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We construct a new Eisenstein cocycle, called the Shintani–Barnes cocycle, which specializes in a uniform
way to the values of the zeta functions of general number fields at positive integers. Our basic strategy is
to generalize the construction of the Eisenstein cocycle presented in the work of Vlasenko and Zagier by
using some recent techniques developed by Bannai, Hagihara, Yamada, and Yamamoto in their study of
the polylogarithm for totally real fields. We also closely follow the work of Charollois, Dasgupta, and
Greenberg. In fact, one of the key ingredients which enables us to deal with general number fields is the
introduction of a new technique, called the “exponential perturbation”, which is a slight modification of
the Q-perturbation studied in their work.
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1. Introduction

It is classically known that the Hecke integral formula [1917] expresses the zeta function of a number
field of degree g as an integral of the Eisenstein series over a certain torus orbit on the locally symmetric
space for SLg(Z).

In some special cases, typically in the case where the number field is totally real, it is known that
such an integral formula has a cohomological interpretation, and this often enables us to access the
algebraic properties of the special values of the zeta function. More precisely, one can construct a
certain (g−1)-cocycle on SLg(Z) which can be thought as an algebraic counterpart of the Eisenstein
series, and a (g−1)-cycle on SLg(Z) which can be thought as an algebraic counterpart of the torus orbit,
so that their pairing gives the value of the zeta function of a given totally real number field. Such a
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cocycle is often called the Eisenstein cocycle. Actually, many different kinds of Eisenstein cocycles
have been constructed and studied by Harder [1987], Sczech [1993], Nori [1995], Solomon [1998],
Hill [2007], Vlasenko and Zagier [2013], Charollois, Dasgupta, and Greenberg [Charollois et al. 2015],
Beilinson, Kings, and Levin [Beilinson et al. 2018], Bergeron, Charollois, and Garcia [Bergeron et al.
2020], Flórez, Karabulut, and Wong [Flórez et al. 2019], Lim and Park [2019], Bannai, Hagihara, Yamada
and Yamamoto [Bannai et al. 2023], and Sharifi and Venkatesh [2020], and various applications have
been obtained. However, the number fields previously treated are basically limited to totally real fields or
totally imaginary fields. The aim of this paper is to propose a new formulation in which we can treat all
number fields in a uniform way.

1.1. Shintani cocycles. Among these many kinds of construction of the Eisenstein cocycle, a method we
use in this paper is called Shintani’s method, and the Eisenstein cocycles constructed by Shintani’s method
are often called the Shintani cocycles;1 see [Solomon 1998; Hill 2007; Charollois et al. 2015; Lim and
Park 2019; Bannai et al. 2023]. Roughly speaking, a Shintani cocycle is constructed as a family of objects
(e.g., functions, formal power series, distributions, etc.) indexed by rational cones in Rg. Therefore, what
we do in this paper is basically the following:

(1) Define a certain object “ψC ” for each rational cone C ⊂ Rg.

(2) Prove that the family (ψC)C satisfies the “cocycle relation”.

(3) Prove that the cohomology class defined by (ψC)C specializes to the special values of the zeta
function of a given number field.

Let g, k≥1 be integers. In this paper, we say that a matrix Q ∈GLg(Q) is irreducible if its characteristic
polynomial is irreducible over Q. In Section 6, for a rational open cone

C I =

g∑
i=1

R>0αi ⊂ Rg

generated by I = (α1, . . . , αg) ∈ (Q
g
−{0})g, and an irreducible matrix Q ∈ GLg(Q), we consider a

holomorphic function

ψ
Q
kg,I (y) := sgn(I )

∑
x∈C Q

I ∩Zg
−{0}

1
⟨x, y⟩g+kg

on {
y ∈ Cg

| there exists λ ∈ C× such that for all i ∈ {1, . . . , g}, Re(⟨αi , λy⟩) > 0
}
⊂ Cg
−{0},

where

• sgn(I )= sgn(det(α1, . . . , αg)) ∈ {0,±1},

• the bracket ⟨x, y⟩ = txy denotes the dot product,

• C Q
I is the “exponential Q-perturbation” of the cone C I (Section 5.1).

1The terminology seems to depend on the authors. We adopt this convention in this paper.
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Then we prove that the collection (ψQ
kg,I )I,Q defines a class

[9kg] ∈ H g−1(Y ◦,SLg(Z),F
4
kg)

of the equivariant cohomology of a certain SLg(Z)-equivariant sheaf F4
kg on Y ◦ :=Cg

−iRg; see Section 3
and Theorem 6.2.5. We call our Shintani cocycle the Shintani–Barnes cocycle because the function
ψ

Q
kg,I (y) is essentially the Barnes zeta function.
Then for a number field F/Q of degree g, a fractional ideal a⊂ F , and a continuous map χ : F×R → Z,

we construct a specialization map

H g−1(Y ◦,SLg(Z),F
4
kg)→ H g−1

sing (F
×

R /O
×

F,+,C)→ C,

using a certain integral operator; see (8-11). The image of the Shintani–Barnes cocycle [9kg] under this
specialization map can be computed using the classical Hurwitz formula (Proposition 7.1.3, Example 7.2.4)
and a version of the Shintani cone decomposition (Proposition 8.2.1). As a result, we prove that the
class [9kg] maps to the value of the partial zeta function,

±

√
DOF Na(k!)g

(g+ gk− 1)!
ζOF (ε

k+1χ, a−1, k+ 1),

under the specialization map, where ε : F×R → {±1} is the sign character; see Theorem 8.3.2.
The idea of using the Barnes zeta functions is based on the work of Vlasenko and Zagier [2013]

dealing with the values of the zeta functions of real quadratic fields at positive integers, and the idea of
constructing the Shintani cocycle as a Čech cocycle of an equivariant sheaf is based on the work of Bannai,
Hagihara, Yamada, and Yamamoto [Bannai et al. 2023], in which the higher-dimensional polylogarithm
associated to a totally real field is studied. Moreover, the concept of the exponential Q-perturbation C Q

I

of a cone C I is a slight modification of the Q-perturbation studied by Charollois, Dasgupta, Greenberg
[Charollois et al. 2015] and Yamamoto [2010]. We use irreducible matrices Q ∈ GLg(Q) instead of the
“irrational vectors” used in [Charollois et al. 2015]. These three ideas are the main ingredients in this
paper which enable us to deal with general number fields.

1.2. Structure of the paper. Sections 2–5 are devoted to preparing some tools that are necessary for the
definition of the Shintani–Barnes cocycle. More precisely, in Section 2 we review some elementary facts
about irreducible matrices of GLg(Q) and their relationship to number fields. In Section 3 we introduce
the sheaves Fd and F4

d on Y ◦ = Cg
−iRg, and examine the basic properties of these sheaves. Then in

Section 4 we compute the equivariant cohomology groups of these sheaves using the equivariant Čech
complex. In Section 5 we introduce the notion of the exponential perturbation, and prove the cocycle
relation satisfied by rational cones. Based on these preparations, in Section 6 we give the definition of the
Shintani–Barnes cocycle.

The remaining sections (Sections 7 and 8) are devoted to showing that we can obtain the special values
of the zeta functions as a specialization of the Shintani–Barnes cocycle. In Section 7 we first introduce a
certain integral operator, and construct the first half of the specialization map. In Section 8 we finish the
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construction of the specialization map using a version of the Shintani cone decomposition, and finally
prove the main result, Theorem 8.3.2.

2. Preliminaries

Conventions. • Throughout the paper we fix an integer g ≥ 1.

• For a ring R, a vector x ∈ Rg is always regarded as a column vector, and the matrix algebra Mg(R)
acts on Rg by the matrix multiplication from the left.

• For x1, . . . , xg ∈ Rg, we often regard (x1, . . . , xg) as a g×g-matrix whose columns are x1, . . . , xg.

• For γ ∈ Mg(R), its transpose is denoted by tγ ∈ Mg(R).

• The bracket

⟨ , ⟩ : Rg
× Rg

→ R, (x, y) 7→ ⟨x, y⟩ = txy

denotes the standard scalar product (the dot product, not a Hermitian product even if R = C).

• If A and B are sets, then A−B denotes the relative complement of B in A.

• Let {Sλ}λ∈3 be a family of sets. For s ∈
∏
λ∈3 Sλ, the λ-component of s is often denoted by sλ ∈ Sλ.

2.1. Irreducible matrices. In this subsection we review some basic facts about irreducible matrices
of GLg(Q). We say that a matrix Q ∈GLg(Q) is irreducible over Q if the characteristic polynomial of Q
is an irreducible polynomial over Q. We often drop “over Q” if it is obvious from the context. Let

4 := {Q ∈ GLg(Q) | Q is irreducible over Q}

denote the set of irreducible matrices of GLg(Q). The group GLg(Q) acts on 4 by the conjugate action.
For Q ∈4 and γ ∈ GLg(Q), let

[γ ](Q) := γ Qγ−1
∈4

denote this conjugate action.
Now, for Q ∈4, let

0Q := StabSLg(Z)(Q)=
{
γ ∈ SLg(Z) | [γ ](Q)= γ Qγ−1

= Q
}

denote the subgroup of SLg(Z) stabilizing Q. Moreover, let

FQ :=Q[Q] ⊂ Mg(Q) and OQ := FQ ∩Mg(Z)⊂ FQ

denote the subalgebras of Mg(Q) generated by Q over Q and its “Mg(Z)-part” respectively.

Lemma 2.1.1. Let Q ∈4, and let fQ(X) ∈Q[X ] be the characteristic polynomial of Q.

(1) Q has g distinct eigenvalues in C, and hence Q is diagonalizable in GLg(C).

(2) There are no nonzero proper Q-stable Q-subspaces of Qg.
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(3) For any nonzero vector x ∈Qg
−{0}, the map

FQ
∼
−→Qg, γ 7→ γ x

is an isomorphism of Q-vector spaces.

(4) The Q-algebra FQ is a field of degree g over Q, and we have

NFQ/Q(γ )= det γ

for γ ∈ FQ , where NFQ/Q is the norm of the field extension FQ/Q.

(5) We have
FQ = {γ ∈ Mg(Q) | γ Q = Qγ }.

(6) We have
0Q = {γ ∈OQ | NFQ/Q(γ )= 1} ⊂O×Q,

i.e., 0Q is the norm-one unit group of OQ .

(7) The action of 0Q on Qg
−{0} is free, i.e., for any x ∈Qg

−{0} and γ ∈ 0Q , we have γ x = x if and
only if γ = 1.

Proof. (1) This follows from the fact that fQ(X) is an irreducible polynomial over Q.

(2) This also follows from the irreducibility of fQ(X). Indeed, if V ⊂Qg is a Q-stable Q-subspace, then
the characteristic polynomial of Q|V divides fQ(X).

(3) and (4) First, since x ̸= 0, the image of the map

FQ→Qg, γ 7→ γ x

is a nonzero Q-stable Q-subspace. Hence, by (2), this map is surjective. Now, again since fQ(X)
is an irreducible polynomial over Q, we see that FQ ≃ Q[X ]/( fQ(X)) is a field of degree g over Q.
Therefore, by comparing the dimension, we find that the above map is an isomorphism. The identity
NFQ/Q(γ )= det γ is nothing but the definition of the norm.

(5) Let F ′Q denote the right-hand side. The inclusion FQ ⊂ F ′Q is obvious. We compare the dimension.
First we have

F ′Q ⊗Q C⊂ F ′′Q := {γ ∈ Mg(C) | γ Q = Qγ }.

Then, by (1), the right-hand side F ′′Q is simultaneously diagonalizable in Mg(C). Therefore, F ′′Q is
isomorphic to the space of diagonal matrices. Thus we find

dimQ F ′Q = dimC F ′Q ⊗Q C≤ dimC F ′′Q = g = dimQ FQ,

and hence we obtain FQ = F ′Q .

(6) This follows directly from (4) and (5).

(7) By (6), we see that 0Q ⊂ F×Q , and by (3) and (4), we see that F×Q acts freely on Qg
−{0}. □
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2.2. Review on number fields. In this subsection we take a closer look at the relationship between
irreducible matrices and number fields.

Let F/Q be a number field of degree g, and let

τ1, . . . , τg : F ↪→ C

be the field embeddings of F into C, i.e., {τ1, . . . , τg} = Homfield(F,C).2 Let O ⊂ F be an order in F ,
i.e., O ⊂ F is a subring which is a finitely generated Z-module and generates F over Q. Let a⊂ F be a
proper fractional O-ideal, i.e., a⊂ F is a finitely generated O-submodule such that

{α ∈ F | αa⊂ a} =O. (2-1)

Let w1, . . . , wg ∈ a be a basis of a over Z, and put

w := t(w1, . . . , wg) ∈ Fg and w(i) := τi (w)=
t(τi (w1), . . . , τi (wg)) ∈ Cg

for i = 1, . . . , g. We define the norm polynomial Nw(x)= Nw(x1, . . . , xg) ∈Q[x1, . . . , xg] with respect
to this basis by

Nw(x) :=
g∏

i=1

⟨x, w(i)⟩ ∈Q[x1, . . . , xg],

where x = (x1, . . . , xg). The situation can be summarized in the following diagram:

x_

��

∈ Zg

≀

��

⊂ Qg

≀

��

Nw

$$
⟨x, w⟩ ∈ a ⊂ F

NF/Q

// Q

Moreover, let

ρw : F→ Mg(Q)

be the regular representation of F with respect to the basisw1, . . . , wg, i.e., for α∈ F and x ∈Qg, we have

⟨ρw(α)x, w⟩ = α⟨x, w⟩ = ⟨x, αw⟩ ∈ F. (2-2)

Dual objects. Letw∗1, . . . , w
∗
g ∈ F be the dual basis ofw1, . . . , wg with respect to the field trace TrF/Q, i.e.,

TrF/Q(wiw
∗

j )= δi j =

{
0 if i ̸= j,
1 if i = j.

Then it is easy to see that w∗1, . . . , w
∗
g form a Z-basis of a proper fractional O-ideal

a∗ := {α ∈ F | TrF/Q(αa)⊂ Z}.

2At this stage we don’t make a distinction between real embeddings and complex embeddings. Later, in Section 8.2, we will
make such a distinction for convenience.
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We define
w∗ := t(w∗1, . . . , w

∗

g) ∈ Fg,

w∗(i) := τi (w
∗)= t(τi (w

∗

1), . . . , τi (w
∗

g)) ∈ Cg,

Nw∗(x) :=
g∏

i=1

⟨x, w∗(i)⟩ ∈Q[x1, . . . , xg],

and

ρw∗ : F→ Mg(Q)

in the same way as above, starting from the dual basis w∗1, . . . , w
∗
g.

Lemma 2.2.1. Let θ ∈ F× be an element such that F =Q(θ). Put Q = ρw(θ) ∈ GLg(Q).

(1) We have Q ∈4. Conversely, any element of 4 can be obtained in this way.

(2) The regular representation ρw : F→ Mg(Q) induces isomorphisms

F
ρw

∼
// FQ

∪ ∪

O
∼
// OQ

∪ ∪

O1
∼
// 0Q

where O1
:= {u ∈O× | NF/Q(u)= 1} is the norm-one unit group of O.

(3) w∗(1), . . . , w∗(g)∈Cg are the dual basis ofw(1), . . . , w(g)∈Cg with respect to the scalar product ⟨ , ⟩,
i.e., we have

⟨w∗(i), w( j)
⟩ = δi j .

(4) For α ∈ F , we have

ρw∗(α)=
tρw(α).

(5) Let α ∈ F. Then w(i) is an eigenvector of tρw(α) with eigenvalue τi (α).

(6) Let α ∈ F. Then w∗(i) is an eigenvector of ρw(α) with eigenvalue τi (α).

(7) For γ ∈ 0Q , we have

Nw(γ x)= Nw(x) and Nw∗(tγ x)= Nw∗(x).

Proof. (1) Since θ generates F , the characteristic polynomial of Q = ρw(θ) is irreducible, and hence
Q ∈ 4. The latter half of the statement follows from Lemma 2.1.1(3), (4). Indeed, for Q ∈ 4, fix a
nonzero vector x ∈Qg and take a basis w1, . . . , wg ∈ FQ corresponding to the standard basis of Qg via
the isomorphism

FQ
∼
−→Qg, γ 7→ γ x .
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Let a⊂ FQ be the subset corresponding to Zg
⊂Qg under this isomorphism. Then we easily see that a is

a proper OQ-ideal and that ρw is the natural inclusion FQ ↪→ Mg(Q). Hence we find that Q = ρw(Q).

(2) The first isomorphism F ∼
−→ FQ is obvious. The second isomorphism follows from (2-1), and the

third follows from Lemma 2.1.1(6).

(3) Put

W := (w(1), . . . , w(g))= (τ j (wi ))i j ∈ Mg(C) and W ∗ := (w∗(1), . . . , w∗(g))= (τ j (w
∗

i ))i j ∈ Mg(C).

Then, by definition, we have

W tW ∗ = (TrF/Q(wiw
∗

j ))i j = 1 ∈ Mg(C), (2-3)

and hence

(⟨w∗(i), w( j)
⟩)i j =

tW ∗W = 1.

(4)–(6) First, by (2-2), we have

⟨x, αw⟩ = ⟨ρw(α)x, w⟩ = ⟨x, tρw(α)w⟩ ∈ F

for all x ∈Qg. Therefore, we find that αw = tρw(α)w ∈ Fg. By applying τi , we obtain (5). In particular,

W diag(τ1(α), . . . , τg(α))=
tρw(α)W, (2-4)

where diag(τ1(α), . . . , τg(α)) ∈ Mg(C) is the diagonal matrix with diagonal entries τ1(α), . . . , τg(α).
Similarly, we have

W ∗diag(τ1(α), . . . , τg(α))=
tρw∗(α)W ∗. (2-5)

On the other hand, by using (2-3) and (2-4) we also find that

diag(τ1(α), . . . , τg(α))
tW ∗ = tW ∗tρw(α),

and hence, by taking the transpose, we have

W ∗diag(τ1(α), . . . , τg(α))= ρw(α)W ∗. (2-6)

By comparing (2-5) and (2-6), we obtain (4) and (6).

(7) This follows from (2), (5), and (6). Indeed, take u ∈O1 such that ρw(u)= γ . Then we have

Nw(γ x)=
g∏

i=1

⟨γ x, w(i)⟩ =
g∏

i=1

⟨x, tρw(u)w(i)⟩ = NF/Q(u)Nw(x)= Nw(x).

The statement for Nw∗(x) can be proved similarly. □
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3. The space Y ◦ and the sheaves Fd and F4
d

3.1. Definitions. Let Pg−1(C)= (Cg
−{0})/C× be the complex projective (g−1)−space, and let

πC : C
g
−{0} → Pg−1(C)

be the natural projection. We define an open subset Y ◦ of Cg
−{0} by

Y ◦ := Cg
−iRg

⊂ Cg
−{0},

where i ∈ C is the imaginary unit. The group GLg(Q) acts on Cg
−{0}, Y ◦, and Pg−1(C) by the matrix

action from the left. For an integer d ≥ 0, we define a sheaf Fd on Y ◦ as

Fd := π
−1
C
�

g−1
Pg−1(C)

(−d)|Y ◦,

where �g−1
Pg−1(C)

(−d) is the (−d)-th Serre twist of the sheaf �g−1
Pg−1(C)

of holomorphic (g−1)-forms on
Pg−1(C), and π−1

C
is the inverse image functor of sheaves. Furthermore, we define

F4
d := Hom(Z[4],Fd)≃

∏
Q∈4

Fd ,

where Z[4] is the constant sheaf associated to the free abelian group Z[4] generated by the set 4 of
irreducible matrices of GLg(Q), and Hom is the sheaf Hom. For Q ∈4, let

evQ :F
4
d →Fd (3-1)

denote the evaluation map at Q. See Remark 3.1.1 below.

Remark 3.1.1. (1) More generally, for a sheaf F (of abelian groups) on Y ◦, we define

F4
:= Hom(Z[4],F ).

Note that for an open subset U ⊂ Y ◦, we have

0(U,Hom(Z[4],F ))= Hom(Z[4]|U ,F |U )= Hom(Z[4], 0(U,F ))=Map(4, 0(U,F )).

Then the evaluation map evQ :F
4
→F is given by

evQ : 0(U,F4)=Map(4, 0(U,F ))→ 0(U,F ), φ 7→ φ(Q).

(2) By (1) we also see that F4
≃

∏
Q∈4 F .

(3) The sheaf F4
d is an analogue of the group N considered in [Charollois et al. 2015].

Remark 3.1.2. The sections of the sheaf �g−1
Pg−1(C)

(−d) on an open subset U ⊂Pg−1(C) can be described
as follows. First, let ω be a holomorphic (g−1)-form on Cg

−{0} defined by

ω(y1, . . . , yg) :=

g∑
i=1

(−1)i−1 yi dy1 ∧ · · · ∧ ˇdyi ∧ · · · ∧ dyg

for y = t(y1, . . . , yg) ∈ Cg
−{0}, where ˇdyi means that dyi is omitted.
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Then we have

0(U, �g−1
Pg−1(C)

(−d))

≃ { f ω | f holomorphic function on π−1
C
(U ) such that f (λy)= λ−g−d f (y) for all λ ∈ C×}. (3-2)

In this paper we use this as a definition of the sheaf �g−1
Pg−1(C)

(−d).

The sheaf �g−1
Pg−1(C)

(−d) has a natural GLg(Q)-equivariant structure via the pullback of differential
forms. Since πC is a GLg(Q)-equivariant map, this induces GLg(Q)-equivariant structures on Fd and F4

d .
We describe these GLg(Q)-equivariant structures more explicitly in Section 3.3.

3.2. A vanishing result. Here our aim is to compute the cohomology group Hq(U, π−1
C
�

g−1
Pg−1(C)

(−d))
for convex open subsets U ⊂ Cg

−{0}. Actually, we will show that

Hq(U, π−1
C
�

g−1
Pg−1(C)

(−d))= 0

for q ≥ 1, and also give an explicit description of H 0(U, π−1
C
�

g−1
Pg−1(C)

(−d)).
Let

D := {z ∈ C | Re(z) > 0}

be the right half-plane. We start with the following elementary lemma.

Lemma 3.2.1. Let X be a paracompact manifold, and let pr1 : X ×D→ X be the first projection. Let
U ⊂ X ×D be an open subset such that for any x ∈ X , the set

{z ∈ D | (x, z) ∈U }

is a nonempty convex subset of D. Then there exists a continuous section s : X→U of pr1|U :U → X
such that s ◦ pr1 is homotopic to the identity map idU over X , i.e., there exists a continuous map

h : [0, 1]×U →U

such that h(0, u)= s ◦ pr1(u), h(1, u)= u, and pr1 ◦ h(t, u)= pr1(u) for t ∈ [0, 1] and u ∈U.

Proof. In order to construct a section, it suffices to construct a continuous map

f : X→ D

such that (x, f (x)) ∈U for all x ∈ X . First, by assumption, for each x ∈ X we can take zx ∈D such that
(x, zx) ∈ U . Then there exist an open neighborhood Ux ⊂ X of x and an open neighborhood Vx ⊂ D

of zx such that Ux × Vx ⊂U . Since X =
⋃

x∈X Ux and X is paracompact, there exists a subset 3⊂ X
such that {Uλ}λ∈3 is a locally finite open covering of X . Note that for x ∈Uλ, we have

(x, zλ) ∈Uλ× Vλ ⊂U.

By using the paracompactness once again, there exists a partition of unity with respect to the open
covering {Uλ}λ∈3, i.e., a collection {φλ}λ∈3 of continuous maps

φλ : X→ [0, 1]
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such that supp(φλ)⊂Uλ and
∑

λ∈3 φλ(x)= 1 for all x ∈ X . Put

f :=
∑
λ∈3

zλφλ : X→ D.

Then, by the convexity assumption, we see that

(x, f (x))=
(

x,
∑
λ∈3

zλφλ(x)
)
∈U

for all x ∈ X . Thus we obtain a section

s : X→U, x 7→ (x, f (x)).

Again by the convexity assumption, we see that s ◦ pr1 is homotopic to the identity map idU over X .
Indeed,

h : [0, 1]×U →U, (t, (x, z)) 7→ (x, t z+ (1− t) f (x))

gives a homotopy between s ◦ pr1 and idU over X . □

Lemma 3.2.2. Let U ⊂ Cg
−{0} be a convex open subset.

(1) There exists x ∈ Cg
−{0} such that U ⊂ Vx :=

{
y ∈ Cg

−{0} | Re(⟨x, y⟩) > 0
}
.

(2) The projection πC|U : U → πC(U ) has a continuous section s : πC(U )→ U such that s ◦ πC|U is
homotopic to the identity map idU over πC(U ).

(3) The image πC(U ) is a Stein manifold.

Proof. (1) By the so-called hyperplane separation theorem [Rudin 1991, Theorem 3.4(a)] applied
to U and {0}, there exist x ∈ Cg

−{0} and µ ∈ R such that

0= Re(⟨x, 0⟩)≤ µ < Re(⟨x, y⟩)

for all y ∈U , and hence U ⊂ Vx =
{

y ∈ Cg
−{0} | Re(⟨x, y⟩) > 0

}
.

(2) We first construct a section sx : πC(Vx)→ Vx of πC|Vx as follows. Set

V 1
x :=

{
y ∈ Cg

−{0} | ⟨x, y⟩ = 1
}
⊂ Vx .

Then we easily see that πC|V 1
x
: V 1

x
∼
−→ πC(Vx) is a biholomorphism. Thus we define

sx := (πC|V 1
x
)−1
: πC(Vx)

∼
−→ V 1

x ⊂ Vx

to be the inverse map of πC|V 1
x
, which is clearly a section of πC|Vx . Then we have a trivialization ϕ

of πC|Vx

πC(Vx)×D
ϕ

∼
//

pr1 &&

Vx

πC|Vx{{

πC(Vx)

defined by ϕ(z, λ) := λsx(z) for (z, λ) ∈ πC(Vx)×D.
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Therefore, it suffices to construct a continuous section s ′ of

p := pr1|ϕ−1(U ) : ϕ
−1(U )

pr1
−→ πC(U )

such that s ′ ◦ p is homotopic to idϕ−1(U ) over πC(U ). By Lemma 3.2.1, it suffices to show the following:

Claim. For any z ∈ πC(U ), the set

Dz := {λ ∈ D | (z, λ) ∈ ϕ−1(U )}

is a nonempty convex subset of D.

Proof of claim. Let z ∈ πC(U ). The set Dz is obviously nonempty. Suppose that λ, λ′ ∈ Dz , i.e.,
λsx(z), λ′sx(z) ∈ U . Then for t ∈ [0, 1], we have (tλ+ (1− t)λ′)sx(z) ∈ U because U is convex, and
hence tλ+ (1− t)λ′ ∈ Dz . □

(3) From the above argument, we see that πC(U ) is an open subset of

πC(Vx)≃ V 1
x ≃ Cg−1.

Since every pseudoconvex open subset of Cg−1 is a Stein manifold (see [Hörmander 1973, Theorem 4.2.8,
Example after Definition 5.1.3]), it suffices to see that πC(U ) is pseudoconvex. This follows, for example,
from [Hörmander 1994, Proposition 4.6.3, Theorem 4.6.8]. (Use [Hörmander 1994, Theorem 4.6.8] for
X =U , z0 = 0, and L(y)= ⟨x, y⟩. Note that a convex set U is obviously C convex.) □

Proposition 3.2.3. Let U ⊂ Cg
−{0} be a convex open subset.

(1) The natural map

Hq(πC(U ),�
g−1
Pg−1(C)

(−d)) ∼−→ Hq(U, π−1
C
�

g−1
Pg−1(C)

(−d))

is an isomorphism for all q ≥ 0.

(2) Under this identification, we have

0(U, π−1
C
�

g−1
Pg−1(C)

(−d))

= { f ω | f holomorphic function on π−1
C
(πC(U )) such that f (λy)= λ−g−d f (y) for all λ ∈ C×}.

(3) For all q ≥ 1, we have
Hq(U, π−1

C
�

g−1
Pg−1(C)

(−d))= 0.

Proof. (1) This follows from Lemma 3.2.2(2) and [Kashiwara and Schapira 1990, Corollary 2.7.7(ii)].

(2) This follows directly from (1) and the description of �g−1
Pg−1(C)

(−d); see Remark 3.1.2.

(3) By Lemma 3.2.2(3), we know πC(U ) is a Stein manifold. Moreover, �g−1
Pg−1(C)

(−d) is a coherent sheaf
on Pg−1(C). So (3) follows from (1) and Cartan’s Theorem B; see [Hörmander 1973, Theorem 7.4.3]. □

3.3. GLg(Q)-equivariant structures. In this subsection we explicitly describe the GLg(Q)-equivariant
structures on Fd and F4

d .
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In this paper, for a subgroup G ⊂ GLg(Q) and a sheaf F (of abelian groups) on Y ◦, we define a
G-equivariant structure on F to be a collection {[γ ]}γ∈G of isomorphisms

[γ ] :F ∼
−→ (tγ )∗F

subject to the conditions

(i) [1] = idF ,

(ii) [γ1γ2] = (
tγ2)∗[γ1] ◦ [γ2] for all γ1, γ2 ∈ G.

Here, tγ is the transpose matrix of γ , and (tγ )∗F (resp. (tγ2)∗[γ1]) is the direct image of F (resp. [γ1])
with respect to the map tγ : Y ◦→ Y ◦ (resp. tγ2 : Y ◦→ Y ◦).3

The GLg(Q)-equivariant structure on Fd can be defined as follows. First, by Proposition 3.2.3(2),

0(U,Fd)={ f ω | f holomorphic function on π−1
C
(πC(U )) such that f (λy)=λ−g−d f (y) for all λ∈C×}

for a convex open subset U ⊂ Y ◦, where

ω(y1, . . . , yg) :=

g∑
i=1

(−1)i−1 yi dy1 ∧ · · · ∧ ˇdyi ∧ · · · ∧ dyg.

Lemma 3.3.1. For γ ∈ GLg(Q), we have

ω(γ y)= det(γ )ω(y).

Proof. It suffices to prove the identity for elementary matrices γ . This case can be checked easily. □

Definition 3.3.2. For γ ∈ GLg(Q) and a convex open subset U ⊂ Y ◦, let [γ ]U denote the pullback map

[γ ]U : 0(U,Fd)
∼
−→ 0(U, (tγ )∗Fd)= 0((

tγ )−1U,Fd),

f (y)ω(y) 7−→ f (tγ y)ω(tγ y)= det(γ ) f (tγ y)ω(y).

Here f (tγ y) is regarded as a holomorphic function of y ∈ (tγ )−1π−1
C
(πC(U ))= π−1

C

(
πC((

tγ )−1U )
)
. We

may drop the subscript U and write as [γ ] = [γ ]U if there is no confusion.

Lemma 3.3.3. (1) Let V,U ⊂ Y ◦ be convex open subsets such that V ⊂U , and let s ∈ 0(U,Fd) be a
section. Then we have

[γ ]U (s)|V = [γ ]V (s|V )

in 0(V, (tγ )∗Fd).

(2) The collection {[γ ]U |U ⊂ Y ◦ convex open} defines an isomorphism of sheaves

[γ ] :Fd
∼
−→ (tγ )∗Fd .

(3) The collection {[γ ]}γ∈GLg(Q) defines a GLg(Q)-equivariant structure on Fd .

Proof. (1) is clear, and (2) follows from (1) since convex open subsets form a basis of open subsets of Y ◦.
We prove (3).

3We consider the action of tγ on Y ◦ instead of γ since it is more convenient later when we use the identity ⟨γ x, y⟩ = ⟨x, tγ y⟩.
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Condition (i) of the definition is obvious.
Let U ⊂ Y ◦ be a convex open subset, and let s(y) = f (y)ω(y) ∈ 0(U,Fd) be a section. Then for

γ1, γ2 ∈ GLg(Q), we have

(tγ2)∗[γ1] ◦ [γ2](s(y))= [γ1]tγ−1
2 U ◦ [γ2]U (s(y))= [γ1]tγ−1

2 U (s(
tγ2 y))= s(tγ2

tγ1 y)= [γ1γ2](s(y)).

Since convex open subsets form a basis of open subsets of Y ◦, this shows condition (ii). □

This describes the GLg(Q)-equivariant structure on Fd . Next we describe the GLg(Q)-equivariant
structure on F4

d . First, note that the conjugate action

[γ ] : Z[4] ∼−→ Z[4], Q 7→ [γ ](Q)= γ Qγ−1

of GLg(Q) on Z[4] naturally induces a GLg(Q)-equivariant structure on the associated constant sheaf
Z[4]. Therefore, for a GLg(Q)-equivariant sheaf F , the sheaf

F4
= Hom(Z[4],F )

has a natural GLg(Q)-equivariant structure induced from those of Z[4] and F . In particular, we obtain a
GLg(Q)-equivariant structure on F4

d .
More concretely, for an open subset U ⊂ Y ◦ and a section

φ ∈ 0(U,F4)=Map(4, 0(U,F ))

(see Remark 3.1.1) the GLg(Q)-equivariant structure on F4 can be computed as

[γ ](φ)(Q)= [γ ]
(
φ
(
[γ−1
](Q)

))
= [γ ](φ(γ−1 Qγ ))

for γ ∈ GLg(Q) and Q ∈4. In particular, we see that for Q ∈4, the evaluation map

evQ :F
4
→F

(see Remark 3.1.1) is a 0Q-equivariant map, where 0Q=StabSLg(Z)(Q)⊂SLg(Z) is the stabilizer of Q ∈4
in SLg(Z).

4. Equivariant cohomology

Recall that 0Q = StabSLg(Z)(Q)⊂ SLg(Z) denotes the stabilizer of Q ∈4 in SLg(Z). In this section we
compute the equivariant cohomology groups

Hq(Y ◦, 0Q,Fd) and Hq(Y ◦,SLg(Z),F
4
d )

using the equivariant Čech complexes; see Corollary 4.3.4. We closely follow the argument in [Bannai
et al. 2023].

Here, for a subgroup G ⊂ GLg(Q), the equivariant cohomology

Hq(Y ◦,G,−) : Sh(Y ◦,G)→ Ab
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is defined to be the right derived functor of the G-invariant global section functor

0(Y ◦,G,−) : Sh(Y ◦,G)→ Ab, F 7→ 0(Y ◦,F )G,

where Sh(Y ◦,G) is the category of G-equivariant sheaves on Y ◦, Ab is the category of abelian groups,
and 0(Y ◦,F )G is the G-invariant part of the global section 0(Y ◦,F ).

4.1. Open covering. In this subsection we introduce a certain GLg(Q)-stable open covering of Y ◦. For
α ∈ Cg

−{0}, we define an open subset Vα ⊂ Cg
−{0} by

Vα := {y ∈ Cg
| Re(⟨α, y⟩) > 0} ⊂ Cg

−{0}.

Clearly, Vα ⊂ Cg
−{0} is a convex open subset. Let

XQ :=Qg
−{0}

denote the set of all nonzero rational vectors on which GLg(Q) acts by the matrix multiplication from the
left. Then we easily see that

Y ◦ =
⋃
α∈XQ

Vα.

Let XQ := {Vα}α∈XQ
denote this open covering of Y ◦. For r ≥ 0 and I = (α1, . . . , αr ) ∈ (XQ)

r , set

VI :=

r⋂
i=1

Vαi =
{

y ∈ Y ◦ | Re(⟨αi , y⟩) > 0 for all i
}
⊂ Y ◦.

In the case r = 0, we set (XQ)
0
= {∅} and V∅ = Y ◦ by convention. Let

jI : VI ↪→ Y ◦

denote the inclusion map.
First, we show that XQ = {Vα}α∈XQ

is a GLg(Q)-stable open covering. Note that the group GLg(Q)

acts diagonally on (XQ)
r . For I = (α1, . . . , αr ) ∈ (XQ)

r and γ ∈ GLg(Q), let

γ I = (γ α1, . . . , γ αr ) ∈ (XQ)
r

denote this diagonal action of γ on I .

Lemma 4.1.1. For r ≥ 0, I = (α1, . . . , αr ) ∈ (XQ)
r , and γ ∈ GLg(Q), we have

Vγ I =
tγ−1VI .

In other words, we have the following commutative diagram:

VI
� � jI

//

tγ−1 ≀

��

Y ◦

tγ−1

��

Vγ I
� � jγ I

// Y ◦
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Proof. For y ∈ Y ◦, we have y ∈ Vγ I if and only if

0< Re(⟨γαi , y⟩)= Re(⟨αi ,
tγ y⟩)

for all i ∈ {1, . . . , r}. This proves the lemma. □

4.2. The equivariant Čech complex. Let F be a GLg(Q)-equivariant sheaf on Y ◦. We consider the
GLg(Q)-equivariant “sheaf Čech complex”

C •(XQ,F ) : C
0(XQ,F )

d0

−→ C 1(XQ,F )
d1

−→ C 2(XQ,F )
d2

−→ · · ·

defined as follows. For q ≥ 0, put

C q(XQ,F ) :=
∏

I∈(XQ)q+1

jI∗ j−1
I F ,

where jI∗ (resp. j−1
I ) is the direct image (resp. inverse image) functor induced by the inclusion map

jI : VI ↪→ Y ◦. By Lemma 4.1.1, the GLg(Q)-equivariant structure

[γ ] :F ∼
−→ (tγ )∗F

of F induces isomorphisms

[γ ] : jI∗ j−1
I F ∼

−→ jI∗ j−1
I (tγ )∗F ≃ (

tγ )∗ jγ I∗ j−1
γ I F and [γ ] : C q(XQ,F )

∼
−→ (tγ )∗C

q(XQ,F ).

We easily see that this defines a GLg(Q)-equivariant structure on C q(XQ,F ). More concretely, for an
open subset U ⊂ Y ◦ and a section

s = (sI )I∈(XQ)q+1 ∈ 0(U,C q(XQ,F ))=
∏

I∈(XQ)q+1

0(U ∩ VI ,F ),

we have
([γ ](s))I = [γ ](sγ−1 I ), (4-1)

where ([γ ](s))I is the I -th component of [γ ](s).
The differential map

dq
: C q(XQ,F )→ C q+1(XQ,F )

is given by

(dq(s))(α0,...,αq+1) =

q+1∑
i=0

(−1)i s(α0,...,α̌i ,...,αq+1)|U∩V(α0,...,αq+1)

for an open subset U ⊂ Y ◦ and a section s = (sI )I∈(XQ)q+1 ∈ 0(U,C q(XQ,F )). Here α̌i means that αi is
omitted. Moreover, there is a map

d−1
:F → C 0(XQ,F )=

∏
α∈XQ

jα∗ j−1
α F

induced by the natural maps F → jα∗ j−1
α F .

Then we have the following.
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Lemma 4.2.1. (1) For q ≥ −1, the differential map dq is a GLg(Q)-equivariant map, i.e., [γ ] ◦ dq
=

dq
◦[γ ] for γ ∈ GLg(Q).

(2) For any α0 ∈ XQ, the sequence

0−→F |Vα0

d−1

−→ C 0(XQ,F )|Vα0

d0

−→ C 1(XQ,F )|Vα0
−→ · · ·

is homotopic to zero. In particular, the sequence

0−→F
d−1

−→ C 0(XQ,F )
d0

−→ C 1(XQ,F )−→ · · ·

is an exact sequence of GLg(Q)-equivariant sheaves since Y ◦ =
⋃
α0∈XQ

Vα0 .

Proof. (1) Let U ⊂ Y ◦ be an open subset, and let

s = (sI )I∈(XQ)q+1 ∈ 0(U,C q(XQ,F ))=
∏

I∈(XQ)q+1

0(U ∩ VI ,F )

be a section. Let J = (α0, . . . , αq+1) ∈ (XQ)
q+2, and put J (i) := (α0, . . . , α̌i , . . . , αq+1) ∈ (XQ)

q+1

for i = 0, . . . , q + 1. Then we have

(
dq([γ ](s))

)
J =

q+1∑
i=0

(−1)i [γ ](sγ−1 J (i))|tγ−1U∩VJ =

q+1∑
i=0

(−1)i [γ ](sγ−1 J (i) |U∩V
γ−1 J

)

= [γ ]

( q+1∑
i=0

(−1)i sγ−1 J (i) |U∩V
γ−1 J

)
=

(
[γ ](dq(s))

)
J .

(2) See [Godement 1973, Théorème 5.2.1] or [Stacks 2005–, Lemma 02FU]. Although they prove only
the exactness of the sequence, we can prove the statement in this lemma using essentially the same
argument. See also [Kashiwara and Schapira 1990, Lemma 2.8.2, Remark 2.8.3]. □

By applying the additive functor

Hom(Z[4],−) : Sh(Y ◦,GLg(Q))→ Sh(Y ◦,GLg(Q)), G 7→ G4
:= Hom(Z[4],G ),

we obtain the following.

Corollary 4.2.2. The sequence

0−→F4 d−1

−→ C 0(XQ,F )
4 d0

−→ C 1(XQ,F )
4
−→ · · ·

is an exact sequence of GLg(Q)-equivariant sheaves.

Proof. Since the homotopy is preserved by the additive functor, by Lemma 4.2.1(2), we see that for
any α0 ∈ XQ, the sequence

0−→F4
|Vα0

d−1

−→ C 0(XQ,F )
4
|Vα0

d0

−→ C 1(XQ,F )
4
|Vα0
−→ · · ·

is homotopic to zero, and hence exact. □
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Now, by taking the global section, set

Cq(XQ,F ) := 0(Y ◦,C q(XQ,F ))=
∏

I∈(XQ)q+1

0(VI ,F ).

Then we obtain a complex

C •(XQ,F ) : C0(XQ,F )
d0

−→ C1(XQ,F )
d1

−→ C2(XQ,F )
d2

−→ · · ·

of GLg(Q)-modules. Note that this is the usual Čech complex associated to the open covering XQ.
Furthermore, set

Cq(XQ,F )
4
:= 0(Y ◦,C q(XQ,F )

4)=Map(4,Cq(XQ,F )).

Then we obtain another complex

C •(XQ,F )
4
: C0(XQ,F )

4 d0

−→ C1(XQ,F )
4 d1

−→ C2(XQ,F )
4 d2

−→ · · ·

of GLg(Q)-modules. For Q ∈4, the evaluation map

evQ : C •(XQ,F )
4
→ C •(XQ,F ) (4-2)

is a 0Q-equivariant morphism of complexes.

4.3. Acyclicity. Our aim here is to prove the acyclicity of the sheaves C q(XQ,Fd) and C q(XQ,Fd)
4;

see Proposition 4.3.3. Then we can compute the equivariant cohomology groups Hq(Y ◦, 0Q,Fd) and
Hq(Y ◦,SLg(Z),F

4
d ) using the Čech complexes C •(XQ,Fd) and C •(XQ,Fd)

4; see Corollary 4.3.4.

Lemma 4.3.1. Let r ≥ 1 and I = (α1, . . . , αr ) ∈ (XQ)
r .

(1) For all q ≥ 1, we have
Hq(VI ,Fd)= 0.

(2) For all q ≥ 1, we have
Rq jI∗( j−1

I Fd)= 0,

where Rq jI∗ (resp. j−1
I ) is the higher direct image (resp. inverse image) functor induced by the

inclusion map jI : VI ↪→ Y ◦.

(3) For any open subset U ⊂ Y ◦ and q ≥ 0, we have an isomorphism

Hq(U, jI∗ j−1
I Fd)

∼
−→ Hq(U ∩ VI ,Fd).

Proof. (1) This follows directly from Proposition 3.2.3(3) since VI is convex.

(2) Let x ∈ Y ◦. Since convex open subsets form a basis of open subsets of Y ◦, we have

(Rq jI∗( j−1
I Fd))x = lim

−−→
x∈U convex

Hq(U ∩ VI , j−1
I Fd)= lim

−−→
x∈U convex

Hq(U ∩ VI ,Fd)= 0.

Here the last vanishing follows from Proposition 3.2.3(3). This proves (2).

(3) This follows from (2) and the Leray spectral sequence. □
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Proposition 4.3.2. For q ≥ 0, the sheaves C q(XQ,Fd) and C q(XQ,Fd)
4 are 0(Y ◦,−)-acyclic, i.e.,

H p(Y ◦,C q(XQ,Fd))= 0 and H p(Y ◦,C q(XQ,Fd)
4)= 0 for p ≥ 1.

Proof. We imitate the argument in [Bannai et al. 2023, Proposition 3.4, Lemma 3.5]. For I ∈ (XQ)
q+1,

put FI := jI∗ j−1
I Fd , and let

0→FI →I •

I

be an injective resolution of FI . First we show that

0→ C q(XQ,Fd)=
∏

I∈(XQ)q+1

FI →
∏

I∈(XQ)q+1

I •

I , (4-3)

0→ C q(XQ,Fd)
4
=

( ∏
I∈(XQ)q+1

FI

)4
→

( ∏
I∈(XQ)q+1

I •

I

)4
(4-4)

are both injective resolutions of C q(XQ,Fd) and C q(XQ,Fd)
4 respectively. It is clear that∏

I∈(XQ)q+1

I
p

I and
( ∏

I∈(XQ)q+1

I
p

I

)4
≃

∏
Q∈4

∏
I∈(XQ)q+1

I
p

I

are injective sheaves because they are products of injective sheaves; see Remark 3.1.1(2). We must
show the exactness of (4-3) and (4-4). Let U ⊂ Y ◦ be any convex open subset. By Lemma 4.3.1(3) and
Proposition 3.2.3(3), we have

H p(U,FI )
∼
−→ H p(U ∩ VI ,Fd)= 0

for p ≥ 1. Therefore, we find that

0→FI (U )→I •

I (U )

is exact because H p(U,FI ) is the cohomology of this complex. Hence,

0→
∏

I∈(XQ)q+1

FI (U )→
∏

I∈(XQ)q+1

I •

I (U ) and 0→
∏
Q∈4

∏
I∈(XQ)q+1

FI (U )→
∏
Q∈4

∏
I∈(XQ)q+1

I •

I (U )

are also exact. Since convex open subsets of Y ◦ form a basis of open subsets, we obtain the exactness of
(4-3) and (4-4).

Then for p ≥ 1, we have

H p(Y ◦,C q(XQ,Fd))≃ H p
(
0

(
Y ◦,

∏
I∈(XQ)q+1

I •

I

))
≃

∏
I∈(XQ)q+1

H p(0(Y ◦,I •

I ))

≃

∏
I∈(XQ)q+1

H p(Y ◦,FI ) ≃

∏
I∈(XQ)q+1

H p(VI ,Fd)= 0,
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and similarly,

H p(Y ◦,C q(XQ,Fd)
4)≃ H p

(
0

(
Y ◦,

( ∏
I∈(XQ)q+1

I •

I

)4))
≃

∏
Q∈4

∏
I∈(XQ)q+1

H p(0(Y ◦,I •

I )) ≃
∏
Q∈4

∏
I∈(XQ)q+1

H p(VI ,Fd)= 0. □

Proposition 4.3.3. (1) Let Q ∈4. For q ≥ 0, the sheaf C q(XQ,Fd) is 0(Y ◦, 0Q,−)-acyclic, i.e.,

H p(Y ◦, 0Q,C
q(XQ,Fd))= 0

for p ≥ 1. In particular, the complex

0→Fd
d−1

−→ C •(XQ,Fd)

gives a 0(Y ◦, 0Q,−)-acyclic resolution of Fd .

(2) For q ≥ 0, the sheaf C q(XQ,Fd)
4 is 0(Y ◦,SLg(Z),−)-acyclic, i.e., we have

H p(Y ◦,SLg(Z),C
q(XQ,Fd)

4)= 0

for p ≥ 1. In particular, the complex

0→F4
d

d−1

−→ C •(XQ,Fd)
4

gives a 0(Y ◦,SLg(Z),−)-acyclic resolution of F4
d .

Proof. (1) First note that the functor 0(Y ◦, 0Q,−) is a composition of two left exact functors 0(Y ◦,−)
and (−)0Q . Moreover, 0(Y ◦,−) sends injective objects to injective objects. Therefore, we have a spectral
sequence

Eab
2 = Ha(0Q, H b(Y ◦,C q(XQ,Fd))

)
⇒ Ha+b(Y ◦, 0Q,C

q(XQ,Fd)),

where Ha(0Q,−) is the usual group cohomology of 0Q . Now, by Proposition 4.3.2, we already have

H b(Y ◦,C q(XQ,Fd))= 0 for all b ≥ 1.

Therefore, it suffices to show

Ha(0Q, 0(Y ◦,C q(XQ,Fd))
)
= Ha(0Q,Cq(XQ,Fd))= 0 for all a ≥ 1.

Actually, we will prove that Cq(XQ,Fd) is a coinduced 0Q-module. First, recall that

Cq(XQ,Fd)=
∏

I∈(XQ)q+1

0(VI ,Fd),

and that 0Q acts freely on (XQ)
q+1 by Lemma 2.1.1(7). Let A ⊂ (XQ)

q+1 be a system of representatives
of 0Q\(XQ)

q+1, and set
M :=

∏
I∈A

0(VI ,Fd).
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Then recall that the GLg(Q)-equivariant structure on Fd gives an isomorphism

[γ ] : 0(VI ,Fd)
∼
−→ 0((tγ )−1VI ,Fd)= 0(Vγ I ,Fd) (4-5)

for each I ∈ (XQ)
q+1 and γ ∈ GLg(Q); see Lemma 4.1.1. Therefore, for each γ ∈ 0Q , we have an

isomorphism

M =
∏
I∈A

0(VI ,Fd)
∼
−→

∏
I∈A

0(Vγ I ,Fd), (sI )I∈A 7→ ([γ ](sI ))I∈A,

and hence we obtain an isomorphism

HomZ(Z[0Q],M)=
∏
γ∈0Q

M ∼
−→

∏
γ∈0Q

∏
I∈A

0(Vγ I ,Fd)= Cq(XQ,Fd).

Since this is clearly a 0Q-equivariant isomorphism, we see Cq(XQ,Fd) is a coinduced 0Q-module.

(2) This can be proved similarly. First, by the spectral sequence

Eab
2 = Ha(SLg(Z), H b(Y ◦,C q(XQ,Fd)

4)
)
⇒ Ha+b(Y ◦,SLg(Z),C

q(XQ,Fd)
4
)

and Proposition 4.3.2, it suffices to show

Ha(SLg(Z),Cq(XQ,Fd)
4
)
= 0 for all a ≥ 1.

Again, we will prove that
Cq(XQ,Fd)

4
≃

∏
Q∈4

∏
I∈(XQ)q+1

0(VI ,Fd)

is a coinduced SLg(Z)-module. Note that the action of SLg(Z) on 4× (XQ)
q+1 is free. Indeed, if

γ (Q, I )= ([γ ](Q), γ I )= (Q, I ),

then it follows that γ ∈ 0Q , and hence γ = 1, since the action of 0Q on (XQ)
q+1 is free. Let A′ ⊂

4× (XQ)
q+1 be a system of representatives of SLg(Z)\(4× (XQ)

q+1), and set

M ′ :=
∏

(Q,I )∈A′
0(VI ,Fd).

Then again by using (4-5), we obtain an isomorphism

HomZ(Z[SLg(Z)],M ′)=
∏

γ∈SLg(Z)

M ′ ∼−→
∏

γ∈SLg(Z)

∏
(Q,I )∈A′

0(Vγ I ,Fd)≃ Cq(XQ,Fd)
4

of SLg(Z)-modules. Thus we find that Cq(XQ,Fd)
4 is a coinduced SLg(Z)-module. □

Corollary 4.3.4. (1) Let Q ∈4. For q ≥ 0, we have

Hq(Y ◦, 0Q,Fd)≃ Hq(
0(Y ◦, 0Q,C

•(XQ,Fd))
)
= Hq(C •(XQ,Fd)

0Q ),

where the second and third Hq are the cohomology of complexes.
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(2) For q ≥ 0, we have

Hq(Y ◦,SLg(Z),F
4
d )≃ Hq(

0(Y ◦,SLg(Z),C
•(XQ,Fd)

4)
)
= Hq(

MapSLg(Z)
(4,C •(XQ,Fd))

)
,

where MapSLg(Z)
(−,−) is the set of SLg(Z)-equivariant maps.

(3) For Q ∈4, we have the commutative diagram

Hq(Y ◦,SLg(Z),F
4
d )

≀

evQ
// Hq(Y ◦, 0Q,Fd)

≀

Hq
(
MapSLg(Z)

(4,C •(XQ,Fd))
) evQ

// Hq(C •(XQ,Fd)
0Q )

where the two evQ are the evaluation maps induced by (3-1) and (4-2).

We end this section with one more corollary, concerning an operation which shifts the index d≥ 0 of Fd .

Corollary 4.3.5. Let P(y1, . . . , yg) ∈ C[y1, . . . , yg] be a homogeneous polynomial of degree d ′ ≤ d such
that

P(tγ y)= P(y) for all γ ∈ 0Q .

Then the multiplication by P ,

P : Cq(XQ,Fd)→ Cq(XQ,Fd−d ′), (sI (y))I∈(XQ)q+1 7→ (P(y)sI (y))I∈(XQ)q+1,

gives a 0Q-equivariant map of complexes, and hence induces a map

P : Hq(Y ◦, 0Q,Fd)→ Hq(Y ◦, 0Q,Fd−d ′).

Example 4.3.6. A typical example of such a 0Q-invariant homogeneous polynomial P is the norm
polynomial Nw∗ defined in Section 2.2; see Lemma 2.2.1. More generally, let k ≥ 1 be an integer.
Under the notation in Lemma 2.2.1, the k-th power N k

w∗ of the norm polynomial Nw∗ is a 0Q-invariant
homogeneous polynomial of degree kg. In particular, we have a map

N k
w∗ : H

q(Y ◦, 0Q,Fkg)→ Hq(Y ◦, 0Q,F0).

5. Cones and the exponential perturbation

In this section we introduce the notion of exponential perturbation, which is a modification of the so-called
upper closure or Q-perturbation (Colmez perturbation) used in [Yamamoto 2010; Bannai et al. 2023;
Charollois et al. 2015]. This is one of the key ingredients enabling us to deal with general number fields.

For r ≥ 0, I = (α1, . . . , αr ) ∈ (R
g
−{0})r , let

C I :=

r∑
i=1

R>0αi ⊂ Rg

denote the open cone generated by α1, . . . , αr . In the case r = 0 and I =∅, we set C∅ := {0}.
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Remark 5.0.1. We follow the convention to call C I an “open” cone although it is not necessarily an open
subset of Rg. Note that, however, C I is open in SpanR{α1, . . . , αr }, where SpanR{α1, . . . , αr } ⊂ Rg is
the R-subspace spanned by α1, . . . , αr ; see Lemma 5.2.4.

Recall that XQ :=Qg
−{0} denotes the set of nonzero vectors of Qg. In this paper we fix the terminology

concerning cones as follows.

Definition 5.0.2. (1) An open cone C I is called rational if we can take I ∈ (XQ)
r .

(2) An open cone C I is called simplicial if α1, . . . , αr are linearly independent over R.

(3) We refer to a subset of Rg which can be written as a disjoint union of a finite number of rational
simplicial open cones as a rational constructible cone.

5.1. The exponential perturbation. Recall that

4= {Q ∈ GLg(Q) | Q is irreducible over Q}

denotes the set of irreducible matrices of GLg(Q); see Section 2.1.

Definition 5.1.1. For Q ∈4 and a subset A ⊂ Rg, we define the exponential Q-perturbation AQ of A as

AQ
:= {x ∈ Rg

| there exists δ > 0 such that for all ε ∈ (0, δ), exp(εQ)x ∈ A},

where exp(εQ) ∈ GLg(R) is the matrix exponential of εQ ∈ GLg(R).

Remark 5.1.2. This exponential Q-perturbation is defined by considering the perturbation of x ∈ Rg

by the matrix action of exp(εQ), and we call this process the exponential perturbation. The original
Q-perturbation used in [Charollois et al. 2015] is the perturbation of x by the vectors Q ∈ Rg whose
components are linearly independent over Q.

Lemma 5.1.3. Let Q ∈4.

(1) Let A, B ⊂ Rg be subsets such that A ⊂ B. Then we have

AQ
⊂ B Q .

(2) Let A1, . . . , Am ⊂ Rg be subsets. Then we have

(A1 ∩ · · · ∩ Am)
Q
= AQ

1 ∩ · · · ∩ AQ
m .

In particular, if A1 ∩ · · · ∩ Am =∅, then AQ
1 ∩ · · · ∩ AQ

m =∅.

Proof. (1) is obvious. We prove (2). The inclusion ⊂ is clear. We prove ⊃. Let x ∈ AQ
1 ∩ · · · ∩ AQ

m . Then,
by definition, there exist δ1, . . . , δm > 0 such that

exp((0, δi )Q)x ⊂ Ai

for i = 1, . . . ,m. Put δ :=min{δ1, . . . , δm}> 0. Then we have

exp((0, δ)Q)x ⊂ A1 ∩ · · · ∩ Am,

and hence x ∈ (A1 ∩ · · · ∩ Am)
Q . □
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In the following, we study the exponential Q-perturbation C Q
I of rational open cones C I , which play

an important role in the construction of our Shintani cocycle.

Lemma 5.1.4. For r ≥ 0, I = (α1, . . . , αr ) ∈ (XQ)
r , Q ∈4, and γ ∈ GLg(Q), we have

γ (C Q
γ−1 I )= C [γ ](Q)I ,

where [γ ](Q)= γ Qγ−1
∈4.

Proof. Indeed, for x ∈ Rg and ε > 0, we see that

exp(ε[γ ](Q))x ∈ C I ⇐⇒ exp(εγ Qγ−1)x ∈ C I ⇐⇒ exp(εQ)γ−1x ∈ γ−1(C I )= Cγ−1 I .

This proves the lemma. □

5.2. Rationality. The aim of this subsection is to prove the following proposition:

Proposition 5.2.1. Let 0≤ r ≤ g, I = (α1, . . . , αr ) ∈ (XQ)
r , and Q ∈4.

(1) Suppose dimQ SpanQ{α1, . . . , αr } ≤ g− 1. Then

C Q
I =

{
{0} if 0 ∈ C I ,

∅ if 0 ̸∈ C I .

(2) The exponential Q-perturbation C Q
I of the rational open cone C I generated by I is a rational

constructible cone, i.e., a disjoint union of a finite number of rational simplicial open cones.

To prove this proposition, we first prepare several lemmas. In the following, for α ∈ Rg
−{0}, we put

Uα,± := {x ∈ Rg
| ±⟨x, α⟩> 0} and Hα := {x ∈ Rg

| ⟨x, α⟩ = 0}.

We start with recalling the following fact.

Lemma 5.2.2 [Shintani 1976, Section 1.2; Hida 1993, pp. 68–69, Lemma 1]. (1) Let W ⊂ Qg be a
Q-subspace, and let l1, . . . , lm ∈Qg

−{0}. Then the subset

X = {x ∈W ⊗Q R⊂ Rg
| ⟨x, li ⟩> 0 for i = 1, . . . ,m} ⊂ Rg

is a rational constructible cone.

(2) Let C,C ′ ⊂ Rg be rational constructible cones. Then C ∪ C ′, C ∩ C ′, and C−C ′ are rational
constructible cones.

Proof. See [Shintani 1976, Lemma 2, Corollary to Lemma 2] and [Hida 1993, pp. 68–69, Lemma 1].
Although, in [Hida 1993], it is assumed that the total space is of the form F⊗Q R for a number field F and
that W is a subspace generated by elements in F , the proof there does not use this special assumption. □

The following is the key lemma of this section.
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Lemma 5.2.3. Let Q ∈4 and α ∈Qg
−{0}. For k ≥ 0, put

H (k)
± :=

{
x ∈ Rg

| ±⟨x, tQkα⟩> 0 and ⟨x, tQ jα⟩ = 0 for 0≤ j ≤ k− 1
}
.

Note that H (0)
± =Uα,± by definition.

(1) There exists k0 ≥ 0 such that H (k)
± =∅ for all k ≥ k0+ 1. Moreover, we have

Rg
−{0} =

k0⊔
k=0

(H (k)
+ ⊔ H (k)

− ),

where
⊔

and ⊔ denote the disjoint union.

(2) For all k ≥ 0, the sets H (k)
+ and H (k)

− are rational constructible cones.

(3) For all k ≥ 0, we have H (k)
+ ⊂ (H

(0)
+ )Q

= (Uα,+)
Q and H (k)

− ⊂ (H
(0)
− )Q

= (Uα,−)
Q .

(4) We have H Q
α = {0} and

Rg
−{0} = (Uα,+)

Q
⊔ (Uα,−)

Q .

In particular, Rg
= H Q

α ⊔ (Uα,+)
Q
⊔ (Uα,−)

Q .

(5) We have

(Uα,+)
Q
=

k0⊔
k=0

H (k)
+ and (Uα,−)

Q
=

k0⊔
k=0

H (k)
− .

In particular, (Uα,+)
Q and (Uα,−)

Q are rational constructible cones.

Proof. (1) and (2) For k ≥ 0, put

H (k)
:= {x ∈ Rg

| ⟨x, tQ jα⟩ = 0 for 0≤ j ≤ k− 1}.

Then we have a descending chain

Rg
= H (0)

⊃ H (1)
⊃ H (2)

⊃ · · ·

of R-vector spaces. Note that the subspaces H (k) are all defined over Q since we have tQ jα ∈Qg
−{0}

for j ≥ 0. Since Rg is a finite-dimensional vector space, there exists k0 ≥ 0 such that H (k)
= H (k0+1) for

all k ≥ k0+ 1.

Claim. H (k0+1)
= 0.

Proof of claim. Indeed, let x ∈ H (k0+1)
= H (k0+2). Then we have

⟨Qx, tQ jα⟩ = ⟨x, tQ j+1α⟩ = 0 for 0≤ j ≤ k0,

and hence Qx ∈ H (k0+1). Therefore, H (k0+1) is a Q-stable subspace of Rg defined over Q. Moreover,
since α ̸= 0, we have

H (k0+1)
⊂ H (1) ⊊ Rg.

Therefore, we obtain H (k0+1)
= 0 by Lemma 2.1.1(2). □
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Now (1) follows from the fact

H (k)
−H (k+1)

= H (k)
+ ⊔ H (k)

− for all k ≥ 0,

and (2) follows from Lemma 5.2.2(1).

(3) Let x ∈ H (k)
+ . Then we have

⟨exp(εQ)x, α⟩ =
∑
m≥k

⟨x, tQmα⟩

m!
εm .

Now since ⟨x, tQkα⟩> 0, there exists δ > 0 such that

⟨exp(εQ)x, α⟩ =
∑
m≥k

⟨x, tQmα⟩

m!
εm > 0

for all ε ∈ (0, δ). Hence x ∈ (H (0)
+ )Q . The inclusion H (k)

− ⊂ (H
(0)
− )Q can be proved similarly.

(4) First, by Lemma 5.1.3(2), we see (Uα,+)
Q
∩ (Uα,−)

Q
= ∅, and H Q

α ∩ (Uα,±)
Q
= ∅. On the other

hand, we obviously have 0 ∈ H Q
α , and hence 0 ̸∈ (Uα,±)

Q . Therefore, by (1) and (3), we obtain

Rg
−{0} ⊂ (Uα,+)

Q
⊔ (Uα,−)

Q
⊂ Rg
−{0}.

Thus we find Rg
−{0} = (Uα,+)

Q
⊔ (Uα,−)

Q and H Q
α = {0}.

(5) The first part follows from (1), (3), and (4). Then the latter part follows from (2). □

Lemma 5.2.4. Let I = (α1, . . . , αr ) ∈ (XQ)
r such that α1, . . . , αr ∈ Qg

−{0} are linearly independent.
Note that we automatically have r ≤ g.

(1) There exist α′1, . . . , α
′
r , β
′

1, . . . , β
′
g−r ∈Qg

−{0} such that

C I =

( r⋂
i=1

Uα′i ,+

)
∩

( g−r⋂
i=1

Hβ ′i

)
.

(2) Let Q ∈4. Then we have
Rg
= C Q

I ⊔ (R
g
−C I )

Q .

Proof. (1) Put W := SpanQ{α1, . . . , αr } ⊂ Qg, and let W⊥ ⊂ Qg be its orthogonal complement with
respect to the scalar product ⟨ , ⟩. Let α′1, . . . , α

′
r ∈W be the dual basis of α1, . . . , αr in W with respect

to ⟨ , ⟩, i.e.,

⟨αi , α
′

j ⟩ =

{
1 (i = j),
0 (i ̸= j),

and let β ′1, . . . , β
′
g−r ∈W⊥ be a basis of W⊥ over Q. Then α′1, . . . , α

′
r , β
′

1, . . . , β
′
g−r satisfy the desired

property. Indeed, let β1, . . . , βg−r ∈W⊥ be the dual basis of β ′1, . . . , β
′
g−r in W⊥, and let x ∈ Rg. Since

α1, . . . , αr , β1, . . . , βg−r form a basis of Rg, we have

x =
r∑

i=1

ciαi +

g−r∑
j=1

d jβ j
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for some ci , d j ∈ R. Then we have x ∈ C I if and only if

⟨x, α′i ⟩ = ci > 0 and ⟨x, β ′j ⟩ = d j = 0 for all i, j.

This proves (1).

(2) Using (1), we take α′1, . . . , α
′
r , β
′

1, . . . , β
′
g−r ∈Qg

−{0} such that

C I =

( r⋂
i=1

Uα′i ,+

)
∩

( g−r⋂
i=1

Hβ ′i

)
. (5-1)

We then have

Rg
−C I =

r⋃
i=1

(Uα′i ,−
∪ Hα′i )∪

g−r⋃
i=1

(Uβ ′i ,+
∪Uβ ′i ,−

).

By taking the exponential Q-perturbation and using Lemma 5.1.3(1), we obtain
r⋃

i=1

(
(Uα′i ,−

)Q
∪ H Q

α′i

)
∪

g−r⋃
i=1

(
(Uβ ′i ,+

)Q
∪ (Uβ ′i ,−

)Q)
⊂ (Rg

−C I )
Q . (5-2)

On the other hand, by (5-1) and Lemmas 5.1.3(2) and 5.2.3(4), we obtain

Rg
−C Q

I = Rg
−

(( r⋂
i=1

(Uα′i ,+
)Q

)
∩

( g−r⋂
i=1

H Q
β ′i

))

=

r⋃
i=1

(
(Uα′i ,−

)Q
∪ H Q

α′i

)
∪

g−r⋃
i=1

(
(Uβ ′i ,+

)Q
∪ (Uβ ′i ,−

)Q)
. (5-3)

Thus, by combining (5-2) and (5-3), we find that Rg
−C Q

I ⊂ (R
g
−C I )

Q , and hence Rg
=C Q

I ∪(R
g
−C I )

Q .
Finally, since we have C Q

I ∩ (R
g
−C I )

Q
=∅ by Lemma 5.1.3(2), we obtain Rg

= C Q
I ⊔ (R

g
−C I )

Q . □

Proof of Proposition 5.2.1. (1) Since SpanQ{α1, . . . , αr }⊊ Qg, there exists β ∈Qg
−{0} such that

C I ⊂ SpanR{α1, . . . , αr } ⊂ Hβ .

Therefore, by Lemmas 5.1.3(1) and 5.2.3(4), we have either C Q
I =∅ or C Q

I = {0}. Then it is clear that
C Q

I = {0} if and only if 0 ∈ C I . This proves (1).

(2) Since ∅ and {0} are obviously rational constructible cones, we may assume α1, . . . , αr generates Rg.
In particular, we have r = g and C I is a rational simplicial open cone. By Lemma 5.2.4(1), there exist
α′1, . . . , α

′
g ∈Qg

−{0} such that

C I =

g⋂
i=1

Uα′i ,+
.

Then, by Lemma 5.1.3(2), we have

C Q
I =

g⋂
i=1

(Uα′i ,+
)Q .
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Now, we already know that (Uα′i ,+
)Q is a rational constructible cone by Lemma 5.2.3(5), and hence C Q

I

is also a rational constructible cone by Lemma 5.2.2(2). □

5.3. Cocycle relation.

Definition 5.3.1. (1) For a subset A ⊂ Rg, let

1A : R
g
→ R, x 7→

{
0 if x ̸∈ A,
1 if x ∈ A

denote the characteristic function of A.

(2) For I = (α1, . . . , αg) ∈ (R
g
−{0})g, we set

sgn(I ) := sgn det(α1, . . . , αg) ∈ {−1, 0, 1},

where (α1, . . . , αg) is regarded as an element in Mg(R). We assume sgn 0 := 0.

(3) Let r ≥ 1 and I = (α1, . . . , αr ) ∈ (R
g
−{0})r . We say that x ∈ Rg is in general position relative to I

if x is not contained in any proper R-subspace of Rg generated by a subset of {α1, . . . , αr }.

Remark 5.3.2. The condition “in general position relative to I ” is slightly more strict than the condition
“generic with respect to {α1, . . . , αr }” in the sense of Yamamoto [2010, p. 471]. Actually, this difference
is not important at all, but we adopt this definition since it is more useful in this paper.

Lemma 5.3.3. Let r ≥ 1, I = (α1, . . . , αr ) ∈ (XQ)
r , x ∈ Rg

−{0}, and Q ∈ 4. Then there exists δ > 0
such that exp(εQ)x is in general position relative to I for all ε ∈ (0, δ).

Proof. Let W1, . . . ,Wm ⊊ Rg be all the proper R-subspaces which can be generated by some subset
of {α1, . . . , αr }. In particular, y ∈ Rg is in general position relative to I if and only if y ̸∈

⋃m
j=1 W j .

Take β1, . . . , βm ∈Qg
−{0} such that W j ⊂ Hβ j for j = 1, . . . ,m. (See Section 5.2 for the definition

of Hβ j .) Then, by Lemma 5.2.3(4), for each j , there exists δ j > 0 such that

exp((0, δ j )Q)x ⊂Uβ j ,+ ∪Uβ j ,− = Rg
−Hβ j .

Put δ :=min{δ1, . . . , δm}> 0. Then for all ε ∈ (0, δ), we have

exp(εQ)x ̸∈
m⋃

j=1

Hβ j ⊃

m⋃
j=1

W j ,

and hence exp(εQ)x is in general position relative to I . □

The following is the main proposition of this subsection.

Proposition 5.3.4. Let J = (α0, . . . , αg) ∈ (XQ)
g+1 and Q ∈ 4. Assume that there exists y ∈ Rg

−{0}
such that for all i = 0, . . . , g we have ⟨αi , y⟩> 0. Then we have

g∑
i=0

(−1)i sgn(J (i))1C Q
J (i)
(x)= 0

for x ∈ Rg
−{0}, where J (i) = (α0, . . . , α̌i , . . . , αg) ∈ (XQ)

g.
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Proof. Take such y ∈ Rg
−{0}. We will reduce the problem to the “generic case”. First, we claim that for

each i = 0, . . . , g, there exists δi > 0 such that

exp((0, δi )Q)x ⊂ CJ (i) or exp((0, δi )Q)x ⊂ Rg
−CJ (i) .

Indeed, if α0, . . . , α̌i , . . . , αg (αi is omitted) are linearly independent, then this follows directly from
Lemma 5.2.4(2). On the other hand, if α0, . . . , α̌i , . . . , αg are linearly dependent, then we have
SpanQ{α0, . . . , α̌i , . . . , αg}⊊ Qg, and hence there exists α ∈Qg

−{0} such that CJ (i) ⊂ Hα. Therefore,
by Lemma 5.2.3(4) along with Lemma 5.1.3, we find

Rg
−{0} = (Uα,+)

Q
⊔ (Uα,−)

Q
⊂ (Rg

−CJ (i))
Q,

and we can take such δi > 0.
Consequently, for i = 0, . . . , g, we obtain

1C Q
J (i)
(x)= 1CJ (i)

(exp(εQ)x) for all ε ∈ (0, δi ).

On the other hand, by Lemma 5.3.3, there exists δ > 0 such that for all ε ∈ (0, δ), exp(εQ)x is in general
position relative to J . Set ε0 :=

1
2 min{δ0, . . . , δg, δ}, and put x ′ := exp(ε0 Q)x . Then

• 1C Q
J (i)
(x)= 1CJ (i)

(x ′) for i = 0, . . . , g,

• x ′ is in general position relative to J .

Therefore, it suffices to prove
g∑

i=0

(−1)i sgn(J (i))1CJ (i)
(x ′)= 0 (5-4)

for any x ′ which is in general position relative to J . First, if ⟨x ′, y⟩ ≤ 0, then we have

1CJ (i)
(x ′)= 0 for all i ∈ {0, . . . , g}

because ⟨αi , y⟩> 0 for all i = 0, . . . , g. Therefore, we may assume ⟨x ′, y⟩> 0. In this case, the identity
(5-4) follows from [Yamamoto 2010, Proposition 6.2].

Indeed, let γ ∈ GLg(R) such that tγ eg = y, where eg =
t(0, . . . , 0, 1) ∈ Rg. Then

• γ x ′, γ α0, . . . , γ αg ∈H := {v ∈ Rg
| ⟨v, eg⟩> 0},

• γ x ′ is in general position relative to γ J ,

• sgn(γ J (i))= sgn(det(γ )) sgn(J (i)),

• 1CJ (i)
(x ′)= 1C

γ J (i)
(γ x ′),

and hence we can use [Yamamoto 2010, Proposition 6.2]. This completes the proof. □

Remark 5.3.5. It is also possible to prove the last part using [Charollois et al. 2015, Theorem 2.1].
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6. Construction of the Shintani–Barnes cocycle

Recall that for d ≥ 0, we have sheaves

Fd = π
−1
C
�

g−1
Pg−1(C)

(−d)|Y ◦ and F4
d = Hom(Z[4],Fd)≃

∏
Q∈4

Fd

on Y ◦ = Cg
−iRg. In this section we construct a certain cohomology class in H g−1(Y ◦,SLg(Z),F

4
d )

using the Čech complex C •(XQ,Fd)
4.

6.1. Barnes zeta function associated to C Q
I . Recall that for I = (α1, . . . , αg) ∈ (XQ)

g, the open subset
VI ⊂ Y ◦ is defined as

VI = {y ∈ Y ◦ | Re(⟨αi , y⟩) > 0 for i = 1, . . . , g},

and we have

0(VI ,Fd)={ f ω | f holomorphic function on π−1
C
(πC(VI )) such that f (λy)=λ−g−d f (y) for all λ∈C×}

by Proposition 3.2.3. Note that π−1
C
(πC(VI ))⊂ Cg

−{0} is an open subset of the following form:

π−1
C
(πC(VI ))= {y ∈ Cg

| there exists λ ∈ C× such that λy ∈ VI } ⊂ Cg
−{0}.

Definition 6.1.1. For d ≥ 1, I = (α1, . . . , αg) ∈ (XQ)
g, Q ∈4, and y ∈ π−1

C
(πC(VI )), set

ψ
Q
d,I (y) := sgn(I )

∑
x∈C Q

I ∩Zg
−{0}

1
⟨x, y⟩g+d , (6-1)

where sgn(I )= sgn det(α1, . . . , αg) ∈ {−1, 0, 1}; see Section 5.3.

Proposition 6.1.2. The infinite series (6-1) converges absolutely and locally uniformly for y∈π−1
C
(πC(VI )).

In particular, ψQ
d,I is a holomorphic function on π−1

C
(πC(VI )). Moreover, we have

ψ
Q
d,I (λy)= λ−g−dψ

Q
d,I (y)

for all λ ∈ C× and y ∈ π−1
C
(πC(VI )).

Proof. If sgn(I )= 0, then by Proposition 5.2.1(1), we see that C Q
I ∩Zg

−{0} =∅, and hence the sum is
zero. (In particular, the series converges.) Therefore, we may assume that α1, . . . , αg form a basis of Qg.
Furthermore, since sgn(I ) and C Q

I do not change if we replace αi by its multiple by positive integers, we
may assume that α1, . . . , αg ∈ Zg

−{0}.
Let y ∈ π−1

C
(πC(VI )) and take λ ∈ C× such that λy ∈ VI . Then take a relatively compact open

neighborhood U ⊂ VI of λy, i.e., U is an open neighborhood of λy such that its closure U is compact
and U ⊂ VI . Since y ∈ λ−1U ⊂ π−1

C
(πC(VI )), it suffices to show that (6-1) converges absolutely and

uniformly on λ−1U .
First, note that by the definition of C Q

I , we have

C Q
I ⊂ CI =

g∑
i=1

R≥0αi ,
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where CI is the closed cone generated by I . Put

RI :=

g∑
i=1

[0, 1)αi .

Then we see

• C Q
I ∩Zg

⊂ CI ∩Zg
=

{
x +

∑g
i=1 niαi | x ∈ RI ∩Zg, ni ∈ Z≥0

}
,

• RI ∩Zg is a finite set,

•

{
Re(⟨x, y′⟩) | x ∈ RI ∩Zg

−{0}, y′ ∈U
}

is a compact subset of R>0.

Therefore, set
b :=min

{
Re(⟨x, y′⟩) | x ∈ RI ∩Zg

−{0}, y′ ∈U
}
> 0.

Moreover, for i = 1, . . . , g, set

ai :=min
{
Re(⟨αi , y′⟩) | y′ ∈U

}
> 0.

Then for y′′ = λ−1 y′ ∈ λ−1U , where y′ ∈U , we have∑
x∈C Q

I ∩Zg
−{0}

∣∣∣∣ 1
⟨x, y′′⟩g+d

∣∣∣∣
≤ |λ|g+d

∑
x∈CI∩Zg

−{0}

1
|⟨x, y′⟩|g+d

≤ |λ|g+d
∑

x∈CI∩Zg
−{0}

1(
Re(⟨x, y′⟩)

)g+d

≤ |λ|g+d
∑

x ′∈RI∩Zg,(n1,...,ng)∈(Z≥0)
g,

x ′+
∑g

i=1 niαi ̸=0

1(
Re(⟨x ′, y′⟩)+

∑g
i=1 ni Re(⟨αi , y′⟩)

)g+d

≤ |λ|g+d
∑

(n1,...,ng)∈(Z≥0)g−{0}

1(∑g
i=1 ni ai

)g+d +|λ|
g+d#(RI ∩Zg

−{0})
∑

(n1,...,ng)∈(Z≥0)g

1(
b+

∑g
i=1 ni ai

)g+d ,

where #(RI ∩Zg
−{0}) is the order of the finite set RI ∩Zg

−{0}. It is now clear that the last two series
converge for d ≥ 1. The last statement in the proposition follows directly from the definition. □

Remark 6.1.3. Since C Q
I is a rational constructible cone (see Proposition 5.2.1), we see that ψQ

d,I can be
written as a sum of a finite number of the Barnes zeta functions; see [Barnes 1904; Yamamoto 2010].
Conceptually, we may also view ψ

Q
d,I as a decomposed piece of the “Eisenstein series”

ψd(y)=
∑

x∈Zg−{0}

1
⟨x, y⟩g+d ,

which coincides with the classical holomorphic Eisenstein series of weight 2+ d if g = 2, d ≥ 2 is even,
and y = (1, z) with Im(z) > 0, but does not converge if g ≥ 3. Therefore, the following construction of
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the Shintani–Barnes cocycle can be seen as a cohomological realization of this (generally) nonconvergent
Eisenstein series.

Corollary 6.1.4. Let d ≥ 1. For I = (α1, . . . , αg) ∈ (XQ)
g and Q ∈4, we have

ψ
Q
d,Iω ∈ 0(VI ,Fd), where ω(y)=

g∑
i=1

(−1)i−1 yi dy1 ∧ · · · ∧ ˇdyi ∧ · · · ∧ dyg.

Proof. This follows directly from Propositions 3.2.3(2) and 6.1.2. □

6.2. The Shintani–Barnes cocycle.

Definition 6.2.1. For d ≥ 1, we define a map 9d :4→ Cg−1(XQ,Fd) by

9d(Q) := (ψ
Q
d,Iω)I∈(XQ)g ∈ Cg−1(XQ,Fd)=

∏
I∈(XQ)g

0(VI ,Fd) for Q ∈4.

We aim to show that 9d defines a class in H g−1(Y ◦,SLg(Z),F
4
d ) via Corollary 4.3.4.

Proposition 6.2.2. The map 9d is a SLg(Z)-equivariant map, i.e., we have

9d
(
[γ ](Q)

)
= [γ ](9d(Q))

for Q ∈4 and γ ∈ SLg(Z). In other words, we have

9d ∈MapSLg(Z)
(4,Cg−1(XQ,Fd))= 0

(
Y ◦,SLg(Z),C

g−1(XQ,Fd)
4
)
.

Proof. Let I = (α1, . . . , αg) ∈ (XQ)
g. We need to show

9d([γ ](Q))I =
(
[γ ](9d(Q))

)
I ∈ 0(VI ,Fd),

where 9d([γ ](Q))I
(
resp.

(
[γ ](9d(Q))

)
I

)
is the I -th component of 9d

(
[γ ](Q)

) (
resp. [γ ](9d(Q))

)
as

always. Indeed, we have(
[γ ](9d(Q))

)
I (y)=

(
[γ ](ψ

Q
d,γ−1 Iω)

)
(y)

= ψ
Q
d,γ−1 I (

tγ y)ω(tγ y)

= sgn(γ−1 I )
∑

x∈C Q
γ−1 I
∩Zg
−{0}

ω(tγ y)
⟨x, tγ y⟩g+d

= sgn(det(γ−1)) sgn(I ) det(tγ )
∑

x∈C Q
γ−1 I
∩Zg
−{0}

ω(y)
⟨γ x, y⟩g+d

= sgn(I )
∑

x∈γ (C Q
γ−1 I

)∩Zg
−{0}

ω(y)
⟨x, y⟩g+d

= sgn(I )
∑

x∈C [γ ](Q)I ∩Zg
−{0}

ω(y)
⟨x, y⟩g+d =9d([γ ](Q))I (y)



Shintani–Barnes cocycles and values of the zeta functions of algebraic number fields 1185

for y ∈ π−1
C
(πC(VI )). Here, the first and second equalities follow from the definition of [γ ] (see (4-1)

and Definition 3.3.2), the fourth equality follows from Lemma 3.3.1, and the sixth equality follows from
Lemma 5.1.4. □

Corollary 6.2.3. For Q ∈4, we have

9d(Q) ∈ Cg−1(XQ,Fd)
0Q = 0(Y ◦, 0Q,C

g−1(XQ,Fd)).

Proof. Because 0Q is the stabilizer of Q in SLg(Z) and 9d is a SLg(Z)-equivariant map, it follows
that 9d(Q) is a 0Q-invariant element. □

Proposition 6.2.4. (1) Let Q ∈4. We have

dg−1(9d(Q))= 0

under the differential map

dg−1
: Cg−1(XQ,Fd)→ Cg(XQ,Fd).

(2) We have

dg−1(9d)= 0

under the differential map

dg−1
: 0

(
Y ◦,SLg(Z),C

g−1(XQ,Fd)
4
)
→ 0

(
Y ◦,SLg(Z),C

g(XQ,Fd)
4
)
.

In the following, we refer to 9d as the Shintani–Barnes cocycle.

Proof. (1) Let J = (α0, . . . , αg) ∈ (XQ)
g+1. For i = 0, . . . , g, put J (i) = (α0, . . . , α̌i , . . . , αg) ∈ (XQ)

g.
We need to show (

dg−1(9d(Q))
)

J =

g∑
i=0

(−1)i9d(Q)J (i) |VJ = 0. (6-2)

First if VJ =∅, then (6-2) is obvious because 0(∅,Fd)= 0. Assume VJ ̸=∅, and take y′ ∈ VJ . Then we
have ⟨αi ,Re(y′)⟩ = Re(⟨αi , y′⟩) > 0 for all i = 0, . . . , g, and hence the assumption in Proposition 5.3.4
is satisfied. Therefore, by Proposition 5.3.4, we find

g∑
i=0

(−1)i9d(Q)J (i) |VJ
(y)=

g∑
i=0

(−1)i sgn(J (i))
∑

x∈C Q
J (i)∩Zg

−{0}

1
⟨x, y⟩g+d ω(y)

=

∑
x∈Zg−{0}

( g∑
i=0

(−1)i sgn(J (i))1C Q
J (i)
(x)

)
ω(y)
⟨x, y⟩g+d

= 0

for y ∈ π−1
C
(πC(VJ )). This proves (1).

(2) This follows from (1). □
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We obtain the following.

Theorem 6.2.5. For d ≥ 1, the Shintani–Barnes cocycle 9d defines a class

[9d ] ∈ H g−1(Y ◦,SLg(Z),F
4
d ).

Moreover, for Q ∈4, the element 9d(Q) ∈ Cg−1(XQ,Fd)
0Q defines a class

[9d(Q)] ∈ H g−1(Y ◦, 0Q,Fd),

and we have

evQ([9d ])= [9d(Q)].

Proof. This follows from Corollary 4.3.4, Proposition 6.2.2, Corollary 6.2.3, and Proposition 6.2.4. □

7. Integration

The goal of the remaining sections is to construct a specialization map (8-11), and prove that the Shintani–
Barnes cocycle class [9d ] specializes to the special value of the zeta functions of number fields; see
Theorem 8.3.2.

Let Q ∈4 be fixed throughout this section. In this section we define an integral map∫
Q
: Hq(Y ◦, 0Q,F0)→ Hq

Q(Y
◦, 0Q,C),

where Hq
Q(Y

◦, 0Q,C) is a certain auxiliary cohomology group defined later; see Section 7.2. This group
Hq

Q(Y
◦, 0Q,C) will be studied more closely in Section 8 using a topological method.

7.1. Integration and the Hurwitz formula. For q ≥ 0, let

1q
:=

{
(t1, . . . , tq+1) ∈ Rq+1

∣∣∣ q+1∑
i=1

ti = 1, ti ≥ 0
}

denote the standard q-simplex. Note that we can also embed 1q into Rq by

1q ↪→ Rq , (t1, . . . , tq+1) 7→ (t2, . . . , tq+1),

and we equip 1q with an orientation induced from the standard orientation of Rq . Moreover, for
ξ1, . . . , ξq+1 ∈ Cg

−{0}, let

σ(ξ1,...,ξq+1) :1
q
→ Cg, (t1, . . . , tq+1) 7→

q+1∑
i=1

tiξi

denote the affine q-simplex with vertices ξ1, . . . , ξq+1, and let

|σ(ξ1,...,ξq+1)| := σ(ξ1,...,ξq+1)(1
q)⊂ Cg

denote the image of σ(ξ1,...,ξq+1).
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Now, let U ⊂ Cg
−{0} be a convex open subset and let ξ1, . . . , ξg ∈ U be a basis of Cg. Then for a

homogeneous holomorphic function f on π−1
C
(πC(U )) of degree −g, (i.e., f (λy) = λ−g f (y) for all

λ ∈ C×), we consider the integral∫
σ(ξ1,...,ξg )

f ω :=
∫
1g−1

(σ(ξ1,...,ξg))
∗( f ω), (7-1)

where

ω(y)=
g∑

i=1

(−1)i−1 yi dy1 ∧ · · · ∧ ˇdyi ∧ · · · ∧ dyg.

Here note that f ω is a holomorphic (g−1)-form on π−1
C
(πC(U )) ⊃ U , and we have |σ(ξ1,...,ξg)| ⊂ U

since U is convex.

Remark 7.1.1. Via the identification (3-2), the above f ω corresponds to a holomorphic (g−1)-form on
πC(U )⊂Pg−1(C). More precisely, there is a holomorphic (g−1)-form η on πC(U )⊂Pg−1(C) such that

(πC)
∗η = f ω.

Then we see that the integral (7-1) is actually an integral on Pg−1(C):∫
σ(ξ1,...,ξg )

f ω =
∫
πC◦σ(ξ1,...,ξg )

η.

Lemma 7.1.2. Let U ⊂ Cg
−{0} be a convex open subset, and let ξ1, . . . , ξg ∈ Cg

−{0} be a basis of Cg

such that
ξ1, . . . , ξg ∈U.

Furthermore, let λ1, . . . , λg ∈ C× be any complex numbers such that

λ1ξ1, . . . , λgξg ∈U.

Then for a homogeneous holomorphic function f on π−1
C
(πC(U )) of degree −g, we have∫

σ(ξ1,...,ξg )

f ω =
∫
σ(λ1ξ1,...,λgξg )

f ω.

Proof. Let

h : [0, 1]×1g−1
→U, (u, t) 7→ uσ(ξ1,...,ξg)(t)+(1−u)σ(λ1ξ1,...,λgξg)(t)=

g∑
i=1

(u+(1−u)λi )tiξi (7-2)

be a homotopy between σ(ξ1,...,ξg) and σ(λ1ξ1,...,λgξg). Note that we have h(u, t)∈U because U is convex. We
regard h as a singular g-chain in a usual way using the standard decomposition of the prism [0, 1]×1g−1;
see [Hatcher 2002, Section 2.1, Proof of 2.10]. Then we have

∂h = σ(ξ1,...,ξg)− σ(λ1ξ1,...,λgξg)+ h′,

where
h′ : [0, 1]× ∂1g−1

→U, (u, t) 7→ h(u, t),
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which is also regarded as a singular (g−1)-chain. Let ξ∗1 , . . . , ξ
∗
g ∈ Cg be the dual basis of ξ1, . . . , ξg,

and let

Z :=
g⋃

i=1

{y ∈ Cg
| ⟨ξ∗i , y⟩ = 0}

be the union of hyperplanes defined by ξ∗1 , . . . , ξ
∗
g . Then, by (7-2), we easily see

h′([0, 1]× ∂1g−1)⊂ Z .

Now, by Remark 7.1.1, there exists a holomorphic (g−1)-form η on πC(U ) such that

(πC)
∗η = f ω.

In particular, we have
d( f ω)= (πC)

∗(dη)= 0,

where d is the usual derivative of differential forms. Moreover, we also have∫
h′

f ω =
∫
πC◦h′

η = 0

because πC ◦ h′ is contained in a divisor πC(Z−{0})⊂ Pg−1(C). Therefore, we obtain

0=
∫

h
d( f ω)=

∫
∂h

f ω =
∫
σ(ξ1,...,ξg )

f ω−
∫
σ(λ1ξ1,...,λgξg )

f ω+
∫

h′
f ω =

∫
σ(ξ1,...,ξg )

f ω−
∫
σ(λ1ξ1,...,λgξg )

f ω.

This completes the proof. □

An important example of such an integral is the following Hurwitz formula (see [Hurwitz 1922; Sczech
1993]), which is also known as the Feynman parametrization.

Proposition 7.1.3 [Hurwitz 1922]. Let x ∈Cg
−{0}, and let ξ1, . . . , ξg ∈Cg

−{0} be a basis of Cg such that

ξ1, . . . , ξg ∈ Vx = {y ∈ Cg
−{0} | Re(⟨x, y⟩) > 0}.

(1) We have ∫
σ(ξ1,...,ξg )

ω(y)
⟨x, y⟩g

=
1

(g− 1)!
det(ξ1, . . . , ξg)

⟨x, ξ1⟩ · · · ⟨x, ξg⟩
. (∗)

(2) Let ξ∗1 , . . . , ξ
∗
g ∈ Cg be the dual basis of ξ1, . . . , ξg, and let k = (k1, . . . , kg) ∈ (Z≥0)

g. Then∫
σ(ξ1,...,ξg )

⟨ξ∗1 , y⟩k1 · · · ⟨ξ∗g , y⟩kg
ω(y)
⟨x, y⟩g+|k|

=
k!

(g+ |k| − 1)!
det(ξ1, . . . , ξg)

⟨x, ξ1⟩k1+1 · · · ⟨x, ξg⟩
kg+1 ,

where |k| := k1+ · · ·+ kg and k! := k1! · · · kg! .

Proof. (1) Let W := (ξ1, . . . , ξg)∈GLg(C) be the matrix whose columns are ξ1, . . . , ξg so that the (g−1)-
simplex σ(ξ1,...,ξg) is represented by the linear transformation W , i.e., we have σ(ξ1,...,ξg)(t1, . . . , tg) =

W t(t1, . . . , tg) for (t1, . . . , tg) ∈1
g−1
⊂ Rg. Then∫

σ(ξ1,...,ξg )

ω(y)
⟨x, y⟩g

=

∫
1g−1

ω(W y)
⟨x,W y⟩g

= det W
∫
1g−1

ω(y)
⟨tW x, y⟩g

.
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For i = 1, . . . , g, put
ai := ⟨x, ξi ⟩ ̸= 0,

and let e1, . . . , eg ∈ Cg be the standard basis, i.e., ei =
t(0, . . . , 0,

i
1, 0, . . . , 0). Then we find

det W
∫
1g−1

ω(y)
⟨tW x, y⟩g

=
det W

a1 · · · ag

∫
1g−1

ω((a1 y1, . . . , ag yg))

(a1 y1+ · · ·+ ag yg)g

=
det W

a1 · · · ag

∫
σ(a1e1,...,ageg )

ω(y)
(y1+ · · ·+ yg)g

=
det W

a1 · · · ag

∫
σ(e1,...,eg )

ω(y)
(y1+ · · ·+ yg)g

=
det W

a1 · · · ag

∫
σ(e1,...,eg )

ω(y)

=
1

(g− 1)!
det W

a1 · · · ag
.

Here, the third equality follows from Lemma 7.1.2, and the last equality follows from an elementary
computation. This proves (1).

(2) First note that for fixed ξ1, . . . , ξg , the formula (∗) can be seen as an equality of holomorphic functions
in the x-variable. Thus, for 1≤ i ≤ g, we consider a linear differential operator

Di :=

〈
ξ∗i ,

∂

∂x

〉
= ξ∗i1

∂

∂x1
+ · · ·+ ξ∗ig

∂

∂xg
,

where ξ∗i j is the j-th component of ξ∗i . Then we can compute the action of Di on the both sides of (∗)
using the formula

Di
1

⟨x, y⟩n
=−n⟨ξ∗i , y⟩

1
⟨x, y⟩n+1 ,

where y ∈ Cg, ⟨x, y⟩ ̸= 0, and n ≥ 1. Now (2) follows from (1) by applying to (∗) the operator

Dk1
1 · · · D

kg
g . □

Remark 7.1.4. The right-hand side of the Hurwitz formula (Proposition 7.1.3) is exactly the building
block of Sczech’s Eisenstein cocycle [Sczech 1993].

7.2. The integral map
∫

Q . Let Q ∈4, and let θ (1), . . . , θ (g) ∈ C be the distinct eigenvalues of tQ. Note
that by Lemma 2.1.1(1), tQ has g distinct eigenvalues.

We will introduce an auxiliary cohomology group Hq
Q(Y

◦, 0Q,C) and define the integral map
∫

Q .

Definition 7.2.1. Let q ≥ 0. We say that I ∈ (XQ)
q+1 is Q-admissible if we can take a system of

eigenvectors ξ1, . . . , ξg of tQ in VI , i.e., if

there exists ξ1, . . . , ξg ∈ VI such that tQξi = θ
(i)ξi for i = 1, . . . , g.

We define (XQ)
q+1
Q to be the set of all Q-admissible elements of (XQ)

q+1.
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Recall that

0(VI ,F0)={ f ω | f holomorphic function on π−1
C
(πC(VI )) such that f (λy)=λ−g f (y) for all λ∈C×}.

Definition 7.2.2. For q ≥ 0 and a Q-admissible I ∈ (XQ)
q+1
Q , we define a map∫

Q,I
: 0(VI ,F0)→ C, s 7→

∫
Q,I

s (7-3)

as follows. Take ξ1, . . . , ξg ∈ VI such that tQξi = θ
(i)ξi for i = 1, . . . , g, and define∫

Q,I
f ω :=

∫
σ(ξ1,...,ξg )

f ω

for f ω ∈ 0(VI ,F0). Note that by Lemma 7.1.2, the map
∫

Q,I is independent of the choice of the
eigenvectors ξ1, . . . , ξg.

Remark 7.2.3. Strictly speaking, the map
∫

Q is depending on the (fixed) choice of the order of the
eigenvalues θ (1), . . . , θ (g) up to sign.

Example 7.2.4. Let the notation be the same as in Section 2.2. Furthermore, let θ ∈ F× and Q=ρw(θ)∈4
be as in Lemma 2.2.1, and let I ∈ (XQ)

g
Q .

(1) For k ≥ 0 and x ∈ C Q
I −{0}, we have

Nw∗(y)k
ω(y)
⟨x, y⟩g+kg ∈ 0(VI ,F0),

and ∫
Q,I

Nw∗(y)k
ω(y)
⟨x, y⟩g+kg =

(k!)g

(g+ kg− 1)!
det(w(1), . . . , w(g))

Nw(x)k+1 .

(2) For k ≥ 1, we have

Nw∗(y)kψ
Q
kg,I (y)ω(y) ∈ 0(VI ,F0),

and∫
Q,I

Nw∗(y)kψ
Q
kg,I (y)ω(y)=

(k!)g det(w(1), . . . , w(g))
(g+ kg− 1)!

sgn(I )
∑

x∈C Q
I ∩Zg

−{0}

1
Nw(x)k+1 .

Proof. (1) First, since x ∈C Q
I −{0}, we easily see Re(⟨x, y⟩)> 0 for all y ∈ VI , i.e., VI ⊂ Vx . In particular,

⟨x, y⟩ ̸= 0 for all y ∈ π−1
C
(πC(VI )), and hence we obtain the first assertion. Now, by Lemma 2.2.1(5), we

know w(1), . . . , w(g) ∈Cg are the eigenvectors of tQ with eigenvalues θ (1) := τ1(θ), . . . , θ
(g)
:= τg(θ)∈C,

respectively. Take µ1, . . . , µg ∈C× so that ξ1 :=µ1w
(1), . . . , ξg :=µgw

(g)
∈ VI . This is possible since I

is Q-admissible. Then, by Lemma 2.2.1(3), we see that ξ∗1 := µ
−1
1 w∗(1), . . . , ξ∗g := µ

−1
g w∗(g) form the
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dual basis of ξ1, . . . , ξg. Thus, by Proposition 7.1.3, we find∫
Q,I

Nw∗(y)k
ω(y)
⟨x, y⟩g+kg =

∫
σ(ξ1,...,ξg)

g∏
i=1

⟨µiξ
∗

i , y⟩k
ω(y)
⟨x, y⟩g+kg

= (µ1 · · ·µg)
k (k!)g

(g+ kg− 1)!
det(ξ1, . . . , ξg)∏g

i=1⟨x, ξi ⟩
k+1

= (µ1 · · ·µg)
k (k!)g

(g+ kg− 1)!
det(µ1w

(1), . . . , µgw
(g))∏g

i=1⟨x, µiw(i)⟩k+1

=
(k!)g

(g+ kg− 1)!
det(w(1), . . . , w(g))

Nw(x)k+1 .

(2) The first assertion follows from Proposition 6.1.2. The integral formula follows from (1) by taking
the sum over x ∈ C Q

I ∩Zg
−{0}. □

Next, we extend the map (7-3) to the cohomology group.

Lemma 7.2.5. Let I = (α0, . . . , αq) ∈ (XQ)
q+1.

(1) If q ≥ 1 and I is Q-admissible, then so is I (i) = (α0, . . . , α̌i , . . . , αq) for i = 0, . . . , q.

(2) Let γ ∈ 0Q . If I is Q-admissible, then so is γ I , i.e., (XQ)
q+1
Q is a 0Q-stable subset of (XQ)

q+1.

Proof. (1) This follows from the fact VI = VI (i) ∩ Vαi ⊂ VI (i) .

(2) Take ξ1, . . . , ξg ∈ VI such that tQξi = θ
(i)ξi for i = 1, . . . , g. Then since tQtγ = tγ tQ, we see that

tγ−1ξ1, . . . ,
tγ−1ξg are again eigenvectors of tQ with eigenvalues θ (1), . . . , θ (g) respectively. On the other

hand, by Lemma 4.1.1, we have
tγ−1ξi ∈

tγ−1VI = Vγ I

for i = 1, . . . , g. Thus we find that tγ−1ξ1, . . . ,
tγ−1ξg are a system of eigenvectors of tQ in Vγ I . □

For a 0Q-equivariant sheaf F on Y ◦, set

Cq
Q(XQ,F ) :=

∏
I∈(XQ)

q+1
Q

0(VI ,F ) and QCq(XQ,F ) :=
∏

I∈(XQ)
q+1,

I ̸∈(XQ)
q+1
Q

0(VI ,F ).

Then we have a natural short exact sequence

0→ QCq(XQ,F )→ Cq(XQ,F )
pQ
−→ Cq

Q(XQ,F )→ 0, (7-4)

where pQ is the natural projection. By Lemma 7.2.5, we easily see that QC •(XQ,F ) becomes a 0Q-
equivariant subcomplex of C •(XQ,F ), and hence C •Q(XQ,F ) has a natural structure of 0Q-equivariant
complex induced from that of C •(XQ,F ). For a subgroup 0 ⊂ 0Q , we define

Hq
Q(Y

◦, 0,F ) := Hq(C •Q(XQ,F )
0)

to be the q-th cohomology group of the complex C •Q(XQ,F )
0.
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Now, by taking the product of (7-3) over I ∈ (XQ)
q+1
Q , we define∫

Q
: Cq

Q(XQ,F0)→ Cq
Q(XQ,C), (sI )I∈(XQ)

q+1
Q
7→

( ∫
Q,I

sI

)
I∈(XQ)

q+1
Q

.

Here C is regarded as a constant sheaf associated to C with the trivial 0Q-equivariant structure.

Proposition 7.2.6. The map ∫
Q
: C •Q(XQ,F0)→ C •Q(XQ,C)

is a morphism of 0Q-equivariant complexes, and hence induces a map∫
Q
: Hq

Q(Y
◦, 0Q,F0)→ Hq

Q(Y
◦, 0Q,C)

for q ≥ 0.

Proof. First we must show
∫

Q ◦ dq
= dq

◦
∫

Q for q ≥ 0. Let J = (α0, . . . , αq+1) ∈ (XQ)
q+2
Q , and

let ξ1, . . . , ξg ∈ VJ be a system of eigenvectors of tQ with eigenvalues θ (1), . . . , θ (g) respectively. Then
for s = (sI )I∈(XQ)

q+1
Q
∈ Cq

Q(XQ,F0), we have( ∫
Q

dq(s)
)

J
=

∫
Q,J
(dq(s))J =

∫
σ(ξ1,...,ξg )

q+1∑
i=0

(−1)i sJ (i) |VJ

=

q+1∑
i=0

(−1)i
∫
σ(ξ1,...,ξg )

sJ (i) =

q+1∑
i=0

(−1)i
( ∫

Q
s
)

J (i)
=

(
dq

( ∫
Q

s
))

J
,

where J (i) = (α0, . . . , α̌i , . . . , αq+1).
Next we must show

∫
Q ◦ [γ ] = [γ ] ◦

∫
Q for γ ∈ 0Q . Let J = (α1, . . . , αq+1) ∈ (XQ)

q+1
Q , and let again

ξ1, . . . , ξg ∈ VJ be a system of eigenvectors of tQ with eigenvalues θ (1), . . . , θ (g) respectively. Then as in
the proof of Lemma 7.2.5, we see that tγ ξ1, . . . ,

tγ ξg are eigenvectors of tQ in Vγ−1 J with eigenvalues
θ (1), . . . , θ (g) respectively. Therefore, for s = (sI )I∈(XQ)

q+1
Q
∈ Cq

Q(XQ,F0), we have( ∫
Q
[γ ](s)

)
J
=

∫
Q,J
([γ ](s))J =

∫
σ(ξ1,...,ξg )

sγ−1 J (
tγ y)

=

∫
σ(tγ ξ1,...,

tγ ξg )

sγ−1 J (y)

=

∫
Q,γ−1 J

sγ−1 J =

( ∫
Q

s
)
γ−1 J
=

(
[γ ]

( ∫
Q

s
))

J
.

This completes the proof. □

Let
∫

Q also denote the composition∫
Q
: Hq(Y ◦, 0Q,F0)

pQ
−→ Hq

Q(Y
◦, 0Q,F0)

∫
Q
−→ Hq

Q(Y
◦, 0Q,C), (7-5)

where pQ is the natural map induced from the projection pQ in (7-4). See also Corollary 4.3.4.
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8. Specialization to the zeta values

In this section we compute the group Hq
Q(Y

◦, 0Q,C) explicitly, and show that we can get the values of
the zeta function as a specialization of the Shintani–Barnes cocycle [9d ].

First we return to the setting in Section 2.2. Let

• F/Q be a number field of degree g,

• τ1, . . . , τg : F ↪→ C be the field embeddings of F into C,

• O ⊂ F be an order,

• a⊂ F be a proper fractional O-ideal,

• w1, . . . , wg ∈ a be a basis of a over Z,

• w := t(w1, . . . , wg) ∈ Fg, and w(i) := τi (w)=
t(τi (w1), . . . , τi (wg)) ∈ Cg,

• ρw : F→ Mg(Q) be the regular representation with respect to

w :Qg ∼
−→ F, x 7→ ⟨x, w⟩,

• Nw(x1, . . . , xg) ∈Q[x1, . . . , xg] be the norm polynomial with respect to w,

• w∗1, . . . , w
∗
g ∈ F be the dual basis of w1, . . . , wg with respect to the trace TrF/Q,

• w∗, w∗(i), Nw∗ , ρw∗ be the dual objects obtained from w∗1, . . . , w
∗
g.

Take θ ∈ F× such that F=Q(θ) and put Q :=ρw(θ)∈4. Also, set θ (1) :=τ1(θ), . . . , θ
(g)
:=τg(θ)∈C×

to be the eigenvalues of tQ. We fix this notation.

8.1. Computation of Hq
Q(Y ◦, 0Q, C). Define

Tw := {x ∈ Rg
| Nw(x) ̸= 0} ⊂ Rg

−{0}

to be the set of real vectors whose norm is nonzero. By Lemma 2.2.1(7), it is clear that Tw is a 0Q-stable
subset of Rg

−{0}. Note that under the isomorphism

w : Rg ∼
−→ FR := F ⊗Q R, x 7→ ⟨x, w⟩,

Tw corresponds to F×R = {α ∈ FR | NF/Q(α) ̸= 0}, i.e.,

w : Tw ∼
−→ F×R . (8-1)

The aim of this subsection is to obtain an isomorphism

Hq
Q(Y

◦, 0Q,C) ∼
←− Hq(Tw/0Q,C)≃ Hq(F×R /O

1,C), (8-2)

where the last two cohomology groups are the usual singular cohomology groups.
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As in Section 7, for I = (α1, . . . , αq+1) ∈ (XQ)
q+1, let

σI :1
q
→ Rg, t = (t1, . . . , tq+1) 7→

q+1∑
i=1

αi ti

denote the affine q-simplex with vertices α1, . . . , αq+1, and let |σI | := σI (1
q)⊂ Rg denote the image

of σI . The following lemma enables us to compute the group Hq
Q(Y

◦, 0Q,C) using these simplices.

Lemma 8.1.1. Let q ≥ 0 and I = (α1, . . . , αq+1) ∈ (XQ)
q+1. The following conditions are equivalent:

(i) I is Q-admissible.

(ii) |σI | ⊂ Tw.

To prove this lemma, recall the following fact:

Lemma 8.1.2. Let A ⊂ C be a convex compact subset. The following conditions are equivalent:

(i) 0 ̸∈ A.

(ii) There exists λ ∈ C× such that Re(λA)⊂ R>0.

Proof. This follows from [Rudin 1991, Theorem 3.4(b)]. □

Proof of Lemma 8.1.1. First, by Lemma 2.2.1(5), we know that w(1), . . . , w(g) are the eigenvectors of tQ
with eigenvalues θ (1), . . . , θ (g) respectively. Therefore,

I is Q-admissible

⇐⇒ for all j ∈ {1, . . . ,g} there exists λ j ∈ C× such that λ jw
( j)
∈ VI

⇐⇒ for all j ∈ {1, . . . ,g} there exists λ j ∈ C× such that for all i ∈ {1, . . . ,q + 1}, Re(⟨αi ,λ jw
( j)
⟩) > 0

⇐⇒ for all j ∈ {1, . . . ,g} there exists λ j ∈ C× such that Re(λ j ⟨|σI |,w
( j)
⟩)⊂ R>0

∗
⇐⇒ 0 ̸∈ ⟨|σI |,w

( j)
⟩ for all j ∈ {1, . . . ,g}

⇐⇒ Nw(x) ̸= 0 for all x ∈ |σI |

⇐⇒ |σI | ⊂ Tw.

Note that the fourth equivalence ∗
⇐⇒ follows from Lemma 8.1.2 since ⟨|σI |, w

(i)
⟩ ⊂ C is a convex

compact subset. This proves the lemma. □

For q ≥ 0, let 6q := {σ :1
q
→ Tw continuous} denote the set of singular q-simplices in Tw, and let

Sq := Z[6q ]

denote the group of singular q-chains of Tw. For j = 1, . . . , q + 1, let

δ
q
j :1

q−1
→1q , (t1, . . . , tq) 7→ (t1, . . . , t j−1, 0, t j , . . . , tq)
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denote the j-th face map. Then we have a boundary map ∂ : Sq → Sq−1 which maps σ ∈6q to

∂σ =

q+1∑
j=1

(−1) j−1σ ◦ δ
q
j ∈ Sq−1.

The action of 0Q on Tw naturally induces an action of 0Q on Sq , and we have a 0Q-equivariant singular
chain complex S•. Moreover, let

Kq := Z[(XQ)
q+1
Q ]

denote the free abelian group generated by (XQ)
q+1
Q . By Lemma 7.2.5(2), we have a natural action of 0Q

on Kq . Then, by Lemma 8.1.1, we have a natural injective homomorphism

Kq ↪→ Sq , I 7→ σI ,

which is clearly a 0Q-equivariant map. In the following, we identify Kq with a 0Q-submodule

Z
[
σI | I ∈ (XQ)

q+1
Q

]
= Z

[
σI | I ∈ (XQ)

q+1, |σI | ⊂ Tw
]
⊂ Sq

of Sq via this injective map. Then, by Lemma 7.2.5(1), we see that the boundary map ∂ maps Kq to Kq−1,
and hence K• ⊂ S• becomes a 0Q-equivariant subcomplex of S•.

Note that we have a natural isomorphism

K •C := HomZ(K•,C)≃
∏

I∈(XQ)
•+1
Q

C= C •Q(XQ,C)

of 0Q-equivariant complexes, and hence

Hq
Q(Y

◦, 0Q,C)≃ Hq((K •C)
0Q ).

Therefore, in order to obtain (8-2), we compare K• and S•.

Proposition 8.1.3. (1) Let 0 ⊂ 0Q be a subgroup. For q ≥ 0, the quotient group Sq/Kq is an induced
0-module.

(2) The inclusion map
K• ↪→ S•

is a quasi-isomorphism. In other words, the quotient complex S•/K• is exact.

Proof. (1) This is clear since we have

Sq/Kq ≃ Z[σ ∈6q | σ ̸∈ Kq ]

and 0 ⊂ 0Q acts freely on the basis {σ ∈6q | σ ̸∈ Kq}.

(2) This kind of fact may be well known to experts, but here we give a proof for the sake of completeness
of the paper. First take any finite open covering

Tw =
N⋃

k=1

Uk
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of Tw such that Uk is a convex open subset of Tw for all k. The existence of such a covering can be easily
seen from the identification w : Tw ∼

−→ F×R .
We will prove that the quotient complex S•/K• is exact. Let q ≥ 0 and let a ∈ Sq such that ∂a ∈ Kq−1.

We need to show the following:

Aim. There exist η ∈ Sq+1 and b ∈ Kq such that a = ∂η+ b.

Suppose a ∈ Sq is of the form

a =
r∑

i=1

ciσi ,

where σi are distinct singular q-simplices in Tw, and ci ∈ Z. By using the barycentric subdivision if
necessary, without loss of generality we may assume

for each i ∈ {1, . . . , r} there exists κi ∈ {1, . . . , N } such that σi (1
q)⊂Uκi . (8-3)

Indeed, let
S : Sn→ Sn and T : Sn→ Sn+1

be the subdivision operator and the chain homotopy between S and idSn defined as in [Hatcher 2002,
Section 2.1, Proof of Proposition 2.21]. Then taking into account the fact that the barycenter of any
σI ∈ Kn (I ∈ (XQ)

n+1
Q ) belongs to Qg

∩ |σI |, we easily see that S (resp. T ) maps Kn to Kn (resp. Kn+1).
Hence we have

∂S(a)= S(∂a) ∈ Kq−1 and a− S(a)= ∂T (a)+ T (∂a) ∈ ∂Sq+1+ Kq .

Therefore, we can replace a with its (iterated) barycentric subdivision Sm(a) (m sufficiently large) until
we have (8-3).

We fix such κi for each i = 1, . . . , r .

Step 1: In order to “approximate” σi by the elements in Kq , we first approximate their vertices “simul-
taneously”. For i = 1, . . . , r and j = 1, . . . , q + 1, let vi j ∈Uκi ⊂ Tw denote the j-th vertex of σi , i.e.,

vi j = σi (0, . . . , 0,
j
1, 0, . . . , 0) ∈ Tw.

Then for i = 1, . . . , r and j = 1, . . . , q + 1, take v′i j ∈Uκi ∩Qg satisfying the following conditions:

(V1) If vi j ∈Qg, then v′i j = vi j .

(V2) If vi j = vmn for some i,m ∈ {1, . . . , r} and j, n ∈ {1, . . . , q+1}, then v′i j = v
′
mn . (In other words, if

the j -th vertex of σi and the n-th vertex of σm are the same, then v′i j and v′mn are the same as well.)

This is possible because Qg is dense in Rg. Then set

Ii := (v
′

i1, . . . , v
′

i,q+1) ∈ (XQ)
q+1 for i = 1, . . . , r and a′ :=

r∑
i=1

ciσIi .

Since Uκi is convex, we have σIi ⊂Uκi ⊂ Tw, and hence σIi ∈ Kq . Therefore, we see that a′ ∈ Kq .
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Now, recall that for j = 1, . . . , q + 1,

δ
q
j :1

q−1
→1q , (t1, . . . , tq) 7→ (t1, . . . , t j−1, 0, t j , . . . , tq)

denotes the j-th face map. Then, by the conditions (V1) and (V2), we have the following:

(F1) If σi ◦ δ
q
j ∈ Kq−1, then σIi ◦ δ

q
j = σi ◦ δ

q
j .

(F2) If σi ◦ δ
q
j = σm ◦ δ

q
n for i,m ∈ {1, . . . , r} and j, n ∈ {1, . . . , q + 1}, then σIi ◦ δ

q
j = σIm ◦ δ

q
n . (In

other words, if the j-th face of σi and the n-th face of σm are the same, then the j-th face of σIi

and the n-th face of σIm are the same as well.)

Step 2: Next we consider the homotopy between a and a′. For i = 1, . . . , r , let

hi : [0, 1]×1q
→ Tw, (u, t) 7→ uσi (t)+ (1− u)σIi (t)

be a homotopy between σi and σIi . Note that since Uκi is convex, we have

hi ([0, 1]×1q)⊂Uκi .

The homotopy hi defines a (q+1)-chain ηi ∈ Sq+1in a usual way using the standard decomposition of
the prism [0, 1]×1q . More precisely, for j = 1, . . . , q + 1, put

ϵ
q
j :1

q+1
→ [0, 1]×1q , (t1, . . . , tq+2) 7→

( ∑
m≥ j+1

tm, (t1, . . . , t j−1, t j + t j+1, t j+2, . . . , tq+2)

)
.

Using these maps, the (q+1)-chain ηi ∈ Sq+1 is defined as

ηi :=

q+1∑
j=1

(−1) j−1hi ◦ ϵ
q
j .

Set η :=
∑r

i=1 ciηi ∈ Sq+1.

Step 3: Now we examine the assumption ∂a ∈ Kq−1. First, we have

∂a =
r∑

i=1

q+1∑
j=1

(−1) j−1ciσi ◦ δ
q
j .

For each singular (q−1)-simplex σ ∈6q−1, set

Cσ :=
∑

i=1,...,r,
j=1,...,q+1,
σi◦δ

q
j=σ

(−1) j−1ci ∈ Z.

In the case where the index set of the sum is empty, we set Cσ =0 by convention. Then we can rewrite ∂a as

∂a =
∑

σ∈6q−1

Cσσ.

Then, by the assumption ∂a ∈ Kq−1, we find that Cσ = 0 for all σ ̸∈ Kq−1 since the set 6q−1 of singular
(q−1)-simplices is a basis of Sq−1.
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Step 4: Next we compute the boundary of the homotopy η ∈ Sq+1. By an elementary computation we see

∂ηi = σi − σIi −

q+1∑
j=1

q∑
m=1

(−1) j+mhi j ◦ ϵ
q−1
m ,

where
hi j : [0, 1]×1q−1

→ Tw, (u, t) 7→ uσi ◦ δ
q
j (t)+ (1− u)σIi ◦ δ

q
j (t)

is a homotopy between σi ◦ δ
q
j and σIi ◦ δ

q
j ; see [Hatcher 2002, Section 2.1, Proof of 2.10].

Now, by the properties (F1) and (F2), we see the following:

(H1) If σi ◦ δ
q
j ∈ Kq−1, then hi j (u, t)= σi ◦ δ

q
j (t) for (u, t) ∈ [0, 1]×1q−1.

(H2) If σi ◦ δ
q
j = σm ◦ δ

q
n for i,m ∈ {1, . . . , r} and j, n ∈ {1, . . . , q + 1}, then hi j = hmn .

Then for each singular (q−1)-simplex σ ∈6q−1, we define a map

hσ : [0, 1]×1q−1
→ Tw

as follows: If σ is of the form σ = σi ◦δ
q
j for some i ∈ {1, . . . , r} and j ∈ {1, . . . , q+1}, we set hσ := hi j .

This is well defined by the property (H2). If σ is not of the form σi ◦ δ
q
j , then simply set hσ (u, t) := σ(t)

for (u, t) ∈ [0, 1]×1q−1.
Then we find

∂η = a− a′−
r∑

i=1

q+1∑
j=1

q∑
m=1

(−1) j+mci hi j ◦ ϵ
q−1
m

= a− a′−
r∑

i=1

q+1∑
j=1

q∑
m=1

(−1) j+mci hσi◦δ
q
j
◦ ϵq−1

m

= a− a′−
∑

σ∈6q−1

q∑
m=1

(−1)m−1hσ ◦ ϵq−1
m

∑
i=1,...,r,

j=1,...,q+1,
σi◦δ

q
j=σ

(−1) j−1ci

= a− a′−
∑

σ∈6q−1

Cσ
q∑

m=1

(−1)m−1hσ ◦ ϵq−1
m

= a− a′−
∑

σ∈6q−1∩Kq−1

Cσ
q∑

m=1

(−1)m−1hσ ◦ ϵq−1
m .

Note that the last equality holds since we have Cσ = 0 for σ ̸∈ Kq−1. Moreover, by the property (H1), we
easily see that if σ = σi ◦ δ

q
j ∈ Kq−1, then hσ ◦ ϵ

q−1
m ∈ Kq for all m = 1, . . . , q . Therefore, by setting

b := a′+
∑

σ∈6q−1∩Kq−1

Cσ
q∑

m=1

(−1)m−1hσ ◦ ϵq−1
m ∈ Kq ,

we obtain the desired identity a = ∂η+ b. □
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Let S•
C
:= HomZ(S•,C) denote the singular cochain complex of Tw with coefficients in C.

Corollary 8.1.4. Let 0 ⊂ 0Q be a subgroup.

(1) The map K• ↪→ S• induces a quasi-isomorphism

(K•)0→ (S•)0,

where (−)0 denotes the 0-coinvariant part. In particular, we obtain an isomorphism

Hq((K•)0) ∼−→ Hq(Tw/0,Z).

(2) The map K• ↪→ S• induces a quasi-isomorphism

(S•C)
0
→ (K •C)

0.

In particular, we obtain an isomorphism

Hq(Tw/0,C) ∼−→ Hq((K •C)
0)≃ Hq

Q(Y
◦, 0,C).

Proof. First note that since the action of 0Q on Tw is free and properly discontinuous, the singular
homology Hq(Tw/0,Z) (resp. singular cohomology Hq(Tw/0,C)) can be computed by the equivariant
singular homology (resp. equivariant singular cohomology), i.e., we have

Hq(Tw/0,Z)≃ Hq((S•)0) and Hq(Tw/0,C)≃ Hq((S•C)
0).

See [Cartan and Eilenberg 1956, Chapter XVI, Section 9].

(1) We consider the tautological exact sequence

0→ Kq → Sq → Sq/Kq → 0. (8-4)

By Proposition 8.1.3(1), we obtain a short exact sequence

0= H1(0, Sq/Kq)→ (Kq)0→ (Sq)0→ (Sq/Kq)0→ 0,

where H1(0,−) is the first group homology of 0. This induces a long exact sequence

· · · → Hq+1((S•/K•)0)→ Hq((K•)0)→ Hq((S•)0)→ Hq((S•/K•)0)→ · · · .

Therefore, it remains to show
Hq((S•/K•)0)= 0

for q ≥ 0. Indeed, by Proposition 8.1.3, we see that

· · · → S2/K2→ S1/K1→ S0/K0→ 0 (8-5)

is an exact sequence of induced 0-modules. Therefore, (8-5) can be seen as a (−)0-acyclic resolution
of 0. Thus we see

Hq((S•/K•)0)= Hq(0, 0)= 0

for all q ≥ 0.
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(2) This can be proved similarly. By applying HomZ(−,C) to (8-4), we obtain a short exact sequence

0→ (Sq/Kq)
∨

C→ Sq
C
→ K q

C
→ 0,

where (Sq/Kq)
∨

C
:=HomZ(Sq/Kq ,C). Then, by Proposition 8.1.3(1), we see that (Sq/Kq)

∨

C
is a coinduced

0-module, and hence we obtain another short exact sequence

0→ ((Sq/Kq)
∨

C)
0
→ (Sq

C
)0→ (K q

C
)0→ H 1(0, (Sq/Kq)

∨

C)= 0.

Furthermore, this exact sequence induces a long exact sequence

· · · → Hq(
((S•/K•)∨C)

0
)
→ Hq((S•C)

0)→ Hq((K •C)
0)→ Hq+1(((S•/K•)∨C)

0
)
→ · · · .

Therefore, it remains to show that

Hq(
((S•/K•)∨C)

0
)
= 0

for q ≥ 0. Indeed, by applying HomZ(−,C) to (8-5), we see that

0→ (S0/K0)
∨

C→ (S1/K1)
∨

C→ (S2/K2)
∨

C→ · · ·

is a (−)0-acyclic resolution of 0, and hence

Hq(
((S•/K•)∨C)

0
)
≃ Hq(0, 0)= 0

for all q ≥ 0. □

As a result, for a subgroup 0 ⊂ 0Q and a homology class z ∈ Hg−1(Tw/0,Z), we can define an
evaluation map

⟨z, ⟩ : H g−1
Q (Y ◦, 0Q,C)≃ H g−1(Tw/0Q,C)→ H g−1(Tw/0,C)

⟨z, ⟩
−−→ C (8-6)

by taking the pairing with z.

8.2. Shintani decomposition. Using Corollary 8.1.4, here we construct a cone decomposition of a
homology class z ∈ Hg−1(Tw/0,Z). See Proposition 8.2.1 and Remark 8.2.2. We need such a cone
decomposition in order to compute the specialization of the Shintani–Barnes cocycle.

Recall that τ1, . . . , τg are the field embeddings of F into C. Clearly, τi extends to

τi : FR = F ⊗R→ C.

Let Fτi denote the completion of F with respect to the embedding τi . In the following, we assume for
simplicity that τ1, . . . , τr1 are the real embeddings, i.e., Fτi = R for i = 1, . . . , r1, and τr1+1, . . . , τg are
the nonreal embeddings, i.e., Fτi = C for i = r1+ 1, . . . , g.

For µ= (µ1, . . . , µr1) ∈ {±1}r1 (:= {−1, 1}r1), set

F×R,µ := {x ∈ F×R | µiτi (x) > 0 for i = 1, . . . , r1}.
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Clearly, {F×R,µ | µ ∈ {±1}r1} are the connected components of F×R , and we have F×R =
⊔
µ∈{±1}r1 F×R,µ.

Then let Tw,µ ⊂ Tw be the connected component of Tw corresponding to F×R,µ via the identification (8-1):

w : Tw ∼
−→ F×R .

If µ= (1, 1, . . . , 1), then F×R,µ is the totally positive component of F×R , and simply denoted by F×R,+.
Furthermore, let

F×
+
:= F× ∩ F×R,+ = {x ∈ F× | τi (x) > 0 for i = 1, . . . , r1},

O×
+
:=O× ∩ F×R,+ = {u ∈O

×
| τi (u) > 0 for i = 1, . . . , r1}

denote the totally positive parts of F× and O× respectively, and let 0+Q ⊂ 0Q be the image of O×+ under
the isomorphism

ρw :O1 ∼
−→ 0Q

(see Section 2.2).
By Dirichlet’s unit theorem, we know that

Tw/R>00
+

Q ≃ F×R /R>0O×+

is compact, and its connected components

Tw,µ/R>00
+

Q ≃ F×R,µ/R>0O×+ for µ ∈ {±1}r1

are homeomorphic to (g−1)-dimensional topological tori. Therefore, we have

Hg−1(Tw/0+Q ,Z)≃ Hg−1(Tw/R>00
+

Q ,Z)≃ Z{±1}r1
. (8-7)

Here the first isomorphism is a canonical isomorphism induced from the projection

Tw/0+Q → Tw/R>00
+

Q ,

which is clearly a homotopy equivalence. In order to fix the second isomorphism of (8-7), we equip
Tw/R>00

+

Q with an orientation as follows.

Orientation. Set
Tµ := Tw,µ/R>00

+

Q ⊂ T := Tw/R>00
+

Q

for simplicity. Recall that an orientation of a (g−1)-dimensional manifold X is defined as a system (νx)x∈X

of generators νx ∈ Hg−1(X, X−{x},Z)≃ Z with a certain compatibility; see [Hatcher 2002, Section 3.3].
Note that giving a generator νx of Hg−1(X, X−{x},Z)≃ Z is equivalent to giving an isomorphism

ox : Hg−1(X, X−{x},Z) ∼−→ Z, νx 7→ 1.

We first fix an orientation of the (g−1)-sphere Sg−1
= (Rg

−{0})/R>0 as follows. Let x ∈ Rg
−{0} and

let x̄ ∈ Sg−1 be its image. Moreover, let I = (α1, . . . , αg) ∈ (XQ)
g such that 0 ̸∈ |σI | and x ̸∈ ∂C I ,

where ∂C I is the boundary of the cone C I . Then we see

σI :1
g−1 σI
−→ Rg

−{0} → Sg−1
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defines a class [σI ] ∈ Hg−1(Sg−1, Sg−1
−{x̄},Z). We fix the isomorphism ox̄ so that we have

ox̄([σI ])= sgn(I )1C I (x)

for all such I , where sgn(I ) = sgn(det I ) ∈ {0,±1}. This defines an orientation of Sg−1. Then this
orientation of Sg−1 induces orientations of Tw/R>0⊂ Sg−1 and T = Tw/R>00

+

Q because the action of 0+Q
on Tw/R>0 is free, properly discontinuous, and orientation-preserving. More explicitly, for x ∈ Tw and
its image x ∈ T , the local orientation isomorphism

ox : Hg−1(T , T−{x},Z) ∼−→ Z

can be computed as follows. let I = (α1, . . . , αg) ∈ (XQ)
g
Q such that γ x ̸∈ ∂C I for all γ ∈ 0+Q . Then

σI :1
g−1 σI
−→ Tw→ T

defines a class [σI ] ∈ Hg−1(T , T−{x},Z), and we have

ox([σI ])= sgn(I )
∑
γ∈0+Q

1C I (γ x). (8-8)

Now, since {Tµ |µ∈ {±1}r1} are the connected components of T , this orientation defines isomorphisms

oµ : Hg−1(Tµ,Z) ∼−→ Z, µ ∈ {±1}r1,

o=
⊕
µ

oµ : Hg−1(T ,Z)≃
⊕

µ∈{±1}r1

Hg−1(Tµ,Z) ∼−→
⊕

µ∈{±1}r1

Z

such that for all x ∈ Tµ, the following diagram is commutative:

Hg−1(Tµ,Z)
oµ
∼

//

locx
��

Z

Hg−1(T , T−{x},Z)
ox

∼
// Z

(8-9)

Here the left vertical arrow is the natural localization map; see [Hatcher 2002, Theorem 3.26, Lemma 3.27].
For χ = (χµ)µ ∈

⊕
µ∈{±1}r1 Z, let

zχ ∈ Hg−1(T ,Z)≃ Hg−1(Tw/0+Q ,Z)

denote the class such that o(zχ )= χ . Note that if zµ denotes the fundamental class of Tµ, then zχ can be
written as zχ =

∑
µ χµzµ.

Proposition 8.2.1. Let χ = (χµ)µ ∈
⊕

µ∈{±1}r1 Z.

(1) There exists

8=

r∑
i=1

ciσIi ∈ Kg−1 = Z[σI | I ∈ (XQ)
g
Q] ⊂ Sg−1

which represents the homology class zχ ∈ Hg−1(Tw/0+Q ,Z), where I1, . . . , Ir ∈ (XQ)
g
Q , and ci ∈ Z.
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(2) Then for x ∈ Rg
−{0}, we have∑

γ∈0+Q

r∑
i=1

ci sgn(Ii )1C Q
Ii
(γ x)= χ(x)1Tw(x),

where χ is regarded as a locally constant function χ : Tw → Z which has value χµ on Tw,µ, i.e.,
χ(x)= χµ for x ∈ Tw,µ.

Proof. (1) This is a direct consequence of Corollary 8.1.4(1).

(2) First note that we have
1C Q

Ii
(γ x)= 1

γ−1C Q
Ii
(x)= 1C Q

γ−1 Ii
(x)

for γ ∈ 0+Q . Now, since the action of 0+Q on Tw/R>0 is properly discontinuous, the collection {γ−1C Ii }i,γ

of subsets of Tw is locally finite. Therefore, as in the proof of Proposition 5.3.4, by using Lemma 5.3.3,
we can find δ > 0 such that

exp(εQ)x ̸∈ ∂Cγ−1 Ii

for all ε ∈ (0, 2δ), i = 1, . . . , r , and γ ∈ 0+Q . Set

x ′ := exp(δQ)x .

Then we have
1C Q

Ii
(γ x)= 1C Q

γ−1 Ii
(x)= 1C

γ−1 Ii
(x ′)= 1C Ii

(γ x ′).

Moreover, by using Lemma 2.2.1(5), we see that exp(δQ) preserves the connected components Tw,µ
of Tw, and hence we have

χ(x)1Tw(x)= χ(x
′)1Tw(x

′).

Therefore, it suffices to show ∑
γ∈0+Q

r∑
i=1

ci sgn(Ii )1C Ii
(γ x ′)= χ(x ′)1Tw(x

′). (8-10)

First, by Lemma 8.1.1, all of the terms in (8-10) are 0 if x ′ ̸∈ Tw. Therefore, we assume x ′ ∈ Tw,µ for
some µ ∈ {±1}r1 . Set

Tµ := Tw,µ/R>00
+

Q and x′ := R>00
+

Q x ′ ∈ Tµ.

Then, by (8-8), we see that the image of 8 under the localization map

ox′ ◦ locx′ : Hg−1(Tw,µ/0+Q ,Z)≃ Hg−1(Tµ,Z)
locx′
−−→ Hg−1(T , T−{x′},Z)

ox′
∼
−→ Z

is equal to ∑
γ∈0+Q

r∑
i=1

ci sgn(Ii )1C Ii
(γ x ′).

On the other hand, by (8-9), ox′ ◦ locx′(8)= oµ(zχ )= χµ because 8 represents zχ . This completes the
proof. □
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Remark 8.2.2. In the case where zχ = zµ is the fundamental class of a connected component Tµ,
Proposition 8.2.1 says that

r∑
i=1

ci sgn(Ii )1C Q
Ii

gives a signed fundamental domain for Tw,µ/0+Q in the sense of Charollois, Dasgupta, and Greenberg
[Charollois et al. 2015, Definition 2.4], which is a “weighted version” of the Shintani cone decomposition;
see also [Diaz y Diaz and Friedman 2014; Espinoza and Friedman 2020].

Remark 8.2.3. Let the notation χ , zχ , and 8=
∑r

i=1 ciσIi be the same as in Proposition 8.2.1. We can
compute the evaluation map

⟨zχ , ⟩ : H
g−1
Q (Y ◦, 0Q,C)≃ H g−1(Tw/0Q,C)→ H g−1(Tw/0+Q ,C)

⟨zχ , ⟩
−−−→ C

(see (8-6)) explicitly as follows. Let

s = (sI )I∈(XQ)
g
Q
∈ Cg−1

Q (XQ,C)=
∏

I∈(XQ)
g
Q

C

be a 0Q-invariant cocycle and let [s] ∈ H g−1
Q (Y ◦, 0Q,C) be the class represented by s. Then we have

⟨zχ , [s]⟩ =
r∑

i=1

ci sIi .

8.3. Values of the zeta functions. Recall that F is a number field of degree g, O is an order in F , and
a⊂ F is a proper fractional O-ideal.

Definition 8.3.1. (1) For a continuous map

χ : F×R = (F ⊗Q R)×→ Z,

let

ζO(χ, a
−1, s) :=

∑
x∈(a−{0})/O×+

χ(x)
|NF/Q(x)|s

, Re(s) > 1

denote the partial zeta function associated to χ and a proper fractional O-ideal a−1. Here, note
that χ is constant on each connected component of F×R , and thus invariant under the action of O×+ .

(2) Let

ε : F×R → {±1}, x 7→
NF/Q(x)
|NF/Q(x)|

denote the sign character.

Now, let k≥1, and let χ ∈
⊕

µ∈{±1}r1 Z. Note that χ can be regarded as a continuous map χ : F×R →Z via

χ : F×R → F×R /F×R,+ ≃ {±1}r1 χ
−→ Z.



Shintani–Barnes cocycles and values of the zeta functions of algebraic number fields 1205

So far, we have defined the following series of maps between cohomology groups:

H g−1(Y ◦,SLg(Z),F
4
kg)

evQ

��

∋ [9kg]_

��

H g−1(Y ◦, 0Q,Fkg)

N k
w∗

��

H g−1(Y ◦, 0Q,F0)

∫
Q

��

H g−1
Q (Y ◦, 0Q,C)

⟨zχ , ⟩

��

C ∋
〈
zχ ,

∫
Q N k

w∗evQ([9kg])
〉

(8-11)

See Corollary 4.3.4, Example 4.3.6, (7-5), and Remark 8.2.3 for the definitions of these maps.

Theorem 8.3.2. We have〈
zχ ,

∫
Q

N k
w∗evQ([9kg])

〉
=
(k!)g det(w(1), . . . , w(g))

(g+ gk− 1)!
ζO(ε

k+1χ, a−1, k+ 1),

where εk+1χ(x)= ε(x)k+1χ(x).

Proof. By Hurwitz’ formula (Example 7.2.4), we see that the class∫
Q

N k
w∗evQ([9kg]) ∈ H g−1

Q (Y ◦, 0Q,C)

is represented by( ∫
Q,I

Nw∗(y)kψ
Q
kg,I (y)ω(y)

)
I∈(XQ)

g
Q

=

(
(k!)g det(w(1), . . . , w(g))

(g+ gk− 1)!
sgn(I )

∑
x∈C Q

I ∩Zg−{0}

1
Nw(x)k+1

)
I∈(XQ)

g
Q

.

On the other hand, by Proposition 8.2.1(1), we can take a representative

8=

r∑
i=1

ciσIi ∈ Kg−1 = Z[σI | I ∈ (XQ)
g
Q] ⊂ Sg−1
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of zχ ∈ Hg−1(Tw/0+Q ,Z). Then, by using Remark 8.2.3 and Proposition 8.2.1(2), we find〈
zχ ,

∫
Q

N k
w∗evQ([9kg])

〉
=
(k!)g det(w(1), . . . ,w(g))

(g+ gk− 1)!

r∑
i=1

ci sgn(Ii )
∑

x∈C Q
Ii
∩Zg−{0}

1
Nw(x)k+1

=
(k!)g det(w(1), . . . ,w(g))

(g+ gk− 1)!

∑
x∈Zg−{0}

r∑
i=1

ci sgn(Ii )1C Q
Ii
(x)

1
Nw(x)k+1

=
(k!)g det(w(1), . . . ,w(g))

(g+ gk− 1)!

∑
x∈(Zg−{0})/0+Q

∑
γ∈0+Q

r∑
i=1

ci sgn(Ii )1C Q
Ii
(γ x)

1
Nw(x)k+1

=
(k!)g det(w(1), . . . ,w(g))

(g+ gk− 1)!

∑
x∈(Zg−{0})/0+Q

χ(x)
Nw(x)k+1

=
(k!)g det(w(1), . . . ,w(g))

(g+ gk− 1)!

∑
x∈(a−{0})/O×+

ε(x)k+1χ(x)
|NF/Q(x)|k+1 . □

Remark 8.3.3. It is easy to see that

det(w(1), . . . , w(g))2 = DONa2,

where DO is the discriminant of the order O. Moreover, we also know that sgn(DO)= (−1)r2 , where r2

is the number of complex places of F . Therefore, by permuting the order of the embeddings τ1, . . . , τg if
necessary, we have

det(w(1), . . . , w(g))= ir2
√
|DO|Na,

where i ∈ C is the imaginary unit. Hence (under a suitable ordering of τ1, . . . , τg), Theorem 8.3.2 can be
also written as 〈

zχ ,

∫
Q

N k
w∗evQ([9kg])

〉
= ir2

√
|DO|Na(k!)g

(g+ gk− 1)!
ζO(ε

k+1χ, a−1, k+ 1).
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