

One-level density estimates for Dirichlet L-functions with extended support

Sary Drappeau, Kyle Pratt and Maksym Radziwiłł

Abstract

We estimate the 1-level density of low-lying zeros of $L(s, \chi)$ with χ ranging over primitive Dirichlet characters of conductor in $\left[\frac{1}{2} Q, Q\right]$ and for test functions whose Fourier transform is supported in $\left(-2-\frac{50}{1093}, 2+\frac{50}{1093}\right)$. Previously, any extension of the support past the range $(-2,2)$ was only known conditionally on deep conjectures about the distribution of primes in arithmetic progressions, beyond the reach of the generalized Riemann hypothesis (e.g., Montgomery's conjecture). Our work provides the first example of a family of L-functions in which the support is unconditionally extended past the "diagonal range" that follows from a straightforward application of the underlying trace formula (in this case orthogonality of characters). We also highlight consequences for nonvanishing of $L(s, \chi)$.

1. Introduction

Motivated by the problem of establishing the nonexistence of Siegel zeros (see [Conrey and Iwaniec 2002] for details), Montgomery [1973] investigated the vertical distribution of the zeros of the Riemann zeta function. He showed that under the assumption of the Riemann hypothesis, for any smooth function f with supp $\hat{f} \subset(-1,1)$,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{N(T)} \sum_{T \leq \gamma, \gamma^{\prime} \leq 2 T} f\left(\frac{\log T}{2 \pi} \cdot\left(\gamma-\gamma^{\prime}\right)\right)=\int_{\mathbb{R}} f(u) \cdot\left(\delta(u)+1-\left(\frac{\sin 2 \pi u}{2 \pi u}\right)^{2}\right) d u \tag{1}
\end{equation*}
$$

where $N(T)$ denotes the number of zeros of the Riemann zeta function up to height T, and γ, γ^{\prime} are ordinates of the zeros of the Riemann zeta function, and $\delta(u)$ is a Dirac mass at 0 . Dyson famously observed that the right-hand side coincides with the pair correlation function of eigenvalues of a random Hermitian matrix.

Dyson's observation leads one to conjecture that the spacings between the zeros of the Riemann zeta function are distributed in the same way as spacings between eigenvalues of a large random Hermitian matrix. Subsequent work of Rudnick and Sarnak [1994] provided strong evidence towards this conjecture by computing (under increasingly restrictive conditions) the n-correlations of the zeros of any given automorphic L-function. Importantly, the work of Rudnick and Sarnak [1996] suggested that the distribution of the zeros of an automorphic L-function is universal and independent of the distribution of its coefficients.

[^0]For number-theoretic applications, the distribution of the so-called "low-lying zeros", that is, zeros close to the central point, is particularly interesting (see, e.g., [Heath-Brown 2004; Young 2006] for various applications; see also [Granville and Soundararajan 2018] and [Watkins 2021], for instance, for results in a different direction). Following the work of Katz and Sarnak [1999] and Iwaniec, Luo and Sarnak [Iwaniec et al. 2000], we believe that the distribution of these low-lying zeros is also universal and predicted by only a few random matrix ensembles (which are either symplectic, orthogonal or unitary).

Specifically, the work of Katz and Sarnak suggests that for any smooth function ϕ and any natural "family" of automorphic objects \mathcal{F},

$$
\begin{equation*}
\frac{1}{\# \mathcal{F}} \sum_{\pi \in \mathcal{F}} \sum_{\gamma_{\pi}} \phi\left(\frac{\log \mathfrak{c}_{\pi}}{2 \pi} \cdot \gamma_{\pi}\right) \xrightarrow[\# \mathcal{F} \rightarrow \infty]{ } \int_{\mathbb{R}} \phi(x) K_{\mathcal{F}}(x) d x \tag{2}
\end{equation*}
$$

where γ_{π} are ordinates of the zeros of the L-function attached to π, \mathfrak{c}_{π} is the analytic conductor of π, and $K_{\mathcal{F}}(x)$ is a function depending only on the "symmetry type" of \mathcal{F}. One may wish to consult [Iwaniec et al. 2000] and [Sarnak et al. 2016] for a more detailed discussion.

There is a vast literature providing evidence for (2) (see [Mackall et al. 2016]). Similarly to Montgomery's result (1), all of the results in the literature place a restriction on the support of the Fourier transform of ϕ. This restriction arises from the limitations of the relevant trace formula (in some families it is not always readily apparent what this relevant trace formula is). In practice, an application of the trace formula gives rise to so-called "diagonal" and "off-diagonal" terms. Trivially bounding the off-diagonal terms corresponds to what we call a "straightforward" application of the trace formula.

A central yet extremely difficult problem is to extend the support of $\hat{\phi}$ beyond what a "straightforward" application of the trace formula gives. In fact most works in which the support of $\hat{\phi}$ has been extended further rely on the assumption of various deep hypotheses about primes that sometimes lie beyond the reach of the generalized Riemann hypothesis (GRH).

For example, Iwaniec, Luo and Sarnak show that in the case of holomorphic forms of even weight $\leq K$ one obtains unconditionally a result for $\hat{\phi}$ supported in $(-1,1)$ and that under the assumption of the generalized Riemann hypothesis this can be enlarged to $(-2,2)$ (it is observed in [Devin et al. 2022] that assuming GRH only for Dirichlet L-functions is sufficient). Iwaniec, Luo and Sarnak also show that this range can be pushed further to supp $\hat{\phi} \subset\left(-\frac{22}{9}, \frac{22}{9}\right)$ under the additional assumption that, for any $c \geq 1$, $(a, c)=1$ and $\varepsilon>0$,

$$
\sum_{\substack{p \leq x \\ p \equiv a(\bmod c)}} e(2 \sqrt{p} / c)<_{\varepsilon} x^{\frac{1}{2}+\varepsilon} .
$$

A similar behaviour is observed on low-lying zeros of dihedral L-functions associated to an imaginary quadratic field [Fouvry and Iwaniec 2003], where an extension of the support is shown to be equivalent to an asymptotic formula on primes with a certain splitting behaviour.

Assuming GRH, Brumer [1992] studied the one-level density of the family of elliptic curves and proved a result for test functions supported in $\left(-\frac{5}{9}, \frac{5}{9}\right)$; this corresponds to the "diagonal" range for
this family. Heath-Brown [2004] improved this range to $\left(-\frac{2}{3}, \frac{2}{3}\right)$, and Young [2006] pushed the support to $\left(-\frac{7}{9}, \frac{7}{9}\right)$. One-level density estimates for this family have deep implications for average ranks of elliptic curves. In particular, the work of Young was the first to show that, under some reasonable conjectures, a positive proportion of elliptic curves have rank 0 or 1 and thus satisfy the rank part of the Birch and Swinnerton-Dyer conjecture. ${ }^{1}$

As another example, it follows for instance from minor modifications of [Hughes and Rudnick 2003; Chandee et al. 2014] that in the family of primitive Dirichlet characters of modulus $\leq Q$ one can estimate 1-level densities unconditionally for ϕ with $\hat{\phi}$ supported in (-2, 2). ${ }^{2}$ As a byproduct of work of Fiorilli and Miller [2015, Theorem 2.8], it follows that for any $\delta \in(0,2)$, this support can be enlarged to $(-2-\delta, 2+\delta)$ under the following "de-averaging hypothesis":

$$
\begin{equation*}
\sum_{\frac{1}{2} Q \leq q \leq Q}\left|\sum_{\substack{p \leq x \\ p \equiv 1(\bmod q)}} \log p-\frac{x}{\varphi(q)}\right|^{2} \ll Q^{-\frac{1}{2} \delta} \sum_{\frac{1}{2} Q \leq q \leq Q} \sum_{(a, q)=1}\left|\sum_{\substack{p \leq x \\ p \equiv a(\bmod q)}} \log p-\frac{x}{\varphi(q)}\right|^{2} . \tag{3}
\end{equation*}
$$

In this paper we give a first example of a family of L-functions in which we can unconditionally enlarge the support past the "diagonal" range, which would follow from a straightforward application of the trace formula (in this case orthogonality of characters).

Theorem 1. Let Φ be a smooth function compactly supported in $\left[\frac{1}{2}, 3\right]$, and ϕ be a smooth function such that supp $\hat{\phi} \subset\left(-2-\frac{50}{1093}, 2+\frac{50}{1093}\right)$. Then, as $Q \rightarrow \infty$,

$$
\begin{equation*}
\sum_{q} \Phi\left(\frac{q}{Q}\right) \sum_{\substack{\chi(\bmod q) \\ \text { primitive }}} \sum_{\gamma_{\chi}} \phi\left(\frac{\log Q}{2 \pi} \gamma_{\chi}\right)=\hat{\phi}(0) \sum_{q} \Phi\left(\frac{q}{Q}\right) \sum_{\substack{\chi(\bmod q) \\ \text { primitive }}} 1+o\left(Q^{2}\right) \tag{4}
\end{equation*}
$$

Here $\frac{1}{2}+i \gamma_{\chi}$ correspond to nontrivial zeros of $L(s, \chi)$ and since we do not assume the generalized Riemann hypothesis we allow the γ_{χ} to be complex.

Remark. In stating the theorem we have, for technical simplicity, made a suitable approximation to the conductor $\mathfrak{c}_{\boldsymbol{\pi}}$ appearing in (2).

Note that ϕ, initially defined on \mathbb{R}, is analytically continued to \mathbb{C} by compactness of supp $\hat{\phi}$. Our arguments can be adapted to show that if supp $\hat{\phi} \subset\left(-2-\frac{50}{1093}+\varepsilon, 2+\frac{50}{1093}-\varepsilon\right)$ for some $\varepsilon>0$, then the error term in (4) is $O\left(Q^{2-\delta}\right)$ with $\delta=\delta(\varepsilon)$, up to altering slightly the main terms: after applying the explicit formula as in Section 2.2, include the terms of order $\asymp Q^{2} / \log Q$ into the main term instead of treating them as error terms.

We remark that we make no progress on the "de-averaging hypothesis" (3) of Fiorilli and Miller, which remains a difficult open problem. We estimate the original sum over primes in arithmetic progressions, on average over moduli, by a variant of an argument of Fouvry [1985] and Bombieri, Friedlander and

[^1]Iwaniec [Bombieri et al. 1986] which is based on Linnik's dispersion method. The GRH will be dispensed with by working throughout, as in [Drappeau 2015], with characters of large conductors.

The asymptotic formula (4) is expected to hold true without the extra averaging over q. This extra averaging over q and the cancellation of arguments which comes along play an important role in our arguments.

If the GRH is true for Dirichlet L-functions, then let any $0<\kappa<\frac{50}{1093}$ be fixed, and let $\lambda>1$ be small enough that $\kappa^{\prime}:=2(\lambda-1)+\lambda \kappa \in\left(0, \frac{50}{1093}\right)$ as well. Defining

$$
\tilde{\phi}(x)=\lambda\left(\frac{\sin \pi(2+\kappa) x}{\pi(2+\kappa) x}\right)^{2}, \quad \phi=\tilde{\phi} * u
$$

where u is a smooth, positive approximation of unity such that $\phi(0) \geq \lambda^{-1} \tilde{\phi}(0)=1$, and using the inequality

$$
1-\sum_{\gamma_{\chi}} \phi\left(\frac{\log Q}{2 \pi} \gamma_{\chi}\right) \leq \mathbf{1}\left(L\left(\frac{1}{2}, \chi\right) \neq 0\right)
$$

we deduce from Theorem 1 that the proportion of nonvanishing $L\left(\frac{1}{2}, \chi\right)$ with χ ranging over primitive characters of conductor in $\left[\frac{1}{2} Q, Q\right]$ is at least $1-\lambda\left(2+\kappa^{\prime}\right)^{-1}=1-(2+\kappa)^{-1}$ for any $\kappa<\frac{50}{1093}$.

Corollary 2. Let $\varepsilon \in\left(0,10^{-7}\right)$. Assume the generalized Riemann hypothesis for Dirichlet L-functions. Then for all Q large enough, the proportion of primitive characters χ with modulus in $\left[\frac{1}{2} Q, Q\right]$ for which

$$
L\left(\frac{1}{2}, \chi\right) \neq 0
$$

is at least

$$
\frac{1}{2}+\frac{25}{2236}-\varepsilon>0.51118
$$

Corollary 2 is related to a recent result of Pratt [2019], who showed unconditionally that the proportion of nonvanishing in this family is at least 0.50073 . We note that both the arguments of [Pratt 2019] and those presented here eventually rely on bounds of Deshouillers and Iwaniec [1982] on cancellation in sums of Kloosterman sums.

Notation. We call a map $f: \mathbb{R}_{+} \rightarrow \mathbb{C}$ a test function if f is smooth and supported inside $\left[\frac{1}{2}, 3\right]$.
For $w \in \mathbb{N}, n \in \mathbb{Z}$ and $R \geq 1$, we let

$$
\mathfrak{u}_{R}(n, w):=\mathbf{1}_{n \equiv 1(\bmod w)}-\frac{1}{\varphi(w)} \sum_{\substack{\chi(\bmod w) \\ \operatorname{cond}(\chi) \leq R}} \chi(n)
$$

Note the trivial bound

$$
\begin{equation*}
\left|\mathfrak{u}_{R}(n, w)\right| \ll \mathbf{1}_{n \equiv 1(\bmod w)}+\frac{R \tau(w)}{\varphi(w)} \tag{5}
\end{equation*}
$$

The symbol $n \sim N$ in a summation means $n \in[N, 2 N) \cap \mathbb{Z}$. We say that a sequence $\left(\alpha_{n}\right)_{n}$ is supported at scale N if $\alpha_{n}=0$ unless $n \sim N$.

The letter ε will denote an arbitrarily small number, whose value may differ at each occurrence. The implied constants will be allowed to depend on ε.

2. Proof of Theorem 1

2.1. Lemmas on primes in arithmetic progressions. We will require two results about primes in arithmetic progressions. The first is a standard estimate, obtained from an application of the large sieve.

Lemma 3. Let $A>0, X, Q, R \geq 2$ satisfy $1 \leq R \leq Q$ and $X \geq Q^{2} /(\log Q)^{A}$, and let f be a test function with $\left\|f^{(j)}\right\|_{\infty} \ll j 1$. Then

$$
\begin{equation*}
\sum_{q \leq Q}\left|\sum_{n \in \mathbb{N}} f\left(\frac{n}{X}\right) \Lambda(n) \mathfrak{u}_{R}(n, q)\right| \ll Q(\log Q)^{O(1)} \sqrt{X}\left(1+\frac{\sqrt{X}}{R Q}+\frac{X^{\frac{3}{8}}}{Q}\right) \tag{6}
\end{equation*}
$$

The implied constant depends at most on A and the implied constants in the hypothesis.
Proof. By Heath-Brown's combinatorial formula for primes [Iwaniec and Kowalski 2004, Proposition 13.3] (with $K=2$), we restrict to proving the bound with $\Lambda(n)$ replaced by convolutions of types I and II, of the shape

$$
\sum_{\substack{n=m \ell \\ m \sim M}} \sum_{m} \quad\left(M \ll X^{\frac{1}{4}}\right), \quad \sum_{\substack{n=m \ell \\ m \sim M}} \sum_{m} \beta_{\ell} \quad\left(X^{\frac{1}{4}} \ll M \ll X^{\frac{3}{4}}\right),
$$

where $\left|\alpha_{m}\right| \ll(\log X) \tau_{4}(m)$ and the analogous bound holds for β_{ℓ}; here we noted that if $m_{1} \leq m_{2} \leq \sqrt{X}$ and $m_{1} m_{2}>X^{\frac{1}{4}}$, then either $X^{\frac{1}{4}}<m_{1} m_{2} \leq X^{\frac{3}{4}}$ or $X^{\frac{1}{4}} \leq m_{1} \ll X^{\frac{1}{2}}$. We treat the type I case by the PólyaVinogradov inequality [Iwaniec and Kowalski 2004, Theorem 12.5], getting a bound $O\left(M R^{\frac{3}{2}}(\log Q)^{O(1)}\right)$. We treat the type II case by the large sieve [Iwaniec and Kowalski 2004, Theorem 17.4], getting a contribution $O\left(\sqrt{X}(\log Q)^{O(1)}\left(Q+\sqrt{M}+\sqrt{X / M}+\sqrt{X} R^{-1}\right)\right)$.

The second estimate is substantially deeper and we defer its proof to Section 4.
Proposition 4. Let $\kappa \in\left(0, \frac{50}{1093}\right)$ and $\varepsilon>0$. Let Ψ and f be test functions, $A>0, X, Q, W, R \geq 1$, and $b \in \mathbb{N}$. Assume that

$$
\frac{Q^{2}}{(\log Q)^{A}} \ll X \ll Q^{2+\kappa}, \quad X^{\frac{11}{20}} Q^{-1} \leq R \leq Q^{\frac{2}{3}} X^{-\frac{2}{9}}, \quad b \leq Q^{\varepsilon}, \quad Q^{1-\varepsilon} \ll W \ll Q
$$

and that $\left\|f^{(j)}\right\|_{\infty},\left\|\Psi^{(j)}\right\|_{\infty} \ll_{j} 1$. Then, if $\varepsilon>0$ is small enough in terms of κ, we have

$$
\sum_{w \in \mathbb{N}} \Psi\left(\frac{w}{W}\right) \sum_{n \in \mathbb{N}} \Lambda(n) f\left(\frac{n}{X}\right) \mathfrak{u}_{R}(n, b w) \ll Q^{1-\varepsilon} \sqrt{X} .
$$

The implied constant depends at most on κ, A, and the implied constants in the hypotheses.
Proof. See Section 4.
2.2. Explicit formula. We let $\kappa \in\left(0, \frac{50}{1093}\right)$ be such that $\operatorname{supp} \hat{\phi} \subset(-2-\kappa, 2+\kappa)$.

We rewrite the left-hand side of (4) by applying the explicit formula, e.g., [Sica 1998, Theorem 2.2], where the quantity $\Phi(\rho)$ there (not to be confused with our test function) is replaced by $\phi\left(\frac{1}{2 \pi i}\left(\rho-\frac{1}{2}\right) \log Q\right)$,
so that $F(x)=(1 / \log Q) \hat{\phi}(x / \log Q)$. For $q>1$ and $\chi(\bmod q)$ primitive, we obtain

$$
\begin{equation*}
\sum_{\substack{\rho \in \mathbb{C} \\ \operatorname{Re}(\rho) \in(0,1) \\ L(\rho, \chi)=0}} \phi\left(\frac{\left(\rho-\frac{1}{2}\right) \log Q}{2 \pi i}\right)=O\left(\frac{1}{\log Q}\right)+\hat{\phi}(0) \frac{\log q}{\log Q}-\frac{1}{\log Q} \sum_{n \geq 1}(\chi(n)+\bar{\chi}(n)) \frac{\Lambda(n)}{\sqrt{n}} \hat{\phi}\left(\frac{\log n}{\log Q}\right) \tag{7}
\end{equation*}
$$

since the terms I, J appearing in [Sica 1998, Theorem 2.2] satisfy $\left|I\left(\frac{1}{2}, b\right)\right|+\left|J\left(\frac{1}{2}, b\right)\right| \ll(\log Q)^{-1}$ for $b \in\left\{0, \frac{1}{2}\right\}$ by reasoning similarly as in [Sica 1998, Lemma 3.1]. Let $\Psi(x)=\Phi(x) x$. Summing (7) over χ and q, we see that to conclude it remains to show that

$$
\begin{equation*}
S_{\phi}(Q):=\sum_{q \in \mathbb{N}} \frac{1}{q} \Psi\left(\frac{q}{Q}\right) \sum_{\substack{\chi(q) \\ \text { primitive }}} \frac{1}{\log Q} \sum_{n \geq 1}(\chi(n)+\bar{\chi}(n)) \frac{\Lambda(n)}{\sqrt{n}} \hat{\phi}\left(\frac{\log n}{\log Q}\right)=o(Q) \tag{8}
\end{equation*}
$$

We will in fact obtain the following slightly stronger result.
Proposition 5. Let $\kappa \in\left(0, \frac{50}{1093}\right)$. For all Q large enough and $\varepsilon>0$ small enough in terms of κ, we have

$$
S_{\phi}(Q)=O\left(\frac{Q}{\log Q}\right)
$$

The implied constant depends on ϕ and ε at most.
We break down the proof of Proposition 5 into the following three sections.
2.3. Orthogonality and partition of unity. Applying character orthogonality for primitive characters (see the third display in the proof of Lemma 4.1 of [Bui and Milinovich 2011]), we get

$$
\begin{equation*}
S_{\phi}(Q)=\frac{2}{\log Q} \sum_{v, w} \sum \Psi\left(\frac{v w}{Q}\right) \frac{\mu(v)}{v} \frac{\varphi(w)}{w} \sum_{n \equiv 1(\bmod w)} \frac{\Lambda(n)}{\sqrt{n}} \hat{\phi}\left(\frac{\log n}{\log Q}\right) \tag{9}
\end{equation*}
$$

Let V be any test function generating the partition of unity

$$
\sum_{j \in \mathbb{Z}} V\left(\frac{x}{2^{j}}\right)=1
$$

for all $x>0$. Inserting this in (9), we obtain

$$
S_{\phi}(Q)=\frac{2}{\log Q} \sum_{\substack{j \in \mathbb{Z} \\ \frac{1}{2} \leq X:=2^{j} \leq 2 Q^{2+\kappa}}} \sum_{v, w} \sum_{w} \Psi\left(\frac{v w}{Q}\right) \frac{\mu(v)}{v} \frac{\varphi(w)}{w} \sum_{n \equiv 1(\bmod w)} \frac{\Lambda(n)}{\sqrt{n}} V\left(\frac{n}{X}\right) \hat{\phi}\left(\frac{\log n}{\log Q}\right)
$$

Set $f_{j}(x)=x^{-\frac{1}{2}} V(x) \hat{\phi}\left(\log \left(2^{j} x\right) / \log Q\right)$ for $\frac{1}{2} \leq 2^{j} \leq 2 Q^{2+\kappa}$. Differentiating the product, we have that for all $k \geq 0$, there exists $C_{\phi, k} \geq 0$ such that $\left\|f_{j}^{(k)}\right\|_{\infty} \leq C_{\phi, k}$ for all j. We deduce

$$
S_{\phi}(Q) \ll \sup _{1 \ll X \ll Q^{2+\kappa}} X^{-\frac{1}{2}} \sup _{f}|T(Q, X)|
$$

where f varies among test functions subject to $\left\|f^{(k)}\right\|_{\infty} \leq C_{\phi, k}$, and

$$
T(Q, X):=\sum_{v, w} \sum_{w} \Psi\left(\frac{v w}{Q}\right) \frac{\mu(v)}{v} \frac{\varphi(w)}{w} \sum_{n \equiv 1(\bmod w)} \Lambda(n) f\left(\frac{n}{X}\right)
$$

We handle the very small values of X by the trivial bound

$$
\sum_{n \equiv 1(\bmod w)} \Lambda(n) f\left(\frac{n}{X}\right) \ll \log Q \sum_{\substack{\frac{1}{2} X<n<3 X \\ n \neq 1, n \equiv 1(\bmod w)}} 1 \ll \frac{X \log Q}{w},
$$

which implies

$$
T(Q, X) \ll \frac{X \log Q}{Q} \sum_{v w \approx Q} \sum_{1} 1 \ll X(\log Q)^{2} .
$$

It will therefore suffice to show that for

$$
Q^{2} /(\log Q)^{6} \ll X \ll Q^{2+\kappa},
$$

we have

$$
T(Q, X) \ll \frac{\sqrt{X} Q}{\log Q}
$$

2.4. Subtracting the main term. We insert the coprimality condition $(n, v)=1$. Since

$$
\sum_{v, w} \sum \Psi\left(\frac{v w}{Q}\right) \frac{\mu(v)}{v} \frac{\varphi(w)}{w} \sum_{\substack{n \equiv 1(\bmod w) \\(n, v)>1}} \Lambda(n) f\left(\frac{n}{X}\right) \ll \sum_{v \ll Q} v^{-1} \sum_{\substack{p \mid v \\ 1 \leq k \ll \log X}}\left((\log p) \sum_{w \mid p^{k}-1} 1\right) \ll Q^{1+\varepsilon}
$$

we obtain

$$
T(Q, X)=\sum_{v, w} \sum \Psi\left(\frac{v w}{Q}\right) \frac{\mu(v)}{v} \frac{\varphi(w)}{w} \sum_{\substack{n=1(\bmod w) \\(n, v)=1}} \Lambda(n) f\left(\frac{n}{X}\right)+O\left(Q^{1+\varepsilon}\right)
$$

Let $1 \leq R<\frac{1}{2} Q$ so that $R<v w$ for any v, w appearing in the sum. We replace the condition $n \equiv 1(\bmod w)$ by $\mathfrak{u}_{R}(n, w)$. The difference is

$$
\sum_{q} \frac{1}{q} \Psi\left(\frac{q}{Q}\right) \sum_{\substack{\chi(\bmod q) \\ r=\operatorname{cond}(\chi) \leq R \\ r \mid q}} \sum_{(n, q)=1} \Lambda(n) f\left(\frac{n}{X}\right) \chi(n) \sum_{v \mid q / r} \mu(v)=0
$$

since $r<q$ by our choice of R, so that

$$
T(Q, X)=\sum_{v, w} \sum \Psi\left(\frac{v w}{Q}\right) \frac{\mu(v)}{v} \frac{\varphi(w)}{w} \sum_{(n, v)=1} \Lambda(n) f\left(\frac{n}{X}\right) \mathfrak{u}_{R}(n, w)+O\left(Q^{1+\varepsilon}\right)
$$

We next remove the coprimality condition on n, using the trivial bound (5). For the first term $\mathbf{1}_{n \equiv 1(\bmod w)}$ in $\mathfrak{u}_{R}(n, w)$, this was already justified above. For the second term, we get

$$
\ll R Q^{-1+\varepsilon} \sum_{\substack{v, w \\ v w \simeq Q}} \sum_{p \mid v} \sum \log p \ll R Q^{\varepsilon} .
$$

Since $R \ll Q$, both error terms are acceptable. We get

$$
T(Q, X)=T(Q, X, R)+O\left(Q^{1+\varepsilon}\right)
$$

where

$$
\begin{align*}
T(Q, X, R) & :=\sum_{v, w} \sum \Psi\left(\frac{v w}{Q}\right) \frac{\mu(v)}{v} \frac{\varphi(w)}{w} \Delta(w) \\
\Delta(w) & :=\sum_{n} \Lambda(n) f\left(\frac{n}{X}\right) \mathfrak{u}_{R}(n, w) \tag{10}
\end{align*}
$$

We are required to show that

$$
\begin{equation*}
T(Q, X, R) \ll \frac{\sqrt{X} Q}{\log Q} \tag{11}
\end{equation*}
$$

2.5. Reduction to the critical range. We now impose the additional conditions

$$
\begin{equation*}
Q^{\frac{1}{2} \kappa+\varepsilon} \leq R \leq Q^{\frac{1}{2}} \quad \text { and } \quad \kappa<\frac{2}{3} \tag{12}
\end{equation*}
$$

Observe that this κ is the same as that appearing in the statement of Proposition 4. The condition $\kappa<\frac{2}{3}$ is convenient for applying (6) below, but is rather loose since κ is ultimately required to be much smaller than $\frac{2}{3}$.

Let $B \in\left[1, Q^{\frac{1}{2}}\right]$ be a parameter. In $T(Q, X, R)$, we write $\varphi(w) / w=\sum_{b \mid w} \mu(b) / b$ and exchange summation, so that

$$
T(Q, X, R) \leq \sum_{b, v} \frac{1}{b v}\left|\sum_{w} \Psi\left(\frac{b v w}{Q}\right) \Delta(b w)\right| \ll(\log B)^{2} \sup _{b, v \leq B}\left|\sum_{w} \Psi\left(\frac{b v w}{Q}\right) \Delta(b w)\right|+E_{1}+E_{2}
$$

where E_{1} (resp. E_{2}) corresponds to the sum over b, v restricted to $b>B$ (resp. $v>B$). We recall that $\operatorname{supp} \Psi \subset\left[\frac{1}{2}, 3\right]$ by hypothesis. On the one hand, we have

$$
E_{1} \ll \sum_{\substack{b, w \\ b w \leq 3 Q \\ b>B}} \sum_{b} \frac{1}{b}|\Delta(b w)| \ll Q^{\frac{1}{2} \varepsilon} B^{-1} \sum_{q \leq 3 Q}|\Delta(q)| \ll Q^{1+\frac{1}{2} \varepsilon} \sqrt{X} B^{-1}
$$

using (6) along with our hypotheses (12). On the other hand, we have

$$
E_{2} \ll \sum_{\substack{b, w \\ b w \leq 3 Q / B}} \frac{1}{b}|\Delta(b w)| \ll Q^{\frac{1}{2} \varepsilon} \sum_{q \leq 3 Q / B}|\Delta(q)| \ll Q \sqrt{X}\left(Q^{\frac{1}{2} \varepsilon} B^{-1}+Q^{-\varepsilon}\right)
$$

again by (12) and (6); we have used the bounds $Q^{-1+\varepsilon} \sqrt{X} R^{-1} \ll Q^{-\varepsilon}$ and $Q^{-1+\varepsilon} X^{\frac{3}{8}} \ll Q^{-\varepsilon}$, which follow from $Q^{\frac{1}{2} \kappa+\varepsilon} \leq R$ and $\kappa<\frac{2}{3}$ respectively upon reinterpreting ε.

Grouping the above, it will suffice to show that

$$
\sum_{w} \Psi\left(\frac{b v w}{Q}\right) \Delta(b w) \ll Q^{1-\varepsilon} \sqrt{X}
$$

uniformly for $b, v \leq Q^{\varepsilon}$ and test functions Ψ and f. Assume now $\kappa \in\left(0, \frac{50}{1093}\right)$. Then the conditions on R in (12) and in Proposition 4 overlap, so that we may apply Proposition 4 with $W=Q /(b v)$. This gives the above bound, and completes the proof of (11), hence of Proposition 5.

3. Exponential sums estimates

In this section, we work out the modifications to be made to the arguments underlying [Deshouillers and Iwaniec 1982] in order to exploit current knowledge on the spectral gap of the Laplacian on congruence surfaces [Kim and Sarnak 2003]. We will follow the setting in Theorem 2.1 of [Drappeau 2017], since we will need to keep track of the uniformity in q_{0}. We also take the opportunity to implement the recently described correction to [Bombieri et al. 1986].

Let $\theta \geq 0$ be a bound towards the Petersson-Ramanujan conjecture, in the sense of [Drappeau 2017, (4.6)]. Selberg's $\frac{3}{16}$ theorem corresponds to $\theta \leq \frac{1}{4}$, and the Kim-Sarnak bound [2003] asserts that $\theta \leq \frac{7}{64}$.

Proposition 6. Let the notation and hypotheses be as in [Drappeau 2017, Theorem 2.1]. Then

$$
\sum_{c}^{c} \sum_{\substack{d \\ c \equiv c_{0} \text { and } d=d_{0}(\bmod q) \\(q r d, s c)=1}} \sum_{r} \sum_{s,} b_{n, r, s} g(c, d, n, r, s) \mathrm{e}\left(n \frac{\overline{r d}}{s c}\right) \ll_{\varepsilon, \varepsilon_{0}}(q C D N R S)^{\varepsilon+O\left(\varepsilon_{0}\right)} q^{\frac{3}{2}} K(C, D, N, R, S)\left\|b_{N, R, S}\right\|_{2},
$$

where $\left\|b_{N, R, S}\right\|_{2}^{2}=\sum_{n, r, s}\left|b_{n, r, s}\right|^{2}$, and here
$K(C, D, N, R, S)^{2}$

$$
\begin{equation*}
=q C S(R S+N)(C+R D)+C^{1+4 \theta} D S((R S+N) R)^{1-2 \theta}\left(1+\frac{q C}{R D}\right)^{1-4 \theta}+D^{2} N R \tag{13}
\end{equation*}
$$

Remark 7. The bound of Proposition 6 is monotonically stronger as θ decreases, since the first term is larger than $C S(R S+N)(R D+q C)$. Under the Petersson-Ramanujan conjecture for Maass forms, which predicts that $\theta=0$ is admissible, the second term in (13) is smaller than the first.

Proof. The proof of the proposition, as with all results of this type, relies on the Kuznetsov formula and large sieve inequalities for coefficients of automorphic forms. The application of the Kuznetsov formula requires one to understand the contribution of holomorphic forms, Eisenstein series, and Maass forms (whether the holomorphic forms appear depends on the sign of the variables inside the Kloosterman sum). We divide these forms into the exceptional spectrum and the regular spectrum. The exceptional spectrum consists of those (conjecturally nonexistent) Maass forms whose eigenvalues $t_{f}=\frac{1}{2}+i t_{f}$ have $t_{f} \in i \mathbb{R}$. By the definition of θ above we have that $\left|t_{f}\right| \leq \theta$ for all f in the exceptional spectrum. The regular spectrum consists of everything that is not exceptional. The contribution of the regular spectrum is handled as in [Drappeau 2017], and does not require any modification here. We improve upon the analysis there in handling the exceptional spectrum by keeping track of the dependence on θ (see the remark made in [Drappeau 2017, p. 703]). The statements which are affected are [Drappeau 2017, Lemma 4.10, Proposition 4.12, Proposition 4.13 and the proof of Theorem 2.1]. The treatment of the exceptional spectrum rests upon a weighted large sieve inequality. These weighted large sieve inequalities are proved, following [Deshouillers and Iwaniec 1982], by an iterative procedure.

With the notation of [Drappeau 2017], the changes to be made are as follows:

- Lemma 4.10 bounds sums of the form

$$
\sum_{\substack{q \leq Q \\ q_{0} \mid q}} \sum_{\substack{\in \in \mathcal{B}(q, x) \\ t_{f} \in i \mathbb{R}}} Y^{2\left|t_{f}\right|}\left|\sum_{N<n \leq 2 N} n^{\frac{1}{2}} \rho_{f \infty}(n)\right|^{2}
$$

and serves to control the first step of the recursion. The bound

$$
\left.\left.\sum_{\substack{q \leq Q \\ q_{0} \mid q}} \sum_{\substack{f \in \mathcal{B}(q, x) \\ t_{f} \in i \mathbb{R}}} Y^{2\left|t_{f}\right|}\right|_{N<n \leq 2 N} n^{\frac{1}{2}} \rho_{f \infty}(n)\right|^{2} \ll(Q N)^{\varepsilon}\left(Q q_{0}^{-1}+N+(N Y)^{\frac{1}{2}}\right) N
$$

may be replaced by the bound

$$
\ll(Q N)^{\varepsilon}\left(Q q_{0}^{-1}+N+(N Y)^{2 \theta}\left(Q^{1-4 \theta}+N^{1-4 \theta}\right)\right) N
$$

This does not require any change in the recursion argument, but merely the use of the bound $\left|t_{f}\right| \leq \theta$ in the very last step [Deshouillers and Iwaniec 1982, page 278], whereby $\sqrt{Y / Y_{1}}$ is replaced by $\left(Y / Y_{1}\right)^{2 \theta}$.

- In Proposition 4.12 one bounds sums of the form

$$
\sum_{\substack{m, n, r, s \\(s, r q)=1}} a_{m} b_{n, r, s} \sum_{c \in \mathcal{C}(\infty, 1 / s)} \frac{1}{c} \phi\left(\frac{4 \pi \sqrt{m n}}{c}\right) S_{\infty, 1 / s}(m, \pm n ; c)
$$

in terms of quantities $L_{\text {reg }}$ and $L_{\text {exc }}$. In place of

$$
L_{\mathrm{exc}}=\left(1+\sqrt{\frac{N}{R S}}\right) \sqrt{\frac{1+X^{-1}}{R S}}\left(\frac{M N}{R S+N}\right)^{\frac{1}{4}} \frac{\sqrt{R S}}{1+X} \sqrt{M}\left\|b_{N, R, S}\right\|_{2}
$$

we claim the improved

$$
L_{\mathrm{exc}}=q_{0}^{\frac{1}{2}-2 \theta}\left(1+\sqrt{\frac{N}{R S}}\right)\left(\frac{1+X^{-1}}{R S}\right)^{2 \theta}\left(\frac{M N}{R S+N}\right)^{\theta}\left(1+\frac{M}{R S}\right)^{\frac{1}{2}-2 \theta} \frac{\sqrt{R S}}{1+X} \sqrt{M}\left\|b_{N, R, S}\right\|_{2}
$$

To obtain this bound one uses the new bound for Lemma 4.10 and follows the arguments of [Deshouillers and Iwaniec 1982, Section 9.1].

- In Proposition 4.13, one bounds

$$
\sum_{\substack{c, m, n, r, s \\(s c, r q)=1}} b_{n, r, s} \bar{\chi}(c) g(c, m, n, r, s) e(m t) S(n \bar{r}, \pm m \bar{q} ; s c)
$$

in terms of quantities $K_{\text {reg }}$ and $K_{\text {exc }}$. The term

$$
K_{\mathrm{exc}}^{2}=C^{3} S^{2} \sqrt{R(N+R S)}
$$

can be replaced by

$$
K_{\mathrm{exc}}^{2}=C^{2+4 \theta} S^{2}(R(N+R S))^{1-2 \theta}\left(1+\frac{M}{R S}\right)^{1-4 \theta}
$$

This is seen by using the new definition on $L_{\text {exc }}$ in Proposition 4.12, and by keeping track of a factor $q^{-1+2 \theta}$ coming from the term $\left(1+X^{-1}\right)^{2 \theta} /(1+X)$.

- Finally, we modify the proof of Theorem 2.1 at two places. First, the bound for \mathcal{A}_{0} on page 706, as explained in the correction to [Bombieri et al. 1986], is wrong unless further hypotheses on ($b_{n, r, s}$) are imposed. The correct bound in general is

$$
\mathcal{A}_{0} \ll q^{-2}(\log S)^{2} D(N R)^{\frac{1}{2}}\left\|b_{N, R, S}\right\|_{2}
$$

and this yields the term $D^{2} N R$ instead of $D^{2} N R S^{-1}$. Second, our new bound for $K_{\text {exc }}$ in Proposition 4.13 gives a contribution $C^{2+4 \theta} S^{2}(R(R S+N))^{1-2 \theta}\left(1+M_{1} /(R S)\right)^{1-4 \theta}$ instead of $C^{3} S^{2} \sqrt{R(R S+N)}$ in the definition of L_{exc}^{2} and $L^{*}\left(M_{1}\right)^{2}$ on page 707 of [Drappeau 2017]. This yields a term $C^{1+4 \theta} D S \times$ $((N+R S) R)^{1-2 \theta}(1+q C /(R D))^{1-4 \theta}$ instead of $C^{2} D S \sqrt{(N+R S) R}$ in (4.39) of [Drappeau 2017], and by following the rest of the arguments we deduce our claimed bound.

4. Primes in arithmetic progressions: proof of Proposition 4

The proof of Theorem 1 relies on Proposition 4, which for the convenience of the reader we recall below. Proposition 4. Let $\kappa \in\left(0, \frac{50}{1093}\right)$ and $\varepsilon>0$. Let Ψ and f be test functions, $A>0, X, Q, W, R \geq 1$, and $b \in \mathbb{N}$. Assume that

$$
\frac{Q^{2}}{(\log Q)^{A}} \ll X \ll Q^{2+\kappa}, \quad X^{\frac{11}{20}} Q^{-1} \leq R \leq Q^{\frac{2}{3}} X^{-\frac{2}{9}}, \quad b \leq Q^{\varepsilon}, \quad Q^{1-\varepsilon} \ll W \ll Q,
$$

and that $\left\|f^{(j)}\right\|_{\infty},\left\|\Psi^{(j)}\right\|_{\infty} \ll j_{j}$. Then, if $\varepsilon>0$ is small enough in terms of κ, we have

$$
\sum_{w \in \mathbb{N}} \Psi\left(\frac{w}{W}\right) \sum_{n \in \mathbb{N}} \Lambda(n) f\left(\frac{n}{X}\right) \mathfrak{u}_{R}(n, b w) \ll Q^{1-\varepsilon} \sqrt{X} .
$$

The implied constant depends at most on κ, A, and the implied constants in the hypotheses.
Remark 8. What is crucial in our statement is the size of the upper bound, which should be negligible with respect to $Q \sqrt{X}$. On the other hand, we are only interested in values of X larger than Q^{2}. This is in contrast with most works on primes in arithmetic progressions [Fouvry and Iwaniec 1983; Bombieri et al. 1986; Zhang 2014], where the main challenge is to work with values of X much smaller than Q^{2}, while only aiming at an error term which is negligible with respect to X. The main point is that in both cases, the large sieve yields an error term which is always too large (see [Iwaniec and Kowalski 2004, Theorem 17.4]), an obstacle which the dispersion method is designed to handle.

In what follows, we will systematically write

$$
X=Q^{2+\pi}
$$

so that $-o(1) \leq \varpi \leq \kappa+o(1)$ as $Q \rightarrow \infty$.
4.1. Combinatorial identity. We perform a combinatorial decomposition of the von Mangoldt function into sums of different shapes: type d_{1} sums have a long smooth variable, type d_{2} sums have two long smooth variables, and type II sums have two rough variables that are neither too small nor too large. We accomplish this decomposition with the Heath-Brown identity and the following combinatorial lemma.

Lemma 9. Let $\left\{t_{j}\right\}_{1 \leq j \leq J} \in \mathbb{R}$ be nonnegative real numbers such that $\sum_{j} t_{j}=1$. Let $\lambda, \sigma, \delta \geq 0$ be real numbers such that

- $\delta<\frac{1}{12}$,
- $\sigma \leq \frac{1}{6}-\frac{1}{2} \delta$,
- $2 \lambda+\sigma<\frac{1}{3}$.

Then at least one of the following must occur:

- Type $d_{1}:$ There exists t_{j} with $t_{j} \geq \frac{1}{3}+\lambda$.
- Type d_{2} : There exist i, j, k such that $\frac{1}{3}-\delta<t_{i}, t_{j}, t_{k}<\frac{1}{3}+\lambda$, and

$$
\sum_{t_{j}^{*} \notin\left\{t_{i}, t_{j}, t_{k}\right\}} t_{j}^{*}<\sigma
$$

- Type II: There exists $S \subset\{1, \ldots, J\}$ such that

$$
\sigma \leq \sum_{j \in S} t_{j} \leq \frac{1}{3}-\delta
$$

Proof. Assume that the type d_{1} case and the type II case both fail. Then for every j we have $t_{j}<\frac{1}{3}+\lambda$, and for every subset S of $\{1, \ldots, J\}$ we have either

$$
\sum_{j \in S} t_{j}<\sigma \quad \text { or } \quad \sum_{j \in S} t_{j}>\frac{1}{3}-\delta
$$

Let s_{1}, \ldots, s_{K} denote those t_{j} with $\frac{1}{3}-\delta<t_{j}<\frac{1}{3}+\lambda$. We will show that $K=3$. Let t_{j}^{*} be any other t_{j}, so that $t_{j}^{*} \leq \frac{1}{3}-\delta$, and therefore $t_{j}^{*}<\sigma$. We claim that

$$
\sum_{j} t_{j}^{*}<\sigma
$$

If not, then $\sum_{j} t_{j}^{*}>\frac{1}{3}-\delta$. By a greedy algorithm we can find some subcollection S^{*} of the t_{j}^{*} such that

$$
\sigma<\sum_{j \in S^{*}} t_{j}^{*} \leq 2 \sigma
$$

Since $2 \sigma \leq \frac{1}{3}-\delta$ this subcollection satisfies the type II condition, in contradiction to our assumption.
Now we show that $K=3$. Observe that $K \geq 3$, since if $K \leq 2$ we have

$$
1=\sum_{j} t_{j}=\sum_{i=1}^{K} s_{i}+\sum_{j} t_{j}^{*}<2\left(\frac{1}{3}+\lambda\right)+\sigma<1
$$

Furthermore, we must have $K \leq 3$, since if $K \geq 4$ we have

$$
1=\sum_{j} t_{j} \geq \sum_{i=1}^{K} s_{i}>4\left(\frac{1}{3}-\delta\right)>1
$$

This completes the proof.

Using, e.g., the combinatorial identity of Heath-Brown [1982], we deduce the following.
Corollary 10. Let f be a test function, $u: \mathbb{N} \rightarrow \mathbb{C}$ be any map, and $X \geq 1$. Then there exists a sequence $\left(C_{j}\right)_{j \geq 0}$ of positive numbers, depending only on f, such that we have

$$
\begin{equation*}
\left|\sum_{n \in \mathbb{N}} \Lambda(n) f\left(\frac{n}{X}\right) u(n)\right| \ll(\log X)^{8}\left(T_{1}+T_{2}+T_{\mathrm{II}}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& T_{1}=\sup _{\substack{N \gg X^{1 / 3+\lambda} \\
M N \asymp X}} \sup _{\substack{g \in \mathcal{G} \\
\beta \in \mathcal{S}}}\left|\sum_{\substack{n \in \mathbb{N} \\
m \sim M}} g\left(\frac{n}{N}\right) \beta_{m} u(m n)\right|, \tag{15}\\
& T_{2}=\sup _{\substack{X^{1 / 3-\delta} \ll N_{2} \leq N_{1} \ll X^{1 / 3+\lambda} \\
M N_{1} N_{2} \asymp X}} \sup _{\substack{g_{1}, g_{2} \in \mathcal{G} \\
\beta \in \mathcal{S}}}\left|\sum_{\substack{n_{1}, n_{2} \in \mathbb{N} \\
m \sim M}} \sum_{1} g_{1}\left(\frac{n_{1}}{N_{1}}\right) g_{2}\left(\frac{n_{2}}{N_{2}}\right) \beta_{m} u\left(m n_{1} n_{2}\right)\right|, \tag{16}\\
& T_{\mathrm{II}}=\sup _{\substack{X^{\sigma} \ll N \ll X^{1 / 3-\delta} \\
M N \asymp X}} \sup _{\alpha, \beta \in \mathcal{S}}\left|\sum_{\substack{n \sim N \\
m \sim M}} \sum_{m} \beta_{n} u(m n)\right|, \tag{17}
\end{align*}
$$

where the implied constants are absolute, \mathcal{G} is the set of test functions g satisfying $\left\|g^{(j)}\right\|_{\infty} \leq C_{j}$, and \mathcal{S} is the set of sequences $\left(\beta_{n}\right)$ satisfying $\left|\beta_{n}\right| \leq d(n)^{8}$.

Proof. By the Heath-Brown identity [Iwaniec and Kowalski 2004, Proposition 13.3], there exists bounded coefficients $\left(c_{J}\right)_{1 \leq J \leq 4}$ such that

$$
\Lambda(n)=\sum_{J=1}^{4} c_{J} \sum_{\substack{m_{1}, \ldots, m_{J} \\ n_{1} \ldots, n_{J} \\ n=m_{1} \ldots n_{J} n_{1} \ldots n_{J} \\ m_{j} \leq(3 X)^{1 / 4}}} \log \left(n_{1}\right) \prod_{j} \mu\left(m_{j}\right)
$$

for any n involved in the left-hand side of (14). Let ψ be a test function inducing a partition of unity in the sense that $\sum_{j \in \mathbb{Z}} \psi\left(x / 2^{j}\right)=1$ for all $x>0$. Then we have

$$
\begin{gathered}
\sum_{n \in \mathbb{N}} \Lambda(n) f\left(\frac{n}{X}\right) u(n)=\sum_{J=1}^{4} c_{J} \sum_{\left(M_{1}, \ldots, M_{J}, N_{1}, \ldots, N_{J}\right) \in U_{J}} S\left(M_{1}, \ldots, M_{J}, N_{1}, \ldots, N_{J}\right), \\
S\left(M_{1}, \ldots, N_{J}\right)=\sum_{m_{1}, \ldots, n_{J} \in \mathbb{N}} \log \left(n_{1}\right)\left(\prod_{j} \psi\left(\frac{n_{j}}{N_{j}}\right)\right)\left(\prod_{j} \mu^{*}\left(m_{j}\right) \psi\left(\frac{m_{j}}{M_{j}}\right)\right) f\left(\frac{m_{1} \cdots n_{J}}{X}\right) u\left(m_{1} \cdots n_{J}\right),
\end{gathered}
$$

where U_{J} is the set of $2 J$-tuples of powers of 2 such that $\frac{1}{6} X \leq M_{1} \cdots M_{J} N_{1} \cdots N_{J} \leq 6 X$, and $\mu^{*}(m)=$ $\mu(m)$ if $m \leq(3 X)^{\frac{1}{4}}$ and 0 otherwise. We abbreviated $m_{1} \cdots n_{J}=m_{1} \cdots m_{J} n_{1} \cdots n_{J}$. The set U_{J} has at most $O\left((\log X)^{2 J-1}\right)$ elements. By Lemma 9, for each choice of J and $\left(M_{1}, \ldots, N_{J}\right) \in U_{J}$ we have either $N \geq \frac{1}{6} X^{\frac{1}{3}+\lambda}$ for some $N \in\left\{N_{j}\right\}$, or $\frac{1}{6} X^{\frac{1}{3}-\delta} \leq N^{\prime}, N^{\prime \prime} \leq 6 X^{\frac{1}{3}+\lambda}$ for some $N^{\prime}, N^{\prime \prime} \in\left\{N_{j}\right\}$, or $\frac{1}{6} X^{\sigma} \leq N \leq 6 X^{\frac{1}{3}-\delta}$ for some subproduct N of N_{j} and M_{j} (here we used that for X large enough,
we have $\left.(3 X)^{\frac{1}{4}}<\frac{1}{6} X^{\frac{1}{3}-\delta}\right)$. Sorting the sum over J and $\left(M_{1}, \ldots, N_{J}\right)$ according to this trichotomy, and writing $\log \left(n_{1}\right)=\log N_{1}+\log \left(n_{1} / N_{1}\right)$, the above is bounded in absolute values by

$$
\ll(\log X)^{8}\left(T_{1}^{*}+T_{2}^{*}+T_{\mathrm{II}}^{*}\right)
$$

where

$$
\begin{aligned}
& T_{1}^{*}=\sup _{\substack{\frac{1}{6} X \leq M N \leq 6 X \\
\frac{1}{6} X^{1 / 3+\lambda} \leq N \\
|r| \leq 8}} \sup _{\substack{ \\
\mid \in\{\psi, \psi \log \} \\
\beta \in \mathcal{S}}}\left|\sum_{\substack{n \in \mathbb{N} \\
m \sim M}} g\left(\frac{n}{N}\right) \beta_{m} f\left(\frac{m n}{2^{r} M N}\right) u(m n)\right|, \\
& T_{2}^{*}=\sup _{\substack{\frac{1}{6} X \leq N_{1} N_{2} M \leq 6 X \\
\frac{1}{6} X^{1 / 3-\delta} \leq N_{1}, N_{2} \leq 6 X^{1 / 3+\lambda} \\
|r| \leq 8}} \sup _{\substack{g_{1}, g_{2} \in\{\psi, \psi \log \} \\
\beta \in \mathcal{S}}}\left|\sum_{\substack{n_{1}, n_{2} \in \mathbb{N} \\
m \sim M}} g_{1}\left(\frac{n_{1}}{N_{1}}\right) g_{2}\left(\frac{n_{2}}{N_{2}}\right) \beta_{m} f\left(\frac{n_{1} n_{2} m}{2^{r} N_{1} N_{2} M}\right) u\left(n_{1} n_{2} m\right)\right|, \\
& T_{\text {II }}^{*}=\sup _{\substack{\frac{1}{6} X \leq N M \leq 6 X \\
\frac{1}{6} X^{\sigma} \leq N \leq 6 X^{1 / 3-\delta} \\
|r| \leq 8}} \sup _{\alpha, \beta \in \mathcal{S}}\left|\sum_{\substack{m \sim M \\
n \sim N}} \alpha_{m} \beta_{n} f\left(\frac{m n}{2^{r} M N}\right) u(m n)\right| .
\end{aligned}
$$

Here the conditions $m \sim M$ and $n \sim N$ in the sums were added by an additional bounded dichotomy (which is the reason for the presence of the sup over r). Finally, letting \check{f} be the Mellin transform of f, we have by Mellin inversion $f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \check{f}(i t) x^{-i t} \mathrm{~d} t$, and the map $t \mapsto \check{f}(i t)$ is of Schwartz class on \mathbb{R}. In particular, for M, N, r, g, β as in T_{1}^{*} we have

$$
\left|\sum_{n \in \mathbb{N}, m \sim M} g\left(\frac{n}{N}\right) \beta_{m} f\left(\frac{m n}{2^{r} M N}\right) u(m n)\right| \ll \sup _{t \in \mathbb{R}}\left|\sum_{n \in \mathbb{N}, m \sim M} g_{t}\left(\frac{n}{N}\right) \beta_{m, t} u(m n)\right|,
$$

where $g_{t}(x)=\left(1+t^{2}\right) \check{f}(i t) x^{-i t} g(x)$ (the factor $1+t^{2}$ being included so that we could write a supremum) and $\beta_{m, t}=m^{-i t} \beta_{m} \in \mathcal{S}$. We note that g_{t} is a test function satisfying $\left\|g_{t}^{(j)}\right\|_{\infty} \ll C_{j}$, where $C_{j}:=\sup _{0 \leq k, \ell, m \leq j+2}\left\|t^{k} \check{f}(i t)\right\|_{\infty}\left\|x^{-\ell} g^{(m)}(x)\right\|_{\infty}$ can be bounded in terms of f only. This yields the contribution of T_{1} in our claim. The contributions of T_{2} and $T_{\text {II }}$ are obtained in the same way.

In what follows, we successively consider T_{1}, T_{2} and $T_{\text {II }}$, which we specialize at

$$
u(n):=\sum_{w \in \mathbb{N}} \Psi\left(\frac{w}{W}\right) \mathfrak{u}_{R}(n, b w)
$$

and we will write

$$
R=X^{\rho}
$$

4.2. Type d_{1} sums. We suppose M and N are given as in (15). The quantity we wish to bound is
$T_{1}(M, N)=\sum_{w} \Psi\left(\frac{w}{W}\right) \sum_{\substack{m \sim M \\(m, b w)=1}} \beta_{m}\left(\sum_{\substack{n \in \mathbb{N} \\ m n \equiv 1(\bmod b w)}} g\left(\frac{n}{N}\right)-\frac{1}{\varphi(b w)} \sum_{\substack{\chi(\bmod b w) \\ \operatorname{cond}(\chi) \leq R}} \chi(m) \sum_{(n, b w)=1} \chi(n) g\left(\frac{n}{N}\right)\right)$.

By Poisson summation and the classical bound on Gauss sums [Iwaniec and Kowalski 2004, Lemma 3.2],

$$
\begin{aligned}
\sum_{n=\bar{m}(\bmod b w)} g\left(\frac{n}{N}\right) & =\frac{N}{b w} \hat{g}(0)+\frac{N}{b w} \sum_{0<|h| \leq W^{1+\varepsilon} / N} \hat{g}\left(\frac{N h}{b w}\right) e\left(\frac{\bar{m} h}{b w}\right)+O\left(Q^{-A}\right), \\
\frac{1}{\varphi(b w)} \sum_{(c, b w)=1} \chi(c) g\left(\frac{c}{N}\right) & =\frac{N}{b w} \hat{g}(0) \mathbf{1}\left(\chi=\chi_{0}\right)+O\left(\frac{Q^{\varepsilon} R^{\frac{1}{2}}}{W}\right) .
\end{aligned}
$$

Therefore,

$$
T_{1}(M, N)=\frac{N}{b} \sum_{w} \frac{1}{w} \Psi\left(\frac{w}{W}\right) \sum_{\substack{(m, b w)=1 \\ m \sim M}} \beta_{m} \sum_{\substack{0<|h| \leq W^{1+\varepsilon} / N}} \hat{g}\left(\frac{N h}{b w}\right) e\left(\frac{\bar{m} h}{b w}\right)+O\left(M R^{\frac{3}{2}} Q^{\varepsilon}\right)
$$

Our goal is to get cancellation in the exponential phases by summing over the smooth variable w. We apply the reciprocity formula

$$
\frac{\bar{m} h}{b w} \equiv-\frac{\overline{b w} h}{m}+\frac{h}{m b w}(\bmod 1),
$$

which implies

$$
T_{1}(M, N)=\frac{N}{b} \sum_{w} \frac{1}{w} \Psi\left(\frac{w}{W}\right) \sum_{\substack{(m, b w)=1 \\ m \sim M}} \beta_{m} \sum_{\substack{0<|h| \leq W^{1+\varepsilon} / N}} \hat{g}\left(\frac{N h}{b w}\right) e\left(\frac{\overline{b w} h}{m}\right)+O\left(M R^{\frac{3}{2}} Q^{\varepsilon}+Q^{1+\varepsilon} N^{-1}\right) .
$$

We rearrange the sum as

$$
\frac{N}{b W} \sum_{\substack{(m, b)=1 \\ m \sim M}} \beta_{m} \sum_{\substack{0<|h| \leq W^{1+\varepsilon} / N}} \sum_{(w, m)=1} \hat{g}\left(\frac{N h}{b w}\right) \frac{W}{w} \Psi\left(\frac{w}{W}\right) e\left(\frac{\overline{b w} h}{m}\right) .
$$

By partial summation and a variant of the Weil bound [Drappeau 2015, (2.4)], the sum on w is

$$
\ll\left((h, m) W M^{-1}+\sqrt{(h, m)} \sqrt{M}\right) Q^{\varepsilon} .
$$

Summing over h and m, we obtain a bound

$$
T_{1}(M, N) \ll Q^{1+\varepsilon}+M^{\frac{3}{2}} Q^{\varepsilon}+M R^{\frac{3}{2}} Q^{\varepsilon}
$$

This bound is acceptably small provided

$$
N \gg\left(\frac{X}{Q}\right)^{\frac{2}{3}+\varepsilon}=X^{\frac{1}{3}+\frac{1}{3} \varpi /(2+\varpi)+\varepsilon(1+\varpi) /(2+\varpi)} \quad \text { and } \quad N \gg \frac{X^{\frac{1}{2}} R^{\frac{3}{2}}}{Q^{1-2 \varepsilon}}=X^{\frac{1}{2} \sigma /(2+m)+\frac{3}{2} \rho+2 \varepsilon /(2+\varpi)}
$$

These inequalities are satisfied, for all sufficiently small $\varepsilon>0$, under the assumptions

$$
\begin{equation*}
\lambda>\frac{\varpi}{3(2+\varpi)} \quad \text { and } \quad \rho<\frac{4+\varpi}{9(2+\varpi)} \tag{18}
\end{equation*}
$$

We have proved the following.
Lemma 11. Under the notation and hypotheses of Corollary 10, and assuming (18), we have

$$
T_{1} \ll Q^{1-\varepsilon} \sqrt{X}
$$

The implied constant depends on λ, ρ and ϖ.
4.3. Type d_{2} sums. The treatment of the type d_{2} sums (16) is nearly identical to [Bombieri et al. 1986, Section 14]. For convenience, we rename $\left(N_{1}, N_{2}, M\right)$ into (M, N, L) so that we have $M N L \asymp X$. We wish to bound

$$
\begin{aligned}
& T_{2}(M, N, L)=\sum_{\ell \sim L} \beta_{\ell} \sum_{(w, \ell)=1} \Psi\left(\frac{w}{W}\right)\left(\sum_{\substack{m, n \\
\ell m n \equiv 1(\bmod b w)}} g_{1}\left(\frac{m}{M}\right) g_{2}\left(\frac{n}{N}\right)\right. \\
&\left.-\frac{1}{\varphi(b w)} \sum_{\substack{\chi(\bmod b w) \\
\operatorname{cond}(\chi) \leq R}} \chi(\ell) \sum_{(m n, b w)=1} \sum_{1} g_{1}\left(\frac{m}{M}\right) g_{2}\left(\frac{n}{N}\right) \chi(m n)\right)
\end{aligned}
$$

We perform Poisson summation on the m-sums to get

$$
\begin{aligned}
\sum_{m \equiv \overline{\ell n}(\bmod b w)} g_{1}\left(\frac{m}{M}\right) & =\frac{M}{b w} \sum_{|h| \leq H} \hat{g}_{1}\left(\frac{M h}{b w}\right) e\left(\frac{\overline{\ell n} h}{b w}\right)+O\left(Q^{-A}\right), \\
\sum_{(m, b w)=1} \chi(m) g_{1}\left(\frac{m}{M}\right) & =\frac{\varphi(b w)}{b w} M \hat{g}_{1}(0) \mathbf{1}\left(\chi=\chi_{0}\right)+O\left(Q^{\varepsilon} R^{\frac{1}{2}}\right)
\end{aligned}
$$

where $H=W^{1+\varepsilon} M^{-1}$. The contribution of the error terms is

$$
\ll L N R^{\frac{3}{2}} Q^{\varepsilon}
$$

The zero frequency of Poisson summation cancels out. For the nonzero frequencies we employ reciprocity in the form

$$
e\left(\frac{\overline{\ell n} h}{b w}\right)=e\left(-\frac{\overline{b w} h}{\ell n}\right)+O\left(\frac{H}{L N W}\right)
$$

and the error term contributes a quantity of size $O\left(Q^{1+\varepsilon}\right)$. We therefore have

$$
\begin{align*}
& T_{2}(M, N, L)=\frac{M}{b} \sum_{\substack{\ell \sim \\
(\ell, b)=1}} \beta_{\ell} \sum_{(w, \ell)=1} \frac{1}{w} \Psi\left(\frac{w}{W}\right) \sum_{(n, b w)=1} g_{2}\left(\frac{n}{N}\right) \sum_{0<|h| \leq H} \hat{g}_{1}\left(\frac{M h}{b w}\right) e\left(-\frac{\overline{b w} h}{\ell n}\right) \\
&+O\left(Q^{1+\varepsilon}+L N R^{\frac{3}{2}} Q^{\varepsilon}\right) \tag{19}
\end{align*}
$$

We next separate the variables h and w. We change variables to write

$$
\hat{g}_{1}\left(\frac{M h}{b w}\right)=\frac{w}{M} \int_{\mathbb{R}} g_{1}\left(\frac{w y}{M}\right) e\left(-\frac{h y}{b}\right) d y
$$

Since g_{1} and Ψ are test functions, the integral is restricted to $y \asymp M / W$. We move the integral to the outside to write the first term of the right-hand side of (19) as

$$
\begin{equation*}
\ll \frac{M}{b W} \sup _{y \asymp M / W}\left|\sum_{\ell} \beta_{\ell} \sum_{0<|h| \leq H} \mathrm{e}\left(-\frac{h y}{b}\right) \sum_{w} \sum_{n} \Psi\left(\frac{w}{W}\right) g_{1}\left(\frac{w y}{M}\right) g_{2}\left(\frac{n}{N}\right) \mathrm{e}\left(-\frac{\overline{b w} h}{\ell n}\right)\right| \tag{20}
\end{equation*}
$$

We then use [Deshouillers and Iwaniec 1982, Theorem 12], amended as described in the correction to [Bombieri et al. 1986], more specifically, with the dictionary (the bold symbols denote the variables
names from [Deshouillers and Iwaniec 1982])

$$
\begin{aligned}
\boldsymbol{c}, \boldsymbol{C} & \leftrightarrow n, N, & \boldsymbol{d}, \boldsymbol{D} & \leftrightarrow w, W \\
\boldsymbol{n}, \boldsymbol{N} & \leftrightarrow h, H, & \boldsymbol{r}, \boldsymbol{R} & \leftrightarrow b^{\prime}, b \\
\boldsymbol{s}, \boldsymbol{S} & \leftrightarrow \ell, L, & \boldsymbol{b}_{\boldsymbol{n}, \boldsymbol{r}, \boldsymbol{s}} & \leftrightarrow \mathbf{1}_{b^{\prime}=b} \mathrm{e}(-h y / b) \beta_{\ell} .
\end{aligned}
$$

Since $\lambda<\frac{1}{6}$, we have $H \ll L$ if ε is sufficiently small. Thus, with the same notation, we find the bounds

$$
\boldsymbol{K}(\boldsymbol{C}, \boldsymbol{D}, \boldsymbol{N}, \boldsymbol{R}, \boldsymbol{S}) \ll b\left(N L^{2}(N+W)+N^{2} W L^{\frac{3}{2}}+W^{2} H\right)^{\frac{1}{2}} \quad \text { and } \quad\left\|\boldsymbol{b}_{N, \boldsymbol{R}, \boldsymbol{S}}\right\|_{2} \ll L^{\varepsilon}(H L)^{\frac{1}{2}}
$$

It will also be easier to sum up the bounds if we assume

$$
\begin{equation*}
N \ll W^{1+\varepsilon} \tag{21}
\end{equation*}
$$

We find

$$
T_{2}(M, N, L) \ll L N R^{\frac{3}{2}} Q^{\varepsilon}+Q^{\varepsilon}\left(\sqrt{X} L+\sqrt{M} N L^{\frac{5}{4}}+L^{\frac{1}{2}} W\right) \ll L N R^{\frac{3}{2}} Q^{\varepsilon}+Q^{\varepsilon}\left(\sqrt{X} L+\sqrt{M} N L^{\frac{5}{4}}\right)
$$ the second inequality following since $L^{\frac{1}{2}} W \ll X^{\frac{1}{2}} L$. This contribution is acceptable provided

$$
\begin{gather*}
M \gg X^{\frac{1}{2} \sigma /(2+\varpi)+\frac{3}{2} \rho+\varepsilon}, \quad M N \gg X^{\frac{1}{2}+\frac{1}{2} \sigma /(2+\varpi)+\varepsilon}, \tag{22}\\
M^{\frac{3}{2}} N^{\frac{1}{2}} \gg X^{\frac{1}{2}+\varpi /(2+\varpi)+2 \varepsilon} \tag{23}
\end{gather*}
$$

The bounds (21)-(23) are satisfied if

$$
\begin{equation*}
\delta<\frac{1}{12}-\frac{\varpi}{2(2+\varpi)}, \quad \lambda<\frac{1}{6}-\frac{\varpi}{2(2+\varpi)}, \quad \rho<\frac{1}{6} . \tag{24}
\end{equation*}
$$

We therefore conclude the following.
Lemma 12. Under the notation and hypotheses of Corollary 10, and assuming (24), we have

$$
T_{2} \ll Q^{1-\varepsilon} \sqrt{X}
$$

The implied constant depends on λ, δ, ρ and ϖ.
4.4. Type II sums. In the type II case (17), we wish to prove the bound

$$
T_{\mathrm{II}}(M, N):=\sum_{w} \Psi\left(\frac{w}{W}\right) \sum_{m, n} \sum_{m} \alpha_{n} \mathcal{u}_{R}(m n, b w) \ll \sqrt{X} Q^{1-\varepsilon}
$$

where α is supported at scale M, β is supported at scale $N, M N \asymp X$, and $X^{\sigma} \ll N \ll X^{\frac{1}{3}-\delta}$. We have $\left|\alpha_{m}\right| \leq \tau(m)^{O(1)}$, and similarly for β. We use the dispersion method of Linnik [1963], following closely [Fouvry 1985]; see also [Bombieri et al. 1986, Section 10].

We interchange the order of summation and apply the triangle inequality, writing our sum as

$$
\left|T_{\mathrm{II}}(M, N)\right| \leq \sum_{m}\left|\sum_{w} \sum_{n}\right|
$$

Applying the Cauchy-Schwarz inequality, we arrive at

$$
\begin{equation*}
T_{\mathrm{II}}(M, N)^{2} \ll M(\log M)^{O(1)} \mathcal{D} \tag{25}
\end{equation*}
$$

where

$$
\mathcal{D}=\sum_{m} f\left(\frac{m}{M}\right)\left|\sum_{\substack{n, w \\ m n \equiv 1(\bmod b w)}} \Psi\left(\frac{w}{W}\right) \beta_{n}-\frac{1}{\varphi(b w)} \sum_{\substack{\chi(\bmod b w) \\ \operatorname{cond}(\chi) \leq R}} \sum_{\substack{n, w \\(m n, b w)=1}} \sum_{\substack{ \\W}} \Psi\left(\frac{w}{W}\right) \beta_{n} \chi(m n)\right|^{2}
$$

Here f is some fixed, nonnegative test function majorizing $\mathbf{1}_{[1,2]}$. It suffices to show that

$$
\mathcal{D} \ll N Q^{2-\varepsilon}
$$

We open the square and arrive at

$$
\begin{equation*}
\mathcal{D}=\mathcal{D}_{1}-2 \operatorname{Re} \mathcal{D}_{2}+\mathcal{D}_{3} \tag{26}
\end{equation*}
$$

say. We treat each sum \mathcal{D}_{i} in turn.
4.4.1. Evaluation of \mathcal{D}_{3}. By definition we have

$$
\mathcal{D}_{3}:=\sum_{m} f\left(\frac{m}{M}\right) \sum_{\substack{w_{1}, w_{2}, n_{1}, n_{2} \\\left(m n_{1}, b w_{1}\right)=1 \\\left(m n_{2}, b w_{2}\right)=1}} \sum_{\substack{\chi_{1}, \chi_{2} \\ \chi_{j}\left(\bmod b w_{j}\right) \\ \operatorname{cond}\left(\chi_{j}\right) \leq R}} \Psi\left(\frac{w_{1}}{W}\right) \Psi\left(\frac{w_{2}}{W}\right) \beta_{n_{1}} \overline{\beta_{n_{2}}} \frac{\chi_{1}\left(m n_{1}\right) \overline{\chi_{2}\left(m n_{2}\right)}}{\varphi\left(b w_{1}\right) \varphi\left(b w_{2}\right)}
$$

The computations in [Drappeau 2017, pp. 711-712] can be directly quoted, putting formally

$$
\begin{equation*}
\gamma(q)=\mathbf{1}(b \mid q) \Psi(q /(b W)) \tag{27}
\end{equation*}
$$

with the modification that $\operatorname{cond}\left(\chi_{1} \overline{\chi_{2}}\right) \leq R^{2}$ (instead of R, as stated incorrectly in [Drappeau 2017]). Writing $H=Q^{\varepsilon} b\left[w_{1}, w_{2}\right] M^{-1}$, we get

$$
\begin{aligned}
\mathcal{D}_{3} & =\mathcal{M}_{3}+O\left(Q^{\varepsilon} \sum_{\substack{w_{1}, w_{2} \asymp W \\
n_{1}, n_{2} \asymp N}} \frac{1}{\varphi\left(b w_{1}\right) \varphi\left(b w_{2}\right)} \sum_{\begin{array}{c}
\chi_{1}, \chi_{2} \\
\operatorname{cond}\left(\chi_{j}\right) \leq R
\end{array}} \frac{M}{b\left[w_{1}, w_{2}\right]} \sum_{0<|h| \leq H} R \sum_{d \mid\left(h, b\left[w_{1}, w_{2}\right]\right)} d\right) \\
& =\mathcal{M}_{3}+O\left(Q^{\varepsilon} N^{2} R^{5}\right),
\end{aligned}
$$

where the main term is computed as in [Drappeau 2017, p. 712] to be

$$
\mathcal{M}_{3}:=M \hat{f}(0) \sum \sum_{\substack{w_{1}, w_{2}, n_{1}, n_{2} \\\left(n_{j}, b w_{j}\right)=1}} \sum_{\substack{\chi \text { primitive } \\ \text { cond }(\chi) \leq R \\ \operatorname{cond}(\chi) \mid b\left(w_{1}, w_{2}\right)}} \Psi\left(\frac{w_{1}}{W}\right) \Psi\left(\frac{w_{2}}{W}\right) \beta_{n_{1}} \overline{\beta_{n_{2}}} \chi\left(n_{1} \overline{n_{2}}\right) \frac{\varphi\left(b w_{1} w_{2}\right)}{b w_{1} w_{2} \varphi\left(b w_{1}\right) \varphi\left(b w_{2}\right)} .
$$

The error term is acceptable provided

$$
N R^{5} \ll Q^{2-\varepsilon}
$$

Since $N \ll X^{\frac{1}{3}}$ this is acceptable provided

$$
\begin{equation*}
\rho<\frac{4-\varpi}{15(2+\varpi)} \tag{28}
\end{equation*}
$$

4.4.2. Evaluation of \mathcal{D}_{2}. We have

$$
\mathcal{D}_{2}:=\sum \sum_{\substack{w_{1}, w_{2}, n_{1}, n_{2} \\\left(n_{j}, b w_{j}\right)=1}} \sum_{\substack{\chi\left(\bmod b w_{2}\right) \\ \operatorname{cond}(\chi) \leq R}} \Psi\left(\frac{w_{1}}{W}\right) \Psi\left(\frac{w_{2}}{W}\right) \overline{\beta_{n_{1}}} \beta_{n_{2}} \frac{\chi\left(n_{2}\right)}{\varphi\left(b w_{2}\right)} \sum_{\substack{m n_{1}=1\left(b w_{1}\right) \\\left(m, w_{2}\right)=1}} \chi(m) f\left(\frac{m}{M}\right) .
$$

The computations in [Drappeau 2017, pp. 712-713] can be also quoted directly with the identification (27). We obtain

$$
\mathcal{D}_{2}=\mathcal{M}_{3}+O\left(R^{\frac{3}{2}} N^{2} Q^{1+\varepsilon}\right) .
$$

This is acceptable if

$$
\begin{equation*}
\rho<\frac{2}{3} \lambda+\frac{2(1-\varpi)}{9(2+\varpi)} . \tag{29}
\end{equation*}
$$

4.4.3. Evaluation of \mathcal{D}_{1}. We have

$$
\mathcal{D}_{1}:=\sum \sum_{\substack{w_{1}, w_{2}, n_{1}, n_{2} \\\left(n_{j}, b w_{j}\right)=1 \\ n_{1} \equiv n_{2}(\bmod b)}} \sum \Psi\left(\frac{w_{1}}{W}\right) \Psi\left(\frac{w_{2}}{W}\right) \beta_{n_{1}} \overline{\beta_{n_{2}}} \sum_{m n_{j} \equiv 1\left(\bmod b w_{j}\right)} f\left(\frac{m}{M}\right) .
$$

We need to separate the variables $w_{1}, w_{2}, n_{1}, n_{2}$ from each other, and this requires a subdivision of the variables. We decompose these variables uniquely, following [Fouvry and Radziwiłł 2018], as follows:

$$
\left\{\begin{aligned}
& d=\left(n_{1}, n_{2}\right), n_{1}=d d_{1} v_{1} \text { with } d_{1} \mid d^{\infty} \text { and }\left(d, v_{1}\right)=1, \quad n_{2}=d v_{2} \\
& q_{0}=\left(w_{1}, w_{2}\right), \\
& w_{i}=q_{0} q_{i} \text { for } i \in\{1,2\}
\end{aligned}\right.
$$

The summation conditions imply

$$
\left(d d_{1} v_{1}, q_{0} q_{1}\right)=\left(d v_{2}, q_{0} q_{2}\right)=1
$$

We therefore have

$$
\begin{aligned}
\mathcal{D}_{1} & =\sum_{\substack{(d, b)=1}} \sum_{\substack{\left(d d_{1} \mid d^{\infty}\right.}} \sum_{\substack{\left(q_{0}, d\right)=1}} \mathcal{D}_{1}\left(d, d_{1}, q_{0}\right), \\
\mathcal{D}_{1}(\cdots) & =\sum_{\substack{\left(v_{1}, q_{2}, v_{1}, v_{2} \\
\left(v_{1}, v_{2}\right)=\left(q_{2}, q_{2}\right)=1 \\
\left(q_{1} q_{2}, d\right)=\left(v_{1}, d\right)=1 \\
\left(v_{1}, q_{1}=\left(q_{2}, q_{2}\right)=\left(v_{1} v_{2}, b q_{0}\right)=1 \\
d_{1} v_{1} \equiv v_{2}\left(\bmod b q_{0}\right)\right.\right.}} \Psi\left(\frac{q_{0} q_{1}}{W}\right) \Psi\left(\frac{q_{0} q_{2}}{W}\right) \beta_{d d_{1} v_{1}} \overline{\beta_{d v_{2}}} \sum_{\substack{m d d_{1} v_{1} \equiv 1\left(\bmod b q_{0} q_{1}\right) \\
m d v_{2} \equiv 1\left(\bmod b q_{0} q_{2}\right)}} f\left(\frac{m}{M}\right) .
\end{aligned}
$$

Using smooth partitions of unity we break the variables into dyadic ranges: $d \asymp D, d_{1} \asymp D_{1}, q_{0} \asymp Q_{0}$. The contribution from $d \asymp D$ and $d_{1} \asymp D_{1}$ is

$$
\ll Q^{\varepsilon} M \sum_{d \asymp D} \sum_{\substack{d_{1}| |^{\infty} \\ d_{1} \asymp D_{1}}} \sum_{v_{1} \asymp N / d d_{1}} \sum_{v_{2} \asymp N / d}\left|\beta_{d d_{1} v_{1}}\right|\left|\beta_{d v_{2}}\right| \ll Q^{\varepsilon} M N^{2} \sum_{d \asymp D} \frac{1}{d^{2}} \sum_{d_{1} \mid d^{\infty}} \frac{\tau\left(d_{1}\right)^{O(1)}}{d_{1}}\left(\frac{d_{1}}{D_{1}}\right)^{1-\varepsilon^{2}}
$$

$$
\ll Q^{\varepsilon} M N^{2} D_{1}^{-1+\varepsilon^{2}} D^{-1}
$$

where the sum over q_{0} and q_{1} was bounded by $O\left(\tau_{3}\left(\left|m d d_{1} v_{1}-1\right|\right)\right)=O\left(Q^{\varepsilon}\right)$, likewise for the sum over q_{2} (note that $m d \nu_{2} \neq 1$ and $m d d_{1} \nu_{1} \neq 1$). This bound is acceptable provided

$$
\begin{equation*}
D D_{1} \gg \frac{X}{Q^{2-\varepsilon}} \tag{30}
\end{equation*}
$$

so we may henceforth assume $D D_{1} \ll X Q^{-2+\varepsilon}$.
The contribution from $q_{0} \asymp Q_{0}$ is

$$
\begin{aligned}
& \ll Q^{\varepsilon} \sum_{q_{0} \asymp Q_{0}} \sum_{q_{1} \asymp Q / q_{0}} \sum_{\substack{n_{1} \equiv n_{2}\left(\bmod q_{0}\right) \\
n_{j} \asymp N}} \sum_{\substack{m \equiv \bar{m} \nmid \bar{n}_{1}\left(\bmod q_{0} q_{1}\right)}} 1 \\
& \ll Q^{\varepsilon} M \sum_{q_{0} \asymp Q_{0}} \sum_{q_{1} \asymp Q / q_{0}} \frac{1}{q_{0} q_{1}} \sum_{\substack{n_{1} \equiv n_{2}\left(\bmod q_{0}\right) \\
n_{j} \asymp N}} 1 \\
& \ll Q^{\varepsilon}\left(M N^{2} Q_{0}^{-1}+M N\right),
\end{aligned}
$$

where in the first line the sum over q_{2} was again bounded by $\tau\left(\left|m d \nu_{2}-1\right|\right)$. This is acceptable provided

$$
\begin{equation*}
N \gg \frac{X}{Q^{2-\varepsilon}} \quad \text { and } \quad Q_{0} \gg \frac{X}{Q^{2-\varepsilon}}, \tag{31}
\end{equation*}
$$

so we may henceforth assume $Q_{0} \ll X Q^{-2+\varepsilon}$.
We use Poisson summation, following [Drappeau 2017, pp. 714-716]. Let

$$
\tilde{q}=b q_{0} q_{1} q_{2} \quad \text { and } \quad \mu \equiv \begin{cases}\overline{d d_{1} v_{1}} & \left(\bmod b q_{0} q_{1}\right) \\ \overline{d \nu_{2}} & \left(\bmod b q_{0} q_{2}\right)\end{cases}
$$

Note that $\tilde{q} \geq \frac{1}{2} W \gg Q^{1-\varepsilon}$. With $H=\tilde{q}^{1+\varepsilon} M^{-1} \ll Q^{2+\varepsilon} /\left(q_{0} M\right)$, we get, for any fixed $A>0$,

$$
\begin{equation*}
\sum_{m \equiv \mu(\bmod \tilde{q})} f\left(\frac{m}{M}\right)=\frac{M}{\tilde{q}} \sum_{|h| \leq H} \hat{f}\left(\frac{h M}{\tilde{q}}\right) \mathrm{e}\left(\frac{\mu h}{\tilde{q}}\right)+O\left(Q^{-A}\right) \tag{32}
\end{equation*}
$$

The zero frequency in (32) contributes the main term, which, after summing over d, d_{1} and q_{0} (and reintegrating the values $D D_{1}$ and Q_{0} larger than $X Q^{-2+\varepsilon}$ which were discarded earlier), is given by

$$
\mathcal{M}_{1}:=\frac{M}{b} \hat{f}(0) \sum_{\substack{w_{1}, w_{2}, n_{1}, n_{2} \\\left(n_{j}, b w_{j}\right)=1 \\ n_{1} \equiv n_{2}\left(\bmod b\left(w_{1}, w_{2}\right)\right)}} \Psi\left(\frac{w_{1}}{W}\right) \Psi\left(\frac{w_{2}}{W}\right) \beta_{n_{1}} \overline{\beta_{n_{2}}} \frac{1}{\left[w_{1}, w_{2}\right]} .
$$

The error term in (32) induces in $\mathcal{D}_{1}\left(d, d_{1}, q_{0}\right)$ a contribution

$$
\ll Q^{-10} N^{2}
$$

and therefore in \mathcal{D}_{1} a contribution $O(1)$, which is acceptable.
We solve the congruence conditions on μ by writing

$$
d_{1} v_{1}-v_{2}=b q_{0} t, \quad \mu d d_{1} v_{1}=1+b q_{0} q_{1} \ell, \quad \mu d v_{2}=1+b q_{0} q_{2} m
$$

with $t, \ell, m \in \mathbb{Z}$. We deduce

$$
\mu d t=q_{1} \ell-q_{2} m, \quad t=q_{1} v_{2} \ell-q_{2} d_{1} v_{1} m .
$$

Then we have the equalities, modulo \mathbb{Z},

$$
\begin{aligned}
\frac{\mu}{\tilde{q}}=\frac{\mu}{b q_{0} q_{1} q_{2}} & =\frac{1}{d d_{1} v_{1} b q_{0} q_{1} q_{2}}+\frac{\ell}{d d_{1} v_{1} q_{2}} \\
& \equiv \frac{1}{d d_{1} v_{1} b q_{0} q_{1} q_{2}}+\frac{\ell \overline{d d_{1}}}{v_{1} q_{2}}+\frac{\ell \overline{v_{1} q_{2}}}{d d_{1}} \\
& \equiv \frac{1}{d d_{1} v_{1} b q_{0} q_{1} q_{2}}+\frac{t \overline{q_{1} v_{2} d d_{1}}}{v_{1} q_{2}}-\frac{\overline{b q_{0} q_{1} v_{1} q_{2}}}{d d_{1}} \\
& \equiv \frac{1}{d d_{1} v_{1} b q_{0} q_{1} q_{2}}+\frac{d_{1} v_{1}-v_{2}}{b q_{0}} \frac{\overline{q_{1} v_{2} d d_{1}}}{v_{1} q_{2}}-\frac{\overline{b q_{0} q_{1} v_{1} q_{2}}}{d d_{1}} .
\end{aligned}
$$

By estimating trivially the first term, we have

$$
\begin{equation*}
\mathrm{e}\left(\frac{h \mu}{\tilde{q}}\right)=\mathrm{e}\left(h \frac{d_{1} v_{1}-v_{2}}{b q_{0}} \frac{\overline{q_{1} v_{2} d d_{1}}}{v_{1} q_{2}}-\frac{h \overline{b q_{0} q_{1} v_{1} q_{2}}}{d d_{1}}\right)+O\left(\frac{H q_{0}}{N W^{2}}\right) \tag{33}
\end{equation*}
$$

The error term here is $\ll Q^{\varepsilon} X^{-1}$, which contributes to $\mathcal{D}_{1}\left(d, d_{1}, q_{0}\right)$ a quantity

$$
\frac{Q^{2+\varepsilon} N}{X q_{0}^{2} d d_{1}}\left(1+\frac{N}{d}\right)
$$

and upon summing over $\left(d, d_{1}, q_{0}\right)$, this contributes to \mathcal{D}_{1} a quantity $O\left(Q^{2+\varepsilon} N^{2} X^{-1}\right)$. This error is acceptable if

$$
\begin{equation*}
N \ll Q^{2-\varepsilon} \tag{34}
\end{equation*}
$$

Then we insert the first term of (33) in (32), and insert the Fourier integral. The nonzero frequencies contribute a term

$$
\begin{aligned}
\mathcal{R}_{1}\left(d, d_{1}, q_{0}\right):=\frac{M q_{0}}{b W^{2}} \int & \sum \sum_{\substack{\left.q_{1}, q_{2}, v_{1}, v_{2} \\
\left(d_{1}\right)=1 \\
\left(v_{1}, v_{2}\right)=\left(q_{2}, q_{2}\right)=1 \\
q_{1} q_{2}, d\right)=\left(v_{1}, d\right)=1 \\
\left(v_{1}, q_{1}\right)=\left(v_{2}, q_{2}\right)=\left(v_{1}, v_{2}, b q_{0}\right)=1 \\
d_{1} v_{1} \equiv v_{2}\left(\bmod b q_{0}\right)}} \sum_{\substack{0<|h| \leq H}} \Psi\left(\frac{q_{0} q_{1}}{W}\right) \Psi\left(\frac{q_{0} q_{2}}{W}\right) \beta_{d d_{1} v_{1}} \overline{\beta_{d v_{2}}} \\
& \times f\left(t \frac{q_{0}^{2} q_{1} q_{2}}{W^{2}}\right) \mathrm{e}\left(h \frac{d_{1} v_{1}-v_{2}}{b q_{0}} \frac{\overline{q_{1} v_{2} d d_{1}}}{v_{1} q_{2}}-\frac{h \overline{b q_{0} q_{1} v_{1} q_{2}}}{d d_{1}}\right) \mathrm{e}\left(\frac{-h t M q_{0}}{b W^{2}}\right) \mathrm{d} t .
\end{aligned}
$$

So far, we have obtained under the conditions (31) and (34) the bound

$$
\mathcal{D}_{1}=\mathcal{M}_{1}+\mathcal{R}_{1}+O\left(N Q^{2-\varepsilon}\right), \quad \text { where } \mathcal{R}_{1}:=\sum_{\substack{Q_{0}, D D 1 \ll X Q^{-2+\varepsilon} \\ Q, D, D_{1} \text { dyadic }}} \sum_{\substack{d \asymp D \\ d_{1} \asymp D_{1} \\ q_{0} \asymp Q_{0}}} \mathcal{R}\left(d, d_{1}, q_{0}\right) .
$$

We now restrict the summation over q_{1} and q_{2} in residue classes modulo $d d_{1}$, to account for the oscillatory factors. Let $\lambda_{1}, \lambda_{2} \in\left(\mathbb{Z} / d d_{1} \mathbb{Z}\right)^{\times}$, and

$$
\begin{aligned}
& g(\boldsymbol{c}, \boldsymbol{d}, \boldsymbol{n}, \boldsymbol{r}, \boldsymbol{s})=\Psi\left(\frac{q_{0} \boldsymbol{c}}{W}\right) \Psi\left(\frac{q_{0} \boldsymbol{d}}{W}\right) f\left(\frac{t q_{0}^{2} \boldsymbol{c} \boldsymbol{d}}{W^{2}}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathcal{R}_{1}\left(d, d_{1}, q_{0}\right) & =\frac{M q_{0}}{b W^{2}} \int_{t \overbrace{f} 1} \sum_{\lambda_{1}, \lambda_{2}\left(\bmod d d_{1}\right)^{*}} \tilde{\mathcal{R}}_{1}\left(t,\left(\lambda_{j}\right)\right) \mathrm{d} t, \\
\tilde{\mathcal{R}}_{1}\left(t,\left(\lambda_{j}\right)\right) & =\sum_{\substack{\boldsymbol{n}, \boldsymbol{r}, \boldsymbol{s}, \boldsymbol{c}, \boldsymbol{d} \\
\boldsymbol{c} \equiv \lambda_{1}, \boldsymbol{d}=\lambda_{2}\left(\bmod d d_{1}\right) \\
\left(\boldsymbol{s} \boldsymbol{c}, \boldsymbol{r} d b d d_{1}\right)=1}} b_{\boldsymbol{n}, \boldsymbol{r}, \boldsymbol{s}} g(\boldsymbol{c}, \boldsymbol{d}, \boldsymbol{n}, \boldsymbol{r}, \boldsymbol{s}) \mathrm{e}\left(\frac{\boldsymbol{n} \overline{\boldsymbol{r} \boldsymbol{d}}}{\boldsymbol{s} \boldsymbol{c}}\right) .
\end{aligned}
$$

We apply Proposition 6, with sizes given by

$$
\boldsymbol{C}=\boldsymbol{D}=\frac{W}{q_{0}}, \quad \boldsymbol{S}=\frac{N}{d d_{1}}, \quad \boldsymbol{R}=N d_{1}, \quad \boldsymbol{N}=\frac{H N}{d b q_{0}} .
$$

Let $X=Q^{2} Y$. Then $Y=Q^{\varpi}$. Note that

$$
\boldsymbol{R} \boldsymbol{S} \asymp N^{2} D^{-1}, \quad \boldsymbol{N} \ll Q^{\varepsilon} N^{2} Y^{-1} D^{-1} Q_{0}^{-2} \ll Q^{\varepsilon} \boldsymbol{R} \boldsymbol{S}, \quad \boldsymbol{C} \ll Q^{\varepsilon} \boldsymbol{R} \boldsymbol{D} .
$$

We get

$$
\tilde{\mathcal{R}}_{1}\left(t, \lambda_{j}\right) \ll Q^{\varepsilon}\left(D D_{1}\right)^{\frac{3}{2}} K\left\|b_{N, \boldsymbol{R}, \boldsymbol{S}}\right\|_{2}
$$

where

$$
Q^{-\varepsilon} K^{2} \ll Q^{2} N^{4} D^{-1} D_{1} Q_{0}^{-2}+Q^{2+4 \theta} N^{4-6 \theta} D^{-2+2 \theta} D_{1}^{-2 \theta} Q_{0}^{-2-4 \theta}\left(1+\frac{D}{N}\right)^{1-4 \theta}+Q^{2} N^{3} Y^{-1} D^{-1} D_{1} Q_{0}^{-4} .
$$

To bound the term $\left\|b_{N, \boldsymbol{R}, \boldsymbol{S}}\right\|_{2}$, we assume

$$
\begin{equation*}
X Q^{-2+\varepsilon}=o(N) \tag{35}
\end{equation*}
$$

so that $D=o(N)$ by virtue of the line below (30), and the case $d_{1} v_{1}=v_{2}$ never occurs in $b_{n, r, s}$. Then

$$
\begin{aligned}
\left\|b_{N, \boldsymbol{R}, \boldsymbol{S}}\right\|_{2}^{2} & \leq \sum_{\substack{\nu_{1}, v_{2}, h \\
d_{1} v_{1}=\sum_{2}\left(\bmod q_{0}\right) \\
0<|h|<H}}\left|\beta_{d d_{1} v_{1}} \beta_{d v_{2}}\right|^{2} \ll \frac{Q^{2+\varepsilon}}{Q_{0} M} \frac{N}{D D_{1}}\left(\frac{N}{D Q_{0}}+1\right) \\
& \ll Q^{\varepsilon}\left(N^{3} Y^{-1} D^{-2} D_{1}^{-1} Q_{0}^{-2}+N^{2} Y^{-1} D^{-1} D_{1}^{-1} Q_{0}^{-1}\right)
\end{aligned}
$$

We deduce

$$
\tilde{\mathcal{R}}_{1}\left(t,\left(\lambda_{j}\right)\right) \ll Q^{\varepsilon} \sum_{k=1}^{6} Q^{\eta_{k, 1}} N^{\eta_{k, 2}} Y^{\eta_{k, 3}} D^{\eta_{k, 4}} D_{1}^{\eta_{k, 5}} Q_{0}^{\eta_{k, 6}}
$$

where, for each $k, \eta_{k}=\left(\eta_{k, \ell}\right)_{1 \leq \ell \leq 6}$ is given by

$$
\left\{\eta_{k}\right\}=\left\{\left(\begin{array}{r}
1 \\
3 \\
-\frac{1}{2} \\
\frac{1}{2} \\
\frac{3}{2} \\
-\frac{3}{2}
\end{array}\right),\left(\begin{array}{r}
1 \\
\frac{7}{2} \\
-\frac{1}{2} \\
0 \\
\frac{3}{2} \\
-2
\end{array}\right),\left(\begin{array}{c}
2 \theta+1 \\
3-3 \theta \\
-\frac{1}{2} \\
\theta \\
1-\theta \\
-2 \theta-\frac{3}{2}
\end{array}\right),\left(\begin{array}{c}
2 \theta+1 \\
\frac{7}{2}-3 \theta \\
-\frac{1}{2} \\
\theta-\frac{1}{2} \\
1-\theta \\
-2 \theta-2
\end{array}\right),\left(\begin{array}{r}
1 \\
\frac{5}{2} \\
-1 \\
\frac{1}{2} \\
\frac{3}{2} \\
-\frac{5}{2}
\end{array}\right),\left(\begin{array}{r}
1 \\
3 \\
-1 \\
0 \\
\frac{3}{2} \\
-3
\end{array}\right)\right\} .
$$

Summing over λ_{j}, integrating over t, and multiplying by $M q_{0} /\left(b W^{2}\right) \ll Q^{\varepsilon} N^{-1} Y Q_{0}$, we get

$$
\mathcal{R}_{1}\left(d, d_{1}, q_{0}\right) \ll Q^{\varepsilon} \sum_{k=1}^{6} Q^{\eta_{k, 1}} N^{\eta_{k, 2}-1} Y^{\eta_{k, 3}+1} D^{\eta_{k, 4}+2} D_{1}^{\eta_{k, 5}+2} Q_{0}^{\eta_{k, 6}+1}
$$

We sum over d, d_{1} and q_{0} in dyadic intervals of lengths D, D_{1} and Q_{0}, obtaining

$$
\sum_{\substack{d \asymp D \\ d_{1} \asymp D_{1}=d_{1} \mid d^{\infty} \\ q_{0} \asymp Q_{0} \\(d, b)=\left(q_{0}, d\right)=1}} \mathcal{R}_{1}\left(d, d_{1}, q_{0}\right) \ll Q^{\varepsilon} \sum_{k=1}^{6} Q^{\eta_{k, 1}} N^{\eta_{k, 2}-1} Y^{\eta_{k, 3}+1} D^{\eta_{k, 4}+3} D_{1}^{\eta_{k, 5}+2} Q_{0}^{\eta_{k, 6}+2} .
$$

Finally, we sum this dyadically over Q_{0}, D and D_{1} subject to $Q_{0}+D D_{1} \ll Y Q^{\varepsilon}$. We get

$$
\mathcal{R}_{1} \ll Q^{\varepsilon} \sum_{k=1}^{6} Q^{\eta_{k, 1}} N^{\eta_{k, 2}-1} Y^{\eta_{k, 3}+1+\max \left(0, \eta_{k, 6}+2\right)+\max \left(0, \eta_{k, 4}+3, \eta_{k, 5}+2\right)} .
$$

Here, the terms for $k=5,6$ are majorized by the term $k=1$, so

$$
\mathcal{R}_{1} \ll Q^{\varepsilon} \sum_{k=1}^{4} Q^{\theta_{k, 1}} N^{\theta_{k, 2}} Y^{\theta_{k, 3}},
$$

where

$$
\left\{\theta_{k}\right\}=\left\{\left(\begin{array}{l}
1 \\
2 \\
\frac{9}{2}
\end{array}\right),\left(\begin{array}{l}
1 \\
\frac{5}{2} \\
4
\end{array}\right),\left(\begin{array}{c}
1+2 \theta \\
2-3 \theta \\
4-\theta
\end{array}\right),\left(\begin{array}{c}
1+2 \theta \\
\frac{5}{2}-3 \theta \\
\frac{7}{2}-\theta
\end{array}\right)\right\}
$$

We conclude that

$$
\mathcal{D}_{1}=\mathcal{M}_{1}+O\left(Q^{2-\varepsilon} N\right)
$$

on the condition that $N \ll Q^{-\varepsilon} \min \left(Q Y^{-\frac{9}{2}}, Q^{\frac{2}{3}} Y^{-\frac{8}{3}}, Q^{(1-2 \theta) /(1-3 \theta)} Y^{-(4-\theta) /(1-3 \theta)}, Q^{\frac{2}{3}} Y^{-\frac{1}{3}(7-2 \theta) /(1-2 \theta)}\right)$.

Upon using $\theta \leq \frac{7}{64}$, these conditions are implied by

$$
\begin{equation*}
N \ll X^{-\varepsilon} \min \left(X^{\frac{1}{2}(2-9 \varpi) /(2+\varpi)}, X^{\frac{1}{43}(50-249 \pi) /(2+\varpi)}, X^{\frac{1}{75}(50-217 \pi) /(2+\varpi)}\right), \tag{36}
\end{equation*}
$$

and hypotheses (31), (34) and (35).
4.4.4. Main terms. The main terms \mathcal{M}_{1} and \mathcal{M}_{3}, which are real numbers by the symmetry $n_{1} \leftrightarrow n_{2}$, combine to form

$$
\begin{aligned}
& \mathcal{M}_{1}-\mathcal{M}_{3} \\
& =M \hat{f}(0) \sum_{w_{1}, w_{2}} \sum \Psi\left(\frac{w_{1}}{W}\right) \Psi\left(\frac{w_{2}}{W}\right) \frac{1}{b\left[w_{1}, w_{2}\right] \varphi\left(b\left(w_{1}, w_{2}\right)\right)} \times \sum_{\substack{\chi \operatorname{prim} \\
\text { cond }(x)>R \\
\operatorname{cond}(\chi) \mid b\left(w_{1}, w_{2}\right)}} \sum_{\substack{n_{1}, n_{2} \\
\left(n_{j}, b w_{j}\right)=1}} \beta_{n_{1}} \overline{\beta_{n_{2}}} \chi\left(n_{1}\right) \overline{\chi\left(n_{2}\right)} .
\end{aligned}
$$

We may quote the computations in [Drappeau 2017, p. 717], again with the identification (27), to obtain

$$
\left|\mathcal{M}_{3}-\mathcal{M}_{1}\right| \ll Q^{\varepsilon} M\left(N+N^{2} R^{-2}\right) \ll Q^{\varepsilon}\left(X+N X R^{-2}\right)
$$

This is acceptable provided

$$
\begin{equation*}
N \gg Q^{\sigma+\varepsilon} \quad \text { and } \quad R \gg Q^{\frac{1}{2} \sigma+\varepsilon} \tag{37}
\end{equation*}
$$

4.4.5. Conclusion. Hypotheses (28), (29), (31), (34), (35), (36) and (37) are all satisfied if

$$
\begin{equation*}
\varpi<\frac{1}{8}, \quad \varpi<\sigma<\frac{1}{3}-\delta<\frac{1}{3}-\frac{242 \varpi}{75(2+\varpi)}, \quad \frac{\varpi}{2(2+\varpi)}<\rho<\frac{1}{9}-\frac{\varpi}{3(2+\varpi)} . \tag{38}
\end{equation*}
$$

We therefore conclude the following.
Lemma 13. Under the notation and hypotheses of Corollary 10, assuming (38), we have

$$
T_{\mathrm{II}} \ll \sqrt{X} Q^{1-\varepsilon}
$$

4.5. Proof of Proposition 4. We combine Lemmas 11, 12, 13 and 9. Setting $\sigma=\varpi+\varepsilon$ and recalling that $\varpi<\frac{1}{8}$, we obtain the conditions

$$
\frac{\varpi}{3(2+\varpi)}<\lambda<\frac{1}{6}-\frac{\varpi}{2}, \quad \frac{242 \varpi}{75(2+\varpi)}<\delta<\frac{1}{12}-\frac{\varpi}{2(2+\varpi)}, \quad \frac{\varpi}{2(2+\varpi)}<\rho<\frac{1}{9}-\frac{\varpi}{3(2+\varpi)}
$$

The third is implied by our hypothesis on R. The first two can be satisfied whenever $-o(1) \leq \varpi<$ $\frac{50}{1093}-o(1)$. This proves Proposition 4.

Acknowledgements

Part of this work was conducted while Pratt was supported by the National Science Foundation Graduate Research Program under grant number DGE-1144245. Radziwiłł acknowledges the support of a Sloan fellowship and NSF grant DMS-1902063. The authors thank the referee for helpful remarks, and Jared Lichtman for helpful discussions on Proposition 6.

References

[Bhargava and Shankar 2015] M. Bhargava and A. Shankar, "Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0", Ann. of Math. 181:2 (2015), 587-621. MR Zbl
[Bombieri et al. 1986] E. Bombieri, J. B. Friedlander, and H. Iwaniec, "Primes in arithmetic progressions to large moduli", Acta Math. 156:3-4 (1986), 203-251. Correction in arXiv 1903.01371 (2019). MR Zbl
[Brumer 1992] A. Brumer, "The average rank of elliptic curves, I", Invent. Math. 109:3 (1992), 445-472. MR Zbl
[Bui and Milinovich 2011] H. M. Bui and M. B. Milinovich, "Central values of derivatives of Dirichlet L-functions", Int. J. Number Theory 7:2 (2011), 371-388. MR Zbl
[Chandee et al. 2014] V. Chandee, Y. Lee, S.-C. Liu, and M. Radziwiłł, "Simple zeros of primitive Dirichlet L-functions and the asymptotic large sieve", Q. J. Math. 65:1 (2014), 63-87. MR
[Conrey and Iwaniec 2002] B. Conrey and H. Iwaniec, "Spacing of zeros of Hecke L-functions and the class number problem", Acta Arith. 103:3 (2002), 259-312. MR Zbl
[Deshouillers and Iwaniec 1982] J.-M. Deshouillers and H. Iwaniec, "Kloosterman sums and Fourier coefficients of cusp forms", Invent. Math. 70:2 (1982), 219-288. MR Zbl
[Devin et al. 2022] L. Devin, D. Fiorilli, and A. Södergren, "Low-lying zeros in families of holomorphic cusp forms: the weight aspect", Q. J. Math. 73:4 (2022), 1403-1426. MR Zbl
[Drappeau 2015] S. Drappeau, "Théorèmes de type Fouvry-Iwaniec pour les entiers friables", Compos. Math. 151:5 (2015), 828-862. MR Zbl
[Drappeau 2017] S. Drappeau, "Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method", Proc. Lond. Math. Soc. 114:4 (2017), 684-732. MR Zbl
[Fiorilli and Miller 2015] D. Fiorilli and S. J. Miller, "Surpassing the ratios conjecture in the 1-level density of Dirichlet L-functions", Algebra Number Theory 9:1 (2015), 13-52. MR Zbl
[Fouvry 1985] É. Fouvry, "Sur le problème des diviseurs de Titchmarsh", J. Reine Angew. Math. 357 (1985), 51-76. MR Zbl
[Fouvry and Iwaniec 1983] É. Fouvry and H. Iwaniec, "Primes in arithmetic progressions", Acta Arith. 42:2 (1983), 197-218. MR Zbl
[Fouvry and Iwaniec 2003] É. Fouvry and H. Iwaniec, "Low-lying zeros of dihedral L-functions", Duke Math. J. 116:2 (2003), 189-217. MR Zbl
[Fouvry and Radziwiłł 2018] É. Fouvry and M. Radziwiłł, "Another application of Linnik dispersion method", Chebyshevskiŭ Sb. 19:3 (2018), 148-163. Zbl
[Granville and Soundararajan 2018] A. Granville and K. Soundararajan, "Large character sums: Burgess's theorem and zeros of L-functions", J. Eur. Math. Soc. 20:1 (2018), 1-14. MR Zbl
[Heath-Brown 1982] D. R. Heath-Brown, "Prime numbers in short intervals and a generalized Vaughan identity", Canadian J. Math. 34:6 (1982), 1365-1377. MR Zbl
[Heath-Brown 2004] D. R. Heath-Brown, "The average analytic rank of elliptic curves", Duke Math. J. 122:3 (2004), 591-623. MR Zbl
[Hughes and Rudnick 2003] C. P. Hughes and Z. Rudnick, "Linear statistics of low-lying zeros of L-functions", Q. J. Math. 54:3 (2003), 309-333. MR Zbl
[Iwaniec and Kowalski 2004] H. Iwaniec and E. Kowalski, Analytic number theory, Amer. Math. Soc. Colloq. Publ. 53, Amer. Math. Soc., Providence, RI, 2004. MR Zbl
[Iwaniec et al. 2000] H. Iwaniec, W. Luo, and P. Sarnak, "Low lying zeros of families of L-functions", Inst. Hautes Études Sci. Publ. Math. 91 (2000), 55-131. MR Zbl
[Katz and Sarnak 1999] N. M. Katz and P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, Amer. Math. Soc. Colloq. Publ. 45, Amer. Math. Soc., Providence, RI, 1999. MR Zbl
[Kim and Sarnak 2003] H. H. Kim and P. Sarnak, "Refined estimates towards the Ramanujan and Selberg conjectures", (2003). Appendix to "Functoriality for the exterior square of GL_{4} and the symmetric fourth of GL2", J. Amer. Math. Soc. 16:1 (2003), 139-183. MR Zbl
[Linnik 1963] J. V. Linnik, The dispersion method in binary additive problems, Amer. Math. Soc., Providence, RI, 1963. MR Zbl
[Mackall et al. 2016] B. Mackall, S. J. Miller, C. Rapti, C. Turnage-Butterbaugh, and K. Winsor, "Some results in the theory of low-lying zeros of families of L-functions", pp. 435-476 in Families of automorphic forms and the trace formula, edited by W. Müller et al., Springer, 2016. MR Zbl
[Montgomery 1973] H. L. Montgomery, "The pair correlation of zeros of the zeta function", pp. 181-193 in Analytic number theory (St. Louis Univ., 1972), edited by H. G. Diamond, Proc. Sympos. Pure Math. 24, Amer. Math. Soc., Providence, RI, 1973. MR Zbl
[Pratt 2019] K. Pratt, "Average nonvanishing of Dirichlet L-functions at the central point", Algebra Number Theory 13:1 (2019), 227-249. MR Zbl
[Rudnick and Sarnak 1994] Z. Rudnick and P. Sarnak, "The n-level correlations of zeros of the zeta function", C. R. Acad. Sci. Paris Sér. I Math. 319:10 (1994), 1027-1032. MR Zbl
[Rudnick and Sarnak 1996] Z. Rudnick and P. Sarnak, "Zeros of principal L-functions and random matrix theory", Duke Math. J. 81:2 (1996), 269-322. MR Zbl
[Sarnak et al. 2016] P. Sarnak, S. W. Shin, and N. Templier, "Families of L-functions and their symmetry", pp. 531-578 in Families of automorphic forms and the trace formula, edited by W. Müller et al., Springer, 2016. MR Zbl
[Sica 1998] F. Sica, The order of vanishing of L-functions at the center of the critical strip, Ph.D. thesis, McGill University, 1998, available at https://www.proquest.com/pagepdf/304479758. MR
[Watkins 2021] M. Watkins, "Comments on Deuring's zero-spacing phenomenon", J. Number Theory 218 (2021), 1-43. MR Zbl
[Young 2006] M. P. Young, "Low-lying zeros of families of elliptic curves", J. Amer. Math. Soc. 19:1 (2006), 205-250. MR Zbl [Zhang 2014] Y. Zhang, "Bounded gaps between primes", Ann. of Math. 179:3 (2014), 1121-1174. MR Zbl

Communicated by Peter Sarnak
Received 2020-04-28 Revised 2022-01-31 Accepted 2022-06-10
sary-aurelien.drappeau@univ-amu.fr
kyle.pratt@all-souls.ox.ac.uk
maksym.radziwill@gmail.com

Institut de Mathématiques de Marseille, Aix-Marseille Université, CNRS, Marseille, France
Mathematical Institute, All Souls College, University of Oxford, Oxford, United Kingdom
Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA, United States

Algebra \& Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Antoine Chambert-Loir Université Paris-Diderot

France

Editorial Board Chair
David Eisenbud
University of California
Berkeley, USA

Board of Editors

Jason P. Bell	University of Waterloo, Canada	Philippe Michel	École Polytechnique Fédérale de Lausanne
Bhargav Bhatt	University of Michigan, USA	Martin Olsson	University of California, Berkeley, USA
Frank Calegari	University of Chicago, USA	Irena Peeva	Cornell University, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Saclay, France	Jonathan Pila	University of Oxford, UK
Brian D. Conrad	Stanford University, USA	Anand Pillay	University of Notre Dame, USA
Samit Dasgupta	Duke University, USA	Bjorn Poonen	Massachusetts Institute of Technology, USA
Hélène Esnault	Freie Universität Berlin, Germany	Victor Reiner	University of Minnesota, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Peter Sarnak	Princeton University, USA
Sergey Fomin	University of Michigan, USA	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Wee Teck Gan	National University of Singapore	Shunsuke Takagi	University of Tokyo, Japan
Andrew Granville	Université de Montréal, Canada	Pham Huu Tiep	Rutgers University, USA
Ben J. Green	University of Oxford, UK	Ravi Vakil	Stanford University, USA
Christopher Hacon	University of Utah, USA	Akshay Venkatesh	Institute for Advanced Study, USA
Roger Heath-Brown	Oxford University, UK	Melanie Matchett Wood	Harvard University, USA
János Kollár	Princeton University, USA	Shou-Wu Zhang	Princeton University, USA
Michael J. Larsen	Indiana University Bloomington, USA		

PRODUCTION
production@msp.org
Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.
The subscription price for 2023 is US $\$ 485 /$ year for the electronic version, and $\$ 705 /$ year ($+\$ 65$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Algebra \& Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online.

ANT peer review and production are managed by EditFLOW ${ }^{\circledR}$ from MSP.

PUBLISHED BY

E. mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

Algebra \& Number Theory

Volume 17 No. 42023

One-level density estimates for Dirichlet L-functions with extended support 805Sary Drappeau, Kyle Pratt and Maksym RadziwieŁ
Multiplicative preprojective algebras are 2-Calabi-Yau 831
Daniel Kaplan and Travis Schedler
Tautological cycles on tropical Jacobians 885Andreas Gross and Farbod Shokrieh
Tautological rings of Shimura varieties and cycle classes of Ekedahl-Oort strata 923Torsten Wedhorn and Paul Ziegler

[^0]: MSC2020: primary 11M26; secondary $11 \mathrm{M} 50,11 \mathrm{~N} 13$.
 Keywords: Dirichlet L-functions, one-level density, nonvanishing, primes, arithmetic progressions, dispersion method.

[^1]: ${ }^{1}$ A stronger conclusion was later reached unconditionally by Bhargava and Shankar [2015] through other methods.
 ${ }^{2}$ This is in fact the GL(1) analogue of the result of Iwaniec, Luo and Sarnak for holomorphic forms.

