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We prove that multiplicative preprojective algebras, defined by Crawley-Boevey and Shaw, are 2-Calabi–
Yau algebras, in the case of quivers containing unoriented cycles. If the quiver is not itself a cycle, we
show that the center is trivial, and hence the Calabi–Yau structure is unique. If the quiver is a cycle, we
show that the algebra is a noncommutative crepant resolution of its center, the ring of functions on the
corresponding multiplicative quiver variety with a type A surface singularity. We also prove that the dg
versions of these algebras (arising as certain Fukaya categories) are formal. We conjecture that the same
properties hold for all non-Dynkin quivers, with respect to any extended Dynkin subquiver (note that the
cycle is the type A case). Finally, we prove that multiplicative quiver varieties — for all quivers — are
formally locally isomorphic to ordinary quiver varieties. In particular, they are all symplectic singularities
(which implies they are normal and have rational Gorenstein singularities). This includes character
varieties of Riemann surfaces with punctures and monodromy conditions. We deduce this from a more
general statement about 2-Calabi–Yau algebras (following Bocklandt, Galluzzi, and Vaccarino).
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1. Introduction

Multiplicative preprojective algebras have recently gained attention in geometry and topology. These alge-
bras appear in the study of certain wrapped Fukaya categories [29; 30], in the study of microlocal sheaves
on rational curves [12], and in the study of generalized affine Hecke algebras [33, Appendix 1]. Their
moduli spaces of representations are called multiplicative quiver varieties, and are analogs of Nakajima’s
quiver varieties. These include character varieties of rank n local systems on closed Riemann surfaces, or
on open Riemann surfaces with punctures and monodromy conditions [25; 55; 61]. Multiplicative quiver
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varieties have also been studied from various viewpoints in [9; 13; 20; 22]. A quantization was defined in
[39] and further studied in [35].

Historically, Crawley-Boevey and Shaw [25] defined the multiplicative preprojective algebra to view
solutions of the Deligne–Simpson problem as irreducible representations of multiplicative preprojective
algebras of certain star-shaped quivers. Their paper establishes the foundations for much of this work.
For a fixed field k and a quiver Q with vertex set Q0 and arrow set Q1 and q ∈ (k×)Q0 , Crawley-Boevey
and Shaw define

3q(Q) :=
L Q

JQ
:=

k Q[(1 + aa∗)−1
]a∈Q(

r :=
∏

a∈Q1
(1 + aa∗)(1 + a∗a)−1 − q

) ,
a quotient of the localized path algebra of the double quiver, L Q , by the two-sided ideal JQ generated by
the single relation, r .

Many of the desirable properties of the (additive) preprojective algebra seem to hold for the multiplicative
preprojective algebra. But establishing this rigorously is difficult, as most proof techniques in the additive
case (employing the grading on the algebra) are not available in the multiplicative case. In particular, the
multiplicative preprojective algebra is not in general a deformation of the ordinary one, nor does it have a
useful Hilbert series for a filtration (due to the localization).

In this paper we overcome these difficulties when the quiver contains a cycle, and formulate the general
expectations. This is sufficient for applications to multiplicative quiver varieties for every quiver.

The main statement is the following:

Conjecture 1.1. 3q(Q) is 2-Calabi–Yau for all q ∈ (k×)Q0 and all Q connected and not Dynkin;
moreover, it is a prime ring, and the family 3q(Q) is flat in q.1 If Q is furthermore not extended Dynkin,
then Z(3q(Q))= k, and the Calabi–Yau structure is unique.

Here (extended) Dynkin refers to the underlying unoriented graph being of types A, D, or E. We explain
how one can reduce the conjecture to the case where Q is extended Dynkin in Section 7D. We carry out
this procedure for Q = Ãn and thereby prove the conjecture for all connected quivers containing it.

Theorem 1.2. 3q(Q) is 2-Calabi–Yau and prime for any q ∈ (k×)Q0 and any k a field, and Q connected
and containing an unoriented cycle. The family of algebras is flat in q. If the quiver properly contains a
cycle, then Z(3q(Q))= k, and the Calabi–Yau structure is unique.

This theorem is established in Corollaries 3.20 and 7.12, and the results of Section 8: Propositions 8.5
and 8.6, and Corollary 8.7. Each relies on technical results proven in Section 7. Before outlining the
proof techniques, we give four different perspectives on this work:

(I) Symplectic topology: wrapped Fukaya categories. Multiplicative preprojective algebras arise from
studying certain wrapped Fukaya categories. Let X0 be the Weinstein manifold formed by plumbing
cotangent bundles of 2-spheres according to the graph 0. Ekholm and Lekili [28] and Etgü and Lekili

1A prime ring is a noncommutative analog of an integral domain, being a ring R in which a Rb = 0 implies a = 0 or b = 0.
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[29; 30] produced quasiisomorphisms,

W(X0)
[28]
∼=

−−−−→ B0
[29; 30]

∼=
−−−−→ L0

where W(X0) is the partially wrapped Fukaya category of X0 , B0 is the Chekanov–Eliashberg dg-algebra
and L0 is the dg multiplicative preprojective algebra following [36], with q = 1; see Definition 4.3.

Since X0 is a Liouville manifold, [34, Theorem 1.3] shows that W(X0) is a 2-Calabi–Yau category
and hence L0 is 2-Calabi–Yau, as a dg-algebra. We establish this result purely algebraically, in the case
0 contains a cycle. In particular, we show in this case that

31(0)= H 0(L0)
Proposition 4.4

=
↪−−−−−−−→ H∗(L0)

and hence L0 is formal. By Theorem 1.2, the dg multiplicative preprojective algebra L0 is formal.2

Consequently, deformations of the wrapped Fukaya category, W(X0), as an A∞-category (respec-
tively Calabi–Yau A∞-category) over a degree zero base, are given by deformations of 31(0) as an
associative algebra (respectively Calabi–Yau algebra). The infinitesimal deformations can be identified
with HH2(31(0)). Thanks to Theorem 1.2, 31(0) is 2-Calabi–Yau. Hence, Van den Bergh duality
identifies HH2(31(0)) with HH0(3

1(0)). The techniques in [54] can likely be adapted to compute the
latter using the explicit basis for 3q(Q) computed here. Furthermore, by the 2-Calabi–Yau property,
HH3(3q(Q))= 0, so there are no obstructions to extending to infinite order deformations.

We conjecture that the same holds for every connected, non-Dynkin quiver. More precisely, in addition
to Conjecture 1.1, we expect the following:

Conjecture 1.3. If Q is connected and not Dynkin, then the dg multiplicative preprojective algebra
3dg,q(Q) is quasiisomorphic to 3q(Q), in degree zero.

We give the precise definitions and details, as well as proof in the case Q contains a cycle, in Section 4.

(II) Quiver varieties: local structure of multiplicative quiver varieties and moduli spaces attached to
2-Calabi–Yau algebras. Given a dimension vector α ∈ NQ0, the affine multiplicative quiver variety is
defined as the (coarse) moduli scheme of representations of3q(Q). Explicitly, it is the geometric invariant
theory quotient of the space of all representations

3q(Q)→

⊕
i

Matαi (k)

by the action of
∏

i GL(αi ) by change of basis. See Section 5 for more details (where we also recall a
version incorporating a stability condition).

Properties of multiplicative preprojective algebras determine properties of the corresponding multi-
plicative quiver varieties. For instance, in Section 7.5 of [55], Tirelli and the second author observe,
following [14], that the 2-Calabi–Yau property determines the (formal) local structure of the moduli space
of representations. Namely, any formal neighborhood can be identified with the formal neighborhood of

2Additionally, since submission of this article, the dg multiplicative preprojective algebra was shown to be 2-Calabi–Yau for
all q and all 0 in [15].
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the zero representation of the moduli space of representations of some (additive) preprojective algebra.
This is proved in more detail here, in Theorem 5.3 (expanding on [14, Section 6], where a similar result
is given). Among other applications mentioned in [55], it follows that, when k has characteristic zero, the
corresponding multiplicative quiver varieties are normal and are symplectic singularities in the sense of
Beauville [3] (in particular, they are normal and have rational Gorenstein singularities); see Corollary 5.5.

This includes (as an open subset) character varieties of Riemann surfaces of positive genus with
punctures and prescribed monodromy conditions, as explained in [55, Section 3] (following [25; 61]).
(In the case of closed Riemann surfaces, as pointed out in [4], this statement does not require our result,
since the group algebra k[π1(6)] is well-known to be 2-Calabi–Yau.)

One subtle point is that we can describe the local structure of multiplicative quiver varieties for all
quivers despite the fact that we only prove the 2-Calabi–Yau property for quivers containing a cycle
(Theorem 5.4). The key idea is that any quiver can be embedded into a quiver containing a loop and
hence any representation of a quiver can be viewed as a representation of a quiver with a cycle. Therefore,
its formal neighborhood can be identified with a formal neighborhood of the zero representation of an
(additive) preprojective algebra. For detailed definitions, statements, and proofs see Section 5.

(III) Noncommutative algebraic geometry: noncommutative resolutions. Although in the non-Dynkin,
nonextended Dynkin case, the center is expected to be trivial (Conjecture 1.1, proved when the quiver
contains a cycle), this is far from true in the extended Dynkin case. Indeed, ordinary preprojective
algebras of extended Dynkin quivers have a large center, the spectrum of which is a du Val singularity.
The algebra itself is a noncommutative crepant resolution of this center. Moreover, this center is the
algebra of functions on a natural quiver variety. So it is reasonable to ask if multiplicative preprojective
algebras also resolve the corresponding multiplicative quiver variety.

In Shaw’s thesis [57], he makes progress towards this question by showing that, for an extended Dynkin
quiver Q with extended vertex v, the subalgebra ev31(Q)ev is commutative of dimension 2, with a
unique singularity at the origin; he expects that (for k of characteristic zero) the singularity there has the
corresponding du Val type (see Remark 6.5).

In further analogy to the additive case, it is reasonable to pose the following conjecture:

Conjecture 1.4. Let Q be extended Dynkin. The algebra 31(Q) is a 2-dimensional noncommutative
crepant resolution (NCCR) of its center, which is the ring of functions on the associated multiplica-
tive quiver variety M1,0(Q, δ). The Satake map Z(31(Q)) → ev31(Q)ev defined by z 7→ evz is an
isomorphism.3

See Section 5 for the precise definition of the multiplicative quiver variety. Thanks to our aforementioned
results on its local structure, the conjecture implies Shaw’s expectation that the singularity of ev31(Q)ev
is du Val of the corresponding type.

For Q = Ãn , we prove the conjecture in Section 6B. In the process, we obtain an explicit description

3We use the terminology “Satake” following the analogous one for symplectic reflection algebras at t = 0 of Etingof–Ginzburg,
itself coming from the map for affine Hecke algebras proposed by Lusztig.
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of the center, Z(31( Ãn)), which may be of independent interest.

(IV) Representation theory: Kontsevich–Rosenberg principle. A final perspective on this work involves
the Kontsevich–Rosenberg Principle which says: a noncommutative geometric structure on an associative
algebra A should induce a geometric structure on the representation spaces Repn(A), for all n ≥ 1. This
principle needs adjusting for structures living in the derived category of A-modules, as the representation
functor is not exact. For a d-Calabi–Yau structure on A, it is shown in [17] and [62] that the derived
moduli stack of perfect complexes of A-modules, R Perf(A), has a canonical (2−d)-shifted symplectic
structure. Since the dg multiplicative preprojective algebra is 2-Calabi–Yau, this implies that its moduli
stack of representations has a 0-shifted symplectic structure. By Conjecture 1.3, it is the same as the
moduli stack of representations of 3q(Q) itself. Note that the multiplicative quiver variety can be viewed
as a coarse moduli space of semistable representations; so the aforementioned result that this variety
locally has the structure of an ordinary quiver variety is a singular analog of the statement on the moduli
stack.

We now give a brief overview of the proof of Conjectures 1.1 and 1.3 for quivers containing a cycle.
We prove Theorem 1.2 using a complex

P• :=3q(Q)⊗k Q0 k Q0 ⊗k Q0 3
q(Q) α

−→3q(Q)⊗k Q0 k Q1 ⊗k Q0 3
q(Q) β

−→3q(Q)⊗k Q0 3
q(Q)

defined originally in [25] (following [56, Theorem 10.3] and [26, Corollary 2.11]) and shown to resolve
3q(Q), except for the injectivity of the map α. We show α is injective and then show the dual complex
P∨

•
is a resolution of 3q(Q)[−2], which implies 3q(Q) is 2-Calabi–Yau.

First, we establish a chain of implications to reduce the proof to a presentation of the localization L Q

that we call the strong free product property, established in Theorem 3.7, see Definition 3.5 or see below
for a rough definition. The strong free product property is a version of Anick’s weak summand property
in the ungraded case; see [1].

To prove the 2-Calabi–Yau property from the strong free product property we show these implications:

Strong free product property for Q :

∃σ ′
:3q(Q) ∗k Q0 k Q0[t, (q + t)−1

] → L Q a linear isomorphism

⇓ Section 3A

Weak free product property for Q : gr(σ ′) :3q(Q) ∗k Q0 k Q0[t] → gr(L Q) is an algebra isomorphism

⇓ Proposition 3.12

gr(σ ′)1 :3q(Q)⊗k Q0 k Q0[t] ⊗k Q0 3
q(Q)→ JQ/J 2

Q is an isomorphism of 3q(Q)-bimodules

⇓ Propositions 3.11 and 3.12

P• is a length two projective 3q(Q)-bimodule resolution of 3q(Q)

⇓ Theorem 3.17

3q(Q) is 2-Calabi–Yau.
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Here the isomorphism σ ′ is determined by a choice of k Q0-bimodule section3q(Q)→ L Q of the quotient
map L Q ↠3q(Q), but gr(σ ′) is independent of this choice. The element t maps to the relation, and the
filtrations used are the t-adic one on the source and the JQ-adic filtration on L Q .

In Section 4, we show that the strong free product property implies that the dg multiplicative prepro-
jective algebra 3dg,q(Q) is formal. Therefore, by the results of this paper, both Conjectures 1.1 and 1.3
would follow from the following more general statement (see Section 7 for precise details).

Conjecture 1.5. If Q is a connected, non-Dynkin quiver, then σ ′ as above is a linear isomorphism:
(L Q, r, σ, k Q0[t, (t + q)−1

]) satisfies the strong free product property.

Proposition 7.11 proves the conjecture for quivers containing a cycle. This is the technical heart of the
paper. Our main technique involves reduction systems over the localized ring k Q0[t, (t + q)−1

]. Using
the diamond lemma [11], we show these give unique reductions of elements of L Q to basis elements of
the given free product. As a consequence, 3q(Q) itself obtains the module structure of a free product of
the cycle part and the rest of the quiver; see (7-12) for a precise statement.

Remark 1.6. After submission of this article Crawley-Boevey and Yuta Kimura [24, Theorem 1.1] proved
that a related, more well-studied algebra, the deformed preprojective algebra [23], is 2-Calabi–Yau, in the
case that the quiver is connected and non-Dynkin. This algebra is a deformation of the usual (additive)
preprojective algebra, given as the quotient of the path algebra of the double quiver by the single relation∑

a∈Q1
aa∗

− a∗a −
∑

i∈Q0
λi ei , the case λi = 0 returning the original preprojective algebra. This can

also be proved via the techniques of this article, by deducing the strong free product property from the
known one for the additive preprojective algebra for non-Dynkin quivers.

Namely, the latter are noncommutative complete intersections [1; 32], shown in [54, Proposition 5.2.1]
to be equivalent, in the context of graded algebras, to the (strong or weak) free product property. More
generally, let A = T V/(r) be a graded algebra satisfying the free product property. Briefly, this means
that we have a section σ : A → T V , which we can take to be graded, so that the induced linear map
σ ′

: A ∗k k[t] → T V sending t to r is a linear isomorphism. Then for every λ ∈ k, σ ′ also defines a linear
isomorphism by the same formula except sending t to r +λ. This is because, taking a homogeneous basis
of A with degree nondecreasing, we obtain a homogeneous basis of T V via the free product, and the
substitution r 7→ r +λ is a strictly triangular change of basis. Thus, the algebra T V/(r +λ) also satisfies
the strong free product property. Note that the same argument given here applies if we replace r by any
filtered deformation r + r ′, with r ′ in degrees strictly lower than r . They also apply to the quiver context,
replacing k by k Q0, hence imply that the deformed preprojective algebra satisfies the strong free product
property. It seems likely this argument can apply to many other interesting algebras.

An outline of the paper is as follows: In Section 2, we give elementary background information on
multiplicative preprojective algebras and produce an alternative generating set crucial for our approach to
the 2-Calabi–Yau property. In Section 3, we prove the 2-Calabi–Yau property for 3q(Q) assuming the
strong free product property. In Section 4, using the strong free product property, we show that the dg
multiplicative preprojective algebra has homology 3q(Q), concentrated in degree zero. In Section 5, we
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use the 2-Calabi–Yau property to describe the formal neighborhoods of multiplicative quiver varieties as
formal neighborhoods of the zero representation in certain quiver varieties. In Section 6 we use the 2-
Calabi–Yau and prime properties in the cycle case, together with work of Shaw, to show the multiplicative
preprojective algebra is a noncommutative resolution over its center. In Section 7, we prove the strong
free product property first for multiplicative preprojective algebras of cycles, then for partial multiplicative
preprojective algebras. Putting the two together, we deduce the strong free product property for connected
quivers containing cycles. The key point of the argument, of independent interest, is a construction of
bases of these algebras. Finally, in Section 8, we establish the prime property of 3q(Q) using our explicit
bases. We furthermore show that Z(3q(Q))= k for Q connected and properly containing a cycle. This
shows that the Calabi–Yau structure in these cases are unique, up to scaling.

2. The multiplicative preprojective algebra

2A. Definitions. Throughout the paper we fix an arbitrary field k. For each quiver (i.e., directed graph) Q,
let Q0 be the vertex set, Q1 be the arrow set, and h, t : Q1 → Q0 the head and tail maps, respectively.
We will assume that Q0 and Q1 are finite for convenience, but really only need finitely many arrows
incident to each vertex.

Let Qop denote the quiver with the same underlying graph of vertices and edges, but with every arrow
in the opposite direction. Q denotes the quiver with the same vertex set as Q and Qop and with arrow set
Q1 ⊔ Qop

1 . For each arrow a ∈ Q1, we write a∗ for the corresponding arrow in Qop
1 , and vice versa. In Q

we distinguish between arrows in Q and Qop using a function

ϵ : Q1 → {±1}, ϵ(a) :=

{
1 if a ∈ Q1,

−1 if a ∈ Qop
1 .

For a quiver Q, we denote the path algebra by k Q and follow the convention that paths are concatenated
from left to right. We have an inclusion e(−) : Q0 → k Q in order to view a vertex i ∈ Q0 as a length zero
path ei .

For a ∈ Q1, define ga := 1 + aa∗
∈ k Q. Consider the localization L Q := k Q[g−1

a ]a∈Q1
. We write

L := L Q , when the quiver is clear from context. Notice, for all a ∈ Q1,

gaa = a + aa∗a = aga∗ . (2-1)

This implies

ga∗a∗
= a∗ga, g−1

a a = ag−1
a∗ , g−1

a∗ a∗
= a∗g−1

a .

Fixing a total ordering ≤ on the set of arrows Q1, one can make sense of a product over (subsets of) the
arrow set. Using ≤ and ϵ we define

ρ :=

∏
a∈Q1

gϵ(a)a , la :=

∏
b∈Q1,b<a

gϵ(b)b , ra :=

∏
b∈Q1,b>a

gϵ(b)b .
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When we need to make the role of the total ordering ≤ more explicit, we write ρ≤ (respectively la,≤

and ra,≤) for ρ (respectively la and ra). By definition, la and ra are the subproduct of ρ to the left and
right of a, respectively. Therefore,

ρ = lagϵ(a)a ra (2-2)

for all a ∈ Q1.

Definition 2.1. Fix a quiver Q and q ∈ (k×)Q0 . Consider Q and fix an ordering ≤ on the arrows and a
map ϵ as defined above. The multiplicative preprojective algebra, 3q(Q), is defined to be

3q(Q) := L/J

where L = k Q[g−1
a ]a∈Q1

is the localization and J is the two-sided ideal generated by the element ρ− q .

Note that q is viewed as an element of k Q via
∑

i∈Q0
qi ei ∈ k Q0 ⊂ k Q, and as ρ is invertible we need

qi ̸= 0 so ei3
q(Q) ̸= 0, for all i .

Remark 2.2. The isomorphism class of 3q(Q) is independent of both the orientation of the quiver and
the choice of an ordering on the arrows, by Section 2 in [25].

In the multiplicative preprojective algebra, (2-2) becomes the identity

lagϵ(a)a ra = q.

Hence

rala = qg−ϵ(a)
a . (2-3)

As mentioned in the introduction, we say that a quiver is (extended) Dynkin, we mean that the
underlying unoriented graph is an (extended) type ADE Dynkin diagram. We don’t consider nonsimply
laced types because, given a quiver, the associated Cartan matrix is 2I − A where A is the adjacency
matrix of the underlying unoriented graph, which is symmetric.

Example 2.3 (Dynkin case). Let Q be a Dynkin quiver and let R be a commutative ring. Note that the
definitions of (multiplicative) preprojective algebra make sense over R. In [42, Section 5], the first named
author constructed explicit isomorphisms

31(Q)∼=50(Q) := RQ
/ ( ∑

a∈Q1

[a, a∗
]

)
if 2, 3, and 5 are invertible in R; see also the earlier works [57, Lemma 5.2.1], [22, Corollary 1], [29,
Theorem 13], and [47, Section 5]. In particular, for a field k of characteristic zero, we can work over
k[[h̄]] and set q = eh̄ . Then 3q is a formal deformation of 31. Hence, by [31, Proposition 5.0.2], there
exists some λ ∈ k[[h̄]] such that there is a k[[h̄]]-linear algebra isomorphism

3q(Q)∼=5λ(Q) := k Q
/ ( ∑

a∈Q1

[a, a∗
] −

∑
i∈Q0

λi ei

)
.
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In A types, such an isomorphism holds over any field k and for any actual parameter q. Namely,
identifying (An)0 = {1, 2, . . . , n} and (An)1 = {a1, a2, . . . , an−1} with tail t (ai ) = i , the isomorphism
3q(An)∼=5λ(An) is given by

ei 7→ ei , ai 7→ ai , a∗

i 7→

(∏
j>i

q j

)
a∗

i ,

where λi := (qi − 1)
∏

j>i q j . Since 5λ(An) is nonzero if and only if there exists i, j with i < j and∑ j
ℓ=i λℓ = 0, it follows that 3q(An) is nonzero if and only if

∏ j
ℓ=i qℓ = 1.

2B. The map θ . In [25], the important map θ : Q1 →3q(Q) is defined by θ(a)=q−1laara∗ and extended
to k Q by the identity on Q0 and by requiring θ to be an algebra map. Then Lemma 3.3 in [25] shows that

θ(ga)= lagal−1
a (2-4)

= r−1
a gara, (2-5)

so θ(ga) is invertible. Hence θ factors through the localization L := k Q[g−1
a ]a∈Q1

. We will show θ

descends to the quotient 3q(Q), with the ordering of the arrows reversed, using the following result.

Lemma 2.4. Let ≤ denote a total order on Q1 and let ≥ denote its opposite ordering, i.e., a ≥ b if b ≤ a.
Such an order fixes a bijection Q1 ∼= {a1, a2, . . . , a

|Q1|
}. Then

θ(ra j ,≥)= la j ,≤ =: la j and θ(la j ,≥)= ra j ,≤ =: ra j

for any a j ∈ Q1.

Proof. We prove θ(ra j ,≥)= la j by induction on j , where j = 1 is the identity θ(1)= 1. Then,

θ(ra j+1,≥)= θ(gϵ(a j )
a j )θ(ra j ,≥)

(IH)
= θ(gϵ(a j )

a j )la j

(2-4)
= la j g

ϵ(a j )
a j l−1

a j
la j = la j g

ϵ(a j )
a j = la j+1 .

The second identity is similar and one can formally obtain a proof from the above by exchanging the
symbols r and l, the identity (2-4) for (2-5), and the order of the multiplication. □

Corollary 2.5. θ(ρ≥)= ρ.

This corollary implies θ descends to a map 3q(Q,≥) → 3q(Q,≤). Notice that we can similarly
define θ≥ :3q(Q,≤)→3q(Q,≥).

Proposition 2.6. θ≥ ◦ θ = Id3q (Q,≤).

Proof. It suffices to check θ≥ ◦ θ is the identity on arrows in Q1. We have

θ≥(θ(a))= θ≥(q−1laara∗)= q−1θ≥(la)θ≥(a)θ≥(ra∗),

which by Lemma 2.4 equals

= q−1raθ≥(a)la∗ = q−1ra(q−1laara∗)la∗

(2-3)
= = g−ϵ(a)

a ag−ϵ(a∗)
a∗

(2-1)
= ag−ϵ(a)

a∗ g−ϵ(a∗)
a∗ = a. □
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3. Calabi–Yau and free product properties

The goal of this section is to prove that 3q(Q) is 2-Calabi–Yau for Q containing an unoriented cycle. We
do so by exhibiting a length two, projective, 3q(Q)-bimodule resolution P• of 3q(Q), whose bimodule
dual complex P∨

•
is quasiisomorphic to 3q(Q). This resolution is due to Crawley-Boevey and Shaw,

but they don’t state nor prove that it is exact. The main new ingredient we provide is the injectivity of
α which relies on the weak free product property. Hence we begin this section with a short digression
explaining the strong and weak free product properties.

3A. Free product (complete intersection) properties. Recall that, if R is a commutative ring and r ∈ R
an element, then there is a dg analog of the quotient R/(r): the Koszul complex (R[s]/(s2), d) with
d|R = 0 and ds = r , here |s| = −1. Note here that, in spite of the notation, R[s]/(s2) is the graded-
commutative algebra freely generated by R and a single generator s in degree −1. The quotient map
(R[s]/(s2), d)→ R/(r) is a quasiisomorphism if and only if r is a nonzerodivisor.

Thus, in the commutative setting, the nonzerodivisor condition is the correct one for which the Koszul
complex (derived imposition of r = 0) is equivalent to the quotient algebra.

Now let us pass to the noncommutative setting. If A is an algebra over a ring S and J = (r) an ideal
generated by a single relation r , we can form a canonical algebra map,

8 : A/J ∗S S[t] → grJ A, 8|A/J = Id,8(t)= r, (3-1)

where grJ means the associated graded algebra with respect to the J -adic filtration.

Definition 3.1. The pair (A, r) satisfies the weak free product property if 8 is an isomorphism.

Remark 3.2. This condition is significantly more subtle than in the commutative case. In particular,
it is insufficient for r to be a nonzerodivisor. For example, if A = k[x] and r = x2, then we have
H 1(A ∗ k[s], d) ∋ [xs − sx] ̸= 0. (Here A is actually commutative, but we take the noncommutative
construction; for a noncommutative example, simply replace A with k⟨x, y⟩.)

The weak free product property is an analog of a noncommutative complete intersection (NCCI) [32],
and closely matches the weak summand property from [1] (considered in the graded setting). We have
chosen this terminology to make the algebraic property we are using more evident.

When the context is clear, we will sometimes abuse notion and say the quotient A/J , for J = (r),
satisfies the weak free product property, even though the choice of A and r ∈ A is important.

Given an S-bimodule section σ : A/J → A of the quotient map π : A → A/J , we can form an
associated linear map,

σ̃ : A/J ∗S S[t] → A, (a0tm1a1tm2 · · · tmn an) 7→ σ(a0)rm1σ(a1)rm2 · · · rmnσ(an), (3-2)

for mi > 0, for all i . The existence of such a σ (and hence σ̃ ) is automatic if S is separable, as is the case
when S = k Q0 below.
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By construction, this is S[t]-bilinear, where t acts on A by multiplication by r . It also reduces to the
identity modulo (t) on the source and J on the target. If (A, r) satisfies the weak free product property,
then moreover the completion ̂̃σ :

∧

A/J ∗S S[t] → Â, (3-3)

with respect to the t-adic and J -adic filtrations, is a linear isomorphism.
The goal of the strong free product property is to find a description of A itself as a free product. The

first version is the following:

Definition 3.3. The triple (A, r, σ ) satisfies the strong free product property if σ̃ : A/J ∗S S[t] → A is an
S-bimodule isomorphism.

Remark 3.4. The choice of σ is important. Let A = k⟨x, y⟩ and J = (y) so A/J ∼= k[x]. Here k[t] acts
on A via t f := y f . Consider two different choices

σ1, σ2 : k[x] → k⟨x, y⟩, σ1(x + (y))= x, σ2(x + (y))= x − xy.

Then σ̃1 is a linear isomorphism, while σ̃2 is not surjective as

x = σ2(x + (y))(1 − y)−1
= σ2(x + (y))

∑
i≥0

yi /∈ σ̃2(k[x] ∗k k[t]).

This property is too much to expect in many situations, such as in the presence of rational functions
in t . To fix this, let B = S[t, f −1

] be a localization of S[t] obtained by inverting some f ∈ S×
+ (t),

such that the map S[t] → A extends to an algebra map τ : B → A (such an extension is necessarily
unique). Let B := t B, so that we have an S-bimodule decomposition B = S ⊕ B. Then σ̃ extends to a
map σ ′

: A/J ∗S B → A, which has the form

a0b1a1 · · · bnan 7→ σ(a0)τ (b1) · · · τ(bn)σ (an), ai ∈ A/J, bi ∈ B. (3-4)

Definition 3.5. The quadruple (A, r, σ, B) satisfies the strong free product property if σ ′ is a linear
isomorphism.

This definition reduces to the previous definition in the case B = S[t], τ(t)= r .
In this case, it follows by taking associated graded algebras that (A, r) satisfies the weak free product

property. Moreover, A is Hausdorff in the J -adic filtration (because the source of σ ′ is Hausdorff in the
t-adic filtration), and σ ′ is indeed a restriction of ̂̃σ .

Remark 3.6. It is important in the definition of σ ′ to use the natural bimodule complement B = t B.
Here is an example to show why (see also Remark 7.2 for another one, which we naively ran into before
realizing our mistake). Let A = k⟨x, y, z⟩/(xyz−xz), r = y, so that A/J ∼= k⟨x, z⟩/(xz). A basis for A/J
is given by {zi x j

}i, j≥0. Let σ : A/J → A be the section preserving this, i.e., σ(zi x j
+ (y, xyz − xz))=

zi x j
+ (xyz − xz). Set B := k[t]. Then σ ′

= σ̃ : A/J ∗k k[t] → A is a linear isomorphism, so (A, r, σ )
is a strong free product. However, if we were to instead choose a complement B = (t − 1)B, then we
now have σ ′(x(t − 1)z)= 0, so the map σ ′

: A/J ∗k B → A defined using B is not injective. (It is also
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not surjective, as xz is not in the image.) On the other hand, for general weak free products, using the
correct choice B = t B, σ ′ is always injective.

Now we return to the setup of Q a connected, non-Dynkin quiver and q = (k×)Q0 . Let B :=

k Q0[t, (q + t)−1
] and B := t B = Span(tm, (t ′)m | m ≥ 1}, for t ′

:= (q + t)−1
− q−1. We conjecture that,

for every such Q, there exists σ such that the quadruple (L Q, r, σ, B) satisfies the strong free product
property. Moreover, in Section 7 we prove this conjecture in the case of quivers containing a cycle.

Theorem 3.7 (Proposition 7.11). Let Q be a connected quiver containing an unoriented cycle. Let
B = k Q0[t, (q + t)−1

] and let r denote the multiplicative preprojective relation. There exists a section σ
such that (L Q, r, σ, B) satisfies the strong free product property.

The proof of this theorem is technical and uses combinatorial algebraic techniques. Therefore we delay
its proof until Section 7, which does not result in circular logic as that section does not depend on results
after Section 2.

Remark 3.8. The connectedness assumption can be weakened as follows. If Q = Q′
⊔ Q′′ then L Q =

L Q′ ⊕ L Q′′ and 3q(Q)=3q(Q′)⊕3q(Q′′) and so by adding sections, the strong free product property
for

(L Q′ ⊕ L Q′′, r ′
+ r ′′, σ ′

+ σ ′′, B ′
⊕ B ′′)= (L Q, r, σ, B)

follows from the strong free product properties for (L Q′, r ′, σ ′, B ′) and (L Q′′, r ′′, σ ′′, B ′′). So one only
needs the weaker assumption that Q is a quiver with each component containing an unoriented cycle.
But we state results in the connected setting to simplify the hypotheses.

Corollary 3.9. Let Q be a connected quiver containing an unoriented cycle. Then 3q(Q) satisfies the
weak free product property. In particular, there exists an isomorphism of graded algebras∑

i

ϕi : gr(3q(Q) ∗k Q0 k Q0[t])→ gr(L Q)

where the associated graded algebras are taken with respect to the t-adic and JQ-adic filtrations on
3q(Q) ∗k Q0 k Q0[t] and L Q respectively.

Remark 3.10. Note that for ordinary preprojective algebras, the free product property was observed in [54,
Propositions 5.1.9 and 5.2.1]. In fact, as these algebras are nonnegatively graded with finite-dimensional
subspaces in each degree, and one-dimensional in degree zero (connected), the strong and weak free
product properties are equivalent (and independent of the choice of graded section σ ), as was already
observed by Anick [1].4 Moreover, if A has global dimension at most two, then these conditions are
also equivalent to the condition that A/(r) also has global dimension at most two. In the case A is a
tensor or path algebra, such algebras were called noncommutative complete intersections in [32] due
to their close relationship to the condition that representation varieties be complete intersections. For a

4Anick works in the graded context over a field rather than k Q0, but his results generalize to this setting; see [32; 54].
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nuanced discussion of this relationship, including sufficient conditions for the representation variety to be
a complete intersection, see the introduction and Theorem 24 in [6].

However, in the ungraded case, we only have the implication that we need, that the free product
property implies the existence of a length-two projective bimodule resolution. Indeed, the latter property
only depends on a piece of the associated graded algebra with respect to the (r)-adic filtration, and in the
ungraded case this filtration need not even be Hausdorff. In contrast, the strong free product property
implies the Hausdorff condition and gives information about the algebra itself.

Motivated by this, we believe that the strong free product property can be viewed as an ungraded
analog of the noncommutative complete intersection property. It is an interesting question to investigate
when their representation varieties are complete intersections.

3B. A bimodule resolution of 3. In this subsection, we show that for any quiver, the weak free product
property for 3q(Q) implies 3q(Q) has a length two projective bimodule resolution. Consequently, since
we establish the weak free product property for connected quivers containing a cycle, we prove 3q(Q)
has Hochschild dimension two for connected quivers containing a cycle. For ease of notation, write
3 :=3q(Q).

Crawley-Boevey and Shaw build a chain complex of 3-bimodules P• = P2
α

−→ P1
β

−→ P0 where,

P2 = P0 :=3⊗k Q0 k Q0 ⊗k Q0 3= ⟨ηv⟩v∈Q0, P1 :=3⊗k Q0 k Q1 ⊗k Q0 3= ⟨ηa⟩a∈Q1

and

α(ηv) :=

∑
a∈Q1:t (a)=v

la1ara where 1a =

{
ηaa∗

+ aηa∗ if a ∈ Q1,

−g−1
a (ηaa∗

+ aηa∗)g−1
a if a ∈ Qop

1 ,

β(ηa) := aηt (a) − ηh(a)a.

We claim that it is a resolution of 3. To see this, following [25], we first write down an explicit chain
map of 3-bimodule complexes ψ : P• → Q•, where Q• is quasiisomorphic to 3; we then prove it is an
isomorphism. Q• is the cotangent exact sequence in Corollary 2.11 of [26], but in this context it was
defined earlier (and shown quasiisomorphic to 3) by Schofield [56]. So we have the maps

P•

ψ

[25]−−−−→ Q•

quasiiso
[56]−−−−→3.

Proposition 3.11 [25, Lemma 3.1]. For any quiver Q, the following diagram commutes:

P0
α

//

ψ2
��

P1
β

//

ψ1∼=

��

P0
γ

//

ψ0∼=

��

3

id=

��

J/J 2 κ
// 3⊗L �k Q0(L)⊗L 3

λ
// 3⊗k Q0 3

µ
// 3

Where the vertical maps are 3-bimodule maps defined on generators by,

ψ2(ηv) := ρev − qev, ψ1(ηa) := 1 ⊗L [a ⊗k Q0 1 − 1 ⊗k Q0 a] ⊗L 1, ψ0(ηv)= ev ⊗ ev.
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Here α and β are as defined above and γ (ηv) := ev. The horizontal maps are defined by

κ(x+J 2): = 1⊗Lδ(x)⊗1 where δ(x) := x⊗1−1⊗x for x ∈ J,

λ(1⊗L [ab⊗k Q0c−a⊗k Q0bc]⊗L1): = ab⊗k Q0c−a⊗k Q0bc for a,b,c ∈ L ,

µ(a⊗b): = ab for a,b ∈3.

Since ψ0 and ψ1 are 3-bimodule isomorphisms, it remains to show ψ2 is a 3-bimodule isomorphism.
We show this using the weak free product property.

Proposition 3.12. Suppose 3 satisfies the weak free product property. Then P• is a bimodule resolution
of 3.

Proof. Taking the i = 1 piece of the graded isomorphism

gr(ϕ)=

∑
i

ϕi : gr(3 ∗k Q0 k Q0[t, (t + q)−1
])−→ gr(L Q)

gives an isomorphism of 3-bimodules

ϕ1 :3⊗k Q0 k Q0 · t ⊗k Q0 3→ JQ/J 2
Q .

Since ϕ1 sends t 7→ r , it sends tev 7→ rev = (ρ − q)ev and hence ϕ1 = ψ2. We conclude that ψ2 is an
isomorphism of 3-bimodules and hence ψ• : P• → Q• is an isomorphism of 3-bimodule complexes. In
particular, P• is a resolution since Q• is a resolution. □

For a complex C• concentrated in nonnegative degrees, define the length by

len(C•) := sup{i ∈ N | Ci ̸= 0}.

For an algebra A, the Hochschild dimension of A is HH.dim(A) := len(HH•(A)) and the global dimension
of A, is gl.dim(A) := supM∈A-mod infP•

{len(P•)} where the infimum is taken over all projective A-module
resolutions of M.

Corollary 3.13. Let Q be a connected quiver containing a cycle. Then

gl.dim(3)≤ HH.dim(3)= 2.

Proof. Use P• to compute HHi (3); HHi (3)= 0 for i > 2 while HH2(3) ̸= 0. Therefore HH.dim(3)= 2.
Every left 3-module, M , has a length two projective left 3-module resolution P• ⊗3 M , and hence 3
has global dimension at most two. □

Example 3.14. Note that the inequality in Corollary 3.13 may be strict. If Q is the Jordan quiver (i.e.,
the quiver with one vertex and one loop) then

3q(Q)∼= k⟨a, a∗
⟩[(1 + a∗a)−1

]/(aa∗
− qa∗a − (q − 1)).

The change of variables x := a and y := a∗/(q − 1) when q ̸= 1, identifies 3q(Q) with a localization of
the first quantum Weyl algebra, k⟨x, y⟩/(xy − qyx − 1), which has global dimension one.
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3C. The dual complex. In this subsection, we show for any quiver that if P• is a resolution of 3q(Q),
then 3q(Q) is 2-Calabi–Yau. Combining this with the previous subsection, we get that if 3q(Q) satisfies
the weak free product property then 3q(Q) is 2-Calabi–Yau. In particular, this shows that 3q(Q) is
2-Calabi–Yau for connected quivers containing a cycle.

First we recall the notion of d-Calabi–Yau algebras [36].

Definition 3.15. A is d-Calabi–Yau if (a) A has finite projective dimension as an A-bimodule; (b)
Exti (A, A ⊗ A)= 0 for i ̸= d; and (c) there exists an A-bimodule isomorphism

η : ExtdA−bimod(A, A ⊗ A)→ A.

The map η is called a d-Calabi–Yau structure.

Remark 3.16. For perfect A-modules, M and N , one has a quasiisomorphism,

RHomA−bimod(M, N ) ∼=−→ HomA−bimod(M, A ⊗ A)⊗L
A⊗Aop N .

Taking M = A∨ and N = A gives RHomA−bimod(A∨, A)∼= A ⊗
L
A⊗Aop A. The isomorphism on the level

of d-th homology realizes

η ∈ HomA−bimod(A∨, A[−d])=: Ext−d
A−bimod(A

∨, A)∼= HHd(A)

as a class in d-th Hochschild homology.
For dg-algebras, one further equips this structure with a class in negative cyclic homology that lifts

the Hochschild homology class of the isomorphism. But, as shown in Proposition 5.7 and explained in
Definition 5.9 of [60], for ordinary algebras this additional structure exists uniquely.

We have established P• as a 3-bimodule resolution of 3, if Q is connected and contains a cycle. To
show 3 is 2-Calabi–Yau, it suffices to show that its dual complex

RHom3−bimod(3,3⊗3) := Hom3−bimod(P•,3⊗3)=: P∨

•

is quasiisomorphic to 3[−2].
Define η∨

v ∈ Hom3−bimod(P0,3⊗3) and η∨
a ∈ Hom3−bimod(P1,3⊗3) by,

η∨

v (ηw) :=

{
ev ⊗ ev if v = w,

0 otherwise ,
η∨

a (ηb) :=

{
et (a) ⊗ eh(a) if b = a∗,

0 otherwise .

These are generators of P∨

0 and P∨

1 respectively and give isomorphisms,

P∨

0
∼=3⊗k Q0 k Q0 ⊗k Q0 3= ⟨η∨

v ⟩, P∨

1
∼=3⊗k Q0 k Q1 ⊗k Q0 3= ⟨η∨

a ⟩.

Rather than directly study the dual complex P∨
•

, we modify the formulas for α∨ and β∨ using the
map θ , in a way that doesn’t affect the homology of the complex. Namely, after choosing generators {ξv}

for P∨

0 and {ξa} for P∨

1 , defined below, one can expand

α∨(ξa)=

∑
v∈Q0

a′

vξva
′′

v , β∨(ξv)=

∑
a∈Q1

b′

aξab′′

a,
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for some a′
v, a′′

v , b′
a, b′′

a ∈3 and then define

α∨

θ (ξa) :=

∑
v∈Q0

θ(a′

v)ξvθ(a
′′

v ), β∨

θ (ξv) :=

∑
a∈Q1

θ(b′

a)ξaθ(b′′

a).

It suffices to show that

(P∨

•
)θ := P∨

0
−β∨

θ−−→ P∨

1
α∨

θ−−→ P∨

0

is quasiisomorphic to 3[−2].
We prove this by establishing an isomorphism of 3-bimodule complexes ϕ• : P•[2] → (P∨

•
)θ following

Crawley-Boevey and Shaw, so

(P∨

•
)θ

ϕ−1
•−→ P•[2]

ψ•[2]
−−→ Q•[2]

quasiiso
−−−−→3[2].

Theorem 3.17. The following diagram commutes:

P∨

0

−β∨

θ
//

(II)

P∨

1

α∨

θ
//

(I)

P∨

0

γ ◦ϕ−1
0

// 3

P0
α

//

ϕ0 ∼=

OO

P1
β

//

ϕ1 ∼=

OO

P0
γ

//

ϕ0 ∼=

OO

3

id =

OO

Where the vertical maps are 3-bimodule isomorphisms defined on generators by,

ϕ0(ηv) := ξv := qη∨

v , ϕ1(ηa) := ξa∗ :=

{
laη

∨
a∗l−1

a∗ if a ∈ Qop
1 ,

−r−1
a∗ η∨

a∗ra if a ∈ Q1.

Note that ϕ1 is an invertible map since ra and la are invertible elements of 3 for all a ∈ Q1. The
commuting of (I) becomes clear once we compute the maps α∨, the content of the next lemma.

Lemma 3.18 [25, Lemma 3.2].

α∨(η∨

a )=

{
a∗raη

∨

h(a)la − g−1
a∗ ra∗η∨

t (a)la∗ g−1
a∗ a∗ if a ∈ Q1,

ra∗η∨

t (a)la∗a∗
− a∗g−1

a raη
∨

h(a)lag−1
a if a ∈ Qop

1 .

α∨(ξa)= θ(a∗)ξt (a∗) − ξh(a∗)θ(a∗).

α∨

θ (ξa∗)= aξt (a) − ξh(a)a.

β = ϕ−1
0 ◦α∨

θ ◦ϕ1.

So square (I) in Theorem 3.17 commutes.

Proof. The first two equalities are shown directly in [25] and the last two are clear from the definitions
together with Proposition 2.6. □

Proof of Theorem 3.17. By Lemma 3.18, it suffices to show that (II) commutes. While one can similarly
compute β∨ directly, such a calculation is unnecessary as the commuting of (II) follows from that of (I).
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Indeed, dualizing and applying (−)θ to the maps in (I), produces a still commuting diagram:

P1

(ϕ1)
∨

θ

��

(I)∨θ

P0
(α∨

θ )
∨

θ
oo

(ϕ0)
∨

θ

��

=

P1

−ϕ1
��

(I)∨θ

P0
α

oo

ϕ0

��

P∨

1 P∨

0β∨

θ

oo P∨

1 P∨

0β∨

θ

oo

which shows ϕ1 ◦α = −β∨

θ ◦ϕ0, i.e., (II) commutes.
The equality of maps (α∨

θ )
∨

θ = α follows from Proposition 2.6, and (ϕ0)
∨

θ = ϕ∨

0 = ϕ0 follows from the
definitions. For (ϕ1)

∨

θ = −ϕ1, observe that it suffices to show (ϕ1)θ = −(ϕ1)
∨ and indeed,

(ϕ1)θ (ηa∗)= (ξa)θ =

{
θ(la∗)η∨

a θ(l
−1
a ) if ϵ(a)= 1,

−θ(r−1
a∗ )η∨

a θ(ra) if ϵ(a)= 1,

=

{
ra∗η∨

a r−1
a if ϵ(a)= 1,

−l−1
a∗ η∨

a la if ϵ(a)= −1,
= −(ϕ1)

∨(ηa∗). □

So without conditions on the quiver, we have established:

Corollary 3.19. If P• →3 is exact then (P∨
•
)θ →3[−2] is exact and P∨

•
→3[−2] is exact.

Therefore, the 2-Calabi–Yau property for3 follows from the a priori weaker Hochschild dimension two
property. In the previous subsection, we showed that 3 has Hochschild dimension two for Q connected
and containing a cycle.

Corollary 3.20. If Q is connected and contains a cycle then 3q(Q) is 2-Calabi–Yau.

4. Formality of dg multiplicative preprojective algebras

In this section we show that if Q satisfies the strong free product property, then the dg multiplicative
preprojective algebra is formal. In particular this proves Conjecture 1.3 in the case Q is connected
and contains a cycle. Moreover, it reduces Conjecture 1.3 to the remaining extended Dynkin cases and
Conjecture 1.5.

If one views the dg multiplicative preprojective algebra as the central object of study, as in [29; 30],
then we are showing one can formally replace it by the non-dg version.

We begin with an elementary lemma. It is not strictly required, but it demonstrates more transparently
the construction we will use.

Lemma 4.1. Let K be a commutative ring. Let A be the dg-algebra defined as a graded algebra to be
K [r ] ∗ K [s] with |r | = 0 and |s| = −1, product given by concatenation of words, and differential extended
as a derivation from the generators d(s)= r and d(r)= 0. Then A is quasiisomorphic to its cohomology
H∗(A)= K concentrated in degree zero. In fact, the identity map is chain homotopic to the augmentation
map A → K .
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Proof. Let h : A → A[−1] be the homotopy with the property h(r f )= s f and h(s f )= 0 for all f ∈ A,
and h(K )= 0. Then h ◦ d + d ◦ h − 1A is the projection with kernel K to the augmentation ideal of A.
Therefore, it defines a contracting homotopy from A to K . □

In other words, the lemma is observing that A, as the tensor algebra on an acyclic complex Kr ⊕ K s,
is itself quasiisomorphic to K .

Lemma 4.2. The dg-algebra A given by

3q(Q) ∗k Q0 k Q0[r, (r + q)−1
] ∗k Q0 k Q0[s], with |r | = 0 and |s| = −1

and with differential determined by d(s)= r is quasiisomorphic to 3q(Q) concentrated in degree zero.

Proof. Extending the preceding construction, define a homotopy h : A → A[−1] by

h( f rg)= f sg, h( f sg)= 0, h( f (r + q)−1g)= q−1h( f g)− q−1 f s(r + q)−1g

for f ∈3q(Q) and g ∈ A. The definition of h( f (r + q)−1g) is chosen to match the formula for h( f rg)
in the r -adic completion. There is an augmentation A ↠3q(Q) with kernel (r, s, r ′

:= (r +q)−1
−q−1).

Notice that h ◦d +d ◦h is a homotopy from the identity on A to the augmentation 3q(Q), as it annihilates
3q(Q) and is the identity on s, r , and r ′. □

Definition 4.3. The dg multiplicative preprojective algebra is a dg-algebra over k Q0 defined as a graded
algebra by

3dg,q(Q) := L Q ∗k Q0 k Q0[s], |s| = −1, |α| = 0 for α ∈ L Q .

The differential, d, is defined by d(s)= ρ− q, d(L Q)≡ 0, and extended as a k Q0-linear derivation to
L Q ∗k Q0 k Q0[s].

Proposition 4.4. If 3q(Q) satisfies the strong free product property,5 then

H∗(3
dg,q(Q))= H0(3

dg,q(Q))∼=3q(Q)

so in particular 3dg,q(Q) is formal.

By Theorem 3.7, the proposition holds in particular if Q contains a cycle.

Remark 4.5. Note that for the ordinary preprojective algebra, 5(Q), the Ginzburg dg-algebra has
homology concentrated in degree zero for any non-Dynkin quiver: 5(Q) has a length two bimodule
resolution (see [50; 18] for the characteristic zero case, and [31] in general) which [1, Theorems 2.6 and
2.9] shows is equivalent for graded connected algebras, and [32] observes this extends to the quiver case.

Proof. The strong free product property yields an isomorphism of graded vector spaces,

L Q ∼=3q(Q) ∗k Q0 k Q0[r, (r + q)−1
].

5Meaning (L Q , r, σ, k Q0[t, (t + q)−1
]) satisfies the strong free product property for some choice of σ .
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Hence, as complexes,

3dg,q(Q)∼= L Q ∗k Q0 k Q0[s] ∼=3q(Q) ∗k Q0 k Q0[r, (r + q)−1
] ∗k Q0 k Q0[s],

which by Lemma 4.2 is quasiisomorphic to 3q(Q), concentrated in degree zero. It follows that

3dg,q(Q)∼= H∗(3
dg,q(Q))∼= H0(3

dg,q(Q))∼=3q(Q)

as dg-algebras. □

Remark 4.6. In the presence of Conjecture 1.1, formality of3dg,q(Q) implies3dg,q(Q) is 2-Calabi–Yau.
Hence by Theorem 1.2, we have shown that3dg,q(Q) is 2-Calabi–Yau, when Q is connected and contains
a cycle. One may be able to adapt the techniques in Section 3 to prove that 3dq,q(Q) is 2-Calabi–Yau, in
general. In more detail, writing 3dg

:=3dg,q(Q), the role of the 3q(Q)-bimodule resolution, P•, should
now be played by the 3dg-dg-bimodule given by the total complex of

3dg
⊗k Q0 k Q0 · s ⊗k Q0 3

dg αdg
//

β
dg
1

113dg
⊗k Q0 k Q1 ⊗k Q0 3

dg
β

dg
0
// 3dg

⊗k Q0 3
dg,

where βdg
1 (a⊗s⊗b)=as⊗b−a⊗sb and αdg (respectively βdg

0 ) has the same formula as α (respectively β).

Remark 4.7. We are grateful to Georgios Dimitroglou Rizell, who pointed out that our definition differs
from that arising in symplectic geometry. Indeed in the derived multiplicative preprojective algebra, L0 ,
[30, page 779] define additional variables za, ζa with za invertible and d(ζa)= za − (1 + a∗a), and hence
(1 + a∗a) is invertible only after taking homology. In contrast, we invert (1 + a∗a) on the chain level in
3dg,q(Q). However, for our main result, Proposition 4.4, this distinction is irrelevant, as we now explain.

We claim that the dg algebra map α : L0 →3dg,q(Q), given by α(za)= (1 + a∗a), α(ζa)= 0, and
taking arrows to arrows, is a quasiisomorphism. To see this, note that L0 can be viewed as a bigraded
dg algebra with two differentials: set |ζa| = (−1, 0) and |s| = (0,−1), with horizontal differential
dH (ζa) = za − (1 + a∗a), dH (s) = 0, and vertical differential dV (ζa) = 0, dV (s) = ρ − q. We will
show in the next paragraph that the map α induces an isomorphism on horizontal cohomology, that is,
α : (L0, dH )→ (3dg,q(Q), 0) is a quasiisomorphism. Therefore, α is a morphism of bicomplexes (placing
the target in horizontal degree zero), that induces an isomorphism on the first page of the associated
spectral sequences. These sequences collapse on the second page. They collapse to the cohomology, since
both sequences were third-quadrant (cohomologically) and hence convergent. This proves the claim.

It remains to show that α is an isomorphism on horizontal cohomology. More generally, let A be a
graded path algebra on the quiver Q (arrows can be assigned any degrees), and let S ⊆ A be a subset of
homogeneous elements; in the case above we have A := k Q∗k Q0 k Q0[s] and S := {1+a∗a}a∈Q1

. We wish
to compare two localizations. The first is the naive one, A[ f −1

] f ∈S . The second is given by replacing A by
the quasiisomorphic algebra Ã := A⟨z f , ζ f ⟩ f ∈S , with differential d(ζ f )= z f − f, d(z f )= 0, d(A)≡ 0.
We then consider Ã[z−1

f ] f ∈S . To compare these we use the technique of derived localization, following [16].
Since A is hereditary with zero differential, by [16, Corollary 4.20, Theorem 5.1], its derived localization by
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S is A[S−1
] (i.e., it is underived). On the other hand, Ã is cofibrant in the category of dg algebras equipped

with a morphism from k Q0⟨z f ⟩ f ∈S , as it is given by cell attachment (although with nonzero differential).
So Ã[z−1

f ]= Ã∗k Q0⟨z f ⟩k Q0⟨z f , z−1
f ⟩ is also its derived localization. Now the quasiisomorphism Ã → A is

compatible with the morphisms from the path algebra k Q0⟨z f ⟩ f ∈S , sending z f to z f and to f , respectively.
Thus the map Ã[z−1

f ] f ∈S → A[ f −1
] f ∈S is a quasiisomorphism of derived localizations of A at S.

Note that by combining the two preceding paragraphs, in general, the quasiisomorphism

A⟨z f , z−1
f , ζ f ⟩ f ∈S → A[ f −1

] f ∈S

induces a quasiisomorphism

A⟨z f , z−1
f , ζ f , si ⟩ → A[ f −1

]⟨si ⟩

for any additional arrows si and differential d(si ) compatible with the morphism (only assuming that
A is a graded path algebra with S a collection of homogeneous elements). The same is true replacing
A⟨z f , z−1

f , ζ f ⟩ by any other model of the derived localization of A at S.

Remark 4.8. The dg multiplicative preprojective algebra is called the Legendrian cohomology dg algebra
in [29, 3.2] where they establish that it is a multiplicative analog of Ginzburg’s dg algebra for a quiver
with zero potential defined in [36, 1.4]. It is called a capped Chekanov–Eliashberg algebra in [53,
Section 3.2] where they independently prove formality in the case Q is the Jordan quiver and q = 1 in
[53, Theorem 3.13].

5. Local structure of multiplicative quiver varieties and
moduli spaces attached to 2-Calabi–Yau algebras

In this section, we will assume that k is an algebraically closed field of characteristic zero.
We will use our main result to prove, as anticipated in [55, Section 7.5], that multiplicative quiver

varieties are étale-locally (or formally locally) isomorphic to ordinary quiver varieties. Our proof uses (a
generalization of) a result of Bocklandt, Galluzzi, and Vaccarino in [14] for 2-Calabi–Yau algebras. While
our main result is only proved for quivers with cycles, we are able to prove this result for all quivers.
The key idea is to embed any quiver into one containing a new vertex with a cycle, and put the zero
vector space at this new vertex. This identifies every multiplicative quiver variety with one for a quiver
containing a cycle.

We recall the definition of multiplicative quiver varieties [25; 61; 55], beginning with King’s notion of
(semi)stability. First, by an algebra over k Q0, we mean a k-algebra which contains k Q0 as a subalgebra.
Given a module M over such an algebra A, its dimension vector is α ∈ NQ0 given by αi = dim ei M, i ∈ Q0.
Given a k Q0-module V , let Rep(A, V ) := Homk Q0-alg(A,Endk(V )) be the set of A-module structures
on V . Let Repα(A) := Rep(A, V ) for V :=

⊕
i∈Q0

kαi , called the representation space of dimension α.

Definition 5.1 [45]. Let Q be a finite quiver. Let A be an algebra over k Q0, θ ∈ ZQ0 a parameter, α ∈ NQ0

a dimension vector. Assume that θ · α = 0. Then an A-module M of dimension vector α is said to be
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θ -semistable if, for every submodule N := {Ni }i∈Q0 , with dimension vector β ∈ NQ0 , we have β · θ ≤ 0.
Furthermore M is θ -stable if β ·θ <0 for all nonzero, proper submodules. Let Repθ -ss(A, V )⊆Rep(A, V )
be the subset of θ -semistable module structures, and denote this by Repθ -ss

α (A) when V :=
⊕

i∈Q0
kαi .

Definition 5.2 [45]. Let Q, α, and θ be as in the definition above, and let A be an algebra over k Q0.
Then the corresponding (semistable) moduli space is

Mθ (A, α) := Repθ -ss
α (A)//GL(α). (5-1)

In the case A = 3q , this is called a multiplicative quiver variety, denoted Mq,θ (Q, α). In the case
A =5λ is a (deformed) preprojective algebra, it is called an ordinary quiver variety, denoted Madd

λ,θ (Q, α).
The main results of this section are the following:

Theorem 5.3. Let A be a 2-Calabi–Yau algebra over k Q0, and let ρ be a θ -semistable representation of
A of dimension α. Then there exists Q′, α′ such that the formal neighborhood of ρ of the moduli space
Mθ (A, α) is isomorphic to the formal neighborhood of Madd

0,0 (Q
′, α′) at the zero representation.

Theorem 5.4. At every point of a multiplicative quiver variety, a formal neighborhood is isomorphic to
the formal neighborhood of zero of an ordinary quiver variety.

In the case where the quiver contains an oriented cycle, Theorem 5.4 follows immediately from
Theorem 5.3 and our main result; in general, we need to enlarge the quiver; see Section 5C. Note that the
corresponding result for formal neighborhoods of ordinary quiver varieties is known; see [5, Corollary 3.4].

By Artin’s approximation theorem [2, Corollary 2.6], we can replace “formal neighborhoods” in the
preceding theorems by étale neighborhoods, since we are in the setting of varieties (by which we always
mean of finite type) over a field.

Corollary 5.5. Let A be a 2-Calabi–Yau algebra over k Q0. Then, all moduli spaces Mθ (A, α) are
symplectic singularities. In particular, they are normal and have rational Gorenstein singularities. The
same holds for all multiplicative quiver varieties.

The proofs of these results are given in the final subsection.

5A. Generalities on completions of 2-Calabi–Yau algebras. To prove Theorem 5.3, we will need the
following results about the local structure of n-Calabi–Yau algebras at modules M , adapted from [10].

Definition 5.6. Let A and B be A∞-algebras. B is minimal if m B
1 = 0. B is further a minimal model for

A if there exists an A∞-quasiisomorphism B → A lifting the identity. We make the same definitions for
L∞ algebras.

In particular, if B is a minimal model for A then (B,m B
2 )

∼= H∗(A) as graded algebras. Kadeishvili
showed [40] that every A∞-algebra has a minimal model.
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Theorem 5.7 (minimal model theorem). Let A be an augmented A∞-algebra over a semisimple k-algebra
S. Then, A admits an augmented A∞-algebra isomorphism H∗(A)′ ⊕ C → A, where H∗(A)′ is an A∞-
algebra which, as a dg algebra, is the cohomology H∗(A) with zero differential, and C is a contractible
complex such that all ≥ 2-ary multiplications involving it are zero.

Similarly, if g is an L∞-algebra over k, then there is an L∞-isomorphism H∗(g)′ ⊕ c → g, where the
underlying ordinary dg Lie algebra of H∗(g)′ is the cohomology of g with zero differential, and c is a
contractible complex such that all ≥ 2-ary multiplications involving it are zero.

Here, an A∞-algebra A is augmented over S if it is of the form S ⊕ A where S is a subalgebra and
A is a strict ideal, i.e., all multiplications with A as an input land in A; moreover, we assume that the
only nonzero multiplication between S and A are the binary operations (i.e., the S-bimodule structure).
An augmented A∞-morphism is an A∞-morphism which is the identity on S, preserves strictly the
augmentation ideals, and all higher A∞-structure maps vanish when one of the inputs is in S.

Remark 5.8. The map A → A gives an equivalence between augmented A∞-algebras and nonunital
A∞-algebras in the category of S-bimodules. This makes the statements for A∞ and L∞- algebras more
symmetric. There are also L∞ analogs of working over a semisimple algebra; for example, we may work
with representations of a reductive group. Given an augmented A∞-algebra over a matrix algebra, the
augmentation ideal has an associated L∞-algebra which is a representation of the general linear group.

Kadeishvili’s approach is direct and explicit: he constructs both the A∞-structure on H∗(A)′ and the
A∞-algebra isomorphism A → H∗(A)′ ⊕ C . For more conceptual treatments, see e.g., Theorem 5.4 of
[41] and Remark 4.18 in [21]. For a sketch in the context of L∞-algebras see Lemma 4.9 of [46].

Remark 5.9. Note that the minimal model theorem is usually stated in the literature for fields, but it is
known that the statement and proof generalizes to the case of semisimple algebras over a field.

Definition 5.10. Let A be an A∞-algebra. We say A is formal if there is an augmented A∞-isomorphism
H∗(A)′ → H∗(A), where H∗(A) has zero ℓ-ary multiplication for ℓ≥ 3.

Definition 5.11. Given a dg associative algebra A with module M , define the derived Koszul dual algebra
with respect to M to be EM(A) := REndA(M).

This is only defined up to quasiisomorphism, but it will not matter to us which model is chosen. Note
that if A is a Koszul algebra over S, with S the augmentation module, then up to degree conventions,
ES(A) is the completion of the Koszul dual algebra, A!, with respect to the filtration by powers of the
augmentation ideal. In this case, A and A! have an additional weight grading, and (A!)! ∼= A.

Recall that, if A is an n-Calabi–Yau algebra and M a finite-dimensional module, then there is a trace
λ : Extn(M,M)→ k such that the composition

(− ,− ) : Exti (M,M)× Extn−i (M,M) ◦
−→ Extn(M,M) λ

−→ k

is a graded symmetric perfect pairing [44, Lemma 3.4]. Since it is also graded commutative, this says that
Ext•(M,M) is a symmetric dg Frobenius algebra. In the case that R := EndA(M) is semisimple, this says
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that Extn(M,M)∼= R as R-modules. Moreover, if we realize R as endomorphisms of a k Q′-representation
(i.e., R ∼=

∏
i∈Q′

0
Endk(kα

′

i ) for some finite set Q′

0 and dimension vector α′
∈ NQ′

0) then we can write, for
Vi := kα

′

i ,
Extm(M,M)∼=

⊕
i, j∈Q′

0

Homk(Vi , V j )
cm

i, j ,

for some cm
i, j ∈ N.

Moreover, in the case of interest, n = 2, we only need to consider m = 1. Then the pairing on
Ext1(M,M) is symplectic. By picking an appropriate symplectic basis on Ext1(M,M), we can write

Ext1(M,M)∼= T ∗

( ⊕
a∈Q′

1

Homk(Vt (a), Vh(a))

)
,

with the standard symplectic structure on the cotangent bundle, for some set Q′

1 of arrows with vertex
set Q′

0 (i.e., extending Q′

0 to a quiver Q′
= (Q′

0, Q′

1)). It turns out that the symplectic pairing on
Ext1(M,M), and hence the quiver data (Q′, α′), completely determines the dg algebra REnd(M) up to
A∞-isomorphism.

Continue to assume that R := EndA(M) is semisimple. In this case, the image, call it S, of the action
homomorphism ρM : A → Endk(M) is also semisimple. We could complete A at M , meaning the
completion with respect to the filtration by powers of ker ρM . This is not necessarily a quasiisomorphism
invariant, however. A better way to take the completion is by a double Koszul duality, as EM(EM A),
where M is viewed as an EM A-module via the augmentation map REnd(M)→ EndA(M). The result is
certainly complete, and in certain cases it is indeed the completion of A (e.g., for A = k[x] with M = k,
one obtains k[[x]]; see the proof of the next theorem for more cases).

Since S is semisimple, it is Morita equivalent to a direct sum of copies of k, namely k Q′

0 for Q′

0 the set
of isomorphism classes of indecomposable summands of M . Then, we can replace the aforementioned
“completion” of A by a completed quiver algebra, by replacing M by M ′, the direct sum of one copy of
each nonisomorphic indecomposable summand of M . Then EM ′ EM A is augmented over k Q′

0 and is
Morita equivalent to the completion of A at M . More precisely, if Vi = kα

′

i as before, so that EndA(M)=⊕
i Endk(Vi ), then M ′

=
⊕

i Vi , viewed as an EM A module via the augmentation EM A → EndA(M).

Theorem 5.12. Let A be a 2-Calabi–Yau algebra over k Q0 and M a finite-dimensional module such that
EndA(M) is semisimple. Then EM A is formal.

Proof. We deduce this result from [10, Theorem 11.2.1, Corollary 9.3] as follows. The latter gives a
formal local characterization of n-Calabi–Yau algebras (more generally for dg exact Calabi–Yau algebras
concentrated in nonpositive degrees) for n ≥ 3. The proof there is valid also in the case n = 2, where it
yields that the following are equivalent for a complete augmented algebra A over k Q0:

(a) A is a 2-Calabi–Yau algebra.

(b) Ek Q0 A is formal and has a nondegenerate trace of degree −2.

In this case, A itself is isomorphic to Ek Q0 REndA(k Q0).
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Now, let A be an ordinary 2-Calabi–Yau algebra and M a finite-dimensional module with EndA(M)
semisimple. Then EM A = REndA(M) has a nondegenerate trace of degree −2. We can now apply the
aforementioned result to the dg algebra A′

:= EM ′ EM A, which is complete and augmented over k Q0. By
construction, Ek Q0 A′ ∼= EM A (formally, this is because B := EM A is its own double Koszul dual, as it is
augmented, finite-dimensional, and concentrated in positive degrees [10, Proposition A.5.4]). Thus EM A
is formal. □

Remark 5.13. In fact, the proof shows that the following statements are equivalent for an ordinary algebra
A and module M with EndA(M) semisimple:

(a) EM A is formal and has a nondegenerate trace of degree −2.

(a’) EM A has a nondegenerate trace of degree −2.

(b) The double dual EM EM A is 2-Calabi–Yau.

Since the double Koszul dual is Morita equivalent to the completed dg quiver algebra EM ′ EM A, these
statements are also equivalent to this latter algebra being 2-Calabi–Yau.

Remark 5.14. As stated, [10] actually deals with the case of Calabi–Yau dimension n ≥ 3. In this case,
one can also state a version of the theorem: instead of yielding that EM A is formal, one can only kill
the higher A∞-structures of Ext•(M,M) which land in top degree n. The main result of [10] can then
be stated as saying that the remaining structure of EM A is governed by a single cyclically symmetric
element called the superpotential.

Remark 5.15. Since submission of this article, Ben Davison [27, Theorem 1.2] has proved a more general
formality result for 2-Calabi–Yau categories. As he explains, the reason for the formality is quite simple:
the Koszul dual EM A can be taken to be a cyclic A∞-algebra which is augmented over EndA(M). This
means that, for s ∈ EndA(M), ⟨mn(a1, . . . , an), s⟩ = ⟨a1,mn(a2, . . . , an, s)⟩ = 0. This shows that all
A∞-structures landing in top degree (here, degree two) vanish.

Theorem 5.12 implies that the formal moduli problem, based at M , of modules over a 2-Calabi–Yau
algebra A is equivalent to that of a dg preprojective algebra. Indeed, using the bar construction, one can
realize EM ′ Ext•(M,M) as the completed dg preprojective algebra of the quiver Q′, for M ′ as above.
Note that the module M ′ is a zero representation of this preprojective algebra: all arrows act by zero.

5B. The representation and moduli schemes. We are interested rather in the ordinary representation
moduli scheme of A, possibly using a nonzero stability condition. In this case, Theorem 5.12 will imply
that, when A is 2-Calabi–Yau the formal neighborhood of this scheme at M will be isomorphic to that of
the corresponding quiver variety.

To prove this, we use the following generalization of [14, Theorem 6.3], describing the general structure
of these schemes whenever A is an algebra with EndA(M) semisimple. Given (formal) schemes X , Y
with actions by a group G, write X ×

G Y := (X × Y )//G using the diagonal action.
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Theorem 5.16. Let A be an algebra over k Q0, and α ∈ NQ0 a dimension vector. Suppose that M ∈

Repα(A) is a representation whose GLα-orbit is closed in some GLα-stable affine open subset U of
Repα(A). Let A′

:= H 0 EM ′ EM A (for M ′ as above). Then:

(1) EndA(M) is semisimple.

(2) There is a GLα-equivariant isomorphism
∧

Repα(A)GLα ·M ∼=
∧

Repα′(A′)M ′ ×
GLα′ GLα.

(3) The formal neighborhood of [M] in U//GLα is isomorphic to the formal neighborhood of [M ′
] in

Repα′(A′)//GLα′ .

Before we begin the proof of the theorem, as in [14, Section 6], we need to recall some of the formalism
of Maurer–Cartan loci. Let g be a dg associative or Lie algebra. Then the Maurer–Cartan locus is

MC(g) :=
{
a ∈ g1

| da +
1
2 [a, a] = 0

}
.

Let M̂C(g) be its formal completion at 0 ∈ g1. More generally, given an A∞ or L∞-algebra, we can define

M̂C(g) := Z
(
a 7→ da +

1
2!

[a, a] +
1
3!

[a, a, a] + · · ·
)
⊆ ĝ1,

the formal subscheme of ĝ1 cut out by the Maurer–Cartan equation (now a power series).
The algebra of functions on this formal scheme is the zeroth Lie algebra cohomology of g>0,

H 0 CE(g>0)= H 0(CE(g)/((g0)∗)). Here, the Chevalley–Eilenberg cochain complex is the completed dg
symmetric algebra, CE(g)= (Ŝym(g∗

[−1]), dCE), equipped with the Chevalley–Eilenberg differential.
For algebras g concentrated in positive degrees, this does not depend on A∞ or L∞-quasiisomorphisms.

The Maurer–Cartan formal scheme has an infinitesimal action by the Lie algebra g0, via gauge
equivalence. The gauge action of an element ξ ∈ g0 is recorded by applying the differential and
contracting with ξ . The categorical quotient of the Maurer–Cartan formal scheme by this action is
defined, on the level of functions, by passing to g0-invariant functions. The algebra of functions here is
H 0 CE(g≥0)/((H 0g)∗[−1]). For algebras g concentrated in nonnegative degrees, this quotient does not
depend on A∞ or L∞-quasiisomorphisms.

Now let A be a k Q0-algebra and M a module. Consider the nonnegatively graded dg associative
algebra of k Q0-bilinear Hochschild cochains,

g := HCk Q0(A,Endk(M)) :=

⊕
i≥0

Homk Q0−bimod(A⊗k Q0 i ,M),

equipped with the usual differential and cup product structure. (We remark that this is well known to be
quasiisomorphic to the usual algebra of k-linear Hochschild cochains, since k Q0 is semisimple.)

Given a ∈g1
=Homk Q0−bimod(A,Endk(M)), we can consider the deformation (ρM+a) : A→Endk(M),

with ρM the original module structure. The condition for ρM + a to be a module structure is the Maurer–
Cartan equation, da + a2

= 0. Hence MC(g) = Rep(A,M), with zero corresponding to M . Thus
M̂C(g)=
∧

Rep(A,M)M .
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Proof of Theorem 5.16. First, to show EndA(M) is semisimple, we will use Matsushima’s criterion [51]:

If G is a reductive group acting on an affine variety X , then the stabilizer of a point in a closed
orbit is reductive.

In the case at hand, G = GLα is acting on X = U , so the stabilizer G M ∼= Aut(M) is reductive. So any
element x ∈ N (EndA(M)), the nilradical of EndA(M), gives rise to an element 1 + x in the unipotent
radical, which is {1} as Aut(M) is reductive. So N (EndA(M)) = 0, which implies, as EndA(M) is
finite-dimensional, that the Jacobson radical J (EndA(M))= 0. We conclude that EndA(M) is semisimple,
being Artinian with vanishing Jacobson radical.

To obtain (2), let g be the dg algebra of k Q0-bilinear cochains, HCk Q0(A,Endk(M)) as before the
proof. As we explained, the completed Maurer–Cartan subscheme M̂C(g) = M̂C(g>0) is the same
as for the minimal model H∗(g>0) of g>0 (as these are concentrated in positive degrees). Next, let
h := Z0(g)∼=EndA(M), the zero-cycles of g, which is a reductive Lie subalgebra of g0. Its action integrates
to the reductive group H = AutA(M)∼= GLα′ , so it acts semisimply. Now, we apply Lemma 5.19 below, to
obtain a quasiisomorphic L∞-algebra (in fact A∞-algebra, see Remark 5.20) g′

:= g0
⊕ Z1(g)⊕ H>1(g).

Define H̃ 1(g) to be an H -invariant complement to the one-coboundaries B1(g) in Z1(g). The L∞-
structure maps H̃ 1(g)m → H 2(g) in g′ are the same as the ones on any minimal model H∗(g′) induced
by transfer (as in the proof of Lemma 5.19 below). This gives an embedding of the Maurer–Cartan locus
M̂C(H∗g)= M̂C(H>1g) of the cohomology into the Maurer–Cartan locus of g′. By Lemma 5.19, this
inclusion is compatible with the H -action, which is linear. It is also a formal slice to the infinitesimal
g0 action on M̂C(g′): the tangent space to this action is B1(g), whereas the tangent space to M̂C(g′)

is Z1(g).
Next let us turn from the formal neighborhood of M in Repα(A) to a formal neighborhood of its GLα

orbit. Luna’s slice theorem [48] implies that there is a (GLα)M = AutA(M) = H -stable affine subset
V ⊆ U , such that the action map φ : GLα ×

H V → Repα(A) induces a GLα-equivariant isomorphism
onto an étale neighborhood of the orbit GLα ·M . Using the fact that Aut(M) is connected, we have the
following identifications. For ease of reading let FN(X, Y ) := ŶX denote the formal neighborhood of X
in Y :

FN(GLα ·M,U )∼= FN(GLα ×
H
{M},GLα ×

H V )∼= GLα ×
H FN({M}, V ).

Finally, we showed above that the slice V can be taken to be the Maurer–Cartan locus of H>0(g). This
identifies with

∧

Repα′(A′)M ′ , since the latter is isomorphic to the Maurer–Cartan locus of the minimal
model H∗(g). (Explicitly, since the augmentation ideal of A′ acts by zero on M ′, Endk Q0(M

′)=EndA′(M ′)

is the degree zero part of the Hochschild cochain complex of M ′ with zero differential, so Ext>0
A′ (M ′,M ′)

is quasiisomorphic to H>0(g).) This completes the proof of (2), as H is identified with GLα′ by definition
of α′.

It remains to deduce (3) from (2). First note that, since GLα is reductive and the orbit GLα ·M ⊆ U
is closed, by Hilbert’s theorem, the ideal of [M] in O(U//GLα)= O(U )GLα is the set of GLα-invariant
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functions in the ideal of GLα ·M in O(U ). Therefore, functions on FN([M],U//GLα) are the GLα-
invariant functions in the completion of O(U ) at the fiber F ⊆ U of the projection U → U//GLα:

FN([M],U//GLα)∼= FN(F,U )//GLα .

Note that GLα ·M ⊆ F , so we get a further map FN(F,U )//GLα → FN(GLα ·M,U )//GLα. We
claim that this is an isomorphism. Indeed, let IGLα ·M ⊇ IF be the ideals. Then we are considering
two different completions of O(U//GLα) concentrated at [M], by the systems {I GLα

GLα ·M} and {I GLα
F }.

Since U is irreducible, by Krull’s intersection theorem,
⋂

n≥0 I n
GLα ·M = 0. Hence the systems are

both exhaustive. Since I n
[M]
/I n+1

[M]
is finite-dimensional for all n, both systems must yield the I[M]-adic

completion (equivalently, the completion by all finite-dimensional quotients supported at [M]). We deduce

FN([M],U//GLα)∼= FN(GLα ·M,U )//GLα . (5-2)

Applying (2), we have

FN(GLα ·M,U )//GLα ∼= FN(GLα′ ·M ′,Repα′(A′))//GLα′ .

By (5-2) applied to the first and last terms, we obtain finally the desired isomorphism. □

Remark 5.17. Part of the proof is actually showing is that the derived formal moduli stack at [M] of
representations of A is identified with the same for the dg algebra EM ′ EM A at the zero representation [M ′

].
This is true more generally, but under our hypotheses this implies the stated result by taking a truncation
and applying Luna’s slice theorem.

Remark 5.18. The second statement of the theorem is a strengthened version of the statement in [14] that
a formal neighborhood of [M] in Repα(A) identifies with that of [M ′

] in Repα′(A′) times a formal disc
of dimension dim GLα − dim GLα′ . This is because GLα is smooth, and taking the formal completion
at the identity, the product construction here is multiplying by such a formal disc.

The theorem above uses the following lemma:

Lemma 5.19. Suppose that h ⊆ Z(g0) acts on a dg Lie algebra g concentrated in nonnegative degrees.
Suppose that all h-subrepresentations have complements (e.g., this is true if the h action integrates to an
action of a connected reductive group H with Lie algebra h). Then there is an L∞-quasiisomorphism

φ : g′
:= g0

⊕ Z1(g)⊕ H>1(g)→ g,

where on the source, all higher brackets

h× (g′)≥2
→ g′ (5-3)

vanish. The bracket g0
× g0

→ g0 is the original one. Moreover, the linear part φ1
: g′

→ g is h-linear
and induces the identity on g0

⊕ Z1(g), as well as on cohomology. Finally, φ≥2 vanishes on h× (g′)≥1.
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Proof. We apply the homotopy transfer formulae from [49] (stated for A∞-algebras but easily adapted to
the L∞ setting). To do this, for each i we pick a decomposition gi

= Bi (g)⊕ H̃ i (g)⊕ qi , with Bi (g)

the i-coboundaries, H̃ i (g) an h-linear complement to Bi (g) in the i-cocycles Z i (g), and qi a h-linear
complement to Z i (g) in gi . We then define a homotopy h : g>1

→ g>0 via the projection gi
→ Bi (g)

followed by a h-linear isomorphism Bi (g)→ qi−1, for i > 1, setting h|g≤1 = 0.
The resulting homotopy is h-linear and has the property that t := Id −(dh + hd) is a projection onto

the subcomplex g0
⊕ Z1(g)⊕ H̃>1(g), which is an h-subrepresentation. Call this subcomplex g′. We

have an h-linear decomposition g= g′
⊕ c as complexes, with c= im(dh +hd) a contractible subcomplex

(and h-subrepresentation).
Now use h on all of g, as in the proof of Theorem 5.7 (see the references above). We obtain a new

L∞-structure on g, which is L∞-isomorphic to the original one (with linear part the identity), so that all
structures vanish on c aside from the differential. The L∞-structures on g′ are linear combinations of
expressions such as

t[a1, h[a2, [h[a3, a4], h[a5, a6]]]],

given by iteratively bracketing and applying h, except at the end where t is applied.
By h-linearity of h, if x ∈ h and a ∈ g′

= im t , then h[x, a] = [x, ha] = 0. Similarly, t[x, ha] =

th[x, a] = 0. Hence, all contributions to higher brackets h× g>1
→ g vanish. Similarly, φ>1 vanishes

on h (since h[x, a] = 0). By construction φ is the identity on g0
⊕ Z1(g) and on cohomology. □

Remark 5.20. The lemma has an associative analog with the same proof: let g be a dg associative
algebra and h is a subalgebra for which every h-subbimodule of g admits an h-complement (e.g., g is
augmented over a semisimple algebra h). Then we obtain the same result with an A∞-quasiisomorphism
with higher order parts vanishing on h, and with higher multiplications on g′ vanishing on h. This applies
to the situation at hand, so that we could use an A∞-quasiisomorphism in the proof of Theorem 5.16.
However, it makes no difference for the Maurer–Cartan locus. (Actually, this says that the decomposition
in Theorem 5.16 enhances to a decomposition of noncommutative representation schemes, meaning it
describes representations with coefficients in noncommutative Artinian rings.)

5C. Proof of main results. In the case where A is 2-Calabi–Yau, we can use Theorem 5.12 (which
applies because of part one in Theorem 5.16) and the discussion following it, to refine part three of
Theorem 5.16. Namely, we can identify the formal neighborhood of [M ′

] in Repα(A
′)//GLα′ with a

formal neighborhood of the zero representation in a quiver variety.

Corollary 5.21. Let A be a 2-Calabi–Yau algebra over k Q0 for a quiver Q. Let α ∈ NQ0 and let
M ∈ Repα(A), such that GLα ·M is closed in some GLα-stable open affine subset, U. Then a formal
neighborhood of [M] in U//GLα is isomorphic to the formal neighborhood

∧

Madd
0,0 (Q

′, α′)0 of the zero
representation in a quiver variety.
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Pick a stability parameter θ . If M ∈ Repα(A) is θ -semistable, one has the open set Repα(A)
θ -ss, which

is a union of GLα-stable affine open subsets. As M lies in one such affine open subset, M satisfies the
hypotheses of Theorem 5.16 and Corollary 5.21. This implies the following corollary:

Corollary 5.22. Let Q, α, A be as in Theorem 5.16, let θ ∈ ZQ0 . Then for every M ∈ Repα(A)
θ -ss, the

conditions of Theorem 5.16 are satisfied. So, the formal neighborhood of [M] in Mθ (A, α) is isomorphic
to that of zero in Repα′(A′)//GLα′ , for A′ as in the theorem.

Proof of Theorem 5.3. Let Q, α, A be as in Corollary 5.21, let θ ∈ ZQ0 , and V := Repα(A)
θ -ss. For every

M ∈ V the conditions of Corollary 5.21 are satisfied. So, the formal neighborhood of [M] in V//GLα is
isomorphic to the formal neighborhood

∧

Madd
0,0 (Q

′, α′)0 of the zero representation in a quiver variety. □

Proof of Theorem 5.4. If the quiver Q contains a cycle, then Theorem 5.4 follows immediately from
Theorem 5.3 since 3q(Q) is 2-Calabi–Yau, by Theorem 1.2.

If Q does not contain a cycle, then build Q̃ from Q by adding a new vertex i0, an arrow from i0 to
itself, and an arrow from i0 to any vertex of Q. If α ∈ NQ0 is a dimension vector then define α̃ ∈ NQ̃0

such that α̃|Q0 = α and α̃i0 = 0. Note that Repα(3
q(Q))= Repα̃(3

q̃(Q̃)) where q̃ is similarly such that
q̃|Q0 = q and q̃i0 = 1.

Under this identification, the GLα̃ = GLα × GL1 action factors through the projection to GLα, which
identifies the actions on the two varieties. For every θ ∈ ZQ0 , extending by zero to θ̃ , one also identifies
θ-semistable representations of 3q(Q) of dimension α with θ̃-semistable representations of 3q̃(Q̃) of
dimension α̃. Therefore, Mq,θ (Q, α)= Mq̃,θ̃ (Q̃, α̃), i.e., the semistable moduli spaces in question are
identical. So the result follows in general from the specific case where Q contains a cycle. □

Proof of Corollary 5.5. By [3], a (normal) symplectic singularity is rational Gorenstein. The latter is a
formal local property. By [5, Theorem 1.2], ordinary quiver varieties are symplectic singularities. Thus,
the moduli spaces in question have rational Gorenstein singularities, and in particular are normal.

Next, thanks to Namikawa [52, Theorem 4], the property of being a (normal) symplectic singularity is
a equivalent to having rational Gorenstein singularities and having a symplectic form on the smooth locus.
It remains to check the last property. (Note that this property is certainly known for many multiplicative
quiver varieties: For instance, Yamakawa [61, Theorem 3.4] showed that the stable locus is smooth
symplectic, and this is often the entire smooth locus. For another example, character varieties of Riemann
surfaces of genus ≥ 1 (and many of genus zero) have symplectic smooth locus by [55, Section 1.2].)

To see that the smooth locus is symplectic in general, first we can assume that we are in the situation
of a 2-Calabi–Yau algebra A (in the case of multiplicative quiver varieties, the proof of Theorem 5.4 in
Section 5C identifies the moduli space with one for a 2-Calabi–Yau algebra obtained by enlarging the
quiver). At a smooth point of the moduli space, Theorem 5.3 endows the formal neighborhood of the
point with a symplectic form, given by the canonical symplectic pairing Ext1(M,M)× Ext1(M,M)→

Ext2(M,M)
tr
∼= k coming from the Calabi–Yau structure. This is functorial in the point of the moduli space:

the Calabi–Yau structure furnishes a fixed A-bimodule isomorphism A ∼= Ext2(A, Ae). This induces a
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functorial isomorphism

Ext2(M,M)∼= H 2(RHom(A, Ae)⊗L
Ae Endk(M))→ A ⊗Ae Endk(M)=

Endk(M)
[A,Endk(M)]

.

Composing this with the trace map we obtain the functorial trace pairing. □

Remark 5.23. Alternatively, one should be able to construct the symplectic structure on the smooth locus
because the latter is an open substack of the symplectic derived moduli stack of representations of 3q(Q),
shown to be symplectic in [17].

6. The multiplicative preprojective algebra of the cycle is an NCCR

The purpose of this section is to prove Conjecture 1.4 in the case where Q is a cycle. We begin with the
necessary definitions. Throughout this section, Q denotes an extended Dynkin quiver (not necessarily a
cycle).

According to the conjecture, the center of the multiplicative preprojective algebra is the ring of functions
on the multiplicative quiver variety M1,0(Q, δ). Here δ is the primitive positive imaginary root. In terms
of the McKay correspondence, Q is the McKay graph of a finite subgroup 0 < SL2(C), which means
that the vertices are labeled by the irreducible representations of 0. In these terms, δv is the dimension of
the irreducible representation of 0Q attached to the vertex v. In particular, for the cycle with n vertices,
0 = Z/nZ, and δ = (1, . . . , 1) is the all ones vector.

We next recall the notion of an NCCR. Van den Bergh [8, Appendix A] originally defined these in to
give an alternate proof of Bridgeland’s theorem that a flop of three-dimensional smooth varieties induces
an equivalence of their bounded derived categories. Van den Bergh later simplified and generalized the
definition to the following:

Definition 6.1 [7, Definition 4.1 and Lemma 4.2]. Let R be an Gorenstein commutative integral domain.
An algebra A is an NCCR over R if:

(1) A is (maximal) Cohen–Macaulay.

(2) A has finite global dimension.

(3) A ∼= EndR(M) for some reflexive module M .6

Note that if A is derived equivalent to a commutative crepant resolution of Spec(R), then it will have
to satisfy these conditions by [38, Corollary 4.15]. (However, in general, R could admit a commutative
crepant resolution but not a noncommutative one, and vice-versa).

In our case, with dim R = 2, it is convenient to observe that we don’t have to check the Cohen–Macaulay
condition:

Lemma 6.2. Let R be a normal Noetherian domain of dimension 2 over k. Let M be a finitely generated,
reflexive R-module. Then A := EndR(M) is Cohen–Macaulay.

6Recall an R-module M is reflexive if the natural map M → HomR(HomR(M, R), R) sending m ∈ M to evaluation on m
(i.e., m 7→ [ϕ ∈ HomR(M, R) 7→ ϕ(m) ∈ R]) is an isomorphism.
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Proof. Since R is Noetherian and M is finitely generated and reflexive, [58, Lemma 15.23.8] implies
that A is reflexive. Since R is 2-dimensional and normal [19, Corollary 3.9] implies that A is Cohen–
Macaulay. □

Remark 6.3. Note that, in higher dimensions, while the Cohen–Macaulay property for A is not automatic,
it nevertheless can be deduced from the Calabi–Yau property thanks to [37, Theorem 3.2(3)]. This gives
an alternative way to handle condition (2) in our situation.

6A. Shaw’s results on the center. While the center of the multiplicative preprojective algebra is in
general unknown, in Shaw’s thesis [57], he proves the following. Let v be an extending vertex.

Theorem 6.4 [57, Theorem 4.1.1]. ev31(Q)ev ∼= k[X, Y, Z ]/( f (X, Y, Z)) where f has isolated singu-
larity at the origin. Explicitly,

f (X, Y, Z)=



Zn+1
+ XY + XY Z if Q = Ãn, n ≥ 1,

Z2
− pn−4(X)X Z + pn−5(X)X2Y − XY 2

− XY Z if Q = D̃n, n ≥ 4,
Z2

+ X2 Z + Y 3
− XY Z if Q = Ẽ6,

Z2
+ Y 3

+ X3Y − XY Z if Q = Ẽ7,

Z2
− Y 3

− X5
+ XY Z if Q = Ẽ8,

where p−1(X) := −1, p0(X) := 0, and pi+1(X) := X (pi−1(X)+ pi (X)) for i ≥ 1.

Remark 6.5. Shaw expected that the singularities at the origin have the du Val type corresponding to the
quiver. Over a field of characteristic zero, Michael Wemyss checked this in E types via Magma. It is also
clear that in A types, the singularity is du Val of the same type as the quiver, by the rational substitution
y 7→ y/(1 + z). Presumably it can be checked that in type D (over characteristic not equal to two) the
singularity also is the corresponding du Val one.

Note that having du Val singularities is equivalent to the statement that the minimal commutative
resolution is symplectic, i.e., 2-Calabi–Yau. Thanks to [59], it is also true that if a Gorenstein surface
admits an NCCR, then it has du Val singularities. This is another reason to believe Shaw’s expectation.

Remark 6.6. Suppose as expected that the singularities are du Val. Then, as in [43], one may construct an
NCCR from the minimal resolution. It seems an interesting question to show that this is Morita equivalent
to 31(Q).

This motivates the final statement in Conjecture 1.4, that the Satake map, Z(31(Q))→ ev31(Q)ev,
given by z 7→ evz, is an isomorphism. With this in place, the above translates into an explicit description
of the center.

6B. Proof of Conjecture 1.4 for a cycle. Fix n ≥ 1. In the remainder of this section we prove
Conjecture 1.4 for Q = Ãn . As a consequence, using Shaw’s result, we conclude:

Corollary 6.7. The center of 31( Ãn) is isomorphic to k[X, Y, Z ]/(Zn+1
+ XY + XY Z).
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The steps of the proof of Conjecture 1.4 for Ãn are as follows:

(1) First we show that 31( Ãn) is isomorphic to an NCCR over e03
1( Ãn)e0.

(2) Then we use the preceding result to establish that the Satake map Z(31( Ãn))→ e03
1( Ãn)e0, is an

isomorphism.

(3) To complete the proof we consider the canonical map Z(31( Ãn)) → k[M0,1( Ãn, δ)], given by
associating to a central element and a simple representation the scalar by which the element acts in
the representation. We show that this is an isomorphism.

We carry out these steps in the next subsections.
In the first step, we will make use of the prime property for 31( Ãn). We state the prime property now,

but defer the proof until Section 7, as our proof uses an explicit basis produced in Proposition 7.1.

Remark 6.8. Note that there is no circular logic in the paper, as Section 7 does not rely on any results
after Section 2, and hence could instead fit logically between Sections 3A and 3B, whereby every result
would be proven in order. We decided that, due to the technical nature of Section 7, whose methods are
not used in the preceding material, it would be better to use its results as a black box in Sections 3B–6.

Definition 6.9. Let R be a ring. We say R is prime if r Rr ′
= 0 implies r = 0 or r ′

= 0, for all r, r ′
∈ R.

For a commutative ring, this recovers the usual notion of an integral domain, i.e., that the zero ideal is
a prime ideal.

Example 6.10. For a nonexample, take B = ⊕n∈N Bn to be a finite-dimensional N-graded algebra not
concentrated in degree zero. Then there exists N ∈ N such that Bm = 0 for all m > N but BN ̸= 0. Pick
b ∈ BN nonzero and notice that bBb ∈ ⊕m≥2N Bm = {0} since 2N > N . Hence B is not prime.

In particular for Q Dynkin and k = C, 31(Q)∼=50(Q) is a finite-dimensional N-graded algebra and
therefore not prime. However, for Q = A2 and q = (1/2, 2) ̸= (1, 1), then 3q(A2) ∼= 5(−1,1)(A2) ∼=

Mat2×2(k) is prime.

Proposition 6.11 (Proposition 7.3). 3q( Ãn) is prime for all n ≥ 0 and all q ∈ (k×)n+1.

6B1. The NCCR property. We first show that the multiplicative preprojective algebra is an NCCR (Step 1).

Proposition 6.12. 31( Ãn) is isomorphic to an NCCR over e03
1( Ãn)e0.

Proof. Define 3 :=31( Ãn) for ease of notation. Write the vertex set as {0, 1, . . . , n} and the arrow set
{a0, a∗

0 , a1, a∗

1 , . . . , an, a∗
n}, with t (ai )= i = h(a∗

i ) for i < n but t (an)= 0 = h(a∗
n). So the multiplicative

preprojective relation at each vertex is

ei (ρ− 1)=


a0a∗

0 + ana∗
n + a0a∗

0ana∗
n if i = 0,

a∗
nan + a∗

n−1an−1 + a∗
nana∗

n−1an−1 if i = n,
ai a∗

i − a∗

i−1ai−1 otherwise.

Shaw’s isomorphism in Theorem 6.4 takes the form

a0a∗

0 7→ Z a0a1 · · · an−1a∗

n 7→ X ana∗

n−1a∗

n−2 · · · a∗

0 7→ Y.
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Define M := e03 and note that M = ⊕
n
i=0 Mi where Mi := e03ei . Observe that Mi ∼= (Z i , Y ), the

two-sided ideal generated by Z i and Y in 3, as e03e0-modules via a map,

a0a1 · · · ai−1 7→ a0a1 · · · ai−1a∗

i−1a∗

i−2 · · · a∗

0 = (a0a∗

0)
i
= Z i

ana∗

n−1 · · · a∗

i 7→ ana∗

n−1 · · · a∗

0 = Y.

Define the map

3
φ

−→ Ende03e0(M),

on generators by sending the idempotent ei at vertex i to the projection map M → Mi , and sending the
arrows as follows:

0
•

an
tt

a0

��

M0

Y
ss

Z

##n
•

a∗

n−1

��

a∗
n

44

1
•

a1

��

a∗

0

__

φ
7−→ Mn

ι

��

−Z
Y (1+Z)

33

M1

Z

��

ι

cc

n−1
•

an−1

SS

· · ·
2
•

a∗

2

CC

Mn−1

Z

UU

· · · M2

ι

AA

where ι denotes the inclusion map. This map is well-defined at vertex 0 and n since

Z +
−Y Z

Y (1 + Z)
+

−Y Z2

Y (1 + Z)
= Z +

−Z(1 + Z)
(1 + Z)

= Z − Z = 0

and at vertex i ̸= 0, n since Z − Z = 0.
The surjectivity of φ follows from the observation that every e03e0-module map of ideals is given by

left multiplication by some element of the field of fractions of e03e0. The injectivity follows from the
fact that 3 is prime (Proposition 6.11) and injectivity on e03e0, as we now explain.

By definition of primality, for any a, c ∈3 both nonzero, there exists b ∈3 such that abc ̸= 0. Fix
γ ∈ 3 nonzero and take a = e0 and c = γ to get a nonzero path γ ′

∈ e03 containing γ as a subpath.
Then take a = γ ′ and c = e0 to get a nonzero path γ ′′

∈ e03e0 containing γ as a subpath. Since φ is
injective on e03e0, φ(γ ′′) ̸= 0. Hence φ(γ ) ̸= 0 and φ is injective.

To complete the proof that 3 is an NCCR, we need to show that the module M = e03 is a reflexive
e03e0-module. The computation above shows that

Home03e0(Mi ,M j )∼= ei3e j ∼= M j−i

as a module over e03e0 ∼= ei3ei , so in particular Home03e0(M, e03e0) ∼= ⊕i ei3e0 ∼= M . So M is
self-dual and hence reflexive as a e03e0-module. □
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6B2. The center. Observe, if A is an NCCR over some ring R, then the center Z(A) is an R-algebra.
Under suitable hypotheses, they are actually isomorphic. For example, this holds if R an integrally closed
Noetherian domain, by Zariski’s main theorem (as Spec Z(A)→ Spec R is finite and birational).

Instead of using this to establish our isomorphism, we consider an explicit map in the other direction.
More generally, suppose A is a ring, e ∈ A is an idempotent, and R := eAe. Then we have a canonical
map

Z(A)→ R = eAe, z 7→ ez. (6-1)

We call this the “Satake map” following the terminology for Hecke algebras, symplectic reflection algebras,
etc.

Under natural conditions, the Satake map is well known to be an isomorphism. Namely, note that eA
is an (eAe)− A bimodule, and EndAop(eA)= eAe. Then we have a natural map Aop

→ EndeAe(eA).

Lemma 6.13. Suppose that (I) the natural map Aop
→ EndeAe(eA) is an isomorphism, and (II) eAe is

commutative. Then the Satake map (6-1) is an isomorphism.

Proof. We have an identification

Z(eAe)∼= EndeAe⊗Aop(eA)∼= Z(A) z 7→ ez.

Since eAe is commutative, Z(A)∼= eAe, via the Satake map. □

Corollary 6.14. The Satake map (6-1) is an isomorphism for A =31( Ãn) and e = ev, the idempotent at
any vertex.

Proof. This is a direct consequence of Lemma 6.13, once we check hypotheses (I) and (II). Thanks to
Proposition 6.12, A ∼= EndeAe(eA) so (I) follows from A ∼= Aop, a consequence of the independence
of orientation established in [25, Theorem 1.4]. By Shaw’s Theorem 6.4, (II) holds (alternatively, the
commutativity of the generators can be checked directly). □

Corollary 6.15. 31( Ãn) is an NCCR over its center.

Proof. This follows immediately, provided we identify the Z(31( Ãn))-module structure on 31( Ãn) with
left multiplication. Indeed, given z ∈ Z(31( Ãn)) (by tracing through the above maps) its action on
Ende31( Ãn)e(M) via the Satake map is multiplication by ez. □

Note that Corollary 6.14 and Theorem 6.4 immediately imply Corollary 6.7.

6B3. The center as functions on a quiver variety. It remains to identify the center with the algebra of
functions on the multiplicative quiver variety.

In general, given a k Q0-algebra A and a finite-dimensional k Q0-module V , we have a canonical
algebra homomorphism ev : A → k[Rep(A, V )] ⊗ Endk(V ), called “evaluation”: ev(a)(ρ)= ρ(a).

Suppose that ρ : A → End(V ) is an irreducible representation. Consider z ∈ Z(A). If k is algebraically
closed, then by Schur’s Lemma, ρ(z)= λρ,z IdV for some scalar λρ,z . However, we don’t assume here
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that k is algebraically closed. We could fix this by passing to the algebraic closure, but this turns out to
be unnecessary as follows.

Lemma 6.16. Suppose that v ∈ Q0 is a vertex with dim Vv = 1. Suppose ρ is an irreducible representation.
Then End(ρ)= k · IdV .

Proof. If φ ∈ End(ρ), then ρ(ev)φ = φρ(ev). Therefore, φ preserves ρ(ev)V = Vv . As this has dimension
one, we have φ|Vv = λ IdVv . Now, φ−λ IdV is not invertible. By Schur’s lemma over a general field, this
implies that φ− λ IdV is zero. So φ = λ IdV . □

Corollary 6.17. Let Q0, A, V, v and ρ be as in Lemma 6.16. If z ∈ Z(A), then ρ(z) ∈ End(V ) is a scalar.

Proof. Note that ρ(z) ∈ End(ρ). Then apply the lemma. □

Corollary 6.18. Suppose that for some vertex v, we have Vv = 1, and moreover that there exists an
irreducible representation A → End(V ). Then the restriction ev |Z(A) is an algebra map Z(A) →

k[Rep(A, V )] · IdV .

Proof. Let U ⊆ Rep(A, V ) be the locus of representations ρ such that End(ρ) = k · IdV . This is a
Zariski open subset, since k · IdV is always contained in End(ρ). If ρ ∈ Rep(A, V ) is irreducible, then by
Lemma 6.16, ρ ∈ U . Thus, by our assumptions, U is nonempty. Since Rep(A, V ) is a vector space, it is
irreducible. We conclude that U is Zariski dense.

Now, for every z ∈ Z(A), ev(z) : Rep(A, V )→ End(V ) is scalar-valued on U . As U is dense, it is a
scalar on all of Rep(A, V ). Hence ev(z)∈ k[Rep(A, V )]⊗ Id. As z was arbitrary, we obtain the result. □

Back to the situation at hand, for convenience let us orient Ãn clockwise (note that the statement does
not depend on orientation). We consider the vector space V = k Q0 , which has the property dim Vv = 1
for all v ∈ Q0. Consider the representation on V where each clockwise arrow is the identity (i.e., the
one-by-one matrix [1]) and each counterclockwise arrow is zero. This defines a representation of the
localization L Q that descends to an irreducible representation of 31(Q). Therefore, having satisfied the
hypotheses of Corollary 6.18, we obtain a canonical map

evZ : Z(31(Q))→ k[M0,1(Q, δ)]. (6-2)

Proposition 6.19. The map evZ is an isomorphism.

Proof. To check surjectivity, let f ∈ k[M0,1(Q, δ)] = k[Repα(3
1(Q))]GLα . We wish to show that

f ∈ evZ (Z(31(Q))). Note that f is a polynomial in the matrix coefficient functions of the arrows (these
are one by one matrices). To be invariant under GLα, the polynomial must in fact be a polynomial in
the functions defined by closed paths in the quiver: each such closed path is canonically a scalar, as it is
an endomorphism of a one-dimensional vector space. Thus it suffices to assume that there is a single
closed path a ∈ ev31(Q)ev such that ρ(a)= f (ρ) · IdVv for all ρ. As the Satake map is an isomorphism
(Corollary 6.14), we must have a = evz for some z ∈ Z(31(Q)). Then, ρ(a) = evZ (z) · IdVv . Hence
f (ρ)= evZ (z) for all ρ ∈ Repα(3

1(Q)). This shows that evZ is surjective.
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By Corollary 6.7 the source is an integral domain. Since we already proved surjectivity, injectivity
will follow provided that the target also has dimension at least two. This can be seen by constructing a
two-parameter family of representations, e.g., we can take the representations with all clockwise arrows
a matrix (a) and all counterclockwise arrows a matrix (b), with ab ̸= −1. Alternatively, this statement
follows from Theorem 5.4. □

7. The strong free product property

In this section, we prove the strong free product property for connected quivers containing a cycle. We
first establish the strong free product property for the quivers Ãn for n ≥ 0 using the diamond lemma to
build a section of the quotient map π : L →3q( Ãn). Then we establish the more general result using the
corresponding result for partial multiplicative preprojective algebras; see Section 3A for the prerequisite
definitions.

As results in Sections 3B, 3C, 4, 5, 6 rely on results established in this section, the reader should note
that we do not use any results beyond Section 3A; see Remark 6.8.

7A. The case of cycles. Consider the quiver Ãn−1 with vertex set ( Ãn−1)0 := {0, 1, . . . , n−1} and arrow
set ( Ãn−1)1 ={a0, a∗

0 , a1, a∗

1 , . . . , an−1, a∗

n−1} with t (ai )= i and h(ai )= i+1 (mod n)i<ai+1<a∗

j <a∗

j+1

for all i, j ∈ {0, 1, . . . , n − 2}. The multiplicative preprojective algebra for this quiver, with respect to the
ordering, is defined to be

3q( Ãn−1) :=
k Ãn−1[(1 + ai a∗

i )
−1, (1 + a∗

i ai )
−1

]i=0,...,n−1〈∏n−1
i=0 (1 + ai a∗

i )
∏n−1

i=0 (1 + a∗

i ai )−1 −
∑n

i=1 qi ei
〉 =:

L
J
.

Writing a :=
∑

i ai , a∗
:=

∑
i a∗

i , and q =
∑

i qi ei since

1 + aa∗
= 1 +

∑
i

ai a∗

i =

n−1∏
i=0

(1 + ai a∗

i ), 1 + a∗a = 1 +

∑
i

a∗

i ai =

n−1∏
i=0

(1 + a∗

i ai )

we have

3q( Ãn−1) :=
k Ãn−1[(1 + aa∗)−1, (1 + a∗a)−1

]

⟨(1 + aa∗)(1 + a∗a)−1 − q⟩
.

We write r := (1 + aa∗)(1 + a∗a)−1
− q for this relation, S for the degree zero piece k( Ãn−1)0 of

3q( Ãn−1). As in Section 3A, let B := S[t, (q + t)−1
] and B = t B, spanned over S by tm, (t ′)m,m ≥ 1,

for t ′
:= (q + t)−1

− q−1. Let r ′
:= (q + r)−1

− q−1.
We construct σ : L/(r) ∗S B → L so that (L , r, σ ′, B) satisfies the strong free product property using

an explicit basis.

Proposition 7.1. L is a free left S-module with basis consisting of 1 together with all alternating products
of elements of the following two sets, for x := (1 + aa∗):

B := {xmaℓ, xm(a∗)ℓ | m ∈ Z, ℓ ∈ N}. R := {rm, (r ′)m | m ∈ N}.
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In particular, B forms a basis for 3q( Ãn−1)= L/(r), and (L , r, σ, B) satisfies the strong free product
property, with σ induced from the inclusion of B into L.

Proof. Note that, for every vertex i , we have ei a = ae j for a unique j , and similarly for the elements
a∗, x, y := 1 + a∗a, x−1, y−1, and by definition, eir = rei . Therefore L is spanned as a left S-module by
noncommutative monomials in a, a∗, x, y, x−1, y−1, r , and r ′. Define M := ⟨a, a∗, x, y, x−1, y−1, r, r ′

⟩

the set of monomials and P := S⟨a, a∗, x, y, x−1, y−1, r, r ′
⟩ the set of noncommutative polynomials with

coefficients in S.
The set of relations, R, is the two-sided ideal generated by

xx−1
= 1 = x−1x, yy−1

= 1 = y−1 y, x = 1 + aa∗, y = 1 + a∗a, (7-1)

r = xy−1
− q, r ′

= yx−1
− q−1. (7-2)

So we have the presentation L ∼= P/R and hence 3q( Ãn−1)∼= P/(R, r).
The idea of the proof is to produce a basis of the quotient L = P/R by realizing it as an S-module

subspace Pirr ⊂ P spanned by irreducible monomials, defined below.
That is, we define an ordering, ≤, on the set M. Then we use this ordering to build a system of

reductions {ri } from R by reading each relation Ri ∈ R as an S-module map, ri , taking the leading term
lt(Ri ) to the smaller term lt(Ri )− Ri . We extend ri to M via alt(Ri )b 7→ a(lt(Ri )− Ri )b for a, b ∈ M.
We say m ∈ M is irreducible (or in normal form) if every reduction is the identity on m or, equivalently,
if m doesn’t contain the leading term of any relation as a submonomial.

We will show that every m ∈ M, reduces uniquely to normal form, m′
∈ Pirr, after applying finitely

many reductions. This implies the S-module map r : P → Pirr given by S-linear extension of m 7→ m′ is
well-defined. Hence r splits the inclusion map Pirr → P . As ker(r)= R, we conclude that r induces an
S-module isomorphism L ∼= Pirr and the set of irreducible monomials gives our desired basis.

First we equip M with an ordering. Fix w, z, z′
∈ M and subsets Z , Z ′

⊂ M. Define

nz(w) := the number of occurrences of z in w, (7-3)

nz,z′(w) := the number of occurrences of z and z′ in w with z appearing before z′, (7-4)

nZ (w) :=
∑
z∈Z

nz(w) and nZ ,Z ′ :=
∑

z∈Z ,z′∈Z ′

nz,z′ . (7-5)

Define a function N : M → N5 taking w to

N (w) := (na(w), n{a,a∗},{x,x−1,y,y−1}(w), n{ax,ax−1}(w), n{y,y−1}(w), n{r,r ′}(w)) ∈ N5. (7-6)

Define the ordering w′
≤ w in M if N (w′)≤ N (w) in the lexicographical ordering on N5. This induces

an ordering on P , by extending N to P , via N
(∑

i mi
)
:= maxi {N (mi )}.

Next, using this ordering, we define a system of reductions from the relations in (7-1), (7-2):

Inverse reductions: xx−1, x−1x , yy−1, y−1 y 7→ 1.

Short cycle reductions: aa∗
7→ x − 1, a∗a 7→ y − 1.
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Reordering reductions: a∗x±1
7→ y±1a∗, ay±1

7→ x±1a.

Substitution reductions: y−1
7→ x−1(r + q), y 7→ (r ′

+ q−1)x (if not preceded by a); ax 7→ a(r + q)y,
ax−1

7→ ay−1(r ′
+ q−1).

Reductions in B: rr ′, r ′r 7→ −qr ′
− q−1r .

By design, if w′ is obtained from w by applying a reduction, then N (w′) < N (w). This implies that
any sequence of reductions terminates in finitely many steps, by the descending chain condition for the
lexicographical ordering on N5.

Next observe that under this reduction system m ∈ M is in normal form (or irreducible) if and only
if it is alternating in B and R. Therefore, the set of alternating words in B and R is a spanning set. It
remains to show that m ∈ M reduces uniquely to normal form, which establishes linear independence.

To prove uniqueness, we need to show wheneverw reduces to r1(w) and r2(w) that each further reduces
to the same irreducible w′. Bergman’s diamond lemma says to show uniqueness for all monomials w it
suffices to show uniqueness for specific w= xyz where xy and yz are both leading terms for a relation in
(7-1), (7-2) [11, Theorem 1.2]. These w are called overlap ambiguities. If the two reduced expressions of
w = xyz (i.e., r1(xy)z and xr2(yz)) both further reduce to the same w′, we say the overlap ambiguity
resolves. To complete the proof it suffices to show all overlap ambiguities resolve.

Next, notice that any unresolvable ambiguity involving y±1 gives rise to an unresolvable ambiguity not
involving y±1 by applying the substitution or reordering reductions. So it suffices to check ambiguities in
the following smaller system of reductions:

Inverse reductions:

(1) xx−1 r1
7−→ 1. (2) x−1x r2

7−→ 1.

Short cycle reductions:

(3) aa∗ r3
7−→ x − 1. (4) a∗a r4

7−→ (r ′
+ q−1)x − 1.

Reordering reductions:

(5) a∗x r5
7−→ (r ′

+ q−1)xa∗. (6) ax r6
7−→ qxa − qar ′x .

(7) ax−1 r7
7−→ x−1a(r ′

+ q−1). (8) a∗x−1 r8
7−→ x−1(r + q)a∗.

Substitution reductions:

(9) y−1
7→ x−1(r + q). (10) y 7→ (r ′

+ q−1)x .

Reductions in B:

(11) rr ′
7→ −qr ′

− q−1r. (12) r ′r 7→ −qr ′
− q−1r.

The substitution reductions and reductions in B don’t overlap with any others, so the only overlap
ambiguities are amongst the (1)–(8), involving the generators a, a∗, x, x−1 only. The inverse, short cycle,
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and reordering reductions are quadratic in these generators giving rise to the following 12 cubic overlap
ambiguities:

(I) xx−1x (IV) a∗aa∗ (VII) a∗x−1x (X) a∗ax

(II) x−1xx−1 (V) a∗xx−1 (VIII) ax−1x (XI) aa∗x−1

(III) aa∗a (VI) axx−1 (IX) aa∗x (XII) a∗ax−1

The resolutions of (I) and (II) are immediate (and are completely general, having to do with a basis for
k[x, x−1

]). Here is a summary of the remaining resolutions of ambiguities:

(III) (r3 − r6 ◦ r4)(aa∗a)= 0 (VIII) (r8 ◦ r7 − r2)(ax−1x)= 0

(IV) (r4 − r5 ◦ r3)(a∗aa∗)= 0 (IX) (r3 − r3 ◦ r6 ◦ r5)(aa∗x)= 0

(V) (r8 ◦ r5 − r1)(a∗xx−1)= 0 (X) (r4 − r4 ◦ r4 ◦ r5 ◦ r6)(a∗ax)= 0

(VI) (r7 ◦ r6 − r1)(axx−1)= 0 (XI) (r3 − r3 ◦ r7 ◦ r8)(aa∗x−1)= 0

(VII) (r5 ◦ r8 − r2)(a∗x−1x)= 0 (XII) (r4 − r4 ◦ r8 ◦ r7)(a∗ax−1)= 0

We explicitly demonstrate (X), one of the more involved resolutions:

a∗ax = (a∗a)x r4
7−−→ [(r ′

+ q−1)x − 1]x = (r ′
+ q−1)x2

− x,

a∗ax = a∗(ax) r6
7−−→ a∗(qxa − qar ′x)
r4◦r5
7−−→ q(r ′

+ q−1)xa∗a − q((r ′
+ q−1)x − 1)r ′x

r4
7−−→ q(r ′

+ q−1)x((r ′
+ q−1)x − 1)− q((r ′

+ q−1)x − 1)r ′x

= q(r ′
+ q−1)x(q−1x − 1)+ qr ′x = (r ′

+ q−1)x2
− x . □

Remark 7.2. The choice of B was important here. If we instead had defined it so that (q + t)−1
∈ B,

i.e., if we replace r ′
= (q + r)−1

− q−1
∈ R by (q + r)−1, then our desired basis would no longer be

linearly independent. Indeed, reducing aa∗a one way, we get (x − 1)a = xa − a, which is irreducible,
whereas the other way we get a(y − 1)= a(q + r)−1x − a, also irreducible. That is, xa = a(q + r)−1x ,
an equality of two distinct irreducible elements.

Proposition 7.3. 3q( Ãn) is prime for all n ≥ 0 and all q ∈ (k×)n+1.

Proof. We need to show, for every pair f, g ∈3q( Ãn), both nonzero, there exists some h ∈3q( Ãn) such
that f hg ̸= 0. It suffices to show that there exists vertices i, j and h such that ei f e j hg ̸= 0, and hence we
can take f to be a linear combination of basis elements that all begin at i and end j . By right multiplication
by an− j or (a∗) j , one can take f to be a linear combination of basis elements ending at vertex 0. By left
multiplication by ai or (a∗)n−i and then applying reordering reductions — the q-commutator, ax − qxa
is zero, for instance, in 3q( Ãn)— one can take f to be a linear combination of basis elements starting
and ending at vertex 0. In fact, f is of the form e0 f1(x, x−1) f2(an+1), where f1 ̸= 0 and f2 has nonzero
constant term. And similarly, we can take g = e0g1(x, x−1)g2(an+1). Then their product has nonzero
term e0 f1(x, x−1) f2(an+1)(0)g1(x, x−1)g2(an+1)(0) and hence is nonzero. □
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7B. Partial multiplicative preprojective algebras. First we define a partial multiplicative preprojective
algebra following the definition of a partial preprojective algebra by [31, Definition 3.1.1].

Definition 7.4. Fix a quiver Q and q ∈ (k∗)Q0 . Define a partition of the vertex set Q0 = B ⊔W into a
set B of black vertices and a set W of white vertices. The partial multiplicative preprojective algebra of
(Q,W) is

3q(Q,W) := L/(rB), where rB := 1Br1B, for 1B :=

∑
j∈B

e j .

In words, we don’t enforce the relations at the white vertices. Hence this algebra interpolates between
3q(Q, Q0)= L and 3q(Q,∅)=3q(Q).

Definition 7.5. Let Q be a quiver and let 0 be its underlying graph. Fix R ⊂ Q0:

• A subgraph T ⊂ 0 is a tree if it is connected and acyclic.

• A tree T ⊂ 0 is rooted in R if it has a single vertex, called the root, in R.

• A forest rooted in R is a disjoint union of trees rooted in R.

• A subgraph S ⊂ 0 is spanning if the vertex set of S is Q0.

Notice that every doubled quiver Q with W ⊂ Q0 nonempty has a spanning forest, F , rooted in W .
We view such an F as a subquiver of Q by orienting the arrows towards the roots, see Figure 1. Since
the isomorphism class of 3q(Q) is independent of the orientation of Q, see Remark 2.2, we can assume
that F1 ⊂ Q1.

Let B := B[t, (t + q)−1
]. Each choice of spanning forest of Q rooted at W gives rise to a linear

isomorphism σ ′
:3q(Q,W) ∗k Q0 B → L and hence a basis for 3q(Q,W)= L/(rB).

Proposition 7.6. Let Q be a connected quiver and Q0 = B ⊔W a decomposition into black and white
vertices with W ̸= ∅. Then (L , rB, σ, B) satisfies the strong free product property for some choice of σ .

In more detail, let F ⊂ Q be a spanning forest rooted in W with arrows F1 ⊂ Q1 directed towards the
roots.

A basis for L is given by concatenable words in the set,

{a, xa, x−1
a | a ∈ Q1} ∪ {rB, r ′

B := (q + rB)−1
− q−1

},

such that the following subwords do not occur:

xax−1
a , x−1

a xa, aa∗, ax±1
a∗ for a ∈ Q1, x±1

a , x−1
a∗ , xa∗a∗, x2

a∗ for a ∈ F1, rBr ′

B, r ′

BrB.

The words in which rB and r ′
B do not occur form a basis for 3q(Q,W) = L/(rB), and the section σ is

given by the inclusion of these elements.

Proof. The proof parallels that of Proposition 7.1. Write r := rB and r ′
:= r ′

B.
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Figure 1. The quiver on the left is a doubled quiver, obtained by adding the gray arrows.
It has three white vertices and three black vertices. The middle and right diagrams show
two inequivalent spanning forests, in light green, with roots at the white vertices.

Note that L is spanned by the set, M, of concatenable words in {a, xa, x−1
a , r, r ′

| a ∈ Q1}. These
words are subject to the following relations, depending on a choice of ordering ≤ on the arrows a ∈ Q1:

xax−1
a = 1 = x−1

a xa, xa = 1 + aa∗, (7-7)

r =

∏
a∈Q

t (a)∈B

xϵ(a)a − q, r ′
=

∏
a∈Q

t (a)∈B

x−ϵ(a)
a − q−1, (7-8)

rr ′
= r ′r = −qr ′

− q−1r, (7-9)

where recall we write t (a) for the tail or source of a, not the target. Define

la :=

∏
b∈Q

b<a, t (b)∈B

xϵ(b)b and ra :=

∏
b∈Q

b>a, t (b)∈B

xϵ(b)b .

So for a ∈ Q1 with t (a) ∈ B we have the relation

la(1 + aa∗)ϵ(a)ra = (r + q)et (a) =⇒ xϵ(a)a = l−1
a (r + q)(et (a))r−1

a .

Hence in L , define redϵ(a)a := l−1
a (r + q)(et (a))r−1

a .
We implement the above relations with the following reductions:

Inverse reductions: xax−1
a , x−1

a xa 7→ 1 for a ∈ Q1.

Short cycle reductions: aa∗
7→ xa − 1 for a ∈ Q1.

Reordering reductions: a∗x±
a 7→ x±

a∗a∗ for a ∈ Q1.

Substitution reductions: x±
a 7→ red±

a , x−1
a∗ 7→ 1 − a∗ red−1

a a, x2
a∗ 7→ xa∗ + a∗ reda a, xa∗a∗

7→ a∗ reda ,
for a ∈ F1

Reductions in B: rr ′, r ′r 7→ −qr ′
− q−1r .

For each word w ∈ M, use the definition in (7-4) to define a weighted size,

ϕa(w) := n{a,a∗}(w)+
3
2 n{xa,xa∗ }(w)+ 3n

{x−1
a ,x−1

a∗ }
(w)
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for each a ∈ Q1. Define a total ordering on the arrows (Q1,≺) such that,

a ≺ a′ if a ∈ F1, a′
∈ Q1 \ F1, or if a, a′

∈ F1 with a′ disconnected from W in F1 \ {a}.

Intuitively, we are saying that arrows in the spanning forest come before the rest in the ordering, with
arrows closer to the white vertices coming first. Using ≺, ϕa , and (7-4), (7-5) define

N ′
: M → N(Q1,≺) × N2, w 7→ (2ϕa(w), n

{a|a∈Q1},{xa |a∈Q1}
(w), n{r,r ′}(w)),

from which we say w ≤ w′ if N ′(w)≤ N ′(w′) in the lexicographical ordering on N|Q1|+2.
Notice, as in Proposition 7.1, that N ′(ri (w)) < N ′(w) for any word w and reduction ri with ri (w) ̸=w.

First notice that, by design, ϕa decreases under the following reductions:

Inverse reductions: ϕa(xax−1
a )= ϕa(x−1

a xa)= 3 +
3
2 > 0 = ϕa(1).

Short cycle reductions: ϕa(aa∗)= 2> 3
2 = ϕa(xa).

Substitution reductions: ϕa(xa)=
3
2 > 0 = ϕa(reda), ϕa(x−1

a )= 3> 0 = ϕa(red−1
a ), ϕ(x−1

a∗ )= 3> 2 =

ϕa(a∗ red−1
a a), ϕ(x2

a∗)= 3> 2 = ϕa(a∗ reda a) and ϕ(x2
a∗)= 3> 3

2 = ϕa(xa∗),
ϕa(xa∗a∗)=

5
2 > 1 = ϕa(a∗ reda).

For the substitution reductions observe that reda for a ∈ F1 has subwords x±1
b , x±1

b∗ for only b ∈ F1

which are necessarily farther from the root than a, and the remaining arrows are not in the spanning forest.
Consequently, ϕa decreasing — despite ϕb increasing for some b ≻ a — implies that N ′ decreases. The
reordering reductions preserve all ϕa but decrease n

{a|a∈Q1},{xa |a∈Q1}
by definition, and hence decrease N ′.

The reductions in B preserve all ϕa and n
{a|a∈Q1},{xa |a∈Q1}

but decrease n{r,r ′}, hence N ′.
We conclude that every w ∈ M reduces to a k Q0-linear combination of words without subwords in the

leading terms of the reductions:

{xax−1
a , x−1

a xa, aa∗, axa∗, ax−1
a∗ | a ∈ Q1} ∪ {x−1

a∗ , xa∗a, x2
a∗ | a ∈ F1}

after applying finitely many reductions.
Note that some generators are nonreduced: xa , x−1

a , and x−1
a∗ for a ∈ F1. Therefore, we can put in

reductions for each of these and throw out all other reductions involving these generators, provided we
check that all the defining relations still reduce to zero. We have the reductions:

(1) xax−1
a

r1
7−→ 1 for a ∈ Q1. (5) ax±

a∗

r5
7−→ x±

a a for a /∈ F1.

(2) x−1
a xa

r2
7−→ 1 for a ∈ Q1. (6) axa∗

r6
7−→ reda a for a ∈ F1.

(3) aa∗ r3
7−→ reda −1 for a ∈ F1. (7) x2

a∗

r7
7−→ xa∗ + a∗ reda a for a ∈ F1.

(4) aa∗ r4
7−→ xa − 1 for a /∈ F1. (8) xa∗a∗ r8

7−→ a∗ reda for a ∈ F1.

Which don’t overlap with the remaining reductions:

Substitution reductions: x±1
a 7→ red±1

a , x−1
a∗ 7→ 1 − a∗x−1

a a, a ∈ F1.

Reductions in B: rr ′, r ′r 7→ −qr ′
− q−1r .
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As before, reductions (3) and (4) imply the relations xa = 1+aa∗, whereas the Substitution Reductions
imply the defining relations for r, r ′. So this is a valid reduction system.

This reduction system has thirteen ambiguities:

(I) xax−1
a xa for a /∈ F1. (VI) x2

a∗a∗ for a ∈ F1. (XI) aa∗a for a ∈ Q1\F1.

(II) x−1
a xax−1

a for a /∈ F1. (VII) xa∗a∗a for a ∈ F1. (XII) aa∗a for a ∈ F1.

(III) axa∗ x−1
a∗ for a /∈ F1. (VIII) axa∗a∗ for a ∈ F1. (XIII) aa∗a for a∗

∈ F1.

(IV) ax−1
a∗ xa∗ for a /∈ F1. (IX) a∗axa∗ for a ∈ F1.

(V) ax2
a∗ for a ∈ F1. (X) a∗axa∗ for a ∈ Q\F1.

Which all resolve by the resolutions:

(I) xax−1
a xa for a /∈ F1. (VIII) (r3 ◦ r6 − r3 ◦ r8)(axa∗a∗)= 0.

(II) (r2 − r1)(x−1
a xax−1

a )= 0. (IX) (r7 ◦ r4 − r6)(a∗axa∗)= 0.

(III) (r1 − r1 ◦ r5 ◦ r5)(axa∗ x−1
a∗ )= 0. (X) (r4 ◦ r5 ◦ r5 − r4)(a∗axa∗)= 0.

(IV) (r2 − r2 ◦ r5 ◦ r5)(ax−1
a∗ xa∗)= 0. (XI) (r4 − r5 ◦ r4)(aa∗a)= 0.

(V) (r3 ◦ r6 ◦ r7 − r6 ◦ r6)(ax2
a∗)= 0. (XII) (r6 ◦ r4 − r3)(aa∗a)= 0.

(VI) (r3 ◦ r8 ◦ r7 − r8 ◦ r8)(x2
a∗a∗)= 0. (XIII) (r8 ◦ r4 − r3)(aa∗a)= 0.

(VII) (r7 ◦ r4 − r8)(xa∗a∗a)= 0.

The resolutions of the ambiguities (I)–(IV) and (X)–(XIII) are quick, leaving the computational heart of
the calculations with the five resolutions (V)–(IX). Note that the resolutions for (V) and (VI) are identical
after swapping the roles of reductions r6 and r8, and similarly for (IX) and (VII), leaving three calculations:
(V), (VIII), and (IX). These ambiguities express the overlap of r6 with r7, r8, and r4 respectively and
further reduce uniquely to red2

a a, reda(reda −1), and a∗ reda a. □

7C. A convenient substitution. It will be convenient for us to make the substitutions

x±
a := x±1

a − 1, (7-10)

motivated as follows.
Let A ∼=3q(Q,W) for Q connected, and W possibly empty. Let I be the ideal generated by all paths

beginning and ending at vertices having either q = 1 or in W (if nonempty). Then A/I is nonzero, and we
can make use of the I -adic filtration. The modified generators x±

a , for a an arrow in I , have the advantage
of lying in the ideal I . As we will show, in the cases Q contains a cycle and W ̸= ∅, the I -adic filtration
is Hausdorff.

Thus, we get an embedding of A into the completion ÂI , realizing x±
a as power series with zero

constant term. In the special case where q = 1 at all black vertices, this embedding sends every modified
generator, x±

a , to a noncommutative power series in arrows with zero constant term. This completion
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is closely related to the completion of (partial) additive preprojective algebras with λ = 0 at all black
vertices.

Practically speaking, we only require the above substitution at white vertices to obtain a basis for
quivers containing cycles, see Section 7D. But theoretically, we advocate for this substitution at any vertex
where we think of q as a deformation parameter based at q = 1.

Let us explain how this substitution works in the case of the cycle Ãn (although we do not strictly need
it in that case). We formally set x± := x±1

− 1 and y± := y±1
− 1; then the modified reductions from

Section 7A are the following ones:

Inverse reductions: x+x−x−x+ 7→ −x+ − x− and y+y−, y−y+ 7→ −y+ − y−.

Short cycle reductions: aa∗
7→ x+, a∗a 7→ y+.

Reordering reductions: a∗x± 7→ x±a∗, ay± 7→ y±a.

Substitution reductions: y− 7→ x−(r + q)+ r + (q − 1), (if not preceded by a); y+ 7→ (r ′
+ q−1)x+ +

r ′
+ (q−1

− 1) (if not preceded by a); ax+ 7→ a(r + q)y+ + ar + (q − 1)a;
ax− 7→ ay−(r ′

+ q−1)+ ar ′
+ (q−1

− 1)a.

This produces the same ambiguities as before, which resolve in the same way after eliminating the
nonreduced generators y± (another way to say this is that the reductions are the same up to the change of
variables, so ambiguities resolve if and only if they did before). The modified ordering function,

N z(w) := (na(w), n
{a,a∗},{x+,x−,y+,y−}

(w), n
{ax+,ax−}

(w), n
{y+,y−}

(w)),

is strictly decreasing under applications of reductions and hence every term reduces after applying finitely
many reductions. So we have proven the following variant of Proposition 7.1:

Proposition 7.7. Let Q ∼= Ãn be a cycle. Then L Q is a free left k Q0-module with basis given by alternating
words in R and B′

:= {(x±)maℓ, (x±)m(a∗)ℓ | m ∈ N, ℓ ∈ N}. Hence B′ is a basis for 3q(Q).

In the case of the partial multiplicative preprojective algebra, the modified reductions are as follows:

Inverse reductions: x+
a x−

a , x−
a x+

a 7→ −x+
a − x−

a for a ∈ Q1.

Short cycle reductions: aa∗
7→ x+

a for a ∈ Q1.

Reordering reductions: a∗x±
a 7→ x±

a∗a∗ for a ∈ Q1.

Substitution reductions: x±
a 7→ red±

a −1, x−

a∗ 7→ −a∗ red−1
a a, x+

a∗
2

7→ −x+

a∗ + a∗ reda a, x+

a∗a∗
7→

a∗(reda −1), for a ∈ F1.

Again, the same ordering function applies here and strictly decreases under these reductions. The
ambiguities must resolve since they did before.

Proposition 7.8. Let Q,B,W be as in Proposition 7.6. Then L Q is a free left k Q0-module with basis
given by concatenable words in the set,

{a, x+
a , x−

a | a ∈ Q1} ∪ {rB, r ′

B},
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such that the following subwords do not occur:

x+
a x−

a , x−
a x+

a , aa∗, ax±

a∗ for a ∈ Q1, x±
a , x−

a∗, x+

a∗a∗, x+

a∗
2 for a ∈ F1, rBr ′

B, r ′

BrB.

A basis for 3q
Q as a free k Q0-module is given by those words above not containing rB, r ′

B.

Remark 7.9. Note that, for the following subsection, we only require the substitutions xa in the case
where the arrow a begins at a white vertex (which in particular implies that a /∈ F1, although it could be
that a∗

∈ F1). If we only make these substitutions, it is similarly easy to write the above reductions in the
case where for certain arrows x±

a appears and for others x±1
a appears; we leave this to the reader.

The only thing that we require from the above in the next subsection is the following observation:

Reductions on 1W L Q1W preserve the augmentation ideal, ker(3q(Q,W)→ kW). (7-11)

In other words, any monomial of positive length beginning and ending at white vertices reduces to a
linear combination of other such monomials. This was not true with the original generators (e.g., looking
at the inverse reductions).

7D. Quivers containing cycles. In this section, we prove the strong free product property for a connected
quiver containing a cycle, along with providing a natural decomposition and basis for its multiplicative
preprojective algebra. In more detail, the multiplicative preprojective algebra decomposes (as a vector
space) into a free product of the multiplicative preprojective algebra for the cycle and a partial multiplica-
tive preprojective algebra for the complement of the cycle. This technique should extend to the case of
general extended Dynkin quivers, hence reducing Conjecture 1.1 to the extended Dynkin case.

Let Q be a connected quiver containing a cycle QE , with complement Q′
:= Q\QE . Let W := (QE)0,

so the vertices of the cycle are white. Fix q ∈ (k∗)Q0 and a decomposition q = (qE , q ′). There is a linear
isomorphism

9 :3qE (QE) ∗k Q0 3
q ′

(Q′,W)→3q(Q). (7-12)

We prove this by producing a basis of 3q(Q) of alternating words in 3qE (QE) and 3q ′

(Q′,W).

Remark 7.10. For the (deformed) additive preprojective algebra, the analogous map,

9add :5λE (QE) ∗k Q0 5
λ′

(Q′,W)→5λ(Q),

is an isomorphism for all connected quivers Q containing an extended Dynkin quiver QE . This follows
from the proof of [31, Theorem 3.4.2]; see also [54, Section 5], particularly Corollary 5.2.9(ii).

As before, let B := k Q0[t, (q + t)−1
] and B = t B, which is spanned by elements {tm, (t ′)m | m ≥ 1}

where t ′
:= (q + t)−1

− q−1.

Proposition 7.11. Let Q be a connected quiver containing a cycle QE ⊆ Q (QE ∼= Ãn−1). Then there
exists a section σ :3q(Q)→ L such that (L , r, σ, B) satisfies the strong free product property.
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In more detail, L Q is a free left k Q0-module with basis given by concatenable alternating products
in the bases of 3qE (QE) given by Proposition 7.1 or 7.7, of 3q ′

(Q′,W) given by Proposition 7.8, and
rm, (r ′)m (m ≥ 1).

Corollary 7.12. Let Q be as in Proposition 7.11. A basis for 3q(Q) is given by concatenable alternating
words in the mentioned bases of 3qE (QE) and 3q ′

(Q′,W). In particular, the family 3q(Q) defines a
free k[qi , q−1

i ]i∈Q0-module, and hence is flat over (k×)Q0 .

Remark 7.13. Note in Proposition 7.11 that we only need to replace x±1
a for x±

a if a ∈ Q′1 begins at a
vertex of QE . Moreover, making this change to the statement does not affect the proof. On the other
hand, we could freely replace x±1

a by x±
a for all arrow in Q1, again without changing the proof.

Proof of Proposition 7.11. First we will establish that our proposed basis for L implies the strong free
product property. To see this, observe that the set of subwords not containing ri , r ′

i for i ∈ Q0 form
a basis for 3q(Q). The inclusion of basis elements 3q(Q)→ L defines a section σ . Using σ define
σ ′

:3q(Q)∗k Q0 k Q0[t, (q + t)−1
] → L to be the extension of the map taking t 7→ r , (q + t)−1

7→ r ′
+q ,

and p 7→ σ(p) for p ∈ 3q(Q). Then σ ′ is clearly a k Q0-linear isomorphism, and hence (L , r, σ, B)
satisfies the strong free product property.

Next we will show that the proposed basis for L implies that there exists a k Q0-linear isomorphism:
9 :3qE (QE) ∗k Q0 3

q(Q′,W)→3q(Q). For this, identify:

• 3q(Q) as the span of words in L without the subwords ri , r ′

i .

• 3qE (QE) as the span of words in 3q(Q) without the subwords a, x±
a for a ∈ Q′1.

• 3q(Q′,W) as the span of words in 3q(Q) without the subwords bi , x±1
bi

for bi ∈ QE 1.

Hence there exists k Q0-linear maps ι1, ι2 :3qE (QE),3
q(Q′,W)→3q(Q) defined by the inclusion of

basis elements. These maps determine a unique injective k Q0-linear map 9 := ι1 ∗k Q0 ι2 :3qE (QE)∗k Q0

3q(Q′,W)→3q(Q), which is clearly surjective, hence an isomorphism.
It remains to establish that the given set is indeed a basis for L . By Proposition 7.1 we have a basis

BQE for L QE and by Proposition 7.8 we have bases BQ′ for L Q′ . Therefore we have a basis of alternating
words in BQE and BQ′ for L = L QE ∗k Q0 L Q′ .

However this basis gives rise to a basis for the quotient L/(ρQE +ρQ′1B −q). So we need to show that
L/(ρQE + ρQ′1B − q) is isomorphic to L/(ρQEρQ′ − q)=:3q(Q) as k Q0-modules. Hence we consider
the system of reductions combining the systems of reductions from Propositions 7.1 and 7.8. Crucially,
we perturb the system of reductions by perturbing the relation rpre

:= ρQE +ρQ′1B −q to r = ρQEρQ′ −q .
First observe that this change does nothing to the reductions for L Q′ , since the transformation is the

identity on black vertices. That is, rpre1B = ρQ′1B − q1B = r1B.
For L QE , notice rpre1W = ρQE − qE while r1W = ρQEρQ′ − qE . So we alter each reduction involving

ρ±

QE
by the transformation

ρQE 7→ ρQEρQ′ = ρQE (ρQ′ − 1)+ ρQE , ρ−1
QE

7→ ρ−1
Q′ ρ

−1
QE

= (ρ−1
Q′ − 1)ρ−1

QE
+ ρ−1

QE
.
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Note that we choose this form for the transformation to emphasize that the new relation splits as a sum
of (I) the old relation and (II) a piece in the ideal generated by x±

a for a ∈ Q′1. This transformation
only effects the substitution reductions in the original reduction system for the cycle; see the proof of
Proposition 7.1. The substitution reductions become (after applying a reordering reduction) the following:

y−1
7→ x−1(ρQ′ − 1)(r + q)+ x−1(r + q), (if not preceded by a),

y 7→ (r ′
+ q−1)(ρ−1

Q′ − 1)x + (r ′
+ q−1)x (if not preceded by a),

ax 7→ a(ρQ′ − 1)(r + q)y + ary + qya,

ax−1
7→ ay−1(r ′

+ q−1)(ρ−1
Q′ − 1)+ ay−1r ′

+ q−1 y−1a.

Order monomials in L lexicographically in the orderings N and N ′ of Propositions 7.1 and 7.6. Then
the above reductions strictly decrease the ordering. Here we are using (7-11) from the previous subsection
to deduce that the ideal of positive-length monomials beginning and ending at vertices of QE is preserved
under reductions.

All ambiguities lie either entirely in L QE or entirely in L Q′ . Hence the ambiguities in L Q′ resolve as
before. The ambiguities in L QE still resolve using the same reductions as before perturbing. To see this,
note that we have replaced the formal variables ρ±1

QE
(which do not interact with a, a∗, x±1, y±1) with the

new formal variables (ρQEρQ′)±1.
Since the perturbed system of reductions has all the same leading coefficients as the original, we

conclude that L has the desired basis. □

8. The center and primality of multiplicative preprojective algebras

Let Q be a connected quiver strictly containing a cycle. The goal of this section is to complete the proof
of Theorem 1.2 by first establishing that 3q(Q) is prime and then that Z(3q(Q)) = k and hence the
Calabi–Yau structure is unique up to rescaling.

8A. Primality of multiplicative preprojective algebras. We will show 3q(Q) is prime by first showing
that left multiplication by certain elements is injective on the subspace of concatenable elements.

Lemma 8.1. Let a denote the sum of all the positively oriented arrows of the cycle in Q1. Then left
multiplication by a, La : 1W3

q(Q)→ 1W3
q(Q), is injective.

Proof. Decompose the vertices Q0 = B ⊔W where the white vertices are in the cycle. Decompose the
arrows in Q1 = QE 1 ⊔ Q′1. Define

A+ := ker(ϵA :3qE (QE)→ kW), B+ := ker(ϵB :3q(Q′,W)→ kW).

Then one can define a descending filtration by F0 =3q(Q) and Fm := Span(B+(A+B+)
≥m)) for m > 0.

Notice a ∈ Fm, b ∈ Fℓ implies ab ∈ Fm+ℓ, so this is an algebra filtration.
Consider the exact sequence B+

ι
↪−→3q(Q) π

−↠3qE (QE). The basis of Proposition 7.11 realizes an
inclusion i : 3qE (QE)→ 3q(Q), a k Q0-module splitting. So for α, β ∈ 3qE (QE), i(α) · i(β) ≡ α · β
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modulo the two-sided ideal generated by B+. Therefore, in the associated graded algebra grF (3q(Q)) :=⊕
m=0 Fm/Fm+1,

i(α) · i(β)= α ·β +α ·βb′′
+αb′β + bα ·β

for b, b′, b′′
∈ B+. Therefore, for b1 ∈ B+, there exists b2 ∈ B+ such that

i(α) · i(β)b1 = α ·β(1 + b2)b1.

Recall A+ has k Q0-module basis given by {x p
a , xm

a aℓ, xm
a (a

∗)ℓ | m, ℓ, p ∈ Z, p ̸= 0, ℓ > 0} by
Proposition 7.1. In the associated graded algebra grF (3q(Q)), La acts on A+B+ as follows, for b ∈ B+:

a(xm
a aℓ)b = qm xm

a aℓ+1b.

a(xm
a (a

∗)ℓ)b = qm xm
a (xa − 1)(a∗)ℓ−1b.

a(x p
a )b = q px p

a (xa − 1)(ρ−1
Q′ )b.

Since La is injective on A+, by Proposition 7.3, we conclude that La is injective on the right ideal
generated by A+.

Consider the basis of Proposition 7.11, and write b ∈ 1W B+ in this basis. Then ab is again a basis
element, and hence La takes basis elements injectively to basis elements. We conclude that La is injective
on the right ideal generated by 1W B+, and therefore on all of 1W3

q(Q). □

Lemma 8.2. Right multiplication by a, Ra :3q(Q)1W →3q(Q)1W is injective.

The proof is completely analogous, using the same filtration, together with the calculations:

b(xm
a aℓ)a = bxm

a aℓ+1.

b(xm
a (a

∗)ℓ)a = bq−ℓ+1xm+1
a (a∗)ℓ−1

− bxm
a (a

∗)ℓ−1.

b(x p
a )a = bx p

a a.

Lemma 8.3. Let v ∈ Q0. There is unique path γv,w in the spanning forest from v to a white vertex w ∈ W .
Right multiplication by γv,w, Rγv,w :3q(Q)ev →3q(Q)ew, is injective.

Proof. We need to show αγh(α),w ̸= 0 for α ̸= 0. Consider the basis in Proposition 7.8, consisting of words
in a, x±

a for a an arrow, without certain disallowed subwords, e.g., aa∗ for a ∈ Q1. Note that γh(α),w is a
basis element as aa∗ cannot appear in a shortest path. Write α as a linear combination of basis elements.
Notice αγh(α),w is a linear combination of basis elements unless the disallowed subword a∗a is created
for some arrow a ∈ F1. This disallowed subword reduces to x+

a∗ (which is not itself disallowed since
a∗

̸∈ F1, as a ∈ F1.) Furthermore, the appearance of x+

a∗ for a ∈ F1 cannot create the disallowed subwords

(I) x+

a∗ x−

a∗, (II) x−

a∗ x+

a∗, (III) ax±

a∗, (IV) x+

a∗
2, (V) x+

a∗a∗,

for a ∈ F1, as in each case α or γh(α),w would itself contain a disallowed subword

(I) x−

a∗, (II) x−

a∗, (III) aa∗, (IV) ax+

a∗ or x+

a∗a∗, (V) aa∗,
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each a contradiction. We conclude that right multiplication by γh(α),w takes basis elements injectively to
basis elements and hence is injective. □

Lemma 8.4. Let v ∈ Q0. There is unique path γw,v in the opposite of the spanning forest, Fop
1 , from

w ∈ W to v. Left multiplication by γw,v, Lγw,v : ev3q(Q)→ ew3q(Q), is injective.

The proof is identical, and follows from the isomorphism 3q(Q)∼=3q(Q)op.

Proposition 8.5. 3q(Q) is prime, for Q connected and containing a cycle.

Proof. Let α, β ∈ 3q(Q) be nonzero. We will show α3q(Q)β ̸= 0 by building an explicit element
γ = γ1γ2 so that αγβ ̸= 0. That is, define

γ1 := γh(α),wx M
a aN , γ2 := aN ′

x M ′

a γw,t (β)

where M,M ′, N , N ′
∈ N are sufficiently large (depending on α and β) and where γh(α),w and γw,t (β) are

as defined in Lemmas 8.3 and 8.4, respectively.
We will first show that right multiplication by γ1 is injective on concatenable paths to conclude αγ1 ̸= 0.

Then we will argue that left multiplication by γ2 is injective on concatenable paths to conclude γ2β ̸= 0.
Finally, we will show that αγ1γ2β ̸= 0.

To show Rγ1 :3q(Q)eh(α) →3q(Q)eh(γ1) is injective, it suffices to show that right multiplication by
each piece, γh(α),w, x M

a , and aN , is injective. Rγh(α),w is injective by Lemma 8.3, Rx M
a

is injective since xa

is invertible, and RaN is injective by Lemma 8.2.
Similarly, Lγ2 : et (β)3

q(Q) → et (γ2)3
q(Q) is injective since La , L xa , and Lγw,t (β) are injective by

Lemma 8.1, invertibility of xa , and Lemma 8.4, respectively.
Finally notice that αγ1 ̸= 0 and γ2β ̸= 0 implies αγ1γ2β ̸= 0. To see this, consider the filtration F

defined in the proof of Lemma 8.1. It suffices to show αγ1γ2β ̸= 0 in grF (3
q(Q)). Write αγ1 and γ2β in

the basis of Proposition 7.11 (see the basis in Proposition 7.1). By design αγ1 ends with a basis element of
the form xm

a an for m, n > 0 and γ2β begins with a basis element of the form an′

xm′

a for m′, n′ > 0. Their
product in grF (3

q(Q)) is the scaled basis element qnm′

xm+m′

a an+n′

. So αγ1γ2β ̸= 0 in grF (3
q(Q)) and

hence in 3q(Q), completing the proof. □

8B. The center of multiplicative preprojective algebras. The center of 31(Q) depends dramatically on
the taxonomy of quiver Q into Dynkin, extended Dynkin, and others:

• For Q Dynkin and k characteristic not 2, 3, or 5, one can compute the center using the isomorphism
31(Q)∼=5(Q); see Example 2.3.

• For Q extended Dynkin, Conjecture 1.4 predicts Z(31(Q)) ∼= ev31(Q)ev, which is proven in
Section 6B in the case Q = Ãn .

• In the remaining cases, Conjecture 1.1 predicts Z(3q(Q))= k, for any q ∈ (k∗)Q0 .

The goal of this section is to establish the conjecture in the case Q contains a cycle.
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Proposition 8.6. Let Q be a connected quiver strictly containing a cycle and fix q ∈ (k×)Q0 . Then
Z(3q(Q))= k.

Proof. Let z ∈ Z(3q(Q)). Decompose z = z0 + z+ into a sum of length zero and positive length paths.
First suppose that z+ = 0. Then z =

∑
i∈Q0

ci ei . Note that every individual arrow forms a basis element
of Proposition 7.11. Then za = az for every arrow implies that all ci are equal, as Q is connected.

Now assume z+ ̸= 0. Expanding z+ in the basis of Proposition 7.11, we write z+ =
∑

i ci zi , where
each zi is a positive-length alternating word in the cycle and the complement. We claim that each zi has
an arrow not in the cycle. Suppose, by contradiction, there exists j such that z j consists of only arrows in
the cycle. Since Q strictly contains the cycle, there exists an arrow b ∈ Q1 not in the cycle. And as z+

commutes with each arrow ai in the cycle, there exists l such that zl consists of only arrows in the cycle
that ends at t (b). Then z+b = bz+. But z+b contains a term beginning with xm

a a j for some m, j with
(m, j) ̸= (0, 0). However, bz+ has no term beginning xm

a a j unless (m, j)= (0, 0). This contradicts the
existence of z j consisting of only arrows in the cycle.

Since z+ ̸= 0, thanks to Lemma 8.3, there exists a vertex i and a path b = γh(z+),i such that z+bei ̸= 0.
Therefore also bz+ei ̸= 0, so z+ei ̸= 0. By Lemma 8.2, we then have z+an

̸= 0 for all n. Hence also
anz+ ̸= 0. Now, for sufficiently large N ≫ 0, aN z+ contains basis elements beginning with an arbitrarily
high power of the cycle. However, terms of z+aN begin only with powers of the cycle appearing in z+,
since every z j has a term not in the cycle. These powers are bounded, so this contradicts the assumption
that z+ ̸= 0. We conclude that z is a scalar multiple of the identity. □

Corollary 8.7. If Q is connected and properly contains a nonoriented cycle, then 3q(Q) has a unique,
up to scaling, Calabi–Yau structure.

Proof. Write3:=3q(Q). Any two Calabi–Yau structures differ by an invertible map in Hom3−bimod(3,3),
which is determined by the image of the unit, a central invertible element. So the set of Calabi–Yau
structures on 3, when nonempty, is a Z(3)×-torsor. By Proposition 8.6, Z(3)× = k×, so any two
Calabi–Yau structures differ by an invertible scalar. □

This completes the proof of Theorem 1.2.

Acknowledgements

The first author was supported by the Roth Scholarship through the Department of Mathematics at Imperial
College London. We thank the Max Planck Institute for Mathematics in Bonn for their support and
ideal working conditions. We’d like to thank Yankı Lekili for bringing the problem to our attention
and discussing the Fukaya category perspective. We’re grateful to Michael Wemyss for explaining the
NCCR perspective and to Georgios Dimitroglou Rizell who identified an issue with our definition of dg
multiplicative preprojective algebra. The anonymous referee caught a few errors and provided useful
comments. Finally, special thanks to Sue Sierra for carefully reading a draft and providing detailed
corrections and suggestions.



Multiplicative preprojective algebras are 2-Calabi–Yau 881

References

[1] D. J. Anick, “Noncommutative graded algebras and their Hilbert series”, J. Algebra 78:1 (1982), 120–140. MR Zbl

[2] M. Artin, “Algebraic approximation of structures over complete local rings”, Inst. Hautes Études Sci. Publ. Math. 36 (1969),
23–58. MR Zbl

[3] A. Beauville, “Symplectic singularities”, Invent. Math. 139:3 (2000), 541–549. MR Zbl

[4] G. Bellamy and T. Schedler, “Symplectic resolutions of quiver varieties”, Selecta Math. (N.S.) 27:3 (2021), Paper No. 36,
50. MR Zbl

[5] G. Bellamy and T. Schedler, “Symplectic resolutions of quiver varieties”, Selecta Math. (N.S.) 27:3 (2021), Paper No. 36,
50. MR Zbl

[6] Y. Berest, G. Felder, and A. Ramadoss, “Derived representation schemes and noncommutative geometry”, pp. 113–162 in
Expository lectures on representation theory, edited by K. Igusa et al., Contemp. Math. 607, Amer. Math. Soc., Providence,
RI, 2014. MR Zbl

[7] M. Van den Bergh, “Non-commutative crepant resolutions”, pp. 749–770 in The legacy of Niels Henrik Abel, edited by
O. A. Laudal and R. Piene, Springer, 2004. MR Zbl

[8] M. Van den Bergh, “Three-dimensional flops and noncommutative rings”, Duke Math. J. 122:3 (2004), 423–455. MR Zbl

[9] M. Van den Bergh, “Non-commutative quasi-Hamiltonian spaces”, pp. 273–299 in Poisson geometry in mathematics and
physics, edited by G. Dito et al., Contemp. Math. 450, Amer. Math. Soc., Providence, RI, 2008. MR Zbl

[10] M. Van den Bergh, “Calabi–Yau algebras and superpotentials”, Selecta Math. (N.S.) 21:2 (2015), 555–603. MR Zbl

[11] G. M. Bergman, “The diamond lemma for ring theory”, Adv. in Math. 29:2 (1978), 178–218. MR

[12] R. Bezrukavnikov and M. Kapranov, “Microlocal sheaves and quiver varieties”, Ann. Fac. Sci. Toulouse Math. (6) 25:2-3
(2016), 473–516. MR Zbl

[13] P. Boalch, “Global Weyl groups and a new theory of multiplicative quiver varieties”, Geom. Topol. 19:6 (2015), 3467–3536.
MR Zbl

[14] R. Bocklandt, F. Galluzzi, and F. Vaccarino, “The Nori–Hilbert scheme is not smooth for 2-Calabi–Yau algebras”, J.
Noncommut. Geom. 10:2 (2016), 745–774. MR

[15] T. Bozec, D. Calaque, and S. Scherotzke, “Calabi–Yau structures for multiplicative preprojective algebras”, preprint, 2021.
arXiv 2102.12336

[16] C. Braun, J. Chuang, and A. Lazarev, “Derived localisation of algebras and modules”, Adv. Math. 328 (2018), 555–622.
MR Zbl

[17] C. Brav and T. Dyckerhoff, “Relative Calabi–Yau structures II: shifted Lagrangians in the moduli of objects”, Selecta Math.
(N.S.) 27:4 (2021), Paper No. 63, 45. MR Zbl

[18] S. Brenner, M. C. R. Butler, and A. D. King, “Periodic algebras which are almost Koszul”, Algebr. Represent. Theory 5:4
(2002), 331–367. MR Zbl

[19] I. Burban and Y. Drozd, “Maximal Cohen–Macaulay modules over surface singularities”, pp. 101–166 in Trends in
representation theory of algebras and related topics, edited by A. Skowroński, Eur. Math. Soc., Zürich, 2008. MR Zbl
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