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Let p be prime. We describe explicitly the resolution of singularities of several families of wild Z/pZ-
quotient singularities in dimension two, including families that generalize the quotient singularities of
type E6, E7, and E8 from p = 2 to arbitrary characteristics. We prove that for p odd, any power of p can
appear as the determinant of the intersection matrix of a wild Z/pZ-quotient singularity. We also provide
evidence towards the conjecture that in this situation one may choose the wild action to be ramified
precisely at the origin.
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Introduction

The goal of this paper is to study wild quotient singularities which arise from actions of G := Z/pZ on
the formal power series ring A := k[[u, v]] when k is an algebraically closed field of characteristic p > 0.
Here the term “wild” refers to the fact that the order of the group G is not coprime to the characteristic
exponent of the ground field k. The resulting quotient singularity is the ring of invariants AG or, more
precisely, the closed point of Spec(AG).

Let X → Spec(AG) be a resolution of the singularity. Let Ci , i = 1, . . . , r , denote the irreducible
components of the exceptional divisor, and form the intersection matrix

N := ((Ci · C j )X )1≤i, j≤r ∈ Matr (Z).
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This matrix is negative-definite. The discriminant group 8N := Zr/NZr attached to N is a finite group
of order |det(N )|, independent of the resolution. The group 8N appears as a natural quotient of the class
group Cl(AG); see Remark 5.7. Attached to the resolution is its dual graph 0N , with vertices v1, . . . , vr ,
where vi and v j are linked by (Ci · C j )X distinct edges when i ̸= j . Our ultimate, long term, goal is to
characterize the intersection matrices N , discriminant groups 8N , and dual graphs 0N , that can arise
from such wild quotient singularities.

The fixed point scheme of the action of G on Spec A is defined by the ideal I := (σ (a)−a |a ∈ A, σ ∈ G).
We say that the action is ramified precisely at the origin if the radical of I is the maximal ideal (u, v);
in this case, the closed point of Spec(AG) is singular. Otherwise, we say that the action is ramified in
codimension 1. When I is principal, AG is regular [Kiràly and Lütkebohmert 2013, Theorem 2], and
when AG is regular, I is conjectured to be principal [loc. cit., Conjecture 9].

It is known that when the exceptional divisor has smooth components with normal crossings, all
components Ci are smooth projective lines and the dual graph 0N is a tree [Lorenzini 2013, Theorem 2.8].
It is also known that the discriminant group 8N is an elementary abelian p-group [loc. cit., Theorem 2.6],
so that in particular we may write

|8N | = |det(N )| = ps

for some integer s ≥ 0. In this article, we consider which exponents s ≥ 0 can arise in this way. By
studying diagonal actions on products of curves, the first author [Lorenzini 2018, Theorem 3.15] produced
wild quotient singularities with |8N | = ps for all exponents s ≥ 2 with s ̸≡ 1 modulo p. Mitsui [2021]
later explicitly resolved all wild quotient singularities arising from product of curves, and showed that the
previous list is the complete list of exponents arising from product of curves. The missing exponents are
then s = 0, as well as all s with s ≡ 1 mod p.

Conjecture 0.1. We conjecture that for p odd, all exponents s ≥ 0 arise in this way from wild Z/pZ-
quotient singularities associated with an action that is ramified precisely at the origin.

In this article, we prove this conjecture for s = 0 and s = 1 by explicitly resolving certain wild quotient
singularities of independent interest. We also exhibit singularities as in the conjecture that are likely
to produce a group 8N with |8N | = ps for all other missing values s > 1 (see Section 0.3). When
the condition that the action be ramified precisely at the origin is relaxed, we can prove the following
result.

Theorem (see Theorem 5.5). For p odd, all missing exponents s ≥ 0 arise from wild Z/pZ-quotient
singularities associated with an action that is ramified in codimension 1.

Let c, d, e ≥ 2 be integers. Recall that the equation xc
+ yd

+ ze
= 0 is said to define a Brieskorn

surface singularity. The missing exponents s are exhibited to arise from wild quotient singularities with
the help of well-chosen Brieskorn singularities, as in our next theorem.
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Theorem (see Theorems 5.1 and 5.3). Let B := k[[x, y, z]]/(z p
+ xc

+ yd). Assume that p does not
divide cd. Let g := gcd(c, d). Any resolution of Spec B has an intersection matrix whose associated
discriminant group has order pg−1 and is killed by p. When c = pm + 1 and d = pn + 1 for some
m, n ≥ 1, then Spec B is a wild Z/pZ-quotient singularity.

The resolutions of the Brieskorn singularities in the previous theorem are found in Theorem 5.1, and
coincide with the known resolutions in characteristic 0 [Hirzebruch and Jänich 1969, Theorem, page 232;
Orlik and Wagreich 1971a]. The theorem is valid when p = 2, but in this case, the order pg−1 is always
an even power of 2, and thus provides no examples of missing odd exponents. The theorem shows that
when p = 2 and gcd(p, cd) = 1, all singularities z p

+ xc
+ yd

= 0 are wild Z/pZ-quotient singularities.
It would be of interest to determine whether this fails to be the case when p > 2.

Let now Cn denote the n-th Catalan number, and let p ≥ 3. To produce singularities associated with an
action that is ramified precisely at the origin and which have |8N | = p, we expand on the work of Peskin
[1983] and consider the ring Bµ := k[[x, y, z]]/(h), where µ ∈ k[y] and

h := z p
+ 2y p+1

− x2
+

(p+1)/2∑
n=2

(−1)nCn−1(µy)2p−2nzn.

When µ = 1, this equation defines a wild quotient singularity that can be regarded as an analogue of
the E1

6-singularity (notation as in Artin’s classification [1977]). We compute explicitly its resolution in
our next theorem. When p = 3, the graph 0N below reduces to the Dynkin diagram E6. When drawing
a dual graph, we adopt in this article the usual convention that a vertex is adorned with the associated
self-intersection number, unless this self-intersection number is −2, in which case it is suppressed.

Theorem (see Theorem 6.3). Let p be an odd prime. Let Bµ be as above. Then Spec Bµ has a resolution
of singularities with dual graph 0N independent of µ of the following form:

p−1

−(p+1)/2

p−1

The associated discriminant group 8N has order p.

0.2. To treat the case where 8N is the trivial group in Conjecture 0.1, we use a family of hypersurface
singularities introduced in [Lorenzini and Schröer 2020] and which is of independent interest. Fix a
system of parameters a, b in k[[x, y]]. Let µ ∈ k[[x, y]], and consider the equation

z p
− (µab)p−1z − a p y + bpx = 0, (0-1)

and the associated ring

Bµ = B := k[[x, y, z]]/(z p
− (µab)p−1z − a p y + bpx).
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(a) Assume that µ is a unit in k[[x, y]]. It is shown in [loc. cit., 7.1], that B is isomorphic to the ring of
invariants AG of an explicit wild action of Z/pZ on A := k[[u, v]] ramified precisely at the origin. More
precisely, after identifying A with the ring

k[[x, y]][u, v]/(u p
− (µa)p−1u − x, v p

− (µb)p−1v − y),

the action is determined by the automorphism σ with σ(u) = u +µa and σ(v) = v +µb. The morphism
Spec A → Spec AG is ramified only at the maximal ideal m, and we find that the étale fundamental group
π loc

1 (AG) of the punctured spectrum U := Spec AG
\ {m} is isomorphic to Z/pZ. Such actions are called

moderately ramified in [loc. cit.], and we refer the reader to that article for further information on these
actions.

(b) Assume that µ is not a unit in k[[x, y]], that µ ̸= 0, and that it is coprime to both a and b. Then B is
again isomorphic to the ring of invariants AG for the action on A := k[[u, v]] described above. However, in
this case the morphism Spec A → Spec AG is ramified in codimension 1 and the group π loc

1 (AG) is trivial.

We restrict our attention to the case where a = yn and b = xm . The case µ = 0 is then also of interest.

(c) Assume that µ = 0, with a = yn and b = xm . The resulting hypersurface is a Brieskorn singularity of
type z p

− y pn+1
+ x pm+1.

In the specialized case where a = yn and b = xm , preliminary computations with Magma [Bosma
et al. 1997] and Singular [Decker et al. 2022] suggest that the resolution of singularities in all three
cases above might have the same combinatorial type, independent of µ. We prove that this is indeed
the case in two instances in this article, when a = y and b = x in Theorem 9.2, and when a = y2 and
b = x in Theorem 7.1. In the latter case, Artin [1977] (see also [Peskin 1980]) shows when p = 2 that
the values µ = 0, µ = 1, and µ = y produce the rational double points E0

8 , E2
8 , and E1

8 , respectively.
These singularities are not isomorphic but have the same resolution graph, the Dynkin diagram E8. Our
generalization of these singularities to any odd prime p has a resolution with the following dual graph.

Theorem (see Theorem 7.1). Let p be an odd prime. Let Bµ be as in Section 0.2. Assume that a = y2

and b = x. Then Spec Bµ has a resolution of singularities with dual graph 0N independent of µ of the
following form:

−(p+1)/2 −4

p−1p

The associated discriminant group 8N is trivial.

0.3. Let p be odd. Recall that when µ = 1, the associated quotient singularity Spec Bµ=1 is induced by
an action that is ramified precisely at the origin. It is likely that by varying the exponents m and n in
a = yn and b = xm , one will obtain examples of resolutions of Spec Bµ=1 with associated discriminant
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group 8N of order ps for any power s with s ̸≡ −1 mod p. In particular, we exhibit in Lemma 5.6 the
appropriate exponents m and n that would cover all remaining open cases in our Conjecture 0.1 (that is,
all values of s with s ≡ 1 mod p).

Peskin’s singularity with µ = 1 introduced above, and all the singularities considered in [Lorenzini
2018] or [Mitsui 2021], are also induced by an action that is ramified precisely at the origin. When p = 2,
none of the known explicit resolutions for examples in these classes of singularities produce an associated
discriminant group 8N with order 2s and s odd. This lack of examples might indicate that there is a
serious obstruction to exhibiting such examples. It is natural to wonder whether such examples in fact do
not exist for actions ramified precisely at the origin.

Let p = 2. The Dynkin diagram E7, with discriminant group 8E7 of order 2, might be the most
ubiquitous graph with discriminant group of order 2s with s odd. Many other such examples are exhibited
in Example 8.2. Artin [1977] showed that there exists a wild Z/2Z-action on A := k[[u, v]], ramified in
codimension 1, such that Spec AZ/2Z is a rational double point of type E7. He also showed that any such
surface singularity must have a trivial local fundamental group. In other words, there cannot exist a wild
Z/2Z-action on A = k[[u, v]], ramified precisely at the origin, such that Spec AZ/2Z has a resolution of
combinatorial type E7.

Inspired by Artin’s considerations, we define in Section 8 some explicit wild Z/pZ-actions on A =

k[[u, v]] ramified in codimension 1. When p = 2, we exhibit for each s odd an explicit example conjectured
to have discriminant group of order 2s . In Section 9, for any prime p, we exhibit a wild Z/pZ-action on
A = k[[u, v]] ramified in codimension 1 which results in an Ap−1-singularity.

Theorem (see Theorem 9.4). Let k be a field of characteristic p > 0. Let A := k[[u, v]]. Then there
exists an automorphism σ : A → A of order p such that Spec A⟨σ ⟩ is a rational double point of type
Ap−1, which has discriminant group 8Ap−1 of order p. Any such automorphism induces a morphism
Spec A → Spec A⟨σ ⟩ that must be ramified in codimension 1.

It is natural to wonder whether the same result holds for any Hirzebruch–Jung chain whose discriminant
group has order p (definition recalled in Section 1.1). The last statement in the above theorem follows
from a result of Ito and Schröer [2015], which states that if the action is ramified precisely at the origin,
then the resolution of the resulting quotient singularity has a dual graph 0N which must have a vertex of
valency at least 3.

Artin [1975] showed that in characteristic p = 2, all wild quotient singularities AG with Spec A →

Spec AG ramified precisely at the origin can be described by an equation of the form (0-1) with µ = 1. In
particular, all such singularities are complete intersection. We show in Proposition 10.1 that when p = 2,
any wild quotient singularity AG is a complete intersection, even when Spec A → Spec AG ramifies in
codimension 1. When AG is a complete intersection, it is then also Gorenstein, with an intersection
matrix which is numerically Gorenstein. The purely linear algebraic definition of numerically Gorenstein
is recalled in Section 10.2, and it is natural to wonder whether this condition imposes a new restriction on
intersection matrices associated with Z/2Z-quotient singularities. The answer to this question is negative,
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and we show in Proposition 10.5 that any intersection matrix N such that 8N is killed by 2 is always
numerically Gorenstein.

The paper is organized as follows. Section 1 contains several useful facts concerning the linear algebra
of intersection matrices N , in particular formulas for the order of 8N when the dual graph 0N is star-
shaped. Sections 2 and 3 are preparatory sections, where we recall basic facts regarding how to compute
self-intersection numbers on a resolution of a singularity using data coming from intermediate blow-ups.
This will be applied in later sections to the resolution of Spec Bµ, where we found it useful, instead of
starting the resolution process by blowing up the maximal ideal, to first blow up an ideal naturally related
to the ideal defining the fixed scheme of the action. We provide in Section 4 the explicit resolution of
certain weighted homogeneous singularities of the form

W q
− U a V b(V d

− U c) = 0,

with p, q, a, b, c, d subject to certain mild restrictions. Over C, such resolution has already been obtained
by Orlik and Wagreich [1971a; 1971b; 1977] in full generality. The proofs of the theorems presented in
this introduction are found in Sections 5–10.

1. Intersection matrices

Let B be a complete noetherian local ring that is two-dimensional and normal. Let Ci , i = 1, . . . , n,
denote the irreducible components of the exceptional divisor of a resolution of singularities of Spec B,
with associated intersection matrix N := ((Ci · C j ))1≤i, j≤n . This section collects some facts that depend
only on the linear algebra of the matrix N and which are used in later sections.

An n × n intersection matrix N = (ci j ) is a symmetric negative-definite integer matrix with negative
coefficients on the diagonal, and nonnegative coefficients off the diagonal. The discriminant group
8 = 8N is defined as the finite abelian group Zn/NZn , which has order |det(N )|. The associated graph
0 = 0N arises as follows: Introduce vertices v1, . . . , vn corresponding to the standard basis vectors in Zn .
Two vertices vi ̸= v j are linked by exactly ci j ≥ 0 edges. If not stated otherwise, we tacitly assume that 0

is connected.
The degree or valency of a vertex v ∈ 0 is the number of edges attached to v. A vertex v with valency

at least three is called a node, and a vertex v with valency one is called terminal. A graph is a chain if it
is connected and does not contain any node. It is called star-shaped if it is a tree with a unique node.
Given a star-shaped graph 0 with node v0, we can consider the subgraph 0∖ {v0} obtained by removing
the vertex v0 and all the edges containing v0. This complement is the disjoint union of m ≥ 3 chains
11, . . . ,1m that we call the terminal chains of 0.

1.1. Suppose that N is an intersection matrix whose graph 0N is a chain, with ℓ ≥ 1 consecutive vertices
v1, . . . , vℓ. For convenience, we label the diagonal entries of N by ci i = −si , and we assume below
that si ≥ 2 for i = 1, . . . , ℓ, unless ℓ = 1, in which case we also allow s1 = 1. We associate to N with
this ordering of the vertices a unique sequence of positive integers 1 = rℓ < · · · < r1 < r0 such that the
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following matrix equality holds, where the square matrix on the left is N :
−s1 1

1 −s2
. . .

. . .
. . . 1
1 −sℓ




r1
...

rℓ−1

rℓ

 =


−r0

0
...

0


When needed, we will denote R = RN the transpose of the vector (r1, . . . , rℓ), so that N R is the transpose
of (−r0, 0, . . . , 0). It is known that |det(N )| = r0, and that 8N is cyclic of order r0 [Lorenzini 2013,
3.13]. To be able to refer to r0 and r1 without indices, we will relabel them as r0 = a and r1 = b. Note
that by construction, gcd(a, b) = 1, and that we can express the reduced fraction a/b completely in terms
of s1, . . . , sℓ as a continued fraction:

a
b

= [s1, s2, . . . , sℓ] := s1 −
1

s2 −
1

. . .
−

1
sℓ

(1-1)

Clearly, any reduced fraction a/b with a > b determines an intersection matrix N as above. The reduced
fraction a/b = 1/1 determines the matrix N = (−1). We note that −a/b = det(N )/ det(N ′), where N ′

is obtained from N by removing its first line and first column (recall that the determinant of the empty
matrix is 1 by convention).

As is customary, the vertices of the graph 0N of an intersection matrix N = (ci j ) are labeled with the
self-intersection numbers −si := ci i , and self-intersection numbers −si = −2 are usually omitted. For a
chain 0N as above, we get the following drawing:

−s1 −s2 −sℓ−1 −sℓ

We call such chain a Hirzebruch–Jung chain. Recall that p/(p−1)=[2, . . . , 2] and that the corresponding
intersection matrix of size p − 1 and determinant (−1)p−1 p is denoted by Ap−1. This intersection matrix
will be shown to arise in the context of Z/pZ-singularities in Theorem 9.4.

1.2. Let m ≥ 3. Let a1/b1, . . . , am/bm be reduced fractions with ai/bi ≥ 1 for i = 1, . . . , m. Let
s0 ≥ 1 be any integer. We denote by N = N (s0 | a1/b1, . . . , am/bm) the following matrix. Its graph
0 = 0N = 0(s0 | a1/b1, . . . , am/bm) is star-shaped with m terminal chains attached to a central node v0

having self-intersection number −s0. Let 11, . . . ,1m be the Hirzebruch–Jung chains determined by the
fractions a1/b1, . . . , am/bm . The graph 0 is obtained by attaching to v0 with a single edge the initial vertex
of each chain 1i . In this article, when referring to a matrix of the form N = N (s0 | a1/b1, . . . , am/bm),
we will always assume that it is an intersection matrix, i.e., that N is negative-definite.
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Proposition 1.3. Let N = N (s0 | a1/b1, . . . , am/bm) be an n × n intersection matrix as above, with
star-shaped graph 0N . Then s0 >

∑m
j=1 b j/a j , and the following hold:

(i) We have det(N ) = (−1)n
(∏

j a j
)(

s0 −
∑

j b j/a j
)
. In particular, there is an integer factorization

|det(N )| =

( ∏
j a j

lcm(a1, . . . , am)

)(
lcm(a1, . . . , am)(s0 −

∑
j

b j/a j )

)
.

(ii) In the discriminant group 8N , the class of the standard basis vector ev0 ∈ Zn corresponding to the
central node v0 has order lcm(a1, . . . , am)

(
s0 −

∑
j b j/a j

)
.

(iii) Let w j denote the terminal vertex in 0N of the chain 1 j . Then 8N is generated by the classes of ew j ,
j = 1, . . . , m. Moreover, the class of ev0 is equal to the class of a j ew j , and the group 8N is killed by
lcm(a1, . . . , am)2

(
s0 −

∑
j b j/a j

)
.

(iv) If a j is a prime p for all j and ps0 −
∑

j b j = 1, then 8N is killed by p and has order pm−1.

(v) Assume that 8N is killed by a prime p. If p divides a j for some j , then the class of ev0 is trivial
in 8N .

Proof. Without loss of generality, we may assume that N equals the block matrix

N =


−s0 ∗ · · · ∗

∗ N1
...

. . .

∗ Nm

 ∈ Matn(Z),

where Ni is the intersection matrix with graph 1i , with vertices numbered consecutively starting from
the vertex adjacent to the node v0. The ∗’s in the above matrix stand for sequences of appropriate size,
starting with 1 followed by zeros. Let Ri denote the positive integer vector associated to Ni , such that

Ni Ri =
t(−ai , 0, . . . , 0).

Form the block column integer vector R in Zn given as

R := lcm(a1, . . . , am) t(1, tR1/a1, . . . ,
tRm/am).

By construction, the greatest common divisor of the entries in R is 1, since, given a prime p such that ps

exactly divides lcm(a1, . . . , am), there exists at least one index i such that ai is exactly divisible by ps .
In particular, the coefficient of R corresponding to the last vertex on the chain 1i is coprime to p. Let
x := s0 −

∑
j b j/a j . Then

N R = lcm(a1, . . . , am) t(−x, 0, . . . , 0).

Note that x > 0, because N is negative-definite, so the integer tRN R must be negative. By negative-
definiteness, we also know that det(N ) has sign (−1)n . Using [Lorenzini 2013, Theorem 3.14], with the
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matrix N and the vector R, we get

det(N ) = (−1)n
(

s0 −

∑
j

b j/a j

)
·

(∏
j

a j

)
and the assertion (i) follows. The assertion in (ii) follows immediately from the equality

N R = lcm(a1, . . . , am) t(−x, 0, . . . , 0)

and the fact that the greatest common divisor of the coefficients of R is 1. For (iii), to show that ev0 −a j ew j

is in the image of N , consider the unique positive vector S j whose first component is 1 and such that
N j S j is equal to the transpose of (0, . . . , 0, −a j ). Extend this vector to a vector S j ∈ Zn by setting all
other components to 0. Then N S j = ev0 − a j ew j . The proof that for any vertex w on the chain 1 j ,
there exists an integer cw such that ew − cwew j is in the image of N is similar, and is left to the reader.
Using (ii) to find the order of the class of ev0 , it follows immediately that the class of ew j is killed by
lcm(a1, . . . , am)2

(
s0 −

∑
i bi/ai

)
, for all j . Part (iv) is immediate from (i) and (iii). In Part (v), assume

that p divides a j . As the class of ew j is killed by p by hypothesis, we find from (iii) that the class of ev0

is trivial. □

2. Computation of self-intersections

Let B be a complete local noetherian ring that is two-dimensional and normal. It is known that a resolution
of singularities X → Spec(B) exists, and that it can be obtained from the sequence

X = Yt → Yt−1 → · · · → Y1 → Y0 = Spec(B),

where each Yi → Yi−1 is the normalization of the blow-up of the finitely many singular points of Yi−1;
see, e.g., [Lipman 1978, Theorem on page 151 and Remark B on page 155]. In this section we develop a
method for computing the self-intersection of particular irreducible components of the exceptional divisor
on X . This information is needed in the proofs of each of our explicit computation of resolutions in
Theorems 4.4, 6.3, 7.1, and 9.2. For the sake of exposition, we assume that the residue field k = B/mB is
algebraically closed.

Note that the process described above usually does not produce the minimal desingularization, as
some irreducible components of the exceptional divisor on X might be (−1)-curves, and thus contract to
smaller resolutions of singularities. This may even happen for the strict transforms of the exceptional
divisors on the first blow-up Y1; see Example in [Lipman 1969, page 205].

2.1. Let X → Spec(B) be any resolution of singularities, and write C1, . . . , Cn for the irreducible
components of the exceptional divisor. We then have intersection numbers

ci j = (Ci · C j )X := χ(OC j (Ci )) − χ(OC j ) = deg(OC j (Ci )),
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and can form the resulting intersection matrix N = (ci j )1≤i, j≤n . Associated with N is the connected
graph 0 = 0N with vertices v1, . . . , vn , and a pair of vertices vi ̸= v j is linked by exactly ci j edges. We
call 0 the resolution graph or the dual graph attached to X → Spec B.

Now consider a factorization X → Y → Spec B, where π : X → Y is the contraction of certain
exceptional curves, say Cs+1 ∪ · · · ∪ Cn . We regard the induced morphism Y → Spec(B) as a partial
resolution of singularities, and by definition of contraction, Y is normal. Write D1, . . . , Ds ⊂ Y for the
images in Y of the noncontracted curves C1, . . . , Cs ⊂ X . These images are Weil divisors which are not
necessarily Cartier. Following Mumford [1961, page 17] (see also [Fulton 1984, 7.1.16] or [Schröer 2019,
Theorem 1.2]) one has rational intersection numbers (Di · D j )Y ∈ Q obtained as follows: First define
the rational pull-back π∗(Di ) := Ci +

∑
k>s λkCk , where λs+1, . . . , λn ∈ Q are the fractions uniquely

determined by the conditions (π∗(Di ) · Ck)X = 0 for all s < k ≤ n. One then sets

(Di · D j )Y := (π∗(Di ) · C j )X = (π∗(Di ) · π∗(D j ))X .

These numbers actually do not depend on the choice of resolution π : X → Y .
Suppose now that π : X → Y is the contraction of all but the first curve C1. Assume furthermore that 0

is a tree. Let v be the vertex corresponding to C1, and consider the graph 0 ∖ {v} obtained from 0 by
removing the vertex v and all the edges attached to v. The graph 0 ∖ {v} decomposes into connected
components 0 ∖ {v} = 11 ∪ · · · ∪ 1r , with corresponding intersection matrices N1, . . . , Nr for each
component. Since 0 is a tree, there exists a unique vertex wi ∈ 1i which is adjacent to v in 0. Define
1′

i := 1i ∖ {wi }, with intersection matrix N ′

i . We call

δi := −
det(N ′

i )

det(Ni )
∈ Q>0

the correction term at wi (recall that the determinant of the empty matrix is 1, and we use this convention
if 1i is reduced to the single vertex wi ). The correction terms δi are indeed positive, since the signs of
det(Ni ) and det(N ′

i ) are given by (−1)ri and (−1)ri −1, where ri is the number of vertices of 1i . When
1i is a chain as in Section 1.1 corresponding to a fraction ai/bi , we have δi = bi/ai . The geometric
meaning of the correction terms is as follows:

Proposition 2.2. In the above situation, the integral self-intersection and the rational self-intersection are
related by the formula

(C1 · C1)X = (D1 · D1)Y −

r∑
i=1

δi .

Proof. For ease of notation, we let in this proof C = C1 and D = D1. Let N0 denote the lower-right
principal submatrix of N . Recall from our earlier description that N0 is a block diagonal matrix with
det(N0) =

∏r
i=1 det(Ni ). Then

(λ2, . . . , λn) = −((C · C2)X , . . . , (C · Cn)X )N−1
0 .
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It follows that

(D · D)Y = (π∗(D) · C)X = (C · C)X +

n∑
j=2

λ j (C j · C)X .

Since 0N is a tree, we find that if (C · C j )X ̸= 0, then (C · C j )X = 1. We only need to compute explicitly
λ j when (C · C j )X ̸= 0. According to our definitions, there are r such indices j and, renumbering
the components if necessary, we find that in each case, the coefficient λ j is the top left corner of the
corresponding matrix N−1

j , that is, det(N ′

j )/ det(N j ), as desired. □

We will use Proposition 2.2 in the following situation. Let b be an ideal in B, and let Z → Spec B
denote the blowing-up with center V (b). Denote by E ⊂ Z the schematic preimage of the center. Let
ν : Y → Z be the normalization map and denote by D = ν−1(E) the schematic preimage of E . Assume
that D, and hence E , are irreducible. Let Dred denote the support of D endowed with its induced reduced
structure. Letting Dred play the role of D1 in Proposition 2.2, we find a formula for the rational intersection
number (Dred · Dred)Y in term of data from a resolution X → Y . Our next proposition shows how to
obtain (Dred · Dred)Y from data associated with the blowing-up Z → Spec B.

The exceptional divisor E ⊂ Z is given by the sheaf of ideals OZ (1) ⊂ OZ . The reduction Ered is a
projective curve over the residue field k, allowing us to define the integral intersection number

(E · Ered)Z := χ(OEred(E)) − χ(OEred) = deg OEred(−1).

In practice, (E ·Ered)Z can often be computed, and such computation is done for instance in Proposition 3.6.
Let η denote the generic point of E , and set m := length(OE,η). When Z is normal, we have the

equality of Weil divisors E = m Ered. When Z is not normal, the abuse of notation E = m Ered should be
interpreted to mean that the length of the local ring OE,η is m.

Proposition 2.3. In the above situation where D, and hence E , are assumed irreducible, let m :=

length(OE,η) and let d ≥ 1 be the degree of the induced map ν : Dred → Ered. Then we have

(Dred · Dred)Y =
d2

m
(E · Ered)Z .

Proof. First, we check that (D · ν−1(F))Y = (E · F)Z for every effective Cartier divisor F ⊂ Z that
does not contain the support of E . The two intersection numbers are the k-degrees of the finite schemes
D ∩ν−1(F) and E ∩ F , respectively. Fix a point z ∈ E ∩ F , consider the local ring A := OF,z and choose
an element t ∈mA defining F ∩ E ⊂ F locally. Then A is a local noetherian ring of dimension one without
embedded components, and M := Oν−1(F),z is a finite A-module of rank one for which the multiplication
map t : M → M is injective. According to [EGA IV1 1964, Chapter IV, Lemma 21.10.13], the modules
A/t A and M/t M have the same A-length, hence also the same k-vector space dimension. Applying
this with a difference F − F ′ of effective Cartier divisors that are linearly equivalent to E , we conclude
(D · D)Y = (E · E)Z .
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To simplify notation write E ′
= Ered and D′

= Dred. Since Y us normal, we can write D = h D′ for
some h ≥ 1, and we get

h2(D′
· D′)Y = (D · D)Y = (E · E)Z = m(E · E ′)Z . (2-1)

We now use Kleiman’s theory of rational degrees deg(V ′/V ) ∈ Q≥0 for morphisms V ′
→ V between

irreducible proper schemes that are not necessarily integral [Kleiman 1966, Definition on page 277].
According to [Kleiman 1966, Lemma 2], the commutative diagram

D′
−−−→ Dy y

E ′
−−−→ E

gives the equation deg(D′/E ′) · deg(E ′/E) = deg(D′/D) · deg(D/E), and furthermore we have
deg(E ′/E) = 1/m and deg(D′/D) = 1/h. Thus deg(D′/E ′) = m/h. Inserting this into (2-1) yields the
assertion. □

3. Blowing up nonreduced centers

We begin this section with some general facts on the computation of blowing-ups, needed for instance to
fully justify the explicit computations done in Proposition 3.6. Let B be a noetherian ring, and let b ⊂ B
be an ideal. Endow the associated Rees ring

B[bT ] := B ⊕ bT ⊕ b2T 2
⊕ · · · ⊂ B[T ]

with the grading induced by the standard grading on B[T ]. The morphism Proj(B[bT ]) → Spec B is
called the blowing-up of Spec(B) with center Spec(B/b). We denote Proj(B[bT ]) by Blb(B) or, when
no confusion may ensue, simply by Z . Let E denote the schematic preimage in Z of the center of the
blowing-up.

Assume now that R is a noetherian ring with a surjection R → B. Let a denote the preimage in R
of the ideal b. Consider the blowing-up Z ′

:= Bla(R) with center V (a), and the commutative diagram
induced by the surjection R[aT ] → B[bT ] of Rees rings:

Z −−−→ Z ′y y
Spec B −−−→ Spec R

The horizontal morphisms are closed immersions.
Recall that an element f ∈ R is called regular if multiplication by f on R is an injective map. Assume

now that the kernel of R → B is generated by a regular element f ∈ R. Then Spec(B) is an effective
Cartier divisor in Spec(R), and our next proposition provides a criterion for checking whether the closed
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subscheme Z is an effective Cartier divisor in Z ′, when Z ′ and V (a) are “nice”. This criterion is explicit
and in general not very difficult to verify.

Each element g ∈ a defines a basic open set D+(g) := Spec R[aT ](gT ) of Z ′ called the g-chart. When
a = (g1, . . . , gr ), the union

⋃r
i=1 D+(gi ) is an affine open cover of Z ′.

Proposition 3.1. Let R be a noetherian ring, locally of complete intersection.1 Let g1, . . . , gr ∈ R be
a regular sequence, and set a := (g1, . . . , gr ). Let f ∈ R be a regular element contained in a, and set
B := R/( f ) and b := aB. Consider as above the blowing-ups Z → Spec B and Z ′

→ Spec R.
For each i = 1, . . . , r , choose a factorization f/1 = (gi/1)si hi in R[aT ](gi T ), with si ≥ 0 and hi ∈

R[aT ](gi T ). Assume that for each i , the closed subscheme V (hi , gi/1) of D+(gi ) has codimension two in
D+(gi ). Then:

(a) The closed subscheme Z of Z ′ is an effective Cartier divisor. Its restriction to the gi -chart D+(gi ) is
the closed subscheme V (hi ).

(b) The scheme Z is locally of complete intersection.

Proof. Part (a) follows from Proposition 3.2. Part (b) follows from Proposition 3.4. □

Proposition 3.2. Keep the notation introduced at the beginning of this section. Let g ∈ a. Suppose that
we have a factorization f/1 = (g/1)sh in R[aT ](gT ), for some s ≥ 0 and some element h ∈ R[aT ](gT ).
Suppose also that the following two assumptions hold:

(i) The closed subscheme V (h, g/1) of D+(g) has codimension at least two.

(ii) The basic open set D+(g) ⊂ Z ′ satisfies Serre’s condition (S2).

Then Z ∩ D+(g) = V (h) as closed subschemes of the g-chart D+(g).

Proof. By hypothesis, g/1 and h define two closed subschemes V (g/1) and V (h) in D+(g). All schemes
below are viewed as subschemes in Z ′

:= Bla(R). The conclusion of the proposition is implied by the
following two claims:

(a) The subsets D+(g) ∩ (Z \ E) and V (h) \ V (g/1), which are open in Z , are equal.
(b) The subscheme V (h) ∩ V (g/1) is an effective Cartier divisor on V (h).
Indeed, on one hand the schematic closure of the inclusion D+(g) ∩ (Z \ E) → D+(g) ∩ Z is

equal to D+(g) ∩ Z by Lemma 3.3, and on the other hand the schematic closure of the inclusion
V (h) ∩ V (g/1) → V (h) is equal to V (h), also by Lemma 3.3.

We leave it to the reader to verify (a). To prove (b), note that since f is regular in R, the element f/1
is regular in R[aT ](gT ). Thus V (h) and V (g/1) are two Cartier divisors in D+(g). We need to show that
the image of g/1 is not a zero-divisor in R[aT ](gT )/(h). Assumption (ii) implies that any effective Cartier
divisor on D+(g) satisfies Serre’s condition (S1). In particular, the ring R[aT ](gT )/(h) has no embedded
primes, and thus the zero divisors in R[aT ](gT )/(h) are contained in the minimal primes ideals. Krull’s

1Recall that g1, . . . , gd ∈ R is called a regular sequence if the class of gi is a regular element in the ring R/(g1, . . . , gi−1),
for each 1 ≤ i ≤ d. The ring R is called locally of complete intersection if for each p ∈ Spec R, the completion of Rp is
isomorphic to a ring of the form A/(a1, . . . , as), where A is a regular complete local ring, and a1, . . . , as is a regular sequence.
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principal ideal theorem shows the irreducible components of V (h) all have codimension one in D+(g).
Assumption (i) implies then that g/1 cannot be contained in a minimal prime ideal of R[aT ](gT )/(h).
Thus g/1 is regular in R[aT ](gT )/(h). □

Lemma 3.3. Let V be the complement of an effective Cartier divisor F on a noetherian scheme Y . Then
the schematic image in Y of the open embedding V → Y coincides with Y .

Proof. The assertion is local, so we may assume that Y = Spec(A) and F = V (g), where g ∈ A is a
regular element. The schematic image is defined by the kernel of the localization map A → Ag, with
a 7→ a/1. Since g is regular, this kernel is the zero ideal. □

In the context of Proposition 3.2, we say that the equation h = 0 is the strict transform of f = 0 on
the g-chart. One easily sees that condition (i) ensures that the exponent s ≥ 0 is the maximal exponent.
Note that in any case there is a factorization f/1 = (g/1)sh with maximal s ≥ 0, by Krull’s intersection
theorem, and the resulting factor h is unique because g/1 is regular. In light of Krull’s principal ideal
theorem, when V (h, g/1) has codimension at least two in D+(g), it has codimension exactly two. This
condition depends only on the radical ideal

√
(h, g/1), a remark which usually substantially simplifies

the computations.

Proposition 3.4. Suppose that the ideal a ⊂ R is generated by a regular sequence g1, . . . , gd ∈ R. If the
scheme S := Spec(R) satisfies Serre’s condition (Sm), or is locally of complete intersection, the same
holds for the blowing-up Bla(R).

Proof. The canonical module surjection R⊕d
→ a coming from the regular sequence yields a closed

embedding Bla(R) ⊂ Pd−1
R . Consider the short exact sequence

0 → F → O⊕d
P

(gi T )
−−→ OP(1) → 0

of locally free sheaves on P :=Pr
R . The kernel has rank(F )=d−1. Let F →OP be the composition of the

inclusion F ⊂ O⊗d
P followed by O⊕d

P
(gi )
−→ OP . According to [SGA 6 1971, Exposé VII, Proposition 1.8],

the image is the quasicoherent ideal corresponding to the closed subscheme X := Bla(R). Moreover, for
each point x ∈ X , the image of any basis in Fx in the local ring OP,x is a regular sequence contained in
the maximal ideal mx . More explicitly, we have

R[aT ](T g j ) = R[S1, . . . , Sd ]/(S1g j − g1, . . . , Sd g j − gd), (3-1)

where the identification is given by Si = gi T/g j T , and the generators in the above ideal form a regular
sequence in the polynomial ring. This result is due to Micali [1964, Theorem 1]. It follows that the
scheme Bla(R) is locally of complete intersection if this holds for the ring R.

Note that the relation S j g j − g j = 0 is equivalent to S j = 1, because g j is regular. In other words, in
(3-1) one may simply omit the indeterminate S j . Also note that if R is integral, so is the Rees ring, and
we may regard (3-1) as the R-subalgebra in Frac(R) generated by the fractions g1/g j , . . . , gd/g j .

Fix a point x ∈ X and consider the local ring A := OX,x . It remains to show that depth(A) ≥ m
or depth(A) = dim(A) < m. For this we may assume that S = Spec(R) is local, and that x lies
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over the closed point s ∈ S. Set c := d − 1. The local ring A′
:= OP,x has dim(A′) = dim(R) + c

and depth(A′) = depth(R) + c. Moreover, the residue class ring A has dim(A) = dim(A′) − c and
depth(A) = depth(A′) − c, the former by Krull’s principal ideal theorem, the latter by [EGA IV1 1964,
Chapter 0, Proposition 16.4.6]. The assertion on the Serre condition is immediate. □

3.5. Let us return now to the wild quotient singularities recalled in Section 0.2. Let R := k[[x, y, z]] be a
formal power series ring over a field k of characteristic p > 0, and consider the element

f := z p
− (µab)p−1z − a p y + bpx .

Here a, b ∈ k[[x, y]] is a system of parameters, and µ ∈ k[[x, y]]. Let B := R/( f ).
Let a := (a, b, z) ⊂ R. We call Z := BlaB(B) → Spec B the initial blowing-up. In Theorem 7.1 and

Theorem 9.2, we will later compute a complete resolution X → Z → Spec B of this initial blowing-up in
two special cases. Recall that the exceptional divisor E ⊂ Z is given by the sheaf of ideals OZ (1) ⊂ OZ .
Our next proposition computes the term (E · Ered)Z , needed for instance when applying Proposition 2.3.

Proposition 3.6. Keep the assumptions of Section 3.5. Then the following hold:

(i) The reduction Ered is isomorphic to the projective line P1
k .

(ii) The z-chart on Z is disjoint from the exceptional divisor, and thus is regular.

(iii) The scheme Z is locally of complete intersection.

(iv) We have (E · Ered)Z = −1.

(v) The local ring OE,η at the generic point η of E has length p · dimk k[[x, y]]/(a, b).

Proof. The blowing-up Bla(R) is covered by the a-chart, the b-chart and the z-chart. We start by examining
the a-chart, which is the spectrum of the ring

R[aT ](aT ) = R[b/a, z/a]/(b/a · a − b, z/a · a − z).

Consider the factorization f = a ph with

h :=

(
z
a

)p

− µp−1a p−1
(

b
a

)p−1( z
a

)
− y +

(
b
a

)p

x .

The radical J of the ideal generated by h and a in R[aT ](aT ) clearly contains b. It thus also contains
x and y, because a, b is a system of parameters in k[[x, y]]. Hence, J also contains z/a and z. It
follows that the subscheme V (h, a) of the a-chart is one-dimensional. According to Proposition 3.1, the
scheme BlaB(B) coincides on the a-chart with the effective Cartier divisor defined by the equation h = 0.
The exceptional divisor is given by the additional equation a = 0, and thus equals Spec A, where A is
the quotient of k[[x, y, z]][b/a, z/a] modulo the ideal generated by a, b, z, and (z/a)p

− y + (b/a)px .
Let Q := (x, y, z/a) ⊂ A. Since the classes of x, y, z/a are nilpotent, and since the quotient A/Q is
isomorphic to the domain k[b/a], we find that Q is the minimal prime ideal of A.
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One easily sees that the z-chart on Bla(R) is disjoint from the exceptional divisor. The situation for the
b-chart is similar to the a-chart, and it follows that BlaB(B) is locally of complete intersection. Moreover,
the reduced exceptional divisor Ered = Spec k[b/a] ∪ Spec k[a/b] is a copy of P1

k .
The restriction to Ered of the invertible sheaf OZ (1) = OZ (−E) is generated by the elements aT/1 and

bT/1 on the two charts, respectively. Viewing a/b ∈ k[a/b, b/a]
× as a cocycle, one deduces that OZ (1)

has degree 1 on Ered, so that (E · Ered)Z = −1.
It remains to compute the length of OE,η. The coordinate ring of the exceptional divisor E on the

a-chart is given by

R[b/a, z/a]/(b/a · a − b, z/a · a − z, h, a).

Clearly, the ideal on the right is also generated by b, z, h, a. In turn, the above ring is isomorphic
to k[x, y, b/a, z/a]/(a, b, h). Regard the latter as 3[z/a]/(h), where 3 is the polynomial ring in the
indeterminate b/a over the local Artin ring k[x, y]/(a, b). The ring extension 3 ⊂ 3[z/a]/(h) is finite
and free, because h is a monic in z/a. All coefficients of h except the leading one are nilpotent in 3,
consequently z/a becomes nilpotent modulo h. It follows that 3 ⊂ 3[z/a]/(h) induces bijections on
all residue fields. Clearly, the minimal prime p ⊂ 3 is generated by x and y. In turn, the local Artin
ring 3p has length dimk k[x, y]/(a, b), whereas the local Artin ring OE,η = 3p[z/a]/(h) has length
deg(h) · length(3p) = p · dimk k[x, y]/(a, b). □

Remark 3.7. Keep the notation recalled in Section 3.5. Let µ ∈ k[[x, y]] and assume that it is a unit,
or that it is nonzero and coprime to both a and b. The ring B = k[[x, y, z]]/( f ) can be identified with
the ring of invariants AG for an action of the group G := Z/pZ on the ring A := k[[u, v]], as recalled
in Section 0.2, where the generator acts via u 7→ u + µa and v 7→ v + µb. Under this identification,
the element z corresponds to ub − va. We note below that the initial blowing-up BlaB(B) → Spec(B)

considered in Proposition 3.6 is canonically associated to the action.
Indeed, the fixed scheme of the action is by definition the largest closed subscheme of Spec A on which

the action is trivial, and we find that for the above action it corresponds to the ideal I := (σ (u)−u, σ (v)−v)

= (µa, µb) in A. Under the above identification B = AG we have z = ub − va, and therefore µz ∈ I .
We find that (µa, µb, µz) ⊆ I ∩ B. The reverse inclusion also holds since A is flat over k[[x, y]] (same
proof as in [Schröer 2009, Lemma 1.5], when p = 2 and a similar choice of initial blow-up was also
used). Thus the ideals I ∩ B and aB = (a, b, z) coincide up to the factor µ and, hence, the total spaces of
the resulting blowing-ups coincide.

4. Some weighted homogeneous singularities

Let k be an algebraically closed field of characteristic exponent p ≥ 1. The goal of this section is to
describe a resolution of the singularity at the origin on the hypersurface given by the equation

W q
− U a V b(V d

− U c) = 0
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when the integers p, q, a, b, c, d ≥ 1 are subject to certain mild restrictions. This is achieved in
Theorem 4.4. Note that this singularity is not necessarily isolated. The above polynomial is weighted
homogeneous, and resolutions of such singularities were already studied by Orlik and Wagreich [1971a;
1971b; 1977], exploiting Gm-actions corresponding to the weights. The former two papers rely on
transcendental methods, and the latter mainly treats the case of isolated singularities. Our method is
completely algebraic, and relies on the theory of toric varieties and Hirzebruch–Jung singularities.

To compute a resolution of our surface singularity, we first make an initial blow-up that separates the
irreducible components of the plane curve U a V b(V d

−U c) = 0. We then pass to certain nicer subrings of
the charts, and identify their formal completions with suitable monoid rings. This necessitates taking roots
of power series along the way, requiring some restrictions on the integers p, q, a, b, c, d as in Section 4.3.

Let us start with a brief review of the theory of Hirzebruch–Jung singularities. Suppose that t, r ≥ 1
and s ≥ 0 are integers such that ρ := gcd(t, r, s) is prime to p. Consider the ring

R := k[U, V, W ]/(W t
− U r V s).

We have a factorization W t
− U r V s

=
∏

(W t/ρ
− ζU r/ρV s/ρ), where the product runs over the ρ-th

roots of unity ζ in k. The corresponding minimal primes p1, . . . , pρ ⊂ R define a partial normalization
R ⊂

∏
R/pi , and it usually suffices to understand the rings R/pi .

4.1. Assume from now on that ρ = 1, so that R is an integral domain. Let R′ be its normalization. To
describe the resolution of the singularity of Spec R′ at the maximal ideal (U, V, W ) when Spec R′ is
singular at this point, it is standard to first express R′ as the normalization of a different domain R0, as we
now recall. Given the triple (t, r, s), we describe below its fraction type, which can be 0, and when the
fraction type is not 0, it is equal to (t ′

− s ′)/t ′, where (t ′, 1, s ′) is the unique triple with 0 < s ′ < t ′ and s ′

coprime to t ′ such that R′ can be identified with the normalization of the ring R0 := k[u, v, w]/(wt ′
−uvs′

).
Let DU and DV denote the preimages in Spec R′ of the closed subsets of Spec R defined by U = W = 0

and V = W = 0, respectively. The identification of R′ as the normalization of R0 is such that the closed
subsets DU and DV on Spec R′ are again equal to the preimages under the new normalization map
Spec R′

→ Spec R0 of the closed subsets of Spec R0 defined by u = w = 0 and v = w = 0, respectively.
We leave it to the reader to check this claim, for instance using the explicit description of R0 recalled
below.

Write r = r0 + ct and s = s0 + dt for some integers r0, s0, c, d ≥ 0 with r0, s0 < t . Then the fraction
W/(U cV d) is integral over R since it satisfies the equation (W/(U cV d))t

= U r0 V s0 . We can thus replace
R by R[W/(U cV d)]. In particular, if either r or s is divisible by t , then R′ is regular above (U, V, W ).
We define in this case the fraction type of R or R′ to be 0. If R′ is not regular, then upon replacing R
with R[W/(U cV d)] we may assume that 0 < r, s < t .

Let h := gcd(t, r) and h′
:= gcd(t, s). Since gcd(t, r, s) = 1, we find that gcd(r, h′) = gcd(s, h) = 1.

Thus we can write ar = 1 + bh′ and cs = 1 + dh for some nonnegative integers a, b, c, d. Let U1 :=

W at/h′

/(U (ar−1)/h′

V as/h′

) and V1 := W ct/h/(U cr/h V (cs−1)/h). We find that U h′

1 = U and V h
1 = V . In
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the integral extension R[U1, V1], we find that W t/(hh′)
= U r/h

1 V s/h′

1 . If r divides t/h′, or if s divides t/h,
we find that R′ is regular above (U, V, W ), and we define again in this case the fraction type of R or R′

to be 0.
Assume then that R′ is not regular. Replacing R with R[U1, V1], we may assume now that h = h′

= 1,
and upon replacing R by a larger integral extension if necessary, we can also assume that 0 < r, s < t . In
this process, t has been replaced by t/hh′.

There exists a unique integer e with 0 < e < t and er = s + ct for some integer c. Since s < t by
assumption, we find that c ≥ 0. Consider the ring R1 := k[U, V, Z ]/(Z t

−U r V s+ct). We find that this ring
has two natural integral extensions. Indeed, R1[Z/V c

] is isomorphic to the ring R. Writing rρ = 1 + f t
for some integers ρ, f ≥ 0, we find that w := Zρ/(U V e) f is such that wr

= Z and wt
= U V e. Thus

R1[w] is integral over R1 and isomorphic to R0 := k[U, V, W ]/(W t
− U V e). We define in this case the

fraction type of R or R′ to be (t − e)/t , with 0 < (t − e)/t < 1 and gcd(e, t) = 1. This concludes our
description of how to compute the fraction type of the ring R.

Given a resolution of singularities X → Spec R′, we write C ⊂ X for the exceptional curve, and CU and
CV for the strict transforms in X of the Weil divisors DU and DV on Spec R′, respectively. We endow all
these closed subsets with the induced reduced structure of scheme. The following theorem is well-known
(see, e.g., the pictures in [Kempf et al. 1973, page 37] or [Conrad et al. 2003, Theorem 2.4.1]), but we
did not find a suitable reference in the literature which also proved the statement regarding the divisors
CU and CV . We include a sketch of proof below, with references, for the convenience of the reader.

Theorem 4.2. Let s and t be coprime integers with 0 < s < t . Let R := k[U, V, W ]/(W t
− U V s) and

denote by R′ its normalization. There is a resolution of singularities X → Spec R′ such that CU ∪C ∪CV

is a divisor with simple normal crossings having the following dual graph:

−s1 −s2 −sℓ−1 −sℓ

CU CV

The integer ℓ ≥ 1 and the self-intersection numbers −si are computed from the continued fraction
expansion t/(t − s) = [s1, . . . , sℓ] as described in (1-1). Moreover, the irreducible components of C are
isomorphic to P1

k .

Proof. The proof relies on the theory of toric varieties, and we refer the reader to the monographs [Cox
et al. 2011; Danilov 1978; Kempf et al. 1973] for the general theory. The book [Cox et al. 2011] assumes
from the onset that the characteristic of k is 0, but the proofs of the results quoted below are valid in all
characteristics and can be applied to our purposes. We identify Z := Spec R as an explicit (nonnormal)
toric variety, and use the general theory of toric varieties to describe the normalization Y → Z and the
toric resolution X6 → Y attached to an explicit fan 6.

Consider the lattices N := Z2 and M := Hom(N , Z). Write e1, e2 ∈ N for the standard basis of N , and
e∗

1, e∗

2 ∈ M for the dual basis. Let σ ⊂ NR := N ⊗Z R be the closed convex cone generated by the vectors
e2 and te1 − (t − s)e2. The dual cone σ∨

⊂ MR is generated by α := (t − s)e∗

1 + te∗

2 and β := e∗

1 . Let
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γ := e∗

1 + e∗

2 , and let S ⊂ M be the submonoid generated by α, β, γ . We have the relation tγ = α + sβ,
and can identify k[U, V, W ]/(W t

− U V s) with the monoid ring k[S] via U 7→ α, V 7→ β, and W 7→ γ .
Let S′

:= σ∨
∩ M . Clearly, the abelian group M is generated by β and γ . It follows that α ∈ M and,

hence, S ⊆ S′. Since S′ is always saturated, S′ is equal to the saturation of the monoid S. It follows that
the normal toric variety Y attached to N and σ , namely Y := Spec k[σ∨

∩ M], is the normalization of the
nonnormal toric variety Z := Spec k[S].

The cone σ is in normal form, and since t > s > 0, [Cox et al. 2011, Theorem 10.2.3], provides
an explicit description of a refinement fan 6 of σ such that the induced morphism X6 → Y is a toric
resolution of singularities. Using the Hirzebruch–Jung continued fraction [s1, . . . , sℓ] of t/(t − s), one
constructs a sequence of vectors u0 := e2, u1, . . . , uℓ, uℓ+1 := te1 − (t − s)e2 such that σ =

⋃ℓ+1
i=1 σi with

σi the cone generated by ui−1 and ui . The fan 6 consists of the cones σi and their faces.
Using the orbit-cone correspondence [Cox et al. 2011, Theorem 3.2.6], we find that the ray generated

by ui , i = 0, . . . , ℓ + 1, corresponds to a curve Ci on X6 . Since 6 is a simplicial fan, the intersection
products (Ci · C j )X6

with 0 ≤ i ̸= j ≤ ℓ + 1 can be computed as in [loc. cit., Corollary 6.4.3], and are
found to equal 1. The self-intersections (Ci · Ci )X6

for i = 1, . . . , ℓ are computed to equal −si using
Theorem 10.2.5, along with Theorem 10.4.4, of [loc. cit.].

The curve C1 ∪ · · · ∪ Cℓ is the exceptional divisor of the toric desingularization X6 → Y . Using the
orbit-cone correspondence for the surface Y , we let D and D′ denote the curves on Y corresponding to
the rays in the cone σ generated e2 and te1 − (t − s)e2, respectively. The natural properties of the map
X6 → Y implies that D is the image of C0, and D′ is the image of Cℓ+1. The proof is concluded by the
fact that D is the reduced preimage of the Weil divisor U = W = 0 on Z , and that similarly, D′ is the
reduced preimage of the Weil divisor V = W = 0 on Z . □

4.3. Let q, a, b, c, d ≥ 1 be integers. Set

m := ad + bc + cd and g := gcd(c, d).

Noting that m/g is an integer, we further set

h := gcd(q, m/g), ha := gcd(q, m/g, a), and hb := gcd(q, m/g, b).

In our main result below on the resolution of the hypersurface singularity W q
− U a V b(V d

− U c) = 0,
we assume that

gcd(a, c/g) = gcd(b, d/g) = 1 and gcd(p, hg) = 1. (4-1)

Note that the latter condition automatically holds when p = 1. The reader will easily check that the
condition gcd(a, c/g) = 1 is equivalent to the condition gcd(m/g, c/g) = 1. Similarly, gcd(b, d/g) = 1
if and only if gcd(m/g, d/g) = 1.
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Denote by α, β, γ ∈Q<1 the fraction types (see Section 4.1) of the normal Hirzebruch–Jung singularities
associated with the triples (t, r, s) given by(

qc
gha

,
m

gha
,

a
ha

)
,

(
qd
ghb

,
m

ghb
,

b
hb

)
, and

(
q,

m
g

, 1
)

,

respectively. Finally, set

s0 :=
h2g2

qcd
+ haα + hbβ + gγ. (4-2)

We are now ready to state the main result of this section. Three complements to Theorem 4.4 are given in
Propositions 4.7–4.9.

Theorem 4.4. Set B := k[U, V, W ]/(W q
−U a V b(V d

−U c)), and assume that the conditions (4-1) hold.
With the above notation, we have the following:

(i) The fraction s0 > 0 is an integer.

(ii) The hypersurface singularity has a resolution of singularities X → Spec(B) where, using the notation
in Section 1.2, the exceptional divisor C ⊂ X has star-shaped dual graph

0 = 0(s0 | α−1, . . . , α−1︸ ︷︷ ︸
ha

, β−1, . . . , β−1︸ ︷︷ ︸
hb

, γ −1, . . . , γ −1︸ ︷︷ ︸
g

)

when α, β, γ > 0. When α (resp. β, resp. γ ) equals 0 (e.g., when q divides m/g), the graph 0 is as
above except that the corresponding ha (resp. hb, resp. g) chains are removed.

(iii) The curve C has simple normal crossings. All irreducible components of C are copies of P1
k , except

possibly for the central node. When h = 1, the central node is also isomorphic to P1
k .

Proof. Since our ground field k is algebraically closed, we can rewrite the defining polynomial for our
hypersurface singularity as

f = W q
− U a V b

∏
ζ

(V d/g
− ζU c/g),

where the product runs over the g-th roots of unity ζ ∈ k. Assumption (4-1) ensures that we have exactly
g ≥ 1 distinct factors in the product.

To construct the desired resolution of singularities X → Spec(B), we first make an initial blowing-up
Z := BlaB(B) → Spec(B), for the ideal a := (U c/g, V d/g) in the polynomial ring R := k[U, V, W ]. The
ambient blowing-up Bla(R) has two charts, the U c/g-chart and the V d/g-chart. The former is given by
four generators U, V, W, V d/g/U c/g subject to the single relation(

V d/g

U c/g

)
· U c/g

= V d/g, (4-3)

as recalled in Proposition 3.4. On this chart we rewrite the defining polynomial as

f = W q
− U a+cV b

·

∏
ζ

(V d/g/U c/g
− ζ ). (4-4)
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Clearly, the radical of the ideal generated by f and U c/g contains U , V , and W . Hence, its zero-locus is
one-dimensional, and according to Proposition 3.1 the blowing-up Z = BlaB(B) on the U c/g-chart of
Bla(R) is the effective Cartier divisor with equation f = 0. In other words, write A′ for the coordinate
ring of the blowing-up Z = BlaB(B) on the U c/g-chart. Then this ring is generated by four indeterminates
U, V, W, V d/g/U c/g subject to the two relations (4-3) and f = 0 with f as in (4-4).

4.5. The exceptional divisor E ⊂ Z is given by f = U c/g
= 0 on this chart. The reduction Ered is defined

by U = V = W = 0, and V d/g/U c/g can be regarded as a coordinate function. The situation on the
V d/g-chart is symmetric, and we conclude that Ered = P1

k is a projective line. This description also yields
the intersection number: Recall that the ambient Bla(R) is the homogeneous spectrum of the Rees ring
R[aT ], so the invertible sheaf OZ (1) is generated by T U c/g and T V d/g on our two charts. In turn, the
restriction to Ered = P1

k is given by the cocycle U c/g/V d/g, and it follows that (E · Ered)Z = −1.

4.6. Let us note here also that the multiplicity of E is qcd/g2. This can be seen as follows. On the
U c/g-chart, the scheme Ered is defined by the ideal Q := (U, V, W ). Thus the multiplicity of E can
be computed as the length of the ring (A′/(U c/g))Q . It is easy to verify that the ring A′/(U c/g) is
k-isomorphic to the ring (k[U, V, W ]/(U c/g, V d/g, W q))[V d/g/U c/g

], and the claim follows.
The ring A′ is locally of complete intersection, but usually fails to be normal. Let ν : Y → Z = BlaB(B)

denote the normalization morphism. To understand the normalization and minimal resolution of the
singularities of the chart Spec A′ of Z , we pass to a subring A of A′ with only three generators and one
relation that has the same normalization as A′. It turns out that on formal completions, the resolution
of singularities of A is given by the theory of toric surface (i.e., Hirzebruch–Jung) singularities. This
formal passage to toric varieties requires the existence of certain roots of formal power series. When
p > 1, their existence follows from Hensel’s lemma together with the conditions (4-1), which imply that
gcd(m/g, c/g) and gcd(m/g, d/g) are coprime to p.

We proceed as follows: Let A be the k-subalgebra of A′ generated by the three elements U, W , and
V d/g/U c/g. The ring extension A ⊂ A′ is finite, because A′

= A[V ] and the generator V satisfies the
integral equation V d/g

− U c/g(V d/g/U c/g) = 0 in (4-3). Clearly, V d/g
∈ A, and the relation (4-4) shows

that V b
∈ Frac(A). Since we assume that gcd(b, d/g)= 1 in (4-1), we find that V can be written as rational

function in V b and V d/g and, hence, V ∈ Frac(A). It follows that the rings A and A′ have the same integral
closure in Frac(A). The reduced exceptional divisor on Spec(A′) is defined by the ideal (U, V, W ), and
the restriction of Spec(A′) → Spec(A) to it is a closed embedding, because V d/g/U c/g

∈ A and thus the
map A → A′/(U, V, W ) = k[V d/g/U c/g

] is surjective.
It turns out that the subring A has a much nicer description than A′, in particular when passing to

formal completions along the exceptional divisor. Recall that m := ad + cd + bc. Taking the d/g-power
of (4-4) and using (4-3) we get a single relation

W qd/g
= U m/g

(
V d/g

U c/g

)b

·

∏
ζ

(V d/g/U c/g
− ζ )d/g. (4-5)
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Since b and d/g are coprime by assumption (4-1), we find that wqd/g
= um/gzb ∏

ζ (z − ζ )d/g is an
irreducible polynomial in k[u, w, z]. By abuse of notation, we will also say that the equation (4-5)
is irreducible. Using Krull’s principal ideal theorem, we conclude that the algebra A is generated by
U, W, V d/g/U c/g subject to the single relation (4-5).

To understand the normalization of A, we pass to formal completions Âm with respect to maximal
ideals m of the form (U, W, V d/g/U c/g

− ξ) for various scalars ξ ∈ k. Note that these maximal ideals
correspond to points on the exceptional divisor.

Let us start with the simplest case where ξ is neither zero nor a g-th root of unity; here it turns out that
the normalization of Âm is regular. Indeed, the relation (4-5) now takes the form

W qd/g
= U m/g

· δ (4-6)

for some unit δ ∈ Âm. To proceed, we first verify that gcd(qd/g, m/g, p) = 1. This is clear when p = 1,
so let us assume that p ≥ 2 is prime. Suppose that p divides both qd/g and m/g. Since p does not divide
h = gcd(q, m/g) by hypothesis, we have p ∤q and, hence, p | d/g, contradicting gcd(d/g, m/g) = 1,
which we also assume in (4-1).

We conclude that there exist positive integers r and s such that ℓ := r(m/g) − s(qd/g) is coprime to
p ≥ 1. With Hensel’s lemma we find roots δ1 := δr/ℓ and δ2 := δs/ℓ in Âm, and obtain a factorization
δ = δ

m/g
1 /δ

qd/g
2 . It follows that Âm is isomorphic to the complete local ring described by the same three

generators, but with a modified relation (4-6) in which δ = 1. This shows that Âm is isomorphic to
a complete local ring for a point on the product of a plane curve with the affine line. Consequently,
the normalization is indeed regular. Note that the plane curve is usually reducible, and the number of
irreducible components is our integer h = gcd(q, m/g) = gcd(qd/g, m/g).

Next, assume that ξ = ζ is one of the g-th root of unity. Rewrite (4-5) as

W qd/g
= U m/g

(
V d/g

U c/g − ζ

)d/g

· δ (4-7)

for some unit δ ∈ Âm. As in the preceding paragraph, one reduces the situation to δ = 1. Since we noted
in Section 4.3 that gcd(d/g, m/g) = 1, the above relation is then irreducible.

Consider the triple (t, r, s) = (qd/g, m/g, d/g). We identify Âm with k[[u, v, w]]/(wt
− urvs). Using

the results reviewed in Section 4.1 and Theorem 4.2 regarding the desingularization of Spec k[u, v, w]/

(wt
− urvs), we find that the singularity on Âm is a Hirzebruch–Jung singularity of fraction type γ .

Finally, assume that ξ = 0. Our relation becomes

W qd/g
= U m/g

(
V d/g

U c/g

)b

· δ

for some unit δ ∈ Âm, and again we reduce to the situation δ = 1. The above equation is usually not
irreducible, and the number of irreducible factors is our integer hb = gcd(q, m/g, b), which also equals
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gcd(qd/g, m/g, b) since we noted in Section 4.3 that gcd(d/g, m/g) = 1. Let p1, . . . , phb ⊂ Âm be the
resulting minimal prime ideals.

Consider the triple (t, r, s) = (qd/(ghb), m/(ghb), b/hb). We identify Âm/pi with k[[u, v, w]]/

(wt
−urvs). Using the results reviewed in Section 4.1 and Theorem 4.2 regarding the desingularization of

Spec k[u, v, w]/(wt
−urvs), we find that the singularity on Âm/pi has the resolution of a Hirzebruch–Jung

singularity of fraction type β. The number of such singularities on the normalization of Âm is hb ≥ 1.
The situation on the V d/g-chart is symmetric, where ha ≥ 1 Hirzebruch–Jung singularities of frac-

tion type α appear. Summing up, we have described the singularities appearing on the normalization
ν : Y → Z = BlaB(B).

Recall from Section 4.5 that the exceptional divisor E ⊂ Z has reduction Ered = P1
k , with coordinate

rings k[V d/g/U c/g
] and k[U c/g/V d/g

]. Write D := ν−1(E) for the preimage of the exceptional divisor
under the map ν. We now analyze the induced morphism Dred → Ered. This morphism is flat, because
Ered is regular. The formal description of the normalization ν : Y → Z via inclusions k[[S]] ⊂ k[[S′

]] of
monoid rings shows that Dred is regular. Equation (4-6) implies that

deg(Dred/Ered) = gcd(q, m/g) = h. (4-8)

In a similar way, (4-7) tells us that Dred → Ered is completely ramified over the points where V d/g/U c/g
=ξ

is a g-th root of unity. Hence, the curve Dred is connected. Since it is also regular, it is in fact irreducible.
We can then apply Proposition 2.3 along with Sections 4.5 and 4.6 and obtain that

(Dred · Dred)Y =
h2

(qcd/g2)
(E · Ered)Z = −h2g2/qcd.

Let X → Y be the resolution of singularities obtained by resolving the Hirzebruch–Jung singularities
of fraction types α, β and γ occurring on Y . The resulting dual graph 0 is star-shaped, with the central
node corresponding to the strict transform C0 ⊂ X of Dred ⊂ Y . When γ > 0, there are g terminal chains
obtained from the continued fraction development of 1/γ = [s1, . . . , sℓ]. Using the identification of Âm

with the completion of k[u, v, w]/(wqd/g
−um/gvd/g) at (u, v, w) discussed above, as well as Theorem 4.2

and the identifications reviewed in Section 4.1, one sees that the vertex of the terminal chain adjacent to the
central node has self-intersection −s1. The situation for the other Hirzebruch–Jung singularities is similar.

It is now an easy matter to compute the self-intersection (C0 ·C0)X using Proposition 2.2, which asserts
that (C0 · C0)X = (Dred · Dred)Y −

∑
i δi . There are ha correcting terms α, hb correcting terms β, and g

correcting terms γ (see just before Proposition 2.2 for the correcting term of a chain). Hence, −(C0·C0)X =

s0 (see (4-2)), as desired. Since (C0 · C0)X is the self-intersection of a curve on a regular surface, we find
that it must be a negative integer, proving (i). To complete the proof of Theorem 4.4 it remains to show in
(iii) that the central node C0 is a rational curve when h =1. This is done using the following proposition. □

Proposition 4.7. Keep the hypotheses of Theorem 4.4. Let v0 ∈ 0 be the central node, and let C0 ⊂ X be
the corresponding curve on the resolution X → Spec B. We have h1(OC0) = (g(h − 1) + 2 − ha − hb)/2.
In particular, when h = 1, h1(OC0) = 0.
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Proof. Consider the ramified covering C0 → Ered = P1
k induced from the morphism X → Z . It follows

from (4-8) that the degree of this map is h. Assumption (4-1) ensures that this degree is coprime to the
characteristic exponent, so that the map is separable. Let us regard the closed points on P1

k as elements
ξ ∈ k ∪ {∞}. The description of the normalization of the rings Âm in the preceding proof shows that
C0 → P1

k is totally ramified over each of the g-th roots of unity in k, and therefore the ramification indices
are coprime to p. Furthermore, there are ha points in C0 over ξ = 0 and all these points have the same
ramification index h/ha . Similarly, there are hb points in C0 over ξ = ∞ with ramification index h/hb.
Applying the Riemann–Hurwitz formula 2h1(OC0) − 2 = h(2h1(OP1

k
) − 2) +

∑
x(ex − 1), we get the

desired formula (where ex denotes the ramification index of the morphism at x). □

Keep the hypotheses of Theorem 4.4. The scheme Spec(B) contains two copies of the affine line, given
by the equations U = W = 0 and V = W = 0. Write CU and CV for their respective strict transforms
in X with respect to the resolution X → Spec(B). For a later application in Theorem 7.1, we explicitly
determine below how these curves intersect the exceptional divisor C ⊂ X when h = 1. Under this
additional hypothesis, the partial resolution Y → Spec B contains exactly one Hirzebruch–Jung singularity
of fraction type α and one of type β. Let 1α and 1β be the terminal chains of 0 resulting from resolving
these two singularities. Write Cα and Cβ for the irreducible components of C corresponding to the
terminal vertices of 0 lying on 1α and 1β , respectively.

Proposition 4.8. Keep the hypotheses of Theorem 4.4. Assume that h = 1. Then the strict transform CV

intersects the exceptional divisor C only in Cβ , with intersection number (CV · Cβ)X = 1. Likewise, CU

intersects C only in Cα, with (CU · Cα)X = 1.

Proof. By symmetry, it suffices to verify the first assertion. Let us first work with the effective Cartier
divisor on Spec(B) given by V d/g

= 0. Its strict transform C ′

V ⊂ X has the same support as CV . Using
the notation from the proof of Theorem 4.4, we see that its image on Spec(A) is given by V d/g/U c/d

= 0.
Using Theorem 4.2 one infers that C ′

V intersects only Cβ , and that its reduction has intersection number
(CV · Cβ)X = 1. □

Proposition 4.9. Keep the hypotheses of Theorem 4.4, and suppose furthermore that p = q. Set ap := 1
if p | a, and ap := 0 otherwise. Similarly, set bp := 1 if p | b, and bp := 0 otherwise. Let N denote the
intersection matrix of the resolution of the hypersurface singularity

W p
− U a V b(V d

− U c) = 0

described in Theorem 4.4. Then |8N | = pg+1−ap−bp , and the group 8N is killed by p.

Proof. First note that for q = p = 1, the assertion is trivially true, because then our hypersurface singularity
is actually regular. So we may assume that q = p ≥ 2 is a prime number. From our assumptions (4-1),
one easily sees that m/g is coprime to p, pc/g and pd/g. In particular, we have h = ha = hb = 1. The
triples (t, r, s) in Section 4.3 specialize to (pc/g, m/g, a), (pd/g, m/g, b), and (p, m/g, 1), respectively.
Furthermore, the resulting reduced fractions α, β, γ ∈ Q have as denominators the integers p1−ap c/g,
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p1−bp d/g, and p, respectively. According to Theorem 4.4, the graph 0N is star-shaped. Thus we may
compute the determinant of the intersection matrix with Proposition 1.3 and obtain

|det(N )| = (p1−ap c/g)(p1−bp d/g)pg(s0 − α − β − gγ ).

The last factor is g2/pcd in light of the formula (4-2) for the self-intersection −s0 of the central node in
Theorem 4.4. Thus |8N | = |det(N )| = pg+1−ap−bp .

The group structure of 8N can be obtained by computing the Smith normal form of the matrix N ,
using a row and column reduction of N . Reducing the intersection matrix of each terminal chain as in
[Lorenzini 1992, Lemma 2.5], we find that the matrix N is equivalent to a block diagonal matrix with
two blocks, a square matrix A of size (g + 3) × (g + 3) that we describe below, and an identity matrix:

A :=



−s0 ∗ ∗ ∗ . . . ∗

1 −p1−ap c/g 0 0 0
1 0 −p1−bp d/g 0 0
1 0 0 −p 0
...

. . .
...

1 −p


The matrix A ⊗ Fp has g + ap + bp rows equal to (1, 0, . . . , 0), and we see that the rank of A is at most
r :=1+bp+ap+1. In turn, the vector space dimension of the cokernel is at least g+3−r = g+1−ap−bp.
It follows that 8N = 8N ⊗ Fp. □

Remark 4.10. The explicit resolution of W p
− U V (V − U p) = 0 is needed in the proof of Theorem 7.1.

In this case, the intersection matrix is N = N (2 | p/(p − 1), p/(p − 1), p2/(2p − 1)), with |8N | = p2.
When p is odd, we do not know if this intersection matrix can occur as the intersection matrix of the
resolution of a Z/pZ-quotient singularity. When p = 2, this equation defines the singularity D0

6 with
trivial local fundamental group [Artin 1977]. The singularity D1

6 is a wild Z/2Z-quotient singularity 8.5.
More generally, one might wonder whether every intersection matrix arising in Proposition 4.9 can

occur as the intersection matrix of the resolution of a Z/pZ-quotient singularity. We discuss the case of
W p

−U pV p(V pm+1
−U pn+1) and W p

−U V (V pm−1
−U pn−1) in Theorem 5.3. We note in Remark 8.5

how the intersection matrix of the resolution of the singularity defined by W p
− U V (V pm

− U pn−1) = 0
might occur as the intersection matrix of the resolution of a Z/pZ-quotient singularity.

Remark 4.11. The resolution X → Y → Spec B provided in Theorem 4.4 is not always minimal. This
can be seen already in the case where q = 1, in which case Spec B is regular, but the exceptional divisor
C on X is not reduced to a point. The graph 0 consists in this case of a central node of self-intersection
−1 with two terminal chains obtained by resolving Hirzebruch–Jung singularities associated with the
triples (c/g, m/g, a) and (d/g, m/g, b). The fraction types of these triples are independent of a and b.
Indeed, let ρ, σ > 0 be the unique positive integers such that ρ(d/g) + σ(c/g) = 1 + (c/g)(d/g). Then
the triple (c/g, m/g, a) reduces to (c/g, 1, ρ), and (d/g, m/g, b) reduces to (d/g, 1, σ ).
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Other examples where the resolution is not minimal can also be obtained when q > 1; for instance,
when p = 2, the singularity W 2

− U 2V 2(V 7
− U 3) = 0 (resp. W 2

− U 2V (V 4
− U 3) = 0) admits a

resolution with smooth rational curves and dual graph drawn on the left below (resp. on the right):

−2 −1

−7

−3 −2 −1

−8

−3

5. Brieskorn singularities

Let k be an algebraically closed field of characteristic exponent p ≥ 1. Let q, c, d ≥ 2 be integers, with q
coprime to cd . Let

B := k[[x, y, z]]/(zq
+ xc

+ yd).

We study in this section properties of the singularity Spec B. Let g := gcd(c, d).

Theorem 5.1. Assume that gcd(p, g) = 1. Then Spec B admits a star-shaped resolution of singularities
X → Spec B whose associated intersection matrix is

N = N (s0 | a1/b1, a2/b2, a0/b0, . . . , a0/b0︸ ︷︷ ︸
g entries

),

where N is specified as follows (notation as in Section 1.2). Let

a1 := c/g, a2 := d/g, and a0 := q.

Set ℓ1 := dq/g, ℓ2 := cq/g and ℓ0 := cd/g, and define bi by biℓi ≡ −1 mod ai and 0 ≤ bi < ai . Finally,
set

s0 := g2/cdq + b1/a1 + b2/a2 + gb0/q.

In case a1 = 1 (resp. a2 = 1), in which case b1 = 0 (resp. b2 = 0), we remove the term a1/b1 (resp. a2/b2)
from the matrix N.

When q = p, the associated discriminant group 8N is killed by p and has order pg−1.

Proof. Consider the weighted homogeneous singularity

C := k[[x, Y, Z ]]/(Zq
− xqY q(Y d

− xc)).

Since we assume that gcd(p, g) = 1 and q is coprime to cd, the conditions (4-1) are satisfied, and
Theorem 4.4 provides a resolution of Spec C . Since k is algebraically closed, the field k contains an
element ζ2d such that ζ d

2d = −1. Let B := k[[x, y, z]]/(zq
+ xc

+ yd). The scheme Spec C is not normal,
and the natural map C → B, with Z 7→ ζ2d zxy and Y 7→ ζ2d y, induces a finite birational morphism
Spec B → Spec C . Hence, Spec B has the same resolution as Spec C . The reader will check that the
matrix NC associated to the resolution of Spec C in Theorem 4.4 is the same as the matrix N appearing
in the statement of Theorem 5.1. The discriminant group 8N is computed in Proposition 4.9. □
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Remark 5.2. A resolution of the Brieskorn singularity of the form xc
+ yd

+ ze
= 0 is known over the

complex numbers thanks to the work of [Hirzebruch and Jänich 1969, Theorem, page 232], when c, d,
and e are pairwise coprime, and [Orlik and Wagreich 1971a] in general. An explicit description for the
intersection matrix N and dual graph 0N of a resolution is found for instance in [Tomaru 1995, page 284],
with a formula giving the self-intersection −s0 of the node given on page 287.

Let now p > 1 be prime. When p is coprime to cd, the intersection matrix for the resolution of
z p

+xc
+ yd

= 0 obtained in Theorem 5.1 is the same as the intersection matrix obtained in characteristic 0.
Some characteristic p > 1 examples appear explicitly already in the literature, such as the case of
z p

+ x2
+ y p+2

= 0 when p is odd, treated in [Miyanishi and Russell 1983, Lemma 3.13].
Assume that p > 1 is prime and divides cd. The Brieskorn singularity z p

+ xc
+ yd

= 0 has then a
resolution in characteristic p which is quite different than in characteristic 0. Indeed, assume that c = pγ

for some integer γ , and gcd(p, d) = 1. Then in characteristic p, z p
+ xc

+ yd
= (z + xγ )p

+ yd . It follows
that the normalization of k[[x, y]][z]/(z p

+ xc
+ yd) is regular when char(k) = p. On the other hand, in

the case for instance of z2
+ x3

+ y6
= 0 in characteristic 0 (a case which is not covered by Theorem 5.1),

the minimal resolution is a smooth elliptic curve of self-intersection −1. This explicit example of a
resolution in characteristic 0 (and many others) is found for instance in [Laufer 1977, page 1290].

Theorem 5.3. Let B := k[[x, y, z]]/( f ), where f (x, y, z) is a weighted homogeneous polynomial of the
following form, with n, m ≥ 1:

(i) z p
+ x pm+1

+ y pn+1.

(ii) z p
+ xy(x pm−1

− y pn−1).

(iii) z p
− x2

+ 2y p+1 when p ≥ 3.

Then Spec B is a wild Z/pZ-quotient singularity. Moreover, the fundamental group of the punctured
spectrum Spec B \ {mB} is trivial.

Proof. The proof of the theorem is similar for each of the three types of homogeneous polynomials.
In each case, there exists a family of rings Bµ, µ homogeneous in k[x, y], such that the ring B can
be identified with the ring Bµ=0, and such that when deg(µ) is large enough, there is an isomorphism
between Bµ=0 and Bµ. The family Bµ is constructed such that when µ ̸= 0 is chosen adequately, the ring
Bµ is a wild Z/pZ-quotient singularity.

For the weighted homogeneous form in (iii), we use the family Bµ (with µ ∈ k[y]) described in
Proposition 6.2. For the weighted homogeneous forms in (i) and (ii), we use the families discussed in
[Lorenzini and Schröer 2020] and recalled in Section 0.2. More precisely, fix a system of parameters a, b
in k[[x, y]]. Consider the family of hypersurface singularities Spec Bµ, µ ∈ k[[x, y]], with

Bµ := k[[x, y, z]]/(z p
− (µab)p−1z − a p y + bpx).

Let G := Z/pZ. When µ is not a unit, is not zero, and is coprime to a and coprime to b, then
Bµ is isomorphic to the ring of invariants AG of an action of G on A = k[[u, v]], and the morphism
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Spec A → Spec AG is ramified in codimension 1. Cases (i) and (ii) are obtained when µ = 0 by setting
a = −yn and b = xm , and a = −xm and b = −yn , respectively.

We now claim that it is possible to find a homogeneous polynomial µ of large enough degree such
that B := k[[x, y, z]]/( f ) is isomorphic over k to Bµ. In cases (i) and (ii), we note that the homogeneous
polynomial µ := x t

+ yt (t ≥ 1), is coprime to both a and b, so that the corresponding Spec Bµ is a
quotient singularity associated with an action that is ramified in codimension 1.

To prove the existence of a k-isomorphism from B := k[[x, y, z]]/( f ) to Bµ, we use the lemma in
[Greuel and Kröning 1990, 2.6, page 345]. For the details of the proof of this lemma, the authors of
[loc. cit.] refer the reader to the paper [Bochnak and Łojasiewicz 1971]. Recall that the Tjurina ideal of f
is j ( f ) :=

(
f, ∂ f

∂x ,
∂ f
∂y ,

∂ f
∂z

)
, and that there exists an integer s > 0 such that (x, y, z)s

⊆ j ( f ) if and only if
the Tjurina number τ := dimk(k[[x, y, z]]/j ( f )) is finite. This is indeed the case for all polynomials f in
(i), (ii), and (iii). Then the lemma in [Greuel and Kröning 1990, 2.6], implies that if deg(µg) > 2τ (with
g ∈ k[[x, y, z]]), then B := k[[x, y, z]]/( f ) is isomorphic over k to k[[x, y, z]]/( f + µg).

In each case above, we have shown that Spec B is isomorphic to a quotient singularity Spec Bµ

such that Bµ is the ring of invariants of an action of Z/pZ on the ring A := k[[u, v]] such that the
morphism Spec A → Spec Bµ is ramified in codimension 1. Corollary 1.2(ii) in [Artin 1977] shows that
the fundamental group of the punctured spectrum Spec B \ {mB} is trivial. □

Remark 5.4. Consider the equation f := zq
+ xc

+ yd with q, c, d three distinct primes. Let k be a
field of characteristic p. Let B := k[[x, y, z]]/( f ). Theorem 5.1 shows that the intersection matrix of
the resolution of Spec B is the same in all three characteristics p = q, c, d, and has determinant 1. It is
natural to wonder whether this matrix can occur in more than one characteristic as the intersection matrix
attached to a resolution of a wild Z/pZ-quotient singularity.

Consider the intersection matrix with resolution graph E8. In Artin’s notation [1977], f := z2
+x3

+ y5

defines the singularity Spec B denoted by E0
8 , with resolution graph E8. This singularity is a wild

Z/pZ-quotient singularity when p = 2; see Theorem 5.3(i). When p = 5, a different singularity, denoted
by E1

8 in [Artin 1977], also has resolution graph E8 and is a wild Z/5Z-quotient singularity.

Theorem 5.5. Let p be prime. Let s ≥ 0:

(a) Assume that either s ̸≡ 1 mod p, or that p is odd and s = 1. Then there exists a Z/pZ-quotient
singularity Spec AG with associated action ramified precisely at the origin, and such that the
discriminant group of a resolution of the singularity has order ps .

(b) Assume that either p is odd and s ≡ 1 mod p, or that p = 2 and s = 1. Then there exists a Z/pZ-
quotient singularity Spec AG with associated action ramified in codimension 1 and such that the
discriminant group of a resolution of the singularity has order ps .

Proof. (a) The cases s = 0 and s = 1 are covered by Theorem 7.1 and Section 0.2, and Proposition 6.2
and Theorem 6.3, respectively. The cases with s ≥ 2 and s ̸≡ 1 mod p were obtained earlier in the papers
[Lorenzini 2018; Mitsui 2021].
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(b) When s ≡ 1 mod p and s ≥ p + 1, we use the Brieskorn singularities exhibited in Lemma 5.6, and
apply Theorem 5.1 and Theorem 5.3. The case p = 2 and s = 1 was noted by Artin and is discussed in
Section 8. The case s = 1 is treated in Theorem 9.4. □

Lemma 5.6. Let p be an odd prime, and r be any positive integer. Then there are integers m, n > 0 such
that the discriminant group 8N of the intersection matrix N associated with the Brieskorn singularity
z p

+ x pm+1
+ y pn+1

= 0 described in Theorem 5.1 is isomorphic to (Z/pZ)pr+1.

Proof. In view of Theorem 5.1, we need to produce integers n and m such that gcd(pn+1, pm+1)= pr+2.
For this, it suffices to take n := (pr + r + 2)/2, so that pn + 1 = (pr + 2)(p + 1)/2, and to set
m := (3pr + r + 6)/2, so that m = n + (pr + 2). □

Note that not all elementary abelian p-groups appear as discriminant groups 8N attached to the
intersection matrix N associated with a Brieskorn singularity z p

+ x pm+1
+ y pn+1

= 0. Indeed, for all
m, n > 0, the integer g = gcd(pm + 1, pn + 1) is never divisible by p. Thus in the above setting 8N

cannot be isomorphic to (Z/pZ)pr−1 for any r > 0.

Remark 5.7. Let B be a complete noetherian local ring that is two-dimensional and normal, with
algebraically closed residue field. Consider a resolution of singularities X → Spec B, with associated
intersection matrix N . Recall that there is a natural surjection Cl(B) → 8N ; see [Lipman 1969, 14.4]. In
particular, when det(N ) ̸= 1, we obtain a natural nontrivial finite quotient of Cl(B) from the computation
of a resolution of Spec B.

The study of the class group Cl(B) of B := k[[x, y]][z]/(z p
− xc

− yd) was initiated by Samuel [1964,
Proposition (3) in Section 6]; see also [Fossum 1973, Chapter IV, Section 17]. When p = 2, Samuel
is able to exhibit by a completely algebraic method a finite quotient of Cl(B) of order pg−1, where
g := gcd(c, d). Under the hypothesis of Theorem 5.1, pg−1 would also be the order of the corresponding
group 8N .

6. Analogues of the E6 singularities

Let k be an algebraically closed field of characteristic p ≥ 3. Let µ ∈ k[y], µ ̸= 0. Consider the
automorphism σ of the polynomial ring k[u, v, y] given by

u 7→ u + µv, v 7→ v + µy, and y 7→ y.

This automorphism has order p. We exclude the case p = 2 in this section because when p = 2, σ has
order 4. Let

Nu := Norm(u) =

p−1∏
d=0

σ d(u) =

p−1∏
d=0

(
u + dµv +

d(d − 1)

2
µ2 y

)
,

and

x := Norm(v) = v p
− (µy)p−1v.
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Finally, let
z := v2

− µyv − 2yu.

Let G := Z/pZ act on k[u, v, y] through σ . When µ = 1, the ring of invariants k[u, v, y]
G is known to

be generated by x , y, z, and Nu , subject to a single relation; see, e.g., [Campbell and Wehlau 2011, 4.10].
This relation was made explicit by Peskin, who showed [1983, Lemma 5.6], that hµ=1(x, y, z, Nu) = 0,
where,

hµ=1(x, y, z, Nu) := z p
+ 2y p Nu − x2

+

(p+1)/2∑
n=2

(−1)nCn−1 y2p−2nzn.

Here Cn−1 := (2n − 2)!/n!(n − 1)! are the Catalan numbers.
When µ ̸= 1, the above result can be used to show that x , y, z, and Nu are subject to the relation

h(x, y, z, Nu) := z p
+ 2y p Nu − x2

+

(p+1)/2∑
n=2

(−1)nCn−1(µy)2p−2nzn
= 0.

Indeed, the morphism k[u, v, y] → k[U, V, y], which sends u 7→ µ2U , v 7→ µV , and y 7→ y, is G-
equivariant when k[u, v, y] is endowed with the action of σ , and k[U, V, y] is endowed with the action
of σ1, with σ1(U ) = U + V and σ1(V ) = V + y.

For any choice of c(y) ∈ yk[y], we can consider the ring

A0 := k[u, v, y]/(Nu − c(y)).

We will slightly abuse notation and denote again by x , y, z, u, v, the classes of these elements in A0.
Clearly, the automorphism σ fixes the polynomial Nu − c(y), and thus induces an automorphism on A0,
again denoted by σ . This endows A0 with an action of G. Let A denote the formal completion Â0 of the
ring A0 at the maximal ideal (u, v, y).

The fixed scheme of the G-action on Spec(A0) is given by the ideal I := (µv, µy). When µ ∈ k∗,
I = (v, y) = (u p, v, y), and thus its radical is the maximal ideal (u, v). Hence, the morphism Spec A →

Spec AG is ramified precisely at the origin. When µ ̸=0 is not a unit in A, the morphism Spec A→Spec AG

is ramified in codimension 1.
The study of the singularities of the rings Spec AG when µ = 1 was initiated by Peskin [1980,

Chapter III, Section 4; 1983, Section 5]. In the remainder of this section, we treat the case where c(y) = y,
and obtain a family of wild quotient singularities AG of multiplicity 2 whose discriminant groups have
order |8| = p. For p > 3, these singularities can be viewed as analogues of the rational double point of
type E1

6 in characteristic p = 3, which was shown to be a wild Z/3Z-quotient singularity by Artin [1977].

Proposition 6.1. Let c(y) := y. Let µ ∈ k[y]. Then the ring A0 is a domain, the formal completion A is
regular, and the canonical map k[[u, v]] → A is bijective.

Proof. The expression f (u, v, y) := Nu − y is a monic polynomial of degree p in the variable u over the
factorial ring k[v, y], with constant term f (0, v, y) = −y. Since f is monic in u, to prove f irreducible in
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k[u, v, y], it suffices to prove that f (u, 0, y) is irreducible in k[u, y]. The Newton polygon of f (u, 0, y)

with respect to the y-adic valuation is the straight line from (0, 1) to (p, 0) in R2, and we conclude with
the Eisenstein–Dumas theorem [Mott 1995] that f (u, 0, y) is irreducible.

The ring A0 and its formal completion A are thus two-dimensional domains. To see that the local
ring A is regular, we have to check that the cotangent space mA/m2

A has vector space dimension at most
two. Indeed, this vector space is generated by u, v, y. In light of the relation Nu − y = 0, the class of y
vanishes. In turn, the canonical map k[[u, v]] → A between complete local rings induces a bijection on
cotangent spaces, and is thus bijective. □

Let µ ∈ k[y]. Abusing notation slightly, we let h(x, y, z) ∈ k[x, y, z] be defined as

h(x, y, z) := z p
+ 2y p+1

− x2
+

(p+1)/2∑
n=2

(−1)nCn−1(µy)2p−2nzn. (6-1)

We let Bµ := k[[x, y, z]]/(h).

Proposition 6.2. Let c(y) := y. Let µ ∈ k[y], µ ̸= 0. Then the canonical map Bµ → AG is bijective. In
particular, the wild quotient singularity AG is a complete intersection of multiplicity two.

Proof. Both local rings Bµ and AG are Cohen–Macaulay, and finite k[[x, y]]-algebras of rank p. One
easily sees that h(x, y, z) = 0 defines an isolated singularity, by using the relations hx = −2x and
2z(µ+ yµy)hz +µyh y = 2µy p+1 between partial derivatives. It follows that k[[x, y, z]]/(h) is normal,
and that the canonical map induces a bijection on the field of fractions. The map in question is thus
bijective, by Zariski’s main theorem. Clearly, the monomial x2 is the lowest term in h(x, y, z), and it
follows that the complete intersection AG has multiplicity two. □

Theorem 6.3. Let c(y) := y. Let µ ∈ k[y]. Let X → Spec(Bµ) be the minimal resolution of singularity,
with associated intersection matrix N. Then the dual graph 0N is independent of µ, and takes the form:

p−1

−(p+1)/2

p−1

The associated discriminant group 8N has order p.

Proof. Consider the blow-up Z → Spec(Bµ) of Spec(Bµ) with respect to the ideal (x, y, z). Let Y → Z
denote the normalization of Z . Let E denote the exceptional divisor of the blow-up, and let D denote its
schematic preimage in Y .

The blow-up Z is covered by three charts that we call the x-chart, y-chart, and z-chart. We consider in
detail below the y-chart and show that its normalization contains a unique singular point y0. Proceeding
in an analogous way as for the y-chart, the reader will check that the normalizations of the x-chart and
the z-chart are regular.
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On the y-chart, the strict transform of h(x, y, z) = 0 becomes(
z
y

)p

y p−2
+ 2y p−1

−

(
x
y

)2

+

(p+1)/2∑
n=2

(−1)nCn−1µ
2p−2n y2p−n−2

(
z
y

)n

= 0.

The fraction x/y(p−1)/2 satisfies the integral equation(
z
y

)p

y + 2y2
−

(
x

y(p−1)/2

)2

+

(p+1)/2∑
n=2

(−1)nCn−1µ
2p−2n y p−n+1

(
z
y

)n

= 0. (6-2)

Write g = (z/y)p y + 2y2
− (x/y(p−1)/2)2

+· · · for the polynomial on the left. The radical of the Tjurina
ideal associated with g contains y, because y defines the exceptional divisor on the y-chart and there are no
singularities outside the exceptional divisor. Obviously the Tjurina ideal also contains x/y(p−1)/2 (consider
the derivative of g with respect to the variable x/y(p−1)/2). Using the partial derivative gy = (z/y)p

+· · · ,
we see that the radical of the Tjurina ideal furthermore contains z/y. Thus the normalization of the
y-chart is given by the three variables z/y, y, x/y(p−1)/2 and the equation g = 0.

We claim that Dred is a smooth rational curve, and that (Dred · Dred)Y = −
1
2 . For this it suffices to

check analogously as in Proposition 3.6 that the curve Ered is regular, and that (E · Ered)Z = −1. Then
one checks that the natural map Dred → Ered is an isomorphism. Finally, noting that the multiplicity of E
is ℓ = 2, we apply the formula (Dred · Dred)Y = (E · Ered)Z/ℓ in Proposition 2.3 to obtain the claim.

Regarded as a formal power series, the initial term of g is the quadratic polynomial 2y2
−(x/y(p−1)/2)2,

which is thus a product of two linear factors since k is algebraically closed. According to Lemma 6.4
below, the singularity must be a rational double point of type Am for some integer m ≥ 1. To determine
this integer, we compute the Tjurina number of the singularity, which is the colength of the ideal generated
by g and its partial derivatives. Setting x ′

= x/y(p−1)/2 and z′
= z/y, the partial derivatives take the form

gx ′ = 2x ′, gy = z′p
+ y · (4 + y · ∗) and gz′ =

(p+1)/2∑
n=2

(−1)nnCn−1µ
2p−2n y p−n+1z′n−1.

We now use gy = 0 to substitute for y in the equations g(0, y, z′) = 0 and gz′(0, y, z′) = 0, and infer that
the Tjurina ideal has colength τ = 2p. The first two summands in g(0, y, z′) = 0 do not cancel after the
substitution.

Recall that the Tjurina number for the Am-singularity, which is formally isomorphic to Zm+1
− XY = 0,

is given by

τ =

{
m if p does not divide m + 1;
m + 1 else.

It follows that either m = 2p − 1 or m = 2p, and we shall see below that m is odd.
Write X → Y for the minimal resolution of singularities of the rational double point, such that the

composite map X → Y → Spec(Bµ) is a resolution of the singularity. The dual graph of this resolution
contains a chain C1, . . . , Cm of (−2)-curves, together with the strict transform C0 of the divisor Dred on Y .

Suppose that C0 intersects two distinct exceptional curves Ci ̸= C j . Then
(⋃

i≥1 Ci
)
∩ C0 is an Artin

scheme of length ≥ 2 on C0. We claim that this is not possible. Indeed, consider the blow-up X → Y .
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The induced morphism C0 → Dred is an isomorphism since we have shown above that the point y0 is
a regular point of Dred. The scheme

(⋃
i≥1 Ci

)
, which is proper, has schematic image in Y the reduced

closed point y0. The same is true for any closed subscheme of the exceptional divisor, including the
subscheme

(⋃
i≥1 Ci

)
∩ C0. This is a contradiction since we have on the other hand an isomorphism

C0 → Dred, and a closed subscheme of length bigger than one in the source cannot be sent to a closed
subscheme of length 1 in the target. Thus C0 hits precisely one divisor Ci . If (C0 · Ci )X > 1, a similar
argument leads again to a contradiction, and thus we must have (C0 · Ci )X = 1.

Consider now the involution on Bµ given by x 7→ −x , y 7→ y and z 7→ z. This involution fixes Peskin’s
equation (6-1), and induces an involution on the initial blow-up Z and its normalization Y . There the
equation z/y = 0 defines an invariant Cartier divisor on the Am-singularity SpecOY,y0 , which is the union
of two regular Weil divisors D1 and D2, and these divisors are interchanged by the involution. The
blow-up Y ′

→ Y of the singular point y0 ∈ Y with reduced structure introduces two exceptional curves
F1 and F2, and the strict transforms of D1 and D2 in Y ′ are disjoint. The intersection F1 ∩ F2 consists
of a single point y′

0, and the local ring OY ′,y′

0
is a rational double point of type Am−2.

We now show that m is odd. First, suppose that the strict transforms of D1 and D2 in Y ′ do not
intersect the same exceptional component of the blow-up Y ′

→ Y . It then follows that the involution acts
nontrivially on the dual graph attached to the resolution of singularities X → Y . If m = 2p was even,
the curve C0 would pass through the sole fixed point C p ∩ C p+1 of the exceptional divisor, and as we
have seen above, this is a contradiction. It follows that m = 2p − 1 must be odd in this case, and that
(C0 · C p)X = 1. The assertion on the dual graph 0N follows.

Suppose now that the strict transforms of D1 and D2 in Y ′ intersect the same exceptional component
of the blow-up Y ′

→ Y . We are going to show that this case cannot happen. Indeed, then the Weil divisors
D1, D2 ⊂ Y define the same class in the class group Cl(OY,y0) = Z/(m +1)Z of the rational double point
of type Am . Since the curves Di are regular, the divisors Di ⊂ Y are not Cartier. It follows that Di has
order two in Cl(OY,y0) since the sum of D1 and D2 is a Cartier divisor on Y . On the other hand, the strict
transform of Di in X intersects a terminal vertex of the exceptional divisor of X → Y , and this fact along
with a computation using the intersection matrix of the chain of m curves implies that Di has order m + 1
in the class group. This gives m = 1, contradicting m ≥ 2p − 1 ≥ 5.

To completely determine the intersection matrix N of the resolution X → Spec(Bµ), it remains to
compute the self-intersection number (C0 · C0)X . We have already observed above that (D0 · D0)Y = −

1
2 ,

and Proposition 2.2 shows that (C0 · C0)X = (D0 · D0)Y − δ, where the correcting term δ is computed as
follows. The determinant of the intersection matrix of the full chain of length 2p − 1 is −2p. Removing
the vertex adjacent to C0 from this chain yields two chains of length p − 1. The determinant of the
associated intersection matrix is then p2. It follows that δ = p2/2p = p/2. Hence,

(C0 · C0)X = −1/2 − p/2 = −(p + 1)/2.

Proposition 1.3 shows that |8N | = p. □

In the course of the proof we have used the following well-known general observation:
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Lemma 6.4. Let f ∈ k[[x, y, z]] by a power series over an arbitrary field k. Write f =
∑

∞

j=0 f ( j), where
f ( j) is a homogeneous polynomial of degree j . Suppose that f (0)

= f (1)
= 0, and that f defines an

isolated singularity. Assume also that the quadratic part f (2) is the product of two nonassociated linear
forms. Then k[[x, y, z]]/( f ) is isomorphic to k[[x, y, z]]/(zm+1

− xy) for some integer m ≥ 2. In other
words, the singularity in question is a rational double point of type Am .

Proof. After a linear change of coordinates, we may assume that f = xy + O(3), where we denote
by O(d) an element of md . By induction on d ≥ 3, one makes further coordinate changes of the form
x ′

:= x + a(x, y, z), y′
:= y + b(x, y, z) with a, b ∈ md−1 sending f to a power series of the form

x ′y′
+

∑d
i=3 λi zi

+ O(d +1), for some λi ∈ k. This shows that we may assume f = xy +
∑

∞

i=3 λi zi . If all
coefficients λi vanish, the singularity would not be isolated. Thus our equation is of the form xy + zm+1ϵ

for some m ≥ 2 and unit ϵ. Multiplying with ϵ−1, we get the equation (ϵ−1x)y + zm+1 for the rational
double point of type Am . □

Recall that the fundamental cycle Z of an intersection matrix N is the minimal positive vector Z
such that N Z is a nonpositive vector. The canonical cycle K of an intersection matrix N is recalled
in Section 10.2. The fundamental genus h1(OZ) can be computed for the hypersurface singularities
considered below as 2h1(OZ) − 2 = (K + Z) · Z.

Proposition 6.5. The multiplicities in the fundamental cycle Z of the resolution of Spec Bµ are indicated
below next to the corresponding vertex:

1 p−1

p−1

p

2

p−1 1

p−1

The canonical cycle is given by K = −
p−3

2 Z. We have Z2
= −2, and h1(OZ) = (p − 3)/2.

Proof. Let us denote by E0 the node of 0N , and by E1 the pendant vertex of self-intersection E2
1 =

−(p + 1)/2. To compute Z, we apply Artin’s algorithm [1966]: one starts with the cycle C having
all coefficients equal to 1, which we will draw pictorially as 1

1 1 ··· 1 ··· 1 1 . The algorithm updates C
by increasing some coefficient of C at each step. We denote by m0 the multiplicity of E0 in C . Since
C · E0 > 0, the algorithm increases m0 by 1. The new cycle C has positive intersection number with
both vertices adjacent to the node on the two terminal chains of length p − 1, and one then increases
their multiplicities by 1. Proceeding along these terminal chains, one ends with the new cycle C given by

1
1 2 ··· 2 ··· 2 1 . Now one repeats the process, starting again at the node E0. After p − 1 steps, one obtains
the cycle 1

1 2 ··· p ··· 2 1 . This new cycle has positive intersection number with the terminal vertex E1.
Increasing the multiplicity m1 of E1 by 1 gives the fundamental cycle: indeed, this new cycle C = Z now
has (Z · E1) = −1, and all other intersection numbers are 0.

This description of Z immediately lets us compute that Z2
= −2. It is easy to check that the canonical

cycle is K = −
p−3

2 Z, and that (K + Z) · Z = p − 5. □
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7. Analogues of the E8 singularities

Let k be an algebraically closed field of characteristic p > 0. We compute in this section the resolution of
the singularity of Spec Bµ introduced in Section 0.2, for any value of the parameter µ ∈ k[[x, y]] when
a = −y2 and b = −x . The ring Bµ is given in this case by

Bµ := k[[x, y]][z]/(z p
− (µxy2)p−1z − x p+1

+ y2p+1).

When p = 2, the resolution of Spec Bµ is known to have dual graph E8 when µ = 0, µ = 1 and
µ = y: these values produce the rational double points E0

8 , E2
8 , and E1

8 , respectively [Artin 1977]; see
also [Peskin 1980]. The index of determinacy of a singularity Er

8 in characteristic 2 is computed to be 5
in [Greuel and Kröning 1990, page 346]. It follows that when µ ∈ (x, y)2, then Spec Bµ is isomorphic
to E0

8 . For µ ∈ k×, we find that Bµ is isomorphic to E2
8 through the change of variables X = µ10/7x ,

Y = µ6/7 y, and Z = µ15/7z.

Theorem 7.1. Let p ≥ 3. Then Spec Bµ has a resolution of singularities with dual graph 0N independent
of µ of the following form:

−(p+1)/2 −4

p−1p

The associated discriminant group 8N is trivial.

Proof. Set R := k[[x, y, z]] and f := z p
− (µxy2)p−1z − x p+1

+ y2p+1, and write B := R/( f ). We start
with an initial blowing-up Z := BlaB(B) for the ideal a := (x, y2, z), as in Proposition 3.6. As usual, let
E ⊂ Z denote the exceptional divisor of the blow-up, and Ered its reduction. Proposition 3.6 shows that
Ered is a smooth rational curve, that E = 2pEred, and that (E · Ered)Z = −1. One checks that the blow-up
is regular on the y2-chart and the z-chart, and contains a unique singularity, which is located at the origin
of the x-chart.

The x-chart is given by four variables x, y, y2/x, z/x modulo the two relations

y2
=

(
y2

x

)
x and

(
z
x

)p

− µp−1x p−1
(

y2

x

)p−1 z
x

− x +

(
y2

x

)p

y = 0.

The exceptional divisor is given by x = 0. Its reduction is defined by x = y = z/x = 0. Let us rewrite the
second equation above as(

z
x

)p

+

(
y2

x

)p

y = x
(

µp−1x p−2
(

y2

x

)p−1 z
x

+ 1
)

. (7-1)

On the formal completion along the exceptional divisor, 1 + µp−1x p−2(y2/x)p−1(z/x) is invertible, and
we denote by ϵ its inverse. The unit ϵ admits a (p + 1)-st root δ (with δ p+1

= ϵ). After extracting an
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expression for x from (7-1) and substituting it in the expression y2
=

y2

x x , we find that

y2
=

y2

x

((
z
x

)p

+

(
y2

x

)p

y
)

ϵ.

This is formally isomorphic to the equation

y2
− U p+1 y − U W p

= 0

in the new set of variables y, U, W , via the map given by y 7→ y, U 7→ (y2/x)δ and W 7→ (z/x)δ. Note
that the reduced exceptional divisor is given by x = y = z/x = 0 in the old coordinates, and by y = W = 0
in the new ones. Let

B ′
:= k[[y, U, W ]]/(y2

− U p+1 y − U W p).

We now make a second blow-up Z ′
→ Spec(B ′), with nonreduced center given by (y, U, W p). Let E ′

denote the exceptional divisor of this blow-up. Using Proposition 3.1, we infer that the U -chart of Z ′ is
described by four variables U, W, y/U, W p/U and two relations

W p
=

(
W p

U

)
U and

(
y
U

)2

− U p
(

y
U

)
−

W p

U
= 0.

Substituting the latter in the former and renaming y/U by V gives

W p
= U V (V − U p). (7-2)

The origin (U, V, W ) is obviously singular on this chart, and this is a singularity analyzed in Theorem 4.4.
The reader will check that Z ′ has no further singularities on other charts, and that the only singularity on
the U -chart is located at the origin. On this chart, the exceptional divisor is given by U = 0. Its reduction
has U = W = 0. The reader will check that the exceptional divisor E ′ of this blow-up is a smooth
projective line. Note also that the strict transform of the exceptional divisor from the initial blow-up is
given by V 2

= 0 (since x = V 2Uδ), with reduction V = W = 0, and that this strict transform is also a
smooth projective line.

Theorem 4.4 lets us describe explicitly the intersection matrix N (s0 | α−1, β−1, γ −1) of the unique
singularity in the U -chart. Using the notation from Section 4.3, we set q = p, a = b = 1, c = p and
d = 1, and find that g := gcd(c, d) = 1 and (ad + bc + cd)/g = 2p + 1. It follows that

α−1
= p2/(2p − 1) and β−1

= γ −1
= p/(p − 1).

Recall that p ≥ 3 and set e := (p + 1)/2. The reader will check that the continued fraction expansion of
α−1

= p2/(2p −1) is α−1
= [e, 5, 2, . . . , 2] with 2+ (p −3)/2 overall entries, starting with the relations

p2
= e(2p − 1) − (p − 1)/2, and (2p − 1) = 5(p − 1)/2 − (p − 3)/2.
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The self-intersection −s0 of the node of the star-shaped graph is computed as

s0 =
1
p2 +

2p − 1
p2 + 2

p − 1
p

= 2.

Having resolved the singularity (7-2), we get a resolution for our original singularity Spec Bµ with the
following resolution graph:

︸ ︷︷ ︸
p−1

−e −5 ︸ ︷︷ ︸
(p−3)/2

︸ ︷︷ ︸
p−1

(7-3)

According to Proposition 4.8, the white terminal vertex to the left corresponds to the strict transform of the
exceptional divisor on the initial blow-up, whereas the white terminal vertex on the top right corresponds
to the strict transform of the exceptional divisor on the second blow-up.

It remains to determine the self-intersection of both of these strict transforms in the resolution of
Spec B. Recall that E ′ is the exceptional divisor for the second blow-up Z ′

→ Spec(B ′). Computing in
the affine charts, one sees that E ′

red is a projective line, with E ′
= pE ′

red and (E ′
· E ′

red)Z ′ = −2. Since the
U -chart is regular away from the origin, we can conclude using Proposition 2.3 that the self-intersection
of the strict transform of E ′

red in the normalization of Z ′ is −2/p. Proposition 2.2 shows that the strict
transform C ′ of E ′

red in X has thus (C ′
· C ′)X = −2/p − δ for some correction term δ ∈ Q>0. The

term δ is computed as follows. Let 01 be the star-shaped subgraph in (7-3) consisting of all the black
vertices, and let 0′

1 ⊂ 01 be the star-shaped subgraph obtained from 01 by removing the terminal black
vertex in the top right position. Let N1 and N ′

1 be the resulting intersection matrices. According to
Proposition 2.2, we have δ = − det(N ′

1)/ det(N1). Using Proposition 1.3, we compute that |det(N1)| = p2

and |det(N ′

1)| = p2
− 2p. Hence, δ = (p2

− 2p)/p2
= 1 − 2/p, and it follows that the white terminal

vertex on the top right has self-intersection −1. We can thus contract this divisor. Successively contracting
(−1)-curves from the right, we get the desired graph as in the statement of Theorem 7.1 with a terminal
vertex of self-intersection number −4 = −5 + 1 on the top right.

Recall that we denoted by E the exceptional divisor of Z→Spec B, and determined using Proposition 3.6
that Ered is a smooth rational line, that E = 2pEred, and that (E · Ered)Z = −1. As above, Proposition 2.2
shows that the strict transform C of Ered in X has (C ·C)X = −1/2p−δ for some correction term δ ∈ Q>0.
Let 02 be the star-shaped subgraph in (7-3) consisting of all the black vertices and the terminal white vertex
(of self-intersection (−1)) in the top right position. Let 0′

2 be the star-shaped subgraph obtained from 02

by removing the terminal black vertex of 02 attached to the terminal white vertex on the left corresponding
to E . Let N2 and N ′

2 be the resulting intersection matrices. According to Proposition 2.2, we have δ =

− det(N ′

2)/ det(N2). The matrix N2 has the same determinant as N (2 | p/(p−1), p/(p−1), (2p+1)/4),
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and N ′

2 has the same determinant as N (2 | (p−1)/(p−2), p/(p−1), (2p+1)/4). Using Proposition 1.3,
we compute that |det(N2)| = 2p and |det(N ′

2)| = 4p − 1. Hence, (C · C)X = −2.
Now that the intersection matrix N of the resolution has been determined, with N = N (2 | p/(p − 1),

(p + 1)/p, (2p + 1)/4), Proposition 1.3 can be used to show that |det(N )| = 1. □

Proposition 7.2. Keep the assumptions of Theorem 7.1. The multiplicities in the fundamental cycle Z of
the resolution of Spec Bµ are indicated below next to the corresponding vertex.

p 2p p2 p2
+p

2p+1 (p+1)/2

p2
−1 2(p+1) p+1

p−1p

The canonical cycle of the resolution is K = −(2p − 4)Z +
p−3

2 E2, where E2 is the terminal vertex on
the top right of the above graph. We have Z2

= −(p + 1)/2, and h1(OZ) = (p2
− p + 2)/2.

Proof. The self-intersection numbers along the three terminal chains in the dual graph 0N yield the
continued fractions

p + 1
p

= [2, . . . , 2],
p

p − 1
= [2, . . . , 2], and

2p + 1
4

=

[
(p + 1)

2
, 4

]
.

Recall that given a fraction r/s, the ceiling ⌈r/s⌉ is the smallest integer larger than or equal to r/s. Write
E0 ∈ 0N for the central node. According to [Tomaru 1995, equation (3.4) on page 282], its multiplicity
m0 ≥ 1 in the fundamental cycle Z is the smallest integer m ≥ 1 such that

2m −

⌈
mp

p + 1

⌉
−

⌈
m(p − 1)

p

⌉
−

⌈
4m

2p + 1

⌉
≥ 0. (7-4)

Let us show that m0 = (p + 1)p. First, we claim that when m = (p + 1)p, then equality holds in (7-4).
Indeed, the first two fractions on the left of (7-4) are then the integers p2 and p2

− 1, whereas the last
summand becomes ⌈

4m
2p + 1

⌉
=

⌈
2p +

2p
2p + 1

⌉
= 2p + 1.

Assume now m < (p +1)p. We claim that in this case (7-4) fails. Indeed, since the fraction p/(p +1)

and (p − 1)/p are reduced, and one of the integers p or p + 1 does not divide m, one of the fractions
mp/(p + 1) and m(p − 1)/p is not an integer. Using 1/p > 1/(p + 1), we obtain⌈

mp
p + 1

⌉
+

⌈
m(p − 1)

p

⌉
≥

mp
p + 1

+
m(p − 1)

p
+

1
p + 1

.

In turn, the left-hand side of (7-4) is bounded above by

2m −
mp

p + 1
−

m(p − 1)

p
−

4m
2p + 1

−
1

p + 1
=

m
p(p + 1)(2p + 1)

−
1

p + 1
.
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This is bounded above by 1/(2p + 1)− 1/(p + 1) < 0, because m < p(p + 1). As desired, the inequality
(7-4) fails.

For convenience in this proof, let us denote by Z0 the vector whose coefficients are given in the
proposition. Without loss of generality, we may assume that E1 and E2 are the two vertices on the very
short chain of the graph, with self-intersection numbers E2

1 = −(p + 1)/2 and E2
2 = −4, respectively. It

is easy to check that N Z0 = −E2. Since N Z0 has nonpositive coefficients, we find that by definition of
the fundamental cycle, we must have Z ≤ Z0.

We now determine that the multiplicities of Z along the two terminal chains comprising only (−2)-
curves are the ones indicated in the statement of the proposition. We treat the case of the terminal chain on
the right, with p − 1 vertices. The other chain is treated similarly. Let us denote by z p−1, . . . , z2, z1 the
multiplicities of Z along the terminal chain with p −1 vertices. The central node has multiplicity denoted
for convenience z p := p2

+ p. The fact that N Z has nonpositive coefficients produces the following
inequalities. At the last vertex, we have −2z1 + z2 ≤ 0, and at each other vertex of the chain, we find that
−2zi + zi−1 + zi+1 ≤ 0. It follows that

zi+1 − zi ≤ zi − zi−1

when 2 ≤ i ≤ p − 1. Since Z ≤ Z0, we have z p−1 ≤ p2
− 1. Suppose that z p−1 = p2

− 1 − a for some
a ≥ 0. Then

(p2
+ p) − (p2

− 1 − a) = p + 1 + a = z p − z p−1 ≤ z p−1 − z p−2 ≤ · · · ≤ z2 − z1 ≤ z1.

Hence,

p2
+ p = z p ≥ p(p + 1 + a).

It follows that a = 0 and z p−1 = p2
−1. A similar argument shows that z p−i = (p − i)(p +1), as desired.

It remains to determine the coefficients of Z along the terminal chain of length 2. As above, E0

is the central node, and we denote by m0, m1, m2, the coefficients of Z corresponding to E0, E1, E2,
respectively. We have shown above that m0 = p2

+ p. We have

0 ≥ (Z · E1) = (m0 E0 + m1 E1 + m2 E2) · E1 = p2
+ p − m1(p + 1)/2 + m2.

0 ≥ (Z · E2) = (m1 E1 + m2 E2) · E2 = m1 − 4m2.

This gives m1 ≥4(p2
+p)/(2p+1)>2p. Since Z ≤ Z0, we have m1 ≤2p+1 and, thus, m1 =2p+1. From

m2 ≥ m1/4, we conclude that m2 ≥ (2p +1)/4, and since m2 is an integer, we must have m2 ≥ (p +1)/2.
Again because Z ≤ Z0, we have m2 ≤ (p + 1)/2 and, hence, m2 = (p + 1)/2. Thus, the vector Z0

described in the proposition is indeed the fundamental vector of N .
It is easy to compute that Z2

= −(p+1)/2. It is also an easy matter to check that the vector K satisfies
the matricial condition defining the canonical cycle recalled in Section 10.2. Similarly, one checks that
(K + Z) · Z = p2

− p. □
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Remark 7.3. Let G := Z/pZ and let Spec AG be a G-quotient singularity. Let X → Spec AG be a
resolution of singularities with an exceptional divisor having smooth components and normal crossings.
It is known that the fundamental cycle Z associated with the intersection matrix of the exceptional divisor
satisfies |Z2

| ≤ p; see [Lorenzini 2013, 2.4]. It is not immediate to produce examples of such singularities
where |Z2

| < p. We note that the singularities exhibited in Theorems 6.3 and 7.1 have |Z2
| = 2 and

|Z2
| = (p + 1)/2, respectively.

It is shown in [Lorenzini 2013, Lemma 3.7], that if the discriminant group 8N of an intersection matrix
N is killed by e, then the fundamental cycle Z associated with N satisfies |Z2

| ≤ ezmin , where zmin is
the smallest coefficient of Z. In the case of the intersection matrix in Theorem 7.1, zmin = (p + 1)/2 and
|8N | = 1, showing that the inequality |Z2

| ≤ ezmin is sharp.

8. Analogues of the E7 singularities

When p = 2, the blow-up at the maximal ideal of the Z/2Z-quotient singularity E2
8 given by

z2
+ xy2z + x3

+ y5
= 0

has a new singularity, namely the singularity E1
7 given by the equation

z2
+ xy2z + yx3

+ y3
= 0;

see for instance [Roczen 1992, 1.1]. The singularity E2
8 has resolution graph the Dynkin diagram E8 with

trivial discriminant group, while the resolution of E1
7 has resolution graph E7 with discriminant group of

order 2.
Artin [1977, bottom of page 18] (or Peskin [1980, (2.16), page 104]) shows that the Dynkin diagram

E7 cannot be obtained as the resolution graph of a wild Z/2Z-quotient singularity whose associated action
is ramified precisely at the origin. He shows however that the singularity E1

7 does occur as the resolution
graph of a wild Z/2Z-quotient singularity for an action that is ramified in codimension 1.

When p = 2, we have not been able to exhibit any wild Z/2Z-quotient singularity whose action is
ramified precisely at the origin and whose associated intersection matrix has discriminant group of order
2s with s odd. We suggest in Example 8.3 for each s odd the existence of explicit examples with group
(Z/2Z)s . In each case, these wild Z/2Z-quotient singularities are associated to actions that are ramified
in codimension 1.

The above considerations have analogues for any prime p. Indeed, consider the singularity at the
maximal ideal of Spec Bn , where

Bn := k[[x, y, z]]/(z p
− (xyn)p−1z − y pn+1

+ x p+1).

This singularity is a special case of the singularity recalled in Section 0.2, where we have set µ = 1,
a = yn , and b = x . In particular, this singularity is a Z/pZ-quotient singularity whose moderately ramified
action is ramified precisely at the origin. When n = p = 2, this singularity is E2

8 .
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Consider the blow-up of Spec Bn at the maximal ideal (x, y, z). Then the y-chart (defined by the
variables y, x/y, z/y) has a singular point whose local ring is isomorphic to the local ring Cn , where

Cn := k[[x, y, z]]/(z p
− (xyn)p−1z − y(n−1)p+1

+ yx p+1). (8-1)

When n > 1, the closed point of Spec Cn is singular, and we show below in Proposition 8.1 that
the singularity of Spec Cn is again a Z/pZ-quotient singularity, but for an action that is ramified in
codimension 1. In the examples that we were able to compute, the discriminant groups 8Bn and 8Cn of
the intersection matrices of the resolutions of Spec Bn and Spec Cn when n > 1 satisfy |8Cn | = p|8Bn |.

When n = 2, the singularity of Spec B2 is treated in Theorem 7.1 and generalizes the E2
8-singularity.

The singularity of Spec C2 is the E1
7-singularity when p = 2, and thus Spec C2 is a natural generalization

for all primes p of the E1
7-singularity. Our educated guess for the resolution of Spec C2 is discussed in

Example 8.4.
We can further generalize the ring Cn as follows. Let a, b ∈ k[[x, y]], not both 0. Set

A0 := k[[x, y]][U, V ]/(U p
− (ay)p−1U − y, V p

− (by)p−1V − xy).

Let L denote the field of fractions of A0. The ring A0 and the field L are endowed with an automorphism
σ of order p fixing k[[x, y]] and with

σ(U ) := U + ay, σ (V ) := V + by.

As usual, we set G := ⟨σ ⟩. Let z := aV − bU . Then σ(z) = z, and we find that

z p
− (aby)p−1z − a pxy + bp y = 0. (8-2)

Let B denote the subring k[[x, y]][z] of A0. Let A denote the subring A0
[ V

U

]
of L . The group G acts

on A, since σ(V/U ) = (V/U + by/U )(1 + ay/U )−1 and 1 + ay/U is a unit in A0.

Proposition 8.1. Keep the above notation. The ring homomorphism A → k[[u, v]], which sends U to u
and V/U to v, is a k-isomorphism. In the special case where either a = xm and b = yℓ, or a = yℓ and
b = xm for some integers ℓ, m ≥ 1, then the ring of invariants AG is equal to the ring B. In particular,
Spec Cn is a wild Z/pZ-quotient singularity when n > 1.

Proof. The equation U p
− (ay)p−1U − y = 0 first shows that y/U is in the maximal ideal of A0, and then

that y/U p is in A0 and is a unit. The ring A0 is not integrally closed, since it is clear from the equation
V p

− (by)p−1V − xy = 0 that (
V
U

)p

−

(
by
U

)p−1( V
U

)
−

y
U p x = 0

is an integral relation for V
U over A0. Since x and y can be expressed in terms of U and V/U , we find

that A := A0
[ V

U

]
, viewed as a subring of L , is in fact isomorphic to the power series ring k[[u, v]], with

u := U and v := V/U .
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Consider the ring

B ′
:= k[[x, y]][Z ]/(Z p

− (aby)p−1 Z − a pxy + bp y)

and the natural map ϕ : B ′
→ AG which sends Z to z. Assume that either a = xℓ and b = ym , or that a = yℓ

and b = xm for some integers ℓ, m ≥ 1. We claim that ϕ is an isomorphism. One can show that B ′ is an
integral domain, and that its field of fractions injects in Frac(A), and has image by degree considerations
equal to Frac(AG). The ring B ′ is Cohen–Macaulay since it is free as a module over the regular ring
k[[x, y]]. Thus B ′ is normal as soon as it is regular in codimension 1. This can be shown, because of the
special forms of a and b, by using the Jacobian criterion. Let f := Z p

− (aby)p−1 Z −a pxy +bp y. Then
if a prime ideal p of B ′ contains the classes of f , and of the partial derivatives fx , fy, fZ , then p contains
(x, y, Z).

The reader will check that when n > 1, the ring Cn is isomorphic to B when a = −x and b = −yn−1.
When p = n = 2, the proposition is proved in [Peskin 1980, (2.16), page 104]. □

Example 8.2. We show in this example that there are (many) intersection matrices N with 8N killed
by 2 and of order 2s with s odd. Since our interest is to provide evidence that there may exist wild
Z/2Z-quotient singularities whose resolutions have discriminant groups of order 2s with s odd, we note
that any such resolution must also have an intersection matrix N whose fundamental cycle Z satisfies
|Z2

| ≤ 2 [Lorenzini 2013, 2.4]. This is a nontrivial restriction on the possible matrices N , and we exhibit
below matrices that also satisfy this restriction.

Recall that a star-shaped graph with n ≥ 4 vertices is called a star, or the complete bipartite graph
K1,n−1, if it consists of a single node and n − 1 terminal vertices attached to the node. We write the
intersection matrix N of a star on n vertices as N = N (s0 | s1/1, . . . , sn−1/1), where −s0 denotes the
self-intersection of the node, and −si denotes the self-intersection of the i-th terminal vertex when i > 0.
The Dynkin diagram D4 is a star on 4 vertices, and so are the two graphs in Remark 4.11.

Consider any intersection matrix N = N (s0 | s1/1, . . . , sn−1/1) such that one of the s j with j ≥ 1 is
even and at most one of the s j with j ≥ 1 is divisible by 4. Assume in addition that 8N is killed by 2, and
that the fundamental cycle Z of N satisfies |Z2

| ≤ 2. Define the matrix Ni (s0 | s1/1, . . . , sn−1/1, sn/1),
i = 1, 2, by

sn := i +

(n−1∏
j=1

s j

)
/|8N |.

We claim that the two intersection matrices N1 and N2 have graphs that are stars on n + 1 vertices with
|det(Ni )| = i |det(N )|. Moreover, both groups 8Ni are killed by 2, and both fundamental cycles Zi of Ni

satisfy |Z2
i | ≤ 2.

Proof. Let ℓn−1 := lcm(s1, . . . , sn−1). Then the order of the node in 8N is equal to ℓn−1
(
s0 −

∑n−1
j=1 1/s j

)
,

use Proposition 1.3(ii). This order equals 1 since we assume that one of the s j is even, use Proposition 1.3(v).
It follows that |8N | =

(∏n−1
j=1 s j

)
/ℓn−1 (use Proposition 1.3(i)). In particular,

(∏n−1
j=1 s j

)
/|8N | = ℓn−1 is

an integer. The equality |det(Ni )| = i |det(N )| follows from an easy computation.
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We find that lcm(s1, . . . , sn−1, ℓn−1 + i) = lcm(ℓn−1, ℓn−1 + i), which equals ℓn−1(ℓn−1 + 1) when
i = 1, and ℓn−1(ℓn−1/2 + 1) when i = 2. Hence, the node is trivial in 8Ni since its order is

lcm(s1, . . . , sn−1, ℓn−1 + i)
(

s0 −

n−1∑
j=1

1/s j − 1/(ℓn−1 + i)
)

= 1.

Let R ∈ Zn+1 denote the transpose of the vector (ℓn−1, ℓn−1/s1, . . . , ℓn−1/sn−1, 1). Then Ni R = −ien+1.
Since all coefficients of R are positive and Ni R has nonpositive coefficients, we find that R is an upper
bound for the fundamental cycle Zi of Ni . Then |Z2

i | ≤ |R2
| ≤ i , as desired.

To show that 8Ni is killed by 2, it suffices to show that the classes of the standard vectors have order 1
or 2 in 8Ni for each terminal vertex of the graph. This is clear for a terminal vertex v j with s j odd or
exactly divisible by 2, since the column of Ni corresponding to v j shows that the class of s jv j is equal to
the class of the node. We note now that the construction implies that there can be at most one terminal
vertex v j with s j divisible by 4. If the corresponding class in 8Ni has order divisible by 4, we would find
using the first column of the matrix Ni that this unique class is equal to the sum of classes which all have
order 1 or 2, a contradiction. This ends the proof of the claim. □

The sequence {sn}n≥1 with s1 = 2 and sn := lcm(s1, . . . , sn−1) + 1 is called Sylvester’s sequence
{2, 3, 7, 43, . . . } in the literature. It produces the only intersection matrices N (1 | s1/1, . . . , sn−1/1) with
trivial group 8N in the above construction.

An example of a star with intersection matrix N such that 8N is killed by 2 but |Z2
| > 2 is given by

N = N (1 | 2/1, 3/1, 10/1, 16/1), with group 8N = (Z/2Z)2 and Z = (30, 15, 10, 3, 2), giving |Z2
| = 4.

Example 8.3. Let p = 2. Fix an integer n ≥ 1. Consider the star graph with a central node of self-
intersection −(n + 1) attached to 2n + 1 terminal vertices of self-intersection −2. Denote by N0

its intersection matrix. Proposition 1.3(iv) shows that 8N0 = (Z/2Z)2n . We remark in passing that
this matrix does occur as the intersection matrix attached to a quotient singularity (use the equation
z2

= xy(x2n−1
− y2n−1) and Theorem 5.3(ii)).

Starting with N0, the construction in Example 8.2 produces two intersection matrices, the matrix
N1(n) := N (n + 1 | 2/1, . . . , 2/1, 3/1) with group of order 22n and whose graph is represented on the
left below, and the matrix N2(n) := N (n + 1 | 2/1, . . . , 2/1, 4/1) with group of order 22n+1 and whose
graph is represented below on the right:

−(n+1)

−3

2n

. . .

−(n+1)

−4

2n

. . .

When n = 1, the intersection matrices N1(n) and N2(n) are the matrices of the resolutions of the wild
quotient singularities Spec B4 and Spec C4, respectively. This can be verified using the Magma [Bosma
et al. 1997] commands ResolveSingByBlowUp() and IntersectionMatrix().
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When n ≥ 1, consider f := z p
− (aby)p−1z − a pxy + bp y introduced in (8-2), and set a := xn and

b := y2n+1. Let B := k[[x, y, z]]/( f ). Proposition 8.1 shows that the equation f = 0 defines a wild
Z/2Z-quotient singularity. We conjecture that Spec B has a resolution X → Spec B with a dual graph
equal to the dual graph of N2(n) represented on the right above. The conjecture thus provides examples
of wild Z/2Z-quotient singularities with discriminant group of order 22n+1 for all n ≥ 1. These quotient
singularities are associated with actions that are ramified in codimension 1.

Example 8.4 (analogues of E7). Let p be prime. Computations suggest that the resolution of the wild
Z/pZ-quotient singularity Spec C2 (see (8-1)) has intersection matrix (notation as in Section 1.2)

N = N
(

2
∣∣∣ p

p − 1
,

p + 1
p

,
p2

2p − 1

)
with group 8N = Z/pZ. When p is odd, the intersection matrix N has the following graph:

−(p+1)/2 −5 (p−3)/2

p−1p

The resolution of Spec B2 is discussed in Theorem 7.1.

Remark 8.5. Consider the equation z p
− (aby)p−1z − a pxy + bp y = 0 introduced in (8-2), and set

a = yn and b = xm for some integers m, n ≥ 1. Proposition 8.1 shows that this equation defines a wild
Z/pZ-quotient singularity. Computations with Magma [Bosma et al. 1997] suggest that for such a and b,
the resolution of the singularity at the origin of z p

−(aby)p−1z−a pxy+bp y = 0 has the same intersection
matrix as the resolution of the singularity of z p

− a pxy + bp y = 0.
When a = yn and b = xm , this latter singularity has the form z p

−xy(y pn
−x pm−1)=0, and Theorem 4.4

provides an explicit resolution for it. When p = 2, we find that g := gcd(pn, pm − 1) is always odd, so
the discriminant group of this resolution, which has order 2g+1 by Proposition 4.9, is always of the form
|8N | = 2s with s even. Thus the quotient singularity (8-2) in this case is unlikely to provide examples of
discriminant groups of order |8N | = 2s with s odd.

When p = 2, (8-2) in the case b = x and a = yn gives the equation of the singularity Dn
2(2n+1) with

resolution graph the Dynkin diagram D2(2n+1); notation as in [Artin 1977, Section 3].

9. D4 and A p−1

We compute in this section the resolution of the singularity of Spec Bµ introduced in Section 0.2, for any
value of the parameter µ when a = −y and b = −x . The ring Bµ is given in this case by

Bµ := k[[x, y]][z]/(z p
− (µxy)p−1z − x p+1

+ y p+1).
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Let Z → Spec(Bµ) be the blow-up of the ideal b= (x, y, z), as in Proposition 3.6. We note in Theorem 9.4
that Z has p + 1 singularities, each again Z/pZ-quotient singularities, with resolution graph Ap−1 and
associated discriminant group Z/pZ.

Remark 9.1. When k contains a third root of unity ζ with ζ 2
+ ζ + 1 = 0, the change of variables

X := x + ζ y and Y := x + ζ 2 y produces x3
+ y3

= −ζ XY (X + ζY ). In that case, for any integer q ≥ 1,
the singularity zq

− (x3
+ y3) = 0 is always isomorphic over k to the singularity zq

− (x2 y − xy2) = 0.
When in addition p = 2, we find that Bµ=0 is isomorphic over F4 to the singularity D0

4 , given by the
equation z2

+ x2 y + xy2
= 0. The dual graph of its resolution is the Dynkin diagram D4. The Tjurina

number of this singularity is equal to 8.
The resolution of Spec Bµ=1 when p = 2 is also known to have dual graph D4 over an algebraically

closed field. Indeed, the equation when µ = 1 is stated to be equivalent to D1
4 in [Peskin 1980, page 102],

where D1
4 is given by the equation z2

+ xyz + x2 y + xy2
= 0. The quotient singularity Spec Bµ=1 when

p > 2 can thus be considered as a generalization of D1
4 .

Theorem 9.2. Assume that p ≥ 3. Then Spec Bµ has a resolution of singularities with star-shaped dual
graph 0N independent of µ having p + 1 identical terminal chains, each with p − 1 vertices, as follows:

−p

. . .

p−1 p−1

The associated discriminant group 8N has order p p.

Proof. Let Z → Spec(Bµ) be the blow-up of the ideal aB = (a, b, z) = (x, y, z), as in Proposition 3.6.
Let as usual E denote the exceptional divisor. We find from Proposition 3.6 that Ered is a smooth rational
curve over k, and that (E · Ered)Z = −1. In addition, E = pEred, and the z-chart is regular.

The blow-up Z is covered by three affine charts, and we see that the x-chart is generated by the
expressions x, y/x, z/x modulo the relation(

z
x

)p

− x
(

1 + µp−1x p−2
(

y
x

)p−1 z
x

−

(
y
x

)p+1)
= 0. (9-1)

Clearly, this chart is regular at the origin. Let Y → Z denote the normalization of Z . Let D denote as
usual the pull-back of the exceptional divisor of Z . It follows from the regularity at the origin that the
induced morphism Dred → Ered is an isomorphism. Hence, we can conclude from Proposition 2.3 that
(Dred · Dred)Y = −1/p.

Using partial derivatives, one sees that the singular locus on the x-chart is given by x = z/x = 0 and
(y/x)p+1

= 1. In particular, the singular locus is finite and, hence, Z is normal since it is Cohen–Macaulay
and regular in codimension 1. We thus have Y = Z . Let ζ denote a primitive root of the equation u p+1

= 1.
When rewriting the above equation defining the x-chart in terms of the expressions x , y/x − ζ j , and z/x ,
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we obtain a polynomial of the form x(y/x − ζ j ) + O(3) when p ≥ 3. Using the changes of variables
discussed in the proof of Lemma 6.4, we find that the singularity is in fact a rational double point. Since
(9-1) contains the monomial (z/x)p and no other monomial (z/x)i with i < p, we find that the rational
double point is of type Ap−1.

Let X → Y denote a resolution of the singularities of Y . Let C denote the strict transform of Dred

in X . It follows from Proposition 2.2 that (C · C)X = −1/p − (p + 1)δ, where δ is the correcting term
associated with the rational double point Ap−1. As noted in Section 1.1, δ = (p − 1)/p, and we find that
(C · C)X = −p. The associated discriminant group is computed with Proposition 1.3. □

Let R := k[[x, y]]. As recalled in Section 0.2, let

A := k[[u, v]] = R[u, v]/(u p
− (µy)p−1u − x, v p

− (µx)p−1v − y),

and let σ be the automorphism defined by σ(u) = u +µy and σ(v) = v+µx . Let G := ⟨σ ⟩. The element
z := xu − yv is invariant, and we can identify the ring Bµ with AG .

Let Z ′
→ Spec(A) be the blow-up of the induced ideal aA, with a= (x, y, z). Let Y ′

→ Z ′ denote the
normalization of Z ′. We have the commutative diagram:

Y ′
−−−→ Z ′

−−−→ Spec(A)y y y
X −−−→ Y −−−→ Z −−−→ Spec(AG)

Let yi , i = 1, . . . , p + 1, denote the rational double points in Y of type Ap−1. We show below that these
points are in fact Z/pZ-quotient singularities.

Lemma 9.3. The scheme Y ′ is regular, and the morphism Y ′
→ Spec(A) coincides with the blow-up of

the maximal ideal mA = (u, v).

Proof. Indeed, using the relations

u p
− (µy)p−1u = x and v p

− (µx)p−1v = y, (9-2)

we get u p, v p
∈ aA. Since the finite ring extension R ⊂ A is flat of degree p2, we must have aA = (u p, v p).

More precisely, substituting the equations (9-2) into each others one obtains

x · unit = u p
− µp−1v p(p−1)u and y · unit = v p

− µp−1u p(p−1)v,

showing explicitly that (x, y)A ⊆ (u p, v p). Since z = xu − yv, we have (u p, v p) = aA.
The blow-up Z ′ of the ideal (u p, v p) in Spec(A) is covered by two charts. The u p-chart has generators

u, v, and v p/u p, so v/u satisfies an obvious integral equation, and we also have v = v/u · u. It follows
that on the normalization the chart becomes regular. The situation on the v p-chart is similar, and we see
that the scheme Y ′ is regular. □
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Theorem 9.4. The preimage of each yi under the map Y ′
→ Y consists of a single regular point xi ∈ Y ′,

and OY,yi = (OY ′,xi )
G . Thus yi is a Z/pZ-quotient singularity whose resolution has dual graph Ap−1

and associated discriminant group Z/pZ. The morphism Spec OY ′,xi → Spec(OY ′,xi )
G is ramified in

codimension 1 and the punctured spectrum of the rational double point yi has trivial fundamental group.

Proof. The G-action on the ring A induces a G-action on the normalized blow-up Y ′, which on the field
of fractions of the u-chart is given by

u 7→ u + µy and v/u 7→ (v + µx)/(u + µy).

Since Y is normal, the induced morphism Y ′
→ Y yields an identification Y = Y ′/G.

Let E ′ denote the exceptional divisor of the blow-up Y ′
→ Spec(A) of the maximal ideal. Then the

natural map E ′
→ Dred induced by Y ′

→ Y is purely inseparable of degree p, and, hence, the morphism
Spec OY ′,xi → Spec(OY ′,xi )

G is ramified at the codimension 1 point corresponding to E ′. It follows
from [Artin 1977, Corollary 1.2], that the punctured spectrum of the rational double point yi has trivial
fundamental group. □

Remark 9.5. The occurrence of the Ap−1-singularities yi on the quotient Y = Y ′/G is caused by points
xi ∈ Y ′ where the ideal of the fixed scheme Y ′G

⊂ Y ′ is not a Cartier divisor. Indeed, using Theorem 2 in
[Kiràly and Lütkebohmert 2013], we find that when the action of σ on the local ring A = k[[u, v]] is such
that the ideal (σ (u) − u, σ (v)− v) of the fixed scheme is principal, then the fixed ring A⟨σ ⟩ is regular.

Proposition 9.6. The multiplicities in the fundamental cycle Z of the resolution of Spec Bµ are strictly
decreasing along each terminal chain, as indicated below next to the corresponding vertex:

p

. . .

p−11 p−1 1

The canonical cycle of the singularity is K=−(p−2)Z. Moreover, Z2
=−p and h1(OZ)= 1

2(p−2)(p−1).

Proof. For convenience in this proof, let us denote by Z0 the vector whose coefficients are given in the
proposition. Since N Z0 has nonpositive coefficients, we find that by definition of the fundamental cycle,
we must have Z ≤ Z0. In particular, the multiplicities in Z of the terminal vertices of the graph must be
all equal to 1. Since the fundamental cycle Z is unique, it is easy to check that it must be “rotationally
symmetric” around the central node. Let us denote by z p−1, . . . , z2, z1 the multiplicities of Z along
a terminal chain. The central node has multiplicity denoted z p, and the fact that N Z has nonpositive
coefficients produces the following inequalities. First at the central node, we find

−pz p + (p + 1)z p−1 ≤ 0.

It follows that z p − z p−1 ≥ z p−1/p, so that z p − z p−1 ≥ 1. At each other vertex, we find that

−2zi + zi−1 + zi+1 ≤ 0.
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It follows that zi+1 − zi ≤ zi − zi−1. Hence, for each i = 2, . . . , p, we have zi − zi−1 ≥ 1. Since Z ≤ Z0,
we must have Z = Z0.

It is easy to compute that Z2
= −p. It is also an easy matter to check that the vector K satisfies

the matricial condition defining the canonical cycle recalled in Section 10.2. Similarly, one checks that
(K + Z) · Z = p2

− 3p. □

10. Numerically Gorenstein intersection matrices

All wild Z/pZ-quotient singularities resolved in this article are hypersurface singularities. We prove in
this section that all wild Z/2Z-quotient singularities are hypersurface singularities. We then recall that
the intersection matrix associated with a hypersurface singularity is always numerically Gorenstein. We
show in Proposition 10.5 that any intersection matrix N whose discriminant group 8N is killed by 2 is
automatically numerically Gorenstein. We exhibit in Example 10.7 an example when p > 2 of a wild
Z/pZ-quotient singularity which is not numerically Gorenstein.

Proposition 10.1. Let p = 2. Let A = k[[u, v]], endowed with a nontrivial action of G = Z/2Z. Then
there exists a power series ring R := k[[x, y]] such that AG is k-isomorphic to R[z]/(z2

+ sz + t), with
s, t ∈ R.

Proof. Let σ denote the generator of G. Proposition 2.9 in [Lorenzini and Schröer 2020] allows us,
if necessary, to replace the system of parameters (u, v) for A with a new system of parameters (again
denoted by (u, v) below) with the following properties (use [loc. cit., Proposition 2.3]): let x := uσ(u) and
y := vσ(v). Let R := k[[x, y]] be the subring of A generated by k, x , and y. Then A is a free R-module
of rank 4.

We have the inclusions R ⊂ AG
⊂ A, and the fraction field of AG is then of degree 2 over the fraction

field of R. Since R is regular and AG is Cohen–Macaulay because it is normal of dimension 2, we find
that AG is a free R-module of rank 2. Thus, R is a direct summand of AG , with quotient AG/R free of
rank 1. We can therefore find an element z ∈ AG which generates the quotient AG/R. It follows that
the natural map R[Z ] → AG with Z 7→ z is surjective. Since z /∈ R, it satisfies a quadratic equation
z2

+ sz + t = 0, with s, t ∈ R and Z2
+ s Z + t irreducible in R[Z ]. Since R[Z ] is a UFD, we find that

R[Z ]/(Z2
+ s Z + t) → AG is an isomorphism. □

10.2. Let N = (ci j )∈Matn(Z) be an intersection matrix. Let H0 ∈Zn be the integer vector whose i-th coef-
ficient is hi :=−ci i −2 for i =1, . . . , n. Since N is invertible, there exists a vector K ∈Qn such that N K =

H0. The vector K is called the canonical cycle of N . We say that N is numerically Gorenstein if K ∈ Zn .
When N is the intersection matrix associated with a collection of irreducible curves Ci , i = 1, . . . , n

on a surface, each component Ci has an arithmetical genus pa(Ci ). Our definition of numerically
Gorenstein coincides with the usual one (see for instance [Popescu-Pampu and Seade 2009, (2.5)]) when
all arithmetical genera are equal to 0. When a matrix N is numerically Gorenstein and Z denotes its
fundamental cycle, then −K ≥ Z, unless the dual graph of N is the dual graph of a rational double point
[Laufer 1987, Proposition 2.1; Popescu-Pampu and Seade 2009, Proposition 2.4].
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Lemma 10.3. Let k be a field of characteristic p. Let B denote a complete local ring of dimension 2,
isomorphic to k[[x, y, z]]/( f ) for some f ∈ (x, y, z), and formally smooth outside its closed point. Let
X → Spec B be a resolution of the singularity, with associated intersection matrix N . Assume that all the
irreducible components in the exceptional locus of the resolution are smooth rational curves. Then N is
numerically Gorenstein.

Proof. We first use [Artin 1969, 3.8], to find an algebraic scheme S over k and a point s ∈ S such
that the completion of OS,s is isomorphic to B. The ring OS,s is Gorenstein since its completion B is
[Eisenbud 1995, 21.18]. Thus there exists an open set U of S, containing s, and such that U is everywhere
Gorenstein [Greco and Marinari 1978, 1.5]. It follows that U has a canonical sheaf that is an invertible
sheaf. Consider a resolution π : V → U of the singularity s ∈ U . Then the canonical divisor KV on V is
supported on the exceptional divisor of π . The adjunction formula for each irreducible component Ei

shows that (KV · Ei )+ (Ei · Ei ) = 2pa(Ei )− 2. Since KV is equal to a linear combination of the Ei , we
find that the intersection matrix N of the exceptional locus is numerically Gorenstein. □

Let N = (ci j ) ∈ Matn(Z) be an intersection matrix with discriminant group 8N . As usual, denote
by e1, . . . , en the standard basis of Zn , and let pi denote the order of the class of ei in 8N . For each
i = 1, . . . , n, let Ri ∈ Zn denote the unique positive vector such that N Ri = −pi ei . Let (Ri ) j denote the
j-th coefficient of Ri , and define

gi :=

n∑
j=1

(Ri ) j (|c j j | − 2) = (tRi )H0.

If the matrix N is such that c j j ≤ −2 for all j = 1, . . . , n, then gi ≥ 0.

Lemma 10.4. Let N be an intersection matrix. Then t K = (−g1/p1, . . . ,−gn/pn). In particular, the
matrix N is numerically Gorenstein if and only if pi divides gi for each i = 1, . . . , n.

Proof. By hypothesis, we have N K = H0 for some vector K ∈ Qn . It follows that −pi Ki =
tRi N K =

tRi H0 = gi , and we find that Ki = −gi/pi . □

Proposition 10.5. Let N = (ci j ) ∈ Matn(Z) be an intersection matrix with discriminant group 8N killed
by 2. Then N is numerically Gorenstein.

Proof. Our hypothesis implies that pi = 1 or 2, for all i = 1, . . . , n. We use the criterion given in
Lemma 10.4: To show that N is numerically Gorenstein, it suffices to show, for each i , that the integer gi

is even when pi = 2. Assume then that pi = 2. Then by construction,

tRi N Ri = −pi (Ri )i .

We now compute explicitly the term tRi N Ri and obtain

tRi N Ri =

n∑
j=1

c j j (Ri )
2
j + 2

∑
j<k

c jk(Ri ) j (Ri )k .

Since pi is even and (Ri )
2
j ≡ (Ri ) j (mod 2), we find that

∑n
j=1 c j j (Ri ) j is even, and so is gi , as desired. □
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Remark 10.6. Let N = (ci j )∈ Matn(Z) be an intersection matrix associated with the resolution of a hyper-
surface singularity, all of whose exceptional components are smooth rational curves. Assume that ci i ≤−2
for all i =1, . . . , n. Laufer [1987, 3.7] provides additional constraints on the canonical vector K associated
with such N , with an improvement by M. Tomari stated in the addendum on page 496 of [loc. cit.]. A
further improvement was found by Yau [1989, Theorems B and C], which show that for such N ,

gi/pi ≥ (|Z · Z| − 2)zi ,

where t Z = (z1, . . . , zn) is the fundamental cycle of N . In other words, we have −K ≥ (|Z · Z| − 2)Z.
Note that the singularity in Proposition 9.6 satisfies −K = (|Z · Z| − 2)Z.

In the context of wild Z/2Z-quotient singularities treated in this article, the resolution of such a
singularity has intersection matrix N with 8N killed by 2 and with |Z · Z| ≤ 2. Proposition 10.5 shows
that any such N is always numerically Gorenstein, and since |Z · Z| ≤ 2 and Z > 0, Laufer’s constraints
are also automatically satisfied.

Example 10.7. We exhibit below a wild Z/pZ-quotient singularity that is not numerically Gorenstein.
Let p > 2 be prime and consider the wild Z/pZ-quotient singularity in [Lorenzini 2014, 6.8], with
resolution graph with r1(i) = 1. This resolution graph has a single vertex of self-intersection different
from −2, namely the terminal vertex C with r1(i) = 1 and self-intersection −p, represented as the top
center vertex in the graph below:

1 p−1

p−1

p

2
−p

p−1 1

p−1

The graph is adorned with the coefficients of an integer vector R, and it is easy to check that the canonical
vector K is −(p−2)R/p. Since p > 2, the vector K is not an integer vector. The fundamental cycle of the
singularity is given in [Lorenzini 2018, 4.4], and it is shown in [loc. cit., 4.1], that this singularity is rational.
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