − c ≤ ℜs ≤

1
2 − r,ℑs = ℑρ, arg(s − ρ)= −π

}
∪

{
s ∈ C : |s − ρ| = r,−π < arg(s − ρ) < π

}
∪

{ 1
2 − c ≤ ℜs ≤

1
2 − r,ℑs = ℑρ, arg(s − ρ)= π

}
(3-13)

where in our case c =
1
10 and r = o(1/ log x). We refer the reader to [Tenenbaum 2015, pages 179–180]

for background on the Hankel contour and its truncated version. If r is small enough, the contour in
(3-12) does not intersect itself.

If both χ2 and χ2χ−4 are nonprincipal characters and the corresponding L-functions satisfy GRH
observe 4

√
L(2s, χ2)/L(2s, χ2χ−4) is analytic in ℜs > 1

2 − 2c > 1
4 and so is F(s, χ) by Lemma 3.5.

If χ2 is principal then χ2χ−4 cannot be principal. Similarly, if χ2χ−4 is principal then χ is a nonreal
Dirichlet character of order 4 and χ2 cannot be principal. In both cases, 4

√
L(2s, χ2)/L(2s, χ2χ−4) has

an algebraic singularity at s =
1
2 , which we avoid already as we inserted 0 to the list (3-11) if it is not

there already.
In any case, by Cauchy’s integral theorem,

1
2π i

∫ 1+1/log x+iT ′

1+1/log x−iT ′′

F(s, χ)x s ds
s

=
1

2π i

(∫
I1

+

m∑
j=1

(∫
J j

+

∫
H1/2+iγ j

)
+

∫
Jm+1

+

∫
I2

)
F(s, χ)x s ds

s
. (3-14)

Lemma 3.10. Let χ be a nonprincipal Dirichlet character. Assume GRH holds for the four characters

χ, χχ−4, χ2, χ2χ−4. (3-15)

Let c ∈
(
0, 1

8

)
be a fixed constant. Let T ≫ 1. We have

∑
n≤x
n∈S

χ(n)=
m∑

j=1

1
2π i

∫
H1/2+iγ j

F(s,χ)x s ds
s

+O
(

1+
x log x

T
+

(x+max{x,T }
1/2

+x1/2−cT c+1)exp A log T
log log T

T

)
. (3-16)

The implied constant and A depend only on χ and c.

Proof. By (3-3), Remark 3.4 and (3-14), it suffices to upper bound
∫

I j
|F(s, χ)||x s

||ds|/|s| and∫
J j

|F(s, χ)||x s
||ds|/|s|. We first treat I j , and concentrate on I2 as the argument for I1 is analogous. We
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have, using Lemma 3.5,∫
I2

|F(s, χ)||x s
|
|ds|
|s|

≪
1
T

∫ 1+1/log x

1/2−c

√
|L(σ + iT ′, χ)L(σ + iT ′, χχ−4)|

4

√
|L(2σ + 2iT ′, χ2)|

|L(2σ + 2iT ′, χ2χ−4)|
xσ dσ (3-17)

≪
1
T

∫ 1+1/log x

1/2−c

√
|L(σ + iT ′, χ)L(σ + iT ′, χχ−4)|

4

√
|L(2σ + 2iT ′, χ2)|

|L(2σ + 2iT ′, χ2χ−4)|
xσ dσ. (3-18)

It is now convenient to consider σ ≥
1
2 and σ ≤

1
2 separately.

If σ ≥
1
2 we bound all the relevant L-functions using Lemmas 3.6 and 3.7, obtaining that this part of

the integral contributes

≪

exp A log T
log log T

T

∫ 1+1/log x

1/2
xσdσ ≪

x exp A log T
log log T

T

where A is a constant large enough depending on χ . For σ below 1
2 we first apply Lemma 3.9 to the

L-functions of χ and χχ−4 to reduce to the situation where the real parts of the variables inside the
L-functions are ≥

1
2 . Then we apply Lemmas 3.6 and 3.7 as before, obtaining that this part of the integral

contributes

≪

exp A log T
log log T

T

∫ 1/2

1/2−c
T 1/2−σ xσdσ ≪

max{x, T }
1/2 exp A log T

log log T

T
.

It follows that (∫
I1

+

∫
I2

)
|F(s, χ)||x s

|
|ds|
|s|

≪

(x + max{x, T }
1/2) exp A log T

log log T

T
.

We turn to the contribution of J j . We have

m+1∑
j=1

∫
J j

|F(s, χ)||x s
|
|ds|
|s|

≪ x1/2−c
∫ T +1

−T −1

∣∣F( 1
2 − c + i t, χ

)∣∣ dt
|t | + 1

(3-19)

≪ x1/2−c
(

1 +

∑
2k≤2T

2−k
(∫ 2k

2k−1
+

∫
−2k−1

−2k

)∣∣F( 1
2 − c + i t, χ

)∣∣ dt
)

(3-20)

where

∣∣F( 1
2 − c + i t, χ

)∣∣ =

√∣∣L( 1
2 − c + i t, χ

)
L
( 1

2 − c + i t, χχ−4
)∣∣ 4

√
|L(1 − 2c + 2i t, χ2)|

|L(1 − 2c + 2i t, χ2χ−4)|
(3-21)

≪ (|t | + 4)c exp
(

A
log(|t | + 4)

log log(|t | + 4)

)
≪ T c exp

(
A log T

log log T

)
, (3-22)



Sums of two squares are strongly biased towards quadratic residues 793

where we used Lemmas 3.6 and 3.9 to bound the L-functions of χ and χχ−4 and Lemma 3.8 for the
other two L-functions. This leads to

m+1∑
j=1

∫
J j

|F(s, χ)||x s
|
|ds|
|s|

≪ x1/2−cT c exp
(

A log T
log log T

)
and concludes the proof. □

4. Hankel calculus

In this section, Hρ is the Hankel contour described in (3-13), going around ρ in an anticlockwise fashion.

Lemma 4.1. Let χ be a Dirichlet character. Assume GRH for L(s, χ). Given a nontrivial zero ρ =
1
2 + iγ

of L(s, χ) we have

max
s∈Hρ

∣∣∣∣ L(s, χ)
s − ρ

∣∣∣∣ ≪ (|γ | + 1)c+o(1).

Here the o(1) exponent goes to 0 as γ goes to ∞ (and it might depend on χ ), and the implied constant is
absolute.

Proof. Since we can write L(s, χ) as L(ρ, χ) plus an integral of L ′(z, χ) over a line segment connecting
s and ρ, it follows that the maximum we try to bound is

≪ max
|s−ρ|≤r, or

s=σ+iγ with
1/2−c≤σ≤1/2

|L ′(s, χ)|.

By Cauchy’s integral formula, and Lemmas 3.6 and 3.9,

|L ′(s, χ)| ≪

∫
|z−s|=1/log(|γ |+1)

|L(z, χ)|
|z − s|

|dz| ≪ (|γ | + 1)max{0,1/2−ℜs}+o(1),

implying the desired bound. □

Lemma 4.2. Let χ be a nonprincipal Dirichlet character. Assume GRH for the characters in (3-15).
Given a nontrivial zero ρ =

1
2 + iγ ̸=

1
2 of L(s, χ)L(s, χχ−4) we have∫

Hρ

|F(s, χ)||x s
| |ds| ≪

√
x(|γ | + 1)c+o(1)((log x)−3/2

+ r3/2xr ).

Here the o(1) exponent goes to 0 as γ goes to ∞ (and might depend on χ ), and the implied constant
depends only on χ (it is independent of r ).

Proof. We have, for s on the contour,

|F(s, χ)| ≪
√

|L(s, χ)L(s, χχ−4)|(|γ | + 1)o(1)

by Lemmas 3.5, 3.6 and 3.7. Integrating
√

|L(s, χ)L(s, χχ−4)||x s
| over the circle part of the contour

contributes
≪ r x1/2+r

∫ π

−π

√
|L(ρ+ reiθ , χ)L(ρ+ reiθ , χχ−4)| dθ.
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Writing L(s, χ)L(s, χχ−4) as L(s, χ)L(s, χχ−4)/(s −ρ) times s −ρ and appealing to Lemmas 4.1, 3.6
and 3.9, we find that this is

≪ r x1/2+r (|γ | + 1)c+o(1)
∫ π

−π

√
|reiθ | dθ ≪ r3/2x1/2+r (|γ | + 1)c+o(1).

Integrating
√

|L(s, χ)L(s, χχ−4)||x s
| over one of the segment parts of the contour contributes

≪
√

x
∫ 0

−c

√
|L(ρ+ t, χ)L(ρ+ t, χχ−4)|x t dt.

Again writing L(s, χ)L(s, χχ−4) as L(s, χ)L(s, χχ−4)/(s −ρ) times s −ρ and appealing to Lemma 4.1,
we can bound this contribution by

≪
√

x(|γ | + 1)c+o(1)
∫ 0

−∞

√
|t |x t dt ≪

√
x(|γ | + 1)c+o(1)(log x)−3/2, (4-1)

concluding the proof. □

Lemma 4.3. Let χ be a nonprincipal Dirichlet character. Assume GRH for the characters in (3-15). For
any pair ρ1 =

1
2 + iγ1, ρ2 =

1
2 + iγ2 of nontrivial zeros different from 1

2 we have

1
X

∫ 2X

X

∫
Hρ1

∫
Hρ2

F(s1, χ)F(s2, χ)
x s1

s1

x s2

s2
ds1 ds2 dx

≪
X ((log X)−3/2

+ r3/2 X r )2

((|γ1| + 1)(|γ2| + 1))1−c+o(1)(1 + |γ1 − γ2|)
(4-2)

where implied constants depend only on χ .

Proof. We first integrate by the x-variable and then take absolute values, obtaining that the integral is

≪

∫
Hρ1

∫
Hρ2

|F(s1, χ)||F(s2, χ)|
Xℜ(s1+s2)

|s1||s2||s1 + s2 + 1|
|ds1| |ds2| (4-3)

≪
1

|ρ1ρ2|(1 + |γ1 − γ2|)

∫
Hρ1

∫
Hρ2

|F(s1, χ)||F(s2, χ)|Xℜ(s1+s2) |ds1| |ds2| (4-4)

=
1

|ρ1ρ2|(1 + |γ1 − γ2|)

(∫
Hρ1

|F(s1, χ)|Xℜ(s1) |ds1|

)(∫
Hρ2

|F(s2, χ)|Xℜ(s2) |ds2|

)
. (4-5)

The result now follows from Lemma 4.2. □

Lemma 4.4. Let χ be a nonprincipal Dirichlet character. Assume GRH for the characters in (3-15). If
χ2χ−4 is principal, or if χ2 is principal as well as L

(1
2 , χ

)
L
( 1

2 , χχ−4
)
= 0 then∫

H1/2

F(s, χ)
x s

s
ds ≪

√
x
(

xrr5/4
+

1
(log x)5/4

)
.

The implied constant depends only on χ (it is independent of r ).
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Proof. This is a variation on Lemma 4.2. If χ2χ−4 is principal we have

|F(s, χ)| ≪
4
√

|2s − 1|

on H1/2, where the implied constant depends only on χ . Similarly, if L
( 1

2 , χ
)
L
( 1

2 , χχ−4
)
= 0 and χ2 is

principal then

|F(s, χ)| ≪

√∣∣s −
1
2

∣∣ 4

√
1

|2s − 1|
≤

4
√

|2s − 1|

by Lemma 4.1. In both cases the integral is

≪
√

x
∫
H1/2

4
√∣∣s −

1
2

∣∣xmax{ℜs−1/2,0}
|ds|.

The contribution of ℜs ≥
1
2 is ≪

√
xxrr5/4, while the contribution of ℜs ≤

1
2 is

≪
√

x
∫ 0

−∞

4
√

|t |x t dt ≪

√
x

(log x)5/4
,

concluding the proof. □

Let Cq be the following positive constant, depending only on q:

Cq =
2π−1/4

0
( 1

4

) ∏
p≡3 mod 4

(
1 −

1
p2

)−1/4 ∏
p | q

p≡3 mod 4

(
1 −

1
p

)1/2

. (4-6)

Lemma 4.5. Let χ be a nonprincipal Dirichlet character modulo q. Assume GRH for the characters in
(3-15). If χ2 is principal and L

( 1
2 , χ

)
L
( 1

2 , χχ−4
)
̸= 0 then

1
2π i

∫
H1/2

F(s, χ)
x s

s
ds =Cq

√
x

(log x)3/4

(
1−

χ(2)
√

2

)−1/2√
L
( 1

2 , χ
)
L
( 1

2 , χχ−4
)(

1+O
(

x−c/2
))

+ O
(

√
x
(

xrr7/4
+

1
(log x)7/4

))
(4-7)

where the implied constants depend only on χ .

Proof. Let M(s, χ) =
√

L(s, χ)L(s, χχ−4)
4
√

L(2s, χ2)(2s − 1)/L(2s, χ2χ−4)G(s, χ)/s where G is
defined in Lemma 3.5. On H1/2 we have F(s, χ)/s = M(s, χ)(2s − 1)−1/4. We define M at s =

1
2 by

its limit there, which exists as L(s, χ0)= ζ(s)
∏

p | q(1 − p−s) has a simple pole at s = 1. In fact, M is
analytic in a neighborhood of s =

1
2 by our assumption on χ and χ−4. We have

M
( 1

2 , χ
)
= 2

√
L
( 1

2 , χ
)
L
( 1

2 , χχ−4
) ∏

p | q

(
1 −

1
p

)1/4L(1, χ0χ−4)
−1/4G

( 1
2 , χ

)
.

The expression L(1, χ0χ−4) may be simplified as

L(1, χ−4)
∏
p | q

(1 −χ−4(p)/p)=

∏
p | q

(1 −χ−4(p)/p)
π

4
.
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Our integral is

1
2π i

(
M

( 1
2 , χ

) ∫
H1/2

(2s − 1)−1/4x s ds +

∫
H1/2

(2s − 1)−1/4x s(M(s, χ)− M
(1

2 , χ
))

ds
)
.

The second integral here is small, namely ≪
√

x(xrr7/4
+ (log x)−7/4), by an argument parallel to

Lemma 4.4. It suffices to show that

1
2π i

∫
H1/2

(
s −

1
2

)−1/4x s ds =
1

0
(1

4

) √
x

log x)3/4
(1 + O(x−c/2)).

Making the change of variables
(
s −

1
2

)
log x = y, this boils down to Hankel’s 0-function representation;

see, e.g., [Tenenbaum 2015, Corollary II.0.18]. □

5. Proof of Theorem 1.1

5A. Character sum estimates.

Proposition 5.1. Let χ be a nonprincipal Dirichlet character modulo q. Assume GRH for the characters
in (3-15). If χ2

̸= χ0 we have

1
X

∫ 2X

X

∣∣∣∣∑
n≤x
n∈S

χ(n)
∣∣∣∣2

dx ≪
X

(log X)3
,

while if χ2
= χ0 we have

1
X

∫ 2X

X

∣∣∣∣∑
n≤x
n∈S

χ(n)− Cq

√
x

(log x)3/4

(
1 −

χ(2)
√

2

)−1/2√
L
( 1

2 , χ
)
L
( 1

2 , χχ−4
)∣∣∣∣2

dx ≪
X

(log X)5/2
,

where Cq is defined in (4-6). The implied constants depend only on q.

Proof. By Lemma 3.10 with T = X3/4
≍ x3/4 and c =

1
10 we have, uniformly for x ∈ [X, 2X ],

∑
n≤x
n∈S

χ(n)=

m∑
j=1

1
2π i

∫
H1/2+iγ j

F(s, χ)x s ds
s

+ O(x1/2−1/100)

for any nonprincipal χ . The function F is defined in the first line of Section 3 and is analytic in the set (3-7)
or in the set (3-8), depending on χ . The m = mχ contours H1/2+iγ j =H1/2+iγ j ,χ are defined in Section 3D.
They are Hankel loop contours going anticlockwise around zeros 1

2 + iγ j of L(s, χ)L(s, χχ−4) up to
height T (exclusive), as well as around s =

1
2 in case χ2 or χ2χ−4 is principal. Let us write∑

n≤x
n∈S

χ(n)= S1(x)+ S2(x)+ O(x1/2−1/100)
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where S1(x) is the contribution of Hankel loops not going around 1
2 :

S1(x)=

∑
1≤ j≤m
γ j ̸=0

1
2π i

∫
H1/2+iγ j

F(s, χ)x s ds
s
,

and S2 is the contribution of the loop around s =
1
2 , in case such a loop exists:

S2(x)=

{ 1
2π i

∫
H1/2

F(s, χ)x s ds
s if L

( 1
2 , χ

)
L
(1

2 , χχ−4
)
= 0 or χ0 ∈ {χ2χ−4, χ

2
},

0 otherwise.

We shall take r = o(1/ log X) in all the definitions of the loops. If L
( 1

2 , χ
)
L
( 1

2 , χχ−4
)
= 0 or χ2χ−4 =χ0

we have, by Lemma 4.4, the pointwise bound

S2(x)≪

√
x

(log x)5/4
.

If χ2
= χ0 and L

( 1
2 , χ

)
L
( 1

2 , χχ−4
)
̸= 0, we have by Lemma 4.5 the following asymptotic relation:

S2(x)= Cq

√
x

(log x)3/4

(
1 −

χ(2)
√

2

)−1/2√
L
(1

2 , χ
)
L
( 1

2 , χχ−4
)
+ O

( √
x

(log x)7/4

)
.

In all cases,

S2(x)= 1χ2=χ0Cq

√
x

(log x)3/4

(
1 −

χ(2)
√

2

)−1/2√
L
( 1

2 , χ
)
L
(1

2 , χχ−4
)
+ O

( √
x

(log x)5/4

)
.

It now suffices to show that (1/X)
∫ 2X

X |S1(x)|2 dx ≪ X/(log X)3. We have, by Lemma 4.3,

1
X

∫ 2X

X
|S1(x)|2 dx ≪

1
X

∫ 2X

X

∣∣∣∣ ∑
1≤ j≤m
γ j ̸=0

∫
H1/2+iγ j

F(s, χ)x s ds
s

∣∣∣∣2

(5-1)

≪
X

(log X)3
∑

γ1,γ2 ̸=0:

L(1/2+iγ j ,χ)=0 or
L(1/2+iγ j ,χχ−4)=0

1
|γ1γ2|1−1/5(1 + |γ1 − γ2|)

. (5-2)

The sum over zeros converges by a standard argument; see [Montgomery and Vaughan 2007, Theorem 13.5]
where this is proved in the case of zeros of the Riemann zeta function. The only input needed is that
between height T and T + 1 there are ≪ log T zeros, which is true for any Dirichlet L-function; see
[loc. cit., Theorem 10.17]. □

5B. Conclusion of proof. Suppose a, b satisfy a ≡ b ≡ 1 mod (4, q) and (a, q)= (b, q)= 1. Suppose
the constant Cq,a,b appearing in (1-3) is positive. Consider X ≫ 1 which will tend to ∞. By orthogonality
of characters we write

S(x; q, a)− S(x; q, b)=
1

φ(q)

∑
χ0 ̸=χ mod q

(χ(a)−χ(b))
∑
n≤x
n∈S

χ(n) (5-3)
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for each x ∈ [X, 2X ]. By Proposition 5.1 and Cauchy–Schwarz, we can write

S(x; q, a)− S(x; q, b)=
Cq

φ(q)

√
x

(log x)3/4
Cq,a,b + T (x) (5-4)

where
1
X

∫ 2X

X
|T (x)|2 dx ≪

X
(log X)5/2

.

We see that in an L2-sense, T (x) is smaller (by a power of log x) than the term of order
√

x/(log x)3/4 in
(5-4). To make this precise, we use Chebyshev’s inequality:

Px∈[X,2X ]

(
|T (x)| ≥

√
X

9(X)(log X)3/4

)
≪
92(X)
log X

= o(1)

for any function 9 tending to ∞ slower than (log X)1/2. Here x is a number chosen uniformly at random
between X and 2X . It follows that Px∈[X,2X ](S(x; q, a)> S(x; q, b))∼ 1 which finishes the proof. □

6. Martin’s conjecture

6A. Preparation. Let Fω(s, χ)=
∑

n≥1 χ(n)ω(n)/ns for ℜs > 1. By Lemma 3.1 with κ = 1 + 1/ log x
and ω(n)≪ log n,∑

n≤x

χ(n)ω(n)=
1

2π i

∫ 1+1/log x+iT

1+1/log x−iT
Fω(s, χ)x s ds

s
+ O

(
log x +

x log2 x
T

)
(6-1)

for all T ≫ 1. We have ω = 1 ∗ 1Primes. For ℜs > 1 this identity leads to

Fω(s, χ)= L(s, χ)
(
log L(s, χ)− 1

2 log L(2s, χ2)+ Gω(s, χ)
)

(6-2)

where Gω may be analytically continued to ℜs > 1
3 , and is bounded in ℜs ≥

1
3 + ε; see [Meng 2020,

(2.3)]. If χ is nonprincipal, GRH for χ and χ2 implies that Fω can be analytically continued to{
s ∈ C : ℜs > 1

3

}
\
{
σ + i t : L

( 1
2 + i t, χ

)
= 0 and σ ≤

1
2

}
(6-3)

if χ2 is nonprincipal, and{
s ∈ C : ℜs > 1

3

}
\
({
σ + i t : L

( 1
2 + i t, χ

)
= 0 and σ ≤

1
2

}
∪

{
σ : σ ≤

1
2

})
(6-4)

if χ2 is principal. Almost the same analysis applies for F�(s, χ)=
∑

n≥1 χ(n)�(n)/ns , with the only
change being the following variation on (6-2):

F�(s, χ)= L(s, χ)
(
log L(s, χ)+ 1

2 log L(2s, χ2)+ G�(s, χ)
)

where G� may be analytically continued to ℜs > 1
3 and is bounded in ℜs ≥

1
3 + ε. This is a consequence

of � = 1 ∗ 1prime powers. The following lemma is essentially [Meng 2020, Lemma 3], and its proof is
similar to the proof of Lemma 3.10.
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Lemma 6.1. Let χ be a nonprincipal character. Assume GRH holds for χ and χ2. Let c ∈
(
0, 1

6

)
be a

fixed constant. Let T ≫ 1. We have∑
n≤x

χ(n)ω(n)=
m∑

j=1

1
2π i

∫
H1/2+iγ j

Fω(s,χ)x s ds
s

+O
(

log x+
x log2 x

T
+

(x+max{x,T }
1/2

+x1/2−cT c+1)exp A log T
log log T

T

)
(6-5)

where the list
{ 1

2 + iγ j
}m

j=1 consists of the distinct nontrivial zeros of L(s, χ) with −T ′′
≤ t ≤ T ′ where

T ′, T ′′ depend only on T and χ are satisfy T ′, T ′′
= T + O(1). If χ2 is principal we include 1

2 in the list.
Here Hρ is the truncated Hankel loop contour defined in (3-13), and it has radius r which is chosen to

be sufficiently small (in terms of T , x and the list of γ j s). The implied constant and A depend only on χ
and c.

Proof. The proof is similar to that of Lemma 3.10, the main difference being the appearance of the
factor log L(s, χ) because of (6-2). We need to be careful because log L(s, χ) may be large even
if L(s, χ) is small. We need to explain why the contribution of log L(s, χ) may be absorbed into
exp(A log T/ log log T ). We shall show that log L(s, χ) = O(log T ) holds on the relevant contour.
Recall that arg L(s, χ) is defined via log L(s, χ)= log|L(s, χ)| + i arg L(s, χ). We have arg L(s, χ)=

O(log(|t | + 4)) uniformly in t and σ ∈
[ 1

6 , 2
]
; see [Montgomery and Vaughan 2007, Lemma 12.8].

Hence our focus will be on bounding log|L(s, χ)|. By Lemmas 3.6 and 3.9 we have log|L(σ + i t, χ)| ≤

C log(|t | + 4) for |t | ≫ 1 and σ ∈
[1

6 , 2
]
, so that we have an easy upper bound on log|L(s, χ)|, and the

focus is truly on lower bounding log|L(s, χ)|.
We want to shift the contour in (6-1) to ℜs =

1
2 −c and avoid logarithmic singularities using Hankel loops.

Before we do so, we replace the endpoints of the integral, namely 1+1/ log x ±iT , with 1+1/ log x +iT ′

and 1 + 1/ log x − iT ′′, where T ′, T ′′
= T + O(1) and the bound log|L(s, χ)| ≥ −C log(|t | + 4)) holds

uniformly on ℑs = T ′ and ℑs = −T ′′ with σ ∈
[1

6 , 2
]
. Changing the endpoints does not affect the error

term in (6-1) due to a simple variation on Remark 3.4. The existence of such T ′ and T ′′ is exactly the
content of [Montgomery and Vaughan 2007, Theorem 13.22].

Lemmas 3.6–3.9 allow us to bound both the vertical and horizontal contributions of L(s, χ) and
log L(2s, χ2). The horizontal contribution of log L(s, χ) is small due to the choice of T ′ and T ′′. To
bound the vertical contribution of log L(s, χ) we use [Montgomery and Vaughan 2007, Example 1 in
Section 12.1.1] which says that for ℜs ≥

1
6 ,

log L(s, χ)=

∑
ρ:|γ−t |≤1

log(s − ρ)+ O(log(|t | + 4))

unconditionally. Applying this with ρ=
1
2 −c+i t this is Oc(log|t |) since all the zeros satisfying |γ−t |≤ 1

are nontrivial and lie on ℜs =
1
2 , and there are ≪ log|t | zeros between height t − 1 and t + 1. □

The following lemma is implicit in [Meng 2020, pages 110–111].
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Lemma 6.2. Let χ be a nonprincipal character and suppose GRH holds for χ and χ2. Let ρ=
1
2 +iγ ̸=

1
2

be a nontrivial zero of L(s, χ). Let mρ,χ be the multiplicity of ρ in L(s, χ). We have∫
Hρ

Fω(s, χ)x s ds
s

= mρ,χ

∫
Hρ

L(s, χ) log(s − ρ)x s ds
s
.

Proof. Since

Fω(s, χ)= L(s, χ) log L(s, χ)− 1
2 L(s, χ) log L(2s, χ2)+ L(s, χ)Gω(s, χ)

and L(s, χ) log L(2s, χ2), L(s, χ)Gω(s, χ) are analytic in an open set containing Hρ , it follows that∫
Hρ

Fω(s, χ)x s ds
s

=

∫
Hρ

L(s, χ) log L(s, χ)x s ds
s

by Cauchy’s integral theorem. We may write log L(s, χ) as

log L(s, χ)= mρ,χ log(s − ρ)+ Hρ(s, χ)

for a function Hρ which is analytic in an open set containing the loop, since L(s, χ)/(s − ρ)mρ,χ has
a removable singularity at s = ρ.3 By Cauchy’s integral theorem, Hρ(s, χ) does not contribute to the
Hankel contour integral, giving the conclusion. □

Lemmas 6.1 and 6.2 hold as stated for � in place of ω as well. We have the following lemma, a
“logarithmic” analogue of Lemma 4.2.

Lemma 6.3. Let χ be a nonprincipal character and suppose GRH holds for χ . Let ρ =
1
2 + iγ be a

nontrivial zero of L(s, χ). Let

Iρ :=

∫
Hρ

|L(s, χ)||log(s − ρ)|xℜs
|ds|.

Then

Iρ ≪
√

x(|γ | + 1)c+o(1)
(

log log x

log2 x
+ log(r−1)r2xr

)
.

Proof. We write L(s, χ) as L(s, χ)/(s −ρ) times (s −ρ), and use Lemma 4.1 to bound L(s, χ)/(s −ρ)

by (|γ | + 1)c+o(1). We now consider separately |s − ρ| = r and s = ρ+ t , −c ≤ t ≤ −r . □

The following is an ω-analogue of Lemmas 4.4 and 4.5.

Lemma 6.4. Let χ be a nonprincipal Dirichlet character. Assume GRH holds for χ and χ2:

(1) If L
( 1

2 , χ
)
= 0 then∫

H1/2

Fω(s, χ)
x s

s
ds ≪

√
x
(

log log x

log2 x
+ log(r−1)r2xr

)
.

3An estimate for Hρ(s, χ) on Hρ may be obtained; see [Meng 2020, (2.15)].
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(2) If χ2 is principal and L
( 1

2 , χ
)
̸= 0 then

1
2π i

∫
H1/2

Fω(s, χ)
x s

s
ds = −L

( 1
2 , χ

) √
x

log x
+ O

( √
x

(log x)2

)
. (6-6)

The implied constants depend only on χ .

Proof. The first part is a minor modification of the proof of Lemma 6.3. The second part is [Meng 2020,
(2.28)]. □

Lemma 6.4 holds for � in place of ω, with the only difference being a sign change in (6-6).

6B. Proof of Theorem 2.1. We shall prove the theorem in the case of ω; the proof for � is analogous.
Suppose a, b satisfy (a, q) = (b, q) = 1. Suppose the constant Dq,a,b appearing in (2-11) is positive.
Consider X ≫ 1 which will tend to ∞. By orthogonality of characters we write∑

n≤x
n≡a mod q

ω(n)−
∑
n≤x

n≡b mod q

ω(n)=
1

φ(q)

∑
χ0 ̸=χ mod q

(χ(a)−χ(b))
∑
n≤x

χ(n)ω(n) (6-7)

for each x ∈ [X, 2X ]. By (6-5) with T = X3/4
≍ x3/4 and c =

1
10 we have, uniformly for x ∈ [X, 2X ],

∑
n≤x

χ(n)ω(n)=

m∑
j=1

1
2π i

∫
H1/2+iγ j

Fω(s, χ)x s ds
s

+ O(x1/2−1/100)

for any nonprincipal χ . For any pair ρ1 =
1
2 + iγ1, ρ2 =

1
2 + iγ2 of nontrivial zeros of L(s, χ) different

from 1
2 we have, from Lemmas 6.2 and 6.3,

1
X

∫ 2X

X

∫
Hρ1

Fω(s1, χ)x s1
ds1

s1

∫
Hρ2

Fω(s2, χ)x s2
ds2

s2

≪
mρ1,χmρ2,χ

|γ1γ2|1−c+o(1)(1 + |γ1 − γ2|)
X

(
log log X

log2 X
+ log r−1r2xr

)2

(6-8)

in analogy with Lemma 4.3. We take r = o(1/ log X). Since mρ = O(log(|ρ| + 1)) [Montgomery and
Vaughan 2007, Theorem 10.17] and ∑

γ1,γ2 ̸=0:

L(1/2+iγ j ,χ)=0

1
|γ1γ2|1−1/5(1 + |γ1 − γ2|)

converges [Montgomery and Vaughan 2007, Theorem 13.5], it follows that in an L2-sense, the contribution
of ρ ̸=

1
2 to (6-7) is O(

√
x log log x/(log x)2); this step corresponds to (5-1). By Lemma 6.4, the

contribution of loops around s =
1
2 is

−

√
x

log x
1

φ(q)

∑
χ mod q
χ2

=χ0

χ(a)−χ(b)L
(1

2 , χ
)
+ O

(√
x log log x

log2 x

)
= −

√
x

log x

(
Dq,a,b

φ(q)
+ o(1)

)
.
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As in the proof of Theorem 1.1, Chebyshev’s inequality allows us to conclude the following. The
probability that for a number x chosen uniformly at random from [X, 2X ],

∑
n≤x,n≡a mod q ω(n) <∑

n≤x,n≡b mod q ω(n) tends to 1 with X . This finishes the proof. □
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