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Let G be a connected algebraic group and let X be a smooth projective G-variety. We prove a sufficient
criterion to determine the bigness of the tangent bundle TX using the moment map 8G

X : T ∗ X → g∗. As
an application, the bigness of the tangent bundles of certain quasihomogeneous varieties are verified,
including symmetric varieties, horospherical varieties and equivariant compactifications of commutative
linear algebraic groups. Finally, we study in details the Fano manifolds X with Picard number 1 which is
an equivariant compactification of a vector group Gn

a . In particular, we will determine the pseudoeffective
cone of P(T ∗ X) and show that the image of the projectivised moment map along the boundary divisor D
of X is projectively equivalent to the dual variety of the variety of minimal rational tangents of X at a
general point.
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1. Introduction

Throughout we work over the field of complex numbers C.
Since the seminal works of Mori and Siu-Yau on the solutions to the Hartshorne conjecture and the

Frankel conjecture [27; 36], it becomes apparent that making an assumption about the positivity of the
tangent bundle TX of a projective manifold X , or equivalently the positivity of the tautological divisor 3

of the projectivisation P(T ∗X) (in the geometric sense), allows us to derive a particularly rich geometry
of X . While the situation where TX is ample or nef has been intensively studied in the literature (see
[27; 3; 4; 28]), the case where TX is big is much less understood. The main difficulty in investigating
the bigness of TX in the general case is the lack of numerical characterisations in terms of invariants
of X even in low dimensions. As far as we know, there are three main tools which are used to prove or
disprove the bigness of TX . The first one is the (projectivised) moment map, i.e., the rational map defined
by certain subspaces of |3|. The second one is the existence of twisted symmetric vector fields, i.e.,
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nonvanishing of H 0(X, Symm TX ⊗ OX (−A)) with A being a big divisor. The third one is to determine
the cohomological class of the total dual variety of minimal rational tangents Č ⊆ P(T ∗X). We give in
the following an overview of a few of the varieties which have already been studied and also the method
used to prove or disprove the bigness of their tangent bundles:

• (Projectivised) moment map:

– Rational homogeneous spaces [33].

• Twisted symmetric vector fields:

– Toric varieties [14].
– Intersection of two quadrics in P4 and cubic surfaces in P3 [24].
– Hypersurfaces in Pn (n ≥ 3) [13].

• Total dual variety of minimal rational tangents:

– del Pezzo surfaces and del Pezzo threefolds [13].
– Fano manifolds with Picard number 1 and with zero-dimensional variety of minimal rational

tangents [12].
– Moduli spaces SUC(r, d) of stable vector bundles of rank r and degree d over a projective curve

C of genus g such that r ≥ 3, g ≥ 4 and (r, d) = 1 [8].
– Fano threefolds with Picard number 2 [21].

The main body of this paper will be devoted to pursue furthermore the criterion for the bigness of
TX via moment map. Let G be a connected algebraic group with Lie algebra g and let X be a smooth
projective G-variety. Then the moment map 8G

X : T ∗X → g∗ is defined as follows: for a point x ∈ X , the
map T ∗

x X → g∗ is defined as the cotangent map of the orbit map µx : G → Gx at x ; see Section 2C for
more details. We denote by MG

X ⊆ g∗ the closure of the image of 8G
X . The starting point of this paper is

the following criterion for the bigness of TX , which is proved by combining the moment map method
with the approach via twisted symmetric vector fields.

Proposition 1.1. Let G be a connected algebraic group and let X be a smooth projective G-variety. Then
TX is big if there exists an effective big divisor A such that

dim(8G
X (T ∗X |Supp(A))) < dim(MG

X ).

We refer the reader to Section 3A for discussion on how to verify the conditions in the criterion. As
the first application of Proposition 1.1, the following theorem confirms the bigness of the tangent bundles
of certain interesting smooth projective quasihomogeneous varieties.

Theorem 1.2. Let X be a projective manifold. Then TX is big if X is isomorphic to one of the following
varieties:

(1) A spherical G-variety with a G-stable affine open subset, e.g., symmetric varieties.

(2) A horospherical G-variety.

(3) A quasihomogeneous G-variety with G a commutative linear algebraic group.
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We refer the reader to Section 3B for the definitions of spherical varieties, symmetric varieties and
horospherical varieties. Our initial motivation for the present work is trying to produce more examples
of Fano manifolds with Picard number 1 and with big tangent bundle, while the only previous known
nonhomogeneous examples, up to our knowledge, are the quintic del Pezzo threefold V3 [13] and the
horospherical G2-variety X5 [32]. As the second application of Proposition 1.1, we derive infinitely many
(nonhomogeneous) examples of Fano manifolds with Picard number 1 and with big tangent bundle, which
are summarised in the following:

• Rational homogeneous spaces G/P with Picard number 1 [33]; see Theorem 2.10 and Example 3.9.

• Nonhomogeneous projective symmetric varieties (and their degenerations) [34]:

– The Cayley Grassmannian CG [25].
– The double Cayley Grassmannian DG [26].
– A smooth hyperplane section of the third row of the geometric Freudenthal’s magic square

Grω(A3, A6), where A is a complex composition algebra (i.e., the complexification of R, C, the
quaternions H, or the octonions O) [23].

See Corollary 3.11 and Remark 3.12.

• Nonhomogeneous smooth projective horospherical varieties [31]:

– X1(m) := (Bm, ωm−1, ωm) (m ≥ 3).
– X2

:= (B3, ω1, ω3).
– X3(m, i) := (Cm, ωi , ωi+1) (m ≥ 2, 1 ≤ i ≤ m − 1).
– X4

:= (F4, ω2, ω3).
– X5

:= (G2, ω2, ω1).

The varieties X3(m, i) are the odd symplectic Grassmannians and we refer the reader to [31] for the
notations; see Proposition 3.13 and Remark 3.14.

• A smooth linear section Vk of Gr(2, 5) ⊆ P9 with codimension k ≤ 3 in its Pücker embedding [12;
13]. The variety V1 is isomorphic to the horospherical variety X3(2, 1); see Proposition 3.15 and
Example 4.5.

• A smooth linear section Sk of the 10-dimensional spinor variety S5 ⊆ P15 with codimension k ≤ 3
in its minimal embedding. The variety S1 is the horospherical variety X2; see Proposition 3.15,
Example 4.5 and Corollary 4.18.

• The smooth projective two-orbits F4-variety X1 given in [31, Definition 2.11]. Note that the smooth
projective two-orbits G2×PGL2-variety X2 is isomorphic to the general codimension 2 linear section
Sg

2 of S5; see [1, Proposition 4.8; 31, Definition 2.12] and Proposition 4.21.

An interesting class of examples belonging to case (3) of Theorem 1.2 is the equivariant compactifica-
tions of vector groups. Recall that an equivariant compactification of an algebraic group G is a pair (X, x),
where X is a normal complete algebraic variety equipped with a regular action G × X → X and x ∈ X is a
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point with the trivial stabiliser such that the orbit Gx is open and dense in X . We find it quite remarkable
that the moment map of a Fano manifold X with Picard number 1 which is an equivariant compactification
of a vector group Gn

a exhibits many interesting geometric properties and it has a surprising connection
with the variety of minimal rational tangents (VMRT, for short) of X . In particular, in this situation,
as the last application of Proposition 1.1, we have a complete description of the pseudoeffective cone
of P(T ∗X) and we can relate the criterion given in Proposition 1.1 to the criterion given by total dual
VMRT in [8; 13]. We refer the reader to Section 4A for the explicit definitions of dual varieties, codegree,
VMRT and total dual VMRT.

Theorem 1.3. Let X be a Fano manifold with Picard number 1, different from projective spaces, which is
an equivariant compactification of the vector group G = Gn

a with an open orbit O ⊆ X. Denote by D the
complementary X \ O and by MG

D the closure of the image of the restricted map 8G
X |D : T ∗X |D → g∗.

Then the following statements hold:

(1) The pseudoeffective cone Eff(P(T ∗X)) is generated by π∗D and all the prime divisors DH (see
Notation 3.2), where π : P(T ∗X) → X is the natural projection and H is a reduced and irreducible
hypersurface in P(g∗) containing P(MG

D).

(2) If the VMRT Cx ⊆ P(Tx X) at a point x ∈ O is smooth, then P(MG
D)⊆ P(g∗) is projectively equivalent

to the dual variety of Cx ⊆ P(Tx X).

(3) If the VMRT Cx ⊆ P(Tx X) at a point x ∈ O is smooth and not dual defective, then we have

DH = Č, Eff(P(T ∗X)) = ⟨DH, π∗D⟩ and DH ∼ a3 − 2π∗D

where H = P(MG
D) ⊆ P(g∗), the variety Č ⊆ P(T ∗X) is the total dual VMRT , the coefficient a is the

codegree of the VMRT and 3 is the tautological divisor of P(T ∗X).

Remark 1.4. (1) For projective spaces, there exist nonisomorphic equivariant compactification struc-
tures of vector groups and they are classified by the so-called Hassett–Tschinkel correspondence
proved in [11]; see also [6]. In particular, Theorem 1.3 above holds for the simplest equivariant
compactification structure on projective spaces (see Example 4.6), however the statement (2) is no
longer true for others. Indeed, since the VMRT of a projective space is the whole projectivised
tangent space, its total dual VMRT is an empty set. Therefore, if the statement (2) holds, then MG

D

is the origin of g∗. This implies that the points in D are fixed under the action of G.

(2) For the known examples of equivariant compactifications of vector groups with Picard number 1
(see Example 4.5), we will determine in Table 1 the dual defect and the codegree of their VMRTs,
i.e., the value of a.

2. Notation, conventions, and facts used

Let X be a projective manifold. Denote by N 1(X)R the finite-dimensional R-vector space of numerical
equivalence classes of R-divisors. The pseudoeffective cone Eff(X) ⊆ N 1(X)R is the closure of the convex
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cone spanned by the classes of effective R-divisors. It is known the interior of Eff(X) is the big cone
Big(X) of X ; that is, the open cone generated by big divisors on X .

2A. Positivity of vector bundles. Let E be a vector bundle over a smooth projective variety X . We denote
by P(E) the natural (not the Grothendieck) projectivisation of E ; that is, we have

P(E) := Proj
(⊕

m≥0

Symm E∗

)
,

where E∗ is the dual bundle of E .

Definition 2.1. Let E be a vector bundle over a projective manifold X . We say that E is big (resp. ample,
nef, pseudoeffective) if the tautological line bundle OP(E∗)(1) of the projective bundle P(E∗) is big (resp.
ample, nef, pseudoeffective).

Example 2.2. Let E ∼=OP1(a1)⊕· · ·⊕OP1(ar ) be a vector bundle of rank r over P1 such that a1 ≥· · ·≥ar .
Then we have

E is


ample if and only if ar > 0;

nef if and only if ar ≥ 0;

big if and only if a1 > 0;

pseudoeffective if and only if a1 ≥ 0.

We have the following simple but useful criterion for bigness of vector bundles:

Lemma 2.3 (equivalent definitions of bigness, [13, Lemma 2.3]). Let E be a vector bundle over a
projective manifold X. Denote by π : P(E∗) → X the natural projection and by 3 the tautological divisor
class of P(E∗). Then the following statements are equivalent:

(1) The vector bundle E is big.

(2) There exists a big divisor A on X and a positive integer m such that m3 − π∗ A is big.

(3) There exists a big divisor A on X and a positive integer m such that m3 − π∗ A is pseudoeffective.

Proof. The implication (1)=⇒(2) follows from the openness of bigness, and the implication (2)=⇒(3) is
trivial. Finally the implication (3)=⇒(1) follows from [13, Lemma 2.3]. □

Lemma 2.4. Let F and E be two vector bundles over a projective manifold X such that there exists a
generically injective map σ : F → E. If F is big, then E is big.

Proof. By Lemma 2.3, there exists a big divisor A on X and a positive integer m such that m3F − π∗

F A
is big, where 3F is the tautological divisor of P(F∗) and πF : P(F∗) → X is the natural projective.
Then, after replacing m by its large enough multiple m′m and replacing A by m′ A, we may assume
that |m3F −π∗

F A| is nonempty. In particular, we have H 0(X, Symm F ⊗ OX (−A)) ̸= ∅. This implies
that H 0(X, Symm E ⊗ OX (−A)) ̸= ∅. In other words, we have |m3E − π∗

E A| ̸= ∅ and hence E is
big by Lemma 2.3, where 3E is the tautological divisor of P(E∗) and πE : P(E∗) → X is the natural
projection. □
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Example 2.5. Let X be a projective manifold and let L be a big line bundle over X . Set E = L ⊕ L∗.
Then the tangent bundle of P(E∗) is big. Indeed, we note that E is big by Lemma 2.4 as L is big. In
particular, the relative tangent bundle of P(E∗) → X is big as it is isomorphic to the line bundle OP(E∗)(2).
Consequently, the tangent bundle T P(E∗) itself is big by Lemma 2.4.

2B. Pseudoeffective cone of divisors on G-varieties. Let D be a Q-Weil divisor on a normal projective
variety X and let D be an irreducible component of supp(D). We denote by m D(D) the multiplicity of
D along D, i.e., the coefficient of D in D.

Lemma 2.6. Let X be a projective manifold. Let D and D′ be two effective Q-Weil divisors on X such
that supp(D) = supp(D′). Then D is big if and only if D′ is big.

Proof. By symmetry, it suffices to prove that if D is big, then D′ is big. Let us denote by D1, . . . , Dr the
irreducible components of supp(D) = supp(D′). We define

m := max{m Di (D) | i = 1, . . . , r} and m′
:= min{m Di (D′) | i = 1, . . . , r}.

Let n be a positive integer such that nm′
≥ m. Then nD′

− D is effective. In particular, it follows that
nD′ is big and hence so is D′ itself. □

In general, the pseudoeffective cone of a projective manifold may be very complicated to describe.
However, if X admits a G-action for some solvable linear algebraic group G, then we have the following
very useful result concerning Eff(X).

Theorem 2.7 [2, Théorème 1.3]. Let G be a connected solvable linear algebraic group and let X be
a smooth projective G-variety. Then every effective cycle on X is rationally equivalent to a G-stable
effective cycle. In particular, the pseudoeffective cone Eff(X) of X is generated by G-stable divisors.

As an immediate application of the theorem above, one can easily derive the following criterion for
bigness of G-equivariant vector bundles over smooth projective G-varieties.

Proposition 2.8 (criterion for bigness of G-equivariant vector bundles). Let G be a connected solvable
linear algebraic group. Let E be a G-equivariant vector bundle over a smooth projective G-variety X.
Denote by π : P(E∗) → X the natural projection and by 3 the tautological divisor class of P(E∗). Then
E is big if and only if there exist G-stable effective integral divisors 1 on P(E∗) and D on X satisfying:

(1) There exists a positive integer m > 0 such that 1 ∈ |m3|.

(2) The divisor D is big and 1 − π∗D ≥ 0.

Proof. One direction is clear by Lemma 2.3. Thus we may assume that E is big. By Lemma 2.3, there
exists a big divisor A on X and a positive integer m1 such that m13 − π∗ A is big. On the other hand,
by Theorem 2.7, there exists a G-stable effective divisor D′ on X such that A ∼Q r1 D′ and a G-stable
effective divisor 1′ on P(E∗) such that m13 − π∗ A ∼Q r21

′ for some rational numbers r1, r2 > 0. Set
1 = m2(r21

′
+ r1π

∗D′) for some sufficiently divisible positive integer m2. Then we conclude by letting
m = m1m2 and D = m2r1 D′. □
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2C. Moment map of G-varieties. In this subsection, we briefly recall basic facts concerning moment
maps of G-varieties and we refer the reader to [40] for more details. Let X be an n-dimensional smooth
algebraic variety. Then there exists a standard symplectic structure on the cotangent bundle T ∗X of
X , which is given by a 2-form ω = dx ∧ d y =

∑
dxi ∧ dyi , where x = (x1, . . . , xn) is a tuple of local

coordinates on X and y = (y1, . . . , yn) is an impulse, i.e., a tuple of dual coordinates in a cotangent
space. If X is a G-variety, then the symplectic structure on T ∗X is G-invariant and, for every ξ ∈ g, the
velocity field of ξ on T ∗X has a Hamiltonian Hξ = ξ∗, the respective velocity field on X considered as a
linear function on T ∗X . Furthermore, the action of G on T ∗X is Hamiltonian, i.e., the map ξ 7→ Hξ is a
homomorphism of g to the Poisson algebra of functions on T ∗X . The dual morphism 8G

X : T ∗X → g∗

defined as following

⟨8G
X (w), ξ⟩ = Hξ (w) = ⟨w, Hξ (x)⟩, ∀w ∈ T ∗

x X, ξ ∈ g, (2.8.1)

is called the moment map. We denote by MG
X ⊆ g∗ the closure of the image of the moment map. If

Z ⊆ X is a closed (maybe reducible) subvariety, we denote by MG
X (Z) ⊆ g∗ the closure of the image

8G
X (T ∗X |Z ). Let T gX ⊆ X × g∗ be the closure of the image of the following map

π × 8G
X : T ∗X → X × g∗,

where π : T ∗X → X is the natural projection. Then clearly the moment map factors as

8G
X : T ∗X → T gX 8̂G

X−−→ g∗.

The morphism 8̂G
X is called the localised moment map. The general fibres of 8̂G

X are the cotangent spaces
g⊥

x = T ∗
x Gx to general orbits and the induced map T g

x X → g∗ is exactly the cotangent map of the orbit
map µx at x . Here gx is the Lie algebra of the isotropy subgroup Gx of G at x .

The moment map 8G
X is equivariant with respect to the natural C∗-actions on T ∗X and g∗. This implies

that the 8G
X induces a projectivised moment map

8G
X : P(T ∗X) 99K P(g∗).

Then the closure of the image of 8G
X is exactly P(MG

X ) and MG
X is the affine cone of P(MG

X ). Moreover,
denote by V ⊆ H 0(X, TX) the subspace of Hamiltonians. Then V can be naturally identified to a linear
system V ⊆ |OP(T ∗ X)(1)| and the rational map 8G

X is exactly the rational map defined by the linear
system V . Indeed, firstly note that we have a natural surjective linear map g → V whose kernel consists
of elements ξ ∈ g such that Hξ = 0. Let x ∈ X be a general point and ω ∈ T ∗

x X be a general element.
Then the rational map 8V : P(T ∗X) 99K P(V ∗) ⊆ P(g∗) defined by the linear system V sends the point
[ω] ∈ P(T ∗

x X) to [V ⊥
x ] ∈ P(V ∗), where Vx is the codimension one subspace of V defined as

Vx := {Hξ ∈ V | ⟨ω, Hξ (x)⟩ = 0}.

Comparing this with (2.8.1), one can easily derive that 8G
X ([ω]) = 8V ([ω]); that is, the map 8G

X coincides
with 8V .
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Finally, we note that the moment map 8G
X is G-equivariant and MG

X is a G-birational invariant of X .
In particular, after passing to a smooth G-stable open subset, we can define the moment map for singular
G-varieties. Moreover, the moment map also induces a homomorphism of filtered algebras

gr 8∗
: Sym• g = C[g∗

] → H 0(X, Sym• TX) ⊆ C[T ∗X ], (2.8.2)

where C[g∗
] (resp. C[T ∗X ]) is the algebra of regular functions on g∗ (resp. T ∗X ).

If G is a reductive linear algebraic group, the dimension of MG
X is given by Knop [22] in terms of two

numerical invariants of X related to the action of a Borel subgroup of G: the complexity and the rank;
see for instance Example 3.8.

Definition 2.9 (complexity and rank). Let G be a connected reductive linear algebraic group with a fixed
Borel subgroup B, and let X be an algebraic G-variety:

(1) The complexity c(X) of the action G on X is the codimension of a general B-orbit in X .

(2) The rank r(X) of the action G on X is the rank of 3(X), where 3(X) is the set of weights of all
rational B-eigenfunctions on X .

We recall that for any linear algebraic group G acting on a variety X , the set of rational G-eigenfunctions
on X are defined as

C(X)(G)
= { f ∈ C(X) \ {0} | ∃χ ∈ X (G) s.t. ∀g ∈ G, g · f = χ(g) f },

where C(X) is the field of rational functions on X and X (G) is the group of characters of G.

Theorem 2.10 (dimension formula of MG
X , [22, Satz 7.1]). Let G be a connected reductive linear

algebraic group and let X be a projective G-variety. Then we have

dim(MG
X ) = dim(P(MG

X )) + 1 = 2 dim(X) − 2c(X) − r(X).

3. Criteria for bigness and proof of Theorem 1.2

In this section, firstly we shall prove Proposition 1.1 which gives a sufficient condition to guarantee
the bigness of tangent bundles of smooth projective G-varieties via its moment map along effective big
divisors. Next we will discuss several situations where the conditions in Proposition 1.1 hold automatically.
Finally, we apply these criteria to prove Theorem 1.2, which confirms the bigness of tangent bundles
of certain quasihomogeneous spaces, including symmetric varieties, spherical varieties and equivariant
compactifications of commutative linear algebraic groups.

3A. Criterion for bigness via moment map. Let m be a positive integer. For every ξ ∈ Symm g, we
denote by Hξ ∈ H 0(X, Symm TX) the image of ξ under the map gr 8∗; see (2.8.2). Then for any point
x ∈ X , the evaluation Hξ (x) of Hξ at x can be regarded as a homogeneous polynomial of degree m
over the cotangent space T ∗

x X . We note that Hξ (x) may be identically zero over T ∗
x X and the following

observation relates the vanishing locus of Hξ (x) in T ∗
x X to the zero locus of ξ in g∗.
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Lemma 3.1. Let G be a connected algebraic group and let X be a smooth projective G-variety. Given a
positive integer m, an element ξ ∈ Symm g and a point w ∈ T ∗

x X , then Hξ (x) vanishes at w if and only if
ξ vanishes at 8G

X (w) ∈ g∗.

Proof. Note that the moment map 8G
X restricted to T ∗

x X is just the following composition

8G
X,x : T ∗

x X → T ∗

x Ox = g⊥

x ↪→ g∗,

where Ox is the G-orbit of x . In particular, the form Hξ (x) is the composition ξ ◦ 8G
X,x , where ξ is

regarded as a function over g∗. □

Given a positive integer m and a Weil divisor A on X , recall that we have the following natural
isomorphism

H 0(P(T ∗X), OP(T ∗ X)(m) ⊗ OP(T ∗ X)(−π∗ A)) → H 0(X, Symm TX ⊗ OX (−A)). (3.1.1)

Let σ ∈ H 0(P(T ∗X), OP(T ∗ X)(m)) be a section and denote by Hσ ∈ H 0(X, Symm TX ) the corresponding
symmetric vector field on X . Then, for a prime divisor A on X , the section σ vanishes along π∗ A if and
only if the corresponding form Hσ vanishes along A.

Proof of Proposition 1.1. By Lemma 2.6, we may assume that A is reduced. Since both MG
X (A) and MG

X

are invariant under the dilation action of C∗ on g∗, by assumption, we have

dim(P(MG
X (A))) < dim(P(MG

X )).

In particular, as MG
X is irreducible, there is a hypersurface in P(g∗) defined by a homogeneous polynomial

ξ ∈ Symm g of degree m such that it contains P(MG
X (A)) but not P(MG

X ). Let Hξ ∈ H 0(X, Symm TX )

be the corresponding symmetric vector field on X . Then we have Hξ ̸= 0 and Hξ vanishes identically
along A.

Let σ ∈ H 0(P(T ∗X), OP(T ∗ X)(m)) be the global section such that Hσ = Hξ . Then according to
Lemma 3.1 and the discussion before the proof, the section σ vanishes identically along π∗ A. In
particular, the following divisor

m3 − π∗ A ∼ div(σ ) − π∗ A ≥ 0

is pseudoeffective. Thus, as A is big, it follows from Lemma 2.3 that TX is big. □

Notation 3.2. Given a (maybe nonreduced and reducible) hypersurface H⊆ P(g∗) defined by ξ ∈ Symm g.
We will denote by Dξ ∈ |OP(T ∗ X)(m)| the divisor corresponding to ξ and the divisor DH is defined as the
horizontal part of Dξ . Let π : P(T ∗X) → X be the natural projection. Then we have

Dξ = DH +

∑
multπ∗ D(Dξ )π

∗D,

where D runs over all the prime divisor in X such that P(MG
X (D)) is contained in H.
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3A1. Criteria for bigness of boundary divisors. To apply Proposition 1.1, firstly we need to find an
effective big divisor A in X . In most cases considered in this paper, the variety X will be a smooth
quasihomogeneous projective variety and it is natural to choose A to be the complement of the unique
open orbit.

Proposition 3.3 [10, Section I, Proposition 1 and Theorem 1]. Let X be a projective manifold and let
U ⊆ X be an affine dense open subset of X. Then the complement D := X \ U has pure codimension 1
and the line bundle OX (D) is big.

Proof. The first statement follows from [10, Proposition 1]. For the second statement, since U is affine, by
[10, Theorem 1], there is a closed subvariety Z of D and a blowing-up ϕ : X → X with the centre Z ⊆ D
such that ϕ−1(D) is the support of an effective ample divisor A on X . In particular, the push-forward
ϕ∗ A is a big Weil divisor with support D. Then it follows from Lemma 2.6 that D itself is big. □

Let G be connected linear algebraic group. A closed subgroup H of G is said to be regularly embedded
in G if Radu(H) ⊆ Radu(G), where Radu(H) (resp. Radu(G)) is the unipotent radical of H (resp. G).
For example, if there is no parabolic subgroup of G containing H , then H is regularly embedded in G
[16, 30.3].

Lemma 3.4 (criteria for bigness of boundary). Let G be a connected linear algebraic group and let X be
a smooth projective G-variety with a Zariski open dense orbit O. Then the complement D := X \ O is a
big divisor if one of the following holds:

(1) The group G is solvable.

(2) For a point x ∈ O , the isotropy subgroup Gx of G at x is regularly embedded in G.

(3) For a point x ∈ O , the isotropy subgroup Gx of G at x is reductive.

Proof. By Proposition 3.3, it is enough to show that O is an affine variety and the latter follows from
certain known criteria for affineness of homogeneous spaces; see for instance [39, Theorems 3.5, 3.7
and 3.8]. □

3A2. Image of moment map along boundary divisors. Once we have an effective big divisor D on a
projective G-variety X , to apply Proposition 1.1, we need to control the dimension of MG

X (Dred). In the
following we consider the case where D is G-stable. Let G be a connected algebraic group and H be
a closed subgroup. Let F be an H -variety. Then H acts on G × F by h(g, f ) = (gh−1, h · f ) and we
denote by G ∗H F the quotient set (G × F)/H , which is a homogeneous fibre bundle over G/H .

Lemma 3.5. Let G be a connected algebraic group and let X = G/H be a homogeneous variety. Denote
by N the normaliser NG(H) of H in G and by n its Lie algebra. Then we have T ∗X = G ∗H h⊥ and the
moment map 8G

X factors as
G ∗H h⊥

→ G ∗N h⊥
→ g∗,

where N acts on h⊥ by coadjoint action. In particular, we have

dim(MG
X ) ≤ dim(X) + dim(g) − dim(n). (3.5.1)
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Proof. This is a standard fact about homogeneous spaces. Let us recall the proof for the reader’s
convenience. There is a canonical isomorphism Tx X ∼= g/gx for any point x ∈ X . In particular, we get a
canonical embedding T ∗X → X × g∗. Then the isomorphism 9 : G ∗H h⊥

→ T ∗X is given as follows:

9(g, w) = ([gH ], Ad∗

g(w)),

where g ∈ G, w ∈ h⊥ and Ad∗

g ∈ GL(g∗) is the coadjoint representation of g. In particular, under the
isomorphism 9, the moment map 8G

X : T ∗X → g∗ can be written as

8G
X (g ∗ w) = Ad∗

g(w),

where g ∈ G and w ∈ h⊥. For any n ∈ N , we have Ad∗

n(h
⊥) = h⊥ by definition. This immediately

implies that 8G
X factors through G ∗N h⊥

→ g∗. The inequality (3.5.1) then follows from the fact that
dim(MG

X ) ≤ dim(G ∗N h⊥) = dim(G/N ) + dim(h⊥). □

Lemma 3.6. Let G be a connected linear algebraic group and let X be a smooth projective G-variety.
Let D be a G-stable prime divisor in X. Then we have

dim(MG
X (D)) = dim(MG

D) ≤ dim(X) + dim(g) − dim(n) − 1,

where n is the Lie algebra of the normaliser NG(H) of the isotropy subgroup of G at a general point
x ∈ D.

Proof. Since D is G-stable, the restriction of the moment map 8G
X to D factors as

T ∗X |Dreg → T ∗Dreg → g∗,

where Dreg is the smooth locus of D. In particular, we have MG
X (D) = MG

D. Let Ox be the orbit of a
general point x ∈ Dreg. Then we also have

dim(MG
D) = dim(8̂G

D(T gDreg)) = dim(D) − dim(Ox) + dim(MG
Ox

).

Then we conclude by applying Lemma 3.5 to the homogeneous space Ox = G/Gx . □

Lemma 3.7. Let G be a connected reductive linear algebraic group and let X be a smooth projective
G-variety. Let D be a G-stable prime divisor in X. Then

dim(MG
X (D)) = dim(MG

D) < dim(MG
X ).

if and only if
c(X) = c(D) and r(X) = r(D) + 1.

Proof. This follows directly from Knop’s dimension formula, see Theorem 2.10. Here we remark that we
have always c(D) ≤ c(X), r(D) ≤ r(X) and the equality holds if and only if D = X [39, Theorem 5.7]. □

Example 3.8 (quintic del Pezzo threefold). Let X = V3 be the smooth quintic del Pezzo threefold, e.g., a
smooth codimension 3 linear section of Gr(2, 5) ⊆ P9. Then TX is big by [13, Theorem 1.5]. Denote
by H the ample generator of Pic(X). Recall that there is an SL2-action on X with three orbits [29]: a
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unique open orbit, a unique 2-dimensional orbit whose closure D is linearly equivalent to 2H , a unique
1-dimensional orbit which is a rational normal curve of degree 6. Then under the SL2-action, we have

c(X) = r(X) = 1, c(D) = 0 and r(D) = 1.

Hence, by Theorem 2.10, we obtain that MG
X =MG

D = g∗. This shows that the converse of Proposition 1.1
is false in general.

3B. Proof of Theorem 1.2. In this subsection, we aim to apply the criteria proved in the previous
subsection to prove the bigness of the tangent bundles of certain interesting quasihomogeneous G-
varieties. In particular, we shall finish the proof of Theorem 1.2.

3B1. Spherical varieties. Let G be a connected reductive linear algebraic group and let X be a normal
G-variety. Then X is said to be spherical if c(X) = 0. In particular, there is an open G-orbit G/H ⊆ X .
Let Y be a G-orbit in X . Denote by VY (X) the set of G-stable prime divisors in X containing Y and
by DY (X) the set of B-stable but not G-stable prime divisors in X containing Y . Write X∨

Q
the tensor

product of the dual lattice of 3(X) with Q; see Definition 2.9. For any prime divisor D in X there is an
associated valuation νD and also an associated element ρ(D) in X∨

Q
. Denote by C∨

Y (X) ⊆ X∨

Q
the cone

generated by the images of divisors in VY (X) and DY (X).

Example 3.9. We collect some typical examples of spherical varieties:

(1) Recall that a toric variety is a normal variety X with a dense orbit of a torus T = Gr
m such that the

points in the dense T -orbit have a trivial stabiliser in T . The variety X is spherical for G = T with
H = {e}. Moreover, we have r(X) = dim(T ) = dim(X). Recall that it is shown in [14, Corollary 1.3]
that the tangent bundle of a smooth projective toric variety is big.

(2) For G a connected semisimple linear algebraic group and P a parabolic subgroup containing a
maximal torus T of G, the quotient G/P is a projective rational homogeneous space and the Bruhat
decomposition implies that G/P is a spherical G-variety. Moreover, we have r(X) = 0. Thus the
moment map 8G

X is generically finite (see Theorem 2.10) and hence TX is big, see also [33].

(3) Let G be a connected semisimple linear algebraic group equipped with a nonidentical involution
θ ∈ Aut(G). Let H be a closed subgroup of G such that Gθ

⊆ H ⊆ NG(Gθ ). Then G/H is said
to be a symmetric homogeneous space and G/H -embeddings are called symmetric varieties. The
symmetric varieties are spherical.

Proposition 3.10. Let G be a connected reductive linear algebraic group and let X be smooth projective
spherical G-variety. Let D be a G-stable prime divisor in X. Then we have c(X) = c(D) = 0 and
r(D) = r(X) − 1. In particular, if there exists a G-stable affine open subset O of X , then TX is big.

Proof. Since X is a spherical G-variety, we have c(D) ≤ c(X) = 0. On the other hand, let Y be the unique
open G-orbit in D. Then one can easily obtain that VY (X) = {D} and DY (X) = ∅. This implies that the
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cone C∨

Y (X) ⊆ X∨

Q
is 1-dimensional. In particular, by [39, Proposition 15.14], we obtain

r(D) = r(Y ) = r(X) − dim(C∨

Y ) = r(X) − 1.

Now we assume that there exists a G-stable affine open subset O of X . By Proposition 3.3, the complement
D := X \O is a big divisor on X . Then the bigness of TX follows from Proposition 1.1 and Lemma 3.7. □

Corollary 3.11. Let G be a connected reductive linear algebraic group and let X be a smooth projective
spherical G-variety. Then TX is big if one of the following holds:

(1) The variety X is a symmetric variety.

(2) The variety X has Picard number 1 and contains a G-stable prime divisor.

Proof. Firstly we assume that X is a symmetric variety and denote by O the unique open G-orbit of X .
Then O is isomorphic to a symmetric homogeneous variety G/H . On the other hand, thanks to [37,
Section 8], the subgroup H is reductive. Therefore, by Lemma 3.4, the boundary divisor D := X \ O is a
big divisor and it follows from Proposition 3.10 above that TX is big.

Next we assume that X has Picard number 1 and there exists a G-stable prime divisor D in X . Then
D is ample and it is well known that O := X \ D is an affine variety. Hence it follows again from
Proposition 3.10 that TX is big. □

Remark 3.12. The smooth projective symmetric varieties with Picard number 1 are classified by Ruzzi
[34] and there are exactly six nonhomogeneous ones, including the Cayley Grassmannian CG, the
double Cayley Grassmannian DG, a general hyperplane section of Grω(A3, A6), where A is a complex
composition algebra. In particular, by Semicontinuity Theorem, the tangent bundle of any smooth
hyperplane section of Grω(A3, A6) is big.

3B2. Horospherical varieties. Let G be a connected reductive linear algebraic group. A closed subgroup
H of G is said to be horospherical if it contains the unipotent radical of a Borel subgroup of G. In
this case we shall say that the homogeneous space G/H is horospherical. Denote by P the normaliser
NG(H) of H in G. Then P is a parabolic subgroup of G such that P/H is a torus and G/H is a torus
bundle over the flag variety G/P . A normal G-variety is said to be a horospherical variety if G has an
open orbit isomorphic to G/H for some horospherical subgroup H . Horospherical varieties are spherical
and their ranks are equal to the rank of the torus P/H .

Proposition 3.13. Let G be a connected reductive linear algebraic group and let X be a smooth projective
horospherical G-variety. Then TX is big.

Proof. Let D be a G-stable prime divisor in X . As shown in the proof of Proposition 3.10, we have
r(D) = r(X)−1 and, by Lemma 3.7, we obtain dim(MG

X (D)) < dim(MG
X ). Let O = G/H be the unique

open G-orbit in X with H a horospherical subgroup of G. Denote by P = NG(H) the normaliser of H
in G. Then, by Lemma 3.5, the restriction of the moment map 8G

X : T ∗X → g∗ to O factors as

G ∗H h⊥ πA
−→ G ∗P h⊥ ϕ

−→ g∗.
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Moreover, it is known that ϕ is generically finite onto its image MG
X ; see Theorem 2.10. Let D be a

B-stable but not G-stable prime divisor in X . Then D ∩ O ̸= ∅ and D ∩ O is the inverse image by the
torus fibration G/H → G/P of a Schubert divisor D′ of the flag variety G/P . As a consequence, the
Zariski closure of the image 8G

X (T ∗X |D) is equal to the Zariski closure of the image ϕ(p−1(D′)), where
p : G ∗P h⊥

→ G/P is the natural projection. However, as ϕ is generically finite onto MG
X , we get

dim(ϕ(p−1(D′))) < dim(G ∗P h⊥) = dim(MG
X ).

As a consequence, our argument above shows that for every B-stable prime divisor D in X , we have
always dim(MG

X (D)) < dim(MG
X ). On the other hand, let OB be the open B-orbit of X . Then OB is

an affine variety and the complement D := X \ OB is big divisor by Lemma 3.4. Then it follows from
Proposition 1.1 that TX is big. □

Remark 3.14. Smooth projective horospherical varieties with Picard number 1 are classified by Pasquier
[31]. With the same notations as in [31], there are five classes of nonhomogeneous ones, including
X1(m)= (Bm, ωm−1, ωm) (m ≥ 3), X2

= (B3, ω1, ω3), X3(m, i)= (Cm, ωi , ωi+1) (m ≥ 2, 1 ≤ i ≤ m−1),
X4

= (F4, ω2, ω3) and X5
= (G2, ω2, ω1).

3B3. Quasihomogeneous G-varieties with G commutative. The following result confirms the bigness of
the tangent bundles of equivariant compactifications of connected commutative linear algebraic groups.

Proposition 3.15. Let G be a connected commutative linear algebraic group and let X be a smooth
projective G-variety with an open G-orbit O. Then TX is big. In particular, the tangent bundle of an
equivariant compactification of G is big.

Proof. Let O be the unique open G-orbit in X and let D := X \ O be the complement of O . Since G
is solvable, by Lemma 3.4, the divisor D is big. Moreover, as G is commutative, for any subgroup H ,
we have always NG(H) = G. In particular, Lemma 3.5 implies that dim(MG

X ) ≤ dim(X). On the other
hand, as G has an open orbit O in X , we must have dim(MG

X ) ≥ dim(O) = dim(X). Hence, we obtain
dim(MG

X ) = dim(X). Let Di be an irreducible component of D. As G is commutative, Lemma 3.6 yields

dim(MG
X (Di )) = dim(MG

Di
) ≤ dim(X) − 1 < dim(MG

X ).

Hence, the tangent bundle TX is big by Proposition 1.1. □

Proof of Theorem 1.2. It follows from Propositions 3.10, 3.13 and 3.15 and Corollary 3.11. □

Remark 3.16. Recall that a connected commutative linear algebraic group is known to be isomorphic to
Gr

m × Gs
a with some nonnegative integers r and s:

(1) If s = 0, then G = Gr
m is a torus and an equivariant compactification of G is a toric variety. In

particular, our result above recovers the bigness of tangent bundles of smooth projective toric varieties
[14, Corollary 1.3].
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(2) If r = 0, then G = Gs
a is a vector group and the equivariant compactifications of vector groups

are studied actively during the past decades. A full classification of all Fano threefolds admitting
an equivariant compactification structure of the vector group G3

a is given in [15, Main Theorem],
including 14 toric ones and 5 nontoric ones. In particular, this allows us to give a different proof of the
bigness of the tangent bundles of the Fano threefolds № 28, № 30 and № 31 in [21, Table 1], which
are proved there using total dual VMRT. In higher dimension, a classification of Fano manifolds
admitting an equivariant compactification structure of vector groups is available only for varieties
with high index; see [9], Examples 4.5 and 4.6. The equivariant compactifications of vector groups
with Picard number 1 are of special interests and we will discuss them in details in the next section.

4. Equivariant compactification of vector groups

In this section, we will investigate the Fano manifolds with Picard number 1 which is an equivariant
compactification of a vector group Gn

a . The study of equivariant compactification of vector groups is
started in [11], where a classification of them in dimension 3 and with Picard number 1 is obtained.
Nevertheless, it seems difficult to obtain a full classification in higher dimension; see [6; 7; 9] for more
details. The main goal of this section is to show that the image of the projectivised moment map 8G

X

along the boundary divisor of an equivariant compactification of a vector group is projectively equivalent
to the dual variety of its VMRT. In particular, this allows us to relate the criterion for the bigness of
tangent bundles given in Proposition 1.1 via moment map to the previous approach to the bigness of
tangent bundles via total dual VMRT initiated in [13]; see also [8; 12; 21] and Theorem 4.1 below.

4A. VMRT and its dual variety. Let X be a uniruled projective manifold. An irreducible component K
of the space of rational curves on X is called a minimal rational component if the subscheme Kx of K
parametrising curves passing through a general point x ∈ X is nonempty and proper. Curves parametrised
by K will be called minimal rational curves. Let q : U → K be the universal family and by µ : U → X
the evaluation map. The tangent map τ : U 99K P(TX) is defined by

τ(u) = [Tµ(u)µ(q−1q(u))] ∈ P(Tµ(x)X).

The closure C ⊆ P(TX) of its image is the total variety of minimal rational tangents (total VMRT for
short) of X . The projection C → X is a proper and surjective morphism, and a general fibre Cx ⊆ P(Tx X)

is called the variety of minimal rational tangents of X at the point x ∈ X . A general minimal rational
curve l passing through a general point x is standard; that is, if f : P1

→ l is the normalisation, we have

f ∗TX ∼= OP1(2) ⊕ OP1(1)⊕p
⊕ O

⊕(n−p−1)

P1 ,

where p = dim(Cx). Moreover, the projectivised tangent space T[Tx l]Cx of Cx at [Tx l] is the linear subspace
of P(Tx X) corresponding to the positive factors of f ∗TX at x ∈ l.

Let Z ⊆ P(V ) be a projective variety. The dual variety Ž ⊆ P(V ∗) is defined as the Zariski closure of
the set of hyperplanes in P(V ) which are tangent to Z at some smooth point. The dual defect of Z is
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codim(Ž)− 1 and Z is called dual defective if its dual variety Ž is not a hypersurface. The codegree of
Z is defined as the degree of Ž . The total dual VMRT Č ⊆ P(T ∗X) of a uniruled projective manifold
X is defined as the closure of the union of dual varieties Čx ⊆ P(T ∗

x X) of the VMRT Cx ⊆ P(Tx X) at
general points. The total dual VMRT Č is dominated by a family U of rational curves such that 3 ·C = 0
for a general element [C] ∈ U , where 3 is the tautological divisor of P(T ∗X); see [30, Section 4.1] and
[13, Section 2.B] for more details. The importance of the total dual VMRT in the study of the bigness of
tangent bundles is illustrated in the following theorem.

Theorem 4.1 [8, Theorem 3.4; 12, Proposition 5.8]. Let X be a Fano manifold with Picard number 1 and
denote by H the ample generator of Pic(X). Assume that the VMRT of X at a general point is not dual
defective and denote by a ∈ Z>0, b ∈ Z the unique integers such that

[Č] ≡ a3 + bπ∗H,

where 3 is the tautological divisor class of P(T ∗X) and π : P(T ∗X) → X is the natural projection. Then
TX is big if and only if b < 0.

The following result suggests that there may exist some interesting relations between the criterion
given in Proposition 1.1 via moment map and that given in Theorem 4.1 via total dual VMRT.

Lemma 4.2. Let G be a connected algebraic group and let X be a smooth projective uniruled G-variety.
Fix a minimal rational component K on X with total dual VMRT Č ⊆ P(T ∗X). Then for any reduced big
divisor D in X we have

8G
X (Č) ⊆ 8G

X (P(T ∗X |D)) = P(MG
X (D)).

Proof. The inclusion is clear if MG
X (D)=MG

X . Thus we may assume that MG
X (D) ̸=MG

X . Let H⊆ P(g∗)

be an arbitrary reduced (maybe reducible) hypersurface of degree m containing P(MG
X (D)), but not

containing P(MG
X ). Following Notation 3.2, consider the divisor DH ⊆ P(T ∗X). Then there exists

an effective big divisor D′
≥ D such that DH + π∗D′

∼ m3, where 3 is the tautological divisor of
π : P(T ∗X) → X . On the other hand, we note that the total dual VMRT Č is dominated by a family U of
π -horizontal rational curves with 3 · C = 0 for a general element [C] ∈ U . Thus, the restriction DH|Č is
not pseudoeffective since D′ is big and π∗D′

· C > 0 for a general element [C] ∈ U . In particular, the
total dual VMRT Č is contained in the support of the divisor DH. By the construction of DH, we must
have 8G

X (DH) ⊆ H and therefore 8G
X (Č) ⊆ H. As H is an arbitrary reduced hypersurface containing

P(MG
X (D)), it follows that 8G

X (Č) ⊆ P(MG
X (D)). □

Remark 4.3. The assumption on the bigness of D cannot be removed, see Example 4.6 below. Moreover,
the following inclusion is in general strict:

8G
X (Č) ⊆

⋂
D effective big divisor

P(MG
X (D)).

Let X = G/P be a rational homogeneous space with Picard number 1. Then the moment map 8G
X :

T ∗X → g∗ is a generically finite dominant map to its image MG
X , which is the closure of a nilpotent
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orbit. Moreover, the projectivised moment map 8G
X : P(T ∗X) → P(MG

X ) is everywhere well-defined.
Let P(T ∗X)

ε
−→ P(M̃G

X ) → P(MG
X ) be the Stein factorisation; see [8, Seciton 5.A]. Then ε is actually

the birational morphism defined by |m3| with m ≫ 1, where 3 is the tautological divisor of P(T ∗X).
As in the proof of Lemma 4.2, since Č is dominated by rational curves C with 3 · C = 0, the total dual
VMRT Č is contained in the exceptional locus E of ε. Thanks to [8, Theorem 5.5], we have⋂

D effective ample divisor

ε(P(T ∗X |supp(D))) = ε(E).

Consequently, if 8G
X is birational and if E is a divisor and Č is not a divisor, then 8G

X (Č) is a proper
subvariety of 8G

X (E); see [8, Proposition 5.4, Definition 5.6 and Table 2].

4B. Geometry of equivariant compactifications. In this subsection, we collect some basic facts about
equivariant compactifications of vector groups. Recall that for a smooth projective variety X , an EC-
structure on X is an algebraic action Gn

a × X → X which makes X an equivariant compactification
of Gn

a .

Proposition 4.4 [7, Proposition 5.4]. Let X be a Fano manifold with Picard number 1 which is an
equivariant compactification of Gn

a . Denote by D the complement of the unique open Gn
a-orbit O ⊆ X.

Let K be a covering family of minimal rational curves on X and denote by C ⊆ P(TX) its total VMRT.
Then the following statements hold:

(1) The closed subvariety D is an irreducible divisor such that Pic(X) ∼= ZD.

(2) If the points in D are fixed by Gn
a , then X is isomorphic to Pn .

(3) For any point x ∈ O , the VMRT Cx ⊆ P(Tx X) is irreducible and is independent of x up to projective
equivalence.

(4) If the VMRT is smooth, then a member C of Kx , for x ∈ O , is the closure of the image of a
1-dimensional subspace in Gn

a and D · C = 1.

Proof. The first statement is proved in [11, Theorem 2.5] and the second statement is proved in [11,
Corollary 2.9]. The first part of the third statement is proved in [6, Proposition 2.2] and the second part
follows from the fact that the total VMRT C ⊆ P(TX) is preserved by the natural action of Gn

a on P(TX).
The last statement follows from [7, Proposition 5.4]. □

Let Z ⊆ P(V ) be a nondegenerate submanifold and let W ⊆ V be a subspace such that P(W ) ⊆ Z .
Denote by (V/W )∗ ⊂ V ∗ the set of linear functionals on V annihilating W such that P((V/W )∗)

parametrises the set of hyperplanes in P(V ) containing P(W ). Then a general member of P((V/W )∗) is
called a P(W )-general hyperplane in P(V ). More generally, a linear subspace of codimension k in P(V )

is P(W )-general if it is defined by a general member of Gr(k, (V/W )∗).

Example 4.5. Up to our knowledge, the known examples of Fano manifolds with Picard number 1 which
are equivariant compactifications of vector groups are as follows:
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• The irreducible Hermitian symmetric spaces.

• The odd Lagrangian Grassmannians X3(m, m − 1) (m ≥ 2); see Remark 3.14.

• A smooth linear section Vk of Gr(2, 5) ⊆ P9 with codimension k ≤ 2.

• A smooth P4-general linear section Sa
k of S5 ⊆ P15 with codimension k ≤ 3.

The following example shows that there are many smooth equivariant compactifications of vector
groups with higher Picard number.

Example 4.6 [7, Example 2.2]. Let [x0 : · · · : xn] be the homogeneous coordinates of the n-dimensional
projective space Pn . Let H = Pn−1

⊆ Pn be the hyperplane defined by the equation x0 = 0. Then there is
a natural EC-structure 9 : Gn

a × Pn
→ Pn on Pn with the unique open orbit Pn

\ H . More precisely, for a
point y = (y1, . . . , yn) ∈ Gn

a , we define an automorphism 9 y : Pn
→ Pn as follows:

[x0 : x1 : · · · : xn] 7→ [x0 : x1 + y1x0 : · · · : xn + ynx0].

Clearly this gives an EC-structure on Pn such that the induced action on the hyperplane H is trivial. Let
S ⊆ H be a smooth irreducible projective variety, and let

ν : Z := BlS Pn
→ Pn

be the blowing-up of Pn along S with exceptional divisor E = P(NS/Pn ). Then the EC-structure 9 on Pn

can be naturally lifted to be an EC-structure 9Z on Z such that µ is equivariant. Denote by W ⊆ P(NS/Pn )

the subvariety P(NS/H ) of E . Then it is clear that the induced action of 8Z on W is trivial and for each
point s ∈ S, the fibre Es of E → S over s is invariant such that 8Z is transitive over the open subset
Es \ Ws , where Ws is the fibre of W → S over s.

Denote by H̃ the strict transform of H in Z . Then the induced Gn
a-action on H̃ is trivial. In particular,

the image 8
Gn

a
Z (T ∗Z |H̃ ) is the origin 0 ∈ g∗. Let K be the irreducible component of the space of rational

curves in Z parametrising the strict transforms of lines in Pn meeting S. Then K is a minimal rational
component on Z such that its VMRT is projectively equivalent to S ⊆ Pn−1. For any point z ∈ Z \(H̃ ∪ E),
we have 8

Gn
a

Z (T ∗
z Z) = g∗. Since the members in K have H̃ -degree 0, the divisor H̃ is not big. This shows

that the assumption on the bigness of D in Lemma 4.2 cannot be removed.

The proof of the following result is communicated to me by Baohua Fu.

Proposition 4.7. Notations as in Example 4.6. Let X be a Fano manifold with Picard number 1 which is
an equivariant compactification of Gn

a , different from projective spaces. Denote by D ⊆ X the boundary
divisor. Assume that there exists a covering family K of minimal rational curves on X such that its VMRT
Cx ⊆ P(Tx X) at a general point x ∈ X is projectively equivalent to a smooth projective variety S ⊆ Pn−1.
Then there exist Gn

a-stable proper subvarieties D0 ⊆ D and E0 ⊆ E such that there exists a Gn
a-equivariant

isomorphism

8 : X \ D0 → BlS(P
n) \ (H̃ ∪ E0).
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Proof. Let K′ be the covering family of minimal rational curves on BlS(P
n) parametrising the strict

transform of lines in Pn meeting S. Denote by O and O ′ the open Gn
a-orbits of X and BlS(P

n), respectively.
Fix two points o ∈ O and o′

∈ O ′. Denote by νo : Gn
a → O and νo′ : Gn

a → O ′ the orbit maps, respectively.
For a general point x ′

∈ BlS(P
n), we denote by C′

x ′ ⊆ P(Tx ′ BlS(P
n)) the VMRT of K′ at x ′. Note that

the VMRT of K at a point x ∈ O ′ is projectively equivalent to S ⊆ Pn−1. In particular, applying [6,
Proposition 2.4] shows that there exists a group automorphism F of Gn

a such that the biholomorphic map
ϕ : O → O ′ defined by ϕ := νo′ ◦ F ◦ ν−1

o satisfying:

(1) ϕ(o) = o′.

(2) ϕ(g · o) = F(g) · ϕ(o′) for any g ∈ Gn
a .

(3) the differential map dϕ : P(TO) → P(TO ′) sends Cx to C′

ϕ(x) for all x ∈ O .

The last statement (3) implies that general members in K are sent to general members in K′ by ϕ. Denote
by 8 : X 99K BlS(P

n) the rational map defined by ϕ. Let D0 ⊆ D be the closed subvariety such that 8

is an isomorphism over X \ D0. We note that 8(D) is a divisor in BlS(P
n). In fact, a general minimal

rational curve in K is disjoint from the indeterminacy locus of 8 and it meets D as X has Picard number
1. Thus, if 8(D) has codimension 2 in BlS(P

n), then every minimal rational curves in K′ passes through
the codimension 2 subvariety 8(D), which is impossible. Thus 8(D) is a divisor and this yields that the
map 8 is a local isomorphism at general points of D. As a consequence, the closed subvariety D0 is a
proper subvariety of D and hence has codimension at least 2 in X as D is irreducible. On the other hand,
the statement (2) shows that the rational map 8 is Gn

a-equivariant and it follows that D0 is Gn
a-stable.

Next we consider the inverse map 8−1
: BlS(P

n) 99K X . Note that the points in the prime divisor
H̃ are fixed by Gn

a . We claim that 8(H̃) has codimension at least 2 in X . Otherwise, we must have
8(H̃) = D. In particular, the points in D are fixed by Gn

a and X is isomorphic to the projective space
Pn by Proposition 4.4, which contradicts our assumption. Hence, the divisor H̃ is contracted by 8−1

and we have 8−1(E) = D. In particular, the map 8−1 is a local isomorphism at general points of E and
consequently there exists a closed proper Gn

a-stable subvariety E0 of E such that 8−1 is an isomorphism
over the Zariski open subset BlS(P

n) \ (H̃ ∪ E0). □

4C. Pseudoeffective cone of P(T∗X). In this subsection, we will finish the proof of the first statement
of Theorem 1.3. Let G be a connected linear algebraic group and let X be an equivariant compactification
of G. Fix a point o in the unique open orbit. We define

D := {1 ⊆ P(T ∗X) | 1 is a G-stable π -horizontal prime divisor}

and
H := {H ⊆ P(T ∗

o X) | H is a reduced but maybe reducible hypersurface}.

We can naturally identify g∗ to T ∗
o X via the cotangent map of the orbit map µo : G → Go = O at the

identity e ∈ G. In particular, we shall also regard the set H as the set of reduced but maybe reducible
hypersurfaces in P(g∗); see Notation 3.2.
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Lemma 4.8. Let 1 ∈ D and let H ∈ H be the intersection 1 ∩ P(T ∗
o X). If G is commutative, then

1 = DH.

Proof. Since both 1 and DH are π -horizontal, it is enough to show that the equality 1 = DH holds over
the open subset P(T ∗O). For an arbitrary point o′

∈ O , there exists a unique element g ∈ G such that
o′

= go. Moreover, as 1 is G-stable, we must have

1 ∩ P(T ∗

o′ X) = dµg|o(dµo|e(H)),

where dµg is the tangent map of the map µg : X → X , x 7→ gx , at x . Consider the following diagram

G Go = O

G Go′
= O

µo

id µg

µo′

Since G is commutative, for any g′
∈ G, we have

µg(µo(g′)) = g(g′o) = (g′g)o = g′(go) = µo′(g′).

In particular, the diagram above is commutative. This yields

1 ∩ P(T ∗

o′ X) = dµg|o ◦ dµo|e(H) = dµo′ |e(H) = DH ∩ P(T ∗

o′ X).

Thus, we have 1 = DH over P(T ∗O) and hence 1 = DH. □

The first statement in Theorem 1.3 is a special case of the following more general result.

Proposition 4.9. Let G be a connected commutative linear algebraic group, and let X be a smooth equi-
variant compactification of G with the unique open orbit O. Then the pseudoeffective cone Eff(P(T ∗X))

of P(T ∗X) is generated by following divisors:

(1) the divisors π∗D, where π :P(T ∗X)→ X is the natural projection and D is an irreducible component
of the complement X \ O.

(2) the prime divisors DH, where H is an irreducible reduced hypersurface in P(g∗).

Proof. The action of G on X can be naturally lifted to an action on P(T ∗X). Thus, according to
Theorem 2.7, the pseudoeffective cone of P(T ∗X) is generated by G-stable prime divisors. Let 1 be a
prime G-stable prime divisor in P(T ∗X). Then we have the following possibilities for 1:

• The divisor 1 is π -vertical.

• The divisor 1 is π -horizontal.

If the prime divisor 1 is π -vertical, then there exists a G-stable prime divisor D in X such that π∗D = 1

because the projection π is G-equivariant. This implies that D is an irreducible component of X \ O .
Now we assume that 1 is π-horizontal. Fix a point o in the open orbit O . Taking intersection with

P(T ∗
o X) yields an injection D→H. Let 1∈D be an arbitrary element and let H∈H be the corresponding
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hypersurface. Then we have 1 = DH by Lemma 4.8. Note that if H=H1 +H2 as divisors in P(g∗), then
clearly we have DH = DH1 + DH2 as divisors in P(T ∗X). Thus we may assume that the hypersurfaces
in H are irreducible. □

Remark 4.10. The commutativity of G is necessary in Proposition 4.9. In general, if G is not commutative,
then Lemma 4.8 is false and it is possible that there are G-stable prime divisors in P(T ∗X) which are not
of the form DH. For example, for the quintic del Pezzo threefold X = V3 (see Example 3.8), its total
dual VMRT Č ⊆ P(T ∗X) is an SL2-invariant prime divisor such that the intersection Č ∩ P(T ∗

x X) for a
point x contained in the open orbit is a union of three hyperplanes; see [13, Section 5]. In particular,
if Č is of the form DH, then H is also a union of three hyperplanes in P(g∗) and consequently DH is
a reducible divisor containing three irreducible components, which contradicts the irreducibility of Č.
Actually, the pseudoeffective cone of P(T ∗V3) is generated by Č and π∗D, where D is the closure of the
unique 2-dimensional SL2-orbit.

4D. Pseudoeffective slope. In this subsection, we will pursue further the study of the pseudoeffective cone
of P(T ∗X) for X being a smooth equivariant compactification with Picard number 1 of a vector group.

Definition 4.11 (pseudoeffective slope of vector bundles). Let E be a vector bundle over a normal
projective variety X , and let A be a big R-Cartier divisor on X . The pseudoeffective slope of E with
respect to A is defined as

µ(E, A) := sup{ε ∈ R | 3 − επ∗ A is pseudoeffective},

where π : P(E∗) → X is the natural projection and 3 is the tautological divisor of P(E∗).

Remark 4.12. The invariant µ(E, A) is also called pseudoeffective threshold of E with respect to A in
[8; 35] and E is big if and only if µ(E, A) > 0 for some big divisor A on X . On the other hand, if X is
a projective manifold with Picard number 1, then the pseudoeffective cone of P(T ∗X) is generated by
3 − µ(E, A)π∗ A and π∗ A, where A is an ample divisor on X .

4D1. Behaviour under deformation. Let p : X → 1 be smooth family of projective manifolds over a
disk 1. By Semicontinuity Theorem, if the tangent bundle of the fibre Xt is big for t ̸= 0, then the tangent
bundle of the central fibre X0 is also big. Thus one may expect to get more examples of Fano manifolds
with Picard number 1 and with big tangent bundle by degenerating known examples. Nevertheless, it
turns out that this may be not so successful. Recall that a smooth projective X is rigid if for any smooth
deformation X → 1 with Xt ∼= X for any t ̸= 0, we have X0 ∼= X :

• The rational homogeneous spaces with Picard number 1 are rigid except the orthogonal Grassmannian
B3/P2 = Grq(2, 7) by a series works of Hwang and Mok [18, Main Theorem] and the latter one has
a degeneration to X5 [32, Proposition 2.3].

• The odd symplectic Grassmannians X3(m, i) (m ≥ 2, 1 ≤ i ≤ m − 1) are rigid by [17, Theorem 1.7].

• The codimension k(≤ 3) linear section Vk of Gr(2, 5) ⊆ P9 and the smooth P4-general linear section
Sa

k of S5 ⊆ P15 with 1 ≤ k ≤ 3 are rigid by the classification of Fano manifolds with coindex at most 3.
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Question 4.13 [20; 26]. Let X be either a nonhomogeneous smooth projective symmetric variety with
Picard number 1 or a nonhomogeneous smooth projective horospherical variety with Picard number 1,
different from the odd symplectic Grassmannians. Is X rigid?

Conversely, if the tangent bundle of X0 is big, then it is not clear for us if TXt is big for t small enough
and up to our knowledge there are no known counterexamples yet. However, in certain special cases, we
can show that the bigness of tangent bundles is preserved under small deformation.

Lemma 4.14. Let E → 1 be a vector bundle over the disk 1 and let S ⊆ P(E∗) be a smooth family
of embedded smooth projective varieties over 1. Then the codegrees and the dual defects of the fibres
St ⊆ P(E∗

t ) are independent of t .

Proof. Let us consider the total conormal variety I ⊆ P(E∗)×1 P(E) of S; that is, the variety defined as
follows:

{(t, s, [H ]) | t ∈ 1, s ∈ St , [H ] ∈ P(Et) is a hyperplane tangent to St at s}

Then the total dual variety Š ⊆ P(E) is the image of the natural projection I → P(E). Moreover, it is
clear that the fibre of Š → 1 over t is just the dual variety of the fibre of S → 1 over t . Since 1 is
one-dimensional, the family Š → 1 is flat. In particular, the degrees and the dimensions of the fibres of
Š → 1 are independent of t and so are the codegrees and the dual defects of the fibres of S → 1. □

Remark 4.15. The result is false without the smoothness assumption. This can be shown by considering
a family of smooth hypersurfaces in Pn degenerating to a dual defective singular hypersurface in Pn .

Proposition 4.16. Let p : X → 1 be a smooth family of Fano manifolds with Picard number 1. Let K be
an irreducible component of the relative Chow variety Chow(X/1) such that Kt is a minimal rational
component of Xt for any t ∈ 1. Assume moreover that the VMRT of Kt at general points of Xt is smooth
for every t ∈ 1. If the VMRT of X0 is not dual defective and TX0 is big, then TXt is big for any t ∈ 1 and
we have

µ(TXt , −KXt ) = µ(TX0, −KX0), ∀t ∈ 1.

Proof. Let σ : 1 → X be a general section passing through a general point in X0. Then the normalised
Chow space Kσ(t) along this section gives a family of smooth projective varieties. On the other hand,
since the VMRT of Xt is smooth for any t , it follows that the VMRTs Cσ(t) ⊆ P(Tσ(t)Xt) along σ(1) is a
smooth family of embedded projective varieties. Then by Lemma 4.14, the VMRT Cσ(t) ⊆ P(Tσ(t)Xt) is
not dual defective for any t ∈ 1. In particular, the relative total dual VMRT ČX ⊆ P(T ∗(X/1)) of the
relative total VMRT CX ⊆ P(T (X/1)) is a prime divisor, where T (X/1) is the relative tangent bundle
of p. Since the fibration X → 1 has relative Picard number 1, there are two unique real numbers a and b
such that

ČX ∼p a3X + bπ∗KX/1,
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where 3X is the tautological divisor of P(T ∗(X/1)). Then it is clear that a is equal to the codegree of
the VMRT of X0 (see Lemma 4.14) and

µ(TXt , −KXt ) =
b
a , ∀t ∈ 1.

As TX0 is big, we have b > 0 by Theorem 4.1. Hence, the tangent bundle TXt is big for any t ∈ 1. □

Remark 4.17. Recall that a smooth projective variety X is said locally rigid if for any smooth deformation
X → 1 with X0 ∼= X , we have Xt ∼= X for t in a small analytic neighbourhood of 0:

• Smooth projective horospherical varieties with Picard number 1 and the smooth projective two-orbits
varieties X1 and X2 are locally rigid except the horospherical G2-variety X5 [32, Theorem 0.5 and
Proposition 2.3].

• Smooth projective symmetric varieties with Picard number 1 are locally rigid; see [1; 20; 26].

• Smooth equivariant compactifications of vector groups with Picard number 1 may be not locally
rigid. Among all the known examples (see Example 4.5), the only locally nonrigid ones are the
smooth P4-general linear sections Sa

k of S5 ⊆ P15 with codimension k = 2 or 3; see [1].

Corollary 4.18. Let Sk be a smooth codimension k linear section of S5 ⊆ P15. Then T Sk is big if k ≤ 3.

Proof. Recall that the VMRT of S5 is the Grassmannian Gr(2, 5) ⊆ P9 in its Plücker embedding which is
self-dual. In particular, its dual defect is 2. Moreover, the VMRT of Sk is a smooth codimension k linear
section of Gr(2, 5) ⊆ P9. In particular, the VMRT of Sk is dual defective if and only if k = 1. Moreover,
if k ≤ 3, a codimension k smooth P4-general linear section Sa

k of S5 is an equivariant compactification of
a vector group. As a consequence, if k = 2 or 3, by Theorem 1.2 and Proposition 4.16, the tangent bundle
T Sk is big. On the other hand, if k = 1, then there is only one class of S1 up to projective equivalence.
Hence, the tangent bundle T S1 is also big. □

Remark 4.19. The variety S9 is a smooth curve of genus 7 and S8 is a smooth K3 surface. In particular,
their tangent bundles are even not pseudoeffective. For S6 and S7, their VMRTs are 0-dimensional and it
follows from [12, Theorem 1.1] that their tangent bundles are not big. Thus the only remaining unknown
cases are S4 and S5. On the other hand, there are exactly two isomorphic classes of S2. The special one
Sa

2 is an equivariant compactification of G8
a , while the general one Sg

2 is the G2 × PSL2-variety X2 given
in [31, Theorem 0.2 and Definition 2.12]; see [1, Proposition 4.8].

Question 4.20. Are the tangent bundles of S4 and S5 big?

In the following we apply Proposition 1.1 to treat the two-orbits F4-variety X1. Let us give a brief
geometric description of X1 [31, proof of Proposition 2.2 and Definition 2.11]. Set G = F4. Let
G/H = O ⊆ X1 be the unique open G-orbit and by Z its complement, which is the unique closed G-orbit.
Then Z has codimension 3. Let P be a parabolic subgroup of G containing H and minimal for this
property. Then R(P) ⊆ H and P is the maximal parabolic subgroup P(ω1) of F4. Let

ϕ : G/H = O → Y = G/P
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be the natural projection. Let F be an arbitrary fibre of ϕ. Then P acts transitively over F . Denote
by Q the quotient P/R(P). Then Q is a semisimple group of type C3 and Q acts transitively over F .
Moreover, the Q-variety F has an equivariant compactification Gr(2, C6) ⊆ P(∧2C6) whose boundary
divisor is a closed Q-orbit isomorphic to Grω(2, 6).

Proposition 4.21. The tangent bundle of X1 is big.

Proof. Firstly we show that the image MP
F ⊆ p∗ has dimension 2 dim(F) − 1. Indeed, note that the

Q-variety F has complexity 0 and rank 1. It follows from Theorem 2.10 that the variety MQ
F ⊆ q∗ has

dimension 2 dim(F) − 1. Let h̄ be the Lie algebra of the image H of H in Q and let ι : q∗
→ p∗ be

the natural inclusion induced by P → Q. As R(P) ⊆ H , we have ι(h̄⊥) = h⊥. Consider the following
commutative diagram:

T ∗F = P ∗H h⊥ p∗

T ∗F = Q ∗H h̄⊥ q∗

8P
F

σ

8
Q
F

ι

where σ is an isomorphism. This yields MP
F = ι(MQ

F ) and consequently MP
F has dimension 2 dim(F)−1.

Next we show that the image MG
X1

(F) has dimension dim(X1) + dim(F) − 1. To see this, let us
consider the following commutative diagram:

N ∗

F/X1
T ∗X1|F T ∗F

g∗ p∗

ν 8G
X1

8P
F

η

As η(MG
X1

(F)) = η(8G
X1

(T ∗X |F )) = 8P
F (T ∗F) = MP

F , it follows that we have

dim(MG
X1

(F)) ≤ dim(MP
F ) + dim(g∗) − dim(p∗) = dim(X1) + dim(F) − 1.

Finally, note that the G-variety X1 has complexity 0 and rank 1. The image MG
X1

has dimension
2 dim(X1) − 1 by Theorem 2.10. Hence, we obtain

2 dim(X1) − 1 = dim(MG
X1

) ≤ dim(Y ) + dim(MG
X1

(F)) ≤ 2 dim(X1) − 1.

This implies that dim(MG
X1

(F)) = dim(X1)+ dim(F)− 1. Let A be a prime ample divisor in Y . Then
the closure of ϕ∗ A in X1 is an ample prime divisor as X1 has Picard number 1. On the other hand, note
that we have

dim(MG
X1

(ϕ∗ A)) ≤ dim(A) + dim(MG
X1

(F)) = 2 dim(X) − 2.

Hence, according to Proposition 1.1, the tangent bundle of X1 is big. □



On moment map and bigness of tangent bundles of G-varieties 1525

4D2. Pseudoeffective slope of equivariant compactifications. Recall from Notation 3.2 that if H ⊆ P(g∗)

is an irreducible reduced hypersurface defined by ξ ∈ Symm g, then we have

Dξ = DH +

∑
multπ∗ D(Dξ )π

∗D,

where D runs over all the prime divisor in X such that P(MG
X (D)) is contained in H and π : P(T ∗X)→ X

is the natural projection.

Notation 4.22. Let C be a smooth projective curve and let E be a vector bundle of rank n over C . Assume
that there exists a nonzero map ϕ : E → V r , where V r is the trivial vector bundle of rank r over C . Let
p : P(V r ) = C × Pr−1

→ Pr−1 be the second projection. Let ξ be a homogeneous polynomial of degree
d over Pr−1. Then for any point c ∈ C , denote by Ec the fibre of E over c. Then the restricted linear map
ϕc := ϕ|Ec : Ec → Cr induces a homogeneous polynomial ϕ∗

c ξ on the fibre F = P(Ec) of P(E) → C
over c, which is either zero or of degree d . In particular, if ϕ∗

c′ξ is nonzero for some c′
∈ C , then we can

define the multiplicity m F (ϕ, ξ) along F as the multiplicity of the pull-back (p ◦ ϕ)∗ξ along F . Clearly
we have m F (ϕ, ξ) = m F (ϕ, aξ) for any nonzero constant a.

Let us give a geometric explanation for the notation m F (ϕ, ξ). Denote by ϕ the induced rational map
P(E) 99K P(V r ). Then the composition p ◦ϕ : P(E) 99K Pr−1 is defined by the following linear system

V := Image(H 0(C, (V r )∗) → H 0(C, E∗)) ⊆ H 0(C, E∗) = H 0(P(E), OP(E)(1)).

Let D be the fixed part of |V |. Then we have

(p ◦ ϕ)∗OPr−1(1) ⊗ OP(E)(D) ∼= OP(E)(1).

Let Hξ be the degree d divisor in Pr−1 corresponding to ξ . Then the assumption ϕ∗

c′ξ ̸= 0 means that the
pull-back (p ◦ ϕ)∗Hξ is a well-defined divisor in P(E). Moreover, we have

m F (ϕ, ξ) = multF ((p ◦ ϕ)∗Hξ ) + d multF (D).

Lemma 4.23. Let H ⊂ P(g∗) be a hypersurface defined by a homogeneous polynomial ξ . Let D be a
prime divisor in X such that P(MG

X (D)) ⊆ H. Fix a general point x ∈ D. Let C be an irreducible curve
passing through x such that C ̸⊆ D and P(MG

X (C)) ̸⊆ supp(H). Denote by f : C̃ → C its normalisation.
Then we have

multπ∗ D(Dξ ) = m F (ϕ, ξ),

where the map ϕ : f ∗(T ∗X |C) → C̃ × g∗ is naturally induced by the moment map 8G
X and F is a fibre of

P( f ∗(T ∗X |C)) → C̃ over a point c such that f (c) = x ∈ D.

Proof. This follows directly from the definition of Dξ and the fact that the multiplicity multπ∗ D(Dξ ) only
depends on the multiplicity of Dξ along general fibres of π∗D → D. □

Now we are in the position to finish the proof of Theorem 1.3.



1526 Jie Liu

Proof of Theorem 1.3. The first statement follows from Proposition 4.9. For the second statement, as
the VMRT of X is smooth, following the notations in Proposition 4.7, there exist closed subvarieties
E0 ⊆ BlS(P

n) and D0 ⊆ X of codimension at least 2 such that the following morphism

8 : X \ D0 → BlS(P
n) \ (H̃ ∪ E0)

is an isomorphism. Moreover, the induced rational map E 99K D is birational and Gn
a-equivariant. Note

that the Gn
a-orbits on E = P(NS/Pn )\W = P(NS/H ) are just the fibres of the natural projection E \W → S

(see Example 4.6). Thus the general Gn
a-orbits on D have dimension n − p − 1, where p is the dimension

of the VMRT S ⊆ Pn−1 of X .
Fix a point o ∈ X . If l is a general minimal rational curve passing through o, then l is the strict

transform of a line l ′ in Pn passing through o. Moreover, we may also assume that the strict transform of
l in BlS(P

n) is disjoint from H̃ ∪ E0. In particular, the curve l meets D at a smooth point z ∈ D \ D0.
Since l is standard, we have

f ∗TX ∼= OP1(2) ⊕ OP1(1)⊕p
⊕ O

⊕n−p−1
P1 .

where f : P1
→ l ⊆ X is the natural embedding. Denote by T +

l X the positive factor of f ∗TX and by
T +

o l the fibre of T +

l X over o. By Proposition 4.4, there exists a 1-dimensional subspace Vl of Gn
a such

that l is the closure of the Vl-orbit of o. Moreover, the subbundle T +

l X is preserved by the Vl-action.
Denote by gl the subspace of g corresponding to the subspace T +

o l ⊆ To X ∼= g. Then the Vl-action
induces a map of vector bundles

9 : l × g → f ∗TX

such that the induced map l ×gl → T +

l X is nondegenerate along l \ {z}. Moreover, as Gn
a is commutative,

the dual map 9∗
: f ∗T ∗X → l × g∗ is exactly the restriction of the map

π × 8
Gn

a
X : T ∗X → X × g∗.

From the splitting type of T +

l X , one can derive that the linear map {z} × gl → T +
z l is zero. As the

Gn
a-orbit of z has dimension n − p − 1, the rank of the linear map

{z} × g → Tz X

is n − p − 1. This implies 8
Gn

a
X (T ∗

z X) = g⊥

l . On the other hand, as P(T +
o l) ⊆ P(To X) is the projectivised

tangent bundle of the VMRT Co ⊆ P(To X) at [Tol], thus we may regard g⊥

l as the set of hyperplanes in
P(To X) which are tangent to Co at [Tol].

For a general point z ∈ D, the Gn
a-orbit Oz of z is the image of a fibre of E\W → S over some point s ∈ S.

In particular, the strict transform of the line connecting o and s is a minimal rational curve l on X passing
through o and meeting Oz at a point z′. As Gn

a is commutative, we have 8
Gn

a
X (T ∗X |Oz ) = 8

Gn
a

X (T ∗

z′ X) = g⊥

l ,
where gl is the subspace of g corresponding to T +

o l. As a consequence, the image P(MGn
a

D ) ⊆ P(g∗) is
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the closure of the following ⋃
[l]∈Kx general

P(g⊥

l ) =

⋃
[l]∈Kx general

P((T +

o l)⊥) ⊆ P(T ∗

o X)

which is exactly the dual variety of the VMRT Co ⊆ P(To X) by definition.
Finally, we assume that the VMRT is smooth and not dual defective. Then P(MG

D) is a hypersurface in
P(g∗) defined by a homogeneous polynomial ξ ∈ Syma g. where a is the degree of H, i.e., the codegree
of Co. For simplicity, we denote it by H. Now we want to determine the cohomological class of the divisor
DH ⊆ P(T ∗X). By Lemma 4.2, we have 8

Gn
a

X (Č) ⊆ H. This implies that Č is contained in supp(Dξ ). On
the other hand, since both Č and DH are π -horizontal prime divisors, we obtain Č = DH. In particular, by
Theorem 4.1, it remains to prove DH ∼ a3 − 2π∗D.

Choose a general minimal rational curve l on X meeting D at z. Fix a general point o ∈ l and identify
H ⊆ P(g∗) to the dual variety of Co ⊆ P(To X). Consider the following map 9∗

: f ∗T ∗X → l × g∗.
By Lemma 4.23, we only need to calculate multF (9∗, ξ), where F is the fibre of f ∗T ∗X → l over z.
Fix a coordinate t around z ∈ A1

⊆ l. Then after choosing suitable trivialisation of f ∗T ∗X , the map
9∗

: A1
× Cn

→ A1
× Cn can be written in coordinates as follows:

(x, v0, v1, . . . , vp, vp+1, vn−1) 7→ (x, t2v0, tv1, . . . , tvp, vp+1, . . . , vn−1),

where the first coordinate v0 corresponds to the cotangent bundle OP1(−2) of l and the first p + 1
coordinates correspond to the negative factors of f ∗T ∗X . Given a general point y on 8

Gn
a

X (P(F)) ⊆ H,
then we may assume that H is smooth at y as l is general. In particular, by biduality theorem, the
projectivised tangent bundle of H at y corresponds to the point [Tol] ∈ Co. This implies that the linear part
of the local equation of H at y only consists of the first coordinate v0. In particular, the local description
above shows that multiplicity multF (9∗, ξ) is 2. Hence, we have Dξ = DH+2π∗D and the result follows
as Dξ ∈ |a3|. □

Remark 4.24. Let us give a more geometric description of the linear map {z} × g → Tz X . Let πo :

Pn
\ {o} → H be the projection from o. Then πo induces a natural projection

po : g \ {0}
dµo

−−→ ToPn
\ {o} = Pn

\ {o}
πo

−→ H,

where ToPn is the projectivised tangent space of Pn at o. For a general point s ∈ S, for a point z′
∈ Es \Ws ,

the Lie algebra gz′ of the isotropy subgroup Gz′ of z′ is exactly the linear subspace of the inverse image
p−1

o (Ts S) = gl , where Ts S ⊆ H is the projectivised tangent bundle of S at s. Thus the map {z}×g→ Tz X
is the projection g → g/gl .

4D3. Codegree of VMRT. Now we proceed to calculate the codegree of the VMRT of the equivariant
compactifications X of vector groups given in Example 4.5. If X is an irreducible Hermitian symmetric
space, the pseudoeffective cone of P(T ∗X) and hence the value µ(TX, −K X ) are determined in [35]
and [8]. In particular, if the VMRT is not dual defective, it turns out that its codegree is equal to the rank
of X in the sense of [35, Definition 4.6]. Here we remark that the definition of rank in [35, Definition 4.6]
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X VMRT embedding defect codegree

X3(m, m − 1), (m ≥ 2) P(OPm−1(−1) ⊕ OPm−1(−2)) |O(1)| 0 m + 1
V2 P1

|O(3)| 0 4
Sa

1 V1 |O(1)| 1 –
Sa

2 V2 |O(1)| 0 5
Sa

3 V3 |O(1)| 0 10

Table 1. Known examples of nonhomogeneous EC-structure.

of X is different from that given in Definition 2.9. For the remaining nonhomogeneous examples, we
summarise the results in Table 1.

Here we recall that V2 is the codimension two smooth linear section of Gr(2, 5) ⊆ P9 in its Plücker
embedding and Sa

i is a codimension i smooth P4-general linear section of the spinor tenfold S5 ⊆ P15 in
its minimal embedding (see Example 4.5).

Odd Lagrangian Grassmannians. Let a := (a0, . . . , ar ) be a sequence of integers such that 0 ≤ a0 ≤

· · · ≤ ar with ar > 1. Denote by Em(a) the following vector bundle over Pm :
r⊕

i=0

OPm (−ai ).

Then the tautological linear bundle OP(Em(a))(1) of P(Em(a)) is globally generated and defines a morphism

8m(a) : P(Em(a)) → PN (m,a).

This map is birational because ar > 0. Write Sm(a) for the image of this map. Note that if a0 > 0, the
morphism 8m(a) is an embedding.

According to [17, Section 6] (see also [18, Proposition 3.5.2]), the VMRT of the odd symplectic
Grassmannian X3(m, i) is projectively equivalent to

Sm−1(12m−2i−1, 2) ⊆ PN (m,12m−2i−1,2).

In particular, the codegree of the VMRT of odd Lagrangian Grassmannians X3(m, m − 1) can be derived
from the following general result.

Proposition 4.25. The dual variety of the scroll Sm(1r , 2) ⊆ PN (m,1r ,2) is a hypersurface of degree
m + r + 1 if m ≥ r .

Proof. Denote by 3 a hyperplane section of Sm(1r , 2). Firstly we recall that the projective variety
Sm(1r , 2) is isomorphic to the blowing-up of the projective space Pm+r along a linear subspace L ∼= Pr−1,
see for instance [5, Section 9.3.2]. Denote this blowing-up Sm(1r , 2) → Pm+r by µ and let E be the
exceptional divisor. Then we have an isomorphism

OSm(1r ,2)(3) ∼= µ∗OPm+r (2) ⊗ OSm(1r ,2)(−E).
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In particular, taking push-forward yields a linear isomorphism

p : |3| → |OPm+r (2) ⊗ IL| = HL,

where IL is the ideal sheaf of L. Denote by Š ⊆ |3| the dual variety of Sm(1r , 2), i.e., the closure of the
set of singular elements. For a general point [Q] ∈ Š, we may assume that the singular locus of Q is
not contained in E . This implies that the push-forward p∗Q is a singular element in the linear system
|OPm+r (2)| which contains L.

Conversely, as r ≤ m, a general element in HL is smooth and a general singular element [Q] ∈ HL is a
quadric hypersurface containing L such that it is a cone with a single point p ∈ Pm+r

\ L as vertex and
hence p−1

[Q] is contained in Š. As a consequence, the map p induces a dominant map

p̄ : Š → X̌ ∩ HL ⊆ |OPm+r (2)|,

where X̌ is the dual variety of the Veronese embedding X = ν2(P
m+r ) ⊆ |OPm+r (2)|. As Pm+r is

homogeneous, the variety X̌ ∩ HL is an irreducible proper subvariety of HL. In particular, the map p̄ is an
isomorphism. Note that X̌ is a hypersurface of degree m + r + 1 by Boole formula [38, Example 6.4],
hence Š ⊆ |3| is a hypersurface of degree m + r + 1. □

Remark 4.26. Let [Q] ∈ Š be a general singular hyperplane section of S. If m < r , then the divisor p∗Q
is a quadric cone containing L with vertex L′

⊆ Pm+r , which is a (r − m)-dimensional linear subspace
such that dim(L ∩ L′) = r − m − 1. In particular, the singular locus of Q has dimension r − m and this
implies that the scroll Sm(1r , 2) has dual defect r − m [38, Theorem 7.21].

Linear section Vk of the Grassmannian Gr(2, 5). The VMRT of the Grassmannian Gr(2, 5) is projectively
equivalent to the Segre embedding P1

× P2
⊆ P5. Moreover, for k ≤ 3, there is only one isomorphic

class of codimension k linear section Vk of Gr(2, 5). This implies that the VMRT of Vk is projectively
equivalent to a general linear section of P1

× P2 with codimension k. Then an easy computation shows
that the VMRT of V2 is the twisted cubic in P3 whose dual variety is a quartic surface; see for instance
[38, Example 10.3].

Linear section Sk of the spinor tenfold S5. The VMRT of the 10-dimensional spinor variety S5 is the
Grassmannian Gr(2, 5) ⊆ P9 in its Plücker embedding. Hence, the VMRT of the codimension k linear
section Sk of S5 is projectively equivalent to the smooth codimension k linear section Vk ⊆ P9−k of the
Grassmannian Gr(2, 5). As Gr(2, 5) ⊆ P9 has dual defect 2, the linear section Vk ⊆ P9−k has dual defect
max{0, 2 − k} [38, Theorem 5.3]. In the following we will compute the codegree of Z = Vk , k = 2 or 3,
using the Katz–Kleiman formula [38, Theorem 6.2]:

codeg(Z) =

dim(Z)∑
i=0

(i + 1)cdim(Z)−i (T ∗Z) · H i ,
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where H is the hyperplane section. To calculate the Chern classes of Z , firstly we write the total Chern
classes of Gr(2, 5) as 

1
5 12

11 30 25
15 35 30 33


where the rows and columns are labelled from 0, and the (i, j)-th element is the coefficient of the Schubert
cycles σi, j . From the tangent sequence of Z we have

c(Z) := c(Vk) =
c(Gr(2, 5))

(1 + σ1)k ,

where σ1 := σ1,0 denotes the ample generator of the Picard group, i.e., the hyperplane section. Using the
Pieri’s formula, that is,

σa,b · σ1 = σa+1,b + σa,b+1,

a routine computation then yields:

c(V2) =


1
3 5
4 6 4
4 2 ∗ ∗

 and c(V3) =


1
2 3
2 1 ∗

2 ∗ ∗ ∗


Using again the Pieri’s formula and our computations of the degrees of the Schubert classes we deduce
that the codegree of V2 and V3 are 5 and 10, respectively.

There is also an alternative more geometric way to see that the codegree of V2 is 5. Since the
Grassmannian Gr(2, 5) ⊆ P9 is self-dual, the dual variety of Vk ⊆ P9−k , k = 1 or 2, is projectively
equivalent to the image of Gr(2, 5) under the projection πL : P9 99K P9−k from a general linear subspace
L ⊆ P9 of dimension k − 1; see for instance [38, Theorem 5.3]. As L is general, the restriction of πL to
Gr(2, 5) is a birational morphism. Since Gr(2, 5) is of degree 5 and with dimension 6, it follows that the
dual variety of V2 is a hypersurface in P7 with degree 5.

Remark 4.27. (1) Let X be a Fano manifold with Picard number 1. Then the anticanonical pseudoeffec-
tive slope µ(TX, −K X ) of TX is bounded by the maximal slope of TX with respect to −K X ; see [8,
Lemma 2.8]. In particular, if TX is semistable, then µ(TX, −K X ) is bounded by 1/ dim(X). Actually,
it is expected that this should hold without the semistability assumption; see [8, Conjecture 1.3]. On
the other hand, while the semistability of TX is confirmed in many cases, [19, Theorem 0.3] says
that the tangent bundles of the horospherical varieties X1(m) (m ≥ 4) and X4 are not semistable.
Thus it is natural and interesting to ask if their anticanonical pseudoeffective slopes are (strictly)
dominated by the reciprocal of their dimensions.
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(2) For odd Lagrangian Grassmannians X = X3(m, m − 1) (m ≥ 2), according to Table 1, we have

µ(TX, −K X ) =
2

(m + 1)(m + 2)
<

1
dim(X)

=
2

m(m + 3)
.

(3) By [35, Corollary 1.4; 8, Theorem 1.14] and Table 1 above, the anticanonical pseudoeffective slope
µ(TX, −K X ) of the varieties in Example 4.5 are determined except the hyperplane section S1 of S5.
As the VMRT of S1 is dual defective, maybe we need a different treatment.
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