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Let G be a finite group, let p be a prime and let Prp(G) be the probability that two random p-elements
of G commute. In this paper we prove that Prp(G) > (p2

+ p − 1)/p3 if and only if G has a normal
and abelian Sylow p-subgroup, which generalizes previous results on the widely studied commuting
probability of a finite group. This bound is best possible in the sense that for each prime p there are
groups with Prp(G) = (p2

+ p − 1)/p3 and we classify all such groups. Our proof is based on bounding
the proportion of p-elements in G that commute with a fixed p-element in G \ Op(G), which in turn
relies on recent work of the first two authors on fixed point ratios for finite primitive permutation groups.

1. Introduction

The commuting probability of a finite group G is the probability that two random elements of G commute,
namely

Pr(G) =
|{(x, y) ∈ G × G : xy = yx}|

|G|2
.

A celebrated, but elementary, result of Gustafson [1973] asserts that Pr(G) > 5
8 if and only if G is abelian,

which is best possible since Pr(D8) =
5
8 . This concept has been widely studied in recent years and some

natural analogues for infinite groups have also been investigated; see, for instance, [Antolín et al. 2017;
Eberhard 2015; Guralnick and Robinson 2006; Lescot 1995; Neumann 1989; Tointon 2020]. In addition,
the commuting variety of elements in Lie algebras and algebraic groups has been a subject of great interest
for several decades. This was originally introduced by Motzkin and Taussky [1955] and further studied
by Richardson [1979], Ginzburg [2000], Premet [2003] and others.

In this paper, we pursue a local version of Gustafson’s theorem, which turns out to be significantly
more challenging.
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Definition. Let G be a finite group, let p be a prime and let G p be the set of p-elements in G (that is,
the set of elements in G of order pm for some m ⩾ 0). Then

Prp(G) =
|{(x, y) ∈ G p × G p : xy = yx}|

|G p|
2

is the probability that two random p-elements of G commute. Note that Prp(G) = 1 if and only if G has
a normal and abelian Sylow p-subgroup.

Local versions of the commuting probability have also been studied in the context of algebraic groups
and Lie algebras. In particular, Premet [2003] identified the irreducible components of the commuting
variety of nilpotent elements of a reductive Lie algebra defined over an algebraically closed field of good
characteristic (and similarly, as an immediate consequence, for unipotent elements in the corresponding
reductive algebraic groups). The set of commuting r-tuples of elements of order p (or commuting
nilpotent elements of nilpotence degree p in a p-restricted Lie algebra) has also been studied for its
connection to problems in representation theory; see [Carlson et al. 2016]. For finite groups, a generating
function is presented in [Fulman and Guralnick 2018] for counting the number of commuting pairs of
p-elements in some finite classical groups in good characteristic.

In this paper we consider arbitrary finite groups. Given a prime number p, set

f (p) =
p2

+ p − 1
p3 .

Our first main result is the following.

Theorem A. Let G be a finite group and let p be a prime. Then Prp(G) > f (p) if and only if G has a
normal and abelian Sylow p-subgroup.

In particular, if G is a nonabelian finite simple group and |G| is divisible by p, then Prp(G) ⩽ f (p).
We can say more in this situation.

Theorem B. Let G be a nonabelian finite simple group and let p be a prime divisor of |G|. Then
Prp(G) = f (p) if and only if p ⩾ 5 and G is isomorphic to PSL2(p).

In fact, we can classify all the finite groups G with G = O p′

(G) and Prp(G) = f (p), where O p′

(G)

is the subgroup of G generated by G p. See Theorem 5.2 for a precise statement. In particular, we
observe that there is no nonsolvable group with Pr2(G) =

5
8 and no nonsolvable group G = O3′

(G) with
Pr3(G) =

11
27 . In addition, if G is given as in Theorem B with p a fixed prime, then Prp(G) tends to 0 as

|G| tends to infinity; we refer the reader to the end of Section 5 for further details.
Our next result, which may be of independent interest, is a key ingredient in the proof of Theorem A.

Recall that Op(G) denotes the largest normal p-subgroup of G.

Theorem C. Let G be a finite group and let p be a prime. Then
|CG(x)p|

|G p|
⩽

1
p

for every p-element x ∈ G \ Op(G).
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This can be extended as follows.

Theorem D. Let G be a finite group and let p be a prime. If x ∈ G is a p-element and

|CG(x)p|

|G p|
>

1
p
,

then x ∈ Z(Op(G)).

Remark 1. It is easy to see that the converse of Theorem D is false. For example, if G = D8(2m+1),
then |CG(x)2|/|G2| = 1/(2m + 2) if x ∈ Z(O2(G)) has order 4. On the other hand, in Examples 3.16
(p odd) and 3.17 (p = 2) we present a family of examples (G, p, x), where x ∈ Z(Op(G)) is nontrivial
and |CG(x)p|/|G p| tends to 1 as p tends to infinity.

Remark 2. Let G be a finite group with Op(G) = 1. Then the conclusions in Theorems A and C are still
valid if we work with elements of order p instead of all p-elements (with essentially no change in the
proofs). And similarly for Theorem 5.2, which includes Theorem B as a special case.

The proofs of our main results depend upon the classification of finite simple groups. However, it
is worth noting that our proof of Theorem C does not require the classification if we assume that x
normalizes, but does not centralize, some normal p′-subgroup of G. This implies that the classification is
not required for Theorem A under the assumption that the generalized Fitting subgroup of G is a p′-group
(and so in particular, if G is p-solvable). In order to handle the general case, we use a recent result of
the first two authors [Burness and Guralnick 2022] on fixed point ratios of elements of prime order in
primitive permutation groups (see Theorem 3.4).

Remark 3. Let us observe that
|CG(x)p|

|G p|
=

9(x)

9(1)
,

where 9 is the permutation character for the action of G on its p-elements by conjugation. In the language
of permutation groups, this number coincides with the fixed point ratio of x with respect to this action,
which explains why the main theorem of [Burness and Guralnick 2022] will be an important ingredient in
the proof of Theorem C.

2. Some preliminary results

For the remainder of this paper, all groups are finite and p is a prime number. We will frequently use the
elementary fact that if G is a group and H, K ⩽ G are subgroups, then

|H : H ∩ K | ⩽ |G : K | (1)

with equality if and only if G = H K .
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Lemma 2.1. Let G be a finite group and let N be a normal p-subgroup.

(i) If x ∈ G is a p-element, then

|CG(x)p|/|G p| ⩽ |CG/N (N x)p|/|(G/N )p|.

(ii) Prp(G) ⩽ Prp(G/N ).

Proof. Both parts quickly follow from the fact that |G p| = |(G/N )p||N |. □

Remark 2.2. In the previous lemma, the assumption that N is a p-subgroup is essential. For example,
there is a semidirect product G =C35:D12 with a normal subgroup N of order 3 such that G/N = D10×D14

and we compute
Pr2(G) =

211
1296 > 11

72 = Pr2(G/N ).

(Here G is SmallGroup(420, 30) in the GAP Small Groups library [GAP 2020].) One can check that
this is the smallest finite group with Prp(G) > Prp(G/N ) for some prime p.

There is a special case where quotients by normal subgroups of order prime to p do not change the
proportions.

Lemma 2.3. Let G be a finite group and let N be a central p′-subgroup.

(i) If x ∈ G is a p-element, then

|CG(x)p|/|G p| = |CG/N (N x)p|/|(G/N )p|.

(ii) If N is central in G, then Prp(G) = Prp(G/N ).

Proof. Let x ∈ G be a p-element and suppose that [x, y] ∈ N for some y ∈ G. Since [x, N ] = 1 it follows
that [x p, y] = [x, y]

p, so [x, y] = 1. In addition, if y is a p-element, then y is the only p-element in
the coset N y and so (i) follows. Now (ii) follows from (i), noting that G and G/N both have the same
number of p-elements. □

Lemma 2.4. Let P be a p-group acting on a p′-group K and let L be a P-invariant subgroup of K . If

|CK (P) : CL(P)|

|K : L|
< 1, (2)

then
|CK (P) : CL(P)|

|K : L|
⩽

1
p + 1

.

Proof. Let C = CK (P) and note that K ̸= C L in view of the inequality in (2). For any prime q , let Lq be
a P-invariant Sylow q-subgroup of L , which is contained in a P-invariant Sylow q-subgroup Kq of K ;
see [Isaacs 2008, Corollary 3.25]. Thus Kq ∩ L = Lq . By coprime action, Cq := C ∩ Kq and C ∩ Lq are
Sylow q-subgroups of C and C ∩ L , respectively; see [Isaacs 2008, Lemma 3.32], for example. In view
of (2) we have ∏

q

|Cq : Cq ∩ L|

|Kq : Lq |
=

|C : C ∩ L|

|K : L|
< 1
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and we note that
|Cq : Cq ∩ L|

|Kq : Lq |
=

|Cq : Cq ∩ Lq |

|Kq : Lq |
⩽ 1

for every prime q (see (1)). Therefore,

|C : C ∩ L|

|K : L|
⩽

|Cq : Cq ∩ L|

|Kq : Lq |

for every q , so the bound in (2) implies that

|Cq : Cq ∩ L|

|Kq : Lq |
< 1

for some q . As a consequence, we are free to assume that K is a q-group.
Arguing by induction on |K : L|, we may assume that L is a maximal P-invariant subgroup of K .

Then L is normal in K and K/L does not have any proper nontrivial P-invariant subgroups, whence (2)
implies that C = CK (P) = CL(P). If |CK (y) : CL(y)| = |K : L| for every y ∈ P , then P acts trivially on
K/L and thus K = C L , which is incompatible with (2). Therefore, we may assume that P = ⟨y⟩ is cyclic.
Then the action of P on K/L is a Frobenius action, which implies that if x ∈ K \ L , then {L , Lx z

: z ∈ P}

is a set of distinct cosets of L in K . Therefore |K : L| ⩾ |P| + 1 ⩾ p + 1, as required. □

Next we record the following well known result.

Lemma 2.5. Let G be a finite group, let x, y ∈ G and let K ⩽ G be a subgroup normalized by x and y. If
K x = K y and |K | is coprime with o(x)o(y), then x and y are K -conjugate.

Proof. We may assume G = K ⟨x, y⟩ and thus K is normal in G. Since K x = K y, it follows that
K ⟨x⟩ = K ⟨y⟩ = G. Now, K ∩⟨x⟩ = K ∩⟨y⟩ = 1 and we also note that o(x) = o(y) and ⟨x⟩, ⟨y⟩ are Hall
π-subgroups of G, where π is the set of primes dividing o(x). By the Schur–Zassenhaus theorem, we
have ⟨x⟩

k
= ⟨y⟩ for some k ∈ K and thus xk

= yn for some integer n. Now, K y = K x = K xk
= K yn

and yn y−1
∈ K ∩ ⟨y⟩ = 1, so yn

= y and the result follows. □

We shall need one more well known fact about coprime actions, which follows from [Isaacs 2008,
Theorem 3.27].

Lemma 2.6. Let G and A be finite groups with coprime orders and suppose that A acts on G by
automorphisms. Set C = CG(A). Then G = C[A, G] and [A, [A, G]] = [A, G].

3. Proofs of Theorems C and D

In this section we prove Theorems C and D. We begin by handling a special case of Theorem C, which
relies on the following proposition. In part (i), we write (K y)p for the set of p-elements in the coset K y,
where p is a fixed prime throughout this section.
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Proposition 3.1. Let G be a finite group and let K be a normal p′-subgroup of G. Let x ∈ G be an
element of order p such that K = [x, K ] and let y ∈ G be a p-element with [x, y] = 1.

(i) If [y, K ] ̸= 1, then the proportion of elements in yK
= (K y)p which commute with x is at most

1/(p + 1).

(ii) If L = ⟨K , x⟩, then the proportion of p-elements in the coset Ly which commute with x is at most
1/p.

Proof. First consider (i). Since K is a p′-group, Lemma 2.5 implies that yK is precisely the set of p-
elements in the coset K y. Next observe that yK

∩ CG(x) = (yK )p ∩ CG(x) = (Ay)p, where A = CK (x),
and another application of Lemma 2.5 gives (Ay)p = y A. Therefore, the proportion of elements in yK

which commute with x is equal to

|yK
∩ CG(x)|

|yK |
=

|CK (x) : CK (x) ∩ CK (y)|

|K : CK (y)|
. (3)

If every element in yK commutes with x , then [y, K ] ⩽ CK (x). But then the three subgroups lemma
implies that y centralizes [x, K ]= K , which is incompatible with the condition [y, K ] ̸=1 in (i). Therefore,
the proportion in (3) is less than 1 and by applying Lemma 2.4 (with L = CK (y) and P = ⟨x⟩) we deduce
that it is at most 1/(p + 1) as required.

We now prove (ii). For 0 ⩽ i < p, let ai be the number of p-elements in K x i y commuting with x
and let bi = |(K x i y)p|, so α =

∑
i ai/

∑
i bi is the proportion of p-elements in Ly which commute with

x . If [x i y, K ] ̸= 1 for all i , then (i) implies that ai/bi ⩽ 1/(p + 1) and we immediately deduce that
α ⩽ 1/(p + 1). Therefore, we may assume [y, K ] = 1 (otherwise replace y by x i y for some i). For
1 ⩽ i < p it follows that [x i y, K ] ̸= 1 (since [x, K ] = K ) and thus ai/bi ⩽ 1/(p + 1). Since |yK

| = 1
we have a0 = b0 = 1 and we deduce that

α ⩽
1

p + 1
+

p
(p + 1)m

,

where m = |(Ly)p|. Finally, we note that bi ⩾ (p + 1)ai ⩾ p + 1 for 1 ⩽ i < p (since x i y ∈ K x i y is a
p-element commuting with x), so m ⩾ 1 + (p − 1)(p + 1) = p2 and we conclude that α ⩽ 1/p. □

We are now ready to prove a special case of Theorem C.

Theorem 3.2. Let G be a finite group and let x ∈ G be an element of order p. If there exists a normal
p′-subgroup K of G with [x, K ] ̸= 1, then

|CG(x)p|

|G p|
⩽

1
p
. (4)

Proof. By Lemma 2.1, we may assume that Op(G) = 1. We can also assume that G = K CG(x) and
we may replace K by any proper normal subgroup of G contained in K that does not centralize x . In
particular, by Lemma 2.6, we can replace K by [x, K ] and so we may assume that K = [x, K ].
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Set L = ⟨K , x⟩ and let y ∈ G be a p-element. It suffices to show that the proportion of p-elements in
the coset Ly which commute with x is at most 1/p. Clearly, if no p-element in Ly commutes with x ,
then this proportion is 0, so we may assume [x, y] = 1. Now apply Proposition 3.1(ii). □

Remark 3.3. Let F∗(G) be the generalized Fitting subgroup of G. If F∗(G) is a p′-group, then Op(G)=1
and the statement of Theorem 3.2 holds for every nontrivial p-element x because we can replace x by an
element of order p in ⟨x⟩. Of course, if the upper bound in (4) holds for all elements in G of order p
(modulo Op(G)), then the same bound holds for every nontrivial p-element in G.

Recall that if G is a permutation group on a finite set �, then the fixed point ratio of an element z ∈ G,
denoted fpr(z, �), is the proportion of points in � fixed by z. It is easy to see that if G is transitive and
H is a point stabilizer, then

fpr(z, �) =
|zG

∩ H |

|zG |
.

The following is a simplified version of the main theorem of [Burness and Guralnick 2022].

Theorem 3.4. Let G ⩽ Sym(�) be a finite primitive permutation group with point stabilizer H. If z ∈ G
has prime order p, then either

fpr(z, �) ⩽
1

p + 1
,

or one of the following holds (up to permutation isomorphism):

(i) G is almost simple and either

(a) G = Sn or An acting on k-element subsets of {1, . . . , n} with 1 ⩽ k < n/2; or
(b) (G, H, z, fpr(z, �)) is known.

(ii) G is an affine group, F∗(G) = F(G) = (C p)
d , z ∈ GLd(p) is a transvection and fpr(z, �) = 1/p.

(iii) G ⩽ A ≀ St is a product type group with its product action on � = 0t and z ∈ At
∩ G, where

A ⩽ Sym(0) is one of the almost simple primitive groups in part (i).

We will also need the following corollary to Theorem 3.4 in the almost simple setting; see [Burness
and Guralnick 2022, Corollary 3]. Recall that the socle of an almost simple group G is its unique minimal
normal subgroup, which coincides with F∗(G).

Corollary 3.5. Let G ⩽ Sym(�) be a finite almost simple primitive permutation group with socle J . If
z ∈ G has prime order p, then either

fpr(z, �) ⩽
1
p
,

or one of the following holds (up to permutation isomorphism):

(i) J = An and � is the set of k-element subsets of {1, . . . , n} for some 1 ⩽ k < n/2.

(ii) (J, p) = (PSL2(q), q − 1), (Sp6(2), 3), (PSU4(2), 2), (Spn(2), 2) or (�ϵ
n(2), 2).
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We will now use Theorem 3.4 and Corollary 3.5 to handle two more special cases of Theorem C, which
will then be applied to obtain the result in full generality. In the following proposition, the components of
K are the quasisimple groups referred to in the statement.

Proposition 3.6. Let K be a central product of quasisimple groups with Op(K ) = 1 and let x, y ∈ Aut(K )

be nontrivial p-elements such that x does not normalize any component of K . Assume that the simple
quotients of the components of K are isomorphic. Then the proportion of elements in yK which commute
with x is at most 1/(p + 1).

Proof. We may assume that [x, y] = 1 and x has order p. Let K1, . . . , Kt be the components of K
and set L i = Ki/Z(Ki ) ∼= L . Note that t is a multiple of p since x acts fixed point freely on the set of
components. We can now view x and y as commuting automorphisms of the direct product J := L t ,
with o(x) = p and o(y) = pm for some m ⩾ 1. Set G = ⟨J, x, y⟩ ⩽ Aut(J ) and note that J is the unique
minimal normal subgroup of G. Now

|y J
∩ CG(x)|

|y J |
=

|x J
∩ CG(y)|

|x J |

and it suffices to show that
|x J

∩ CG(y)|

|x J |
⩽

1
p + 1

. (5)

Let M be a maximal subgroup of G containing CG(y) and observe that M does not contain J since
G = J CG(y). This allows us to view G acting primitively on the set of cosets � = G/M and we note that

|x J
∩ CG(y)|

|x J |
⩽

|xG
∩ M |

|xG |
= fpr(x, �).

Then by applying Theorem 3.4, noting that x ̸∈ Aut(L)t
∩ G by hypothesis, it follows that fpr(x, �) ⩽

1/(p + 1) and thus (5) holds. □

Next we seek a version of Proposition 3.6 in the special case where K is quasisimple (see Proposi-
tions 3.10 and 3.12). In order to do this, we will need the following elementary result.

Lemma 3.7. Let G be a finite group, let x ∈ G \ Op(G) be a p-element and set

D = {y ∈ G : ⟨y⟩ is G-conjugate to ⟨x⟩}.

Then |D| ⩾ p2
− 1.

Proof. Without loss of generality, we may assume that Op(G) = 1 and x has order p. Consider the natural
action of G on the set C of conjugates of ⟨x⟩ and note that |D| = (p − 1)|C |, so it suffices to show that
|C |⩾ p +1. Note that x fixes ⟨x⟩ ∈ C , so it has at least one fixed point on C . If x acts trivially on C , then
x centralizes each of its conjugates and thus, by Baer’s theorem, x ∈ Op(G), which is a contradiction.
Therefore, x acts nontrivially on C and we conclude that |C | ⩾ p + 1. □

Remark 3.8. Let G, D and p be given as in Lemma 3.7. Then |D| = p2
− 1 if and only if |G p| = p2

and the groups with this property are determined in Lemma 5.1.
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We also need the following result, which is a corollary of Theorem 3.4.

Lemma 3.9. Let G be an almost simple group with socle J and assume J is not isomorphic to an
alternating group. Let p be a prime divisor of |J | and suppose x ∈ G has order p. Then there exists an
element y ∈ J of order p such that

|yG
∩ CG(x)|

|yG |
⩽

1
p + 1

.

Proof. We may assume G = ⟨J, x⟩ and we may embed CG(x) in a core-free maximal subgroup H of G,
so

|yG
∩ CG(x)|

|yG |
⩽

|yG
∩ H |

|yG |
= fpr(y, G/H)

for every element y ∈ J of order p. Clearly, the desired conclusion holds if there exists such an element
with fpr(y, G/H)⩽ 1/(p+1), so we may assume otherwise, in which case (G, H, y) is one of the special
cases arising in part (i)(b) of Theorem 3.4. More precisely, [Burness and Guralnick 2022, Theorem 1]
implies that either G is a classical group in a subspace action (and the special cases that arise are recorded
in [loc. cit., Table 6]), or G = M22 : 2, H = PSL3(4).22 and p = 2. In the latter case one can check that
fpr(y, G/H) =

3
11 if y ∈ J is an involution, so we may assume G is a classical group in a subspace action.

We now inspect the cases in [loc. cit., Table 6].
If J is a unitary, symplectic or orthogonal group, then it is easy to check that in every case (G, H)

there exists an element y ∈ J of order p such that fpr(y, G/H)⩽ 1/(p+1). For example, if J = PSpn(q)

with n ⩾ 4, H = P1 is the stabilizer of a 1-space and p = q , then we can take y = (J 2
2 , J n−4

1 ), where Ji

denotes a standard unipotent Jordan block of size i .
To complete the proof, let us assume J = PSLn(q) is a linear group and note that H = P1 is the

stabilizer of a 1-space. If n ⩾ 4 then once again it is straightforward to see that there is an element y ∈ J
of order p with fpr(y, G/H) ⩽ 1/(p + 1), so we may assume n ∈ {2, 3}. Suppose n = 3. If p = q ⩾ 3
then we can choose y = (J3), while for q = 2 we must take y = (J2, J1) and one can use GAP [2020] to
verify the desired bound in the statement of the lemma. Similarly, if p = q − 1 ⩾ 3 then we can take y
to be the image (modulo scalars) of a diagonal matrix (ω, ω−1, I1), where ω ∈ F×

q has order p. And if
(q, p) = (3, 2) then y = (−I2, I1) is the only option and the result can be checked using GAP.

Finally, suppose J = PSL2(q), so q ⩾ 7 since PSL2(4) and PSL2(5) are both isomorphic to A5. If
p =q−1 then |yG

|=q(q+1) and |CG(x)|<q , so the desired bound holds. Now assume q = p. Here both
x and y are regular unipotent elements and we compute |yG

| = (p2
−1)/2 and |yG

∩ CG(x)| = (p −1)/2,
which implies that

|yG
∩ CG(x)|

|yG |
=

1
p + 1

.

The result follows. □

Proposition 3.10. Let K be a quasisimple group such that Op(K ) = 1 and K/Z(K ) is not isomorphic to
an alternating group. Let x ∈ Aut(K ) be a nontrivial p-element.
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(i) There is a normal subset D of nontrivial p-elements in K such that |D| ⩾ p2
− 1 and the proportion

of elements in D which commute with x is at most 1/(p + 1).

(ii) Let y ∈ Aut(K ) be a nontrivial p-element.

(a) The proportion of elements in yK which commute with x is at most 1/p, unless K = �+
n (2),

n ⩾ 8, p = 2 and both x and y are transvections, in which case the proportion is 1
2 +

1
2(2n/2−1)

.
(b) The proportion of elements in (K y)p which commute with x is at most 1/p.

Proof. We may assume x has order p. Set J = K/Z(K ) and view x as an automorphism of J of order p.
Set G = ⟨J, x⟩. By Lemma 3.9, there exists an element y ∈ J of order p such that

|y J
∩ CG(x)|

|y J |
⩽

|yG
∩ CG(x)|

|yG |
⩽

1
p + 1

. (6)

If we write y for the corresponding element in K , then by applying Lemma 3.7 we deduce that the normal
subset

D = {z ∈ K : ⟨z⟩ is K-conjugate to ⟨y⟩} =

t⋃
i=1

zK
i

contains at least p2
− 1 elements. Moreover, (6) implies that the proportion of elements in zK

i which
commute with x is at most 1/(p + 1) for 1 ⩽ i ⩽ t and thus part (i) follows.

Now let us turn to part (ii). We may assume [x, y] = 1 and we may view y as an automorphism
of J with o(y) = pa for some a ⩾ 1. Set G = ⟨J, x, y⟩ ⩽ Aut(J ) and embed CG(y) in a core-free
maximal subgroup H of G, which allows us to view G as an almost simple primitive permutation group
on � = G/H .

For now, let us exclude the special cases (J, p) in Corollary 3.5(ii). Then Corollary 3.5 implies that

|y J
∩ CG(x)|

|y J |
=

|x J
∩ CG(y)|

|x J |
⩽

|xG
∩ H |

|xG |
= fpr(x, G/H) ⩽ 1

p
(7)

and thus the proportion of elements in yK which commute with x is at most 1/p.
Next consider the coset K y. Write (K y)p = yK

1 ∪· · ·∪ yK
r as a disjoint union of K -classes. If K y ̸= K

then each yi is a nontrivial p-element and so the proportion of elements in yK
i commuting with x is at

most 1/p by (7) and the desired result follows. A very similar argument applies when K y = K , but here
we have to account for the identity element. To do this, write K p = {1}∪ D∪zK

1 ∪· · ·∪zK
s , where D is the

normal subset in (i) and each zi is nontrivial. Set a0 = |D ∩ CK (x)|+1, b0 = |D|+1, ai = |zK
i ∩ CK (x)|

and bi = |zK
i | for i ⩾ 1. As above, we have ai/bi ⩽ 1/p for i ⩾ 1, so it suffices to show that a0/b0 ⩽ 1/p.

If we write D = yK
1 ∪ · · · ∪ yK

t , then |yK
i ∩ CK (x)|/|yK

i | ⩽ 1/(p + 1) for each i and thus

a0

b0
⩽

1
p + 1

+
p

m(p + 1)
,

where m = |D| + 1. Since m ⩾ p2 we deduce that a0/b0 ⩽ 1/p and the result follows.
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To complete the proof of (ii), it remains to consider the special cases (J, p) in Corollary 3.5(ii). In
each of these cases, G is an almost simple classical group in a subspace action with point stabilizer H
and there exists an element z ∈ G of order p with fpr(z, G/H) > 1/p. The possibilities for (G, H, z) are
recorded in [Burness and Guralnick 2022, Table 1]. By inspection, we observe that either

(a) CG(z) is contained in a maximal subgroup M of G such that fpr(z′, G/M) ⩽ 1/p for all z′
∈ G of

order p; or

(b) G = O+
n (2), n ⩾ 8, p = 2, H is the stabilizer of a nonsingular 1-space and z = (J2, J n−2

1 ).

So excluding the special case in (b), the previous argument goes through. In particular, the previous
argument applies if y ∈ K (note that in case (b), z is contained in O+

n (2) \ J ).
We have now reduced to the case where G = O+

n (2), p = 2 and both x and y are transvections. Here
y J

= yG and CG(x) = H is the stabilizer of a nonsingular 1-space, so [Burness and Guralnick 2022,
Theorem 1] gives

|y J
∩ CG(x)|

|y J |
= fpr(y, G/H) =

1
2

+
1

2(2n/2 − 1)

for the proportion of elements in yK commuting with x . So this is an exception to the main bound in
(ii)(a), but we still claim that the proportion of 2-elements in K y commuting with x is at most 1

2 .
To see this, write (K y)2 = yK

∪ yK
1 ∪ · · · ∪ yK

r as a disjoint union. By [Burness and Guralnick 2022,
Theorem 1], the proportion of elements in yK

i which commute with x is at most 1
3 for each 1 ⩽ i ⩽ r . As

a consequence, we deduce that the proportion of 2-elements in K y commuting with x is at most 1
2 so

long as

3.2n/2−1
=

3|yK
|

2n/2 − 1
⩽

r∑
i=1

|yK
i |.

But this inequality clearly holds since |zG
| ⩾ 2n/2−1(2n/2

− 1) for every nontrivial 2-element z ∈ G. □

Remark 3.11. Let us observe that the upper bound in Proposition 3.10(ii)(b) is best possible. For example,
let K = PSL2(p) and let x and y be inner automorphisms of K of order p. Then |(K y)p| = p2 and
|CK (x)| = p, so the relevant proportion is exactly 1/p.

We need a different result to handle alternating and symmetric groups.

Proposition 3.12. Let L = Sn and J = An , where n ⩾ 5. Let x ∈ L be an element of prime order p and
let y ∈ L be a transposition.

(i) If p is odd, then the proportion of p-elements in J which commute with x is at most 1/p.

(ii) If p = 2 and x is not a transposition, then the proportion of 2-elements in J or J y which commute
with x is at most 1

2 .

(iii) If p = 2 and x is a transposition, then the proportion of 2-elements in L which commute with x is at
most 1

2 .
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Proof. First assume p is odd and |supp(x)| = m ⩾ 5 with respect to the natural action of L on {1, . . . , n}.
Note that p divides m and it suffices to work inside H := Am × An−m since H contains CJ (x)p. In
particular, we may assume that m = n. The result is clear if m = p, so assume m > p. Here CJ (x) is
contained in an imprimitive subgroup K = Ap ≀ Am/p and so if we write Jp = x J

0 ∪ · · · ∪ x J
t with x0 = 1,

then
|CJ (x)p|

|Jp|
⩽

|K p|

|Jp|
=

1 +
∑t

i=1 ai

1 +
∑t

i=1 bi
,

where ai = |x J
i ∩ K | and bi = |x J

i |. Now Theorem 3.4 implies that ai/bi ⩽ 1/(p + 1) for all i and we
deduce that

|CJ (x)p|

|Jp|
⩽

1
p + 1

+
p

(p + 1)c
,

where c = |Jp|. Since c ⩾ p2 (for example, this follows from Lemma 3.7) we conclude that this proportion
is at most 1/p, as required.

So to complete the proof of (i), it remains to handle the special case where x = (1, 2, 3) is a 3-cycle.
Set d = |(Sn−3)3| and note that |CJ (x)3| = 3d. If a = (1, 2, i) ∈ J with i ⩾ 4, then for each 3-element
b ∈ J fixing 1, 2 and i we see that a±b ∈ J \ CJ (x) is a 3-element. Therefore, |J3| ⩾ 2d(n − 3)+ 3d and
thus

|CJ (x)3|

|J3|
⩽

3
2n − 3

⩽
1
3

for n ⩾ 6. The case n = 5 can be handled directly.
For the remainder, let us assume p = 2 and write |supp(x)| = 2m. For m ⩾ 4 we can essentially repeat

the argument in (i). Write CL(x) = (S2 ≀ Sm) × Sn−2m and let a1 and a2 be the number of even and odd
2-elements in S2 ≀ Sm , respectively. Similarly, let b1 = |(An−2m)2| and b2 = |(Sn−2m \ An−2m)2|. Then

|CJ (x)2| = a1b1 + a2b2, |CL(x)2 ∩ J y| = a1b2 + a2b1.

We claim that
a1 ⩽

1
2 |(A2m)2|, a2 ⩽

1
2 |(S2m \ A2m)2|. (8)

To see this, set K = A2m and H = (S2 ≀ Sm) ∩ K , so a1 = |H2|. By [Burness and Guralnick 2022,
Theorem 1], we observe that |zK

∩ H |/|zK
| ⩽ 1

3 for every nontrivial 2-element z ∈ K and by arguing
as in case (i) we deduce that |H2|/|K2| ⩽

1
2 . This justifies the first inequality in (8) and a very similar

argument establishes the second. As an immediate consequence, we deduce that

|CJ (x)2| ⩽
1
2 |(S2m × Sn−2m)2 ∩ J |, |CL(x)2 ∩ J y| ⩽ 1

2 |(S2m × Sn−2m)2 ∩ J y|

and thus the proportion of 2-elements in J and J y commuting with x is at most 1
2 . In the same way, if

m = 3 then we can reduce to the case n = 6 and here we can check the result directly.
Next assume m = 2, say x = (1, 2)(3, 4). Set d = |(Sn−4)2| and note that

|CJ (x)2| = |CL(x)2 ∩ J y| = 4d.
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Fix i, j with 4 < i < j . Let Z(i, j) (respectively, W (i, j)) be the set of elements in L of the form uv,
where u is a 4-cycle (respectively, a double transposition different from (1, 2)(i, j)) on {1, 2, i, j} and v

is a 2-element fixing each of these 4 points. Then |Z(i, j)| = 6d and |W (i, j)| = 2d , so there are at least
2d distinct 2-elements of each parity in Z(i, j)∪ W (i, j), none of which commute with x . Since there
are (n − 4)(n − 5)/2 choices for {i, j}, and the corresponding sets of 2-elements are pairwise disjoint,
this implies that the proportion of 2-elements in each coset commuting with x is at most

4
4 + (n − 4)(n − 5)

⩽
1
2

for n ⩾ 7. The cases n = 5, 6 can be handled directly.
Finally, let us assume x = (1, 2) is a transposition. Set d = |(Sn−2)2| and note that |CL(x)2| = 2d . For

each j ∈ {3, . . . , n}, let Z j denote the set of 2-elements in L which interchange 1 and j . Note that the Z j

are pairwise disjoint sets of size d and no element in Z j commutes with x . Therefore, |L2| ⩾ nd and we
conclude that the proportion of 2-elements in L centralizing x is at most 2/n. □

Remark 3.13. One can show that the conclusion in part (ii) of Proposition 3.12 also holds when x is a
transposition. But the proof is more involved and we do not require the stronger result.

Remark 3.14. In the proof of Theorem C, we will need to extend Proposition 3.12 to central extensions
K of An with Op(K ) = 1. This follows by Lemma 2.3 unless an element of order p does not centralize
Z(K ). This only occurs when p = 2 and K is a 3-fold cover of An . One can check the result directly for
these cases.

Finally, we are now ready to complete the proof of Theorem C.

Proof of Theorem C. Let G be a finite group and let x ∈ G \ Op(G) be a p-element. Let F(G) and F∗(G)

denote the Fitting and generalized Fitting subgroups of G, respectively, and note that x ̸∈ F(G). By
Lemma 2.1, we may assume that Op(G) = 1. Without loss of generality, we may assume o(x) = p.

If x does not centralize Op′(G), then the result follows by Theorem 3.2. Therefore, we may assume
x ∈ CG(F(G)) and thus G is nonsolvable. Since x is not in Op(G), x acts faithfully on F∗(G) and
therefore it must act faithfully on some subgroup K , which is a central product of quasisimple components
(each with order divisible by p). We may assume that K is a minimal such subgroup, which implies that
G acts transitively on the components of K . Note that Op(K ) = 1.

We can further assume that G = K CG(x) since both G and K CG(x) contain the same number of
p-elements commuting with x . Therefore, CG(x) acts transitively on the components of K , so either

(a) every orbit of x on the components of K has size p; or

(b) x normalizes each component of K , inducing the same automorphism (up to conjugacy) on each
component.

For each y ∈ CG(x)p it suffices to show that the proportion of p-elements in the coset K y which
commute with x is at most 1/p. Fix such an element y and observe that we may assume that G =⟨K , x, y⟩.
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In addition, by repeating the argument above, we can reduce to the case where ⟨x, y⟩ acts transitively on
the components of K . We now consider cases (a) and (b) in turn.

First assume (a) holds, so x does not normalize any component of K . Let z ∈ K y be a nontrivial
p-element. Then by Proposition 3.6, the proportion of elements in zK commuting with x is at most
1/(p + 1). Therefore, if K y ̸= K then the proportion of p-elements in K y which commute with x is at
most 1/(p +1). Similarly, if K y = K then Lemma 3.7 implies that |K p|⩾ p2 and by expressing K p as a
union of K -classes we quickly deduce that |CK (x)p|/|K p| ⩽ 1/p as required.

Finally, let us assume (b) holds, in which case y must act transitively on the components of K . If K has
two or more components, then y is nontrivial and we can just interchange x and y in the argument above
(noting that any element in K y still acts transitively on the set of components). This allows us to reduce
to the case where K is quasisimple. The result now follows by applying Propositions 3.10(ii)(b) and 3.12,
except for the case where K/Z(K ) = An is an alternating group, p = 2 and x acts as a transposition
on K . In this case, set L = ⟨K , x⟩ ∼= Sn and note that it suffices to show that the proportion of 2-elements
in the coset Ly which commute with x is at most 1

2 . This follows from Proposition 3.12(iii). □

Theorem D now follows by combining Theorem C with the following result.

Proposition 3.15. Let G be a finite group and let x ∈ Op(G) \ Z(Op(G)). Then

|CG(x)p|

|G p|
⩽

1
p
.

Proof. Set Q = Op(G) and note that we may assume G = QCG(x). Let y ∈ CG(x) be a p-element
and note that (Qy)p = Qy. Then the number of elements in the coset Qy commuting with x is equal
to |CQ(x)|, which is at most |Q|/p since x ̸∈ Z(Q). Therefore, the proportion of p-elements in Qy
commuting with x is at most 1/p and the result follows. □

To close this section, we present a family of examples to show that there exist finite groups G with a
p-element x such that

1
p

<
|CG(x)p|

|G p|
< 1.

Note that Theorem D implies that such an element x must be in Z(Op(G)). In fact, our examples have
the property that this ratio tends to 1 as |G| tends to infinity.

We consider the cases p odd and p = 2 separately.

Example 3.16. Fix an odd prime p and consider the semidirect product H = A:B, where A = (C p)
3 is

elementary abelian and a generator b for B = C p acts on A with a single Jordan block. Let a ∈ A be a
generator for A as a module for B. Note that A contains a normal subgroup K of H with |K | = p2. Fix
an element x ∈ K \ H .

Let r be a prime with r ≡ 1 (mod p) and fix a scalar µ ∈ F×
r of order p. Let V = (Fr )

p be a p-
dimensional vector space over Fr and consider the semidirect product G = V :H , where K acts trivially
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on V , a acts as (µ, . . . , µ) and b acts via (1, µ, . . . , µp−1). We now compute

|CG(x)p| = (p3
− p2)r p

+ p2, |G p| = (p3
− p2)r p

+ (p4
− p3)r p−1

+ p2. (9)

This follows by counting the p-elements in each coset V h of V , noting that if h centralizes x , then the
entire coset does as well. Here it is also helpful to observe that |(V h)p| = |hV

|, where |hV
| = r p if

h ∈ A \ K and |hV
| = r for h ∈ H \ A.

Finally, let us observe that both expressions in (9) are polynomials in r of degree p, with the same
leading coefficient, whence |CG(x)p|/|G p| tends to 1 as r tends to infinity.

Similarly, we can present a family of examples for p = 2.

Example 3.17. Let H = ⟨a, b⟩ = D16, where o(a) = 8 and o(b) = 2. Fix an odd prime r and let V be a
2-dimensional vector space over Fr . Consider the semidirect product G = V :H , where a acts as (−1, −1)

on V and b acts as (−1, 1). Let x ∈ H be an element of order 4. Since

|CG(x)2| = 4r2
+ 4, |G2| = 4r2

+ 8r + 4,

we conclude that the ratio |CG(x)2|/|G2| tends to 1 as r tends to infinity.

4. Proof of Theorem A

In this section we prove Theorem A. We begin with some general observations. As always, G is a finite
group and p is a prime. As in Section 1, we set

f (p) =
p2

+ p − 1
p3 .

Lemma 4.1. If G/N is a p′-group, then Prp(G) = Prp(⟨G p⟩) = Prp(N ).

Proof. This is clear because G p = ⟨G p⟩p = Np. □

We need the following elementary generalization of Gustafson’s theorem [1973] on the commuting
probability Pr(G). This result explains the presence of the term f (p) in Theorem A and it extends [Lescot
1995, Lemma 1.3].

Lemma 4.2. Let p be the smallest prime divisor of |G|. If Pr(G) > f (p), then G is abelian.

Proof. Recall that Pr(G)= k(G)/|G|, where k(G) is the number of conjugacy classes in G; see [Gustafson
1973]. Seeking a contradiction, let us assume G is nonabelian. Let K1, . . . , Kr be the noncentral conjugacy
classes of G and note that |Ki | ⩾ p for every i , so we have

|G| = |Z(G)| +

r∑
i=1

|Ki | ⩾ |Z(G)| + r p

and thus r ⩽ (|G| − |Z(G)|)/p. Therefore,

k(G) = |Z(G)| + r ⩽

(
p − 1

p

)
|Z(G)| +

|G|

p
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and thus

Pr(G) ⩽
(p − 1)/p
|G : Z(G)|

+
1
p
⩽

(p − 1)/p
p2 +

1
p

= f (p),

where we have used the fact that G/Z(G) is not cyclic in the last inequality. This is a contradiction. □

We now prove Theorem A. Note that if F∗(G) is a p′-group, then the proof does not require the
classification of finite simple groups.

Proof of Theorem A. Let G be a finite group and let P be a Sylow p-subgroup of G. As previously noted,
if P is both normal and abelian, then Prp(G) = 1.

Now assume Prp(G) > f (p). We need to show that P is a normal abelian subgroup of G. To do this,
we first use induction on |G| to show that P is normal.

By Lemma 2.1, Prp(G/Op(G)) > f (p). If Op(G) ̸= 1, then the inductive hypothesis implies that
G/Op(G) has a normal Sylow p-subgroup, so Op(G) is a Sylow p-subgroup of G and we are done.
Now assume Op(G) = 1. By Theorem C, we have

Prp(G) =
1

|G p|
2

∑
x∈G p

|CG(x)p| ⩽
1

|G p|

(
1 +

|G p| − 1
p

)
. (10)

Consider the real-valued function

ϕp(x) =
1
x

(
1 +

x − 1
p

)
=

1
x

(
1 −

1
p

)
+

1
p
,

which is a decreasing function for x > 0. Seeking a contradiction, assume that P is not normal. Then
|G p| ⩾ p2 (this is clear if |P| ⩾ p2, and for |P| = p it follows from the fact that G has at least p + 1
Sylow p-subgroups by Sylow’s theorem). Hence,

ϕp(|G p|) ⩽ ϕp(p2) =
1
p2

(
1 −

1
p

)
+

1
p

= f (p)

and we conclude that

Prp(G) ⩽ ϕp(|G p|) ⩽ f (p),

a contradiction. Therefore, P is a normal subgroup of G.
Finally, Lemma 4.1 yields

Pr(Op(G)) = Prp(Op(G)) = Prp(G) > f (p)

and thus Lemma 4.2 implies that Op(G) is abelian. □

5. Proof of Theorem B

In this final section we determine the finite groups G with Prp(G) = f (p), which will allow us to prove
Theorem B as a special case. We will need the following auxiliary result.



On the commuting probability of p-elements in a finite group 1225

Lemma 5.1. Let p be a prime and let G be a finite group such that G = O p′

(G) and G has a Sylow
p-subgroup of order p. If Prp(G) = f (p), then either

(i) G is isomorphic to PSL2(p) or SL2(p); or

(ii) p = 2r
− 1 ⩾ 7 is a Mersenne prime and G = (C2)

r
:C p, where C p acts as a Singer cycle on (C2)

r .

Proof. If x ∈ G is a nontrivial p-element, then |CG(x)p| = p and we easily deduce that Prp(G) = f (p)

if and only if |G p| = p2, or equivalently if G has precisely p + 1 Sylow p-subgroups. Let P be a Sylow
p-subgroup and let K be the largest normal subgroup of G normalizing each Sylow p-subgroup of G.
Then K is a p′-group and so [K , P] ⩽ K ∩ P = 1. Therefore, K is centralized by every p-element
in G, so the condition G = O p′

(G) implies that K ⩽ Z(G) and G/K is a doubly transitive subgroup
of Sp+1. Moreover, each point stabilizer in this action is the normalizer of a Sylow p-subgroup and thus
|G/K | ⩽ p(p2

− 1).
If p = 2, then G/K ∼= S3 and it is easy to check that G = S3 ∼= PSL2(2) is the only possibility. Similarly,

if p = 3 then G/K ∼= A4 and G = A4 ∼= PSL2(3) or SL2(3) ∼= Q8:C3 are the only options. For the
remainder we may assume that p ⩾ 5.

Suppose p is not a Mersenne prime. Then G/K is nonsolvable and by inspecting the list of doubly
transitive groups [Cameron 1981, Theorem 5.3] we see that G/K ∼= PSL2(p). Since PSL2(p) is perfect
and K is central in G, by considering the Schur multiplier of PSL2(p) we deduce that G = PSL2(p) or
SL2(p).

Finally, let us assume p = 2r
− 1 ⩾ 7 is a Mersenne prime, so r is an odd prime. If G/K is almost

simple, we deduce as above that G = PSL2(p) or SL2(p). The other possibility is that G/K has a
normal elementary abelian 2-subgroup of order p + 1 = 2r . Thus G/K ⩽ AGLr (2). Here each element
in AGLr (2) of order p corresponds to a Singer cycle in GLr (2) and by considering the overgroups of
such elements (noting that G/K is generated by p-elements and that a point stabilizer has order at most
p(p − 1)) we deduce that G/K = (C2)

r
:C p. Since G is the normal closure of P , it follows that K is a

2-group. But since r is an odd prime, we deduce that K = 1 is the only possibility. □

We can now classify all the finite groups with Prp(G)= f (p), which yields Theorem B as an immediate
corollary.

Theorem 5.2. Let p be a prime and G a finite group with G = O p′

(G) and Prp(G) = f (p). Let
Q = Op(G) and let k be a positive integer. Then one of the following holds:

(i) G is a p-group with |G : Z(G)| = p2.

(ii) p ⩾ 5, Q is abelian and G = SL2(p) × Q or PSL2(p) × Q.

(iii) p = 2r
− 1 ⩾ 3 is a Mersenne prime and G = (C2)

r
:C pk × A, where C pk acts as a Singer cycle of

order p on (C2)
r and A ⩽ Q is abelian.

(iv) p = 3 and G = Q8:C3k × A, where A ⩽ Q is abelian.

(v) p = 2 and G = C3:C2k × A, where A ⩽ Q is abelian.
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Proof. Set Q = Op(G). If G/Q is abelian, then G is a p-group and by arguing as in the proof of
Lemma 4.2, we see that Prp(G) = f (p) if and only if |G : Z(G)| = p2.

For the remainder, we may assume G/Q is nonabelian and thus Prp(G) = Prp(G/Q) by Lemma 2.1.
This implies that if x, y ∈ G p commute modulo Q, then [x, y] = 1, which in turn implies that Q ⩽ Z(G).

First assume that Q = 1. Let P be a Sylow p-subgroup of G and let n p be the number of Sylow
p-subgroups of G. As noted in the proof of Theorem A (see (10)), we have

Prp(G) ⩽
1

|G p|

(
1 +

|G p| − 1
p

)
.

If |G p| > p2 then

Prp(G) ⩽
p + 1
p2 + 1

<
p2

+ p − 1
p3

so we may assume |G p| ⩽ p2 and thus P is abelian. If |P| = p2, then P is normal and abelian and so
Prp(G) = 1, a contradiction. So we can reduce further to the case where |P| = p and n p = p + 1. Now
apply Lemma 5.1 to conclude.

Finally, let us assume Q ̸= 1 and note that G/Q is one of the groups described in Lemma 5.1. First
assume G/Q is nonsolvable, so p ⩾ 5 and G is a central extension of PSL2(p) or SL2(p) by Q. Here
(ii) holds since every p-central extension of one of these groups is split.

Suppose that p is a Mersenne prime with p ⩾ 7. Let T be a Sylow 2-subgroup of G. Then T is
elementary abelian and K := T Q = T × Q. Thus, T is normal in G and G = T P with P a Sylow
p-subgroup of G. Since P/K has order p, P is abelian and so P = ⟨x⟩ × A where A is central and x
induces an automorphism of order p on T , whence (iii) holds. If p = 3, the same argument applies except
that T is either elementary abelian of order 4 or a quaternion group of order 8, leading to (iv).

If p = 2, the same argument applies with T ∼= C3 a Sylow 3-subgroup of G. This leads to (v). □

Corollary 5.3. Let G be a finite group such that Prp(G) = f (p).

(i) If p = 2, then G is solvable and O2′

(G) is metabelian.

(ii) If p = 3, then O3′

(G) is solvable.

Finally, we turn to the asymptotic behavior of Prp(G) with respect to a fixed prime p and a sequence
of simple groups of order divisible by p. Set

f p(G) = max{ f p(x) : 1 ̸= x ∈ G p},

where f p(x) = |CG(x)p|/|G p|. Note that

Prp(G) =
1

|G p|

∑
x∈G p

f p(x) ⩽
1

|G p|
+

(
1 −

1
|G p|

)
f p(G).

Proposition 5.4. Fix a prime p and let G = An be the alternating group of degree n. Then Prp(G) → 0
as n → ∞.
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Proof. Since |G p| tends to infinity with n, it suffices to show that f p(G) tends to 0. Let y ∈ Sn be
a nontrivial p-element. It is a straightforward exercise to check that for n large enough, |CSn (y)p|

is maximal when y is a p-cycle. Let us also observe that Sn contains an equal number of even and
odd 2-elements commuting with a given 2-element z ∈ Sn (this is because O2(CSn (z)) contains odd
permutations when z is nontrivial). Therefore, if n is large enough we have

f p(G) ⩽
|CG(x)p|

|G p|

with x = (1, . . . , p) ∈ Sn a p-cycle. For each integer p < j ⩽ n, let y j ∈ Sn be a p-cycle with an orbit
{1, . . . , p −1, j} and let Z j be the set of p-elements in CSn (y j ) that act nontrivially on {1, . . . , p −1, j}.
Note that the Z j are pairwise disjoint.

If p is odd, then |Z j | = (p−1)!|(An−p)p| and we have |CG(x)p| = p|Z j |/(p−1)!⩾ 2|Z j |/3, whence

|CG(x)p|

|G p|
⩽

2
3(n − p)

and this upper bound tends to 0 as n tends to infinity. Similarly, if p = 2 then

|Z j | = |(Sn−2)2| = |CG(x)2|

and the result follows. □

It is possible to establish an analogous result for simple groups of Lie type, but the details are more
complicated and they will be given elsewhere. Here we just sketch some of the main ideas. Fix a prime p.
Let G be a simple group of Lie type over Fq of (untwisted) rank r and assume p divides |G|. As before,
it suffices to show that f p(G) → 0 as |G| → ∞.

First suppose that q is increasing. Let x ∈ G be a nontrivial p-element such that f p(x) = f p(G) and
note that we may assume x has order p. Let y ∈ G be a nontrivial p-element and observe that

|yG
∩ CG(x)|

|yG |

is the probability that x commutes with a random conjugate of y. By the main theorem of [Liebeck and
Saxl 1991], this ratio goes to 0 as q tends to infinity. Since this is true for every nontrivial conjugacy of
p-elements, and since the number of p-elements in G tends to infinity as q increases (recall that we are
assuming p divides |G|), we conclude that f p(G) → 0.

Now suppose q is fixed and r is increasing, so we may assume G is a classical group and we note
that p divides |G| if r ⩾ p. First assume p divides q, so we are considering unipotent elements. By a
result of Steinberg (see [Liebeck and Seitz 2012, Lemma 2.16], for example) we have |G p| = qdim X−r ,
where X is the ambient simple algebraic group. By inspecting [loc. cit.], it is easy to see that |CG(x)p| is
maximal when x is a long root element and the result follows easily.

Finally, let us assume that p does not divide q and so x is a semisimple element. This situation is
somewhat more complicated, but there are several ways to proceed and much stronger results can be
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established. For example, [Burness et al. 2020, Theorem 16] implies that if p is odd and r > 2 then
the probability that two random elements of order p generate G tends to 1 as |G| tends to infinity (in
particular, the probability that two such elements commute tends to 0). With some additional work, this
can be extended to p-elements, including the case p = 2 (of course, a pair of involutions will not generate
G, but the probability that they commute still goes to 0 as r increases). This stronger result implies that
Prp(G) → 0 as r tends to infinity.

It is interesting to consider some extensions of this problem. For example, suppose G is a finite group
such that Op(G) = 1 and G = O p′

(G). Do we have Prp(G) → 0 as |G| → ∞?
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