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On the first nontrivial strand of syzygies
of projective schemes and condition ND(ℓ)

Jeaman Ahn, Kangjin Han and Sijong Kwak

Let X ⊂ Pn+e be any n-dimensional closed subscheme. We are mainly interested in two notions related
to syzygies: one is the property Nd,p (d ≥ 2, p ≥ 1), which means that X is d-regular up to p-th step in
the minimal free resolution and the other is a new notion ND(ℓ) which generalizes the classical “being
nondegenerate” to the condition that requires a general finite linear section not to be contained in any
hypersurface of degree ℓ.

First, we introduce condition ND(ℓ) and consider examples and basic properties deduced from the
notion. Next we prove sharp upper bounds on the graded Betti numbers of the first nontrivial strand of
syzygies, which generalize results in the quadratic case to higher degree case, and provide characterizations
for the extremal cases. Further, after regarding some consequences of property Nd,p, we characterize
the resolution of X to be d-linear arithmetically Cohen–Macaulay as having property Nd,e and condition
ND(d − 1) at the same time. From this result, we obtain a syzygetic rigidity theorem which suggests a
natural generalization of syzygetic rigidity on 2-regularity due to Eisenbud, Green, Hulek and Popescu to
a general d-regularity.
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1. Introduction

Since the foundational paper on syzygy computation by Green [1984], there has been a great deal of
interest and progress in understanding the structure of the Betti tables of algebraic varieties during the
past decades. In particular, the first nontrivial linear strand starting from quadratic equations has been
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Figure 1. Two typical Betti tables B(X) of X ⊂ Pn+e with property Nd,p and with
condition ND(ℓ). Note that the shape of B(X) with ND(ℓ) is preserved under taking
general hyperplane sections and general linear projections.

intensively studied by several authors [Castelnuovo 1893; Green 1984; Green and Lazarsfeld 1988;
Eisenbud et al. 2005; 2006; Ein and Lazarsfeld 2015; Han and Kwak 2015].

Let X be any nondegenerate n-dimensional closed subscheme X in a projective space Pn+e defined
over an algebraically closed field k of any characteristic and R = k[x0, . . . , xn+e]. In this article, we are
mainly interested in two notions related to syzygies of X . One notion is the property Nd,p(d ≥ 2, p ≥ 1),
which was first introduced in [Eisenbud et al. 2005] and means that X is d-regular up to p-th step in the
minimal free resolution. To be precise, X is said to satisfy property Nd,p if the following condition holds:

βi, j (X) := dimk TorR
i (R/IX , k)i+ j = 0 for i ≤ p and j ≥ d.

The other one is a new notion condition ND(ℓ), which generalizes the classical “being nondegenerate”
in degree one to cases of higher degrees. More precisely, it means that a general linear section X ∩ 3

is not contained in any hypersurface of degree ℓ of 3, where 3 is a general linear subspace of each
dimension ≥ e. So, for irreducible varieties the classical nondegenerate condition is equivalent to condition
ND(1) by Bertini-type theorem. We give many examples and basic properties on condition ND(ℓ).

With this notion, we obtain a new angle to study syzygies of high degrees in the Betti table B(X).
Especially, it turns out to be very effective to understand the first nontrivial ℓ-th linear strand arising from
equations of degree ℓ+ 1 and also to answer many interesting questions which can be raised as compared
to the classical quadratic case.

To review previous results for the quadratic case, let us begin by recalling the well known theorems
due to Castelnuovo and Fano. Let X ⊂ Pn+e be any “nondegenerate” irreducible variety:

• (Castelnuovo, 1889) h0(IX (2)) ≤
(e+1

2

)
and “=” holds if and only if X is a variety of minimal degree.

• (Fano, 1894) Unless X is a variety of minimal degree, h0(IX (2)) ≤
(e+1

2

)
− 1 and “=” holds if and

only if X is a del Pezzo variety (i.e.„ arithmetically Cohen–Macaulay and deg X = e + 2).
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A few years ago, Han and Kwak [2015] developed an inner projection method to compare syzygies
of X with those of its projections by using the theory of mapping cone and partial elimination ideals. As
applications, over any algebraically closed field k of arbitrary characteristic, they proved the sharp upper
bounds on the ranks of higher linear syzygies by quadratic equations, and characterized the extremal and
next-to-extremal cases, which generalized the results of Castelnuovo and Fano:

• [Han and Kwak 2015] βi,1(X) ≤ i
(e+1

i+1

)
, i ≥ 1 and the equality holds for some 1 ≤ i ≤ e if and only

if X is a variety of minimal degree (abbr. VMD).

• Unless X is a variety of minimal degree, then βi,1(X) ≤ i
(e+1

i+1

)
−

( e
i−1

)
∀i ≤ e and the equality holds

for some 1 ≤ i ≤ e − 1 if and only if X is a del Pezzo variety.

Thus, the theorem above by Han and Kwak can be thought of as a syzygetic characterization of varieties
of minimal degree and del Pezzo varieties.

It is worth to note here that the condition (IX )1 = 0 (i.e., to be “nondegenerate”) implies not only an
upper bound for the number of quadratic equations h0(IX (2)) ≤

(e+1
2

)
as we reviewed, but also on the

degree of X via the so-called “basic inequality” deg X ≥
(e+1

1

)
. Thus, for “more” nondegenerate varieties,

it seems natural to raise a question as follows: For any irreducible variety X with (IX )2 = 0 (i.e., having
no linear and quadratic forms vanishing on X )

does it hold that h0(IX (3)) ≤
(e+2

3

)
and deg X ≥

(e+2
2

)
?

But, there is a counterexample for this question: the Veronese surface S ⊂ P4 (e = 2) i.e., an isomorphic
projection of ν2(P

2), one of the Severi varieties classified by Zak, where S has no quadratic equations
on it, but h0(IS(3)) = 7 ≰

(2+2
3

)
and deg X = 4 ≱

(2+2
2

)
. One reason for the failure is that a general

hyperplane section of S sits on a quadric hypersurface while S itself does not. It leads us to consider the
notion of condition ND(ℓ).

Under condition ND(ℓ) it can be easily checked that the degree of X satisfies the expected bound
deg X ≥

(e+ℓ
ℓ

)
(see Remark 2.1). Further, one can see that condition ND(ℓ) is determined by the injectivity

of the restriction map H 0(O3(ℓ)) → H 0(OX∩3(ℓ)) for a general point section X ∩ 3 which can happen
in larger degree for a given ℓ, while the problem on “imposing independent conditions on ℓ-forms
(or ℓ-normality)” concerns surjectivity of the above map in degree at most

(e+ℓ
ℓ

)
. The latter has been

intensively studied in many works in the literature (see e.g., [Cook et al. 2018]), but the former has not
been considered well.

With this notion, we can also obtain sharp upper bounds on the numbers of defining equations of degree
ℓ + 1 and the graded Betti numbers for their higher linear syzygies. As in the quadratic case, we prove
that the extremal cases for these Betti numbers are only arithmetically Cohen–Macaulay (abbr. ACM)
varieties with (ℓ + 1)-linear resolution (we call a variety X ⊂ PN ACM if its homogeneous coordinate
ring RX is arithmetically Cohen–Macaulay i.e., depth(RX ) = dim X + 1).

Now, we present our first main result.
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Theorem 1.1. Let X be any closed subscheme of codimension e satisfying condition ND(ℓ) for some
ℓ ≥ 1 in Pn+e over an algebraically closed field k with ch(k) = 0. Then, we have:

(a) βi,ℓ(X) ≤
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
for all i ≥ 1.

(b) The following are equivalent:

(i) βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
for all i ≥ 1.

(ii) βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
for some i among 1 ≤ i ≤ e.

(iii) X is arithmetically Cohen–Macaulay with (ℓ + 1)-linear resolution.

In particular, if X satisfies one of equivalent conditions then X has a minimal degree
(e+ℓ

ℓ

)
.

We would like to note that if ℓ = 1, then this theorem recovers the previous results on the linear
syzygies by quadrics for the case of integral varieties (see also Remark 2.8). In general, the set of closed
subschemes satisfying ND(1) is much larger than that of nondegenerate irreducible varieties; see [Ahn and
Han 2015, Section 1] for details. Furthermore, a closed subscheme X (with possibly many components)
has condition ND(ℓ) if so does the top-dimensional part of X . Note that the Betti table B(X) is usually
very sensitive for addition some components to X (e.g., when we add points to a rational normal curve,
Betti table can be totally changed; see, e.g., [Ahn and Kwak 2015, Example 3.10]). But condition ND(ℓ)

has been still preserved under such addition of low dimensional components (thus, we could make many
examples with condition ND(ℓ) in this way).

On the other hand, if X satisfies property Nd,e, then the degree of X is at most
(e+d−1

d−1

)
and the equality

happens only when X has ACM d-linear resolution. We prove this by establishing a syzygetic Bézout
theorem (Theorem 3.1), a geometric implication of property Nd,p using projection method. We also
investigate an effect of Nd,p on loci of d-secant lines (Theorem 3.3).

Furthermore, if two notions - condition ND(d − 1) and property Nd,e on X - meet together, then the
degree of X should be equal to

(e+d−1
d−1

)
and X has ACM d-linear resolution (in particular, X is d-regular).

From this point of view, we can obtain another main result, a syzygetic rigidity for d-regularity as follows:

Theorem 1.2 (syzygetic rigidity for d-regularity). Let X be any algebraic set of codimension e in Pn+e

satisfying condition ND(d − 1) for d ≥ 2. If X has property Nd,e, then X is d-regular (more precisely, X
has ACM d-linear resolution).

Note that if d = 2, for nondegenerate algebraic sets this theorem recovers the syzygetic rigidity for
2-regularity due to Eisenbud, Green, Hulek and Popescu [Eisenbud et al. 2005, Corollary 1.8] where the
condition ND(1) was implicitly used. In [Eisenbud et al. 2005], the rigidity for 2-regularity was obtained
using the classification of so-called “small” schemes in the category of algebraic sets in [Eisenbud et al.
2006]. But, for next 3 and higher d-regular algebraic sets, it seems out of reach to get such classifications
at this moment. From this point of view, Theorem 1.2 is a natural generalization and gives a more direct
proof for the rigidity.

We would like to also remark that for a generalization of this syzygetic rigidity into higher d, one
needs somewhat a sort of “higher nondegeneracy condition” such as the condition ND(ℓ), because there
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Figure 2. Nd,e meets only (IX )≤d−1 = 0 (left-hand side) and Nd,e meets condition
ND(d − 1) (right-hand side). Condition ND(d − 1) and property Nd,e implies ACM
d-linear resolution in the category of algebraic sets.

exist some examples where Theorem 1.2 does not hold without condition ND(ℓ) even though the given X
is an irreducible variety and there is no forms of degree ℓ vanishing on X (see Figure 2 and Example 3.6).

In the final Section 4, we present relevant examples and more consequences of our theory (see, e.g.,
Corollary 4.3) and raise some questions for further development.

2. Condition ND(ℓ) and syzygies

2A. Condition ND(ℓ): basic properties and examples. Throughout this section, we assume that the base
field is algebraically closed and ch(k) = 0 (see Remark 2.10 for finite characteristics).

As before, let X be a n-dimensional closed subscheme of codimension e in PN over k. Let IX be⊕
∞

m=0 H 0(IX/PN (m)), the defining ideal of X in the polynomial ring R = k[x0, x1, . . . , xN ]. We mean
(co)dimension and degree of X ⊂ PN by the definition deduced from the Hilbert polynomial of R/IX .

Let us begin this study by introducing the definition of condition ND(ℓ) as follows:

Definition (condition ND(ℓ)). Let k be any algebraically closed field. We say that a closed subscheme
X ⊂ PN

k satisfies condition ND(ℓ) if

H 0(IX∩3/3(ℓ)) = 0 for a general linear section 3 of each dimension ≥ e.

We sometimes call a subscheme with condition ND(ℓ) a ND(ℓ)-subscheme as well.

Remark 2.1. We would like to make some remarks on this notion as follows:

(a) First of all, if X ⊂ PN satisfies condition ND(ℓ), then every general linear section of X ∩ 3 also has
the condition (i.e., condition ND(ℓ) is preserved under taking general hyperplane sections). Further, from
the definition, condition ND(ℓ) on X is completely determined by a general point section of X .

(b) (Basic degree bound) If X is a closed subscheme of codimension e in Pn+e satisfying condition
ND(ℓ), then from the sequence 0 → H 0(IX∩3/3(ℓ)) → H 0(O3(ℓ)) → H 0(OX∩3(ℓ)) it can be easily
proved that deg X ≥

(e+ℓ
ℓ

)
.
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(c) A general linear projection of ND(ℓ)-subscheme is also an ND(ℓ)-subscheme.

(d) Any nondegenerate variety (i.e., irreducible and reduced) satisfies condition ND(1) due to Bertini-type
theorem; see, e.g., [Eisenbud 2005, Lemma 5.4].

(e) If a closed subscheme X ⊂ PN has top dimensional components satisfying ND (ℓ), then X also
satisfies condition ND(ℓ) whatever X takes as a lower-dimensional component.

(f) (Maximal ND-index) From the definition, it is easy to see that

X : not satisfying condition ND(ℓ) ⇒ X : neither having ND(ℓ + 1).

Thus, it is natural to regard a notion like

indexND(X) := max{ℓ ∈ Z≥0 : X satisfies condition ND(ℓ)} (1)

which is a new projective invariant of a given subscheme X ⊂ PN .

(g) From the viewpoint (a), one can restate the definition of condition ND(ℓ) as the injectivity of the
restriction map H 0(O3(ℓ)) → H 0(OX∩3(ℓ)) for a general point section X ∩3, while many works in the
literature have focused on surjectivity (or imposing independent conditions) to study dimensions of linear
systems in relatively small degree.

Example 2.2. We list some first examples achieving condition ND(ℓ):

(a) If X ⊂ Pn+e is an ACM subscheme with H 0(IX (ℓ)) = 0, then X is an ND(ℓ)-subscheme.

(b) Every linearly normal curve with no quadratic equation is a ND(2)-curve. Further, a variety X is
ND(2) if a general curve section X ∩ 3 is linearly normal.

(c) (From a projection of Veronese embedding) We can also find examples of non-ACM ND(ℓ)-variety
using projections. For instance, if we consider the case of v3(P

2) ⊂ P9 and its general projection
into P4 (say π(v3(P

2))), then deg π(v3(P
2)) = 9 ≥

(2+2
2

)
and all the quadrics disappear after this

projection. This is a ND(2)-variety by Proposition 2.6 (see also Remark 2.5).

In general, it is not easy to determine whether a given closed subscheme X satisfies condition ND(ℓ)

or not. The following proposition tells us a way to verify condition ND(ℓ) by aid of computation the
generic initial ideal of X ; see, e.g., [Bigatti et al. 2005, Section 1] for the theory of generic initial ideal
and Borel fixed property.

In what follows, for a homogeneous ideal I in R, we denote by Gin(I ) the generic initial ideal of I
with respect to the degree reverse lexicographic order.

Proposition 2.3 (a characterization of condition ND(ℓ)). Let X be a closed subscheme of codimension e
in Pn+e. Then the followings are equivalent:

(a) X satisfies condition ND(ℓ).

(b) Gin(IX ) ⊂ (x0, . . . , xe−1)
ℓ+1.
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Proof. Let 3 be a general linear space of dimension e and let 0 be the zero-dimensional intersection of
X with 3.

(a) ⇒ (b) For a monomial T ∈ Gin(IX ), decompose T as a product of two monomials N and M such
that

Supp(N ) ⊂ {x0, . . . , xe−1} and Supp(M) ⊂ {xe, . . . , xn+e}.

By the Borel fixed property, we see that N xdeg(M)
e ∈ Gin(IX ). Then, it follows from [Ahn and Han 2015,

Theorem 2.1] that

Gin(I0/3) =

[
(Gin(IX ), xe+1, . . . , xn+e)

(xe+1, . . . , xn+e)

]sat

=

[
(Gin(IX ), xe+1, . . . , xn+e)

(xe+1, . . . , xn+e)

]
xe→1

,

which implies N ∈ Gin(I0/3). By the assumption that X satisfies ND(ℓ), we see that deg(N ) ≥ ℓ + 1,
and thus N ∈ (x0, . . . , xe−1)

ℓ+1. Therefore T = N M ∈ (x0, . . . , xe−1)
ℓ+1 as we wished.

(a) ⇐ (b) Conversely, assume that Gin(IX ) ⊂ (x0, . . . , xe−1)
ℓ+1. Then,

Gin(I0/3) =

[
(Gin(IX ), xe+1, . . . , xn+e)

(xe+1, . . . , xn+e)

]sat

⊂

[
((x0, . . . , xe−1)

ℓ+1, xe+1, . . . , xn+e)

(xe+1, . . . , xn+e)

]
xe→1

.

Note that the rightmost ideal is identified with the ideal (x0, . . . , xe−1)
ℓ+1 in the polynomial ring

k[x0, . . . , xe]. Therefore (I0/3)ℓ = 0 and thus X satisfies condition ND(ℓ). □

Beyond the first examples in Example 2.2, one can raise a question as “Is there a higher-dimensional
ND(ℓ)-variety X which is linearly normal (i.e., not coming from isomorphic projections) but also non-
ACM?”. We can construct such an example as a toric variety which is 3-dimensional and has depth 3 as
follows.

Example 2.4 (a linearly normal and non-ACM ND(3)-variety). Consider a matrix

A =


3 −5 4 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


and we consider the toric ideal induced by the matrix A. Using Macaulay 2 [Macaulay2], we compute
the defining ideal as

IA = (x1x2
2 x3 − x0x4x2

5 , x2x3
3 x4 − x3

0 x1x5, x2
0 x2

1 x2 − x2
3 x2

4 x5,

x3
2 x4

3 − x4
0 x3

5 , x0x3
1 x3

2 − x3x3
4 x3

5 , x5
0 x3

1 − x5
3 x3

4 , x4
1 x5

2 − x4
4 x5

5).

Then the generic initial ideal of IA with respect to degree reverse lexicographic order is

Gin(IA) = (x4
0 , x3

0 x2
1 , x2

0 x3
1 , x0x5

1 , x6
1 , x0x4

1 x2
2 , x5

1 x2
2 , x3

0 x1x4
2 , x2

0 x2
1 x5

2).

Hence, IA defines a 3-dimensional toric variety X ⊂ P5 with depth(X) = 3, which satisfies condition
ND(ℓ) for ℓ ≤ 3 by Proposition 2.3. Note that IA is linearly normal but not ACM.
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Finally, we would like to remark that condition ND(ℓ) is expected to be generally satisfied in the
following manner.

Remark 2.5 (ND(ℓ) in a relatively large degree). For a given codimension e, fixed ℓ, and any general
closed subscheme X in Pn+e, it is expected that

X → ND(ℓ) as deg X → ∞ (2)

under the condition H 0(IX/Pn+e(ℓ)) = 0 and exceptional cases do appear with some special geometric
properties (e.g., such as projected Veronese surface), because the failure of ND(ℓ) means that any general
point section X ∩ 3 sits in a hypersurface of degree ℓ, which is not likely to happen for a sufficiently
large deg X . For instance, the “expectation” (2) can have an explicit form in case of codimension two in
the following proposition (see Section 4 for further discussion).

Proposition 2.6 (ND(ℓ) in codimension two). Let X ⊂ PN be any nondegenerate integral variety of
codimension two over an algebraically closed field k with ch(k) = 0. Say d = deg X. Suppose that
H 0(IX/PN (ℓ)) = 0 for some ℓ ≥ 2. Then, any such X satisfies condition ND(ℓ) if d > ℓ2

+ 1.

Proof of Proposition 2.6. For the proof, we would like to recall a result for the “lifting problem” (for the
literature, see, e.g., [Chiantini and Ciliberto 1993; Bonacini 2015]) as follows:

Let X ⊂ PN be any nondegenerate reduced irreducible scheme of codimension two over an
algebraically closed field k with ch(k) = 0 and let X H be the general hyperplane section of
X. Suppose that X H is contained in a hypersurface of degree ℓ in PN−1 for some ℓ ≥ 2. If
d > ℓ2

+ 1, then X is contained in a hypersurface of degree ℓ in PN .

Say n = dim X and suppose that X ⊂ PN does not satisfy ND(ℓ). Then for some r with 2 ≤ r ≤ n +1,
the (r − 2)-dimensional general linear section of X , X ∩3r lies on a hypersurface of degree ℓ in 3r (i.e.,
H 0(IX∩3r /3r (ℓ)) ̸= 0). By above lifting theorem, this implies H 0(IX∩3r+1/3r+1(ℓ)) ̸= 0 for the (r − 1)-
dimensional general linear section X ∩3r+1. By repeating the argument, we obtain that H 0(IX/PN (ℓ)) ̸= 0,
which is a contradiction. □

Example 2.7 (general curves in P3). Suppose that C ⊂ P3 be a general curve of degree d ≥ g + 3 with
nonspecial line bundle OC(1), where g is the genus of C . When g ≥ 3, then by the maximal rank theorem
due to Ballico and Ellia [1985], the natural restriction map

H 0(OP3(2)) → H 0(OC(2))

is injective. So there is no quadric containing C . Further, from Proposition 2.6 we see that a general
point section C ∩ H also has no quadric. Thus C satisfies condition ND(2). In a similar manner, we
can show that if g ≥ 8 then such curve satisfies ND(3) and in general it has condition ND(ℓ) in case of
d ≥ max{g + 3, ℓ2

+ 2}.
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2B. Sharp upper bounds on Betti numbers of the first nontrivial strand. From now on, we proceed to
prove Theorem 1.1, which is one of our main results.

Theorem 1.1(a). Let X be any closed subscheme of codimension e in Pn+e satisfying condition ND(ℓ)

for some ℓ ≥ 1 and let IX be the (saturated) defining ideal of X. Then we have

βi,ℓ(X) ≤

(
i + ℓ − 1

ℓ

)(
e + ℓ

i + ℓ

)
for all i ≥ 1. (3)

A proof of Theorem 1.1(a). First, recall that by [Green 1998, Corollary 1.21] we have

βi, j (X) ≤ βi, j (R/ Gin(IX )) for all i, j ≥ 0. (4)

By the assumption that X satisfies condition ND(ℓ) for a given ℓ > 0, we see that Gin(IX )d = 0 for d ≤ ℓ.
Moreover, by Proposition 2.3, we have

Gin(IX ) ⊂ (x0, . . . , xe−1)
ℓ+1. (5)

For a monomial ideal I , we write G(I ) for the set of minimal monomial generators and G(I ) j+1 for the
subset of degree j + 1 part. We denote max{a : ka > 0} for a given monomial T = xk0

0 · · · xkn
n by max(T ).

Then, for any Borel fixed ideal J ⊂ R we have a formula as

βi, j (R/J ) =

∑
T ∈G(J ) j+1

(max(T )

i −1

)
for every i, j (6)

from the result of Eliahou and Kervaire; see e.g., [Ahn and Han 2015, Theorem 2.3].

(i) Let 0 ≤ i ≤ e. Consider the ideal J0 = (x0, . . . , xe−1)
ℓ+1 which is Borel-fixed. We see that J0 is

generated by the maximal minors of (ℓ + 1) × (ℓ + e) matrix:
x0 x1 · · · xe−1 0 · · · 0 0
0 x0 x1 · · · xe−1 0 · · · 0

· · ·

0 · · · 0 x0 x1 x2 · · · xe−1


So, the graded Betti numbers of R/J0 are those given by the Eagon–Northcott resolution of the maximal
minors of a generic matrix of size (ℓ+1)× (ℓ+e); see [Geramita et al. 2013, Remark 2.11]. This implies
that

βi,ℓ(R/J0) =

( i +ℓ−1
ℓ

)(e+ℓ

i +ℓ

)
. (7)

By relation (5), we see G(Gin(IX ))ℓ+1 ⊂ G(J0)ℓ+1. So, above formula (6) implies βi,ℓ(R/ Gin(IX )) ≤

βi,ℓ(R/J0). Consequently, for each 0 ≤ i ≤ e we conclude that

βi,ℓ(X) ≤ βi,ℓ(R/ Gin(IX )) ≤ βi,ℓ(R/J0) =

( i +ℓ−1
ℓ

)(e+ℓ

i +ℓ

)
,

as we wished.
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(ii) Let e < i . By (5), we see that if T ∈ Gin(IX )ℓ+1 then max(T ) ≤ e − 1. Then, from (6) it follows

βi,ℓ(R/ Gin(IX )) =

∑
T ∈G(Gin(IX ))ℓ+1

(max(T )

i −1

)
= 0 for all i > e.

Hence, we get βi,ℓ(X) = 0 by (4). □

Theorem 1.1(b). Let X be any closed subscheme of codimension e in Pn+e satisfying condition ND(ℓ)

for some ℓ ≥ 1 and let IX be the (saturated) defining ideal of X. Then, the followings are all equivalent:

(i) βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
for all 1 ≤ i ≤ e.

(ii) βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
for some 1 ≤ i ≤ e.

(iii) Gin(IX ) = (x0, x1, . . . , xe−1)
ℓ+1.

(iv) X is an ACM variety with (ℓ + 1)-linear resolution.

In this case, X has minimal degree, i.e., deg X =
(e+ℓ

ℓ

)
.

A proof of Theorem 1.1(b). (i) ⇒ (ii) This is trivial.

(ii) ⇒ (iii) Suppose that there exists an index i such that 1 ≤ i ≤ e and βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
. Recall

that J0 = (x0, . . . , xe−1)
ℓ+1 has the Borel fixed property. By (6), we have

βi,ℓ(R/J0) =

∑
T ∈G(J0)ℓ+1

(max(T )

i −1

)

=

e−1∑
j=i−1

( j
i −1

)
|{T ∈ G(J0)ℓ+1 | max(T ) = j}|

=

e−1∑
j=i−1

( j
i −1

)
dimk x j · k[x0, . . . , x j ]ℓ

=

e−1∑
j=i−1

( j
i −1

)( j +ℓ

ℓ

)
.

Hence we see from (7) that the following binomial identity holds:

( i +ℓ−1
ℓ

)(e+ℓ

i +ℓ

)
=

e−1∑
j=i−1

( j
i −1

)( j +ℓ

ℓ

)
. (8)
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By the assumption that βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
= βi,ℓ(R/J0) and the binomial identity (8), we have

βi,ℓ(R/ Gin(IX )) =

∑
T ∈G(Gin(IX ))ℓ+1

(max(T )

i −1

)

=

e−1∑
j=i−1

( j
i −1

)
|{T ∈ G(Gin(IX ))ℓ+1 | max(T ) = j}|

≤

e−1∑
j=i−1

( j
i −1

)
dimk x j · k[x0, . . . , x j ]ℓ

=

e−1∑
j=i−1

( j
i −1

)( j +ℓ

ℓ

)
= βi,ℓ(R/IX ).

Thus, by the cancellation principle (4), we conclude that βi,ℓ(R/ Gin(IX )) = βi,ℓ(R/IX ). This implies
that, for each j with i − 1 ≤ j ≤ e − 1,

{T ∈ G(Gin(IX ))ℓ+1 | max(T ) = j} = x j · k[x0, . . . , x j ]ℓ.

In particular, when j = e − 1, we obtain that xℓ+1
e−1 ∈ Gin(IX ) and it follows from Borel fixed property

that
Gin(IX )ℓ+1 = (J0)ℓ+1.

Now, since X satisfies condition ND(ℓ), by Proposition 2.3 we have that Gin(IX ) ⊂ J0. Because J0 is
generated in degree ℓ + 1, this implies that Gin(IX ) = J0.

(iii) ⇒ (iv) Note that if Gin(IX ) = (x0, . . . , xe−1)
ℓ+1, then R/ Gin(IX ) has ℓ-linear resolution. By

cancellation principle [Green 1998, Corollary 1.12], the minimal free resolution of IX is obtained from
that of Gin(IX ) by canceling some adjacent terms of the same shift in the free resolution. This implies that
the betti table of R/IX are the same as that of R/ Gin(IX ), because R/ Gin(IX ) has ℓ-linear resolution.
This means R/IX is arithmetically Cohen–Macaulay with ℓ-linear resolution.

(iv) ⇒ (i) This follows directly from [Eisenbud and Goto 1984, Proposition 1.7]. □

Remark 2.8. For the case of ℓ = 1, Theorem 1.1 was proved in [Han and Kwak 2015] for any nonde-
generate variety X over any algebraically closed field (recall that every nondegenerate variety satisfies
ND(1)). Thus, this theorem is a generalization of the previous result to cases of ℓ ≥ 2.

Further, we would also like to remark that for ℓ = 1 a given X satisfies all the consequences of
Theorem 1.1(b) once the degree inequality deg X ≥

(e+ℓ
ℓ

)
attains equality (i.e., the case of classical

minimal degree), since they are all 2-regular and arithmetically Cohen–Macaulay. But, for higher ℓ ≥ 2,
this is no more true (see Example 4.8). If one does hope to establish a “converse” in Theorem 1.1(b),
then it is necessary to impose some additional conditions on components of those ND(ℓ)-schemes of
“minimal degree of ℓ-th kind”

(
i.e., deg X =

(e+ℓ
ℓ

))
.
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As a consequence of Theorem 1.1, using the upper bound for βi,ℓ(X) we can obtain a generalization
of a part of Green’s K p,1-theorem on the linear strand by quadrics of nondegenerate varieties in [Green
1984] to case of the first nontrivial linear strand by higher degree equations of any ND(ℓ)-schemes as
follows.

Corollary 2.9 (K p,ℓ-theorem for ND(ℓ)-subscheme). Let X be any closed subscheme of codimension e
in Pn+e satisfying condition ND(ℓ). Then, βi, j (X) = 0 for each i > e, j ≤ ℓ.

Remark 2.10 (characteristic p case). Although we made the assumption that the base field k has
characteristic zero at the beginning of this section, most of results in the section still hold outside of
low characteristics; see [Eisenbud 1995, Theorem 15.23]. For instance, Theorem 1.1 holds for any
characteristic p such that p > reg(IX ), where reg(IX ) is equal to the maximum of degrees of monomial
generators in Gin(IX ) with respect to the degree reverse lexicographic order.

3. Property Nd, p and Syzygies

3A. Geometry of property Nd, p. In this subsection, we assume that the base field k is algebraically
closed of any characteristic. We obtain two geometric implications of property Nd,p via projection method
and the elimination mapping cone sequence; see [Ahn and Kwak 2015; Han and Kwak 2015]. For the
remaining of the paper, we call a reduced projective scheme X ⊂ PN an algebraic set; see also [Eisenbud
2005, Chapter 5].

Theorem 3.1 (syzygetic Bézout theorem). Let X ⊂ Pn+e be a nondegenerate algebraic set of dimension
n satisfying Nd,p with 2 ≤ d and p ≤ e. Suppose that L ⊂ Pn+e is any linear space of dimension p whose
intersection with X is zero-dimensional. Then:

(a) length(L ∩ X) ≤
(d−1+p

p

)
.

(b) Moreover, if length(L ∩ X) =
(d−1+p

p

)
, then for 1 ≤ k ≤ d − 1 the base locus of a linear system

|H 0(IX/Pn+e(k))| contains the multisecant space L.

Remark 3.2. We would like to make some remarks on this result as follows:

(a) If p = 1 then it is straightforward by Bézout’s theorem. Thus, Theorem 3.1 can be regarded as a
syzygetic generalization to multisecant linear spaces when p ≥ 2.

(b) Note that in the theorem the length bound itself can be also obtained from [Eisenbud et al. 2005,
Theorem 1.1]. We provide an alternative proof on it using geometric viewpoint of projection and
further investigate the situation in which the equality holds.

Proof of Theorem 3.1. (a) It is obvious when p = 1. Now, let X be an algebraic set satisfying the property
Nd,p, p ≥ 2 and suppose that L ⊂ Pn+e is a linear space of dimension p whose intersection with X is
zero-dimensional.

Choose a linear subspace 3 ⊂ L of dimension p − 1 with homogeneous coordinates x0, x1, . . . , x p−1

such that X ∩3=∅. Consider a projection π3 : X →π3(X)⊂ Pn+e−p. Then, L∩X is a fiber of π3 at the
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point π3(L \3) ∈ π3(X). The key idea is to consider the syzygies of R/IX as an Sp = k[x p, . . . , xn+e]-
module which is the coordinate ring of Pn+e−p. By [Ahn and Kwak 2015, Corollary 2.4], R/IX satisfies
NSp

d,0 as an Sp = k[x p, . . . , xn+e]-module, i.e., we have the following surjection

Sp ⊕ Sp(−1)p
⊕ Sp(−2)β

Sp
0,2 ⊕ · · · ⊕ Sp(−d + 1)β

Sp
0,d−1

ϕ0
−→ R/IX → 0. (9)

Sheafifying (9), we have

· · · → OPn+e−p ⊕OPn+e−p(−1)p
⊕OPn+e−p(−2)β

Sp
0,2 ⊕ · · · ⊕OPn+e−p(−d + 1)β

Sp
0,d−1

ϕ̃p
−→ π3∗

OX → 0.

Say q = π3(L \ 3). By tensoring OPn+e−p(d − 1) ⊗ k(q), we have the surjection on vector spaces:[ ⊕
0≤i≤d−1

OPn+e−p(d − 1 − i)β
Sp
0,i

]
⊗ k(q) ↠ H 0(⟨3, q⟩,Oπ3

−1(q)(d − 1)). (10)

Note that by [loc. cit., Corollary 2.5] β
Sp
0,i ≤

(p−1+i
i

)
= h0(O3(i)) for 0 ≤ i ≤ d − 1 in (10). So we have

dimk H 0(⟨3, q⟩,Oπ3
−1(q)(d − 1)) = length(L ∩ X) ≤

d−1∑
i=0

β
Sp
0,i ≤

d−1∑
i=0

( p−1+i
i

)
=

(d−1+ p
p

)
.

(b) Now assume that length(L ∩ X) =
(d−1+p

p

)
. From the above inequalities, we see that β

Sp
0,i =

(p−1+i
i

)
for every i . Hence the map in (10) is an isomorphism. Thus, there is no equation of degree d −1 vanishing
on π3

−1(q) ⊂ L = ⟨3, q⟩ (i.e., H 0(Iπ3
−1(q)/L(d −1)) = 0). So, if F ∈ H 0(IX/Pn+e(k)) for 2 ≤ k ≤ d −1,

then F |L vanishes on π3
−1(q) ⊂ L and this implies that F |L is identically zero. Thus, L is contained in

Z(F), the zero locus of F as we claimed. □

Now, we think of another effect of property Nd,p on loci of d-secant lines. For this purpose, let us
consider an outer projection πq : X → πq(X) ⊂ Pn+e−1

= Proj(S1), S1 = k[x1, x2, . . . , xn+e] from a
point q = (1, 0, . . . , 0) ∈ (Sec X ∪ Tan X) \ X . We are going to consider the locus on X engraved by
d-secant lines passing through q via partial elimination ideals (abbr. PEIs) theory as below.

When f ∈ (IX )m has a leading term in( f ) = xd0
0 · · · xdn+e

n+e in the lexicographic order, we set dx0( f ) = d0,
the leading power of x0 in f . Then it is well known (e.g., [Han and Kwak 2015, Section 2.1]) that
K0(IX ) :=

⊕
m≥0{ f ∈ (IX )m | dx0( f ) = 0} = IX ∩ S1 is the saturated ideal defining πq(X) ⊂ Pn+e−1.

Let us recall some definitions and basic properties of partial elimination ideals; see also, e.g., [Green
1998, Chapter 6] or [Han and Kwak 2015] for details.

Definition (partial elimination ideal). Let I ⊂ R be a homogeneous ideal and let

K̃i (I ) =

⊕
m≥0

{ f ∈ Im | dx0( f ) ≤ i}.

If f ∈ K̃i (I ), we may write uniquely f = x i
0 f̄ + g where dx0(g) < i and define Ki (I ) by the image of

K̃i (I ) in S1 under the map f 7→ f̄ . We call Ki (I ) the i-th partial elimination ideal of I .
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Note that K0(I ) = I ∩ S1 and there is a short exact sequence as graded S1-modules

0 →
K̃i−1(I )

K̃0(I )
→

K̃i (I )

K̃0(I )
→ Ki (I )(−i) → 0. (11)

In addition, we have the filtration on partial elimination ideals of I :

K0(I ) ⊂ K1(I ) ⊂ K2(I ) ⊂ · · · ⊂ Ki (I ) ⊂ · · · ⊂ S1 = k[x1, x2, . . . , xn+e].

It is well-known that for i ≥ 1, the i-th partial elimination ideal Ki (IX ) set-theoretically defines

Zi+1 := {y ∈ πq(X) | multy(πq(X)) ≥ i + 1};

e.g., [Green 1998, Proposition 6.2]. Using this PEIs theory, we can describe the d-secant locus

6d(X) := {x ∈ X | πq
−1(πq(x)) has length d}

as a hypersurface F of degree d in the linear span ⟨F, q⟩ provided that X satisfies Nd,2(d ≥ 2).

Theorem 3.3 (locus of d-secant lines). Let X ⊂ Pn+e be a nondegenerate integral variety of dimension
n satisfying Nd,2(d ≥ 2). For a projection πq : X → πq(X) ⊂ Pn+e−1 where q ∈ (Sec X ∪ Tan X) \ X ,
consider the d-secant locus 6d(X). Then, we have:

(a) 6d(X) is either empty or a hypersurface F of degree d in the linear span ⟨F, q⟩.

(b) Zd = πq(6d(X)) is either empty or a linear subspace in πq(X) parametrizing the locus of d-secant
lines through q.

(c) For a point q ∈ Sec X \ (Tan X ∪ X), there is a unique d-secant line through q if Zd ̸= ∅.

Proof. (a) Since R/IX satisfies Nd,2, it also satisfies Nd,1 as an S1-module and we have the following
exact sequence:

→ · · · →

d−1⊕
j=1

S1(−1 − j)β
S1
1, j ϕ1

−→

d−1⊕
i=0

S1(−i) ϕ0
−→ R/IX → 0.

Furthermore, ker ϕ0 is just K̃d−1(IX ) and we have a surjection

· · · →

d−1⊕
j=1

S1(−1 − j)β
S1
1, j ϕ1

−→ K̃d−1(IX ) → 0.

Therefore, K̃d−1(IX ) is generated by elements of at most degree d .
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Now consider the following commutative diagram of S1-modules with K0(IX ) = IX ∩ S1:

0 0 0

0 K0(IX ) S1 S1/K0(IX ) 0

0 K̃d−1(IX )
⊕d−1

i=0 S1(−i) R/IX 0

0 K̃d−1(IX )/K0(IX )
⊕d−1

i=1 S1(−i) coker α̃ 0

0 0 0

α̃

ϕ0 (12)

From the left column sequences in the diagram (12), K̃d−1(IX )/K0(IX ) is also generated by at most
degree d elements. On the other hands, we have a short exact sequence from (11)

0 →
K̃d−2(IX )

K0(IX )
→

K̃d−1(IX )

K0(IX )
→ Kd−1(IX )(−d + 1) → 0, (13)

Hence, Kd−1(IX ) is generated by at most linear forms. So, Zd−1 is either empty or a linear space. Since
πq : 6d(X) ↠ Zd ⊂ πq(X) is a d : 1 morphism, 6q(X) is a hypersurface of degree d in ⟨Zd−1, q⟩. For a
proof of (c), if dim 6d(X) is positive, then clearly, q ∈ Tan 6q(X)⊂ Tan X . So, dim 6d(X)= dim Zd = 0
and there is a unique d-secant line through q . □

In particular, in the case of d = 2, entry locus of X (i.e., locus of 2-secant lines through an outer point)
is a quadric hypersurface, which was very useful to classify nonnormal del Pezzo varieties by Brodmann
and Park [2010].

3B. Syzygetic rigidity for d-regularity. In particular, if p = e then we have the following corollary of
Theorem 3.1 with characterization of the extremal cases.

Corollary 3.4. Let X ⊂ Pn+e be any nondegenerate algebraic set over an algebraically closed field k of
characteristic zero. Suppose that X satisfies Nd,e for some d ≥ 2. Then, we have

deg X ≤

(d−1+e
e

)
and the following are equivalent:

(a) deg X =
(d−1+e

e

)
.

(b) X is arithmetically Cohen–Macaulay (ACM) with d-linear resolution.

Proof. It suffices to show that (a) implies (b). By the assumption that deg X is maximal, length(L ∩ X) =(d−1+e
e

)
for a generic linear space 3 of dimension e. From a proof of Theorem 3.1, we see that there is no
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equation of degree d−1 vanishing on π3
−1(q)⊂ L =⟨3, q⟩ (i.e., H 0(Iπ3

−1(q)/L(d−1))= 0). This means
X satisfies ND(d − 1) condition. In particular, it follows from Theorem 1.1(a) that βe,d−1(X) ≤

(e+d−2
d−1

)
.

We also see from [Ahn and Kwak 2015, Corollary 2.4] that β
Se
0,d−1 ≤ β R

e,d−1 = βe,d−1(X) because X
satisfies Nd,e. Note that β

Se
0,d−1 =

(e+d−2
d−1

)
= h0(O3(d − 1)) in (10). Therefore,

βe,d−1(X) =

(e+d−2
d−1

)
.

So, we conclude from Theorem 1.1(b) that X is ACM with d-linear resolution. □

Remark 3.5. The above corollary can also be proved by the generalized version of the multiplicity
conjecture which was shown by Boij and Söderberg [2012]. Not relying on Boij–Söderberg theory, here
we give a geometric proof for the multiplicity conjecture in this special case.

As a consequence of previous results, now we can derive a syzygetic rigidity for d-regularity as follows:

Theorem 1.2 (syzygetic rigidity for d-regularity). Let X ⊂ Pn+e be any algebraic set of codimension e
over an algebraically closed field k of ch(k) = 0 satisfying condition ND(d − 1) for some d ≥ 2. If X has
property Nd,e, then X is d-regular (more precisely, X has ACM d-linear resolution).

Proof. By Theorem 1.1 and Corollary 3.4, if X satisfies both condition ND(d − 1) and property Nd,e,
then the degree of X should be equal to

(d−1+e
e

)
and this implies that X has ACM d-linear resolution (in

particular, X is d-regular). □

We would like to note that Theorem 1.2 does not hold without condition ND(ℓ) even though the given
X is an irreducible variety.

Example 3.6 (syzygetic rigidity fails without condition ND(ℓ)). Let N = (d0, . . . , ds) be a strictly
increasing sequence of integers and B(N) be the pure Betti table associated to N; see [Boij and Söderberg
2012]. Due to Boij–Söderberg theory, we can construct a Betti table B0 as given by

0 1 2 3 4
0 1 - - - -
1 - - - - -
2 - - - - -
3 - 18 32 16 -
4 - - - - 1

from the linear combination 4
5 B((0, 4, 5, 6))+ 1

5 B((0, 4, 5, 6, 8)). This B0 expects a curve C of degree 16
and genus 13 in P4 with h1(OC(1)) = 1 (i.e., e = 3), which satisfies property N4,e, but not 4-regular (i.e.,
Theorem 1.2 fails). This Betti table can be realized as the one of a projection C into P4 of a canonically
embedded genus 13 general curve C̃ ⊂ P12 from random 8 points of C̃ . Note that C is irreducible
(in fact, smooth) and has no defining equations of degree less than 4, but is not ND(3)-curve because
deg(C) = 16 ≱

(3+3
3

)
= 20. Here is a Macaulay 2 code for this:
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loadPackage("RandomCanonicalCurves",Reload=>true);
setRandomSeed("alpha");
g=13; k=ZZ/32003;
S=k[x_0..x_(g-1)];
I=(random canonicalCurve)(g,S);
for i from 0 to 7 do P_i=randomKRationalPoint I;
L=intersect apply(8,i->P_i); R=k[y_0..y_4];
f=map(S,R,super basis(1,L));
RI=preimage(f,I); betti res RI

4. Comments and further questions

In the final section, we present some relevant examples and discuss a few open questions related to our
main results in this paper.

4A. Certificates of condition ND(ℓ). First of all, from the perspective of this article, it would be very
interesting to provide more situations to guarantee condition ND(ℓ). As one way of thinking, one may
ask where condition ND(ℓ) does hold largely. For instance, as discussed in Remark 2.5, we can consider
this problem as follows:

Question 4.1. For given e, ℓ > 0, is there a function f (e, ℓ) such that any X ⊂ Pn+e of codimension e is
ND(ℓ)-subscheme if deg X > f (e, ℓ) and H 0(IX/Pn+e(ℓ)) = 0?

We showed that there are positive answers for this question in case of codimension two in Proposition 2.6
and Example 2.7. What about in higher codimensional case? (Recall that a key ingredient for
Proposition 2.6 is “lifting theorem” which is well-established in codimension 2.)

The following example tells us that for Question 4.1 one needs to assume irreducibility or some
conditions on irreducible components of X in general.

Example 4.2 (a non-ND(2) reduced scheme of arbitrarily large degree). Consider a closed subscheme
X ⊂ P3 of codimension 2 defined by the monomial ideal IX = (x3

0 , x2
0 x1, x0x2

1 , x t
1, x2

0 x2) for any positive
integer t ≥ 4. Note that h0(IX/P3(2)) = 0 and deg X = t + 2 ≥ 6 =

(e+2
2

)
. Since IX is a Borel fixed

monomial ideal, we see that IX∩L/P3 = (x2
0 , x0x2

1 , x t
1) for a general linear form L , which implies that X

does not satisfy ND(2).
If we consider a sufficiently generic distraction DL(IX ) of IX (see [Bigatti et al. 2005] for details of

distraction), then it is of the form

DL(IX ) =

(
L1L2L3, L1L2L4, L1L4L5,

t∏
j=1

M j , L1L2L7

)
,

where L i and M j are generic linear forms for each 1 ≤ i ≤ 7 and 1 ≤ j ≤ t . Then DL(IX ) defines the
union of t + 2 lines and 3 points. Using this, we can construct an example of non-ND(2) algebraic set of
arbitrarily large degree.
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4B. Condition ND(ℓ) and nonnegativity of h-vector. For any closed subscheme X ⊂ Pn+e of dimension
n, the Hilbert series of RX := k[x0, . . . , xn+e]/IX can be written as

HRX (t) =

∑
(dimk(RX )i )t i

=
h0 + h1t + · · · + hs t s

(1 − t)n+1 (14)

and the h-vector h0, h1, . . . , hs usually contains much information on the coordinate ring RX and on
geometric properties of X . One of the interesting questions on the h-vector is the one to ask about
nonnegativity of the hi and it is well-known that every hi ≥ 0 if RX is Cohen–Macaulay (i.e., X is ACM).
Recently, a relation between Serre’s condition (Sℓ) on RX and nonnegativity of h-vector has been focused
as answering such a question as:

Does Serre’s condition (Sℓ) imply h0, h1, . . . , hℓ ≥ 0?

This was checked affirmatively in case of IX being a square-free monomial ideal by Murai and Terai
[2009]. More generally, Dao, Ma and Varbaro [Dao et al. 2019] proved the above question is true under
some mild singularity conditions on X (to be precise, X has Du Bois singularity in ch(k) = 0 or RX is
F-pure in ch(k) = p). Here, we present an implication of condition ND(ℓ) on this question as follows.

Corollary 4.3 (ND(ℓ) implies nonnegativity of h-vector). Let X = Proj(RX ) be any closed subscheme of
codimension e in Pn+e over an algebraically closed field k with ch(k) = 0 and hi ’s be the h-vector of RX

in (14). Suppose that X has condition ND(ℓ − 1). Then, h0, h1, . . . , hℓ ≥ 0.

Proof. Say ri = dimk(RX )i . First of all, by (14), we have

(1 − t)n+1(r0 + r1t + r2t2
+ · · · ) = h0 + h1t + h2t2

+ · · · ,

which implies that h0 = r0, h1 =
(n+1

1

)
(−1)r0 + r1, . . . , h j =

∑ j
i=0

(n+1
i

)
(−1)ir j−i for any j . Since

r j−i =
(n+e+ j−i

j−i

)
− dimk(IX ) j−i , it holds that

h j =

j∑
i=0

(n+1
i

)
(−1)i

(n+e+ j −i
j −i

)
−

j∑
i=0

(n+1
i

)
(−1)i dimk(IX ) j−i

=

(
e + j − 1

j

)
−

j∑
i=0

(
n + 1

i

)
(−1)i dimk(IX ) j−i · · · , (∗)

where the last equality comes from comparing j-th coefficients in both sides of the identity

(1 − t)n+1
[∑

i≥0

(n+e+i
i

)
t i

]
=

1
(1 − t)e .

Now, by Theorem 1.1(a), we know that dimk(IX )0 = dimk(IX )1 = · · · = dimk(IX )ℓ−1 = 0 and
dimk(IX )ℓ ≤

(e+ℓ−1
ℓ

)
. So, for any j ≤ ℓ − 1, by (∗) we see that h j =

(e+ j−1
j

)
≥ 0. Similarly, we obtain

that hℓ =
(e+ℓ−1

ℓ

)
− dimk(IX )ℓ ≥ 0 as we wished. □
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Hence, it is natural to ask:

Question 4.4. How are Serre’s (Sℓ) on RX and condition ND(ℓ) on X related to each other?

For example, it would be nice if one could find some implications between the notions under reasonable
assumptions on singularities or connectivity of components.

4C. Geometric classification/characterization of ACM d-linear varieties. For further development, it is
natural and important to consider the boundary cases in Theorem 1.1 from a geometric viewpoint. When
ℓ = 1, due to del Pezzo–Bertini classification, we completely understand the extremal case, that is ACM
2-linear varieties, geometrically; (a cone of) quadric hypersurface, Veronese surface in P5 or rational
normal scrolls. It is also done in category of algebraic sets in [Eisenbud et al. 2006]. What about ACM
varieties having 3-linear resolution? or higher d-linear resolution? The followings are first examples of
variety with ACM 3-linear resolution.

Example 4.5 (varieties having ACM 3-linear resolution). We have:

(a) Cubic hypersurface (e = 1).

(b) 3-minors of 4 × 4 generic symmetric matrix (i.e., the secant line variety Sec(v2(P
3)) ⊂ P9).

(c) 3-minors of 3 × (e + 2) sufficiently generic matrices (e.g., secant line varieties of rational normal
scrolls).

(d) Sec(v3(P
2)); Sec(P2

× P1
× P1).

Most of above examples come from taking secants. Unless a hypersurface, are they all the secant
varieties of relatively small degree varieties? Recall that any secant variety Sec X not equal to the ambient
space is always “singular” because Sing(Sec X) ⊃ X . But, we can construct examples of smooth 3-linear
ACM of low dimension as follows:

Example 4.6 (nonsingular varieties with ACM 3-linear resolution). We have:

(a) (A nonhyperelliptic low degree curve of genus 3 in P3) For a smooth plane quartic curve C of genus
g = 3. One can reembed C into P9 using the complete linear system |OC(3)|. Say this image as C̃ . For
deg C̃ = 12, C̃ ⊂ P9 satisfies at least property N5 by the Green–Lazarsfeld theorem. We also know that

H 0(IC̃(2)) = H 0(OP9(2)) − H 0(OC̃(2)) =

(9+2
2

)
− (2 · 12 + 1 − 3) = 55 − 22 = 33.

Now, take any 6 smooth points on C̃ and consider inner projection of C̃ from these points into P3. Denote
this image curve in P3 by C . From [Han and Kwak 2012, Proposition 3.6], we obtain that

H 0(IC(2) = H 0(IC̃(2)) − (8 + 7 + 6 + 5 + 4 + 3) = 33 − 33 = 0.

In other words, there is no quadric which cuts out C in P3. Since C is nonhyperelliptic, C is projectively
normal (i.e., ACM). Therefore, C is a smooth ND(2)-curve in P3 and has deg C = 6 which is equal
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to 2g. Using Macaulay 2 [Macaulay2], we can also check all these computations including the minimal
resolution of C ⊂ P3. C has ACM 3-linear resolution such as:

0 1 2
0 1 - -
1 - - -
2 - 4 3

(b) (A surface in P6) Consider a rational normal surface scroll X = S(4, 4) in P9. Its secant line variety
Y = Sec X is a 5-fold and has a minimal free resolution as

0 1 2 3 4
0 1 - - - -
1 - - - - -
2 - 20 45 36 10

which is ACM 3-linear. Even though Y is singular, as we cut Y by three general hyperplanes H1, H2, H3

we obtain a smooth surface S = Y ∩ H1 ∩ H2 ∩ H3 of degree 15 in P6 whose resolution is same as above;
one can check all the computations using [Macaulay2].

It is interesting to observe that every variety of dimension ≥ 2 in Examples 4.5 and 4.6 has a determi-
nantal presentation for its defining ideal.

Question 4.7. Can we give a geometric classification or characterization of ACM d-linear varieties for
d ≥ 3? Do they all come from (a linear section of) secant construction except very small (co)dimension? In
particular, does it always have a determinantal presentation if X is ACM 3-linear variety and dim X ≥ 2?

Finally, we present some example as we discussed in Remark 2.8.

Example 4.8 (minimal degree of ℓ-th kind (ℓ ≥ 2) does not guarantee ACM linear resolution). In contrast
with ℓ = 1 case, a converse of Theorem 1.1(b):

The equality deg X =
(e+ℓ

ℓ

)
with ND(ℓ) implies that X has ACM (ℓ + 1)-linear resolution,

does not hold for ℓ ≥ 2 (note that, in the case of classical minimal degree, the statement does hold under
ND(1)-condition once we assume irreducibility or some connectivity condition on components of X such
as “linearly joined” in [Eisenbud et al. 2006]).

By manipulating Gin ideals and distraction method, one could generate many reducible examples of
such kind. Even though X is irreducible, we can construct a counterexample. As a small example, using
[Macaulay2] we can verify that a smooth rational curve C in P3 of degree 6, a (isomorphic) projection of
a rational normal curve in P6 from 3 random points, has Betti table as in Figure 3.

Note that C satisfies condition ND(2) and is of minimal degree of 2nd kind
(
i.e., deg(C) =

(2+2
2

))
, but

its resolution is still not 3-linear.
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0 1 2 3
0 1 - - -
1 - - - -
2 - 1 - -
3 - 6 9 3

0 1 2
0 1 - -
1 - - -
2 - 4 3
3 - - -

Figure 3. Betti tables of C and C ∩ H .
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